GNU Linux-libre 5.10.219-gnu1
[releases.git] / net / core / skmsg.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
13 {
14         if (msg->sg.end > msg->sg.start &&
15             elem_first_coalesce < msg->sg.end)
16                 return true;
17
18         if (msg->sg.end < msg->sg.start &&
19             (elem_first_coalesce > msg->sg.start ||
20              elem_first_coalesce < msg->sg.end))
21                 return true;
22
23         return false;
24 }
25
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27                  int elem_first_coalesce)
28 {
29         struct page_frag *pfrag = sk_page_frag(sk);
30         u32 osize = msg->sg.size;
31         int ret = 0;
32
33         len -= msg->sg.size;
34         while (len > 0) {
35                 struct scatterlist *sge;
36                 u32 orig_offset;
37                 int use, i;
38
39                 if (!sk_page_frag_refill(sk, pfrag)) {
40                         ret = -ENOMEM;
41                         goto msg_trim;
42                 }
43
44                 orig_offset = pfrag->offset;
45                 use = min_t(int, len, pfrag->size - orig_offset);
46                 if (!sk_wmem_schedule(sk, use)) {
47                         ret = -ENOMEM;
48                         goto msg_trim;
49                 }
50
51                 i = msg->sg.end;
52                 sk_msg_iter_var_prev(i);
53                 sge = &msg->sg.data[i];
54
55                 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
56                     sg_page(sge) == pfrag->page &&
57                     sge->offset + sge->length == orig_offset) {
58                         sge->length += use;
59                 } else {
60                         if (sk_msg_full(msg)) {
61                                 ret = -ENOSPC;
62                                 break;
63                         }
64
65                         sge = &msg->sg.data[msg->sg.end];
66                         sg_unmark_end(sge);
67                         sg_set_page(sge, pfrag->page, use, orig_offset);
68                         get_page(pfrag->page);
69                         sk_msg_iter_next(msg, end);
70                 }
71
72                 sk_mem_charge(sk, use);
73                 msg->sg.size += use;
74                 pfrag->offset += use;
75                 len -= use;
76         }
77
78         return ret;
79
80 msg_trim:
81         sk_msg_trim(sk, msg, osize);
82         return ret;
83 }
84 EXPORT_SYMBOL_GPL(sk_msg_alloc);
85
86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
87                  u32 off, u32 len)
88 {
89         int i = src->sg.start;
90         struct scatterlist *sge = sk_msg_elem(src, i);
91         struct scatterlist *sgd = NULL;
92         u32 sge_len, sge_off;
93
94         while (off) {
95                 if (sge->length > off)
96                         break;
97                 off -= sge->length;
98                 sk_msg_iter_var_next(i);
99                 if (i == src->sg.end && off)
100                         return -ENOSPC;
101                 sge = sk_msg_elem(src, i);
102         }
103
104         while (len) {
105                 sge_len = sge->length - off;
106                 if (sge_len > len)
107                         sge_len = len;
108
109                 if (dst->sg.end)
110                         sgd = sk_msg_elem(dst, dst->sg.end - 1);
111
112                 if (sgd &&
113                     (sg_page(sge) == sg_page(sgd)) &&
114                     (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
115                         sgd->length += sge_len;
116                         dst->sg.size += sge_len;
117                 } else if (!sk_msg_full(dst)) {
118                         sge_off = sge->offset + off;
119                         sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
120                 } else {
121                         return -ENOSPC;
122                 }
123
124                 off = 0;
125                 len -= sge_len;
126                 sk_mem_charge(sk, sge_len);
127                 sk_msg_iter_var_next(i);
128                 if (i == src->sg.end && len)
129                         return -ENOSPC;
130                 sge = sk_msg_elem(src, i);
131         }
132
133         return 0;
134 }
135 EXPORT_SYMBOL_GPL(sk_msg_clone);
136
137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
138 {
139         int i = msg->sg.start;
140
141         do {
142                 struct scatterlist *sge = sk_msg_elem(msg, i);
143
144                 if (bytes < sge->length) {
145                         sge->length -= bytes;
146                         sge->offset += bytes;
147                         sk_mem_uncharge(sk, bytes);
148                         break;
149                 }
150
151                 sk_mem_uncharge(sk, sge->length);
152                 bytes -= sge->length;
153                 sge->length = 0;
154                 sge->offset = 0;
155                 sk_msg_iter_var_next(i);
156         } while (bytes && i != msg->sg.end);
157         msg->sg.start = i;
158 }
159 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
160
161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
162 {
163         int i = msg->sg.start;
164
165         do {
166                 struct scatterlist *sge = &msg->sg.data[i];
167                 int uncharge = (bytes < sge->length) ? bytes : sge->length;
168
169                 sk_mem_uncharge(sk, uncharge);
170                 bytes -= uncharge;
171                 sk_msg_iter_var_next(i);
172         } while (i != msg->sg.end);
173 }
174 EXPORT_SYMBOL_GPL(sk_msg_return);
175
176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
177                             bool charge)
178 {
179         struct scatterlist *sge = sk_msg_elem(msg, i);
180         u32 len = sge->length;
181
182         /* When the skb owns the memory we free it from consume_skb path. */
183         if (!msg->skb) {
184                 if (charge)
185                         sk_mem_uncharge(sk, len);
186                 put_page(sg_page(sge));
187         }
188         memset(sge, 0, sizeof(*sge));
189         return len;
190 }
191
192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
193                          bool charge)
194 {
195         struct scatterlist *sge = sk_msg_elem(msg, i);
196         int freed = 0;
197
198         while (msg->sg.size) {
199                 msg->sg.size -= sge->length;
200                 freed += sk_msg_free_elem(sk, msg, i, charge);
201                 sk_msg_iter_var_next(i);
202                 sk_msg_check_to_free(msg, i, msg->sg.size);
203                 sge = sk_msg_elem(msg, i);
204         }
205         consume_skb(msg->skb);
206         sk_msg_init(msg);
207         return freed;
208 }
209
210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
211 {
212         return __sk_msg_free(sk, msg, msg->sg.start, false);
213 }
214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
215
216 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
217 {
218         return __sk_msg_free(sk, msg, msg->sg.start, true);
219 }
220 EXPORT_SYMBOL_GPL(sk_msg_free);
221
222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
223                                   u32 bytes, bool charge)
224 {
225         struct scatterlist *sge;
226         u32 i = msg->sg.start;
227
228         while (bytes) {
229                 sge = sk_msg_elem(msg, i);
230                 if (!sge->length)
231                         break;
232                 if (bytes < sge->length) {
233                         if (charge)
234                                 sk_mem_uncharge(sk, bytes);
235                         sge->length -= bytes;
236                         sge->offset += bytes;
237                         msg->sg.size -= bytes;
238                         break;
239                 }
240
241                 msg->sg.size -= sge->length;
242                 bytes -= sge->length;
243                 sk_msg_free_elem(sk, msg, i, charge);
244                 sk_msg_iter_var_next(i);
245                 sk_msg_check_to_free(msg, i, bytes);
246         }
247         msg->sg.start = i;
248 }
249
250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
251 {
252         __sk_msg_free_partial(sk, msg, bytes, true);
253 }
254 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
255
256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
257                                   u32 bytes)
258 {
259         __sk_msg_free_partial(sk, msg, bytes, false);
260 }
261
262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
263 {
264         int trim = msg->sg.size - len;
265         u32 i = msg->sg.end;
266
267         if (trim <= 0) {
268                 WARN_ON(trim < 0);
269                 return;
270         }
271
272         sk_msg_iter_var_prev(i);
273         msg->sg.size = len;
274         while (msg->sg.data[i].length &&
275                trim >= msg->sg.data[i].length) {
276                 trim -= msg->sg.data[i].length;
277                 sk_msg_free_elem(sk, msg, i, true);
278                 sk_msg_iter_var_prev(i);
279                 if (!trim)
280                         goto out;
281         }
282
283         msg->sg.data[i].length -= trim;
284         sk_mem_uncharge(sk, trim);
285         /* Adjust copybreak if it falls into the trimmed part of last buf */
286         if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
287                 msg->sg.copybreak = msg->sg.data[i].length;
288 out:
289         sk_msg_iter_var_next(i);
290         msg->sg.end = i;
291
292         /* If we trim data a full sg elem before curr pointer update
293          * copybreak and current so that any future copy operations
294          * start at new copy location.
295          * However trimed data that has not yet been used in a copy op
296          * does not require an update.
297          */
298         if (!msg->sg.size) {
299                 msg->sg.curr = msg->sg.start;
300                 msg->sg.copybreak = 0;
301         } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
302                    sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
303                 sk_msg_iter_var_prev(i);
304                 msg->sg.curr = i;
305                 msg->sg.copybreak = msg->sg.data[i].length;
306         }
307 }
308 EXPORT_SYMBOL_GPL(sk_msg_trim);
309
310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
311                               struct sk_msg *msg, u32 bytes)
312 {
313         int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
314         const int to_max_pages = MAX_MSG_FRAGS;
315         struct page *pages[MAX_MSG_FRAGS];
316         ssize_t orig, copied, use, offset;
317
318         orig = msg->sg.size;
319         while (bytes > 0) {
320                 i = 0;
321                 maxpages = to_max_pages - num_elems;
322                 if (maxpages == 0) {
323                         ret = -EFAULT;
324                         goto out;
325                 }
326
327                 copied = iov_iter_get_pages(from, pages, bytes, maxpages,
328                                             &offset);
329                 if (copied <= 0) {
330                         ret = -EFAULT;
331                         goto out;
332                 }
333
334                 iov_iter_advance(from, copied);
335                 bytes -= copied;
336                 msg->sg.size += copied;
337
338                 while (copied) {
339                         use = min_t(int, copied, PAGE_SIZE - offset);
340                         sg_set_page(&msg->sg.data[msg->sg.end],
341                                     pages[i], use, offset);
342                         sg_unmark_end(&msg->sg.data[msg->sg.end]);
343                         sk_mem_charge(sk, use);
344
345                         offset = 0;
346                         copied -= use;
347                         sk_msg_iter_next(msg, end);
348                         num_elems++;
349                         i++;
350                 }
351                 /* When zerocopy is mixed with sk_msg_*copy* operations we
352                  * may have a copybreak set in this case clear and prefer
353                  * zerocopy remainder when possible.
354                  */
355                 msg->sg.copybreak = 0;
356                 msg->sg.curr = msg->sg.end;
357         }
358 out:
359         /* Revert iov_iter updates, msg will need to use 'trim' later if it
360          * also needs to be cleared.
361          */
362         if (ret)
363                 iov_iter_revert(from, msg->sg.size - orig);
364         return ret;
365 }
366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
367
368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
369                              struct sk_msg *msg, u32 bytes)
370 {
371         int ret = -ENOSPC, i = msg->sg.curr;
372         struct scatterlist *sge;
373         u32 copy, buf_size;
374         void *to;
375
376         do {
377                 sge = sk_msg_elem(msg, i);
378                 /* This is possible if a trim operation shrunk the buffer */
379                 if (msg->sg.copybreak >= sge->length) {
380                         msg->sg.copybreak = 0;
381                         sk_msg_iter_var_next(i);
382                         if (i == msg->sg.end)
383                                 break;
384                         sge = sk_msg_elem(msg, i);
385                 }
386
387                 buf_size = sge->length - msg->sg.copybreak;
388                 copy = (buf_size > bytes) ? bytes : buf_size;
389                 to = sg_virt(sge) + msg->sg.copybreak;
390                 msg->sg.copybreak += copy;
391                 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
392                         ret = copy_from_iter_nocache(to, copy, from);
393                 else
394                         ret = copy_from_iter(to, copy, from);
395                 if (ret != copy) {
396                         ret = -EFAULT;
397                         goto out;
398                 }
399                 bytes -= copy;
400                 if (!bytes)
401                         break;
402                 msg->sg.copybreak = 0;
403                 sk_msg_iter_var_next(i);
404         } while (i != msg->sg.end);
405 out:
406         msg->sg.curr = i;
407         return ret;
408 }
409 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
410
411 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
412                                                   struct sk_buff *skb)
413 {
414         struct sk_msg *msg;
415
416         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
417                 return NULL;
418
419         if (!sk_rmem_schedule(sk, skb, skb->truesize))
420                 return NULL;
421
422         msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
423         if (unlikely(!msg))
424                 return NULL;
425
426         sk_msg_init(msg);
427         return msg;
428 }
429
430 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
431                                         struct sk_psock *psock,
432                                         struct sock *sk,
433                                         struct sk_msg *msg)
434 {
435         int num_sge, copied;
436
437         /* skb linearize may fail with ENOMEM, but lets simply try again
438          * later if this happens. Under memory pressure we don't want to
439          * drop the skb. We need to linearize the skb so that the mapping
440          * in skb_to_sgvec can not error.
441          */
442         if (skb_linearize(skb))
443                 return -EAGAIN;
444         num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len);
445         if (unlikely(num_sge < 0))
446                 return num_sge;
447
448         copied = skb->len;
449         msg->sg.start = 0;
450         msg->sg.size = copied;
451         msg->sg.end = num_sge;
452         msg->skb = skb;
453
454         sk_psock_queue_msg(psock, msg);
455         sk_psock_data_ready(sk, psock);
456         return copied;
457 }
458
459 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb);
460
461 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb)
462 {
463         struct sock *sk = psock->sk;
464         struct sk_msg *msg;
465         int err;
466
467         /* If we are receiving on the same sock skb->sk is already assigned,
468          * skip memory accounting and owner transition seeing it already set
469          * correctly.
470          */
471         if (unlikely(skb->sk == sk))
472                 return sk_psock_skb_ingress_self(psock, skb);
473         msg = sk_psock_create_ingress_msg(sk, skb);
474         if (!msg)
475                 return -EAGAIN;
476
477         /* This will transition ownership of the data from the socket where
478          * the BPF program was run initiating the redirect to the socket
479          * we will eventually receive this data on. The data will be released
480          * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
481          * into user buffers.
482          */
483         skb_set_owner_r(skb, sk);
484         err = sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
485         if (err < 0)
486                 kfree(msg);
487         return err;
488 }
489
490 /* Puts an skb on the ingress queue of the socket already assigned to the
491  * skb. In this case we do not need to check memory limits or skb_set_owner_r
492  * because the skb is already accounted for here.
493  */
494 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb)
495 {
496         struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
497         struct sock *sk = psock->sk;
498         int err;
499
500         if (unlikely(!msg))
501                 return -EAGAIN;
502         sk_msg_init(msg);
503         skb_set_owner_r(skb, sk);
504         err = sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
505         if (err < 0)
506                 kfree(msg);
507         return err;
508 }
509
510 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
511                                u32 off, u32 len, bool ingress)
512 {
513         if (!ingress) {
514                 if (!sock_writeable(psock->sk))
515                         return -EAGAIN;
516                 return skb_send_sock_locked(psock->sk, skb, off, len);
517         }
518         return sk_psock_skb_ingress(psock, skb);
519 }
520
521 static void sk_psock_backlog(struct work_struct *work)
522 {
523         struct sk_psock *psock = container_of(work, struct sk_psock, work);
524         struct sk_psock_work_state *state = &psock->work_state;
525         struct sk_buff *skb;
526         bool ingress;
527         u32 len, off;
528         int ret;
529
530         /* Lock sock to avoid losing sk_socket during loop. */
531         lock_sock(psock->sk);
532         if (state->skb) {
533                 skb = state->skb;
534                 len = state->len;
535                 off = state->off;
536                 state->skb = NULL;
537                 goto start;
538         }
539
540         while ((skb = skb_dequeue(&psock->ingress_skb))) {
541                 len = skb->len;
542                 off = 0;
543 start:
544                 ingress = tcp_skb_bpf_ingress(skb);
545                 do {
546                         ret = -EIO;
547                         if (likely(psock->sk->sk_socket))
548                                 ret = sk_psock_handle_skb(psock, skb, off,
549                                                           len, ingress);
550                         if (ret <= 0) {
551                                 if (ret == -EAGAIN) {
552                                         state->skb = skb;
553                                         state->len = len;
554                                         state->off = off;
555                                         goto end;
556                                 }
557                                 /* Hard errors break pipe and stop xmit. */
558                                 sk_psock_report_error(psock, ret ? -ret : EPIPE);
559                                 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
560                                 kfree_skb(skb);
561                                 goto end;
562                         }
563                         off += ret;
564                         len -= ret;
565                 } while (len);
566
567                 if (!ingress)
568                         kfree_skb(skb);
569         }
570 end:
571         release_sock(psock->sk);
572 }
573
574 struct sk_psock *sk_psock_init(struct sock *sk, int node)
575 {
576         struct sk_psock *psock;
577         struct proto *prot;
578
579         write_lock_bh(&sk->sk_callback_lock);
580
581         if (inet_csk_has_ulp(sk)) {
582                 psock = ERR_PTR(-EINVAL);
583                 goto out;
584         }
585
586         if (sk->sk_user_data) {
587                 psock = ERR_PTR(-EBUSY);
588                 goto out;
589         }
590
591         psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
592         if (!psock) {
593                 psock = ERR_PTR(-ENOMEM);
594                 goto out;
595         }
596
597         prot = READ_ONCE(sk->sk_prot);
598         psock->sk = sk;
599         psock->eval = __SK_NONE;
600         psock->sk_proto = prot;
601         psock->saved_unhash = prot->unhash;
602         psock->saved_close = prot->close;
603         psock->saved_write_space = sk->sk_write_space;
604
605         INIT_LIST_HEAD(&psock->link);
606         spin_lock_init(&psock->link_lock);
607
608         INIT_WORK(&psock->work, sk_psock_backlog);
609         INIT_LIST_HEAD(&psock->ingress_msg);
610         skb_queue_head_init(&psock->ingress_skb);
611
612         sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
613         refcount_set(&psock->refcnt, 1);
614
615         __rcu_assign_sk_user_data_with_flags(sk, psock,
616                                              SK_USER_DATA_NOCOPY |
617                                              SK_USER_DATA_PSOCK);
618         sock_hold(sk);
619
620 out:
621         write_unlock_bh(&sk->sk_callback_lock);
622         return psock;
623 }
624 EXPORT_SYMBOL_GPL(sk_psock_init);
625
626 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
627 {
628         struct sk_psock_link *link;
629
630         spin_lock_bh(&psock->link_lock);
631         link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
632                                         list);
633         if (link)
634                 list_del(&link->list);
635         spin_unlock_bh(&psock->link_lock);
636         return link;
637 }
638
639 void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
640 {
641         struct sk_msg *msg, *tmp;
642
643         list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
644                 list_del(&msg->list);
645                 sk_msg_free(psock->sk, msg);
646                 kfree(msg);
647         }
648 }
649
650 static void sk_psock_zap_ingress(struct sk_psock *psock)
651 {
652         __skb_queue_purge(&psock->ingress_skb);
653         __sk_psock_purge_ingress_msg(psock);
654 }
655
656 static void sk_psock_link_destroy(struct sk_psock *psock)
657 {
658         struct sk_psock_link *link, *tmp;
659
660         list_for_each_entry_safe(link, tmp, &psock->link, list) {
661                 list_del(&link->list);
662                 sk_psock_free_link(link);
663         }
664 }
665
666 static void sk_psock_destroy_deferred(struct work_struct *gc)
667 {
668         struct sk_psock *psock = container_of(gc, struct sk_psock, gc);
669
670         /* No sk_callback_lock since already detached. */
671
672         /* Parser has been stopped */
673         if (psock->progs.skb_parser)
674                 strp_done(&psock->parser.strp);
675
676         cancel_work_sync(&psock->work);
677
678         psock_progs_drop(&psock->progs);
679
680         sk_psock_link_destroy(psock);
681         sk_psock_cork_free(psock);
682         sk_psock_zap_ingress(psock);
683
684         if (psock->sk_redir)
685                 sock_put(psock->sk_redir);
686         sock_put(psock->sk);
687         kfree(psock);
688 }
689
690 static void sk_psock_destroy(struct rcu_head *rcu)
691 {
692         struct sk_psock *psock = container_of(rcu, struct sk_psock, rcu);
693
694         INIT_WORK(&psock->gc, sk_psock_destroy_deferred);
695         schedule_work(&psock->gc);
696 }
697
698 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
699 {
700         sk_psock_cork_free(psock);
701         sk_psock_zap_ingress(psock);
702
703         write_lock_bh(&sk->sk_callback_lock);
704         sk_psock_restore_proto(sk, psock);
705         rcu_assign_sk_user_data(sk, NULL);
706         if (psock->progs.skb_parser)
707                 sk_psock_stop_strp(sk, psock);
708         else if (psock->progs.skb_verdict)
709                 sk_psock_stop_verdict(sk, psock);
710         write_unlock_bh(&sk->sk_callback_lock);
711         sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
712
713         call_rcu(&psock->rcu, sk_psock_destroy);
714 }
715 EXPORT_SYMBOL_GPL(sk_psock_drop);
716
717 static int sk_psock_map_verd(int verdict, bool redir)
718 {
719         switch (verdict) {
720         case SK_PASS:
721                 return redir ? __SK_REDIRECT : __SK_PASS;
722         case SK_DROP:
723         default:
724                 break;
725         }
726
727         return __SK_DROP;
728 }
729
730 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
731                          struct sk_msg *msg)
732 {
733         struct bpf_prog *prog;
734         int ret;
735
736         rcu_read_lock();
737         prog = READ_ONCE(psock->progs.msg_parser);
738         if (unlikely(!prog)) {
739                 ret = __SK_PASS;
740                 goto out;
741         }
742
743         sk_msg_compute_data_pointers(msg);
744         msg->sk = sk;
745         ret = bpf_prog_run_pin_on_cpu(prog, msg);
746         ret = sk_psock_map_verd(ret, msg->sk_redir);
747         psock->apply_bytes = msg->apply_bytes;
748         if (ret == __SK_REDIRECT) {
749                 if (psock->sk_redir)
750                         sock_put(psock->sk_redir);
751                 psock->sk_redir = msg->sk_redir;
752                 if (!psock->sk_redir) {
753                         ret = __SK_DROP;
754                         goto out;
755                 }
756                 sock_hold(psock->sk_redir);
757         }
758 out:
759         rcu_read_unlock();
760         return ret;
761 }
762 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
763
764 static int sk_psock_bpf_run(struct sk_psock *psock, struct bpf_prog *prog,
765                             struct sk_buff *skb)
766 {
767         bpf_compute_data_end_sk_skb(skb);
768         return bpf_prog_run_pin_on_cpu(prog, skb);
769 }
770
771 static struct sk_psock *sk_psock_from_strp(struct strparser *strp)
772 {
773         struct sk_psock_parser *parser;
774
775         parser = container_of(strp, struct sk_psock_parser, strp);
776         return container_of(parser, struct sk_psock, parser);
777 }
778
779 static void sk_psock_skb_redirect(struct sk_buff *skb)
780 {
781         struct sk_psock *psock_other;
782         struct sock *sk_other;
783
784         sk_other = tcp_skb_bpf_redirect_fetch(skb);
785         /* This error is a buggy BPF program, it returned a redirect
786          * return code, but then didn't set a redirect interface.
787          */
788         if (unlikely(!sk_other)) {
789                 kfree_skb(skb);
790                 return;
791         }
792         psock_other = sk_psock(sk_other);
793         /* This error indicates the socket is being torn down or had another
794          * error that caused the pipe to break. We can't send a packet on
795          * a socket that is in this state so we drop the skb.
796          */
797         if (!psock_other || sock_flag(sk_other, SOCK_DEAD) ||
798             !sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
799                 kfree_skb(skb);
800                 return;
801         }
802
803         skb_queue_tail(&psock_other->ingress_skb, skb);
804         schedule_work(&psock_other->work);
805 }
806
807 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, struct sock *sk, int verdict)
808 {
809         switch (verdict) {
810         case __SK_REDIRECT:
811                 sk_psock_skb_redirect(skb);
812                 break;
813         case __SK_PASS:
814         case __SK_DROP:
815         default:
816                 break;
817         }
818 }
819
820 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
821 {
822         struct bpf_prog *prog;
823         int ret = __SK_PASS;
824
825         rcu_read_lock();
826         prog = READ_ONCE(psock->progs.skb_verdict);
827         if (likely(prog)) {
828                 skb->sk = psock->sk;
829                 tcp_skb_bpf_redirect_clear(skb);
830                 ret = sk_psock_bpf_run(psock, prog, skb);
831                 ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb));
832                 skb->sk = NULL;
833         }
834         sk_psock_tls_verdict_apply(skb, psock->sk, ret);
835         rcu_read_unlock();
836         return ret;
837 }
838 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
839
840 static void sk_psock_verdict_apply(struct sk_psock *psock,
841                                    struct sk_buff *skb, int verdict)
842 {
843         struct tcp_skb_cb *tcp;
844         struct sock *sk_other;
845         int err = -EIO;
846
847         switch (verdict) {
848         case __SK_PASS:
849                 sk_other = psock->sk;
850                 if (sock_flag(sk_other, SOCK_DEAD) ||
851                     !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
852                         goto out_free;
853                 }
854
855                 tcp = TCP_SKB_CB(skb);
856                 tcp->bpf.flags |= BPF_F_INGRESS;
857
858                 /* If the queue is empty then we can submit directly
859                  * into the msg queue. If its not empty we have to
860                  * queue work otherwise we may get OOO data. Otherwise,
861                  * if sk_psock_skb_ingress errors will be handled by
862                  * retrying later from workqueue.
863                  */
864                 if (skb_queue_empty(&psock->ingress_skb)) {
865                         err = sk_psock_skb_ingress_self(psock, skb);
866                 }
867                 if (err < 0) {
868                         skb_queue_tail(&psock->ingress_skb, skb);
869                         schedule_work(&psock->work);
870                 }
871                 break;
872         case __SK_REDIRECT:
873                 sk_psock_skb_redirect(skb);
874                 break;
875         case __SK_DROP:
876         default:
877 out_free:
878                 kfree_skb(skb);
879         }
880 }
881
882 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
883 {
884         struct sk_psock *psock;
885         struct bpf_prog *prog;
886         int ret = __SK_DROP;
887         struct sock *sk;
888
889         rcu_read_lock();
890         sk = strp->sk;
891         psock = sk_psock(sk);
892         if (unlikely(!psock)) {
893                 kfree_skb(skb);
894                 goto out;
895         }
896         prog = READ_ONCE(psock->progs.skb_verdict);
897         if (likely(prog)) {
898                 skb->sk = sk;
899                 tcp_skb_bpf_redirect_clear(skb);
900                 ret = sk_psock_bpf_run(psock, prog, skb);
901                 ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb));
902                 skb->sk = NULL;
903         }
904         sk_psock_verdict_apply(psock, skb, ret);
905 out:
906         rcu_read_unlock();
907 }
908
909 static int sk_psock_strp_read_done(struct strparser *strp, int err)
910 {
911         return err;
912 }
913
914 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
915 {
916         struct sk_psock *psock = sk_psock_from_strp(strp);
917         struct bpf_prog *prog;
918         int ret = skb->len;
919
920         rcu_read_lock();
921         prog = READ_ONCE(psock->progs.skb_parser);
922         if (likely(prog)) {
923                 skb->sk = psock->sk;
924                 ret = sk_psock_bpf_run(psock, prog, skb);
925                 skb->sk = NULL;
926         }
927         rcu_read_unlock();
928         return ret;
929 }
930
931 /* Called with socket lock held. */
932 static void sk_psock_strp_data_ready(struct sock *sk)
933 {
934         struct sk_psock *psock;
935
936         rcu_read_lock();
937         psock = sk_psock(sk);
938         if (likely(psock)) {
939                 if (tls_sw_has_ctx_rx(sk)) {
940                         psock->parser.saved_data_ready(sk);
941                 } else {
942                         write_lock_bh(&sk->sk_callback_lock);
943                         strp_data_ready(&psock->parser.strp);
944                         write_unlock_bh(&sk->sk_callback_lock);
945                 }
946         }
947         rcu_read_unlock();
948 }
949
950 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb,
951                                  unsigned int offset, size_t orig_len)
952 {
953         struct sock *sk = (struct sock *)desc->arg.data;
954         struct sk_psock *psock;
955         struct bpf_prog *prog;
956         int ret = __SK_DROP;
957         int len = orig_len;
958
959         /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */
960         skb = skb_clone(skb, GFP_ATOMIC);
961         if (!skb) {
962                 desc->error = -ENOMEM;
963                 return 0;
964         }
965
966         rcu_read_lock();
967         psock = sk_psock(sk);
968         if (unlikely(!psock)) {
969                 len = 0;
970                 kfree_skb(skb);
971                 goto out;
972         }
973         prog = READ_ONCE(psock->progs.skb_verdict);
974         if (likely(prog)) {
975                 skb->sk = sk;
976                 tcp_skb_bpf_redirect_clear(skb);
977                 ret = sk_psock_bpf_run(psock, prog, skb);
978                 ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb));
979                 skb->sk = NULL;
980         }
981         sk_psock_verdict_apply(psock, skb, ret);
982 out:
983         rcu_read_unlock();
984         return len;
985 }
986
987 static void sk_psock_verdict_data_ready(struct sock *sk)
988 {
989         struct socket *sock = sk->sk_socket;
990         read_descriptor_t desc;
991
992         if (unlikely(!sock || !sock->ops || !sock->ops->read_sock))
993                 return;
994
995         desc.arg.data = sk;
996         desc.error = 0;
997         desc.count = 1;
998
999         sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv);
1000 }
1001
1002 static void sk_psock_write_space(struct sock *sk)
1003 {
1004         struct sk_psock *psock;
1005         void (*write_space)(struct sock *sk) = NULL;
1006
1007         rcu_read_lock();
1008         psock = sk_psock(sk);
1009         if (likely(psock)) {
1010                 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1011                         schedule_work(&psock->work);
1012                 write_space = psock->saved_write_space;
1013         }
1014         rcu_read_unlock();
1015         if (write_space)
1016                 write_space(sk);
1017 }
1018
1019 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1020 {
1021         static const struct strp_callbacks cb = {
1022                 .rcv_msg        = sk_psock_strp_read,
1023                 .read_sock_done = sk_psock_strp_read_done,
1024                 .parse_msg      = sk_psock_strp_parse,
1025         };
1026
1027         psock->parser.enabled = false;
1028         return strp_init(&psock->parser.strp, sk, &cb);
1029 }
1030
1031 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1032 {
1033         struct sk_psock_parser *parser = &psock->parser;
1034
1035         if (parser->enabled)
1036                 return;
1037
1038         parser->saved_data_ready = sk->sk_data_ready;
1039         sk->sk_data_ready = sk_psock_verdict_data_ready;
1040         sk->sk_write_space = sk_psock_write_space;
1041         parser->enabled = true;
1042 }
1043
1044 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1045 {
1046         struct sk_psock_parser *parser = &psock->parser;
1047
1048         if (parser->enabled)
1049                 return;
1050
1051         parser->saved_data_ready = sk->sk_data_ready;
1052         sk->sk_data_ready = sk_psock_strp_data_ready;
1053         sk->sk_write_space = sk_psock_write_space;
1054         parser->enabled = true;
1055 }
1056
1057 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1058 {
1059         struct sk_psock_parser *parser = &psock->parser;
1060
1061         if (!parser->enabled)
1062                 return;
1063
1064         sk->sk_data_ready = parser->saved_data_ready;
1065         parser->saved_data_ready = NULL;
1066         strp_stop(&parser->strp);
1067         parser->enabled = false;
1068 }
1069
1070 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1071 {
1072         struct sk_psock_parser *parser = &psock->parser;
1073
1074         if (!parser->enabled)
1075                 return;
1076
1077         sk->sk_data_ready = parser->saved_data_ready;
1078         parser->saved_data_ready = NULL;
1079         parser->enabled = false;
1080 }