2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
45 #include <linux/interrupt.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
67 #include <net/protocol.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
86 * skb_panic - private function for out-of-line support
90 * @msg: skb_over_panic or skb_under_panic
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 skb_panic(skb, sz, addr, __func__);
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 skb_panic(skb, sz, addr, __func__);
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
131 bool ret_pfmemalloc = false;
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
149 *pfmemalloc = ret_pfmemalloc;
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
161 * __alloc_skb - allocate a network buffer
162 * @size: size to allocate
163 * @gfp_mask: allocation mask
164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165 * instead of head cache and allocate a cloned (child) skb.
166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167 * allocations in case the data is required for writeback
168 * @node: numa node to allocate memory on
170 * Allocate a new &sk_buff. The returned buffer has no headroom and a
171 * tail room of at least size bytes. The object has a reference count
172 * of one. The return is the buffer. On a failure the return is %NULL.
174 * Buffers may only be allocated from interrupts using a @gfp_mask of
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
180 struct kmem_cache *cache;
181 struct skb_shared_info *shinfo;
186 cache = (flags & SKB_ALLOC_FCLONE)
187 ? skbuff_fclone_cache : skbuff_head_cache;
189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 gfp_mask |= __GFP_MEMALLOC;
193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
198 /* We do our best to align skb_shared_info on a separate cache
199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 * Both skb->head and skb_shared_info are cache line aligned.
203 size = SKB_DATA_ALIGN(size);
204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
208 /* kmalloc(size) might give us more room than requested.
209 * Put skb_shared_info exactly at the end of allocated zone,
210 * to allow max possible filling before reallocation.
212 size = SKB_WITH_OVERHEAD(ksize(data));
213 prefetchw(data + size);
216 * Only clear those fields we need to clear, not those that we will
217 * actually initialise below. Hence, don't put any more fields after
218 * the tail pointer in struct sk_buff!
220 memset(skb, 0, offsetof(struct sk_buff, tail));
221 /* Account for allocated memory : skb + skb->head */
222 skb->truesize = SKB_TRUESIZE(size);
223 skb->pfmemalloc = pfmemalloc;
224 refcount_set(&skb->users, 1);
227 skb_reset_tail_pointer(skb);
228 skb->end = skb->tail + size;
229 skb->mac_header = (typeof(skb->mac_header))~0U;
230 skb->transport_header = (typeof(skb->transport_header))~0U;
232 /* make sure we initialize shinfo sequentially */
233 shinfo = skb_shinfo(skb);
234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 atomic_set(&shinfo->dataref, 1);
237 if (flags & SKB_ALLOC_FCLONE) {
238 struct sk_buff_fclones *fclones;
240 fclones = container_of(skb, struct sk_buff_fclones, skb1);
242 skb->fclone = SKB_FCLONE_ORIG;
243 refcount_set(&fclones->fclone_ref, 1);
245 fclones->skb2.fclone = SKB_FCLONE_CLONE;
250 kmem_cache_free(cache, skb);
254 EXPORT_SYMBOL(__alloc_skb);
257 * __build_skb - build a network buffer
258 * @data: data buffer provided by caller
259 * @frag_size: size of data, or 0 if head was kmalloced
261 * Allocate a new &sk_buff. Caller provides space holding head and
262 * skb_shared_info. @data must have been allocated by kmalloc() only if
263 * @frag_size is 0, otherwise data should come from the page allocator
265 * The return is the new skb buffer.
266 * On a failure the return is %NULL, and @data is not freed.
268 * Before IO, driver allocates only data buffer where NIC put incoming frame
269 * Driver should add room at head (NET_SKB_PAD) and
270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
272 * before giving packet to stack.
273 * RX rings only contains data buffers, not full skbs.
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
277 struct skb_shared_info *shinfo;
279 unsigned int size = frag_size ? : ksize(data);
281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
287 memset(skb, 0, offsetof(struct sk_buff, tail));
288 skb->truesize = SKB_TRUESIZE(size);
289 refcount_set(&skb->users, 1);
292 skb_reset_tail_pointer(skb);
293 skb->end = skb->tail + size;
294 skb->mac_header = (typeof(skb->mac_header))~0U;
295 skb->transport_header = (typeof(skb->transport_header))~0U;
297 /* make sure we initialize shinfo sequentially */
298 shinfo = skb_shinfo(skb);
299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 atomic_set(&shinfo->dataref, 1);
305 /* build_skb() is wrapper over __build_skb(), that specifically
306 * takes care of skb->head and skb->pfmemalloc
307 * This means that if @frag_size is not zero, then @data must be backed
308 * by a page fragment, not kmalloc() or vmalloc()
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
312 struct sk_buff *skb = __build_skb(data, frag_size);
314 if (skb && frag_size) {
316 if (page_is_pfmemalloc(virt_to_head_page(data)))
321 EXPORT_SYMBOL(build_skb);
323 #define NAPI_SKB_CACHE_SIZE 64
325 struct napi_alloc_cache {
326 struct page_frag_cache page;
327 unsigned int skb_count;
328 void *skb_cache[NAPI_SKB_CACHE_SIZE];
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
336 struct page_frag_cache *nc;
340 local_irq_save(flags);
341 nc = this_cpu_ptr(&netdev_alloc_cache);
342 data = page_frag_alloc(nc, fragsz, gfp_mask);
343 local_irq_restore(flags);
348 * netdev_alloc_frag - allocate a page fragment
349 * @fragsz: fragment size
351 * Allocates a frag from a page for receive buffer.
352 * Uses GFP_ATOMIC allocations.
354 void *netdev_alloc_frag(unsigned int fragsz)
356 fragsz = SKB_DATA_ALIGN(fragsz);
358 return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
360 EXPORT_SYMBOL(netdev_alloc_frag);
362 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
366 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
369 void *napi_alloc_frag(unsigned int fragsz)
371 fragsz = SKB_DATA_ALIGN(fragsz);
373 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
375 EXPORT_SYMBOL(napi_alloc_frag);
378 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
379 * @dev: network device to receive on
380 * @len: length to allocate
381 * @gfp_mask: get_free_pages mask, passed to alloc_skb
383 * Allocate a new &sk_buff and assign it a usage count of one. The
384 * buffer has NET_SKB_PAD headroom built in. Users should allocate
385 * the headroom they think they need without accounting for the
386 * built in space. The built in space is used for optimisations.
388 * %NULL is returned if there is no free memory.
390 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
393 struct page_frag_cache *nc;
401 /* If requested length is either too small or too big,
402 * we use kmalloc() for skb->head allocation.
404 if (len <= SKB_WITH_OVERHEAD(1024) ||
405 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
406 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
407 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
413 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
414 len = SKB_DATA_ALIGN(len);
416 if (sk_memalloc_socks())
417 gfp_mask |= __GFP_MEMALLOC;
419 local_irq_save(flags);
421 nc = this_cpu_ptr(&netdev_alloc_cache);
422 data = page_frag_alloc(nc, len, gfp_mask);
423 pfmemalloc = nc->pfmemalloc;
425 local_irq_restore(flags);
430 skb = __build_skb(data, len);
431 if (unlikely(!skb)) {
436 /* use OR instead of assignment to avoid clearing of bits in mask */
442 skb_reserve(skb, NET_SKB_PAD);
448 EXPORT_SYMBOL(__netdev_alloc_skb);
451 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
452 * @napi: napi instance this buffer was allocated for
453 * @len: length to allocate
454 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
456 * Allocate a new sk_buff for use in NAPI receive. This buffer will
457 * attempt to allocate the head from a special reserved region used
458 * only for NAPI Rx allocation. By doing this we can save several
459 * CPU cycles by avoiding having to disable and re-enable IRQs.
461 * %NULL is returned if there is no free memory.
463 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
466 struct napi_alloc_cache *nc;
470 len += NET_SKB_PAD + NET_IP_ALIGN;
472 /* If requested length is either too small or too big,
473 * we use kmalloc() for skb->head allocation.
475 if (len <= SKB_WITH_OVERHEAD(1024) ||
476 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
477 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
478 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
484 nc = this_cpu_ptr(&napi_alloc_cache);
485 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
486 len = SKB_DATA_ALIGN(len);
488 if (sk_memalloc_socks())
489 gfp_mask |= __GFP_MEMALLOC;
491 data = page_frag_alloc(&nc->page, len, gfp_mask);
495 skb = __build_skb(data, len);
496 if (unlikely(!skb)) {
501 /* use OR instead of assignment to avoid clearing of bits in mask */
502 if (nc->page.pfmemalloc)
507 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
508 skb->dev = napi->dev;
513 EXPORT_SYMBOL(__napi_alloc_skb);
515 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
516 int size, unsigned int truesize)
518 skb_fill_page_desc(skb, i, page, off, size);
520 skb->data_len += size;
521 skb->truesize += truesize;
523 EXPORT_SYMBOL(skb_add_rx_frag);
525 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
526 unsigned int truesize)
528 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
530 skb_frag_size_add(frag, size);
532 skb->data_len += size;
533 skb->truesize += truesize;
535 EXPORT_SYMBOL(skb_coalesce_rx_frag);
537 static void skb_drop_list(struct sk_buff **listp)
539 kfree_skb_list(*listp);
543 static inline void skb_drop_fraglist(struct sk_buff *skb)
545 skb_drop_list(&skb_shinfo(skb)->frag_list);
548 static void skb_clone_fraglist(struct sk_buff *skb)
550 struct sk_buff *list;
552 skb_walk_frags(skb, list)
556 static void skb_free_head(struct sk_buff *skb)
558 unsigned char *head = skb->head;
566 static void skb_release_data(struct sk_buff *skb)
568 struct skb_shared_info *shinfo = skb_shinfo(skb);
572 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
576 for (i = 0; i < shinfo->nr_frags; i++)
577 __skb_frag_unref(&shinfo->frags[i]);
579 if (shinfo->frag_list)
580 kfree_skb_list(shinfo->frag_list);
582 skb_zcopy_clear(skb, true);
587 * Free an skbuff by memory without cleaning the state.
589 static void kfree_skbmem(struct sk_buff *skb)
591 struct sk_buff_fclones *fclones;
593 switch (skb->fclone) {
594 case SKB_FCLONE_UNAVAILABLE:
595 kmem_cache_free(skbuff_head_cache, skb);
598 case SKB_FCLONE_ORIG:
599 fclones = container_of(skb, struct sk_buff_fclones, skb1);
601 /* We usually free the clone (TX completion) before original skb
602 * This test would have no chance to be true for the clone,
603 * while here, branch prediction will be good.
605 if (refcount_read(&fclones->fclone_ref) == 1)
609 default: /* SKB_FCLONE_CLONE */
610 fclones = container_of(skb, struct sk_buff_fclones, skb2);
613 if (!refcount_dec_and_test(&fclones->fclone_ref))
616 kmem_cache_free(skbuff_fclone_cache, fclones);
619 void skb_release_head_state(struct sk_buff *skb)
623 if (skb->destructor) {
625 skb->destructor(skb);
627 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
628 nf_conntrack_put(skb_nfct(skb));
630 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
631 nf_bridge_put(skb->nf_bridge);
635 /* Free everything but the sk_buff shell. */
636 static void skb_release_all(struct sk_buff *skb)
638 skb_release_head_state(skb);
639 if (likely(skb->head))
640 skb_release_data(skb);
644 * __kfree_skb - private function
647 * Free an sk_buff. Release anything attached to the buffer.
648 * Clean the state. This is an internal helper function. Users should
649 * always call kfree_skb
652 void __kfree_skb(struct sk_buff *skb)
654 skb_release_all(skb);
657 EXPORT_SYMBOL(__kfree_skb);
660 * kfree_skb - free an sk_buff
661 * @skb: buffer to free
663 * Drop a reference to the buffer and free it if the usage count has
666 void kfree_skb(struct sk_buff *skb)
671 trace_kfree_skb(skb, __builtin_return_address(0));
674 EXPORT_SYMBOL(kfree_skb);
676 void kfree_skb_list(struct sk_buff *segs)
679 struct sk_buff *next = segs->next;
685 EXPORT_SYMBOL(kfree_skb_list);
688 * skb_tx_error - report an sk_buff xmit error
689 * @skb: buffer that triggered an error
691 * Report xmit error if a device callback is tracking this skb.
692 * skb must be freed afterwards.
694 void skb_tx_error(struct sk_buff *skb)
696 skb_zcopy_clear(skb, true);
698 EXPORT_SYMBOL(skb_tx_error);
701 * consume_skb - free an skbuff
702 * @skb: buffer to free
704 * Drop a ref to the buffer and free it if the usage count has hit zero
705 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
706 * is being dropped after a failure and notes that
708 void consume_skb(struct sk_buff *skb)
713 trace_consume_skb(skb);
716 EXPORT_SYMBOL(consume_skb);
719 * consume_stateless_skb - free an skbuff, assuming it is stateless
720 * @skb: buffer to free
722 * Alike consume_skb(), but this variant assumes that this is the last
723 * skb reference and all the head states have been already dropped
725 void __consume_stateless_skb(struct sk_buff *skb)
727 trace_consume_skb(skb);
728 skb_release_data(skb);
732 void __kfree_skb_flush(void)
734 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
736 /* flush skb_cache if containing objects */
738 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
744 static inline void _kfree_skb_defer(struct sk_buff *skb)
746 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
748 /* drop skb->head and call any destructors for packet */
749 skb_release_all(skb);
751 /* record skb to CPU local list */
752 nc->skb_cache[nc->skb_count++] = skb;
755 /* SLUB writes into objects when freeing */
759 /* flush skb_cache if it is filled */
760 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
761 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
766 void __kfree_skb_defer(struct sk_buff *skb)
768 _kfree_skb_defer(skb);
771 void napi_consume_skb(struct sk_buff *skb, int budget)
776 /* Zero budget indicate non-NAPI context called us, like netpoll */
777 if (unlikely(!budget)) {
778 dev_consume_skb_any(skb);
785 /* if reaching here SKB is ready to free */
786 trace_consume_skb(skb);
788 /* if SKB is a clone, don't handle this case */
789 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
794 _kfree_skb_defer(skb);
796 EXPORT_SYMBOL(napi_consume_skb);
798 /* Make sure a field is enclosed inside headers_start/headers_end section */
799 #define CHECK_SKB_FIELD(field) \
800 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
801 offsetof(struct sk_buff, headers_start)); \
802 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
803 offsetof(struct sk_buff, headers_end)); \
805 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
807 new->tstamp = old->tstamp;
808 /* We do not copy old->sk */
810 memcpy(new->cb, old->cb, sizeof(old->cb));
811 skb_dst_copy(new, old);
813 new->sp = secpath_get(old->sp);
815 __nf_copy(new, old, false);
817 /* Note : this field could be in headers_start/headers_end section
818 * It is not yet because we do not want to have a 16 bit hole
820 new->queue_mapping = old->queue_mapping;
822 memcpy(&new->headers_start, &old->headers_start,
823 offsetof(struct sk_buff, headers_end) -
824 offsetof(struct sk_buff, headers_start));
825 CHECK_SKB_FIELD(protocol);
826 CHECK_SKB_FIELD(csum);
827 CHECK_SKB_FIELD(hash);
828 CHECK_SKB_FIELD(priority);
829 CHECK_SKB_FIELD(skb_iif);
830 CHECK_SKB_FIELD(vlan_proto);
831 CHECK_SKB_FIELD(vlan_tci);
832 CHECK_SKB_FIELD(transport_header);
833 CHECK_SKB_FIELD(network_header);
834 CHECK_SKB_FIELD(mac_header);
835 CHECK_SKB_FIELD(inner_protocol);
836 CHECK_SKB_FIELD(inner_transport_header);
837 CHECK_SKB_FIELD(inner_network_header);
838 CHECK_SKB_FIELD(inner_mac_header);
839 CHECK_SKB_FIELD(mark);
840 #ifdef CONFIG_NETWORK_SECMARK
841 CHECK_SKB_FIELD(secmark);
843 #ifdef CONFIG_NET_RX_BUSY_POLL
844 CHECK_SKB_FIELD(napi_id);
847 CHECK_SKB_FIELD(sender_cpu);
849 #ifdef CONFIG_NET_SCHED
850 CHECK_SKB_FIELD(tc_index);
856 * You should not add any new code to this function. Add it to
857 * __copy_skb_header above instead.
859 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
861 #define C(x) n->x = skb->x
863 n->next = n->prev = NULL;
865 __copy_skb_header(n, skb);
870 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
875 n->destructor = NULL;
882 refcount_set(&n->users, 1);
884 atomic_inc(&(skb_shinfo(skb)->dataref));
892 * skb_morph - morph one skb into another
893 * @dst: the skb to receive the contents
894 * @src: the skb to supply the contents
896 * This is identical to skb_clone except that the target skb is
897 * supplied by the user.
899 * The target skb is returned upon exit.
901 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
903 skb_release_all(dst);
904 return __skb_clone(dst, src);
906 EXPORT_SYMBOL_GPL(skb_morph);
908 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
910 unsigned long max_pg, num_pg, new_pg, old_pg;
911 struct user_struct *user;
913 if (capable(CAP_IPC_LOCK) || !size)
916 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
917 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
918 user = mmp->user ? : current_user();
921 old_pg = atomic_long_read(&user->locked_vm);
922 new_pg = old_pg + num_pg;
925 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
929 mmp->user = get_uid(user);
930 mmp->num_pg = num_pg;
932 mmp->num_pg += num_pg;
937 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
939 void mm_unaccount_pinned_pages(struct mmpin *mmp)
942 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
946 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
948 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
950 struct ubuf_info *uarg;
953 WARN_ON_ONCE(!in_task());
955 skb = sock_omalloc(sk, 0, GFP_KERNEL);
959 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
960 uarg = (void *)skb->cb;
961 uarg->mmp.user = NULL;
963 if (mm_account_pinned_pages(&uarg->mmp, size)) {
968 uarg->callback = sock_zerocopy_callback;
969 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
971 uarg->bytelen = size;
973 refcount_set(&uarg->refcnt, 1);
978 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
980 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
982 return container_of((void *)uarg, struct sk_buff, cb);
985 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
986 struct ubuf_info *uarg)
989 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
992 /* realloc only when socket is locked (TCP, UDP cork),
993 * so uarg->len and sk_zckey access is serialized
995 if (!sock_owned_by_user(sk)) {
1000 bytelen = uarg->bytelen + size;
1001 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1002 /* TCP can create new skb to attach new uarg */
1003 if (sk->sk_type == SOCK_STREAM)
1008 next = (u32)atomic_read(&sk->sk_zckey);
1009 if ((u32)(uarg->id + uarg->len) == next) {
1010 if (mm_account_pinned_pages(&uarg->mmp, size))
1013 uarg->bytelen = bytelen;
1014 atomic_set(&sk->sk_zckey, ++next);
1015 sock_zerocopy_get(uarg);
1021 return sock_zerocopy_alloc(sk, size);
1023 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1025 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1027 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1031 old_lo = serr->ee.ee_info;
1032 old_hi = serr->ee.ee_data;
1033 sum_len = old_hi - old_lo + 1ULL + len;
1035 if (sum_len >= (1ULL << 32))
1038 if (lo != old_hi + 1)
1041 serr->ee.ee_data += len;
1045 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1047 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1048 struct sock_exterr_skb *serr;
1049 struct sock *sk = skb->sk;
1050 struct sk_buff_head *q;
1051 unsigned long flags;
1055 mm_unaccount_pinned_pages(&uarg->mmp);
1057 /* if !len, there was only 1 call, and it was aborted
1058 * so do not queue a completion notification
1060 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1065 hi = uarg->id + len - 1;
1067 serr = SKB_EXT_ERR(skb);
1068 memset(serr, 0, sizeof(*serr));
1069 serr->ee.ee_errno = 0;
1070 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1071 serr->ee.ee_data = hi;
1072 serr->ee.ee_info = lo;
1074 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1076 q = &sk->sk_error_queue;
1077 spin_lock_irqsave(&q->lock, flags);
1078 tail = skb_peek_tail(q);
1079 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1080 !skb_zerocopy_notify_extend(tail, lo, len)) {
1081 __skb_queue_tail(q, skb);
1084 spin_unlock_irqrestore(&q->lock, flags);
1086 sk->sk_error_report(sk);
1092 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1094 void sock_zerocopy_put(struct ubuf_info *uarg)
1096 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1098 uarg->callback(uarg, uarg->zerocopy);
1100 consume_skb(skb_from_uarg(uarg));
1103 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1105 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1108 struct sock *sk = skb_from_uarg(uarg)->sk;
1110 atomic_dec(&sk->sk_zckey);
1113 sock_zerocopy_put(uarg);
1116 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1118 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1119 struct iov_iter *from, size_t length);
1121 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1122 struct msghdr *msg, int len,
1123 struct ubuf_info *uarg)
1125 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1126 struct iov_iter orig_iter = msg->msg_iter;
1127 int err, orig_len = skb->len;
1129 /* An skb can only point to one uarg. This edge case happens when
1130 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1132 if (orig_uarg && uarg != orig_uarg)
1135 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1136 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1137 struct sock *save_sk = skb->sk;
1139 /* Streams do not free skb on error. Reset to prev state. */
1140 msg->msg_iter = orig_iter;
1142 ___pskb_trim(skb, orig_len);
1147 skb_zcopy_set(skb, uarg);
1148 return skb->len - orig_len;
1150 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1152 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1155 if (skb_zcopy(orig)) {
1156 if (skb_zcopy(nskb)) {
1157 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1162 if (skb_uarg(nskb) == skb_uarg(orig))
1164 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1167 skb_zcopy_set(nskb, skb_uarg(orig));
1173 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1174 * @skb: the skb to modify
1175 * @gfp_mask: allocation priority
1177 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1178 * It will copy all frags into kernel and drop the reference
1179 * to userspace pages.
1181 * If this function is called from an interrupt gfp_mask() must be
1184 * Returns 0 on success or a negative error code on failure
1185 * to allocate kernel memory to copy to.
1187 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1189 int num_frags = skb_shinfo(skb)->nr_frags;
1190 struct page *page, *head = NULL;
1194 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1200 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1201 for (i = 0; i < new_frags; i++) {
1202 page = alloc_page(gfp_mask);
1205 struct page *next = (struct page *)page_private(head);
1211 set_page_private(page, (unsigned long)head);
1217 for (i = 0; i < num_frags; i++) {
1218 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1219 u32 p_off, p_len, copied;
1223 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1224 p, p_off, p_len, copied) {
1226 vaddr = kmap_atomic(p);
1228 while (done < p_len) {
1229 if (d_off == PAGE_SIZE) {
1231 page = (struct page *)page_private(page);
1233 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1234 memcpy(page_address(page) + d_off,
1235 vaddr + p_off + done, copy);
1239 kunmap_atomic(vaddr);
1243 /* skb frags release userspace buffers */
1244 for (i = 0; i < num_frags; i++)
1245 skb_frag_unref(skb, i);
1247 /* skb frags point to kernel buffers */
1248 for (i = 0; i < new_frags - 1; i++) {
1249 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1250 head = (struct page *)page_private(head);
1252 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1253 skb_shinfo(skb)->nr_frags = new_frags;
1256 skb_zcopy_clear(skb, false);
1259 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1262 * skb_clone - duplicate an sk_buff
1263 * @skb: buffer to clone
1264 * @gfp_mask: allocation priority
1266 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1267 * copies share the same packet data but not structure. The new
1268 * buffer has a reference count of 1. If the allocation fails the
1269 * function returns %NULL otherwise the new buffer is returned.
1271 * If this function is called from an interrupt gfp_mask() must be
1275 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1277 struct sk_buff_fclones *fclones = container_of(skb,
1278 struct sk_buff_fclones,
1282 if (skb_orphan_frags(skb, gfp_mask))
1285 if (skb->fclone == SKB_FCLONE_ORIG &&
1286 refcount_read(&fclones->fclone_ref) == 1) {
1288 refcount_set(&fclones->fclone_ref, 2);
1290 if (skb_pfmemalloc(skb))
1291 gfp_mask |= __GFP_MEMALLOC;
1293 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1297 n->fclone = SKB_FCLONE_UNAVAILABLE;
1300 return __skb_clone(n, skb);
1302 EXPORT_SYMBOL(skb_clone);
1304 void skb_headers_offset_update(struct sk_buff *skb, int off)
1306 /* Only adjust this if it actually is csum_start rather than csum */
1307 if (skb->ip_summed == CHECKSUM_PARTIAL)
1308 skb->csum_start += off;
1309 /* {transport,network,mac}_header and tail are relative to skb->head */
1310 skb->transport_header += off;
1311 skb->network_header += off;
1312 if (skb_mac_header_was_set(skb))
1313 skb->mac_header += off;
1314 skb->inner_transport_header += off;
1315 skb->inner_network_header += off;
1316 skb->inner_mac_header += off;
1318 EXPORT_SYMBOL(skb_headers_offset_update);
1320 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1322 __copy_skb_header(new, old);
1324 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1325 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1326 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1328 EXPORT_SYMBOL(skb_copy_header);
1330 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1332 if (skb_pfmemalloc(skb))
1333 return SKB_ALLOC_RX;
1338 * skb_copy - create private copy of an sk_buff
1339 * @skb: buffer to copy
1340 * @gfp_mask: allocation priority
1342 * Make a copy of both an &sk_buff and its data. This is used when the
1343 * caller wishes to modify the data and needs a private copy of the
1344 * data to alter. Returns %NULL on failure or the pointer to the buffer
1345 * on success. The returned buffer has a reference count of 1.
1347 * As by-product this function converts non-linear &sk_buff to linear
1348 * one, so that &sk_buff becomes completely private and caller is allowed
1349 * to modify all the data of returned buffer. This means that this
1350 * function is not recommended for use in circumstances when only
1351 * header is going to be modified. Use pskb_copy() instead.
1354 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1356 int headerlen = skb_headroom(skb);
1357 unsigned int size = skb_end_offset(skb) + skb->data_len;
1358 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1359 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1364 /* Set the data pointer */
1365 skb_reserve(n, headerlen);
1366 /* Set the tail pointer and length */
1367 skb_put(n, skb->len);
1369 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1371 skb_copy_header(n, skb);
1374 EXPORT_SYMBOL(skb_copy);
1377 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1378 * @skb: buffer to copy
1379 * @headroom: headroom of new skb
1380 * @gfp_mask: allocation priority
1381 * @fclone: if true allocate the copy of the skb from the fclone
1382 * cache instead of the head cache; it is recommended to set this
1383 * to true for the cases where the copy will likely be cloned
1385 * Make a copy of both an &sk_buff and part of its data, located
1386 * in header. Fragmented data remain shared. This is used when
1387 * the caller wishes to modify only header of &sk_buff and needs
1388 * private copy of the header to alter. Returns %NULL on failure
1389 * or the pointer to the buffer on success.
1390 * The returned buffer has a reference count of 1.
1393 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1394 gfp_t gfp_mask, bool fclone)
1396 unsigned int size = skb_headlen(skb) + headroom;
1397 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1398 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1403 /* Set the data pointer */
1404 skb_reserve(n, headroom);
1405 /* Set the tail pointer and length */
1406 skb_put(n, skb_headlen(skb));
1407 /* Copy the bytes */
1408 skb_copy_from_linear_data(skb, n->data, n->len);
1410 n->truesize += skb->data_len;
1411 n->data_len = skb->data_len;
1414 if (skb_shinfo(skb)->nr_frags) {
1417 if (skb_orphan_frags(skb, gfp_mask) ||
1418 skb_zerocopy_clone(n, skb, gfp_mask)) {
1423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1424 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1425 skb_frag_ref(skb, i);
1427 skb_shinfo(n)->nr_frags = i;
1430 if (skb_has_frag_list(skb)) {
1431 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1432 skb_clone_fraglist(n);
1435 skb_copy_header(n, skb);
1439 EXPORT_SYMBOL(__pskb_copy_fclone);
1442 * pskb_expand_head - reallocate header of &sk_buff
1443 * @skb: buffer to reallocate
1444 * @nhead: room to add at head
1445 * @ntail: room to add at tail
1446 * @gfp_mask: allocation priority
1448 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1449 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1450 * reference count of 1. Returns zero in the case of success or error,
1451 * if expansion failed. In the last case, &sk_buff is not changed.
1453 * All the pointers pointing into skb header may change and must be
1454 * reloaded after call to this function.
1457 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1460 int i, osize = skb_end_offset(skb);
1461 int size = osize + nhead + ntail;
1467 BUG_ON(skb_shared(skb));
1469 size = SKB_DATA_ALIGN(size);
1471 if (skb_pfmemalloc(skb))
1472 gfp_mask |= __GFP_MEMALLOC;
1473 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1474 gfp_mask, NUMA_NO_NODE, NULL);
1477 size = SKB_WITH_OVERHEAD(ksize(data));
1479 /* Copy only real data... and, alas, header. This should be
1480 * optimized for the cases when header is void.
1482 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1484 memcpy((struct skb_shared_info *)(data + size),
1486 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1489 * if shinfo is shared we must drop the old head gracefully, but if it
1490 * is not we can just drop the old head and let the existing refcount
1491 * be since all we did is relocate the values
1493 if (skb_cloned(skb)) {
1494 if (skb_orphan_frags(skb, gfp_mask))
1497 refcount_inc(&skb_uarg(skb)->refcnt);
1498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1499 skb_frag_ref(skb, i);
1501 if (skb_has_frag_list(skb))
1502 skb_clone_fraglist(skb);
1504 skb_release_data(skb);
1508 off = (data + nhead) - skb->head;
1513 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1517 skb->end = skb->head + size;
1520 skb_headers_offset_update(skb, nhead);
1524 atomic_set(&skb_shinfo(skb)->dataref, 1);
1526 skb_metadata_clear(skb);
1528 /* It is not generally safe to change skb->truesize.
1529 * For the moment, we really care of rx path, or
1530 * when skb is orphaned (not attached to a socket).
1532 if (!skb->sk || skb->destructor == sock_edemux)
1533 skb->truesize += size - osize;
1542 EXPORT_SYMBOL(pskb_expand_head);
1544 /* Make private copy of skb with writable head and some headroom */
1546 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1548 struct sk_buff *skb2;
1549 int delta = headroom - skb_headroom(skb);
1552 skb2 = pskb_copy(skb, GFP_ATOMIC);
1554 skb2 = skb_clone(skb, GFP_ATOMIC);
1555 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1563 EXPORT_SYMBOL(skb_realloc_headroom);
1566 * skb_copy_expand - copy and expand sk_buff
1567 * @skb: buffer to copy
1568 * @newheadroom: new free bytes at head
1569 * @newtailroom: new free bytes at tail
1570 * @gfp_mask: allocation priority
1572 * Make a copy of both an &sk_buff and its data and while doing so
1573 * allocate additional space.
1575 * This is used when the caller wishes to modify the data and needs a
1576 * private copy of the data to alter as well as more space for new fields.
1577 * Returns %NULL on failure or the pointer to the buffer
1578 * on success. The returned buffer has a reference count of 1.
1580 * You must pass %GFP_ATOMIC as the allocation priority if this function
1581 * is called from an interrupt.
1583 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1584 int newheadroom, int newtailroom,
1588 * Allocate the copy buffer
1590 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1591 gfp_mask, skb_alloc_rx_flag(skb),
1593 int oldheadroom = skb_headroom(skb);
1594 int head_copy_len, head_copy_off;
1599 skb_reserve(n, newheadroom);
1601 /* Set the tail pointer and length */
1602 skb_put(n, skb->len);
1604 head_copy_len = oldheadroom;
1606 if (newheadroom <= head_copy_len)
1607 head_copy_len = newheadroom;
1609 head_copy_off = newheadroom - head_copy_len;
1611 /* Copy the linear header and data. */
1612 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1613 skb->len + head_copy_len));
1615 skb_copy_header(n, skb);
1617 skb_headers_offset_update(n, newheadroom - oldheadroom);
1621 EXPORT_SYMBOL(skb_copy_expand);
1624 * __skb_pad - zero pad the tail of an skb
1625 * @skb: buffer to pad
1626 * @pad: space to pad
1627 * @free_on_error: free buffer on error
1629 * Ensure that a buffer is followed by a padding area that is zero
1630 * filled. Used by network drivers which may DMA or transfer data
1631 * beyond the buffer end onto the wire.
1633 * May return error in out of memory cases. The skb is freed on error
1634 * if @free_on_error is true.
1637 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1642 /* If the skbuff is non linear tailroom is always zero.. */
1643 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1644 memset(skb->data+skb->len, 0, pad);
1648 ntail = skb->data_len + pad - (skb->end - skb->tail);
1649 if (likely(skb_cloned(skb) || ntail > 0)) {
1650 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1655 /* FIXME: The use of this function with non-linear skb's really needs
1658 err = skb_linearize(skb);
1662 memset(skb->data + skb->len, 0, pad);
1670 EXPORT_SYMBOL(__skb_pad);
1673 * pskb_put - add data to the tail of a potentially fragmented buffer
1674 * @skb: start of the buffer to use
1675 * @tail: tail fragment of the buffer to use
1676 * @len: amount of data to add
1678 * This function extends the used data area of the potentially
1679 * fragmented buffer. @tail must be the last fragment of @skb -- or
1680 * @skb itself. If this would exceed the total buffer size the kernel
1681 * will panic. A pointer to the first byte of the extra data is
1685 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1688 skb->data_len += len;
1691 return skb_put(tail, len);
1693 EXPORT_SYMBOL_GPL(pskb_put);
1696 * skb_put - add data to a buffer
1697 * @skb: buffer to use
1698 * @len: amount of data to add
1700 * This function extends the used data area of the buffer. If this would
1701 * exceed the total buffer size the kernel will panic. A pointer to the
1702 * first byte of the extra data is returned.
1704 void *skb_put(struct sk_buff *skb, unsigned int len)
1706 void *tmp = skb_tail_pointer(skb);
1707 SKB_LINEAR_ASSERT(skb);
1710 if (unlikely(skb->tail > skb->end))
1711 skb_over_panic(skb, len, __builtin_return_address(0));
1714 EXPORT_SYMBOL(skb_put);
1717 * skb_push - add data to the start of a buffer
1718 * @skb: buffer to use
1719 * @len: amount of data to add
1721 * This function extends the used data area of the buffer at the buffer
1722 * start. If this would exceed the total buffer headroom the kernel will
1723 * panic. A pointer to the first byte of the extra data is returned.
1725 void *skb_push(struct sk_buff *skb, unsigned int len)
1729 if (unlikely(skb->data < skb->head))
1730 skb_under_panic(skb, len, __builtin_return_address(0));
1733 EXPORT_SYMBOL(skb_push);
1736 * skb_pull - remove data from the start of a buffer
1737 * @skb: buffer to use
1738 * @len: amount of data to remove
1740 * This function removes data from the start of a buffer, returning
1741 * the memory to the headroom. A pointer to the next data in the buffer
1742 * is returned. Once the data has been pulled future pushes will overwrite
1745 void *skb_pull(struct sk_buff *skb, unsigned int len)
1747 return skb_pull_inline(skb, len);
1749 EXPORT_SYMBOL(skb_pull);
1752 * skb_trim - remove end from a buffer
1753 * @skb: buffer to alter
1756 * Cut the length of a buffer down by removing data from the tail. If
1757 * the buffer is already under the length specified it is not modified.
1758 * The skb must be linear.
1760 void skb_trim(struct sk_buff *skb, unsigned int len)
1763 __skb_trim(skb, len);
1765 EXPORT_SYMBOL(skb_trim);
1767 /* Trims skb to length len. It can change skb pointers.
1770 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1772 struct sk_buff **fragp;
1773 struct sk_buff *frag;
1774 int offset = skb_headlen(skb);
1775 int nfrags = skb_shinfo(skb)->nr_frags;
1779 if (skb_cloned(skb) &&
1780 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1787 for (; i < nfrags; i++) {
1788 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1795 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1798 skb_shinfo(skb)->nr_frags = i;
1800 for (; i < nfrags; i++)
1801 skb_frag_unref(skb, i);
1803 if (skb_has_frag_list(skb))
1804 skb_drop_fraglist(skb);
1808 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1809 fragp = &frag->next) {
1810 int end = offset + frag->len;
1812 if (skb_shared(frag)) {
1813 struct sk_buff *nfrag;
1815 nfrag = skb_clone(frag, GFP_ATOMIC);
1816 if (unlikely(!nfrag))
1819 nfrag->next = frag->next;
1831 unlikely((err = pskb_trim(frag, len - offset))))
1835 skb_drop_list(&frag->next);
1840 if (len > skb_headlen(skb)) {
1841 skb->data_len -= skb->len - len;
1846 skb_set_tail_pointer(skb, len);
1849 if (!skb->sk || skb->destructor == sock_edemux)
1853 EXPORT_SYMBOL(___pskb_trim);
1855 /* Note : use pskb_trim_rcsum() instead of calling this directly
1857 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1859 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1860 int delta = skb->len - len;
1862 skb->csum = csum_block_sub(skb->csum,
1863 skb_checksum(skb, len, delta, 0),
1865 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1866 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
1867 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
1869 if (offset + sizeof(__sum16) > hdlen)
1872 return __pskb_trim(skb, len);
1874 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1877 * __pskb_pull_tail - advance tail of skb header
1878 * @skb: buffer to reallocate
1879 * @delta: number of bytes to advance tail
1881 * The function makes a sense only on a fragmented &sk_buff,
1882 * it expands header moving its tail forward and copying necessary
1883 * data from fragmented part.
1885 * &sk_buff MUST have reference count of 1.
1887 * Returns %NULL (and &sk_buff does not change) if pull failed
1888 * or value of new tail of skb in the case of success.
1890 * All the pointers pointing into skb header may change and must be
1891 * reloaded after call to this function.
1894 /* Moves tail of skb head forward, copying data from fragmented part,
1895 * when it is necessary.
1896 * 1. It may fail due to malloc failure.
1897 * 2. It may change skb pointers.
1899 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1901 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1903 /* If skb has not enough free space at tail, get new one
1904 * plus 128 bytes for future expansions. If we have enough
1905 * room at tail, reallocate without expansion only if skb is cloned.
1907 int i, k, eat = (skb->tail + delta) - skb->end;
1909 if (eat > 0 || skb_cloned(skb)) {
1910 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1915 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1916 skb_tail_pointer(skb), delta));
1918 /* Optimization: no fragments, no reasons to preestimate
1919 * size of pulled pages. Superb.
1921 if (!skb_has_frag_list(skb))
1924 /* Estimate size of pulled pages. */
1926 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1927 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1934 /* If we need update frag list, we are in troubles.
1935 * Certainly, it is possible to add an offset to skb data,
1936 * but taking into account that pulling is expected to
1937 * be very rare operation, it is worth to fight against
1938 * further bloating skb head and crucify ourselves here instead.
1939 * Pure masohism, indeed. 8)8)
1942 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1943 struct sk_buff *clone = NULL;
1944 struct sk_buff *insp = NULL;
1949 if (list->len <= eat) {
1950 /* Eaten as whole. */
1955 /* Eaten partially. */
1957 if (skb_shared(list)) {
1958 /* Sucks! We need to fork list. :-( */
1959 clone = skb_clone(list, GFP_ATOMIC);
1965 /* This may be pulled without
1969 if (!pskb_pull(list, eat)) {
1977 /* Free pulled out fragments. */
1978 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1979 skb_shinfo(skb)->frag_list = list->next;
1982 /* And insert new clone at head. */
1985 skb_shinfo(skb)->frag_list = clone;
1988 /* Success! Now we may commit changes to skb data. */
1993 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1994 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1997 skb_frag_unref(skb, i);
2000 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
2002 skb_shinfo(skb)->frags[k].page_offset += eat;
2003 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
2011 skb_shinfo(skb)->nr_frags = k;
2015 skb->data_len -= delta;
2018 skb_zcopy_clear(skb, false);
2020 return skb_tail_pointer(skb);
2022 EXPORT_SYMBOL(__pskb_pull_tail);
2025 * skb_copy_bits - copy bits from skb to kernel buffer
2027 * @offset: offset in source
2028 * @to: destination buffer
2029 * @len: number of bytes to copy
2031 * Copy the specified number of bytes from the source skb to the
2032 * destination buffer.
2035 * If its prototype is ever changed,
2036 * check arch/{*}/net/{*}.S files,
2037 * since it is called from BPF assembly code.
2039 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2041 int start = skb_headlen(skb);
2042 struct sk_buff *frag_iter;
2045 if (offset > (int)skb->len - len)
2049 if ((copy = start - offset) > 0) {
2052 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2053 if ((len -= copy) == 0)
2059 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2061 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2063 WARN_ON(start > offset + len);
2065 end = start + skb_frag_size(f);
2066 if ((copy = end - offset) > 0) {
2067 u32 p_off, p_len, copied;
2074 skb_frag_foreach_page(f,
2075 f->page_offset + offset - start,
2076 copy, p, p_off, p_len, copied) {
2077 vaddr = kmap_atomic(p);
2078 memcpy(to + copied, vaddr + p_off, p_len);
2079 kunmap_atomic(vaddr);
2082 if ((len -= copy) == 0)
2090 skb_walk_frags(skb, frag_iter) {
2093 WARN_ON(start > offset + len);
2095 end = start + frag_iter->len;
2096 if ((copy = end - offset) > 0) {
2099 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2101 if ((len -= copy) == 0)
2115 EXPORT_SYMBOL(skb_copy_bits);
2118 * Callback from splice_to_pipe(), if we need to release some pages
2119 * at the end of the spd in case we error'ed out in filling the pipe.
2121 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2123 put_page(spd->pages[i]);
2126 static struct page *linear_to_page(struct page *page, unsigned int *len,
2127 unsigned int *offset,
2130 struct page_frag *pfrag = sk_page_frag(sk);
2132 if (!sk_page_frag_refill(sk, pfrag))
2135 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2137 memcpy(page_address(pfrag->page) + pfrag->offset,
2138 page_address(page) + *offset, *len);
2139 *offset = pfrag->offset;
2140 pfrag->offset += *len;
2145 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2147 unsigned int offset)
2149 return spd->nr_pages &&
2150 spd->pages[spd->nr_pages - 1] == page &&
2151 (spd->partial[spd->nr_pages - 1].offset +
2152 spd->partial[spd->nr_pages - 1].len == offset);
2156 * Fill page/offset/length into spd, if it can hold more pages.
2158 static bool spd_fill_page(struct splice_pipe_desc *spd,
2159 struct pipe_inode_info *pipe, struct page *page,
2160 unsigned int *len, unsigned int offset,
2164 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2168 page = linear_to_page(page, len, &offset, sk);
2172 if (spd_can_coalesce(spd, page, offset)) {
2173 spd->partial[spd->nr_pages - 1].len += *len;
2177 spd->pages[spd->nr_pages] = page;
2178 spd->partial[spd->nr_pages].len = *len;
2179 spd->partial[spd->nr_pages].offset = offset;
2185 static bool __splice_segment(struct page *page, unsigned int poff,
2186 unsigned int plen, unsigned int *off,
2188 struct splice_pipe_desc *spd, bool linear,
2190 struct pipe_inode_info *pipe)
2195 /* skip this segment if already processed */
2201 /* ignore any bits we already processed */
2207 unsigned int flen = min(*len, plen);
2209 if (spd_fill_page(spd, pipe, page, &flen, poff,
2215 } while (*len && plen);
2221 * Map linear and fragment data from the skb to spd. It reports true if the
2222 * pipe is full or if we already spliced the requested length.
2224 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2225 unsigned int *offset, unsigned int *len,
2226 struct splice_pipe_desc *spd, struct sock *sk)
2229 struct sk_buff *iter;
2231 /* map the linear part :
2232 * If skb->head_frag is set, this 'linear' part is backed by a
2233 * fragment, and if the head is not shared with any clones then
2234 * we can avoid a copy since we own the head portion of this page.
2236 if (__splice_segment(virt_to_page(skb->data),
2237 (unsigned long) skb->data & (PAGE_SIZE - 1),
2240 skb_head_is_locked(skb),
2245 * then map the fragments
2247 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2248 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2250 if (__splice_segment(skb_frag_page(f),
2251 f->page_offset, skb_frag_size(f),
2252 offset, len, spd, false, sk, pipe))
2256 skb_walk_frags(skb, iter) {
2257 if (*offset >= iter->len) {
2258 *offset -= iter->len;
2261 /* __skb_splice_bits() only fails if the output has no room
2262 * left, so no point in going over the frag_list for the error
2265 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2273 * Map data from the skb to a pipe. Should handle both the linear part,
2274 * the fragments, and the frag list.
2276 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2277 struct pipe_inode_info *pipe, unsigned int tlen,
2280 struct partial_page partial[MAX_SKB_FRAGS];
2281 struct page *pages[MAX_SKB_FRAGS];
2282 struct splice_pipe_desc spd = {
2285 .nr_pages_max = MAX_SKB_FRAGS,
2286 .ops = &nosteal_pipe_buf_ops,
2287 .spd_release = sock_spd_release,
2291 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2294 ret = splice_to_pipe(pipe, &spd);
2298 EXPORT_SYMBOL_GPL(skb_splice_bits);
2300 /* Send skb data on a socket. Socket must be locked. */
2301 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2304 unsigned int orig_len = len;
2305 struct sk_buff *head = skb;
2306 unsigned short fragidx;
2311 /* Deal with head data */
2312 while (offset < skb_headlen(skb) && len) {
2316 slen = min_t(int, len, skb_headlen(skb) - offset);
2317 kv.iov_base = skb->data + offset;
2319 memset(&msg, 0, sizeof(msg));
2320 msg.msg_flags = MSG_DONTWAIT;
2322 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2330 /* All the data was skb head? */
2334 /* Make offset relative to start of frags */
2335 offset -= skb_headlen(skb);
2337 /* Find where we are in frag list */
2338 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2339 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2341 if (offset < frag->size)
2344 offset -= frag->size;
2347 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2348 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2350 slen = min_t(size_t, len, frag->size - offset);
2353 ret = kernel_sendpage_locked(sk, frag->page.p,
2354 frag->page_offset + offset,
2355 slen, MSG_DONTWAIT);
2368 /* Process any frag lists */
2371 if (skb_has_frag_list(skb)) {
2372 skb = skb_shinfo(skb)->frag_list;
2375 } else if (skb->next) {
2382 return orig_len - len;
2385 return orig_len == len ? ret : orig_len - len;
2387 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2389 /* Send skb data on a socket. */
2390 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2395 ret = skb_send_sock_locked(sk, skb, offset, len);
2400 EXPORT_SYMBOL_GPL(skb_send_sock);
2403 * skb_store_bits - store bits from kernel buffer to skb
2404 * @skb: destination buffer
2405 * @offset: offset in destination
2406 * @from: source buffer
2407 * @len: number of bytes to copy
2409 * Copy the specified number of bytes from the source buffer to the
2410 * destination skb. This function handles all the messy bits of
2411 * traversing fragment lists and such.
2414 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2416 int start = skb_headlen(skb);
2417 struct sk_buff *frag_iter;
2420 if (offset > (int)skb->len - len)
2423 if ((copy = start - offset) > 0) {
2426 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2427 if ((len -= copy) == 0)
2433 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2434 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2437 WARN_ON(start > offset + len);
2439 end = start + skb_frag_size(frag);
2440 if ((copy = end - offset) > 0) {
2441 u32 p_off, p_len, copied;
2448 skb_frag_foreach_page(frag,
2449 frag->page_offset + offset - start,
2450 copy, p, p_off, p_len, copied) {
2451 vaddr = kmap_atomic(p);
2452 memcpy(vaddr + p_off, from + copied, p_len);
2453 kunmap_atomic(vaddr);
2456 if ((len -= copy) == 0)
2464 skb_walk_frags(skb, frag_iter) {
2467 WARN_ON(start > offset + len);
2469 end = start + frag_iter->len;
2470 if ((copy = end - offset) > 0) {
2473 if (skb_store_bits(frag_iter, offset - start,
2476 if ((len -= copy) == 0)
2489 EXPORT_SYMBOL(skb_store_bits);
2491 /* Checksum skb data. */
2492 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2493 __wsum csum, const struct skb_checksum_ops *ops)
2495 int start = skb_headlen(skb);
2496 int i, copy = start - offset;
2497 struct sk_buff *frag_iter;
2500 /* Checksum header. */
2504 csum = ops->update(skb->data + offset, copy, csum);
2505 if ((len -= copy) == 0)
2511 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2515 WARN_ON(start > offset + len);
2517 end = start + skb_frag_size(frag);
2518 if ((copy = end - offset) > 0) {
2519 u32 p_off, p_len, copied;
2527 skb_frag_foreach_page(frag,
2528 frag->page_offset + offset - start,
2529 copy, p, p_off, p_len, copied) {
2530 vaddr = kmap_atomic(p);
2531 csum2 = ops->update(vaddr + p_off, p_len, 0);
2532 kunmap_atomic(vaddr);
2533 csum = ops->combine(csum, csum2, pos, p_len);
2544 skb_walk_frags(skb, frag_iter) {
2547 WARN_ON(start > offset + len);
2549 end = start + frag_iter->len;
2550 if ((copy = end - offset) > 0) {
2554 csum2 = __skb_checksum(frag_iter, offset - start,
2556 csum = ops->combine(csum, csum2, pos, copy);
2557 if ((len -= copy) == 0)
2568 EXPORT_SYMBOL(__skb_checksum);
2570 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2571 int len, __wsum csum)
2573 const struct skb_checksum_ops ops = {
2574 .update = csum_partial_ext,
2575 .combine = csum_block_add_ext,
2578 return __skb_checksum(skb, offset, len, csum, &ops);
2580 EXPORT_SYMBOL(skb_checksum);
2582 /* Both of above in one bottle. */
2584 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2585 u8 *to, int len, __wsum csum)
2587 int start = skb_headlen(skb);
2588 int i, copy = start - offset;
2589 struct sk_buff *frag_iter;
2596 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2598 if ((len -= copy) == 0)
2605 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2608 WARN_ON(start > offset + len);
2610 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2611 if ((copy = end - offset) > 0) {
2612 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2613 u32 p_off, p_len, copied;
2621 skb_frag_foreach_page(frag,
2622 frag->page_offset + offset - start,
2623 copy, p, p_off, p_len, copied) {
2624 vaddr = kmap_atomic(p);
2625 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2628 kunmap_atomic(vaddr);
2629 csum = csum_block_add(csum, csum2, pos);
2641 skb_walk_frags(skb, frag_iter) {
2645 WARN_ON(start > offset + len);
2647 end = start + frag_iter->len;
2648 if ((copy = end - offset) > 0) {
2651 csum2 = skb_copy_and_csum_bits(frag_iter,
2654 csum = csum_block_add(csum, csum2, pos);
2655 if ((len -= copy) == 0)
2666 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2668 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2670 net_warn_ratelimited(
2671 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2676 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2677 int offset, int len)
2679 net_warn_ratelimited(
2680 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2685 static const struct skb_checksum_ops default_crc32c_ops = {
2686 .update = warn_crc32c_csum_update,
2687 .combine = warn_crc32c_csum_combine,
2690 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2691 &default_crc32c_ops;
2692 EXPORT_SYMBOL(crc32c_csum_stub);
2695 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2696 * @from: source buffer
2698 * Calculates the amount of linear headroom needed in the 'to' skb passed
2699 * into skb_zerocopy().
2702 skb_zerocopy_headlen(const struct sk_buff *from)
2704 unsigned int hlen = 0;
2706 if (!from->head_frag ||
2707 skb_headlen(from) < L1_CACHE_BYTES ||
2708 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2709 hlen = skb_headlen(from);
2714 if (skb_has_frag_list(from))
2719 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2722 * skb_zerocopy - Zero copy skb to skb
2723 * @to: destination buffer
2724 * @from: source buffer
2725 * @len: number of bytes to copy from source buffer
2726 * @hlen: size of linear headroom in destination buffer
2728 * Copies up to `len` bytes from `from` to `to` by creating references
2729 * to the frags in the source buffer.
2731 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2732 * headroom in the `to` buffer.
2735 * 0: everything is OK
2736 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2737 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2740 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2743 int plen = 0; /* length of skb->head fragment */
2746 unsigned int offset;
2748 BUG_ON(!from->head_frag && !hlen);
2750 /* dont bother with small payloads */
2751 if (len <= skb_tailroom(to))
2752 return skb_copy_bits(from, 0, skb_put(to, len), len);
2755 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2760 plen = min_t(int, skb_headlen(from), len);
2762 page = virt_to_head_page(from->head);
2763 offset = from->data - (unsigned char *)page_address(page);
2764 __skb_fill_page_desc(to, 0, page, offset, plen);
2771 to->truesize += len + plen;
2772 to->len += len + plen;
2773 to->data_len += len + plen;
2775 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2779 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2781 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2784 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2785 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2786 len -= skb_shinfo(to)->frags[j].size;
2787 skb_frag_ref(to, j);
2790 skb_shinfo(to)->nr_frags = j;
2794 EXPORT_SYMBOL_GPL(skb_zerocopy);
2796 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2801 if (skb->ip_summed == CHECKSUM_PARTIAL)
2802 csstart = skb_checksum_start_offset(skb);
2804 csstart = skb_headlen(skb);
2806 BUG_ON(csstart > skb_headlen(skb));
2808 skb_copy_from_linear_data(skb, to, csstart);
2811 if (csstart != skb->len)
2812 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2813 skb->len - csstart, 0);
2815 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2816 long csstuff = csstart + skb->csum_offset;
2818 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2821 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2824 * skb_dequeue - remove from the head of the queue
2825 * @list: list to dequeue from
2827 * Remove the head of the list. The list lock is taken so the function
2828 * may be used safely with other locking list functions. The head item is
2829 * returned or %NULL if the list is empty.
2832 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2834 unsigned long flags;
2835 struct sk_buff *result;
2837 spin_lock_irqsave(&list->lock, flags);
2838 result = __skb_dequeue(list);
2839 spin_unlock_irqrestore(&list->lock, flags);
2842 EXPORT_SYMBOL(skb_dequeue);
2845 * skb_dequeue_tail - remove from the tail of the queue
2846 * @list: list to dequeue from
2848 * Remove the tail of the list. The list lock is taken so the function
2849 * may be used safely with other locking list functions. The tail item is
2850 * returned or %NULL if the list is empty.
2852 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2854 unsigned long flags;
2855 struct sk_buff *result;
2857 spin_lock_irqsave(&list->lock, flags);
2858 result = __skb_dequeue_tail(list);
2859 spin_unlock_irqrestore(&list->lock, flags);
2862 EXPORT_SYMBOL(skb_dequeue_tail);
2865 * skb_queue_purge - empty a list
2866 * @list: list to empty
2868 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2869 * the list and one reference dropped. This function takes the list
2870 * lock and is atomic with respect to other list locking functions.
2872 void skb_queue_purge(struct sk_buff_head *list)
2874 struct sk_buff *skb;
2875 while ((skb = skb_dequeue(list)) != NULL)
2878 EXPORT_SYMBOL(skb_queue_purge);
2881 * skb_rbtree_purge - empty a skb rbtree
2882 * @root: root of the rbtree to empty
2883 * Return value: the sum of truesizes of all purged skbs.
2885 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2886 * the list and one reference dropped. This function does not take
2887 * any lock. Synchronization should be handled by the caller (e.g., TCP
2888 * out-of-order queue is protected by the socket lock).
2890 unsigned int skb_rbtree_purge(struct rb_root *root)
2892 struct rb_node *p = rb_first(root);
2893 unsigned int sum = 0;
2896 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2899 rb_erase(&skb->rbnode, root);
2900 sum += skb->truesize;
2907 * skb_queue_head - queue a buffer at the list head
2908 * @list: list to use
2909 * @newsk: buffer to queue
2911 * Queue a buffer at the start of the list. This function takes the
2912 * list lock and can be used safely with other locking &sk_buff functions
2915 * A buffer cannot be placed on two lists at the same time.
2917 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2919 unsigned long flags;
2921 spin_lock_irqsave(&list->lock, flags);
2922 __skb_queue_head(list, newsk);
2923 spin_unlock_irqrestore(&list->lock, flags);
2925 EXPORT_SYMBOL(skb_queue_head);
2928 * skb_queue_tail - queue a buffer at the list tail
2929 * @list: list to use
2930 * @newsk: buffer to queue
2932 * Queue a buffer at the tail of the list. This function takes the
2933 * list lock and can be used safely with other locking &sk_buff functions
2936 * A buffer cannot be placed on two lists at the same time.
2938 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2940 unsigned long flags;
2942 spin_lock_irqsave(&list->lock, flags);
2943 __skb_queue_tail(list, newsk);
2944 spin_unlock_irqrestore(&list->lock, flags);
2946 EXPORT_SYMBOL(skb_queue_tail);
2949 * skb_unlink - remove a buffer from a list
2950 * @skb: buffer to remove
2951 * @list: list to use
2953 * Remove a packet from a list. The list locks are taken and this
2954 * function is atomic with respect to other list locked calls
2956 * You must know what list the SKB is on.
2958 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2960 unsigned long flags;
2962 spin_lock_irqsave(&list->lock, flags);
2963 __skb_unlink(skb, list);
2964 spin_unlock_irqrestore(&list->lock, flags);
2966 EXPORT_SYMBOL(skb_unlink);
2969 * skb_append - append a buffer
2970 * @old: buffer to insert after
2971 * @newsk: buffer to insert
2972 * @list: list to use
2974 * Place a packet after a given packet in a list. The list locks are taken
2975 * and this function is atomic with respect to other list locked calls.
2976 * A buffer cannot be placed on two lists at the same time.
2978 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2980 unsigned long flags;
2982 spin_lock_irqsave(&list->lock, flags);
2983 __skb_queue_after(list, old, newsk);
2984 spin_unlock_irqrestore(&list->lock, flags);
2986 EXPORT_SYMBOL(skb_append);
2989 * skb_insert - insert a buffer
2990 * @old: buffer to insert before
2991 * @newsk: buffer to insert
2992 * @list: list to use
2994 * Place a packet before a given packet in a list. The list locks are
2995 * taken and this function is atomic with respect to other list locked
2998 * A buffer cannot be placed on two lists at the same time.
3000 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3002 unsigned long flags;
3004 spin_lock_irqsave(&list->lock, flags);
3005 __skb_insert(newsk, old->prev, old, list);
3006 spin_unlock_irqrestore(&list->lock, flags);
3008 EXPORT_SYMBOL(skb_insert);
3010 static inline void skb_split_inside_header(struct sk_buff *skb,
3011 struct sk_buff* skb1,
3012 const u32 len, const int pos)
3016 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3018 /* And move data appendix as is. */
3019 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3020 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3022 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3023 skb_shinfo(skb)->nr_frags = 0;
3024 skb1->data_len = skb->data_len;
3025 skb1->len += skb1->data_len;
3028 skb_set_tail_pointer(skb, len);
3031 static inline void skb_split_no_header(struct sk_buff *skb,
3032 struct sk_buff* skb1,
3033 const u32 len, int pos)
3036 const int nfrags = skb_shinfo(skb)->nr_frags;
3038 skb_shinfo(skb)->nr_frags = 0;
3039 skb1->len = skb1->data_len = skb->len - len;
3041 skb->data_len = len - pos;
3043 for (i = 0; i < nfrags; i++) {
3044 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3046 if (pos + size > len) {
3047 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3051 * We have two variants in this case:
3052 * 1. Move all the frag to the second
3053 * part, if it is possible. F.e.
3054 * this approach is mandatory for TUX,
3055 * where splitting is expensive.
3056 * 2. Split is accurately. We make this.
3058 skb_frag_ref(skb, i);
3059 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3060 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3061 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3062 skb_shinfo(skb)->nr_frags++;
3066 skb_shinfo(skb)->nr_frags++;
3069 skb_shinfo(skb1)->nr_frags = k;
3073 * skb_split - Split fragmented skb to two parts at length len.
3074 * @skb: the buffer to split
3075 * @skb1: the buffer to receive the second part
3076 * @len: new length for skb
3078 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3080 int pos = skb_headlen(skb);
3082 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3084 skb_zerocopy_clone(skb1, skb, 0);
3085 if (len < pos) /* Split line is inside header. */
3086 skb_split_inside_header(skb, skb1, len, pos);
3087 else /* Second chunk has no header, nothing to copy. */
3088 skb_split_no_header(skb, skb1, len, pos);
3090 EXPORT_SYMBOL(skb_split);
3092 /* Shifting from/to a cloned skb is a no-go.
3094 * Caller cannot keep skb_shinfo related pointers past calling here!
3096 static int skb_prepare_for_shift(struct sk_buff *skb)
3100 if (skb_cloned(skb)) {
3101 /* Save and restore truesize: pskb_expand_head() may reallocate
3102 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3103 * cannot change truesize at this point.
3105 unsigned int save_truesize = skb->truesize;
3107 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3108 skb->truesize = save_truesize;
3114 * skb_shift - Shifts paged data partially from skb to another
3115 * @tgt: buffer into which tail data gets added
3116 * @skb: buffer from which the paged data comes from
3117 * @shiftlen: shift up to this many bytes
3119 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3120 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3121 * It's up to caller to free skb if everything was shifted.
3123 * If @tgt runs out of frags, the whole operation is aborted.
3125 * Skb cannot include anything else but paged data while tgt is allowed
3126 * to have non-paged data as well.
3128 * TODO: full sized shift could be optimized but that would need
3129 * specialized skb free'er to handle frags without up-to-date nr_frags.
3131 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3133 int from, to, merge, todo;
3134 struct skb_frag_struct *fragfrom, *fragto;
3136 BUG_ON(shiftlen > skb->len);
3138 if (skb_headlen(skb))
3140 if (skb_zcopy(tgt) || skb_zcopy(skb))
3145 to = skb_shinfo(tgt)->nr_frags;
3146 fragfrom = &skb_shinfo(skb)->frags[from];
3148 /* Actual merge is delayed until the point when we know we can
3149 * commit all, so that we don't have to undo partial changes
3152 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3153 fragfrom->page_offset)) {
3158 todo -= skb_frag_size(fragfrom);
3160 if (skb_prepare_for_shift(skb) ||
3161 skb_prepare_for_shift(tgt))
3164 /* All previous frag pointers might be stale! */
3165 fragfrom = &skb_shinfo(skb)->frags[from];
3166 fragto = &skb_shinfo(tgt)->frags[merge];
3168 skb_frag_size_add(fragto, shiftlen);
3169 skb_frag_size_sub(fragfrom, shiftlen);
3170 fragfrom->page_offset += shiftlen;
3178 /* Skip full, not-fitting skb to avoid expensive operations */
3179 if ((shiftlen == skb->len) &&
3180 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3183 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3186 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3187 if (to == MAX_SKB_FRAGS)
3190 fragfrom = &skb_shinfo(skb)->frags[from];
3191 fragto = &skb_shinfo(tgt)->frags[to];
3193 if (todo >= skb_frag_size(fragfrom)) {
3194 *fragto = *fragfrom;
3195 todo -= skb_frag_size(fragfrom);
3200 __skb_frag_ref(fragfrom);
3201 fragto->page = fragfrom->page;
3202 fragto->page_offset = fragfrom->page_offset;
3203 skb_frag_size_set(fragto, todo);
3205 fragfrom->page_offset += todo;
3206 skb_frag_size_sub(fragfrom, todo);
3214 /* Ready to "commit" this state change to tgt */
3215 skb_shinfo(tgt)->nr_frags = to;
3218 fragfrom = &skb_shinfo(skb)->frags[0];
3219 fragto = &skb_shinfo(tgt)->frags[merge];
3221 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3222 __skb_frag_unref(fragfrom);
3225 /* Reposition in the original skb */
3227 while (from < skb_shinfo(skb)->nr_frags)
3228 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3229 skb_shinfo(skb)->nr_frags = to;
3231 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3234 /* Most likely the tgt won't ever need its checksum anymore, skb on
3235 * the other hand might need it if it needs to be resent
3237 tgt->ip_summed = CHECKSUM_PARTIAL;
3238 skb->ip_summed = CHECKSUM_PARTIAL;
3240 /* Yak, is it really working this way? Some helper please? */
3241 skb->len -= shiftlen;
3242 skb->data_len -= shiftlen;
3243 skb->truesize -= shiftlen;
3244 tgt->len += shiftlen;
3245 tgt->data_len += shiftlen;
3246 tgt->truesize += shiftlen;
3252 * skb_prepare_seq_read - Prepare a sequential read of skb data
3253 * @skb: the buffer to read
3254 * @from: lower offset of data to be read
3255 * @to: upper offset of data to be read
3256 * @st: state variable
3258 * Initializes the specified state variable. Must be called before
3259 * invoking skb_seq_read() for the first time.
3261 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3262 unsigned int to, struct skb_seq_state *st)
3264 st->lower_offset = from;
3265 st->upper_offset = to;
3266 st->root_skb = st->cur_skb = skb;
3267 st->frag_idx = st->stepped_offset = 0;
3268 st->frag_data = NULL;
3270 EXPORT_SYMBOL(skb_prepare_seq_read);
3273 * skb_seq_read - Sequentially read skb data
3274 * @consumed: number of bytes consumed by the caller so far
3275 * @data: destination pointer for data to be returned
3276 * @st: state variable
3278 * Reads a block of skb data at @consumed relative to the
3279 * lower offset specified to skb_prepare_seq_read(). Assigns
3280 * the head of the data block to @data and returns the length
3281 * of the block or 0 if the end of the skb data or the upper
3282 * offset has been reached.
3284 * The caller is not required to consume all of the data
3285 * returned, i.e. @consumed is typically set to the number
3286 * of bytes already consumed and the next call to
3287 * skb_seq_read() will return the remaining part of the block.
3289 * Note 1: The size of each block of data returned can be arbitrary,
3290 * this limitation is the cost for zerocopy sequential
3291 * reads of potentially non linear data.
3293 * Note 2: Fragment lists within fragments are not implemented
3294 * at the moment, state->root_skb could be replaced with
3295 * a stack for this purpose.
3297 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3298 struct skb_seq_state *st)
3300 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3303 if (unlikely(abs_offset >= st->upper_offset)) {
3304 if (st->frag_data) {
3305 kunmap_atomic(st->frag_data);
3306 st->frag_data = NULL;
3312 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3314 if (abs_offset < block_limit && !st->frag_data) {
3315 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3316 return block_limit - abs_offset;
3319 if (st->frag_idx == 0 && !st->frag_data)
3320 st->stepped_offset += skb_headlen(st->cur_skb);
3322 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3323 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3324 block_limit = skb_frag_size(frag) + st->stepped_offset;
3326 if (abs_offset < block_limit) {
3328 st->frag_data = kmap_atomic(skb_frag_page(frag));
3330 *data = (u8 *) st->frag_data + frag->page_offset +
3331 (abs_offset - st->stepped_offset);
3333 return block_limit - abs_offset;
3336 if (st->frag_data) {
3337 kunmap_atomic(st->frag_data);
3338 st->frag_data = NULL;
3342 st->stepped_offset += skb_frag_size(frag);
3345 if (st->frag_data) {
3346 kunmap_atomic(st->frag_data);
3347 st->frag_data = NULL;
3350 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3351 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3354 } else if (st->cur_skb->next) {
3355 st->cur_skb = st->cur_skb->next;
3362 EXPORT_SYMBOL(skb_seq_read);
3365 * skb_abort_seq_read - Abort a sequential read of skb data
3366 * @st: state variable
3368 * Must be called if skb_seq_read() was not called until it
3371 void skb_abort_seq_read(struct skb_seq_state *st)
3374 kunmap_atomic(st->frag_data);
3376 EXPORT_SYMBOL(skb_abort_seq_read);
3378 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3380 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3381 struct ts_config *conf,
3382 struct ts_state *state)
3384 return skb_seq_read(offset, text, TS_SKB_CB(state));
3387 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3389 skb_abort_seq_read(TS_SKB_CB(state));
3393 * skb_find_text - Find a text pattern in skb data
3394 * @skb: the buffer to look in
3395 * @from: search offset
3397 * @config: textsearch configuration
3399 * Finds a pattern in the skb data according to the specified
3400 * textsearch configuration. Use textsearch_next() to retrieve
3401 * subsequent occurrences of the pattern. Returns the offset
3402 * to the first occurrence or UINT_MAX if no match was found.
3404 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3405 unsigned int to, struct ts_config *config)
3407 struct ts_state state;
3410 config->get_next_block = skb_ts_get_next_block;
3411 config->finish = skb_ts_finish;
3413 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3415 ret = textsearch_find(config, &state);
3416 return (ret <= to - from ? ret : UINT_MAX);
3418 EXPORT_SYMBOL(skb_find_text);
3421 * skb_append_datato_frags - append the user data to a skb
3422 * @sk: sock structure
3423 * @skb: skb structure to be appended with user data.
3424 * @getfrag: call back function to be used for getting the user data
3425 * @from: pointer to user message iov
3426 * @length: length of the iov message
3428 * Description: This procedure append the user data in the fragment part
3429 * of the skb if any page alloc fails user this procedure returns -ENOMEM
3431 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3432 int (*getfrag)(void *from, char *to, int offset,
3433 int len, int odd, struct sk_buff *skb),
3434 void *from, int length)
3436 int frg_cnt = skb_shinfo(skb)->nr_frags;
3440 struct page_frag *pfrag = ¤t->task_frag;
3443 /* Return error if we don't have space for new frag */
3444 if (frg_cnt >= MAX_SKB_FRAGS)
3447 if (!sk_page_frag_refill(sk, pfrag))
3450 /* copy the user data to page */
3451 copy = min_t(int, length, pfrag->size - pfrag->offset);
3453 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3454 offset, copy, 0, skb);
3458 /* copy was successful so update the size parameters */
3459 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3462 pfrag->offset += copy;
3463 get_page(pfrag->page);
3465 skb->truesize += copy;
3466 refcount_add(copy, &sk->sk_wmem_alloc);
3468 skb->data_len += copy;
3472 } while (length > 0);
3476 EXPORT_SYMBOL(skb_append_datato_frags);
3478 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3479 int offset, size_t size)
3481 int i = skb_shinfo(skb)->nr_frags;
3483 if (skb_can_coalesce(skb, i, page, offset)) {
3484 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3485 } else if (i < MAX_SKB_FRAGS) {
3487 skb_fill_page_desc(skb, i, page, offset, size);
3494 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3497 * skb_pull_rcsum - pull skb and update receive checksum
3498 * @skb: buffer to update
3499 * @len: length of data pulled
3501 * This function performs an skb_pull on the packet and updates
3502 * the CHECKSUM_COMPLETE checksum. It should be used on
3503 * receive path processing instead of skb_pull unless you know
3504 * that the checksum difference is zero (e.g., a valid IP header)
3505 * or you are setting ip_summed to CHECKSUM_NONE.
3507 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3509 unsigned char *data = skb->data;
3511 BUG_ON(len > skb->len);
3512 __skb_pull(skb, len);
3513 skb_postpull_rcsum(skb, data, len);
3516 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3518 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3520 skb_frag_t head_frag;
3523 page = virt_to_head_page(frag_skb->head);
3524 head_frag.page.p = page;
3525 head_frag.page_offset = frag_skb->data -
3526 (unsigned char *)page_address(page);
3527 head_frag.size = skb_headlen(frag_skb);
3532 * skb_segment - Perform protocol segmentation on skb.
3533 * @head_skb: buffer to segment
3534 * @features: features for the output path (see dev->features)
3536 * This function performs segmentation on the given skb. It returns
3537 * a pointer to the first in a list of new skbs for the segments.
3538 * In case of error it returns ERR_PTR(err).
3540 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3541 netdev_features_t features)
3543 struct sk_buff *segs = NULL;
3544 struct sk_buff *tail = NULL;
3545 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3546 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3547 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3548 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3549 struct sk_buff *frag_skb = head_skb;
3550 unsigned int offset = doffset;
3551 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3552 unsigned int partial_segs = 0;
3553 unsigned int headroom;
3554 unsigned int len = head_skb->len;
3557 int nfrags = skb_shinfo(head_skb)->nr_frags;
3563 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3564 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3565 /* gso_size is untrusted, and we have a frag_list with a linear
3566 * non head_frag head.
3568 * (we assume checking the first list_skb member suffices;
3569 * i.e if either of the list_skb members have non head_frag
3570 * head, then the first one has too).
3572 * If head_skb's headlen does not fit requested gso_size, it
3573 * means that the frag_list members do NOT terminate on exact
3574 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3575 * sharing. Therefore we must fallback to copying the frag_list
3576 * skbs; we do so by disabling SG.
3578 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3579 features &= ~NETIF_F_SG;
3582 __skb_push(head_skb, doffset);
3583 proto = skb_network_protocol(head_skb, &dummy);
3584 if (unlikely(!proto))
3585 return ERR_PTR(-EINVAL);
3587 sg = !!(features & NETIF_F_SG);
3588 csum = !!can_checksum_protocol(features, proto);
3590 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3591 if (!(features & NETIF_F_GSO_PARTIAL)) {
3592 struct sk_buff *iter;
3593 unsigned int frag_len;
3596 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3599 /* If we get here then all the required
3600 * GSO features except frag_list are supported.
3601 * Try to split the SKB to multiple GSO SKBs
3602 * with no frag_list.
3603 * Currently we can do that only when the buffers don't
3604 * have a linear part and all the buffers except
3605 * the last are of the same length.
3607 frag_len = list_skb->len;
3608 skb_walk_frags(head_skb, iter) {
3609 if (frag_len != iter->len && iter->next)
3611 if (skb_headlen(iter) && !iter->head_frag)
3617 if (len != frag_len)
3621 /* GSO partial only requires that we trim off any excess that
3622 * doesn't fit into an MSS sized block, so take care of that
3625 partial_segs = len / mss;
3626 if (partial_segs > 1)
3627 mss *= partial_segs;
3633 headroom = skb_headroom(head_skb);
3634 pos = skb_headlen(head_skb);
3637 struct sk_buff *nskb;
3638 skb_frag_t *nskb_frag;
3642 if (unlikely(mss == GSO_BY_FRAGS)) {
3643 len = list_skb->len;
3645 len = head_skb->len - offset;
3650 hsize = skb_headlen(head_skb) - offset;
3653 if (hsize > len || !sg)
3656 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3657 (skb_headlen(list_skb) == len || sg)) {
3658 BUG_ON(skb_headlen(list_skb) > len);
3661 nfrags = skb_shinfo(list_skb)->nr_frags;
3662 frag = skb_shinfo(list_skb)->frags;
3663 frag_skb = list_skb;
3664 pos += skb_headlen(list_skb);
3666 while (pos < offset + len) {
3667 BUG_ON(i >= nfrags);
3669 size = skb_frag_size(frag);
3670 if (pos + size > offset + len)
3678 nskb = skb_clone(list_skb, GFP_ATOMIC);
3679 list_skb = list_skb->next;
3681 if (unlikely(!nskb))
3684 if (unlikely(pskb_trim(nskb, len))) {
3689 hsize = skb_end_offset(nskb);
3690 if (skb_cow_head(nskb, doffset + headroom)) {
3695 nskb->truesize += skb_end_offset(nskb) - hsize;
3696 skb_release_head_state(nskb);
3697 __skb_push(nskb, doffset);
3699 nskb = __alloc_skb(hsize + doffset + headroom,
3700 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3703 if (unlikely(!nskb))
3706 skb_reserve(nskb, headroom);
3707 __skb_put(nskb, doffset);
3716 __copy_skb_header(nskb, head_skb);
3718 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3719 skb_reset_mac_len(nskb);
3721 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3722 nskb->data - tnl_hlen,
3723 doffset + tnl_hlen);
3725 if (nskb->len == len + doffset)
3726 goto perform_csum_check;
3729 if (!nskb->remcsum_offload)
3730 nskb->ip_summed = CHECKSUM_NONE;
3731 SKB_GSO_CB(nskb)->csum =
3732 skb_copy_and_csum_bits(head_skb, offset,
3735 SKB_GSO_CB(nskb)->csum_start =
3736 skb_headroom(nskb) + doffset;
3740 nskb_frag = skb_shinfo(nskb)->frags;
3742 skb_copy_from_linear_data_offset(head_skb, offset,
3743 skb_put(nskb, hsize), hsize);
3745 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3748 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3749 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3752 while (pos < offset + len) {
3755 nfrags = skb_shinfo(list_skb)->nr_frags;
3756 frag = skb_shinfo(list_skb)->frags;
3757 frag_skb = list_skb;
3758 if (!skb_headlen(list_skb)) {
3761 BUG_ON(!list_skb->head_frag);
3763 /* to make room for head_frag. */
3767 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3768 skb_zerocopy_clone(nskb, frag_skb,
3772 list_skb = list_skb->next;
3775 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3777 net_warn_ratelimited(
3778 "skb_segment: too many frags: %u %u\n",
3784 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3785 __skb_frag_ref(nskb_frag);
3786 size = skb_frag_size(nskb_frag);
3789 nskb_frag->page_offset += offset - pos;
3790 skb_frag_size_sub(nskb_frag, offset - pos);
3793 skb_shinfo(nskb)->nr_frags++;
3795 if (pos + size <= offset + len) {
3800 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3808 nskb->data_len = len - hsize;
3809 nskb->len += nskb->data_len;
3810 nskb->truesize += nskb->data_len;
3814 if (skb_has_shared_frag(nskb) &&
3815 __skb_linearize(nskb))
3818 if (!nskb->remcsum_offload)
3819 nskb->ip_summed = CHECKSUM_NONE;
3820 SKB_GSO_CB(nskb)->csum =
3821 skb_checksum(nskb, doffset,
3822 nskb->len - doffset, 0);
3823 SKB_GSO_CB(nskb)->csum_start =
3824 skb_headroom(nskb) + doffset;
3826 } while ((offset += len) < head_skb->len);
3828 /* Some callers want to get the end of the list.
3829 * Put it in segs->prev to avoid walking the list.
3830 * (see validate_xmit_skb_list() for example)
3835 struct sk_buff *iter;
3836 int type = skb_shinfo(head_skb)->gso_type;
3837 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3839 /* Update type to add partial and then remove dodgy if set */
3840 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3841 type &= ~SKB_GSO_DODGY;
3843 /* Update GSO info and prepare to start updating headers on
3844 * our way back down the stack of protocols.
3846 for (iter = segs; iter; iter = iter->next) {
3847 skb_shinfo(iter)->gso_size = gso_size;
3848 skb_shinfo(iter)->gso_segs = partial_segs;
3849 skb_shinfo(iter)->gso_type = type;
3850 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3853 if (tail->len - doffset <= gso_size)
3854 skb_shinfo(tail)->gso_size = 0;
3855 else if (tail != segs)
3856 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3859 /* Following permits correct backpressure, for protocols
3860 * using skb_set_owner_w().
3861 * Idea is to tranfert ownership from head_skb to last segment.
3863 if (head_skb->destructor == sock_wfree) {
3864 swap(tail->truesize, head_skb->truesize);
3865 swap(tail->destructor, head_skb->destructor);
3866 swap(tail->sk, head_skb->sk);
3871 kfree_skb_list(segs);
3872 return ERR_PTR(err);
3874 EXPORT_SYMBOL_GPL(skb_segment);
3876 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3878 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3879 unsigned int offset = skb_gro_offset(skb);
3880 unsigned int headlen = skb_headlen(skb);
3881 unsigned int len = skb_gro_len(skb);
3882 unsigned int delta_truesize;
3885 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3888 lp = NAPI_GRO_CB(p)->last;
3889 pinfo = skb_shinfo(lp);
3891 if (headlen <= offset) {
3894 int i = skbinfo->nr_frags;
3895 int nr_frags = pinfo->nr_frags + i;
3897 if (nr_frags > MAX_SKB_FRAGS)
3901 pinfo->nr_frags = nr_frags;
3902 skbinfo->nr_frags = 0;
3904 frag = pinfo->frags + nr_frags;
3905 frag2 = skbinfo->frags + i;
3910 frag->page_offset += offset;
3911 skb_frag_size_sub(frag, offset);
3913 /* all fragments truesize : remove (head size + sk_buff) */
3914 delta_truesize = skb->truesize -
3915 SKB_TRUESIZE(skb_end_offset(skb));
3917 skb->truesize -= skb->data_len;
3918 skb->len -= skb->data_len;
3921 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3923 } else if (skb->head_frag) {
3924 int nr_frags = pinfo->nr_frags;
3925 skb_frag_t *frag = pinfo->frags + nr_frags;
3926 struct page *page = virt_to_head_page(skb->head);
3927 unsigned int first_size = headlen - offset;
3928 unsigned int first_offset;
3930 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3933 first_offset = skb->data -
3934 (unsigned char *)page_address(page) +
3937 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3939 frag->page.p = page;
3940 frag->page_offset = first_offset;
3941 skb_frag_size_set(frag, first_size);
3943 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3944 /* We dont need to clear skbinfo->nr_frags here */
3946 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3947 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3952 delta_truesize = skb->truesize;
3953 if (offset > headlen) {
3954 unsigned int eat = offset - headlen;
3956 skbinfo->frags[0].page_offset += eat;
3957 skb_frag_size_sub(&skbinfo->frags[0], eat);
3958 skb->data_len -= eat;
3963 __skb_pull(skb, offset);
3965 if (NAPI_GRO_CB(p)->last == p)
3966 skb_shinfo(p)->frag_list = skb;
3968 NAPI_GRO_CB(p)->last->next = skb;
3969 NAPI_GRO_CB(p)->last = skb;
3970 __skb_header_release(skb);
3974 NAPI_GRO_CB(p)->count++;
3976 p->truesize += delta_truesize;
3979 lp->data_len += len;
3980 lp->truesize += delta_truesize;
3983 NAPI_GRO_CB(skb)->same_flow = 1;
3986 EXPORT_SYMBOL_GPL(skb_gro_receive);
3988 void __init skb_init(void)
3990 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3991 sizeof(struct sk_buff),
3993 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3994 offsetof(struct sk_buff, cb),
3995 sizeof_field(struct sk_buff, cb),
3997 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3998 sizeof(struct sk_buff_fclones),
4000 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4005 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4006 unsigned int recursion_level)
4008 int start = skb_headlen(skb);
4009 int i, copy = start - offset;
4010 struct sk_buff *frag_iter;
4013 if (unlikely(recursion_level >= 24))
4019 sg_set_buf(sg, skb->data + offset, copy);
4021 if ((len -= copy) == 0)
4026 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4029 WARN_ON(start > offset + len);
4031 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4032 if ((copy = end - offset) > 0) {
4033 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4034 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4039 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4040 frag->page_offset+offset-start);
4049 skb_walk_frags(skb, frag_iter) {
4052 WARN_ON(start > offset + len);
4054 end = start + frag_iter->len;
4055 if ((copy = end - offset) > 0) {
4056 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4061 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4062 copy, recursion_level + 1);
4063 if (unlikely(ret < 0))
4066 if ((len -= copy) == 0)
4077 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4078 * @skb: Socket buffer containing the buffers to be mapped
4079 * @sg: The scatter-gather list to map into
4080 * @offset: The offset into the buffer's contents to start mapping
4081 * @len: Length of buffer space to be mapped
4083 * Fill the specified scatter-gather list with mappings/pointers into a
4084 * region of the buffer space attached to a socket buffer. Returns either
4085 * the number of scatterlist items used, or -EMSGSIZE if the contents
4088 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4090 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4095 sg_mark_end(&sg[nsg - 1]);
4099 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4101 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4102 * sglist without mark the sg which contain last skb data as the end.
4103 * So the caller can mannipulate sg list as will when padding new data after
4104 * the first call without calling sg_unmark_end to expend sg list.
4106 * Scenario to use skb_to_sgvec_nomark:
4108 * 2. skb_to_sgvec_nomark(payload1)
4109 * 3. skb_to_sgvec_nomark(payload2)
4111 * This is equivalent to:
4113 * 2. skb_to_sgvec(payload1)
4115 * 4. skb_to_sgvec(payload2)
4117 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4118 * is more preferable.
4120 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4121 int offset, int len)
4123 return __skb_to_sgvec(skb, sg, offset, len, 0);
4125 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4130 * skb_cow_data - Check that a socket buffer's data buffers are writable
4131 * @skb: The socket buffer to check.
4132 * @tailbits: Amount of trailing space to be added
4133 * @trailer: Returned pointer to the skb where the @tailbits space begins
4135 * Make sure that the data buffers attached to a socket buffer are
4136 * writable. If they are not, private copies are made of the data buffers
4137 * and the socket buffer is set to use these instead.
4139 * If @tailbits is given, make sure that there is space to write @tailbits
4140 * bytes of data beyond current end of socket buffer. @trailer will be
4141 * set to point to the skb in which this space begins.
4143 * The number of scatterlist elements required to completely map the
4144 * COW'd and extended socket buffer will be returned.
4146 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4150 struct sk_buff *skb1, **skb_p;
4152 /* If skb is cloned or its head is paged, reallocate
4153 * head pulling out all the pages (pages are considered not writable
4154 * at the moment even if they are anonymous).
4156 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4157 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4160 /* Easy case. Most of packets will go this way. */
4161 if (!skb_has_frag_list(skb)) {
4162 /* A little of trouble, not enough of space for trailer.
4163 * This should not happen, when stack is tuned to generate
4164 * good frames. OK, on miss we reallocate and reserve even more
4165 * space, 128 bytes is fair. */
4167 if (skb_tailroom(skb) < tailbits &&
4168 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4176 /* Misery. We are in troubles, going to mincer fragments... */
4179 skb_p = &skb_shinfo(skb)->frag_list;
4182 while ((skb1 = *skb_p) != NULL) {
4185 /* The fragment is partially pulled by someone,
4186 * this can happen on input. Copy it and everything
4189 if (skb_shared(skb1))
4192 /* If the skb is the last, worry about trailer. */
4194 if (skb1->next == NULL && tailbits) {
4195 if (skb_shinfo(skb1)->nr_frags ||
4196 skb_has_frag_list(skb1) ||
4197 skb_tailroom(skb1) < tailbits)
4198 ntail = tailbits + 128;
4204 skb_shinfo(skb1)->nr_frags ||
4205 skb_has_frag_list(skb1)) {
4206 struct sk_buff *skb2;
4208 /* Fuck, we are miserable poor guys... */
4210 skb2 = skb_copy(skb1, GFP_ATOMIC);
4212 skb2 = skb_copy_expand(skb1,
4216 if (unlikely(skb2 == NULL))
4220 skb_set_owner_w(skb2, skb1->sk);
4222 /* Looking around. Are we still alive?
4223 * OK, link new skb, drop old one */
4225 skb2->next = skb1->next;
4232 skb_p = &skb1->next;
4237 EXPORT_SYMBOL_GPL(skb_cow_data);
4239 static void sock_rmem_free(struct sk_buff *skb)
4241 struct sock *sk = skb->sk;
4243 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4246 static void skb_set_err_queue(struct sk_buff *skb)
4248 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4249 * So, it is safe to (mis)use it to mark skbs on the error queue.
4251 skb->pkt_type = PACKET_OUTGOING;
4252 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4256 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4258 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4260 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4261 (unsigned int)sk->sk_rcvbuf)
4266 skb->destructor = sock_rmem_free;
4267 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4268 skb_set_err_queue(skb);
4270 /* before exiting rcu section, make sure dst is refcounted */
4273 skb_queue_tail(&sk->sk_error_queue, skb);
4274 if (!sock_flag(sk, SOCK_DEAD))
4275 sk->sk_error_report(sk);
4278 EXPORT_SYMBOL(sock_queue_err_skb);
4280 static bool is_icmp_err_skb(const struct sk_buff *skb)
4282 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4283 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4286 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4288 struct sk_buff_head *q = &sk->sk_error_queue;
4289 struct sk_buff *skb, *skb_next = NULL;
4290 bool icmp_next = false;
4291 unsigned long flags;
4293 spin_lock_irqsave(&q->lock, flags);
4294 skb = __skb_dequeue(q);
4295 if (skb && (skb_next = skb_peek(q))) {
4296 icmp_next = is_icmp_err_skb(skb_next);
4298 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4300 spin_unlock_irqrestore(&q->lock, flags);
4302 if (is_icmp_err_skb(skb) && !icmp_next)
4306 sk->sk_error_report(sk);
4310 EXPORT_SYMBOL(sock_dequeue_err_skb);
4313 * skb_clone_sk - create clone of skb, and take reference to socket
4314 * @skb: the skb to clone
4316 * This function creates a clone of a buffer that holds a reference on
4317 * sk_refcnt. Buffers created via this function are meant to be
4318 * returned using sock_queue_err_skb, or free via kfree_skb.
4320 * When passing buffers allocated with this function to sock_queue_err_skb
4321 * it is necessary to wrap the call with sock_hold/sock_put in order to
4322 * prevent the socket from being released prior to being enqueued on
4323 * the sk_error_queue.
4325 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4327 struct sock *sk = skb->sk;
4328 struct sk_buff *clone;
4330 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4333 clone = skb_clone(skb, GFP_ATOMIC);
4340 clone->destructor = sock_efree;
4344 EXPORT_SYMBOL(skb_clone_sk);
4346 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4351 struct sock_exterr_skb *serr;
4354 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4356 serr = SKB_EXT_ERR(skb);
4357 memset(serr, 0, sizeof(*serr));
4358 serr->ee.ee_errno = ENOMSG;
4359 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4360 serr->ee.ee_info = tstype;
4361 serr->opt_stats = opt_stats;
4362 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4363 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4364 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4365 if (sk->sk_protocol == IPPROTO_TCP &&
4366 sk->sk_type == SOCK_STREAM)
4367 serr->ee.ee_data -= sk->sk_tskey;
4370 err = sock_queue_err_skb(sk, skb);
4376 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4380 if (likely(sysctl_tstamp_allow_data || tsonly))
4383 read_lock_bh(&sk->sk_callback_lock);
4384 ret = sk->sk_socket && sk->sk_socket->file &&
4385 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4386 read_unlock_bh(&sk->sk_callback_lock);
4390 void skb_complete_tx_timestamp(struct sk_buff *skb,
4391 struct skb_shared_hwtstamps *hwtstamps)
4393 struct sock *sk = skb->sk;
4395 if (!skb_may_tx_timestamp(sk, false))
4398 /* Take a reference to prevent skb_orphan() from freeing the socket,
4399 * but only if the socket refcount is not zero.
4401 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4402 *skb_hwtstamps(skb) = *hwtstamps;
4403 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4411 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4413 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4414 struct skb_shared_hwtstamps *hwtstamps,
4415 struct sock *sk, int tstype)
4417 struct sk_buff *skb;
4418 bool tsonly, opt_stats = false;
4423 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4424 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4427 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4428 if (!skb_may_tx_timestamp(sk, tsonly))
4433 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4434 sk->sk_protocol == IPPROTO_TCP &&
4435 sk->sk_type == SOCK_STREAM) {
4436 skb = tcp_get_timestamping_opt_stats(sk);
4440 skb = alloc_skb(0, GFP_ATOMIC);
4442 skb = skb_clone(orig_skb, GFP_ATOMIC);
4448 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4450 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4454 *skb_hwtstamps(skb) = *hwtstamps;
4456 skb->tstamp = ktime_get_real();
4458 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4460 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4462 void skb_tstamp_tx(struct sk_buff *orig_skb,
4463 struct skb_shared_hwtstamps *hwtstamps)
4465 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4468 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4470 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4472 struct sock *sk = skb->sk;
4473 struct sock_exterr_skb *serr;
4476 skb->wifi_acked_valid = 1;
4477 skb->wifi_acked = acked;
4479 serr = SKB_EXT_ERR(skb);
4480 memset(serr, 0, sizeof(*serr));
4481 serr->ee.ee_errno = ENOMSG;
4482 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4484 /* Take a reference to prevent skb_orphan() from freeing the socket,
4485 * but only if the socket refcount is not zero.
4487 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4488 err = sock_queue_err_skb(sk, skb);
4494 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4497 * skb_partial_csum_set - set up and verify partial csum values for packet
4498 * @skb: the skb to set
4499 * @start: the number of bytes after skb->data to start checksumming.
4500 * @off: the offset from start to place the checksum.
4502 * For untrusted partially-checksummed packets, we need to make sure the values
4503 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4505 * This function checks and sets those values and skb->ip_summed: if this
4506 * returns false you should drop the packet.
4508 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4510 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4511 u32 csum_start = skb_headroom(skb) + (u32)start;
4513 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4514 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4515 start, off, skb_headroom(skb), skb_headlen(skb));
4518 skb->ip_summed = CHECKSUM_PARTIAL;
4519 skb->csum_start = csum_start;
4520 skb->csum_offset = off;
4521 skb_set_transport_header(skb, start);
4524 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4526 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4529 if (skb_headlen(skb) >= len)
4532 /* If we need to pullup then pullup to the max, so we
4533 * won't need to do it again.
4538 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4541 if (skb_headlen(skb) < len)
4547 #define MAX_TCP_HDR_LEN (15 * 4)
4549 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4550 typeof(IPPROTO_IP) proto,
4557 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4558 off + MAX_TCP_HDR_LEN);
4559 if (!err && !skb_partial_csum_set(skb, off,
4560 offsetof(struct tcphdr,
4563 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4566 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4567 off + sizeof(struct udphdr));
4568 if (!err && !skb_partial_csum_set(skb, off,
4569 offsetof(struct udphdr,
4572 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4575 return ERR_PTR(-EPROTO);
4578 /* This value should be large enough to cover a tagged ethernet header plus
4579 * maximally sized IP and TCP or UDP headers.
4581 #define MAX_IP_HDR_LEN 128
4583 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4592 err = skb_maybe_pull_tail(skb,
4593 sizeof(struct iphdr),
4598 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4601 off = ip_hdrlen(skb);
4608 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4610 return PTR_ERR(csum);
4613 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4616 ip_hdr(skb)->protocol, 0);
4623 /* This value should be large enough to cover a tagged ethernet header plus
4624 * an IPv6 header, all options, and a maximal TCP or UDP header.
4626 #define MAX_IPV6_HDR_LEN 256
4628 #define OPT_HDR(type, skb, off) \
4629 (type *)(skb_network_header(skb) + (off))
4631 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4644 off = sizeof(struct ipv6hdr);
4646 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4650 nexthdr = ipv6_hdr(skb)->nexthdr;
4652 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4653 while (off <= len && !done) {
4655 case IPPROTO_DSTOPTS:
4656 case IPPROTO_HOPOPTS:
4657 case IPPROTO_ROUTING: {
4658 struct ipv6_opt_hdr *hp;
4660 err = skb_maybe_pull_tail(skb,
4662 sizeof(struct ipv6_opt_hdr),
4667 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4668 nexthdr = hp->nexthdr;
4669 off += ipv6_optlen(hp);
4673 struct ip_auth_hdr *hp;
4675 err = skb_maybe_pull_tail(skb,
4677 sizeof(struct ip_auth_hdr),
4682 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4683 nexthdr = hp->nexthdr;
4684 off += ipv6_authlen(hp);
4687 case IPPROTO_FRAGMENT: {
4688 struct frag_hdr *hp;
4690 err = skb_maybe_pull_tail(skb,
4692 sizeof(struct frag_hdr),
4697 hp = OPT_HDR(struct frag_hdr, skb, off);
4699 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4702 nexthdr = hp->nexthdr;
4703 off += sizeof(struct frag_hdr);
4714 if (!done || fragment)
4717 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4719 return PTR_ERR(csum);
4722 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4723 &ipv6_hdr(skb)->daddr,
4724 skb->len - off, nexthdr, 0);
4732 * skb_checksum_setup - set up partial checksum offset
4733 * @skb: the skb to set up
4734 * @recalculate: if true the pseudo-header checksum will be recalculated
4736 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4740 switch (skb->protocol) {
4741 case htons(ETH_P_IP):
4742 err = skb_checksum_setup_ipv4(skb, recalculate);
4745 case htons(ETH_P_IPV6):
4746 err = skb_checksum_setup_ipv6(skb, recalculate);
4756 EXPORT_SYMBOL(skb_checksum_setup);
4759 * skb_checksum_maybe_trim - maybe trims the given skb
4760 * @skb: the skb to check
4761 * @transport_len: the data length beyond the network header
4763 * Checks whether the given skb has data beyond the given transport length.
4764 * If so, returns a cloned skb trimmed to this transport length.
4765 * Otherwise returns the provided skb. Returns NULL in error cases
4766 * (e.g. transport_len exceeds skb length or out-of-memory).
4768 * Caller needs to set the skb transport header and free any returned skb if it
4769 * differs from the provided skb.
4771 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4772 unsigned int transport_len)
4774 struct sk_buff *skb_chk;
4775 unsigned int len = skb_transport_offset(skb) + transport_len;
4780 else if (skb->len == len)
4783 skb_chk = skb_clone(skb, GFP_ATOMIC);
4787 ret = pskb_trim_rcsum(skb_chk, len);
4797 * skb_checksum_trimmed - validate checksum of an skb
4798 * @skb: the skb to check
4799 * @transport_len: the data length beyond the network header
4800 * @skb_chkf: checksum function to use
4802 * Applies the given checksum function skb_chkf to the provided skb.
4803 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4805 * If the skb has data beyond the given transport length, then a
4806 * trimmed & cloned skb is checked and returned.
4808 * Caller needs to set the skb transport header and free any returned skb if it
4809 * differs from the provided skb.
4811 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4812 unsigned int transport_len,
4813 __sum16(*skb_chkf)(struct sk_buff *skb))
4815 struct sk_buff *skb_chk;
4816 unsigned int offset = skb_transport_offset(skb);
4819 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4823 if (!pskb_may_pull(skb_chk, offset))
4826 skb_pull_rcsum(skb_chk, offset);
4827 ret = skb_chkf(skb_chk);
4828 skb_push_rcsum(skb_chk, offset);
4836 if (skb_chk && skb_chk != skb)
4842 EXPORT_SYMBOL(skb_checksum_trimmed);
4844 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4846 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4849 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4851 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4854 skb_release_head_state(skb);
4855 kmem_cache_free(skbuff_head_cache, skb);
4860 EXPORT_SYMBOL(kfree_skb_partial);
4863 * skb_try_coalesce - try to merge skb to prior one
4865 * @from: buffer to add
4866 * @fragstolen: pointer to boolean
4867 * @delta_truesize: how much more was allocated than was requested
4869 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4870 bool *fragstolen, int *delta_truesize)
4872 struct skb_shared_info *to_shinfo, *from_shinfo;
4873 int i, delta, len = from->len;
4875 *fragstolen = false;
4880 if (len <= skb_tailroom(to)) {
4882 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4883 *delta_truesize = 0;
4887 to_shinfo = skb_shinfo(to);
4888 from_shinfo = skb_shinfo(from);
4889 if (to_shinfo->frag_list || from_shinfo->frag_list)
4891 if (skb_zcopy(to) || skb_zcopy(from))
4894 if (skb_headlen(from) != 0) {
4896 unsigned int offset;
4898 if (to_shinfo->nr_frags +
4899 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4902 if (skb_head_is_locked(from))
4905 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4907 page = virt_to_head_page(from->head);
4908 offset = from->data - (unsigned char *)page_address(page);
4910 skb_fill_page_desc(to, to_shinfo->nr_frags,
4911 page, offset, skb_headlen(from));
4914 if (to_shinfo->nr_frags +
4915 from_shinfo->nr_frags > MAX_SKB_FRAGS)
4918 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4921 WARN_ON_ONCE(delta < len);
4923 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4925 from_shinfo->nr_frags * sizeof(skb_frag_t));
4926 to_shinfo->nr_frags += from_shinfo->nr_frags;
4928 if (!skb_cloned(from))
4929 from_shinfo->nr_frags = 0;
4931 /* if the skb is not cloned this does nothing
4932 * since we set nr_frags to 0.
4934 for (i = 0; i < from_shinfo->nr_frags; i++)
4935 __skb_frag_ref(&from_shinfo->frags[i]);
4937 to->truesize += delta;
4939 to->data_len += len;
4941 *delta_truesize = delta;
4944 EXPORT_SYMBOL(skb_try_coalesce);
4947 * skb_scrub_packet - scrub an skb
4949 * @skb: buffer to clean
4950 * @xnet: packet is crossing netns
4952 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4953 * into/from a tunnel. Some information have to be cleared during these
4955 * skb_scrub_packet can also be used to clean a skb before injecting it in
4956 * another namespace (@xnet == true). We have to clear all information in the
4957 * skb that could impact namespace isolation.
4959 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4961 skb->pkt_type = PACKET_HOST;
4967 nf_reset_trace(skb);
4969 #ifdef CONFIG_NET_SWITCHDEV
4970 skb->offload_fwd_mark = 0;
4971 skb->offload_mr_fwd_mark = 0;
4981 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4984 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4988 * skb_gso_transport_seglen is used to determine the real size of the
4989 * individual segments, including Layer4 headers (TCP/UDP).
4991 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4993 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4995 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4996 unsigned int thlen = 0;
4998 if (skb->encapsulation) {
4999 thlen = skb_inner_transport_header(skb) -
5000 skb_transport_header(skb);
5002 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5003 thlen += inner_tcp_hdrlen(skb);
5004 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5005 thlen = tcp_hdrlen(skb);
5006 } else if (unlikely(skb_is_gso_sctp(skb))) {
5007 thlen = sizeof(struct sctphdr);
5008 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5009 thlen = sizeof(struct udphdr);
5011 /* UFO sets gso_size to the size of the fragmentation
5012 * payload, i.e. the size of the L4 (UDP) header is already
5015 return thlen + shinfo->gso_size;
5019 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5023 * skb_gso_network_seglen is used to determine the real size of the
5024 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5026 * The MAC/L2 header is not accounted for.
5028 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5030 unsigned int hdr_len = skb_transport_header(skb) -
5031 skb_network_header(skb);
5033 return hdr_len + skb_gso_transport_seglen(skb);
5037 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5041 * skb_gso_mac_seglen is used to determine the real size of the
5042 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5043 * headers (TCP/UDP).
5045 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5047 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5049 return hdr_len + skb_gso_transport_seglen(skb);
5053 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5055 * There are a couple of instances where we have a GSO skb, and we
5056 * want to determine what size it would be after it is segmented.
5058 * We might want to check:
5059 * - L3+L4+payload size (e.g. IP forwarding)
5060 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5062 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5064 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5065 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5067 * @max_len: The maximum permissible length.
5069 * Returns true if the segmented length <= max length.
5071 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5072 unsigned int seg_len,
5073 unsigned int max_len) {
5074 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5075 const struct sk_buff *iter;
5077 if (shinfo->gso_size != GSO_BY_FRAGS)
5078 return seg_len <= max_len;
5080 /* Undo this so we can re-use header sizes */
5081 seg_len -= GSO_BY_FRAGS;
5083 skb_walk_frags(skb, iter) {
5084 if (seg_len + skb_headlen(iter) > max_len)
5092 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5095 * @mtu: MTU to validate against
5097 * skb_gso_validate_network_len validates if a given skb will fit a
5098 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5101 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5103 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5105 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5108 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5111 * @len: length to validate against
5113 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5114 * length once split, including L2, L3 and L4 headers and the payload.
5116 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5118 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5120 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5122 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5124 int mac_len, meta_len;
5127 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5132 mac_len = skb->data - skb_mac_header(skb);
5133 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5134 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5135 mac_len - VLAN_HLEN - ETH_TLEN);
5138 meta_len = skb_metadata_len(skb);
5140 meta = skb_metadata_end(skb) - meta_len;
5141 memmove(meta + VLAN_HLEN, meta, meta_len);
5144 skb->mac_header += VLAN_HLEN;
5148 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5150 struct vlan_hdr *vhdr;
5153 if (unlikely(skb_vlan_tag_present(skb))) {
5154 /* vlan_tci is already set-up so leave this for another time */
5158 skb = skb_share_check(skb, GFP_ATOMIC);
5161 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5162 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5165 vhdr = (struct vlan_hdr *)skb->data;
5166 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5167 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5169 skb_pull_rcsum(skb, VLAN_HLEN);
5170 vlan_set_encap_proto(skb, vhdr);
5172 skb = skb_reorder_vlan_header(skb);
5176 skb_reset_network_header(skb);
5177 skb_reset_transport_header(skb);
5178 skb_reset_mac_len(skb);
5186 EXPORT_SYMBOL(skb_vlan_untag);
5188 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5190 if (!pskb_may_pull(skb, write_len))
5193 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5196 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5198 EXPORT_SYMBOL(skb_ensure_writable);
5200 /* remove VLAN header from packet and update csum accordingly.
5201 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5203 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5205 struct vlan_hdr *vhdr;
5206 int offset = skb->data - skb_mac_header(skb);
5209 if (WARN_ONCE(offset,
5210 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5215 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5219 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5221 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5222 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5224 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5225 __skb_pull(skb, VLAN_HLEN);
5227 vlan_set_encap_proto(skb, vhdr);
5228 skb->mac_header += VLAN_HLEN;
5230 if (skb_network_offset(skb) < ETH_HLEN)
5231 skb_set_network_header(skb, ETH_HLEN);
5233 skb_reset_mac_len(skb);
5237 EXPORT_SYMBOL(__skb_vlan_pop);
5239 /* Pop a vlan tag either from hwaccel or from payload.
5240 * Expects skb->data at mac header.
5242 int skb_vlan_pop(struct sk_buff *skb)
5248 if (likely(skb_vlan_tag_present(skb))) {
5251 if (unlikely(!eth_type_vlan(skb->protocol)))
5254 err = __skb_vlan_pop(skb, &vlan_tci);
5258 /* move next vlan tag to hw accel tag */
5259 if (likely(!eth_type_vlan(skb->protocol)))
5262 vlan_proto = skb->protocol;
5263 err = __skb_vlan_pop(skb, &vlan_tci);
5267 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5270 EXPORT_SYMBOL(skb_vlan_pop);
5272 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5273 * Expects skb->data at mac header.
5275 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5277 if (skb_vlan_tag_present(skb)) {
5278 int offset = skb->data - skb_mac_header(skb);
5281 if (WARN_ONCE(offset,
5282 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5287 err = __vlan_insert_tag(skb, skb->vlan_proto,
5288 skb_vlan_tag_get(skb));
5292 skb->protocol = skb->vlan_proto;
5293 skb->mac_len += VLAN_HLEN;
5295 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5297 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5300 EXPORT_SYMBOL(skb_vlan_push);
5303 * alloc_skb_with_frags - allocate skb with page frags
5305 * @header_len: size of linear part
5306 * @data_len: needed length in frags
5307 * @max_page_order: max page order desired.
5308 * @errcode: pointer to error code if any
5309 * @gfp_mask: allocation mask
5311 * This can be used to allocate a paged skb, given a maximal order for frags.
5313 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5314 unsigned long data_len,
5319 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5320 unsigned long chunk;
5321 struct sk_buff *skb;
5325 *errcode = -EMSGSIZE;
5326 /* Note this test could be relaxed, if we succeed to allocate
5327 * high order pages...
5329 if (npages > MAX_SKB_FRAGS)
5332 *errcode = -ENOBUFS;
5333 skb = alloc_skb(header_len, gfp_mask);
5337 skb->truesize += npages << PAGE_SHIFT;
5339 for (i = 0; npages > 0; i++) {
5340 int order = max_page_order;
5343 if (npages >= 1 << order) {
5344 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5350 /* Do not retry other high order allocations */
5356 page = alloc_page(gfp_mask);
5360 chunk = min_t(unsigned long, data_len,
5361 PAGE_SIZE << order);
5362 skb_fill_page_desc(skb, i, page, 0, chunk);
5364 npages -= 1 << order;
5372 EXPORT_SYMBOL(alloc_skb_with_frags);
5374 /* carve out the first off bytes from skb when off < headlen */
5375 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5376 const int headlen, gfp_t gfp_mask)
5379 int size = skb_end_offset(skb);
5380 int new_hlen = headlen - off;
5383 size = SKB_DATA_ALIGN(size);
5385 if (skb_pfmemalloc(skb))
5386 gfp_mask |= __GFP_MEMALLOC;
5387 data = kmalloc_reserve(size +
5388 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5389 gfp_mask, NUMA_NO_NODE, NULL);
5393 size = SKB_WITH_OVERHEAD(ksize(data));
5395 /* Copy real data, and all frags */
5396 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5399 memcpy((struct skb_shared_info *)(data + size),
5401 offsetof(struct skb_shared_info,
5402 frags[skb_shinfo(skb)->nr_frags]));
5403 if (skb_cloned(skb)) {
5404 /* drop the old head gracefully */
5405 if (skb_orphan_frags(skb, gfp_mask)) {
5409 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5410 skb_frag_ref(skb, i);
5411 if (skb_has_frag_list(skb))
5412 skb_clone_fraglist(skb);
5413 skb_release_data(skb);
5415 /* we can reuse existing recount- all we did was
5424 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5427 skb->end = skb->head + size;
5429 skb_set_tail_pointer(skb, skb_headlen(skb));
5430 skb_headers_offset_update(skb, 0);
5434 atomic_set(&skb_shinfo(skb)->dataref, 1);
5439 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5441 /* carve out the first eat bytes from skb's frag_list. May recurse into
5444 static int pskb_carve_frag_list(struct sk_buff *skb,
5445 struct skb_shared_info *shinfo, int eat,
5448 struct sk_buff *list = shinfo->frag_list;
5449 struct sk_buff *clone = NULL;
5450 struct sk_buff *insp = NULL;
5454 pr_err("Not enough bytes to eat. Want %d\n", eat);
5457 if (list->len <= eat) {
5458 /* Eaten as whole. */
5463 /* Eaten partially. */
5464 if (skb_shared(list)) {
5465 clone = skb_clone(list, gfp_mask);
5471 /* This may be pulled without problems. */
5474 if (pskb_carve(list, eat, gfp_mask) < 0) {
5482 /* Free pulled out fragments. */
5483 while ((list = shinfo->frag_list) != insp) {
5484 shinfo->frag_list = list->next;
5487 /* And insert new clone at head. */
5490 shinfo->frag_list = clone;
5495 /* carve off first len bytes from skb. Split line (off) is in the
5496 * non-linear part of skb
5498 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5499 int pos, gfp_t gfp_mask)
5502 int size = skb_end_offset(skb);
5504 const int nfrags = skb_shinfo(skb)->nr_frags;
5505 struct skb_shared_info *shinfo;
5507 size = SKB_DATA_ALIGN(size);
5509 if (skb_pfmemalloc(skb))
5510 gfp_mask |= __GFP_MEMALLOC;
5511 data = kmalloc_reserve(size +
5512 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5513 gfp_mask, NUMA_NO_NODE, NULL);
5517 size = SKB_WITH_OVERHEAD(ksize(data));
5519 memcpy((struct skb_shared_info *)(data + size),
5520 skb_shinfo(skb), offsetof(struct skb_shared_info,
5521 frags[skb_shinfo(skb)->nr_frags]));
5522 if (skb_orphan_frags(skb, gfp_mask)) {
5526 shinfo = (struct skb_shared_info *)(data + size);
5527 for (i = 0; i < nfrags; i++) {
5528 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5530 if (pos + fsize > off) {
5531 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5535 * We have two variants in this case:
5536 * 1. Move all the frag to the second
5537 * part, if it is possible. F.e.
5538 * this approach is mandatory for TUX,
5539 * where splitting is expensive.
5540 * 2. Split is accurately. We make this.
5542 shinfo->frags[0].page_offset += off - pos;
5543 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5545 skb_frag_ref(skb, i);
5550 shinfo->nr_frags = k;
5551 if (skb_has_frag_list(skb))
5552 skb_clone_fraglist(skb);
5554 /* split line is in frag list */
5555 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
5556 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
5557 if (skb_has_frag_list(skb))
5558 kfree_skb_list(skb_shinfo(skb)->frag_list);
5562 skb_release_data(skb);
5567 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5570 skb->end = skb->head + size;
5572 skb_reset_tail_pointer(skb);
5573 skb_headers_offset_update(skb, 0);
5578 skb->data_len = skb->len;
5579 atomic_set(&skb_shinfo(skb)->dataref, 1);
5583 /* remove len bytes from the beginning of the skb */
5584 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5586 int headlen = skb_headlen(skb);
5589 return pskb_carve_inside_header(skb, len, headlen, gfp);
5591 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5594 /* Extract to_copy bytes starting at off from skb, and return this in
5597 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5598 int to_copy, gfp_t gfp)
5600 struct sk_buff *clone = skb_clone(skb, gfp);
5605 if (pskb_carve(clone, off, gfp) < 0 ||
5606 pskb_trim(clone, to_copy)) {
5612 EXPORT_SYMBOL(pskb_extract);
5615 * skb_condense - try to get rid of fragments/frag_list if possible
5618 * Can be used to save memory before skb is added to a busy queue.
5619 * If packet has bytes in frags and enough tail room in skb->head,
5620 * pull all of them, so that we can free the frags right now and adjust
5623 * We do not reallocate skb->head thus can not fail.
5624 * Caller must re-evaluate skb->truesize if needed.
5626 void skb_condense(struct sk_buff *skb)
5628 if (skb->data_len) {
5629 if (skb->data_len > skb->end - skb->tail ||
5633 /* Nice, we can free page frag(s) right now */
5634 __pskb_pull_tail(skb, skb->data_len);
5636 /* At this point, skb->truesize might be over estimated,
5637 * because skb had a fragment, and fragments do not tell
5639 * When we pulled its content into skb->head, fragment
5640 * was freed, but __pskb_pull_tail() could not possibly
5641 * adjust skb->truesize, not knowing the frag truesize.
5643 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));