GNU Linux-libre 4.19.211-gnu1
[releases.git] / net / core / page_pool.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *      Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *      Copyright (C) 2016 Red Hat, Inc.
6  */
7 #include <linux/types.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10
11 #include <net/page_pool.h>
12 #include <linux/dma-direction.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/page-flags.h>
15 #include <linux/mm.h> /* for __put_page() */
16
17 static int page_pool_init(struct page_pool *pool,
18                           const struct page_pool_params *params)
19 {
20         unsigned int ring_qsize = 1024; /* Default */
21
22         memcpy(&pool->p, params, sizeof(pool->p));
23
24         /* Validate only known flags were used */
25         if (pool->p.flags & ~(PP_FLAG_ALL))
26                 return -EINVAL;
27
28         if (pool->p.pool_size)
29                 ring_qsize = pool->p.pool_size;
30
31         /* Sanity limit mem that can be pinned down */
32         if (ring_qsize > 32768)
33                 return -E2BIG;
34
35         /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
36          * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
37          * which is the XDP_TX use-case.
38          */
39         if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
40             (pool->p.dma_dir != DMA_BIDIRECTIONAL))
41                 return -EINVAL;
42
43         if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
44                 return -ENOMEM;
45
46         return 0;
47 }
48
49 struct page_pool *page_pool_create(const struct page_pool_params *params)
50 {
51         struct page_pool *pool;
52         int err = 0;
53
54         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
55         if (!pool)
56                 return ERR_PTR(-ENOMEM);
57
58         err = page_pool_init(pool, params);
59         if (err < 0) {
60                 pr_warn("%s() gave up with errno %d\n", __func__, err);
61                 kfree(pool);
62                 return ERR_PTR(err);
63         }
64         return pool;
65 }
66 EXPORT_SYMBOL(page_pool_create);
67
68 /* fast path */
69 static struct page *__page_pool_get_cached(struct page_pool *pool)
70 {
71         struct ptr_ring *r = &pool->ring;
72         struct page *page;
73
74         /* Quicker fallback, avoid locks when ring is empty */
75         if (__ptr_ring_empty(r))
76                 return NULL;
77
78         /* Test for safe-context, caller should provide this guarantee */
79         if (likely(in_serving_softirq())) {
80                 if (likely(pool->alloc.count)) {
81                         /* Fast-path */
82                         page = pool->alloc.cache[--pool->alloc.count];
83                         return page;
84                 }
85                 /* Slower-path: Alloc array empty, time to refill
86                  *
87                  * Open-coded bulk ptr_ring consumer.
88                  *
89                  * Discussion: the ring consumer lock is not really
90                  * needed due to the softirq/NAPI protection, but
91                  * later need the ability to reclaim pages on the
92                  * ring. Thus, keeping the locks.
93                  */
94                 spin_lock(&r->consumer_lock);
95                 while ((page = __ptr_ring_consume(r))) {
96                         if (pool->alloc.count == PP_ALLOC_CACHE_REFILL)
97                                 break;
98                         pool->alloc.cache[pool->alloc.count++] = page;
99                 }
100                 spin_unlock(&r->consumer_lock);
101                 return page;
102         }
103
104         /* Slow-path: Get page from locked ring queue */
105         page = ptr_ring_consume(&pool->ring);
106         return page;
107 }
108
109 /* slow path */
110 noinline
111 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
112                                                  gfp_t _gfp)
113 {
114         struct page *page;
115         gfp_t gfp = _gfp;
116         dma_addr_t dma;
117
118         /* We could always set __GFP_COMP, and avoid this branch, as
119          * prep_new_page() can handle order-0 with __GFP_COMP.
120          */
121         if (pool->p.order)
122                 gfp |= __GFP_COMP;
123
124         /* FUTURE development:
125          *
126          * Current slow-path essentially falls back to single page
127          * allocations, which doesn't improve performance.  This code
128          * need bulk allocation support from the page allocator code.
129          */
130
131         /* Cache was empty, do real allocation */
132         page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
133         if (!page)
134                 return NULL;
135
136         if (!(pool->p.flags & PP_FLAG_DMA_MAP))
137                 goto skip_dma_map;
138
139         /* Setup DMA mapping: use page->private for DMA-addr
140          * This mapping is kept for lifetime of page, until leaving pool.
141          */
142         dma = dma_map_page(pool->p.dev, page, 0,
143                            (PAGE_SIZE << pool->p.order),
144                            pool->p.dma_dir);
145         if (dma_mapping_error(pool->p.dev, dma)) {
146                 put_page(page);
147                 return NULL;
148         }
149         set_page_private(page, dma); /* page->private = dma; */
150
151 skip_dma_map:
152         /* When page just alloc'ed is should/must have refcnt 1. */
153         return page;
154 }
155
156 /* For using page_pool replace: alloc_pages() API calls, but provide
157  * synchronization guarantee for allocation side.
158  */
159 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
160 {
161         struct page *page;
162
163         /* Fast-path: Get a page from cache */
164         page = __page_pool_get_cached(pool);
165         if (page)
166                 return page;
167
168         /* Slow-path: cache empty, do real allocation */
169         page = __page_pool_alloc_pages_slow(pool, gfp);
170         return page;
171 }
172 EXPORT_SYMBOL(page_pool_alloc_pages);
173
174 /* Cleanup page_pool state from page */
175 static void __page_pool_clean_page(struct page_pool *pool,
176                                    struct page *page)
177 {
178         if (!(pool->p.flags & PP_FLAG_DMA_MAP))
179                 return;
180
181         /* DMA unmap */
182         dma_unmap_page(pool->p.dev, page_private(page),
183                        PAGE_SIZE << pool->p.order, pool->p.dma_dir);
184         set_page_private(page, 0);
185 }
186
187 /* Return a page to the page allocator, cleaning up our state */
188 static void __page_pool_return_page(struct page_pool *pool, struct page *page)
189 {
190         __page_pool_clean_page(pool, page);
191         put_page(page);
192         /* An optimization would be to call __free_pages(page, pool->p.order)
193          * knowing page is not part of page-cache (thus avoiding a
194          * __page_cache_release() call).
195          */
196 }
197
198 static bool __page_pool_recycle_into_ring(struct page_pool *pool,
199                                    struct page *page)
200 {
201         int ret;
202         /* BH protection not needed if current is serving softirq */
203         if (in_serving_softirq())
204                 ret = ptr_ring_produce(&pool->ring, page);
205         else
206                 ret = ptr_ring_produce_bh(&pool->ring, page);
207
208         return (ret == 0) ? true : false;
209 }
210
211 /* Only allow direct recycling in special circumstances, into the
212  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
213  *
214  * Caller must provide appropriate safe context.
215  */
216 static bool __page_pool_recycle_direct(struct page *page,
217                                        struct page_pool *pool)
218 {
219         if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE))
220                 return false;
221
222         /* Caller MUST have verified/know (page_ref_count(page) == 1) */
223         pool->alloc.cache[pool->alloc.count++] = page;
224         return true;
225 }
226
227 void __page_pool_put_page(struct page_pool *pool,
228                           struct page *page, bool allow_direct)
229 {
230         /* This allocator is optimized for the XDP mode that uses
231          * one-frame-per-page, but have fallbacks that act like the
232          * regular page allocator APIs.
233          *
234          * refcnt == 1 means page_pool owns page, and can recycle it.
235          */
236         if (likely(page_ref_count(page) == 1)) {
237                 /* Read barrier done in page_ref_count / READ_ONCE */
238
239                 if (allow_direct && in_serving_softirq())
240                         if (__page_pool_recycle_direct(page, pool))
241                                 return;
242
243                 if (!__page_pool_recycle_into_ring(pool, page)) {
244                         /* Cache full, fallback to free pages */
245                         __page_pool_return_page(pool, page);
246                 }
247                 return;
248         }
249         /* Fallback/non-XDP mode: API user have elevated refcnt.
250          *
251          * Many drivers split up the page into fragments, and some
252          * want to keep doing this to save memory and do refcnt based
253          * recycling. Support this use case too, to ease drivers
254          * switching between XDP/non-XDP.
255          *
256          * In-case page_pool maintains the DMA mapping, API user must
257          * call page_pool_put_page once.  In this elevated refcnt
258          * case, the DMA is unmapped/released, as driver is likely
259          * doing refcnt based recycle tricks, meaning another process
260          * will be invoking put_page.
261          */
262         __page_pool_clean_page(pool, page);
263         put_page(page);
264 }
265 EXPORT_SYMBOL(__page_pool_put_page);
266
267 static void __page_pool_empty_ring(struct page_pool *pool)
268 {
269         struct page *page;
270
271         /* Empty recycle ring */
272         while ((page = ptr_ring_consume_bh(&pool->ring))) {
273                 /* Verify the refcnt invariant of cached pages */
274                 if (!(page_ref_count(page) == 1))
275                         pr_crit("%s() page_pool refcnt %d violation\n",
276                                 __func__, page_ref_count(page));
277
278                 __page_pool_return_page(pool, page);
279         }
280 }
281
282 static void __page_pool_destroy_rcu(struct rcu_head *rcu)
283 {
284         struct page_pool *pool;
285
286         pool = container_of(rcu, struct page_pool, rcu);
287
288         WARN(pool->alloc.count, "API usage violation");
289
290         __page_pool_empty_ring(pool);
291         ptr_ring_cleanup(&pool->ring, NULL);
292         kfree(pool);
293 }
294
295 /* Cleanup and release resources */
296 void page_pool_destroy(struct page_pool *pool)
297 {
298         struct page *page;
299
300         /* Empty alloc cache, assume caller made sure this is
301          * no-longer in use, and page_pool_alloc_pages() cannot be
302          * call concurrently.
303          */
304         while (pool->alloc.count) {
305                 page = pool->alloc.cache[--pool->alloc.count];
306                 __page_pool_return_page(pool, page);
307         }
308
309         /* No more consumers should exist, but producers could still
310          * be in-flight.
311          */
312         __page_pool_empty_ring(pool);
313
314         /* An xdp_mem_allocator can still ref page_pool pointer */
315         call_rcu(&pool->rcu, __page_pool_destroy_rcu);
316 }
317 EXPORT_SYMBOL(page_pool_destroy);