GNU Linux-libre 4.9.333-gnu1
[releases.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <net/gre.h>
10 #include <net/pptp.h>
11 #include <linux/igmp.h>
12 #include <linux/icmp.h>
13 #include <linux/sctp.h>
14 #include <linux/dccp.h>
15 #include <linux/if_tunnel.h>
16 #include <linux/if_pppox.h>
17 #include <linux/ppp_defs.h>
18 #include <linux/stddef.h>
19 #include <linux/if_ether.h>
20 #include <linux/mpls.h>
21 #include <net/flow_dissector.h>
22 #include <scsi/fc/fc_fcoe.h>
23
24 static void dissector_set_key(struct flow_dissector *flow_dissector,
25                               enum flow_dissector_key_id key_id)
26 {
27         flow_dissector->used_keys |= (1 << key_id);
28 }
29
30 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
31                              const struct flow_dissector_key *key,
32                              unsigned int key_count)
33 {
34         unsigned int i;
35
36         memset(flow_dissector, 0, sizeof(*flow_dissector));
37
38         for (i = 0; i < key_count; i++, key++) {
39                 /* User should make sure that every key target offset is withing
40                  * boundaries of unsigned short.
41                  */
42                 BUG_ON(key->offset > USHRT_MAX);
43                 BUG_ON(dissector_uses_key(flow_dissector,
44                                           key->key_id));
45
46                 dissector_set_key(flow_dissector, key->key_id);
47                 flow_dissector->offset[key->key_id] = key->offset;
48         }
49
50         /* Ensure that the dissector always includes control and basic key.
51          * That way we are able to avoid handling lack of these in fast path.
52          */
53         BUG_ON(!dissector_uses_key(flow_dissector,
54                                    FLOW_DISSECTOR_KEY_CONTROL));
55         BUG_ON(!dissector_uses_key(flow_dissector,
56                                    FLOW_DISSECTOR_KEY_BASIC));
57 }
58 EXPORT_SYMBOL(skb_flow_dissector_init);
59
60 /**
61  * __skb_flow_get_ports - extract the upper layer ports and return them
62  * @skb: sk_buff to extract the ports from
63  * @thoff: transport header offset
64  * @ip_proto: protocol for which to get port offset
65  * @data: raw buffer pointer to the packet, if NULL use skb->data
66  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
67  *
68  * The function will try to retrieve the ports at offset thoff + poff where poff
69  * is the protocol port offset returned from proto_ports_offset
70  */
71 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
72                             void *data, int hlen)
73 {
74         int poff = proto_ports_offset(ip_proto);
75
76         if (!data) {
77                 data = skb->data;
78                 hlen = skb_headlen(skb);
79         }
80
81         if (poff >= 0) {
82                 __be32 *ports, _ports;
83
84                 ports = __skb_header_pointer(skb, thoff + poff,
85                                              sizeof(_ports), data, hlen, &_ports);
86                 if (ports)
87                         return *ports;
88         }
89
90         return 0;
91 }
92 EXPORT_SYMBOL(__skb_flow_get_ports);
93
94 /**
95  * __skb_flow_dissect - extract the flow_keys struct and return it
96  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
97  * @flow_dissector: list of keys to dissect
98  * @target_container: target structure to put dissected values into
99  * @data: raw buffer pointer to the packet, if NULL use skb->data
100  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
101  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
102  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
103  *
104  * The function will try to retrieve individual keys into target specified
105  * by flow_dissector from either the skbuff or a raw buffer specified by the
106  * rest parameters.
107  *
108  * Caller must take care of zeroing target container memory.
109  */
110 bool __skb_flow_dissect(const struct sk_buff *skb,
111                         struct flow_dissector *flow_dissector,
112                         void *target_container,
113                         void *data, __be16 proto, int nhoff, int hlen,
114                         unsigned int flags)
115 {
116         struct flow_dissector_key_control *key_control;
117         struct flow_dissector_key_basic *key_basic;
118         struct flow_dissector_key_addrs *key_addrs;
119         struct flow_dissector_key_ports *key_ports;
120         struct flow_dissector_key_tags *key_tags;
121         struct flow_dissector_key_vlan *key_vlan;
122         struct flow_dissector_key_keyid *key_keyid;
123         bool skip_vlan = false;
124         u8 ip_proto = 0;
125         bool ret;
126
127         if (!data) {
128                 data = skb->data;
129                 proto = skb_vlan_tag_present(skb) ?
130                          skb->vlan_proto : skb->protocol;
131                 nhoff = skb_network_offset(skb);
132                 hlen = skb_headlen(skb);
133         }
134
135         /* It is ensured by skb_flow_dissector_init() that control key will
136          * be always present.
137          */
138         key_control = skb_flow_dissector_target(flow_dissector,
139                                                 FLOW_DISSECTOR_KEY_CONTROL,
140                                                 target_container);
141
142         /* It is ensured by skb_flow_dissector_init() that basic key will
143          * be always present.
144          */
145         key_basic = skb_flow_dissector_target(flow_dissector,
146                                               FLOW_DISSECTOR_KEY_BASIC,
147                                               target_container);
148
149         if (dissector_uses_key(flow_dissector,
150                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
151                 struct ethhdr *eth = eth_hdr(skb);
152                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
153
154                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
155                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
156                                                           target_container);
157                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
158         }
159
160 again:
161         switch (proto) {
162         case htons(ETH_P_IP): {
163                 const struct iphdr *iph;
164                 struct iphdr _iph;
165 ip:
166                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
167                 if (!iph || iph->ihl < 5)
168                         goto out_bad;
169                 nhoff += iph->ihl * 4;
170
171                 ip_proto = iph->protocol;
172
173                 if (dissector_uses_key(flow_dissector,
174                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
175                         key_addrs = skb_flow_dissector_target(flow_dissector,
176                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
177                                                               target_container);
178
179                         memcpy(&key_addrs->v4addrs.src, &iph->saddr,
180                                sizeof(key_addrs->v4addrs.src));
181                         memcpy(&key_addrs->v4addrs.dst, &iph->daddr,
182                                sizeof(key_addrs->v4addrs.dst));
183                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
184                 }
185
186                 if (ip_is_fragment(iph)) {
187                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
188
189                         if (iph->frag_off & htons(IP_OFFSET)) {
190                                 goto out_good;
191                         } else {
192                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
193                                 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
194                                         goto out_good;
195                         }
196                 }
197
198                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
199                         goto out_good;
200
201                 break;
202         }
203         case htons(ETH_P_IPV6): {
204                 const struct ipv6hdr *iph;
205                 struct ipv6hdr _iph;
206
207 ipv6:
208                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
209                 if (!iph)
210                         goto out_bad;
211
212                 ip_proto = iph->nexthdr;
213                 nhoff += sizeof(struct ipv6hdr);
214
215                 if (dissector_uses_key(flow_dissector,
216                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
217                         key_addrs = skb_flow_dissector_target(flow_dissector,
218                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
219                                                               target_container);
220
221                         memcpy(&key_addrs->v6addrs.src, &iph->saddr,
222                                sizeof(key_addrs->v6addrs.src));
223                         memcpy(&key_addrs->v6addrs.dst, &iph->daddr,
224                                sizeof(key_addrs->v6addrs.dst));
225                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
226                 }
227
228                 if ((dissector_uses_key(flow_dissector,
229                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
230                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
231                     ip6_flowlabel(iph)) {
232                         __be32 flow_label = ip6_flowlabel(iph);
233
234                         if (dissector_uses_key(flow_dissector,
235                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
236                                 key_tags = skb_flow_dissector_target(flow_dissector,
237                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
238                                                                      target_container);
239                                 key_tags->flow_label = ntohl(flow_label);
240                         }
241                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
242                                 goto out_good;
243                 }
244
245                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
246                         goto out_good;
247
248                 break;
249         }
250         case htons(ETH_P_8021AD):
251         case htons(ETH_P_8021Q): {
252                 const struct vlan_hdr *vlan;
253                 struct vlan_hdr _vlan;
254                 bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
255
256                 if (vlan_tag_present)
257                         proto = skb->protocol;
258
259                 if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
260                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
261                                                     data, hlen, &_vlan);
262                         if (!vlan)
263                                 goto out_bad;
264                         proto = vlan->h_vlan_encapsulated_proto;
265                         nhoff += sizeof(*vlan);
266                         if (skip_vlan)
267                                 goto again;
268                 }
269
270                 skip_vlan = true;
271                 if (dissector_uses_key(flow_dissector,
272                                        FLOW_DISSECTOR_KEY_VLAN)) {
273                         key_vlan = skb_flow_dissector_target(flow_dissector,
274                                                              FLOW_DISSECTOR_KEY_VLAN,
275                                                              target_container);
276
277                         if (vlan_tag_present) {
278                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
279                                 key_vlan->vlan_priority =
280                                         (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
281                         } else {
282                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
283                                         VLAN_VID_MASK;
284                                 key_vlan->vlan_priority =
285                                         (ntohs(vlan->h_vlan_TCI) &
286                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
287                         }
288                 }
289
290                 goto again;
291         }
292         case htons(ETH_P_PPP_SES): {
293                 struct {
294                         struct pppoe_hdr hdr;
295                         __be16 proto;
296                 } *hdr, _hdr;
297                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
298                 if (!hdr)
299                         goto out_bad;
300                 proto = hdr->proto;
301                 nhoff += PPPOE_SES_HLEN;
302                 switch (proto) {
303                 case htons(PPP_IP):
304                         goto ip;
305                 case htons(PPP_IPV6):
306                         goto ipv6;
307                 default:
308                         goto out_bad;
309                 }
310         }
311         case htons(ETH_P_TIPC): {
312                 struct {
313                         __be32 pre[3];
314                         __be32 srcnode;
315                 } *hdr, _hdr;
316                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
317                 if (!hdr)
318                         goto out_bad;
319
320                 if (dissector_uses_key(flow_dissector,
321                                        FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
322                         key_addrs = skb_flow_dissector_target(flow_dissector,
323                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
324                                                               target_container);
325                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
326                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
327                 }
328                 goto out_good;
329         }
330
331         case htons(ETH_P_MPLS_UC):
332         case htons(ETH_P_MPLS_MC): {
333                 struct mpls_label *hdr, _hdr[2];
334 mpls:
335                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
336                                            hlen, &_hdr);
337                 if (!hdr)
338                         goto out_bad;
339
340                 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
341                      MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
342                         if (dissector_uses_key(flow_dissector,
343                                                FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
344                                 key_keyid = skb_flow_dissector_target(flow_dissector,
345                                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
346                                                                       target_container);
347                                 key_keyid->keyid = hdr[1].entry &
348                                         htonl(MPLS_LS_LABEL_MASK);
349                         }
350
351                         goto out_good;
352                 }
353
354                 goto out_good;
355         }
356
357         case htons(ETH_P_FCOE):
358                 if ((hlen - nhoff) < FCOE_HEADER_LEN)
359                         goto out_bad;
360
361                 nhoff += FCOE_HEADER_LEN;
362                 goto out_good;
363         default:
364                 goto out_bad;
365         }
366
367 ip_proto_again:
368         switch (ip_proto) {
369         case IPPROTO_GRE: {
370                 struct gre_base_hdr *hdr, _hdr;
371                 u16 gre_ver;
372                 int offset = 0;
373
374                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
375                 if (!hdr)
376                         goto out_bad;
377
378                 /* Only look inside GRE without routing */
379                 if (hdr->flags & GRE_ROUTING)
380                         break;
381
382                 /* Only look inside GRE for version 0 and 1 */
383                 gre_ver = ntohs(hdr->flags & GRE_VERSION);
384                 if (gre_ver > 1)
385                         break;
386
387                 proto = hdr->protocol;
388                 if (gre_ver) {
389                         /* Version1 must be PPTP, and check the flags */
390                         if (!(proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
391                                 break;
392                 }
393
394                 offset += sizeof(struct gre_base_hdr);
395
396                 if (hdr->flags & GRE_CSUM)
397                         offset += sizeof(((struct gre_full_hdr *)0)->csum) +
398                                   sizeof(((struct gre_full_hdr *)0)->reserved1);
399
400                 if (hdr->flags & GRE_KEY) {
401                         const __be32 *keyid;
402                         __be32 _keyid;
403
404                         keyid = __skb_header_pointer(skb, nhoff + offset, sizeof(_keyid),
405                                                      data, hlen, &_keyid);
406                         if (!keyid)
407                                 goto out_bad;
408
409                         if (dissector_uses_key(flow_dissector,
410                                                FLOW_DISSECTOR_KEY_GRE_KEYID)) {
411                                 key_keyid = skb_flow_dissector_target(flow_dissector,
412                                                                       FLOW_DISSECTOR_KEY_GRE_KEYID,
413                                                                       target_container);
414                                 if (gre_ver == 0)
415                                         key_keyid->keyid = *keyid;
416                                 else
417                                         key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
418                         }
419                         offset += sizeof(((struct gre_full_hdr *)0)->key);
420                 }
421
422                 if (hdr->flags & GRE_SEQ)
423                         offset += sizeof(((struct pptp_gre_header *)0)->seq);
424
425                 if (gre_ver == 0) {
426                         if (proto == htons(ETH_P_TEB)) {
427                                 const struct ethhdr *eth;
428                                 struct ethhdr _eth;
429
430                                 eth = __skb_header_pointer(skb, nhoff + offset,
431                                                            sizeof(_eth),
432                                                            data, hlen, &_eth);
433                                 if (!eth)
434                                         goto out_bad;
435                                 proto = eth->h_proto;
436                                 offset += sizeof(*eth);
437
438                                 /* Cap headers that we access via pointers at the
439                                  * end of the Ethernet header as our maximum alignment
440                                  * at that point is only 2 bytes.
441                                  */
442                                 if (NET_IP_ALIGN)
443                                         hlen = (nhoff + offset);
444                         }
445                 } else { /* version 1, must be PPTP */
446                         u8 _ppp_hdr[PPP_HDRLEN];
447                         u8 *ppp_hdr;
448
449                         if (hdr->flags & GRE_ACK)
450                                 offset += sizeof(((struct pptp_gre_header *)0)->ack);
451
452                         ppp_hdr = __skb_header_pointer(skb, nhoff + offset,
453                                                      sizeof(_ppp_hdr),
454                                                      data, hlen, _ppp_hdr);
455                         if (!ppp_hdr)
456                                 goto out_bad;
457
458                         switch (PPP_PROTOCOL(ppp_hdr)) {
459                         case PPP_IP:
460                                 proto = htons(ETH_P_IP);
461                                 break;
462                         case PPP_IPV6:
463                                 proto = htons(ETH_P_IPV6);
464                                 break;
465                         default:
466                                 /* Could probably catch some more like MPLS */
467                                 break;
468                         }
469
470                         offset += PPP_HDRLEN;
471                 }
472
473                 nhoff += offset;
474                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
475                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
476                         goto out_good;
477
478                 goto again;
479         }
480         case NEXTHDR_HOP:
481         case NEXTHDR_ROUTING:
482         case NEXTHDR_DEST: {
483                 u8 _opthdr[2], *opthdr;
484
485                 if (proto != htons(ETH_P_IPV6))
486                         break;
487
488                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
489                                               data, hlen, &_opthdr);
490                 if (!opthdr)
491                         goto out_bad;
492
493                 ip_proto = opthdr[0];
494                 nhoff += (opthdr[1] + 1) << 3;
495
496                 goto ip_proto_again;
497         }
498         case NEXTHDR_FRAGMENT: {
499                 struct frag_hdr _fh, *fh;
500
501                 if (proto != htons(ETH_P_IPV6))
502                         break;
503
504                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
505                                           data, hlen, &_fh);
506
507                 if (!fh)
508                         goto out_bad;
509
510                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
511
512                 nhoff += sizeof(_fh);
513                 ip_proto = fh->nexthdr;
514
515                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
516                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
517                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
518                                 goto ip_proto_again;
519                 }
520                 goto out_good;
521         }
522         case IPPROTO_IPIP:
523                 proto = htons(ETH_P_IP);
524
525                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
526                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
527                         goto out_good;
528
529                 goto ip;
530         case IPPROTO_IPV6:
531                 proto = htons(ETH_P_IPV6);
532
533                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
534                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
535                         goto out_good;
536
537                 goto ipv6;
538         case IPPROTO_MPLS:
539                 proto = htons(ETH_P_MPLS_UC);
540                 goto mpls;
541         default:
542                 break;
543         }
544
545         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
546             !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
547                 key_ports = skb_flow_dissector_target(flow_dissector,
548                                                       FLOW_DISSECTOR_KEY_PORTS,
549                                                       target_container);
550                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
551                                                         data, hlen);
552         }
553
554 out_good:
555         ret = true;
556
557 out:
558         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
559         key_basic->n_proto = proto;
560         key_basic->ip_proto = ip_proto;
561
562         return ret;
563
564 out_bad:
565         ret = false;
566         goto out;
567 }
568 EXPORT_SYMBOL(__skb_flow_dissect);
569
570 static siphash_key_t hashrnd __read_mostly;
571 static __always_inline void __flow_hash_secret_init(void)
572 {
573         net_get_random_once(&hashrnd, sizeof(hashrnd));
574 }
575
576 static const void *flow_keys_hash_start(const struct flow_keys *flow)
577 {
578         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
579         return &flow->FLOW_KEYS_HASH_START_FIELD;
580 }
581
582 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
583 {
584         size_t len = offsetof(typeof(*flow), addrs) - FLOW_KEYS_HASH_OFFSET;
585
586         switch (flow->control.addr_type) {
587         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
588                 len += sizeof(flow->addrs.v4addrs);
589                 break;
590         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
591                 len += sizeof(flow->addrs.v6addrs);
592                 break;
593         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
594                 len += sizeof(flow->addrs.tipcaddrs);
595                 break;
596         }
597         return len;
598 }
599
600 __be32 flow_get_u32_src(const struct flow_keys *flow)
601 {
602         switch (flow->control.addr_type) {
603         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
604                 return flow->addrs.v4addrs.src;
605         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
606                 return (__force __be32)ipv6_addr_hash(
607                         &flow->addrs.v6addrs.src);
608         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
609                 return flow->addrs.tipcaddrs.srcnode;
610         default:
611                 return 0;
612         }
613 }
614 EXPORT_SYMBOL(flow_get_u32_src);
615
616 __be32 flow_get_u32_dst(const struct flow_keys *flow)
617 {
618         switch (flow->control.addr_type) {
619         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
620                 return flow->addrs.v4addrs.dst;
621         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
622                 return (__force __be32)ipv6_addr_hash(
623                         &flow->addrs.v6addrs.dst);
624         default:
625                 return 0;
626         }
627 }
628 EXPORT_SYMBOL(flow_get_u32_dst);
629
630 static inline void __flow_hash_consistentify(struct flow_keys *keys)
631 {
632         int addr_diff, i;
633
634         switch (keys->control.addr_type) {
635         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
636                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
637                             (__force u32)keys->addrs.v4addrs.src;
638                 if ((addr_diff < 0) ||
639                     (addr_diff == 0 &&
640                      ((__force u16)keys->ports.dst <
641                       (__force u16)keys->ports.src))) {
642                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
643                         swap(keys->ports.src, keys->ports.dst);
644                 }
645                 break;
646         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
647                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
648                                    &keys->addrs.v6addrs.src,
649                                    sizeof(keys->addrs.v6addrs.dst));
650                 if ((addr_diff < 0) ||
651                     (addr_diff == 0 &&
652                      ((__force u16)keys->ports.dst <
653                       (__force u16)keys->ports.src))) {
654                         for (i = 0; i < 4; i++)
655                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
656                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
657                         swap(keys->ports.src, keys->ports.dst);
658                 }
659                 break;
660         }
661 }
662
663 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
664                                         const siphash_key_t *keyval)
665 {
666         u32 hash;
667
668         __flow_hash_consistentify(keys);
669
670         hash = siphash(flow_keys_hash_start(keys),
671                        flow_keys_hash_length(keys), keyval);
672         if (!hash)
673                 hash = 1;
674
675         return hash;
676 }
677
678 u32 flow_hash_from_keys(struct flow_keys *keys)
679 {
680         __flow_hash_secret_init();
681         return __flow_hash_from_keys(keys, &hashrnd);
682 }
683 EXPORT_SYMBOL(flow_hash_from_keys);
684
685 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
686                                   struct flow_keys *keys,
687                                   const siphash_key_t *keyval)
688 {
689         skb_flow_dissect_flow_keys(skb, keys,
690                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
691
692         return __flow_hash_from_keys(keys, keyval);
693 }
694
695 struct _flow_keys_digest_data {
696         __be16  n_proto;
697         u8      ip_proto;
698         u8      padding;
699         __be32  ports;
700         __be32  src;
701         __be32  dst;
702 };
703
704 void make_flow_keys_digest(struct flow_keys_digest *digest,
705                            const struct flow_keys *flow)
706 {
707         struct _flow_keys_digest_data *data =
708             (struct _flow_keys_digest_data *)digest;
709
710         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
711
712         memset(digest, 0, sizeof(*digest));
713
714         data->n_proto = flow->basic.n_proto;
715         data->ip_proto = flow->basic.ip_proto;
716         data->ports = flow->ports.ports;
717         data->src = flow->addrs.v4addrs.src;
718         data->dst = flow->addrs.v4addrs.dst;
719 }
720 EXPORT_SYMBOL(make_flow_keys_digest);
721
722 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
723
724 u32 __skb_get_hash_symmetric(struct sk_buff *skb)
725 {
726         struct flow_keys keys;
727
728         __flow_hash_secret_init();
729
730         memset(&keys, 0, sizeof(keys));
731         __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
732                            NULL, 0, 0, 0,
733                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
734
735         return __flow_hash_from_keys(&keys, &hashrnd);
736 }
737 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
738
739 /**
740  * __skb_get_hash: calculate a flow hash
741  * @skb: sk_buff to calculate flow hash from
742  *
743  * This function calculates a flow hash based on src/dst addresses
744  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
745  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
746  * if hash is a canonical 4-tuple hash over transport ports.
747  */
748 void __skb_get_hash(struct sk_buff *skb)
749 {
750         struct flow_keys keys;
751         u32 hash;
752
753         __flow_hash_secret_init();
754
755         hash = ___skb_get_hash(skb, &keys, &hashrnd);
756
757         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
758 }
759 EXPORT_SYMBOL(__skb_get_hash);
760
761 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
762                            const siphash_key_t *perturb)
763 {
764         struct flow_keys keys;
765
766         return ___skb_get_hash(skb, &keys, perturb);
767 }
768 EXPORT_SYMBOL(skb_get_hash_perturb);
769
770 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
771 {
772         struct flow_keys keys;
773
774         memset(&keys, 0, sizeof(keys));
775
776         memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
777                sizeof(keys.addrs.v6addrs.src));
778         memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
779                sizeof(keys.addrs.v6addrs.dst));
780         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
781         keys.ports.src = fl6->fl6_sport;
782         keys.ports.dst = fl6->fl6_dport;
783         keys.keyid.keyid = fl6->fl6_gre_key;
784         keys.tags.flow_label = (__force u32)fl6->flowlabel;
785         keys.basic.ip_proto = fl6->flowi6_proto;
786
787         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
788                           flow_keys_have_l4(&keys));
789
790         return skb->hash;
791 }
792 EXPORT_SYMBOL(__skb_get_hash_flowi6);
793
794 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
795 {
796         struct flow_keys keys;
797
798         memset(&keys, 0, sizeof(keys));
799
800         keys.addrs.v4addrs.src = fl4->saddr;
801         keys.addrs.v4addrs.dst = fl4->daddr;
802         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
803         keys.ports.src = fl4->fl4_sport;
804         keys.ports.dst = fl4->fl4_dport;
805         keys.keyid.keyid = fl4->fl4_gre_key;
806         keys.basic.ip_proto = fl4->flowi4_proto;
807
808         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
809                           flow_keys_have_l4(&keys));
810
811         return skb->hash;
812 }
813 EXPORT_SYMBOL(__skb_get_hash_flowi4);
814
815 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
816                    const struct flow_keys *keys, int hlen)
817 {
818         u32 poff = keys->control.thoff;
819
820         /* skip L4 headers for fragments after the first */
821         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
822             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
823                 return poff;
824
825         switch (keys->basic.ip_proto) {
826         case IPPROTO_TCP: {
827                 /* access doff as u8 to avoid unaligned access */
828                 const u8 *doff;
829                 u8 _doff;
830
831                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
832                                             data, hlen, &_doff);
833                 if (!doff)
834                         return poff;
835
836                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
837                 break;
838         }
839         case IPPROTO_UDP:
840         case IPPROTO_UDPLITE:
841                 poff += sizeof(struct udphdr);
842                 break;
843         /* For the rest, we do not really care about header
844          * extensions at this point for now.
845          */
846         case IPPROTO_ICMP:
847                 poff += sizeof(struct icmphdr);
848                 break;
849         case IPPROTO_ICMPV6:
850                 poff += sizeof(struct icmp6hdr);
851                 break;
852         case IPPROTO_IGMP:
853                 poff += sizeof(struct igmphdr);
854                 break;
855         case IPPROTO_DCCP:
856                 poff += sizeof(struct dccp_hdr);
857                 break;
858         case IPPROTO_SCTP:
859                 poff += sizeof(struct sctphdr);
860                 break;
861         }
862
863         return poff;
864 }
865
866 /**
867  * skb_get_poff - get the offset to the payload
868  * @skb: sk_buff to get the payload offset from
869  *
870  * The function will get the offset to the payload as far as it could
871  * be dissected.  The main user is currently BPF, so that we can dynamically
872  * truncate packets without needing to push actual payload to the user
873  * space and can analyze headers only, instead.
874  */
875 u32 skb_get_poff(const struct sk_buff *skb)
876 {
877         struct flow_keys keys;
878
879         if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
880                 return 0;
881
882         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
883 }
884
885 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
886 {
887         memset(keys, 0, sizeof(*keys));
888
889         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
890             sizeof(keys->addrs.v6addrs.src));
891         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
892             sizeof(keys->addrs.v6addrs.dst));
893         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
894         keys->ports.src = fl6->fl6_sport;
895         keys->ports.dst = fl6->fl6_dport;
896         keys->keyid.keyid = fl6->fl6_gre_key;
897         keys->tags.flow_label = (__force u32)fl6->flowlabel;
898         keys->basic.ip_proto = fl6->flowi6_proto;
899
900         return flow_hash_from_keys(keys);
901 }
902 EXPORT_SYMBOL(__get_hash_from_flowi6);
903
904 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
905 {
906         memset(keys, 0, sizeof(*keys));
907
908         keys->addrs.v4addrs.src = fl4->saddr;
909         keys->addrs.v4addrs.dst = fl4->daddr;
910         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
911         keys->ports.src = fl4->fl4_sport;
912         keys->ports.dst = fl4->fl4_dport;
913         keys->keyid.keyid = fl4->fl4_gre_key;
914         keys->basic.ip_proto = fl4->flowi4_proto;
915
916         return flow_hash_from_keys(keys);
917 }
918 EXPORT_SYMBOL(__get_hash_from_flowi4);
919
920 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
921         {
922                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
923                 .offset = offsetof(struct flow_keys, control),
924         },
925         {
926                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
927                 .offset = offsetof(struct flow_keys, basic),
928         },
929         {
930                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
931                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
932         },
933         {
934                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
935                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
936         },
937         {
938                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
939                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
940         },
941         {
942                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
943                 .offset = offsetof(struct flow_keys, ports),
944         },
945         {
946                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
947                 .offset = offsetof(struct flow_keys, vlan),
948         },
949         {
950                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
951                 .offset = offsetof(struct flow_keys, tags),
952         },
953         {
954                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
955                 .offset = offsetof(struct flow_keys, keyid),
956         },
957 };
958
959 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
960         {
961                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
962                 .offset = offsetof(struct flow_keys, control),
963         },
964         {
965                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
966                 .offset = offsetof(struct flow_keys, basic),
967         },
968         {
969                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
970                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
971         },
972         {
973                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
974                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
975         },
976         {
977                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
978                 .offset = offsetof(struct flow_keys, ports),
979         },
980 };
981
982 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
983         {
984                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
985                 .offset = offsetof(struct flow_keys, control),
986         },
987         {
988                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
989                 .offset = offsetof(struct flow_keys, basic),
990         },
991 };
992
993 struct flow_dissector flow_keys_dissector __read_mostly;
994 EXPORT_SYMBOL(flow_keys_dissector);
995
996 struct flow_dissector flow_keys_buf_dissector __read_mostly;
997
998 static int __init init_default_flow_dissectors(void)
999 {
1000         skb_flow_dissector_init(&flow_keys_dissector,
1001                                 flow_keys_dissector_keys,
1002                                 ARRAY_SIZE(flow_keys_dissector_keys));
1003         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1004                                 flow_keys_dissector_symmetric_keys,
1005                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1006         skb_flow_dissector_init(&flow_keys_buf_dissector,
1007                                 flow_keys_buf_dissector_keys,
1008                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
1009         return 0;
1010 }
1011
1012 core_initcall(init_default_flow_dissectors);