GNU Linux-libre 4.4.285-gnu1
[releases.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
21
22 static bool dissector_uses_key(const struct flow_dissector *flow_dissector,
23                                enum flow_dissector_key_id key_id)
24 {
25         return flow_dissector->used_keys & (1 << key_id);
26 }
27
28 static void dissector_set_key(struct flow_dissector *flow_dissector,
29                               enum flow_dissector_key_id key_id)
30 {
31         flow_dissector->used_keys |= (1 << key_id);
32 }
33
34 static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
35                                        enum flow_dissector_key_id key_id,
36                                        void *target_container)
37 {
38         return ((char *) target_container) + flow_dissector->offset[key_id];
39 }
40
41 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
42                              const struct flow_dissector_key *key,
43                              unsigned int key_count)
44 {
45         unsigned int i;
46
47         memset(flow_dissector, 0, sizeof(*flow_dissector));
48
49         for (i = 0; i < key_count; i++, key++) {
50                 /* User should make sure that every key target offset is withing
51                  * boundaries of unsigned short.
52                  */
53                 BUG_ON(key->offset > USHRT_MAX);
54                 BUG_ON(dissector_uses_key(flow_dissector,
55                                           key->key_id));
56
57                 dissector_set_key(flow_dissector, key->key_id);
58                 flow_dissector->offset[key->key_id] = key->offset;
59         }
60
61         /* Ensure that the dissector always includes control and basic key.
62          * That way we are able to avoid handling lack of these in fast path.
63          */
64         BUG_ON(!dissector_uses_key(flow_dissector,
65                                    FLOW_DISSECTOR_KEY_CONTROL));
66         BUG_ON(!dissector_uses_key(flow_dissector,
67                                    FLOW_DISSECTOR_KEY_BASIC));
68 }
69 EXPORT_SYMBOL(skb_flow_dissector_init);
70
71 /**
72  * __skb_flow_get_ports - extract the upper layer ports and return them
73  * @skb: sk_buff to extract the ports from
74  * @thoff: transport header offset
75  * @ip_proto: protocol for which to get port offset
76  * @data: raw buffer pointer to the packet, if NULL use skb->data
77  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
78  *
79  * The function will try to retrieve the ports at offset thoff + poff where poff
80  * is the protocol port offset returned from proto_ports_offset
81  */
82 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
83                             void *data, int hlen)
84 {
85         int poff = proto_ports_offset(ip_proto);
86
87         if (!data) {
88                 data = skb->data;
89                 hlen = skb_headlen(skb);
90         }
91
92         if (poff >= 0) {
93                 __be32 *ports, _ports;
94
95                 ports = __skb_header_pointer(skb, thoff + poff,
96                                              sizeof(_ports), data, hlen, &_ports);
97                 if (ports)
98                         return *ports;
99         }
100
101         return 0;
102 }
103 EXPORT_SYMBOL(__skb_flow_get_ports);
104
105 /**
106  * __skb_flow_dissect - extract the flow_keys struct and return it
107  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
108  * @flow_dissector: list of keys to dissect
109  * @target_container: target structure to put dissected values into
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
112  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
113  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
114  *
115  * The function will try to retrieve individual keys into target specified
116  * by flow_dissector from either the skbuff or a raw buffer specified by the
117  * rest parameters.
118  *
119  * Caller must take care of zeroing target container memory.
120  */
121 bool __skb_flow_dissect(const struct sk_buff *skb,
122                         struct flow_dissector *flow_dissector,
123                         void *target_container,
124                         void *data, __be16 proto, int nhoff, int hlen,
125                         unsigned int flags)
126 {
127         struct flow_dissector_key_control *key_control;
128         struct flow_dissector_key_basic *key_basic;
129         struct flow_dissector_key_addrs *key_addrs;
130         struct flow_dissector_key_ports *key_ports;
131         struct flow_dissector_key_tags *key_tags;
132         struct flow_dissector_key_keyid *key_keyid;
133         u8 ip_proto = 0;
134         bool ret;
135
136         if (!data) {
137                 data = skb->data;
138                 proto = skb->protocol;
139                 nhoff = skb_network_offset(skb);
140                 hlen = skb_headlen(skb);
141         }
142
143         /* It is ensured by skb_flow_dissector_init() that control key will
144          * be always present.
145          */
146         key_control = skb_flow_dissector_target(flow_dissector,
147                                                 FLOW_DISSECTOR_KEY_CONTROL,
148                                                 target_container);
149
150         /* It is ensured by skb_flow_dissector_init() that basic key will
151          * be always present.
152          */
153         key_basic = skb_flow_dissector_target(flow_dissector,
154                                               FLOW_DISSECTOR_KEY_BASIC,
155                                               target_container);
156
157         if (dissector_uses_key(flow_dissector,
158                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
159                 struct ethhdr *eth = eth_hdr(skb);
160                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
161
162                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
163                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
164                                                           target_container);
165                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
166         }
167
168 again:
169         switch (proto) {
170         case htons(ETH_P_IP): {
171                 const struct iphdr *iph;
172                 struct iphdr _iph;
173 ip:
174                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
175                 if (!iph || iph->ihl < 5)
176                         goto out_bad;
177                 nhoff += iph->ihl * 4;
178
179                 ip_proto = iph->protocol;
180
181                 if (dissector_uses_key(flow_dissector,
182                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
183                         key_addrs = skb_flow_dissector_target(flow_dissector,
184                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
185                                                               target_container);
186
187                         memcpy(&key_addrs->v4addrs, &iph->saddr,
188                                sizeof(key_addrs->v4addrs));
189                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
190                 }
191
192                 if (ip_is_fragment(iph)) {
193                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
194
195                         if (iph->frag_off & htons(IP_OFFSET)) {
196                                 goto out_good;
197                         } else {
198                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
199                                 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
200                                         goto out_good;
201                         }
202                 }
203
204                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
205                         goto out_good;
206
207                 break;
208         }
209         case htons(ETH_P_IPV6): {
210                 const struct ipv6hdr *iph;
211                 struct ipv6hdr _iph;
212
213 ipv6:
214                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
215                 if (!iph)
216                         goto out_bad;
217
218                 ip_proto = iph->nexthdr;
219                 nhoff += sizeof(struct ipv6hdr);
220
221                 if (dissector_uses_key(flow_dissector,
222                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
223                         struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
224
225                         key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
226                                                                    FLOW_DISSECTOR_KEY_IPV6_ADDRS,
227                                                                    target_container);
228
229                         memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
230                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
231                 }
232
233                 if ((dissector_uses_key(flow_dissector,
234                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
235                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
236                     ip6_flowlabel(iph)) {
237                         __be32 flow_label = ip6_flowlabel(iph);
238
239                         if (dissector_uses_key(flow_dissector,
240                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
241                                 key_tags = skb_flow_dissector_target(flow_dissector,
242                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
243                                                                      target_container);
244                                 key_tags->flow_label = ntohl(flow_label);
245                         }
246                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
247                                 goto out_good;
248                 }
249
250                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
251                         goto out_good;
252
253                 break;
254         }
255         case htons(ETH_P_8021AD):
256         case htons(ETH_P_8021Q): {
257                 const struct vlan_hdr *vlan;
258                 struct vlan_hdr _vlan;
259
260                 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
261                 if (!vlan)
262                         goto out_bad;
263
264                 if (dissector_uses_key(flow_dissector,
265                                        FLOW_DISSECTOR_KEY_VLANID)) {
266                         key_tags = skb_flow_dissector_target(flow_dissector,
267                                                              FLOW_DISSECTOR_KEY_VLANID,
268                                                              target_container);
269
270                         key_tags->vlan_id = skb_vlan_tag_get_id(skb);
271                 }
272
273                 proto = vlan->h_vlan_encapsulated_proto;
274                 nhoff += sizeof(*vlan);
275                 goto again;
276         }
277         case htons(ETH_P_PPP_SES): {
278                 struct {
279                         struct pppoe_hdr hdr;
280                         __be16 proto;
281                 } *hdr, _hdr;
282                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
283                 if (!hdr)
284                         goto out_bad;
285                 proto = hdr->proto;
286                 nhoff += PPPOE_SES_HLEN;
287                 switch (proto) {
288                 case htons(PPP_IP):
289                         goto ip;
290                 case htons(PPP_IPV6):
291                         goto ipv6;
292                 default:
293                         goto out_bad;
294                 }
295         }
296         case htons(ETH_P_TIPC): {
297                 struct {
298                         __be32 pre[3];
299                         __be32 srcnode;
300                 } *hdr, _hdr;
301                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
302                 if (!hdr)
303                         goto out_bad;
304
305                 if (dissector_uses_key(flow_dissector,
306                                        FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
307                         key_addrs = skb_flow_dissector_target(flow_dissector,
308                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
309                                                               target_container);
310                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
311                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
312                 }
313                 goto out_good;
314         }
315
316         case htons(ETH_P_MPLS_UC):
317         case htons(ETH_P_MPLS_MC): {
318                 struct mpls_label *hdr, _hdr[2];
319 mpls:
320                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
321                                            hlen, &_hdr);
322                 if (!hdr)
323                         goto out_bad;
324
325                 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
326                      MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
327                         if (dissector_uses_key(flow_dissector,
328                                                FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
329                                 key_keyid = skb_flow_dissector_target(flow_dissector,
330                                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
331                                                                       target_container);
332                                 key_keyid->keyid = hdr[1].entry &
333                                         htonl(MPLS_LS_LABEL_MASK);
334                         }
335
336                         goto out_good;
337                 }
338
339                 goto out_good;
340         }
341
342         case htons(ETH_P_FCOE):
343                 key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
344                 /* fall through */
345         default:
346                 goto out_bad;
347         }
348
349 ip_proto_again:
350         switch (ip_proto) {
351         case IPPROTO_GRE: {
352                 struct gre_hdr {
353                         __be16 flags;
354                         __be16 proto;
355                 } *hdr, _hdr;
356
357                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
358                 if (!hdr)
359                         goto out_bad;
360                 /*
361                  * Only look inside GRE if version zero and no
362                  * routing
363                  */
364                 if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
365                         break;
366
367                 proto = hdr->proto;
368                 nhoff += 4;
369                 if (hdr->flags & GRE_CSUM)
370                         nhoff += 4;
371                 if (hdr->flags & GRE_KEY) {
372                         const __be32 *keyid;
373                         __be32 _keyid;
374
375                         keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
376                                                      data, hlen, &_keyid);
377
378                         if (!keyid)
379                                 goto out_bad;
380
381                         if (dissector_uses_key(flow_dissector,
382                                                FLOW_DISSECTOR_KEY_GRE_KEYID)) {
383                                 key_keyid = skb_flow_dissector_target(flow_dissector,
384                                                                       FLOW_DISSECTOR_KEY_GRE_KEYID,
385                                                                       target_container);
386                                 key_keyid->keyid = *keyid;
387                         }
388                         nhoff += 4;
389                 }
390                 if (hdr->flags & GRE_SEQ)
391                         nhoff += 4;
392                 if (proto == htons(ETH_P_TEB)) {
393                         const struct ethhdr *eth;
394                         struct ethhdr _eth;
395
396                         eth = __skb_header_pointer(skb, nhoff,
397                                                    sizeof(_eth),
398                                                    data, hlen, &_eth);
399                         if (!eth)
400                                 goto out_bad;
401                         proto = eth->h_proto;
402                         nhoff += sizeof(*eth);
403
404                         /* Cap headers that we access via pointers at the
405                          * end of the Ethernet header as our maximum alignment
406                          * at that point is only 2 bytes.
407                          */
408                         if (NET_IP_ALIGN)
409                                 hlen = nhoff;
410                 }
411
412                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
413                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
414                         goto out_good;
415
416                 goto again;
417         }
418         case NEXTHDR_HOP:
419         case NEXTHDR_ROUTING:
420         case NEXTHDR_DEST: {
421                 u8 _opthdr[2], *opthdr;
422
423                 if (proto != htons(ETH_P_IPV6))
424                         break;
425
426                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
427                                               data, hlen, &_opthdr);
428                 if (!opthdr)
429                         goto out_bad;
430
431                 ip_proto = opthdr[0];
432                 nhoff += (opthdr[1] + 1) << 3;
433
434                 goto ip_proto_again;
435         }
436         case NEXTHDR_FRAGMENT: {
437                 struct frag_hdr _fh, *fh;
438
439                 if (proto != htons(ETH_P_IPV6))
440                         break;
441
442                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
443                                           data, hlen, &_fh);
444
445                 if (!fh)
446                         goto out_bad;
447
448                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
449
450                 nhoff += sizeof(_fh);
451
452                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
453                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
454                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
455                                 ip_proto = fh->nexthdr;
456                                 goto ip_proto_again;
457                         }
458                 }
459                 goto out_good;
460         }
461         case IPPROTO_IPIP:
462                 proto = htons(ETH_P_IP);
463
464                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
465                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
466                         goto out_good;
467
468                 goto ip;
469         case IPPROTO_IPV6:
470                 proto = htons(ETH_P_IPV6);
471
472                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
473                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
474                         goto out_good;
475
476                 goto ipv6;
477         case IPPROTO_MPLS:
478                 proto = htons(ETH_P_MPLS_UC);
479                 goto mpls;
480         default:
481                 break;
482         }
483
484         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
485             !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
486                 key_ports = skb_flow_dissector_target(flow_dissector,
487                                                       FLOW_DISSECTOR_KEY_PORTS,
488                                                       target_container);
489                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
490                                                         data, hlen);
491         }
492
493 out_good:
494         ret = true;
495
496 out:
497         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
498         key_basic->n_proto = proto;
499         key_basic->ip_proto = ip_proto;
500
501         return ret;
502
503 out_bad:
504         ret = false;
505         goto out;
506 }
507 EXPORT_SYMBOL(__skb_flow_dissect);
508
509 static siphash_key_t hashrnd __read_mostly;
510 static __always_inline void __flow_hash_secret_init(void)
511 {
512         net_get_random_once(&hashrnd, sizeof(hashrnd));
513 }
514
515 static const void *flow_keys_hash_start(const struct flow_keys *flow)
516 {
517         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
518         return &flow->FLOW_KEYS_HASH_START_FIELD;
519 }
520
521 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
522 {
523         size_t len = offsetof(typeof(*flow), addrs) - FLOW_KEYS_HASH_OFFSET;
524
525         switch (flow->control.addr_type) {
526         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
527                 len += sizeof(flow->addrs.v4addrs);
528                 break;
529         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
530                 len += sizeof(flow->addrs.v6addrs);
531                 break;
532         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
533                 len += sizeof(flow->addrs.tipcaddrs);
534                 break;
535         }
536         return len;
537 }
538
539 __be32 flow_get_u32_src(const struct flow_keys *flow)
540 {
541         switch (flow->control.addr_type) {
542         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
543                 return flow->addrs.v4addrs.src;
544         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
545                 return (__force __be32)ipv6_addr_hash(
546                         &flow->addrs.v6addrs.src);
547         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
548                 return flow->addrs.tipcaddrs.srcnode;
549         default:
550                 return 0;
551         }
552 }
553 EXPORT_SYMBOL(flow_get_u32_src);
554
555 __be32 flow_get_u32_dst(const struct flow_keys *flow)
556 {
557         switch (flow->control.addr_type) {
558         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
559                 return flow->addrs.v4addrs.dst;
560         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
561                 return (__force __be32)ipv6_addr_hash(
562                         &flow->addrs.v6addrs.dst);
563         default:
564                 return 0;
565         }
566 }
567 EXPORT_SYMBOL(flow_get_u32_dst);
568
569 static inline void __flow_hash_consistentify(struct flow_keys *keys)
570 {
571         int addr_diff, i;
572
573         switch (keys->control.addr_type) {
574         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
575                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
576                             (__force u32)keys->addrs.v4addrs.src;
577                 if ((addr_diff < 0) ||
578                     (addr_diff == 0 &&
579                      ((__force u16)keys->ports.dst <
580                       (__force u16)keys->ports.src))) {
581                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
582                         swap(keys->ports.src, keys->ports.dst);
583                 }
584                 break;
585         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
586                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
587                                    &keys->addrs.v6addrs.src,
588                                    sizeof(keys->addrs.v6addrs.dst));
589                 if ((addr_diff < 0) ||
590                     (addr_diff == 0 &&
591                      ((__force u16)keys->ports.dst <
592                       (__force u16)keys->ports.src))) {
593                         for (i = 0; i < 4; i++)
594                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
595                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
596                         swap(keys->ports.src, keys->ports.dst);
597                 }
598                 break;
599         }
600 }
601
602 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
603                                         const siphash_key_t *keyval)
604 {
605         u32 hash;
606
607         __flow_hash_consistentify(keys);
608
609         hash = siphash(flow_keys_hash_start(keys),
610                        flow_keys_hash_length(keys), keyval);
611         if (!hash)
612                 hash = 1;
613
614         return hash;
615 }
616
617 u32 flow_hash_from_keys(struct flow_keys *keys)
618 {
619         __flow_hash_secret_init();
620         return __flow_hash_from_keys(keys, &hashrnd);
621 }
622 EXPORT_SYMBOL(flow_hash_from_keys);
623
624 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
625                                   struct flow_keys *keys,
626                                   const siphash_key_t *keyval)
627 {
628         skb_flow_dissect_flow_keys(skb, keys,
629                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
630
631         return __flow_hash_from_keys(keys, keyval);
632 }
633
634 struct _flow_keys_digest_data {
635         __be16  n_proto;
636         u8      ip_proto;
637         u8      padding;
638         __be32  ports;
639         __be32  src;
640         __be32  dst;
641 };
642
643 void make_flow_keys_digest(struct flow_keys_digest *digest,
644                            const struct flow_keys *flow)
645 {
646         struct _flow_keys_digest_data *data =
647             (struct _flow_keys_digest_data *)digest;
648
649         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
650
651         memset(digest, 0, sizeof(*digest));
652
653         data->n_proto = flow->basic.n_proto;
654         data->ip_proto = flow->basic.ip_proto;
655         data->ports = flow->ports.ports;
656         data->src = flow->addrs.v4addrs.src;
657         data->dst = flow->addrs.v4addrs.dst;
658 }
659 EXPORT_SYMBOL(make_flow_keys_digest);
660
661 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
662
663 u32 __skb_get_hash_symmetric(struct sk_buff *skb)
664 {
665         struct flow_keys keys;
666
667         __flow_hash_secret_init();
668
669         memset(&keys, 0, sizeof(keys));
670         __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
671                            NULL, 0, 0, 0,
672                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
673
674         return __flow_hash_from_keys(&keys, &hashrnd);
675 }
676 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
677
678 /**
679  * __skb_get_hash: calculate a flow hash
680  * @skb: sk_buff to calculate flow hash from
681  *
682  * This function calculates a flow hash based on src/dst addresses
683  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
684  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
685  * if hash is a canonical 4-tuple hash over transport ports.
686  */
687 void __skb_get_hash(struct sk_buff *skb)
688 {
689         struct flow_keys keys;
690
691         __flow_hash_secret_init();
692
693         __skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, &hashrnd),
694                           flow_keys_have_l4(&keys));
695 }
696 EXPORT_SYMBOL(__skb_get_hash);
697
698 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
699                            const siphash_key_t *perturb)
700 {
701         struct flow_keys keys;
702
703         return ___skb_get_hash(skb, &keys, perturb);
704 }
705 EXPORT_SYMBOL(skb_get_hash_perturb);
706
707 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
708 {
709         struct flow_keys keys;
710
711         memset(&keys, 0, sizeof(keys));
712
713         memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
714                sizeof(keys.addrs.v6addrs.src));
715         memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
716                sizeof(keys.addrs.v6addrs.dst));
717         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
718         keys.ports.src = fl6->fl6_sport;
719         keys.ports.dst = fl6->fl6_dport;
720         keys.keyid.keyid = fl6->fl6_gre_key;
721         keys.tags.flow_label = (__force u32)fl6->flowlabel;
722         keys.basic.ip_proto = fl6->flowi6_proto;
723
724         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
725                           flow_keys_have_l4(&keys));
726
727         return skb->hash;
728 }
729 EXPORT_SYMBOL(__skb_get_hash_flowi6);
730
731 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
732 {
733         struct flow_keys keys;
734
735         memset(&keys, 0, sizeof(keys));
736
737         keys.addrs.v4addrs.src = fl4->saddr;
738         keys.addrs.v4addrs.dst = fl4->daddr;
739         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
740         keys.ports.src = fl4->fl4_sport;
741         keys.ports.dst = fl4->fl4_dport;
742         keys.keyid.keyid = fl4->fl4_gre_key;
743         keys.basic.ip_proto = fl4->flowi4_proto;
744
745         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
746                           flow_keys_have_l4(&keys));
747
748         return skb->hash;
749 }
750 EXPORT_SYMBOL(__skb_get_hash_flowi4);
751
752 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
753                    const struct flow_keys *keys, int hlen)
754 {
755         u32 poff = keys->control.thoff;
756
757         switch (keys->basic.ip_proto) {
758         case IPPROTO_TCP: {
759                 /* access doff as u8 to avoid unaligned access */
760                 const u8 *doff;
761                 u8 _doff;
762
763                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
764                                             data, hlen, &_doff);
765                 if (!doff)
766                         return poff;
767
768                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
769                 break;
770         }
771         case IPPROTO_UDP:
772         case IPPROTO_UDPLITE:
773                 poff += sizeof(struct udphdr);
774                 break;
775         /* For the rest, we do not really care about header
776          * extensions at this point for now.
777          */
778         case IPPROTO_ICMP:
779                 poff += sizeof(struct icmphdr);
780                 break;
781         case IPPROTO_ICMPV6:
782                 poff += sizeof(struct icmp6hdr);
783                 break;
784         case IPPROTO_IGMP:
785                 poff += sizeof(struct igmphdr);
786                 break;
787         case IPPROTO_DCCP:
788                 poff += sizeof(struct dccp_hdr);
789                 break;
790         case IPPROTO_SCTP:
791                 poff += sizeof(struct sctphdr);
792                 break;
793         }
794
795         return poff;
796 }
797
798 /**
799  * skb_get_poff - get the offset to the payload
800  * @skb: sk_buff to get the payload offset from
801  *
802  * The function will get the offset to the payload as far as it could
803  * be dissected.  The main user is currently BPF, so that we can dynamically
804  * truncate packets without needing to push actual payload to the user
805  * space and can analyze headers only, instead.
806  */
807 u32 skb_get_poff(const struct sk_buff *skb)
808 {
809         struct flow_keys keys;
810
811         if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
812                 return 0;
813
814         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
815 }
816
817 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
818 {
819         memset(keys, 0, sizeof(*keys));
820
821         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
822             sizeof(keys->addrs.v6addrs.src));
823         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
824             sizeof(keys->addrs.v6addrs.dst));
825         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
826         keys->ports.src = fl6->fl6_sport;
827         keys->ports.dst = fl6->fl6_dport;
828         keys->keyid.keyid = fl6->fl6_gre_key;
829         keys->tags.flow_label = (__force u32)fl6->flowlabel;
830         keys->basic.ip_proto = fl6->flowi6_proto;
831
832         return flow_hash_from_keys(keys);
833 }
834 EXPORT_SYMBOL(__get_hash_from_flowi6);
835
836 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
837 {
838         memset(keys, 0, sizeof(*keys));
839
840         keys->addrs.v4addrs.src = fl4->saddr;
841         keys->addrs.v4addrs.dst = fl4->daddr;
842         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
843         keys->ports.src = fl4->fl4_sport;
844         keys->ports.dst = fl4->fl4_dport;
845         keys->keyid.keyid = fl4->fl4_gre_key;
846         keys->basic.ip_proto = fl4->flowi4_proto;
847
848         return flow_hash_from_keys(keys);
849 }
850 EXPORT_SYMBOL(__get_hash_from_flowi4);
851
852 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
853         {
854                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
855                 .offset = offsetof(struct flow_keys, control),
856         },
857         {
858                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
859                 .offset = offsetof(struct flow_keys, basic),
860         },
861         {
862                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
863                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
864         },
865         {
866                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
867                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
868         },
869         {
870                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
871                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
872         },
873         {
874                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
875                 .offset = offsetof(struct flow_keys, ports),
876         },
877         {
878                 .key_id = FLOW_DISSECTOR_KEY_VLANID,
879                 .offset = offsetof(struct flow_keys, tags),
880         },
881         {
882                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
883                 .offset = offsetof(struct flow_keys, tags),
884         },
885         {
886                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
887                 .offset = offsetof(struct flow_keys, keyid),
888         },
889 };
890
891 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
892         {
893                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
894                 .offset = offsetof(struct flow_keys, control),
895         },
896         {
897                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
898                 .offset = offsetof(struct flow_keys, basic),
899         },
900         {
901                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
902                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
903         },
904         {
905                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
906                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
907         },
908         {
909                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
910                 .offset = offsetof(struct flow_keys, ports),
911         },
912 };
913
914 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
915         {
916                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
917                 .offset = offsetof(struct flow_keys, control),
918         },
919         {
920                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
921                 .offset = offsetof(struct flow_keys, basic),
922         },
923 };
924
925 struct flow_dissector flow_keys_dissector __read_mostly;
926 EXPORT_SYMBOL(flow_keys_dissector);
927
928 struct flow_dissector flow_keys_buf_dissector __read_mostly;
929
930 static int __init init_default_flow_dissectors(void)
931 {
932         skb_flow_dissector_init(&flow_keys_dissector,
933                                 flow_keys_dissector_keys,
934                                 ARRAY_SIZE(flow_keys_dissector_keys));
935         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
936                                 flow_keys_dissector_symmetric_keys,
937                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
938         skb_flow_dissector_init(&flow_keys_buf_dissector,
939                                 flow_keys_buf_dissector_keys,
940                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
941         return 0;
942 }
943
944 core_initcall(init_default_flow_dissectors);