GNU Linux-libre 6.1.91-gnu
[releases.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87
88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90         if (in_compat_syscall()) {
91                 struct compat_sock_fprog f32;
92
93                 if (len != sizeof(f32))
94                         return -EINVAL;
95                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
96                         return -EFAULT;
97                 memset(dst, 0, sizeof(*dst));
98                 dst->len = f32.len;
99                 dst->filter = compat_ptr(f32.filter);
100         } else {
101                 if (len != sizeof(*dst))
102                         return -EINVAL;
103                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
104                         return -EFAULT;
105         }
106
107         return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110
111 /**
112  *      sk_filter_trim_cap - run a packet through a socket filter
113  *      @sk: sock associated with &sk_buff
114  *      @skb: buffer to filter
115  *      @cap: limit on how short the eBPF program may trim the packet
116  *
117  * Run the eBPF program and then cut skb->data to correct size returned by
118  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119  * than pkt_len we keep whole skb->data. This is the socket level
120  * wrapper to bpf_prog_run. It returns 0 if the packet should
121  * be accepted or -EPERM if the packet should be tossed.
122  *
123  */
124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126         int err;
127         struct sk_filter *filter;
128
129         /*
130          * If the skb was allocated from pfmemalloc reserves, only
131          * allow SOCK_MEMALLOC sockets to use it as this socket is
132          * helping free memory
133          */
134         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136                 return -ENOMEM;
137         }
138         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139         if (err)
140                 return err;
141
142         err = security_sock_rcv_skb(sk, skb);
143         if (err)
144                 return err;
145
146         rcu_read_lock();
147         filter = rcu_dereference(sk->sk_filter);
148         if (filter) {
149                 struct sock *save_sk = skb->sk;
150                 unsigned int pkt_len;
151
152                 skb->sk = sk;
153                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154                 skb->sk = save_sk;
155                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156         }
157         rcu_read_unlock();
158
159         return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162
163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165         return skb_get_poff(skb);
166 }
167
168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170         struct nlattr *nla;
171
172         if (skb_is_nonlinear(skb))
173                 return 0;
174
175         if (skb->len < sizeof(struct nlattr))
176                 return 0;
177
178         if (a > skb->len - sizeof(struct nlattr))
179                 return 0;
180
181         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182         if (nla)
183                 return (void *) nla - (void *) skb->data;
184
185         return 0;
186 }
187
188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190         struct nlattr *nla;
191
192         if (skb_is_nonlinear(skb))
193                 return 0;
194
195         if (skb->len < sizeof(struct nlattr))
196                 return 0;
197
198         if (a > skb->len - sizeof(struct nlattr))
199                 return 0;
200
201         nla = (struct nlattr *) &skb->data[a];
202         if (nla->nla_len > skb->len - a)
203                 return 0;
204
205         nla = nla_find_nested(nla, x);
206         if (nla)
207                 return (void *) nla - (void *) skb->data;
208
209         return 0;
210 }
211
212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213            data, int, headlen, int, offset)
214 {
215         u8 tmp, *ptr;
216         const int len = sizeof(tmp);
217
218         if (offset >= 0) {
219                 if (headlen - offset >= len)
220                         return *(u8 *)(data + offset);
221                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222                         return tmp;
223         } else {
224                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225                 if (likely(ptr))
226                         return *(u8 *)ptr;
227         }
228
229         return -EFAULT;
230 }
231
232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233            int, offset)
234 {
235         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236                                          offset);
237 }
238
239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240            data, int, headlen, int, offset)
241 {
242         __be16 tmp, *ptr;
243         const int len = sizeof(tmp);
244
245         if (offset >= 0) {
246                 if (headlen - offset >= len)
247                         return get_unaligned_be16(data + offset);
248                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249                         return be16_to_cpu(tmp);
250         } else {
251                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252                 if (likely(ptr))
253                         return get_unaligned_be16(ptr);
254         }
255
256         return -EFAULT;
257 }
258
259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260            int, offset)
261 {
262         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263                                           offset);
264 }
265
266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267            data, int, headlen, int, offset)
268 {
269         __be32 tmp, *ptr;
270         const int len = sizeof(tmp);
271
272         if (likely(offset >= 0)) {
273                 if (headlen - offset >= len)
274                         return get_unaligned_be32(data + offset);
275                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276                         return be32_to_cpu(tmp);
277         } else {
278                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279                 if (likely(ptr))
280                         return get_unaligned_be32(ptr);
281         }
282
283         return -EFAULT;
284 }
285
286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287            int, offset)
288 {
289         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290                                           offset);
291 }
292
293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294                               struct bpf_insn *insn_buf)
295 {
296         struct bpf_insn *insn = insn_buf;
297
298         switch (skb_field) {
299         case SKF_AD_MARK:
300                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301
302                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303                                       offsetof(struct sk_buff, mark));
304                 break;
305
306         case SKF_AD_PKTTYPE:
307                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312                 break;
313
314         case SKF_AD_QUEUE:
315                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316
317                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318                                       offsetof(struct sk_buff, queue_mapping));
319                 break;
320
321         case SKF_AD_VLAN_TAG:
322                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323
324                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326                                       offsetof(struct sk_buff, vlan_tci));
327                 break;
328         case SKF_AD_VLAN_TAG_PRESENT:
329                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
330                 if (PKT_VLAN_PRESENT_BIT)
331                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
332                 if (PKT_VLAN_PRESENT_BIT < 7)
333                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
334                 break;
335         }
336
337         return insn - insn_buf;
338 }
339
340 static bool convert_bpf_extensions(struct sock_filter *fp,
341                                    struct bpf_insn **insnp)
342 {
343         struct bpf_insn *insn = *insnp;
344         u32 cnt;
345
346         switch (fp->k) {
347         case SKF_AD_OFF + SKF_AD_PROTOCOL:
348                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349
350                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
351                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352                                       offsetof(struct sk_buff, protocol));
353                 /* A = ntohs(A) [emitting a nop or swap16] */
354                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355                 break;
356
357         case SKF_AD_OFF + SKF_AD_PKTTYPE:
358                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359                 insn += cnt - 1;
360                 break;
361
362         case SKF_AD_OFF + SKF_AD_IFINDEX:
363         case SKF_AD_OFF + SKF_AD_HATYPE:
364                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366
367                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368                                       BPF_REG_TMP, BPF_REG_CTX,
369                                       offsetof(struct sk_buff, dev));
370                 /* if (tmp != 0) goto pc + 1 */
371                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372                 *insn++ = BPF_EXIT_INSN();
373                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, ifindex));
376                 else
377                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378                                             offsetof(struct net_device, type));
379                 break;
380
381         case SKF_AD_OFF + SKF_AD_MARK:
382                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383                 insn += cnt - 1;
384                 break;
385
386         case SKF_AD_OFF + SKF_AD_RXHASH:
387                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388
389                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390                                     offsetof(struct sk_buff, hash));
391                 break;
392
393         case SKF_AD_OFF + SKF_AD_QUEUE:
394                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395                 insn += cnt - 1;
396                 break;
397
398         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400                                          BPF_REG_A, BPF_REG_CTX, insn);
401                 insn += cnt - 1;
402                 break;
403
404         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406                                          BPF_REG_A, BPF_REG_CTX, insn);
407                 insn += cnt - 1;
408                 break;
409
410         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412
413                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415                                       offsetof(struct sk_buff, vlan_proto));
416                 /* A = ntohs(A) [emitting a nop or swap16] */
417                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418                 break;
419
420         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421         case SKF_AD_OFF + SKF_AD_NLATTR:
422         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423         case SKF_AD_OFF + SKF_AD_CPU:
424         case SKF_AD_OFF + SKF_AD_RANDOM:
425                 /* arg1 = CTX */
426                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427                 /* arg2 = A */
428                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429                 /* arg3 = X */
430                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
432                 switch (fp->k) {
433                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_CPU:
443                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444                         break;
445                 case SKF_AD_OFF + SKF_AD_RANDOM:
446                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447                         bpf_user_rnd_init_once();
448                         break;
449                 }
450                 break;
451
452         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453                 /* A ^= X */
454                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455                 break;
456
457         default:
458                 /* This is just a dummy call to avoid letting the compiler
459                  * evict __bpf_call_base() as an optimization. Placed here
460                  * where no-one bothers.
461                  */
462                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463                 return false;
464         }
465
466         *insnp = insn;
467         return true;
468 }
469
470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474         bool endian = BPF_SIZE(fp->code) == BPF_H ||
475                       BPF_SIZE(fp->code) == BPF_W;
476         bool indirect = BPF_MODE(fp->code) == BPF_IND;
477         const int ip_align = NET_IP_ALIGN;
478         struct bpf_insn *insn = *insnp;
479         int offset = fp->k;
480
481         if (!indirect &&
482             ((unaligned_ok && offset >= 0) ||
483              (!unaligned_ok && offset >= 0 &&
484               offset + ip_align >= 0 &&
485               offset + ip_align % size == 0))) {
486                 bool ldx_off_ok = offset <= S16_MAX;
487
488                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489                 if (offset)
490                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492                                       size, 2 + endian + (!ldx_off_ok * 2));
493                 if (ldx_off_ok) {
494                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495                                               BPF_REG_D, offset);
496                 } else {
497                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500                                               BPF_REG_TMP, 0);
501                 }
502                 if (endian)
503                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504                 *insn++ = BPF_JMP_A(8);
505         }
506
507         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510         if (!indirect) {
511                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512         } else {
513                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514                 if (fp->k)
515                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516         }
517
518         switch (BPF_SIZE(fp->code)) {
519         case BPF_B:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521                 break;
522         case BPF_H:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524                 break;
525         case BPF_W:
526                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527                 break;
528         default:
529                 return false;
530         }
531
532         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534         *insn   = BPF_EXIT_INSN();
535
536         *insnp = insn;
537         return true;
538 }
539
540 /**
541  *      bpf_convert_filter - convert filter program
542  *      @prog: the user passed filter program
543  *      @len: the length of the user passed filter program
544  *      @new_prog: allocated 'struct bpf_prog' or NULL
545  *      @new_len: pointer to store length of converted program
546  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
547  *
548  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549  * style extended BPF (eBPF).
550  * Conversion workflow:
551  *
552  * 1) First pass for calculating the new program length:
553  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554  *
555  * 2) 2nd pass to remap in two passes: 1st pass finds new
556  *    jump offsets, 2nd pass remapping:
557  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558  */
559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560                               struct bpf_prog *new_prog, int *new_len,
561                               bool *seen_ld_abs)
562 {
563         int new_flen = 0, pass = 0, target, i, stack_off;
564         struct bpf_insn *new_insn, *first_insn = NULL;
565         struct sock_filter *fp;
566         int *addrs = NULL;
567         u8 bpf_src;
568
569         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571
572         if (len <= 0 || len > BPF_MAXINSNS)
573                 return -EINVAL;
574
575         if (new_prog) {
576                 first_insn = new_prog->insnsi;
577                 addrs = kcalloc(len, sizeof(*addrs),
578                                 GFP_KERNEL | __GFP_NOWARN);
579                 if (!addrs)
580                         return -ENOMEM;
581         }
582
583 do_pass:
584         new_insn = first_insn;
585         fp = prog;
586
587         /* Classic BPF related prologue emission. */
588         if (new_prog) {
589                 /* Classic BPF expects A and X to be reset first. These need
590                  * to be guaranteed to be the first two instructions.
591                  */
592                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594
595                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
596                  * In eBPF case it's done by the compiler, here we need to
597                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598                  */
599                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600                 if (*seen_ld_abs) {
601                         /* For packet access in classic BPF, cache skb->data
602                          * in callee-saved BPF R8 and skb->len - skb->data_len
603                          * (headlen) in BPF R9. Since classic BPF is read-only
604                          * on CTX, we only need to cache it once.
605                          */
606                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607                                                   BPF_REG_D, BPF_REG_CTX,
608                                                   offsetof(struct sk_buff, data));
609                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610                                                   offsetof(struct sk_buff, len));
611                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612                                                   offsetof(struct sk_buff, data_len));
613                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614                 }
615         } else {
616                 new_insn += 3;
617         }
618
619         for (i = 0; i < len; fp++, i++) {
620                 struct bpf_insn tmp_insns[32] = { };
621                 struct bpf_insn *insn = tmp_insns;
622
623                 if (addrs)
624                         addrs[i] = new_insn - first_insn;
625
626                 switch (fp->code) {
627                 /* All arithmetic insns and skb loads map as-is. */
628                 case BPF_ALU | BPF_ADD | BPF_X:
629                 case BPF_ALU | BPF_ADD | BPF_K:
630                 case BPF_ALU | BPF_SUB | BPF_X:
631                 case BPF_ALU | BPF_SUB | BPF_K:
632                 case BPF_ALU | BPF_AND | BPF_X:
633                 case BPF_ALU | BPF_AND | BPF_K:
634                 case BPF_ALU | BPF_OR | BPF_X:
635                 case BPF_ALU | BPF_OR | BPF_K:
636                 case BPF_ALU | BPF_LSH | BPF_X:
637                 case BPF_ALU | BPF_LSH | BPF_K:
638                 case BPF_ALU | BPF_RSH | BPF_X:
639                 case BPF_ALU | BPF_RSH | BPF_K:
640                 case BPF_ALU | BPF_XOR | BPF_X:
641                 case BPF_ALU | BPF_XOR | BPF_K:
642                 case BPF_ALU | BPF_MUL | BPF_X:
643                 case BPF_ALU | BPF_MUL | BPF_K:
644                 case BPF_ALU | BPF_DIV | BPF_X:
645                 case BPF_ALU | BPF_DIV | BPF_K:
646                 case BPF_ALU | BPF_MOD | BPF_X:
647                 case BPF_ALU | BPF_MOD | BPF_K:
648                 case BPF_ALU | BPF_NEG:
649                 case BPF_LD | BPF_ABS | BPF_W:
650                 case BPF_LD | BPF_ABS | BPF_H:
651                 case BPF_LD | BPF_ABS | BPF_B:
652                 case BPF_LD | BPF_IND | BPF_W:
653                 case BPF_LD | BPF_IND | BPF_H:
654                 case BPF_LD | BPF_IND | BPF_B:
655                         /* Check for overloaded BPF extension and
656                          * directly convert it if found, otherwise
657                          * just move on with mapping.
658                          */
659                         if (BPF_CLASS(fp->code) == BPF_LD &&
660                             BPF_MODE(fp->code) == BPF_ABS &&
661                             convert_bpf_extensions(fp, &insn))
662                                 break;
663                         if (BPF_CLASS(fp->code) == BPF_LD &&
664                             convert_bpf_ld_abs(fp, &insn)) {
665                                 *seen_ld_abs = true;
666                                 break;
667                         }
668
669                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672                                 /* Error with exception code on div/mod by 0.
673                                  * For cBPF programs, this was always return 0.
674                                  */
675                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677                                 *insn++ = BPF_EXIT_INSN();
678                         }
679
680                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681                         break;
682
683                 /* Jump transformation cannot use BPF block macros
684                  * everywhere as offset calculation and target updates
685                  * require a bit more work than the rest, i.e. jump
686                  * opcodes map as-is, but offsets need adjustment.
687                  */
688
689 #define BPF_EMIT_JMP                                                    \
690         do {                                                            \
691                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
692                 s32 off;                                                \
693                                                                         \
694                 if (target >= len || target < 0)                        \
695                         goto err;                                       \
696                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
697                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
698                 off -= insn - tmp_insns;                                \
699                 /* Reject anything not fitting into insn->off. */       \
700                 if (off < off_min || off > off_max)                     \
701                         goto err;                                       \
702                 insn->off = off;                                        \
703         } while (0)
704
705                 case BPF_JMP | BPF_JA:
706                         target = i + fp->k + 1;
707                         insn->code = fp->code;
708                         BPF_EMIT_JMP;
709                         break;
710
711                 case BPF_JMP | BPF_JEQ | BPF_K:
712                 case BPF_JMP | BPF_JEQ | BPF_X:
713                 case BPF_JMP | BPF_JSET | BPF_K:
714                 case BPF_JMP | BPF_JSET | BPF_X:
715                 case BPF_JMP | BPF_JGT | BPF_K:
716                 case BPF_JMP | BPF_JGT | BPF_X:
717                 case BPF_JMP | BPF_JGE | BPF_K:
718                 case BPF_JMP | BPF_JGE | BPF_X:
719                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720                                 /* BPF immediates are signed, zero extend
721                                  * immediate into tmp register and use it
722                                  * in compare insn.
723                                  */
724                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725
726                                 insn->dst_reg = BPF_REG_A;
727                                 insn->src_reg = BPF_REG_TMP;
728                                 bpf_src = BPF_X;
729                         } else {
730                                 insn->dst_reg = BPF_REG_A;
731                                 insn->imm = fp->k;
732                                 bpf_src = BPF_SRC(fp->code);
733                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734                         }
735
736                         /* Common case where 'jump_false' is next insn. */
737                         if (fp->jf == 0) {
738                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739                                 target = i + fp->jt + 1;
740                                 BPF_EMIT_JMP;
741                                 break;
742                         }
743
744                         /* Convert some jumps when 'jump_true' is next insn. */
745                         if (fp->jt == 0) {
746                                 switch (BPF_OP(fp->code)) {
747                                 case BPF_JEQ:
748                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
749                                         break;
750                                 case BPF_JGT:
751                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
752                                         break;
753                                 case BPF_JGE:
754                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
755                                         break;
756                                 default:
757                                         goto jmp_rest;
758                                 }
759
760                                 target = i + fp->jf + 1;
761                                 BPF_EMIT_JMP;
762                                 break;
763                         }
764 jmp_rest:
765                         /* Other jumps are mapped into two insns: Jxx and JA. */
766                         target = i + fp->jt + 1;
767                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768                         BPF_EMIT_JMP;
769                         insn++;
770
771                         insn->code = BPF_JMP | BPF_JA;
772                         target = i + fp->jf + 1;
773                         BPF_EMIT_JMP;
774                         break;
775
776                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777                 case BPF_LDX | BPF_MSH | BPF_B: {
778                         struct sock_filter tmp = {
779                                 .code   = BPF_LD | BPF_ABS | BPF_B,
780                                 .k      = fp->k,
781                         };
782
783                         *seen_ld_abs = true;
784
785                         /* X = A */
786                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
788                         convert_bpf_ld_abs(&tmp, &insn);
789                         insn++;
790                         /* A &= 0xf */
791                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792                         /* A <<= 2 */
793                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794                         /* tmp = X */
795                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796                         /* X = A */
797                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798                         /* A = tmp */
799                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800                         break;
801                 }
802                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
803                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804                  */
805                 case BPF_RET | BPF_A:
806                 case BPF_RET | BPF_K:
807                         if (BPF_RVAL(fp->code) == BPF_K)
808                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809                                                         0, fp->k);
810                         *insn = BPF_EXIT_INSN();
811                         break;
812
813                 /* Store to stack. */
814                 case BPF_ST:
815                 case BPF_STX:
816                         stack_off = fp->k * 4  + 4;
817                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
819                                             -stack_off);
820                         /* check_load_and_stores() verifies that classic BPF can
821                          * load from stack only after write, so tracking
822                          * stack_depth for ST|STX insns is enough
823                          */
824                         if (new_prog && new_prog->aux->stack_depth < stack_off)
825                                 new_prog->aux->stack_depth = stack_off;
826                         break;
827
828                 /* Load from stack. */
829                 case BPF_LD | BPF_MEM:
830                 case BPF_LDX | BPF_MEM:
831                         stack_off = fp->k * 4  + 4;
832                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
833                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834                                             -stack_off);
835                         break;
836
837                 /* A = K or X = K */
838                 case BPF_LD | BPF_IMM:
839                 case BPF_LDX | BPF_IMM:
840                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841                                               BPF_REG_A : BPF_REG_X, fp->k);
842                         break;
843
844                 /* X = A */
845                 case BPF_MISC | BPF_TAX:
846                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847                         break;
848
849                 /* A = X */
850                 case BPF_MISC | BPF_TXA:
851                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852                         break;
853
854                 /* A = skb->len or X = skb->len */
855                 case BPF_LD | BPF_W | BPF_LEN:
856                 case BPF_LDX | BPF_W | BPF_LEN:
857                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859                                             offsetof(struct sk_buff, len));
860                         break;
861
862                 /* Access seccomp_data fields. */
863                 case BPF_LDX | BPF_ABS | BPF_W:
864                         /* A = *(u32 *) (ctx + K) */
865                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866                         break;
867
868                 /* Unknown instruction. */
869                 default:
870                         goto err;
871                 }
872
873                 insn++;
874                 if (new_prog)
875                         memcpy(new_insn, tmp_insns,
876                                sizeof(*insn) * (insn - tmp_insns));
877                 new_insn += insn - tmp_insns;
878         }
879
880         if (!new_prog) {
881                 /* Only calculating new length. */
882                 *new_len = new_insn - first_insn;
883                 if (*seen_ld_abs)
884                         *new_len += 4; /* Prologue bits. */
885                 return 0;
886         }
887
888         pass++;
889         if (new_flen != new_insn - first_insn) {
890                 new_flen = new_insn - first_insn;
891                 if (pass > 2)
892                         goto err;
893                 goto do_pass;
894         }
895
896         kfree(addrs);
897         BUG_ON(*new_len != new_flen);
898         return 0;
899 err:
900         kfree(addrs);
901         return -EINVAL;
902 }
903
904 /* Security:
905  *
906  * As we dont want to clear mem[] array for each packet going through
907  * __bpf_prog_run(), we check that filter loaded by user never try to read
908  * a cell if not previously written, and we check all branches to be sure
909  * a malicious user doesn't try to abuse us.
910  */
911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914         int pc, ret = 0;
915
916         BUILD_BUG_ON(BPF_MEMWORDS > 16);
917
918         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919         if (!masks)
920                 return -ENOMEM;
921
922         memset(masks, 0xff, flen * sizeof(*masks));
923
924         for (pc = 0; pc < flen; pc++) {
925                 memvalid &= masks[pc];
926
927                 switch (filter[pc].code) {
928                 case BPF_ST:
929                 case BPF_STX:
930                         memvalid |= (1 << filter[pc].k);
931                         break;
932                 case BPF_LD | BPF_MEM:
933                 case BPF_LDX | BPF_MEM:
934                         if (!(memvalid & (1 << filter[pc].k))) {
935                                 ret = -EINVAL;
936                                 goto error;
937                         }
938                         break;
939                 case BPF_JMP | BPF_JA:
940                         /* A jump must set masks on target */
941                         masks[pc + 1 + filter[pc].k] &= memvalid;
942                         memvalid = ~0;
943                         break;
944                 case BPF_JMP | BPF_JEQ | BPF_K:
945                 case BPF_JMP | BPF_JEQ | BPF_X:
946                 case BPF_JMP | BPF_JGE | BPF_K:
947                 case BPF_JMP | BPF_JGE | BPF_X:
948                 case BPF_JMP | BPF_JGT | BPF_K:
949                 case BPF_JMP | BPF_JGT | BPF_X:
950                 case BPF_JMP | BPF_JSET | BPF_K:
951                 case BPF_JMP | BPF_JSET | BPF_X:
952                         /* A jump must set masks on targets */
953                         masks[pc + 1 + filter[pc].jt] &= memvalid;
954                         masks[pc + 1 + filter[pc].jf] &= memvalid;
955                         memvalid = ~0;
956                         break;
957                 }
958         }
959 error:
960         kfree(masks);
961         return ret;
962 }
963
964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966         static const bool codes[] = {
967                 /* 32 bit ALU operations */
968                 [BPF_ALU | BPF_ADD | BPF_K] = true,
969                 [BPF_ALU | BPF_ADD | BPF_X] = true,
970                 [BPF_ALU | BPF_SUB | BPF_K] = true,
971                 [BPF_ALU | BPF_SUB | BPF_X] = true,
972                 [BPF_ALU | BPF_MUL | BPF_K] = true,
973                 [BPF_ALU | BPF_MUL | BPF_X] = true,
974                 [BPF_ALU | BPF_DIV | BPF_K] = true,
975                 [BPF_ALU | BPF_DIV | BPF_X] = true,
976                 [BPF_ALU | BPF_MOD | BPF_K] = true,
977                 [BPF_ALU | BPF_MOD | BPF_X] = true,
978                 [BPF_ALU | BPF_AND | BPF_K] = true,
979                 [BPF_ALU | BPF_AND | BPF_X] = true,
980                 [BPF_ALU | BPF_OR | BPF_K] = true,
981                 [BPF_ALU | BPF_OR | BPF_X] = true,
982                 [BPF_ALU | BPF_XOR | BPF_K] = true,
983                 [BPF_ALU | BPF_XOR | BPF_X] = true,
984                 [BPF_ALU | BPF_LSH | BPF_K] = true,
985                 [BPF_ALU | BPF_LSH | BPF_X] = true,
986                 [BPF_ALU | BPF_RSH | BPF_K] = true,
987                 [BPF_ALU | BPF_RSH | BPF_X] = true,
988                 [BPF_ALU | BPF_NEG] = true,
989                 /* Load instructions */
990                 [BPF_LD | BPF_W | BPF_ABS] = true,
991                 [BPF_LD | BPF_H | BPF_ABS] = true,
992                 [BPF_LD | BPF_B | BPF_ABS] = true,
993                 [BPF_LD | BPF_W | BPF_LEN] = true,
994                 [BPF_LD | BPF_W | BPF_IND] = true,
995                 [BPF_LD | BPF_H | BPF_IND] = true,
996                 [BPF_LD | BPF_B | BPF_IND] = true,
997                 [BPF_LD | BPF_IMM] = true,
998                 [BPF_LD | BPF_MEM] = true,
999                 [BPF_LDX | BPF_W | BPF_LEN] = true,
1000                 [BPF_LDX | BPF_B | BPF_MSH] = true,
1001                 [BPF_LDX | BPF_IMM] = true,
1002                 [BPF_LDX | BPF_MEM] = true,
1003                 /* Store instructions */
1004                 [BPF_ST] = true,
1005                 [BPF_STX] = true,
1006                 /* Misc instructions */
1007                 [BPF_MISC | BPF_TAX] = true,
1008                 [BPF_MISC | BPF_TXA] = true,
1009                 /* Return instructions */
1010                 [BPF_RET | BPF_K] = true,
1011                 [BPF_RET | BPF_A] = true,
1012                 /* Jump instructions */
1013                 [BPF_JMP | BPF_JA] = true,
1014                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1015                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1016                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1017                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1018                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1019                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1020                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1021                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1022         };
1023
1024         if (code_to_probe >= ARRAY_SIZE(codes))
1025                 return false;
1026
1027         return codes[code_to_probe];
1028 }
1029
1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031                                 unsigned int flen)
1032 {
1033         if (filter == NULL)
1034                 return false;
1035         if (flen == 0 || flen > BPF_MAXINSNS)
1036                 return false;
1037
1038         return true;
1039 }
1040
1041 /**
1042  *      bpf_check_classic - verify socket filter code
1043  *      @filter: filter to verify
1044  *      @flen: length of filter
1045  *
1046  * Check the user's filter code. If we let some ugly
1047  * filter code slip through kaboom! The filter must contain
1048  * no references or jumps that are out of range, no illegal
1049  * instructions, and must end with a RET instruction.
1050  *
1051  * All jumps are forward as they are not signed.
1052  *
1053  * Returns 0 if the rule set is legal or -EINVAL if not.
1054  */
1055 static int bpf_check_classic(const struct sock_filter *filter,
1056                              unsigned int flen)
1057 {
1058         bool anc_found;
1059         int pc;
1060
1061         /* Check the filter code now */
1062         for (pc = 0; pc < flen; pc++) {
1063                 const struct sock_filter *ftest = &filter[pc];
1064
1065                 /* May we actually operate on this code? */
1066                 if (!chk_code_allowed(ftest->code))
1067                         return -EINVAL;
1068
1069                 /* Some instructions need special checks */
1070                 switch (ftest->code) {
1071                 case BPF_ALU | BPF_DIV | BPF_K:
1072                 case BPF_ALU | BPF_MOD | BPF_K:
1073                         /* Check for division by zero */
1074                         if (ftest->k == 0)
1075                                 return -EINVAL;
1076                         break;
1077                 case BPF_ALU | BPF_LSH | BPF_K:
1078                 case BPF_ALU | BPF_RSH | BPF_K:
1079                         if (ftest->k >= 32)
1080                                 return -EINVAL;
1081                         break;
1082                 case BPF_LD | BPF_MEM:
1083                 case BPF_LDX | BPF_MEM:
1084                 case BPF_ST:
1085                 case BPF_STX:
1086                         /* Check for invalid memory addresses */
1087                         if (ftest->k >= BPF_MEMWORDS)
1088                                 return -EINVAL;
1089                         break;
1090                 case BPF_JMP | BPF_JA:
1091                         /* Note, the large ftest->k might cause loops.
1092                          * Compare this with conditional jumps below,
1093                          * where offsets are limited. --ANK (981016)
1094                          */
1095                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1096                                 return -EINVAL;
1097                         break;
1098                 case BPF_JMP | BPF_JEQ | BPF_K:
1099                 case BPF_JMP | BPF_JEQ | BPF_X:
1100                 case BPF_JMP | BPF_JGE | BPF_K:
1101                 case BPF_JMP | BPF_JGE | BPF_X:
1102                 case BPF_JMP | BPF_JGT | BPF_K:
1103                 case BPF_JMP | BPF_JGT | BPF_X:
1104                 case BPF_JMP | BPF_JSET | BPF_K:
1105                 case BPF_JMP | BPF_JSET | BPF_X:
1106                         /* Both conditionals must be safe */
1107                         if (pc + ftest->jt + 1 >= flen ||
1108                             pc + ftest->jf + 1 >= flen)
1109                                 return -EINVAL;
1110                         break;
1111                 case BPF_LD | BPF_W | BPF_ABS:
1112                 case BPF_LD | BPF_H | BPF_ABS:
1113                 case BPF_LD | BPF_B | BPF_ABS:
1114                         anc_found = false;
1115                         if (bpf_anc_helper(ftest) & BPF_ANC)
1116                                 anc_found = true;
1117                         /* Ancillary operation unknown or unsupported */
1118                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119                                 return -EINVAL;
1120                 }
1121         }
1122
1123         /* Last instruction must be a RET code */
1124         switch (filter[flen - 1].code) {
1125         case BPF_RET | BPF_K:
1126         case BPF_RET | BPF_A:
1127                 return check_load_and_stores(filter, flen);
1128         }
1129
1130         return -EINVAL;
1131 }
1132
1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134                                       const struct sock_fprog *fprog)
1135 {
1136         unsigned int fsize = bpf_classic_proglen(fprog);
1137         struct sock_fprog_kern *fkprog;
1138
1139         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140         if (!fp->orig_prog)
1141                 return -ENOMEM;
1142
1143         fkprog = fp->orig_prog;
1144         fkprog->len = fprog->len;
1145
1146         fkprog->filter = kmemdup(fp->insns, fsize,
1147                                  GFP_KERNEL | __GFP_NOWARN);
1148         if (!fkprog->filter) {
1149                 kfree(fp->orig_prog);
1150                 return -ENOMEM;
1151         }
1152
1153         return 0;
1154 }
1155
1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158         struct sock_fprog_kern *fprog = fp->orig_prog;
1159
1160         if (fprog) {
1161                 kfree(fprog->filter);
1162                 kfree(fprog);
1163         }
1164 }
1165
1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169                 bpf_prog_put(prog);
1170         } else {
1171                 bpf_release_orig_filter(prog);
1172                 bpf_prog_free(prog);
1173         }
1174 }
1175
1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178         __bpf_prog_release(fp->prog);
1179         kfree(fp);
1180 }
1181
1182 /**
1183  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1184  *      @rcu: rcu_head that contains the sk_filter to free
1185  */
1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189
1190         __sk_filter_release(fp);
1191 }
1192
1193 /**
1194  *      sk_filter_release - release a socket filter
1195  *      @fp: filter to remove
1196  *
1197  *      Remove a filter from a socket and release its resources.
1198  */
1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201         if (refcount_dec_and_test(&fp->refcnt))
1202                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204
1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207         u32 filter_size = bpf_prog_size(fp->prog->len);
1208
1209         atomic_sub(filter_size, &sk->sk_omem_alloc);
1210         sk_filter_release(fp);
1211 }
1212
1213 /* try to charge the socket memory if there is space available
1214  * return true on success
1215  */
1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218         u32 filter_size = bpf_prog_size(fp->prog->len);
1219         int optmem_max = READ_ONCE(sysctl_optmem_max);
1220
1221         /* same check as in sock_kmalloc() */
1222         if (filter_size <= optmem_max &&
1223             atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224                 atomic_add(filter_size, &sk->sk_omem_alloc);
1225                 return true;
1226         }
1227         return false;
1228 }
1229
1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232         if (!refcount_inc_not_zero(&fp->refcnt))
1233                 return false;
1234
1235         if (!__sk_filter_charge(sk, fp)) {
1236                 sk_filter_release(fp);
1237                 return false;
1238         }
1239         return true;
1240 }
1241
1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244         struct sock_filter *old_prog;
1245         struct bpf_prog *old_fp;
1246         int err, new_len, old_len = fp->len;
1247         bool seen_ld_abs = false;
1248
1249         /* We are free to overwrite insns et al right here as it won't be used at
1250          * this point in time anymore internally after the migration to the eBPF
1251          * instruction representation.
1252          */
1253         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254                      sizeof(struct bpf_insn));
1255
1256         /* Conversion cannot happen on overlapping memory areas,
1257          * so we need to keep the user BPF around until the 2nd
1258          * pass. At this time, the user BPF is stored in fp->insns.
1259          */
1260         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261                            GFP_KERNEL | __GFP_NOWARN);
1262         if (!old_prog) {
1263                 err = -ENOMEM;
1264                 goto out_err;
1265         }
1266
1267         /* 1st pass: calculate the new program length. */
1268         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269                                  &seen_ld_abs);
1270         if (err)
1271                 goto out_err_free;
1272
1273         /* Expand fp for appending the new filter representation. */
1274         old_fp = fp;
1275         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276         if (!fp) {
1277                 /* The old_fp is still around in case we couldn't
1278                  * allocate new memory, so uncharge on that one.
1279                  */
1280                 fp = old_fp;
1281                 err = -ENOMEM;
1282                 goto out_err_free;
1283         }
1284
1285         fp->len = new_len;
1286
1287         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289                                  &seen_ld_abs);
1290         if (err)
1291                 /* 2nd bpf_convert_filter() can fail only if it fails
1292                  * to allocate memory, remapping must succeed. Note,
1293                  * that at this time old_fp has already been released
1294                  * by krealloc().
1295                  */
1296                 goto out_err_free;
1297
1298         fp = bpf_prog_select_runtime(fp, &err);
1299         if (err)
1300                 goto out_err_free;
1301
1302         kfree(old_prog);
1303         return fp;
1304
1305 out_err_free:
1306         kfree(old_prog);
1307 out_err:
1308         __bpf_prog_release(fp);
1309         return ERR_PTR(err);
1310 }
1311
1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313                                            bpf_aux_classic_check_t trans)
1314 {
1315         int err;
1316
1317         fp->bpf_func = NULL;
1318         fp->jited = 0;
1319
1320         err = bpf_check_classic(fp->insns, fp->len);
1321         if (err) {
1322                 __bpf_prog_release(fp);
1323                 return ERR_PTR(err);
1324         }
1325
1326         /* There might be additional checks and transformations
1327          * needed on classic filters, f.e. in case of seccomp.
1328          */
1329         if (trans) {
1330                 err = trans(fp->insns, fp->len);
1331                 if (err) {
1332                         __bpf_prog_release(fp);
1333                         return ERR_PTR(err);
1334                 }
1335         }
1336
1337         /* Probe if we can JIT compile the filter and if so, do
1338          * the compilation of the filter.
1339          */
1340         bpf_jit_compile(fp);
1341
1342         /* JIT compiler couldn't process this filter, so do the eBPF translation
1343          * for the optimized interpreter.
1344          */
1345         if (!fp->jited)
1346                 fp = bpf_migrate_filter(fp);
1347
1348         return fp;
1349 }
1350
1351 /**
1352  *      bpf_prog_create - create an unattached filter
1353  *      @pfp: the unattached filter that is created
1354  *      @fprog: the filter program
1355  *
1356  * Create a filter independent of any socket. We first run some
1357  * sanity checks on it to make sure it does not explode on us later.
1358  * If an error occurs or there is insufficient memory for the filter
1359  * a negative errno code is returned. On success the return is zero.
1360  */
1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363         unsigned int fsize = bpf_classic_proglen(fprog);
1364         struct bpf_prog *fp;
1365
1366         /* Make sure new filter is there and in the right amounts. */
1367         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368                 return -EINVAL;
1369
1370         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371         if (!fp)
1372                 return -ENOMEM;
1373
1374         memcpy(fp->insns, fprog->filter, fsize);
1375
1376         fp->len = fprog->len;
1377         /* Since unattached filters are not copied back to user
1378          * space through sk_get_filter(), we do not need to hold
1379          * a copy here, and can spare us the work.
1380          */
1381         fp->orig_prog = NULL;
1382
1383         /* bpf_prepare_filter() already takes care of freeing
1384          * memory in case something goes wrong.
1385          */
1386         fp = bpf_prepare_filter(fp, NULL);
1387         if (IS_ERR(fp))
1388                 return PTR_ERR(fp);
1389
1390         *pfp = fp;
1391         return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394
1395 /**
1396  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1397  *      @pfp: the unattached filter that is created
1398  *      @fprog: the filter program
1399  *      @trans: post-classic verifier transformation handler
1400  *      @save_orig: save classic BPF program
1401  *
1402  * This function effectively does the same as bpf_prog_create(), only
1403  * that it builds up its insns buffer from user space provided buffer.
1404  * It also allows for passing a bpf_aux_classic_check_t handler.
1405  */
1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407                               bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409         unsigned int fsize = bpf_classic_proglen(fprog);
1410         struct bpf_prog *fp;
1411         int err;
1412
1413         /* Make sure new filter is there and in the right amounts. */
1414         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415                 return -EINVAL;
1416
1417         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418         if (!fp)
1419                 return -ENOMEM;
1420
1421         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422                 __bpf_prog_free(fp);
1423                 return -EFAULT;
1424         }
1425
1426         fp->len = fprog->len;
1427         fp->orig_prog = NULL;
1428
1429         if (save_orig) {
1430                 err = bpf_prog_store_orig_filter(fp, fprog);
1431                 if (err) {
1432                         __bpf_prog_free(fp);
1433                         return -ENOMEM;
1434                 }
1435         }
1436
1437         /* bpf_prepare_filter() already takes care of freeing
1438          * memory in case something goes wrong.
1439          */
1440         fp = bpf_prepare_filter(fp, trans);
1441         if (IS_ERR(fp))
1442                 return PTR_ERR(fp);
1443
1444         *pfp = fp;
1445         return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448
1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451         __bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454
1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457         struct sk_filter *fp, *old_fp;
1458
1459         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460         if (!fp)
1461                 return -ENOMEM;
1462
1463         fp->prog = prog;
1464
1465         if (!__sk_filter_charge(sk, fp)) {
1466                 kfree(fp);
1467                 return -ENOMEM;
1468         }
1469         refcount_set(&fp->refcnt, 1);
1470
1471         old_fp = rcu_dereference_protected(sk->sk_filter,
1472                                            lockdep_sock_is_held(sk));
1473         rcu_assign_pointer(sk->sk_filter, fp);
1474
1475         if (old_fp)
1476                 sk_filter_uncharge(sk, old_fp);
1477
1478         return 0;
1479 }
1480
1481 static
1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484         unsigned int fsize = bpf_classic_proglen(fprog);
1485         struct bpf_prog *prog;
1486         int err;
1487
1488         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489                 return ERR_PTR(-EPERM);
1490
1491         /* Make sure new filter is there and in the right amounts. */
1492         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493                 return ERR_PTR(-EINVAL);
1494
1495         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496         if (!prog)
1497                 return ERR_PTR(-ENOMEM);
1498
1499         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500                 __bpf_prog_free(prog);
1501                 return ERR_PTR(-EFAULT);
1502         }
1503
1504         prog->len = fprog->len;
1505
1506         err = bpf_prog_store_orig_filter(prog, fprog);
1507         if (err) {
1508                 __bpf_prog_free(prog);
1509                 return ERR_PTR(-ENOMEM);
1510         }
1511
1512         /* bpf_prepare_filter() already takes care of freeing
1513          * memory in case something goes wrong.
1514          */
1515         return bpf_prepare_filter(prog, NULL);
1516 }
1517
1518 /**
1519  *      sk_attach_filter - attach a socket filter
1520  *      @fprog: the filter program
1521  *      @sk: the socket to use
1522  *
1523  * Attach the user's filter code. We first run some sanity checks on
1524  * it to make sure it does not explode on us later. If an error
1525  * occurs or there is insufficient memory for the filter a negative
1526  * errno code is returned. On success the return is zero.
1527  */
1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530         struct bpf_prog *prog = __get_filter(fprog, sk);
1531         int err;
1532
1533         if (IS_ERR(prog))
1534                 return PTR_ERR(prog);
1535
1536         err = __sk_attach_prog(prog, sk);
1537         if (err < 0) {
1538                 __bpf_prog_release(prog);
1539                 return err;
1540         }
1541
1542         return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545
1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548         struct bpf_prog *prog = __get_filter(fprog, sk);
1549         int err;
1550
1551         if (IS_ERR(prog))
1552                 return PTR_ERR(prog);
1553
1554         if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555                 err = -ENOMEM;
1556         else
1557                 err = reuseport_attach_prog(sk, prog);
1558
1559         if (err)
1560                 __bpf_prog_release(prog);
1561
1562         return err;
1563 }
1564
1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568                 return ERR_PTR(-EPERM);
1569
1570         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572
1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575         struct bpf_prog *prog = __get_bpf(ufd, sk);
1576         int err;
1577
1578         if (IS_ERR(prog))
1579                 return PTR_ERR(prog);
1580
1581         err = __sk_attach_prog(prog, sk);
1582         if (err < 0) {
1583                 bpf_prog_put(prog);
1584                 return err;
1585         }
1586
1587         return 0;
1588 }
1589
1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592         struct bpf_prog *prog;
1593         int err;
1594
1595         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596                 return -EPERM;
1597
1598         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599         if (PTR_ERR(prog) == -EINVAL)
1600                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601         if (IS_ERR(prog))
1602                 return PTR_ERR(prog);
1603
1604         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606                  * bpf prog (e.g. sockmap).  It depends on the
1607                  * limitation imposed by bpf_prog_load().
1608                  * Hence, sysctl_optmem_max is not checked.
1609                  */
1610                 if ((sk->sk_type != SOCK_STREAM &&
1611                      sk->sk_type != SOCK_DGRAM) ||
1612                     (sk->sk_protocol != IPPROTO_UDP &&
1613                      sk->sk_protocol != IPPROTO_TCP) ||
1614                     (sk->sk_family != AF_INET &&
1615                      sk->sk_family != AF_INET6)) {
1616                         err = -ENOTSUPP;
1617                         goto err_prog_put;
1618                 }
1619         } else {
1620                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1621                 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622                         err = -ENOMEM;
1623                         goto err_prog_put;
1624                 }
1625         }
1626
1627         err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629         if (err)
1630                 bpf_prog_put(prog);
1631
1632         return err;
1633 }
1634
1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637         if (!prog)
1638                 return;
1639
1640         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641                 bpf_prog_put(prog);
1642         else
1643                 bpf_prog_destroy(prog);
1644 }
1645
1646 struct bpf_scratchpad {
1647         union {
1648                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649                 u8     buff[MAX_BPF_STACK];
1650         };
1651 };
1652
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654
1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656                                           unsigned int write_len)
1657 {
1658         return skb_ensure_writable(skb, write_len);
1659 }
1660
1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662                                         unsigned int write_len)
1663 {
1664         int err = __bpf_try_make_writable(skb, write_len);
1665
1666         bpf_compute_data_pointers(skb);
1667         return err;
1668 }
1669
1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672         return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674
1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677         if (skb_at_tc_ingress(skb))
1678                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680
1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683         if (skb_at_tc_ingress(skb))
1684                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686
1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688            const void *, from, u32, len, u64, flags)
1689 {
1690         void *ptr;
1691
1692         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693                 return -EINVAL;
1694         if (unlikely(offset > INT_MAX))
1695                 return -EFAULT;
1696         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697                 return -EFAULT;
1698
1699         ptr = skb->data + offset;
1700         if (flags & BPF_F_RECOMPUTE_CSUM)
1701                 __skb_postpull_rcsum(skb, ptr, len, offset);
1702
1703         memcpy(ptr, from, len);
1704
1705         if (flags & BPF_F_RECOMPUTE_CSUM)
1706                 __skb_postpush_rcsum(skb, ptr, len, offset);
1707         if (flags & BPF_F_INVALIDATE_HASH)
1708                 skb_clear_hash(skb);
1709
1710         return 0;
1711 }
1712
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714         .func           = bpf_skb_store_bytes,
1715         .gpl_only       = false,
1716         .ret_type       = RET_INTEGER,
1717         .arg1_type      = ARG_PTR_TO_CTX,
1718         .arg2_type      = ARG_ANYTHING,
1719         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1720         .arg4_type      = ARG_CONST_SIZE,
1721         .arg5_type      = ARG_ANYTHING,
1722 };
1723
1724 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1725            void *, to, u32, len)
1726 {
1727         void *ptr;
1728
1729         if (unlikely(offset > INT_MAX))
1730                 goto err_clear;
1731
1732         ptr = skb_header_pointer(skb, offset, len, to);
1733         if (unlikely(!ptr))
1734                 goto err_clear;
1735         if (ptr != to)
1736                 memcpy(to, ptr, len);
1737
1738         return 0;
1739 err_clear:
1740         memset(to, 0, len);
1741         return -EFAULT;
1742 }
1743
1744 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1745         .func           = bpf_skb_load_bytes,
1746         .gpl_only       = false,
1747         .ret_type       = RET_INTEGER,
1748         .arg1_type      = ARG_PTR_TO_CTX,
1749         .arg2_type      = ARG_ANYTHING,
1750         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1751         .arg4_type      = ARG_CONST_SIZE,
1752 };
1753
1754 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1755            const struct bpf_flow_dissector *, ctx, u32, offset,
1756            void *, to, u32, len)
1757 {
1758         void *ptr;
1759
1760         if (unlikely(offset > 0xffff))
1761                 goto err_clear;
1762
1763         if (unlikely(!ctx->skb))
1764                 goto err_clear;
1765
1766         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1767         if (unlikely(!ptr))
1768                 goto err_clear;
1769         if (ptr != to)
1770                 memcpy(to, ptr, len);
1771
1772         return 0;
1773 err_clear:
1774         memset(to, 0, len);
1775         return -EFAULT;
1776 }
1777
1778 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1779         .func           = bpf_flow_dissector_load_bytes,
1780         .gpl_only       = false,
1781         .ret_type       = RET_INTEGER,
1782         .arg1_type      = ARG_PTR_TO_CTX,
1783         .arg2_type      = ARG_ANYTHING,
1784         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1785         .arg4_type      = ARG_CONST_SIZE,
1786 };
1787
1788 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1789            u32, offset, void *, to, u32, len, u32, start_header)
1790 {
1791         u8 *end = skb_tail_pointer(skb);
1792         u8 *start, *ptr;
1793
1794         if (unlikely(offset > 0xffff))
1795                 goto err_clear;
1796
1797         switch (start_header) {
1798         case BPF_HDR_START_MAC:
1799                 if (unlikely(!skb_mac_header_was_set(skb)))
1800                         goto err_clear;
1801                 start = skb_mac_header(skb);
1802                 break;
1803         case BPF_HDR_START_NET:
1804                 start = skb_network_header(skb);
1805                 break;
1806         default:
1807                 goto err_clear;
1808         }
1809
1810         ptr = start + offset;
1811
1812         if (likely(ptr + len <= end)) {
1813                 memcpy(to, ptr, len);
1814                 return 0;
1815         }
1816
1817 err_clear:
1818         memset(to, 0, len);
1819         return -EFAULT;
1820 }
1821
1822 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1823         .func           = bpf_skb_load_bytes_relative,
1824         .gpl_only       = false,
1825         .ret_type       = RET_INTEGER,
1826         .arg1_type      = ARG_PTR_TO_CTX,
1827         .arg2_type      = ARG_ANYTHING,
1828         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1829         .arg4_type      = ARG_CONST_SIZE,
1830         .arg5_type      = ARG_ANYTHING,
1831 };
1832
1833 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1834 {
1835         /* Idea is the following: should the needed direct read/write
1836          * test fail during runtime, we can pull in more data and redo
1837          * again, since implicitly, we invalidate previous checks here.
1838          *
1839          * Or, since we know how much we need to make read/writeable,
1840          * this can be done once at the program beginning for direct
1841          * access case. By this we overcome limitations of only current
1842          * headroom being accessible.
1843          */
1844         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1845 }
1846
1847 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1848         .func           = bpf_skb_pull_data,
1849         .gpl_only       = false,
1850         .ret_type       = RET_INTEGER,
1851         .arg1_type      = ARG_PTR_TO_CTX,
1852         .arg2_type      = ARG_ANYTHING,
1853 };
1854
1855 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1856 {
1857         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1858 }
1859
1860 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1861         .func           = bpf_sk_fullsock,
1862         .gpl_only       = false,
1863         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1864         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1865 };
1866
1867 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1868                                            unsigned int write_len)
1869 {
1870         return __bpf_try_make_writable(skb, write_len);
1871 }
1872
1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875         /* Idea is the following: should the needed direct read/write
1876          * test fail during runtime, we can pull in more data and redo
1877          * again, since implicitly, we invalidate previous checks here.
1878          *
1879          * Or, since we know how much we need to make read/writeable,
1880          * this can be done once at the program beginning for direct
1881          * access case. By this we overcome limitations of only current
1882          * headroom being accessible.
1883          */
1884         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888         .func           = sk_skb_pull_data,
1889         .gpl_only       = false,
1890         .ret_type       = RET_INTEGER,
1891         .arg1_type      = ARG_PTR_TO_CTX,
1892         .arg2_type      = ARG_ANYTHING,
1893 };
1894
1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896            u64, from, u64, to, u64, flags)
1897 {
1898         __sum16 *ptr;
1899
1900         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901                 return -EINVAL;
1902         if (unlikely(offset > 0xffff || offset & 1))
1903                 return -EFAULT;
1904         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905                 return -EFAULT;
1906
1907         ptr = (__sum16 *)(skb->data + offset);
1908         switch (flags & BPF_F_HDR_FIELD_MASK) {
1909         case 0:
1910                 if (unlikely(from != 0))
1911                         return -EINVAL;
1912
1913                 csum_replace_by_diff(ptr, to);
1914                 break;
1915         case 2:
1916                 csum_replace2(ptr, from, to);
1917                 break;
1918         case 4:
1919                 csum_replace4(ptr, from, to);
1920                 break;
1921         default:
1922                 return -EINVAL;
1923         }
1924
1925         return 0;
1926 }
1927
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929         .func           = bpf_l3_csum_replace,
1930         .gpl_only       = false,
1931         .ret_type       = RET_INTEGER,
1932         .arg1_type      = ARG_PTR_TO_CTX,
1933         .arg2_type      = ARG_ANYTHING,
1934         .arg3_type      = ARG_ANYTHING,
1935         .arg4_type      = ARG_ANYTHING,
1936         .arg5_type      = ARG_ANYTHING,
1937 };
1938
1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940            u64, from, u64, to, u64, flags)
1941 {
1942         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945         __sum16 *ptr;
1946
1947         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949                 return -EINVAL;
1950         if (unlikely(offset > 0xffff || offset & 1))
1951                 return -EFAULT;
1952         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953                 return -EFAULT;
1954
1955         ptr = (__sum16 *)(skb->data + offset);
1956         if (is_mmzero && !do_mforce && !*ptr)
1957                 return 0;
1958
1959         switch (flags & BPF_F_HDR_FIELD_MASK) {
1960         case 0:
1961                 if (unlikely(from != 0))
1962                         return -EINVAL;
1963
1964                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965                 break;
1966         case 2:
1967                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968                 break;
1969         case 4:
1970                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971                 break;
1972         default:
1973                 return -EINVAL;
1974         }
1975
1976         if (is_mmzero && !*ptr)
1977                 *ptr = CSUM_MANGLED_0;
1978         return 0;
1979 }
1980
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982         .func           = bpf_l4_csum_replace,
1983         .gpl_only       = false,
1984         .ret_type       = RET_INTEGER,
1985         .arg1_type      = ARG_PTR_TO_CTX,
1986         .arg2_type      = ARG_ANYTHING,
1987         .arg3_type      = ARG_ANYTHING,
1988         .arg4_type      = ARG_ANYTHING,
1989         .arg5_type      = ARG_ANYTHING,
1990 };
1991
1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993            __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996         u32 diff_size = from_size + to_size;
1997         int i, j = 0;
1998
1999         /* This is quite flexible, some examples:
2000          *
2001          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2002          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2003          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2004          *
2005          * Even for diffing, from_size and to_size don't need to be equal.
2006          */
2007         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008                      diff_size > sizeof(sp->diff)))
2009                 return -EINVAL;
2010
2011         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012                 sp->diff[j] = ~from[i];
2013         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2014                 sp->diff[j] = to[i];
2015
2016         return csum_partial(sp->diff, diff_size, seed);
2017 }
2018
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020         .func           = bpf_csum_diff,
2021         .gpl_only       = false,
2022         .pkt_access     = true,
2023         .ret_type       = RET_INTEGER,
2024         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2026         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2027         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2028         .arg5_type      = ARG_ANYTHING,
2029 };
2030
2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033         /* The interface is to be used in combination with bpf_csum_diff()
2034          * for direct packet writes. csum rotation for alignment as well
2035          * as emulating csum_sub() can be done from the eBPF program.
2036          */
2037         if (skb->ip_summed == CHECKSUM_COMPLETE)
2038                 return (skb->csum = csum_add(skb->csum, csum));
2039
2040         return -ENOTSUPP;
2041 }
2042
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044         .func           = bpf_csum_update,
2045         .gpl_only       = false,
2046         .ret_type       = RET_INTEGER,
2047         .arg1_type      = ARG_PTR_TO_CTX,
2048         .arg2_type      = ARG_ANYTHING,
2049 };
2050
2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053         /* The interface is to be used in combination with bpf_skb_adjust_room()
2054          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055          * is passed as flags, for example.
2056          */
2057         switch (level) {
2058         case BPF_CSUM_LEVEL_INC:
2059                 __skb_incr_checksum_unnecessary(skb);
2060                 break;
2061         case BPF_CSUM_LEVEL_DEC:
2062                 __skb_decr_checksum_unnecessary(skb);
2063                 break;
2064         case BPF_CSUM_LEVEL_RESET:
2065                 __skb_reset_checksum_unnecessary(skb);
2066                 break;
2067         case BPF_CSUM_LEVEL_QUERY:
2068                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069                        skb->csum_level : -EACCES;
2070         default:
2071                 return -EINVAL;
2072         }
2073
2074         return 0;
2075 }
2076
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078         .func           = bpf_csum_level,
2079         .gpl_only       = false,
2080         .ret_type       = RET_INTEGER,
2081         .arg1_type      = ARG_PTR_TO_CTX,
2082         .arg2_type      = ARG_ANYTHING,
2083 };
2084
2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087         return dev_forward_skb_nomtu(dev, skb);
2088 }
2089
2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091                                       struct sk_buff *skb)
2092 {
2093         int ret = ____dev_forward_skb(dev, skb, false);
2094
2095         if (likely(!ret)) {
2096                 skb->dev = dev;
2097                 ret = netif_rx(skb);
2098         }
2099
2100         return ret;
2101 }
2102
2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105         int ret;
2106
2107         if (dev_xmit_recursion()) {
2108                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109                 kfree_skb(skb);
2110                 return -ENETDOWN;
2111         }
2112
2113         skb->dev = dev;
2114         skb_clear_tstamp(skb);
2115
2116         dev_xmit_recursion_inc();
2117         ret = dev_queue_xmit(skb);
2118         dev_xmit_recursion_dec();
2119
2120         return ret;
2121 }
2122
2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124                                  u32 flags)
2125 {
2126         unsigned int mlen = skb_network_offset(skb);
2127
2128         if (unlikely(skb->len <= mlen)) {
2129                 kfree_skb(skb);
2130                 return -ERANGE;
2131         }
2132
2133         if (mlen) {
2134                 __skb_pull(skb, mlen);
2135                 if (unlikely(!skb->len)) {
2136                         kfree_skb(skb);
2137                         return -ERANGE;
2138                 }
2139
2140                 /* At ingress, the mac header has already been pulled once.
2141                  * At egress, skb_pospull_rcsum has to be done in case that
2142                  * the skb is originated from ingress (i.e. a forwarded skb)
2143                  * to ensure that rcsum starts at net header.
2144                  */
2145                 if (!skb_at_tc_ingress(skb))
2146                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2147         }
2148         skb_pop_mac_header(skb);
2149         skb_reset_mac_len(skb);
2150         return flags & BPF_F_INGRESS ?
2151                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2152 }
2153
2154 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2155                                  u32 flags)
2156 {
2157         /* Verify that a link layer header is carried */
2158         if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2159                 kfree_skb(skb);
2160                 return -ERANGE;
2161         }
2162
2163         bpf_push_mac_rcsum(skb);
2164         return flags & BPF_F_INGRESS ?
2165                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2166 }
2167
2168 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2169                           u32 flags)
2170 {
2171         if (dev_is_mac_header_xmit(dev))
2172                 return __bpf_redirect_common(skb, dev, flags);
2173         else
2174                 return __bpf_redirect_no_mac(skb, dev, flags);
2175 }
2176
2177 #if IS_ENABLED(CONFIG_IPV6)
2178 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2179                             struct net_device *dev, struct bpf_nh_params *nh)
2180 {
2181         u32 hh_len = LL_RESERVED_SPACE(dev);
2182         const struct in6_addr *nexthop;
2183         struct dst_entry *dst = NULL;
2184         struct neighbour *neigh;
2185
2186         if (dev_xmit_recursion()) {
2187                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2188                 goto out_drop;
2189         }
2190
2191         skb->dev = dev;
2192         skb_clear_tstamp(skb);
2193
2194         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2195                 skb = skb_expand_head(skb, hh_len);
2196                 if (!skb)
2197                         return -ENOMEM;
2198         }
2199
2200         rcu_read_lock();
2201         if (!nh) {
2202                 dst = skb_dst(skb);
2203                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2204                                       &ipv6_hdr(skb)->daddr);
2205         } else {
2206                 nexthop = &nh->ipv6_nh;
2207         }
2208         neigh = ip_neigh_gw6(dev, nexthop);
2209         if (likely(!IS_ERR(neigh))) {
2210                 int ret;
2211
2212                 sock_confirm_neigh(skb, neigh);
2213                 local_bh_disable();
2214                 dev_xmit_recursion_inc();
2215                 ret = neigh_output(neigh, skb, false);
2216                 dev_xmit_recursion_dec();
2217                 local_bh_enable();
2218                 rcu_read_unlock();
2219                 return ret;
2220         }
2221         rcu_read_unlock_bh();
2222         if (dst)
2223                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2224 out_drop:
2225         kfree_skb(skb);
2226         return -ENETDOWN;
2227 }
2228
2229 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2230                                    struct bpf_nh_params *nh)
2231 {
2232         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2233         struct net *net = dev_net(dev);
2234         int err, ret = NET_XMIT_DROP;
2235
2236         if (!nh) {
2237                 struct dst_entry *dst;
2238                 struct flowi6 fl6 = {
2239                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2240                         .flowi6_mark  = skb->mark,
2241                         .flowlabel    = ip6_flowinfo(ip6h),
2242                         .flowi6_oif   = dev->ifindex,
2243                         .flowi6_proto = ip6h->nexthdr,
2244                         .daddr        = ip6h->daddr,
2245                         .saddr        = ip6h->saddr,
2246                 };
2247
2248                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2249                 if (IS_ERR(dst))
2250                         goto out_drop;
2251
2252                 skb_dst_set(skb, dst);
2253         } else if (nh->nh_family != AF_INET6) {
2254                 goto out_drop;
2255         }
2256
2257         err = bpf_out_neigh_v6(net, skb, dev, nh);
2258         if (unlikely(net_xmit_eval(err)))
2259                 dev->stats.tx_errors++;
2260         else
2261                 ret = NET_XMIT_SUCCESS;
2262         goto out_xmit;
2263 out_drop:
2264         dev->stats.tx_errors++;
2265         kfree_skb(skb);
2266 out_xmit:
2267         return ret;
2268 }
2269 #else
2270 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2271                                    struct bpf_nh_params *nh)
2272 {
2273         kfree_skb(skb);
2274         return NET_XMIT_DROP;
2275 }
2276 #endif /* CONFIG_IPV6 */
2277
2278 #if IS_ENABLED(CONFIG_INET)
2279 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2280                             struct net_device *dev, struct bpf_nh_params *nh)
2281 {
2282         u32 hh_len = LL_RESERVED_SPACE(dev);
2283         struct neighbour *neigh;
2284         bool is_v6gw = false;
2285
2286         if (dev_xmit_recursion()) {
2287                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2288                 goto out_drop;
2289         }
2290
2291         skb->dev = dev;
2292         skb_clear_tstamp(skb);
2293
2294         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2295                 skb = skb_expand_head(skb, hh_len);
2296                 if (!skb)
2297                         return -ENOMEM;
2298         }
2299
2300         rcu_read_lock();
2301         if (!nh) {
2302                 struct dst_entry *dst = skb_dst(skb);
2303                 struct rtable *rt = container_of(dst, struct rtable, dst);
2304
2305                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2306         } else if (nh->nh_family == AF_INET6) {
2307                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2308                 is_v6gw = true;
2309         } else if (nh->nh_family == AF_INET) {
2310                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2311         } else {
2312                 rcu_read_unlock();
2313                 goto out_drop;
2314         }
2315
2316         if (likely(!IS_ERR(neigh))) {
2317                 int ret;
2318
2319                 sock_confirm_neigh(skb, neigh);
2320                 local_bh_disable();
2321                 dev_xmit_recursion_inc();
2322                 ret = neigh_output(neigh, skb, is_v6gw);
2323                 dev_xmit_recursion_dec();
2324                 local_bh_enable();
2325                 rcu_read_unlock();
2326                 return ret;
2327         }
2328         rcu_read_unlock();
2329 out_drop:
2330         kfree_skb(skb);
2331         return -ENETDOWN;
2332 }
2333
2334 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2335                                    struct bpf_nh_params *nh)
2336 {
2337         const struct iphdr *ip4h = ip_hdr(skb);
2338         struct net *net = dev_net(dev);
2339         int err, ret = NET_XMIT_DROP;
2340
2341         if (!nh) {
2342                 struct flowi4 fl4 = {
2343                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2344                         .flowi4_mark  = skb->mark,
2345                         .flowi4_tos   = RT_TOS(ip4h->tos),
2346                         .flowi4_oif   = dev->ifindex,
2347                         .flowi4_proto = ip4h->protocol,
2348                         .daddr        = ip4h->daddr,
2349                         .saddr        = ip4h->saddr,
2350                 };
2351                 struct rtable *rt;
2352
2353                 rt = ip_route_output_flow(net, &fl4, NULL);
2354                 if (IS_ERR(rt))
2355                         goto out_drop;
2356                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2357                         ip_rt_put(rt);
2358                         goto out_drop;
2359                 }
2360
2361                 skb_dst_set(skb, &rt->dst);
2362         }
2363
2364         err = bpf_out_neigh_v4(net, skb, dev, nh);
2365         if (unlikely(net_xmit_eval(err)))
2366                 dev->stats.tx_errors++;
2367         else
2368                 ret = NET_XMIT_SUCCESS;
2369         goto out_xmit;
2370 out_drop:
2371         dev->stats.tx_errors++;
2372         kfree_skb(skb);
2373 out_xmit:
2374         return ret;
2375 }
2376 #else
2377 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2378                                    struct bpf_nh_params *nh)
2379 {
2380         kfree_skb(skb);
2381         return NET_XMIT_DROP;
2382 }
2383 #endif /* CONFIG_INET */
2384
2385 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2386                                 struct bpf_nh_params *nh)
2387 {
2388         struct ethhdr *ethh = eth_hdr(skb);
2389
2390         if (unlikely(skb->mac_header >= skb->network_header))
2391                 goto out;
2392         bpf_push_mac_rcsum(skb);
2393         if (is_multicast_ether_addr(ethh->h_dest))
2394                 goto out;
2395
2396         skb_pull(skb, sizeof(*ethh));
2397         skb_unset_mac_header(skb);
2398         skb_reset_network_header(skb);
2399
2400         if (skb->protocol == htons(ETH_P_IP))
2401                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2402         else if (skb->protocol == htons(ETH_P_IPV6))
2403                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2404 out:
2405         kfree_skb(skb);
2406         return -ENOTSUPP;
2407 }
2408
2409 /* Internal, non-exposed redirect flags. */
2410 enum {
2411         BPF_F_NEIGH     = (1ULL << 1),
2412         BPF_F_PEER      = (1ULL << 2),
2413         BPF_F_NEXTHOP   = (1ULL << 3),
2414 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2415 };
2416
2417 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2418 {
2419         struct net_device *dev;
2420         struct sk_buff *clone;
2421         int ret;
2422
2423         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2424                 return -EINVAL;
2425
2426         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2427         if (unlikely(!dev))
2428                 return -EINVAL;
2429
2430         clone = skb_clone(skb, GFP_ATOMIC);
2431         if (unlikely(!clone))
2432                 return -ENOMEM;
2433
2434         /* For direct write, we need to keep the invariant that the skbs
2435          * we're dealing with need to be uncloned. Should uncloning fail
2436          * here, we need to free the just generated clone to unclone once
2437          * again.
2438          */
2439         ret = bpf_try_make_head_writable(skb);
2440         if (unlikely(ret)) {
2441                 kfree_skb(clone);
2442                 return -ENOMEM;
2443         }
2444
2445         return __bpf_redirect(clone, dev, flags);
2446 }
2447
2448 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2449         .func           = bpf_clone_redirect,
2450         .gpl_only       = false,
2451         .ret_type       = RET_INTEGER,
2452         .arg1_type      = ARG_PTR_TO_CTX,
2453         .arg2_type      = ARG_ANYTHING,
2454         .arg3_type      = ARG_ANYTHING,
2455 };
2456
2457 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2458 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2459
2460 int skb_do_redirect(struct sk_buff *skb)
2461 {
2462         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2463         struct net *net = dev_net(skb->dev);
2464         struct net_device *dev;
2465         u32 flags = ri->flags;
2466
2467         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2468         ri->tgt_index = 0;
2469         ri->flags = 0;
2470         if (unlikely(!dev))
2471                 goto out_drop;
2472         if (flags & BPF_F_PEER) {
2473                 const struct net_device_ops *ops = dev->netdev_ops;
2474
2475                 if (unlikely(!ops->ndo_get_peer_dev ||
2476                              !skb_at_tc_ingress(skb)))
2477                         goto out_drop;
2478                 dev = ops->ndo_get_peer_dev(dev);
2479                 if (unlikely(!dev ||
2480                              !(dev->flags & IFF_UP) ||
2481                              net_eq(net, dev_net(dev))))
2482                         goto out_drop;
2483                 skb->dev = dev;
2484                 return -EAGAIN;
2485         }
2486         return flags & BPF_F_NEIGH ?
2487                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2488                                     &ri->nh : NULL) :
2489                __bpf_redirect(skb, dev, flags);
2490 out_drop:
2491         kfree_skb(skb);
2492         return -EINVAL;
2493 }
2494
2495 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2496 {
2497         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2498
2499         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2500                 return TC_ACT_SHOT;
2501
2502         ri->flags = flags;
2503         ri->tgt_index = ifindex;
2504
2505         return TC_ACT_REDIRECT;
2506 }
2507
2508 static const struct bpf_func_proto bpf_redirect_proto = {
2509         .func           = bpf_redirect,
2510         .gpl_only       = false,
2511         .ret_type       = RET_INTEGER,
2512         .arg1_type      = ARG_ANYTHING,
2513         .arg2_type      = ARG_ANYTHING,
2514 };
2515
2516 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2517 {
2518         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2519
2520         if (unlikely(flags))
2521                 return TC_ACT_SHOT;
2522
2523         ri->flags = BPF_F_PEER;
2524         ri->tgt_index = ifindex;
2525
2526         return TC_ACT_REDIRECT;
2527 }
2528
2529 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2530         .func           = bpf_redirect_peer,
2531         .gpl_only       = false,
2532         .ret_type       = RET_INTEGER,
2533         .arg1_type      = ARG_ANYTHING,
2534         .arg2_type      = ARG_ANYTHING,
2535 };
2536
2537 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2538            int, plen, u64, flags)
2539 {
2540         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2541
2542         if (unlikely((plen && plen < sizeof(*params)) || flags))
2543                 return TC_ACT_SHOT;
2544
2545         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2546         ri->tgt_index = ifindex;
2547
2548         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2549         if (plen)
2550                 memcpy(&ri->nh, params, sizeof(ri->nh));
2551
2552         return TC_ACT_REDIRECT;
2553 }
2554
2555 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2556         .func           = bpf_redirect_neigh,
2557         .gpl_only       = false,
2558         .ret_type       = RET_INTEGER,
2559         .arg1_type      = ARG_ANYTHING,
2560         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2561         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2562         .arg4_type      = ARG_ANYTHING,
2563 };
2564
2565 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2566 {
2567         msg->apply_bytes = bytes;
2568         return 0;
2569 }
2570
2571 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2572         .func           = bpf_msg_apply_bytes,
2573         .gpl_only       = false,
2574         .ret_type       = RET_INTEGER,
2575         .arg1_type      = ARG_PTR_TO_CTX,
2576         .arg2_type      = ARG_ANYTHING,
2577 };
2578
2579 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2580 {
2581         msg->cork_bytes = bytes;
2582         return 0;
2583 }
2584
2585 static void sk_msg_reset_curr(struct sk_msg *msg)
2586 {
2587         u32 i = msg->sg.start;
2588         u32 len = 0;
2589
2590         do {
2591                 len += sk_msg_elem(msg, i)->length;
2592                 sk_msg_iter_var_next(i);
2593                 if (len >= msg->sg.size)
2594                         break;
2595         } while (i != msg->sg.end);
2596
2597         msg->sg.curr = i;
2598         msg->sg.copybreak = 0;
2599 }
2600
2601 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2602         .func           = bpf_msg_cork_bytes,
2603         .gpl_only       = false,
2604         .ret_type       = RET_INTEGER,
2605         .arg1_type      = ARG_PTR_TO_CTX,
2606         .arg2_type      = ARG_ANYTHING,
2607 };
2608
2609 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2610            u32, end, u64, flags)
2611 {
2612         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2613         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2614         struct scatterlist *sge;
2615         u8 *raw, *to, *from;
2616         struct page *page;
2617
2618         if (unlikely(flags || end <= start))
2619                 return -EINVAL;
2620
2621         /* First find the starting scatterlist element */
2622         i = msg->sg.start;
2623         do {
2624                 offset += len;
2625                 len = sk_msg_elem(msg, i)->length;
2626                 if (start < offset + len)
2627                         break;
2628                 sk_msg_iter_var_next(i);
2629         } while (i != msg->sg.end);
2630
2631         if (unlikely(start >= offset + len))
2632                 return -EINVAL;
2633
2634         first_sge = i;
2635         /* The start may point into the sg element so we need to also
2636          * account for the headroom.
2637          */
2638         bytes_sg_total = start - offset + bytes;
2639         if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2640                 goto out;
2641
2642         /* At this point we need to linearize multiple scatterlist
2643          * elements or a single shared page. Either way we need to
2644          * copy into a linear buffer exclusively owned by BPF. Then
2645          * place the buffer in the scatterlist and fixup the original
2646          * entries by removing the entries now in the linear buffer
2647          * and shifting the remaining entries. For now we do not try
2648          * to copy partial entries to avoid complexity of running out
2649          * of sg_entry slots. The downside is reading a single byte
2650          * will copy the entire sg entry.
2651          */
2652         do {
2653                 copy += sk_msg_elem(msg, i)->length;
2654                 sk_msg_iter_var_next(i);
2655                 if (bytes_sg_total <= copy)
2656                         break;
2657         } while (i != msg->sg.end);
2658         last_sge = i;
2659
2660         if (unlikely(bytes_sg_total > copy))
2661                 return -EINVAL;
2662
2663         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2664                            get_order(copy));
2665         if (unlikely(!page))
2666                 return -ENOMEM;
2667
2668         raw = page_address(page);
2669         i = first_sge;
2670         do {
2671                 sge = sk_msg_elem(msg, i);
2672                 from = sg_virt(sge);
2673                 len = sge->length;
2674                 to = raw + poffset;
2675
2676                 memcpy(to, from, len);
2677                 poffset += len;
2678                 sge->length = 0;
2679                 put_page(sg_page(sge));
2680
2681                 sk_msg_iter_var_next(i);
2682         } while (i != last_sge);
2683
2684         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2685
2686         /* To repair sg ring we need to shift entries. If we only
2687          * had a single entry though we can just replace it and
2688          * be done. Otherwise walk the ring and shift the entries.
2689          */
2690         WARN_ON_ONCE(last_sge == first_sge);
2691         shift = last_sge > first_sge ?
2692                 last_sge - first_sge - 1 :
2693                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2694         if (!shift)
2695                 goto out;
2696
2697         i = first_sge;
2698         sk_msg_iter_var_next(i);
2699         do {
2700                 u32 move_from;
2701
2702                 if (i + shift >= NR_MSG_FRAG_IDS)
2703                         move_from = i + shift - NR_MSG_FRAG_IDS;
2704                 else
2705                         move_from = i + shift;
2706                 if (move_from == msg->sg.end)
2707                         break;
2708
2709                 msg->sg.data[i] = msg->sg.data[move_from];
2710                 msg->sg.data[move_from].length = 0;
2711                 msg->sg.data[move_from].page_link = 0;
2712                 msg->sg.data[move_from].offset = 0;
2713                 sk_msg_iter_var_next(i);
2714         } while (1);
2715
2716         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2717                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2718                       msg->sg.end - shift;
2719 out:
2720         sk_msg_reset_curr(msg);
2721         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2722         msg->data_end = msg->data + bytes;
2723         return 0;
2724 }
2725
2726 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2727         .func           = bpf_msg_pull_data,
2728         .gpl_only       = false,
2729         .ret_type       = RET_INTEGER,
2730         .arg1_type      = ARG_PTR_TO_CTX,
2731         .arg2_type      = ARG_ANYTHING,
2732         .arg3_type      = ARG_ANYTHING,
2733         .arg4_type      = ARG_ANYTHING,
2734 };
2735
2736 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2737            u32, len, u64, flags)
2738 {
2739         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2740         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2741         u8 *raw, *to, *from;
2742         struct page *page;
2743
2744         if (unlikely(flags))
2745                 return -EINVAL;
2746
2747         if (unlikely(len == 0))
2748                 return 0;
2749
2750         /* First find the starting scatterlist element */
2751         i = msg->sg.start;
2752         do {
2753                 offset += l;
2754                 l = sk_msg_elem(msg, i)->length;
2755
2756                 if (start < offset + l)
2757                         break;
2758                 sk_msg_iter_var_next(i);
2759         } while (i != msg->sg.end);
2760
2761         if (start >= offset + l)
2762                 return -EINVAL;
2763
2764         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2765
2766         /* If no space available will fallback to copy, we need at
2767          * least one scatterlist elem available to push data into
2768          * when start aligns to the beginning of an element or two
2769          * when it falls inside an element. We handle the start equals
2770          * offset case because its the common case for inserting a
2771          * header.
2772          */
2773         if (!space || (space == 1 && start != offset))
2774                 copy = msg->sg.data[i].length;
2775
2776         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2777                            get_order(copy + len));
2778         if (unlikely(!page))
2779                 return -ENOMEM;
2780
2781         if (copy) {
2782                 int front, back;
2783
2784                 raw = page_address(page);
2785
2786                 psge = sk_msg_elem(msg, i);
2787                 front = start - offset;
2788                 back = psge->length - front;
2789                 from = sg_virt(psge);
2790
2791                 if (front)
2792                         memcpy(raw, from, front);
2793
2794                 if (back) {
2795                         from += front;
2796                         to = raw + front + len;
2797
2798                         memcpy(to, from, back);
2799                 }
2800
2801                 put_page(sg_page(psge));
2802         } else if (start - offset) {
2803                 psge = sk_msg_elem(msg, i);
2804                 rsge = sk_msg_elem_cpy(msg, i);
2805
2806                 psge->length = start - offset;
2807                 rsge.length -= psge->length;
2808                 rsge.offset += start;
2809
2810                 sk_msg_iter_var_next(i);
2811                 sg_unmark_end(psge);
2812                 sg_unmark_end(&rsge);
2813                 sk_msg_iter_next(msg, end);
2814         }
2815
2816         /* Slot(s) to place newly allocated data */
2817         new = i;
2818
2819         /* Shift one or two slots as needed */
2820         if (!copy) {
2821                 sge = sk_msg_elem_cpy(msg, i);
2822
2823                 sk_msg_iter_var_next(i);
2824                 sg_unmark_end(&sge);
2825                 sk_msg_iter_next(msg, end);
2826
2827                 nsge = sk_msg_elem_cpy(msg, i);
2828                 if (rsge.length) {
2829                         sk_msg_iter_var_next(i);
2830                         nnsge = sk_msg_elem_cpy(msg, i);
2831                 }
2832
2833                 while (i != msg->sg.end) {
2834                         msg->sg.data[i] = sge;
2835                         sge = nsge;
2836                         sk_msg_iter_var_next(i);
2837                         if (rsge.length) {
2838                                 nsge = nnsge;
2839                                 nnsge = sk_msg_elem_cpy(msg, i);
2840                         } else {
2841                                 nsge = sk_msg_elem_cpy(msg, i);
2842                         }
2843                 }
2844         }
2845
2846         /* Place newly allocated data buffer */
2847         sk_mem_charge(msg->sk, len);
2848         msg->sg.size += len;
2849         __clear_bit(new, msg->sg.copy);
2850         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2851         if (rsge.length) {
2852                 get_page(sg_page(&rsge));
2853                 sk_msg_iter_var_next(new);
2854                 msg->sg.data[new] = rsge;
2855         }
2856
2857         sk_msg_reset_curr(msg);
2858         sk_msg_compute_data_pointers(msg);
2859         return 0;
2860 }
2861
2862 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2863         .func           = bpf_msg_push_data,
2864         .gpl_only       = false,
2865         .ret_type       = RET_INTEGER,
2866         .arg1_type      = ARG_PTR_TO_CTX,
2867         .arg2_type      = ARG_ANYTHING,
2868         .arg3_type      = ARG_ANYTHING,
2869         .arg4_type      = ARG_ANYTHING,
2870 };
2871
2872 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2873 {
2874         int prev;
2875
2876         do {
2877                 prev = i;
2878                 sk_msg_iter_var_next(i);
2879                 msg->sg.data[prev] = msg->sg.data[i];
2880         } while (i != msg->sg.end);
2881
2882         sk_msg_iter_prev(msg, end);
2883 }
2884
2885 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2886 {
2887         struct scatterlist tmp, sge;
2888
2889         sk_msg_iter_next(msg, end);
2890         sge = sk_msg_elem_cpy(msg, i);
2891         sk_msg_iter_var_next(i);
2892         tmp = sk_msg_elem_cpy(msg, i);
2893
2894         while (i != msg->sg.end) {
2895                 msg->sg.data[i] = sge;
2896                 sk_msg_iter_var_next(i);
2897                 sge = tmp;
2898                 tmp = sk_msg_elem_cpy(msg, i);
2899         }
2900 }
2901
2902 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2903            u32, len, u64, flags)
2904 {
2905         u32 i = 0, l = 0, space, offset = 0;
2906         u64 last = start + len;
2907         int pop;
2908
2909         if (unlikely(flags))
2910                 return -EINVAL;
2911
2912         /* First find the starting scatterlist element */
2913         i = msg->sg.start;
2914         do {
2915                 offset += l;
2916                 l = sk_msg_elem(msg, i)->length;
2917
2918                 if (start < offset + l)
2919                         break;
2920                 sk_msg_iter_var_next(i);
2921         } while (i != msg->sg.end);
2922
2923         /* Bounds checks: start and pop must be inside message */
2924         if (start >= offset + l || last >= msg->sg.size)
2925                 return -EINVAL;
2926
2927         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2928
2929         pop = len;
2930         /* --------------| offset
2931          * -| start      |-------- len -------|
2932          *
2933          *  |----- a ----|-------- pop -------|----- b ----|
2934          *  |______________________________________________| length
2935          *
2936          *
2937          * a:   region at front of scatter element to save
2938          * b:   region at back of scatter element to save when length > A + pop
2939          * pop: region to pop from element, same as input 'pop' here will be
2940          *      decremented below per iteration.
2941          *
2942          * Two top-level cases to handle when start != offset, first B is non
2943          * zero and second B is zero corresponding to when a pop includes more
2944          * than one element.
2945          *
2946          * Then if B is non-zero AND there is no space allocate space and
2947          * compact A, B regions into page. If there is space shift ring to
2948          * the rigth free'ing the next element in ring to place B, leaving
2949          * A untouched except to reduce length.
2950          */
2951         if (start != offset) {
2952                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2953                 int a = start;
2954                 int b = sge->length - pop - a;
2955
2956                 sk_msg_iter_var_next(i);
2957
2958                 if (pop < sge->length - a) {
2959                         if (space) {
2960                                 sge->length = a;
2961                                 sk_msg_shift_right(msg, i);
2962                                 nsge = sk_msg_elem(msg, i);
2963                                 get_page(sg_page(sge));
2964                                 sg_set_page(nsge,
2965                                             sg_page(sge),
2966                                             b, sge->offset + pop + a);
2967                         } else {
2968                                 struct page *page, *orig;
2969                                 u8 *to, *from;
2970
2971                                 page = alloc_pages(__GFP_NOWARN |
2972                                                    __GFP_COMP   | GFP_ATOMIC,
2973                                                    get_order(a + b));
2974                                 if (unlikely(!page))
2975                                         return -ENOMEM;
2976
2977                                 sge->length = a;
2978                                 orig = sg_page(sge);
2979                                 from = sg_virt(sge);
2980                                 to = page_address(page);
2981                                 memcpy(to, from, a);
2982                                 memcpy(to + a, from + a + pop, b);
2983                                 sg_set_page(sge, page, a + b, 0);
2984                                 put_page(orig);
2985                         }
2986                         pop = 0;
2987                 } else if (pop >= sge->length - a) {
2988                         pop -= (sge->length - a);
2989                         sge->length = a;
2990                 }
2991         }
2992
2993         /* From above the current layout _must_ be as follows,
2994          *
2995          * -| offset
2996          * -| start
2997          *
2998          *  |---- pop ---|---------------- b ------------|
2999          *  |____________________________________________| length
3000          *
3001          * Offset and start of the current msg elem are equal because in the
3002          * previous case we handled offset != start and either consumed the
3003          * entire element and advanced to the next element OR pop == 0.
3004          *
3005          * Two cases to handle here are first pop is less than the length
3006          * leaving some remainder b above. Simply adjust the element's layout
3007          * in this case. Or pop >= length of the element so that b = 0. In this
3008          * case advance to next element decrementing pop.
3009          */
3010         while (pop) {
3011                 struct scatterlist *sge = sk_msg_elem(msg, i);
3012
3013                 if (pop < sge->length) {
3014                         sge->length -= pop;
3015                         sge->offset += pop;
3016                         pop = 0;
3017                 } else {
3018                         pop -= sge->length;
3019                         sk_msg_shift_left(msg, i);
3020                 }
3021                 sk_msg_iter_var_next(i);
3022         }
3023
3024         sk_mem_uncharge(msg->sk, len - pop);
3025         msg->sg.size -= (len - pop);
3026         sk_msg_reset_curr(msg);
3027         sk_msg_compute_data_pointers(msg);
3028         return 0;
3029 }
3030
3031 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3032         .func           = bpf_msg_pop_data,
3033         .gpl_only       = false,
3034         .ret_type       = RET_INTEGER,
3035         .arg1_type      = ARG_PTR_TO_CTX,
3036         .arg2_type      = ARG_ANYTHING,
3037         .arg3_type      = ARG_ANYTHING,
3038         .arg4_type      = ARG_ANYTHING,
3039 };
3040
3041 #ifdef CONFIG_CGROUP_NET_CLASSID
3042 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3043 {
3044         return __task_get_classid(current);
3045 }
3046
3047 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3048         .func           = bpf_get_cgroup_classid_curr,
3049         .gpl_only       = false,
3050         .ret_type       = RET_INTEGER,
3051 };
3052
3053 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3054 {
3055         struct sock *sk = skb_to_full_sk(skb);
3056
3057         if (!sk || !sk_fullsock(sk))
3058                 return 0;
3059
3060         return sock_cgroup_classid(&sk->sk_cgrp_data);
3061 }
3062
3063 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3064         .func           = bpf_skb_cgroup_classid,
3065         .gpl_only       = false,
3066         .ret_type       = RET_INTEGER,
3067         .arg1_type      = ARG_PTR_TO_CTX,
3068 };
3069 #endif
3070
3071 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3072 {
3073         return task_get_classid(skb);
3074 }
3075
3076 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3077         .func           = bpf_get_cgroup_classid,
3078         .gpl_only       = false,
3079         .ret_type       = RET_INTEGER,
3080         .arg1_type      = ARG_PTR_TO_CTX,
3081 };
3082
3083 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3084 {
3085         return dst_tclassid(skb);
3086 }
3087
3088 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3089         .func           = bpf_get_route_realm,
3090         .gpl_only       = false,
3091         .ret_type       = RET_INTEGER,
3092         .arg1_type      = ARG_PTR_TO_CTX,
3093 };
3094
3095 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3096 {
3097         /* If skb_clear_hash() was called due to mangling, we can
3098          * trigger SW recalculation here. Later access to hash
3099          * can then use the inline skb->hash via context directly
3100          * instead of calling this helper again.
3101          */
3102         return skb_get_hash(skb);
3103 }
3104
3105 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3106         .func           = bpf_get_hash_recalc,
3107         .gpl_only       = false,
3108         .ret_type       = RET_INTEGER,
3109         .arg1_type      = ARG_PTR_TO_CTX,
3110 };
3111
3112 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3113 {
3114         /* After all direct packet write, this can be used once for
3115          * triggering a lazy recalc on next skb_get_hash() invocation.
3116          */
3117         skb_clear_hash(skb);
3118         return 0;
3119 }
3120
3121 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3122         .func           = bpf_set_hash_invalid,
3123         .gpl_only       = false,
3124         .ret_type       = RET_INTEGER,
3125         .arg1_type      = ARG_PTR_TO_CTX,
3126 };
3127
3128 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3129 {
3130         /* Set user specified hash as L4(+), so that it gets returned
3131          * on skb_get_hash() call unless BPF prog later on triggers a
3132          * skb_clear_hash().
3133          */
3134         __skb_set_sw_hash(skb, hash, true);
3135         return 0;
3136 }
3137
3138 static const struct bpf_func_proto bpf_set_hash_proto = {
3139         .func           = bpf_set_hash,
3140         .gpl_only       = false,
3141         .ret_type       = RET_INTEGER,
3142         .arg1_type      = ARG_PTR_TO_CTX,
3143         .arg2_type      = ARG_ANYTHING,
3144 };
3145
3146 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3147            u16, vlan_tci)
3148 {
3149         int ret;
3150
3151         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3152                      vlan_proto != htons(ETH_P_8021AD)))
3153                 vlan_proto = htons(ETH_P_8021Q);
3154
3155         bpf_push_mac_rcsum(skb);
3156         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3157         bpf_pull_mac_rcsum(skb);
3158
3159         bpf_compute_data_pointers(skb);
3160         return ret;
3161 }
3162
3163 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3164         .func           = bpf_skb_vlan_push,
3165         .gpl_only       = false,
3166         .ret_type       = RET_INTEGER,
3167         .arg1_type      = ARG_PTR_TO_CTX,
3168         .arg2_type      = ARG_ANYTHING,
3169         .arg3_type      = ARG_ANYTHING,
3170 };
3171
3172 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3173 {
3174         int ret;
3175
3176         bpf_push_mac_rcsum(skb);
3177         ret = skb_vlan_pop(skb);
3178         bpf_pull_mac_rcsum(skb);
3179
3180         bpf_compute_data_pointers(skb);
3181         return ret;
3182 }
3183
3184 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3185         .func           = bpf_skb_vlan_pop,
3186         .gpl_only       = false,
3187         .ret_type       = RET_INTEGER,
3188         .arg1_type      = ARG_PTR_TO_CTX,
3189 };
3190
3191 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3192 {
3193         /* Caller already did skb_cow() with len as headroom,
3194          * so no need to do it here.
3195          */
3196         skb_push(skb, len);
3197         memmove(skb->data, skb->data + len, off);
3198         memset(skb->data + off, 0, len);
3199
3200         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3201          * needed here as it does not change the skb->csum
3202          * result for checksum complete when summing over
3203          * zeroed blocks.
3204          */
3205         return 0;
3206 }
3207
3208 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3209 {
3210         void *old_data;
3211
3212         /* skb_ensure_writable() is not needed here, as we're
3213          * already working on an uncloned skb.
3214          */
3215         if (unlikely(!pskb_may_pull(skb, off + len)))
3216                 return -ENOMEM;
3217
3218         old_data = skb->data;
3219         __skb_pull(skb, len);
3220         skb_postpull_rcsum(skb, old_data + off, len);
3221         memmove(skb->data, old_data, off);
3222
3223         return 0;
3224 }
3225
3226 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3227 {
3228         bool trans_same = skb->transport_header == skb->network_header;
3229         int ret;
3230
3231         /* There's no need for __skb_push()/__skb_pull() pair to
3232          * get to the start of the mac header as we're guaranteed
3233          * to always start from here under eBPF.
3234          */
3235         ret = bpf_skb_generic_push(skb, off, len);
3236         if (likely(!ret)) {
3237                 skb->mac_header -= len;
3238                 skb->network_header -= len;
3239                 if (trans_same)
3240                         skb->transport_header = skb->network_header;
3241         }
3242
3243         return ret;
3244 }
3245
3246 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3247 {
3248         bool trans_same = skb->transport_header == skb->network_header;
3249         int ret;
3250
3251         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3252         ret = bpf_skb_generic_pop(skb, off, len);
3253         if (likely(!ret)) {
3254                 skb->mac_header += len;
3255                 skb->network_header += len;
3256                 if (trans_same)
3257                         skb->transport_header = skb->network_header;
3258         }
3259
3260         return ret;
3261 }
3262
3263 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3264 {
3265         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3266         u32 off = skb_mac_header_len(skb);
3267         int ret;
3268
3269         ret = skb_cow(skb, len_diff);
3270         if (unlikely(ret < 0))
3271                 return ret;
3272
3273         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3274         if (unlikely(ret < 0))
3275                 return ret;
3276
3277         if (skb_is_gso(skb)) {
3278                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3279
3280                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3281                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3282                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3283                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3284                 }
3285         }
3286
3287         skb->protocol = htons(ETH_P_IPV6);
3288         skb_clear_hash(skb);
3289
3290         return 0;
3291 }
3292
3293 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3294 {
3295         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3296         u32 off = skb_mac_header_len(skb);
3297         int ret;
3298
3299         ret = skb_unclone(skb, GFP_ATOMIC);
3300         if (unlikely(ret < 0))
3301                 return ret;
3302
3303         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3304         if (unlikely(ret < 0))
3305                 return ret;
3306
3307         if (skb_is_gso(skb)) {
3308                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3309
3310                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3311                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3312                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3313                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3314                 }
3315         }
3316
3317         skb->protocol = htons(ETH_P_IP);
3318         skb_clear_hash(skb);
3319
3320         return 0;
3321 }
3322
3323 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3324 {
3325         __be16 from_proto = skb->protocol;
3326
3327         if (from_proto == htons(ETH_P_IP) &&
3328               to_proto == htons(ETH_P_IPV6))
3329                 return bpf_skb_proto_4_to_6(skb);
3330
3331         if (from_proto == htons(ETH_P_IPV6) &&
3332               to_proto == htons(ETH_P_IP))
3333                 return bpf_skb_proto_6_to_4(skb);
3334
3335         return -ENOTSUPP;
3336 }
3337
3338 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3339            u64, flags)
3340 {
3341         int ret;
3342
3343         if (unlikely(flags))
3344                 return -EINVAL;
3345
3346         /* General idea is that this helper does the basic groundwork
3347          * needed for changing the protocol, and eBPF program fills the
3348          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3349          * and other helpers, rather than passing a raw buffer here.
3350          *
3351          * The rationale is to keep this minimal and without a need to
3352          * deal with raw packet data. F.e. even if we would pass buffers
3353          * here, the program still needs to call the bpf_lX_csum_replace()
3354          * helpers anyway. Plus, this way we keep also separation of
3355          * concerns, since f.e. bpf_skb_store_bytes() should only take
3356          * care of stores.
3357          *
3358          * Currently, additional options and extension header space are
3359          * not supported, but flags register is reserved so we can adapt
3360          * that. For offloads, we mark packet as dodgy, so that headers
3361          * need to be verified first.
3362          */
3363         ret = bpf_skb_proto_xlat(skb, proto);
3364         bpf_compute_data_pointers(skb);
3365         return ret;
3366 }
3367
3368 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3369         .func           = bpf_skb_change_proto,
3370         .gpl_only       = false,
3371         .ret_type       = RET_INTEGER,
3372         .arg1_type      = ARG_PTR_TO_CTX,
3373         .arg2_type      = ARG_ANYTHING,
3374         .arg3_type      = ARG_ANYTHING,
3375 };
3376
3377 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3378 {
3379         /* We only allow a restricted subset to be changed for now. */
3380         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3381                      !skb_pkt_type_ok(pkt_type)))
3382                 return -EINVAL;
3383
3384         skb->pkt_type = pkt_type;
3385         return 0;
3386 }
3387
3388 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3389         .func           = bpf_skb_change_type,
3390         .gpl_only       = false,
3391         .ret_type       = RET_INTEGER,
3392         .arg1_type      = ARG_PTR_TO_CTX,
3393         .arg2_type      = ARG_ANYTHING,
3394 };
3395
3396 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3397 {
3398         switch (skb->protocol) {
3399         case htons(ETH_P_IP):
3400                 return sizeof(struct iphdr);
3401         case htons(ETH_P_IPV6):
3402                 return sizeof(struct ipv6hdr);
3403         default:
3404                 return ~0U;
3405         }
3406 }
3407
3408 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3409                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410
3411 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3412                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3413                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3414                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3415                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3416                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3417                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3418
3419 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3420                             u64 flags)
3421 {
3422         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3423         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3424         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3425         unsigned int gso_type = SKB_GSO_DODGY;
3426         int ret;
3427
3428         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3429                 /* udp gso_size delineates datagrams, only allow if fixed */
3430                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3431                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3432                         return -ENOTSUPP;
3433         }
3434
3435         ret = skb_cow_head(skb, len_diff);
3436         if (unlikely(ret < 0))
3437                 return ret;
3438
3439         if (encap) {
3440                 if (skb->protocol != htons(ETH_P_IP) &&
3441                     skb->protocol != htons(ETH_P_IPV6))
3442                         return -ENOTSUPP;
3443
3444                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3445                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3446                         return -EINVAL;
3447
3448                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3449                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3450                         return -EINVAL;
3451
3452                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3453                     inner_mac_len < ETH_HLEN)
3454                         return -EINVAL;
3455
3456                 if (skb->encapsulation)
3457                         return -EALREADY;
3458
3459                 mac_len = skb->network_header - skb->mac_header;
3460                 inner_net = skb->network_header;
3461                 if (inner_mac_len > len_diff)
3462                         return -EINVAL;
3463                 inner_trans = skb->transport_header;
3464         }
3465
3466         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3467         if (unlikely(ret < 0))
3468                 return ret;
3469
3470         if (encap) {
3471                 skb->inner_mac_header = inner_net - inner_mac_len;
3472                 skb->inner_network_header = inner_net;
3473                 skb->inner_transport_header = inner_trans;
3474
3475                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3476                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3477                 else
3478                         skb_set_inner_protocol(skb, skb->protocol);
3479
3480                 skb->encapsulation = 1;
3481                 skb_set_network_header(skb, mac_len);
3482
3483                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3484                         gso_type |= SKB_GSO_UDP_TUNNEL;
3485                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3486                         gso_type |= SKB_GSO_GRE;
3487                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3488                         gso_type |= SKB_GSO_IPXIP6;
3489                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3490                         gso_type |= SKB_GSO_IPXIP4;
3491
3492                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3493                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3494                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3495                                         sizeof(struct ipv6hdr) :
3496                                         sizeof(struct iphdr);
3497
3498                         skb_set_transport_header(skb, mac_len + nh_len);
3499                 }
3500
3501                 /* Match skb->protocol to new outer l3 protocol */
3502                 if (skb->protocol == htons(ETH_P_IP) &&
3503                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3504                         skb->protocol = htons(ETH_P_IPV6);
3505                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3506                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3507                         skb->protocol = htons(ETH_P_IP);
3508         }
3509
3510         if (skb_is_gso(skb)) {
3511                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3512
3513                 /* Due to header grow, MSS needs to be downgraded. */
3514                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3515                         skb_decrease_gso_size(shinfo, len_diff);
3516
3517                 /* Header must be checked, and gso_segs recomputed. */
3518                 shinfo->gso_type |= gso_type;
3519                 shinfo->gso_segs = 0;
3520         }
3521
3522         return 0;
3523 }
3524
3525 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3526                               u64 flags)
3527 {
3528         int ret;
3529
3530         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3531                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3532                 return -EINVAL;
3533
3534         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3535                 /* udp gso_size delineates datagrams, only allow if fixed */
3536                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3537                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3538                         return -ENOTSUPP;
3539         }
3540
3541         ret = skb_unclone(skb, GFP_ATOMIC);
3542         if (unlikely(ret < 0))
3543                 return ret;
3544
3545         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3546         if (unlikely(ret < 0))
3547                 return ret;
3548
3549         if (skb_is_gso(skb)) {
3550                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3551
3552                 /* Due to header shrink, MSS can be upgraded. */
3553                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3554                         skb_increase_gso_size(shinfo, len_diff);
3555
3556                 /* Header must be checked, and gso_segs recomputed. */
3557                 shinfo->gso_type |= SKB_GSO_DODGY;
3558                 shinfo->gso_segs = 0;
3559         }
3560
3561         return 0;
3562 }
3563
3564 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3565
3566 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3567            u32, mode, u64, flags)
3568 {
3569         u32 len_diff_abs = abs(len_diff);
3570         bool shrink = len_diff < 0;
3571         int ret = 0;
3572
3573         if (unlikely(flags || mode))
3574                 return -EINVAL;
3575         if (unlikely(len_diff_abs > 0xfffU))
3576                 return -EFAULT;
3577
3578         if (!shrink) {
3579                 ret = skb_cow(skb, len_diff);
3580                 if (unlikely(ret < 0))
3581                         return ret;
3582                 __skb_push(skb, len_diff_abs);
3583                 memset(skb->data, 0, len_diff_abs);
3584         } else {
3585                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3586                         return -ENOMEM;
3587                 __skb_pull(skb, len_diff_abs);
3588         }
3589         if (tls_sw_has_ctx_rx(skb->sk)) {
3590                 struct strp_msg *rxm = strp_msg(skb);
3591
3592                 rxm->full_len += len_diff;
3593         }
3594         return ret;
3595 }
3596
3597 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3598         .func           = sk_skb_adjust_room,
3599         .gpl_only       = false,
3600         .ret_type       = RET_INTEGER,
3601         .arg1_type      = ARG_PTR_TO_CTX,
3602         .arg2_type      = ARG_ANYTHING,
3603         .arg3_type      = ARG_ANYTHING,
3604         .arg4_type      = ARG_ANYTHING,
3605 };
3606
3607 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3608            u32, mode, u64, flags)
3609 {
3610         u32 len_cur, len_diff_abs = abs(len_diff);
3611         u32 len_min = bpf_skb_net_base_len(skb);
3612         u32 len_max = BPF_SKB_MAX_LEN;
3613         __be16 proto = skb->protocol;
3614         bool shrink = len_diff < 0;
3615         u32 off;
3616         int ret;
3617
3618         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3619                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3620                 return -EINVAL;
3621         if (unlikely(len_diff_abs > 0xfffU))
3622                 return -EFAULT;
3623         if (unlikely(proto != htons(ETH_P_IP) &&
3624                      proto != htons(ETH_P_IPV6)))
3625                 return -ENOTSUPP;
3626
3627         off = skb_mac_header_len(skb);
3628         switch (mode) {
3629         case BPF_ADJ_ROOM_NET:
3630                 off += bpf_skb_net_base_len(skb);
3631                 break;
3632         case BPF_ADJ_ROOM_MAC:
3633                 break;
3634         default:
3635                 return -ENOTSUPP;
3636         }
3637
3638         len_cur = skb->len - skb_network_offset(skb);
3639         if ((shrink && (len_diff_abs >= len_cur ||
3640                         len_cur - len_diff_abs < len_min)) ||
3641             (!shrink && (skb->len + len_diff_abs > len_max &&
3642                          !skb_is_gso(skb))))
3643                 return -ENOTSUPP;
3644
3645         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3646                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3647         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3648                 __skb_reset_checksum_unnecessary(skb);
3649
3650         bpf_compute_data_pointers(skb);
3651         return ret;
3652 }
3653
3654 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3655         .func           = bpf_skb_adjust_room,
3656         .gpl_only       = false,
3657         .ret_type       = RET_INTEGER,
3658         .arg1_type      = ARG_PTR_TO_CTX,
3659         .arg2_type      = ARG_ANYTHING,
3660         .arg3_type      = ARG_ANYTHING,
3661         .arg4_type      = ARG_ANYTHING,
3662 };
3663
3664 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3665 {
3666         u32 min_len = skb_network_offset(skb);
3667
3668         if (skb_transport_header_was_set(skb))
3669                 min_len = skb_transport_offset(skb);
3670         if (skb->ip_summed == CHECKSUM_PARTIAL)
3671                 min_len = skb_checksum_start_offset(skb) +
3672                           skb->csum_offset + sizeof(__sum16);
3673         return min_len;
3674 }
3675
3676 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3677 {
3678         unsigned int old_len = skb->len;
3679         int ret;
3680
3681         ret = __skb_grow_rcsum(skb, new_len);
3682         if (!ret)
3683                 memset(skb->data + old_len, 0, new_len - old_len);
3684         return ret;
3685 }
3686
3687 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3688 {
3689         return __skb_trim_rcsum(skb, new_len);
3690 }
3691
3692 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3693                                         u64 flags)
3694 {
3695         u32 max_len = BPF_SKB_MAX_LEN;
3696         u32 min_len = __bpf_skb_min_len(skb);
3697         int ret;
3698
3699         if (unlikely(flags || new_len > max_len || new_len < min_len))
3700                 return -EINVAL;
3701         if (skb->encapsulation)
3702                 return -ENOTSUPP;
3703
3704         /* The basic idea of this helper is that it's performing the
3705          * needed work to either grow or trim an skb, and eBPF program
3706          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3707          * bpf_lX_csum_replace() and others rather than passing a raw
3708          * buffer here. This one is a slow path helper and intended
3709          * for replies with control messages.
3710          *
3711          * Like in bpf_skb_change_proto(), we want to keep this rather
3712          * minimal and without protocol specifics so that we are able
3713          * to separate concerns as in bpf_skb_store_bytes() should only
3714          * be the one responsible for writing buffers.
3715          *
3716          * It's really expected to be a slow path operation here for
3717          * control message replies, so we're implicitly linearizing,
3718          * uncloning and drop offloads from the skb by this.
3719          */
3720         ret = __bpf_try_make_writable(skb, skb->len);
3721         if (!ret) {
3722                 if (new_len > skb->len)
3723                         ret = bpf_skb_grow_rcsum(skb, new_len);
3724                 else if (new_len < skb->len)
3725                         ret = bpf_skb_trim_rcsum(skb, new_len);
3726                 if (!ret && skb_is_gso(skb))
3727                         skb_gso_reset(skb);
3728         }
3729         return ret;
3730 }
3731
3732 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3733            u64, flags)
3734 {
3735         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3736
3737         bpf_compute_data_pointers(skb);
3738         return ret;
3739 }
3740
3741 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3742         .func           = bpf_skb_change_tail,
3743         .gpl_only       = false,
3744         .ret_type       = RET_INTEGER,
3745         .arg1_type      = ARG_PTR_TO_CTX,
3746         .arg2_type      = ARG_ANYTHING,
3747         .arg3_type      = ARG_ANYTHING,
3748 };
3749
3750 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3751            u64, flags)
3752 {
3753         return __bpf_skb_change_tail(skb, new_len, flags);
3754 }
3755
3756 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3757         .func           = sk_skb_change_tail,
3758         .gpl_only       = false,
3759         .ret_type       = RET_INTEGER,
3760         .arg1_type      = ARG_PTR_TO_CTX,
3761         .arg2_type      = ARG_ANYTHING,
3762         .arg3_type      = ARG_ANYTHING,
3763 };
3764
3765 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3766                                         u64 flags)
3767 {
3768         u32 max_len = BPF_SKB_MAX_LEN;
3769         u32 new_len = skb->len + head_room;
3770         int ret;
3771
3772         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3773                      new_len < skb->len))
3774                 return -EINVAL;
3775
3776         ret = skb_cow(skb, head_room);
3777         if (likely(!ret)) {
3778                 /* Idea for this helper is that we currently only
3779                  * allow to expand on mac header. This means that
3780                  * skb->protocol network header, etc, stay as is.
3781                  * Compared to bpf_skb_change_tail(), we're more
3782                  * flexible due to not needing to linearize or
3783                  * reset GSO. Intention for this helper is to be
3784                  * used by an L3 skb that needs to push mac header
3785                  * for redirection into L2 device.
3786                  */
3787                 __skb_push(skb, head_room);
3788                 memset(skb->data, 0, head_room);
3789                 skb_reset_mac_header(skb);
3790                 skb_reset_mac_len(skb);
3791         }
3792
3793         return ret;
3794 }
3795
3796 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3797            u64, flags)
3798 {
3799         int ret = __bpf_skb_change_head(skb, head_room, flags);
3800
3801         bpf_compute_data_pointers(skb);
3802         return ret;
3803 }
3804
3805 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3806         .func           = bpf_skb_change_head,
3807         .gpl_only       = false,
3808         .ret_type       = RET_INTEGER,
3809         .arg1_type      = ARG_PTR_TO_CTX,
3810         .arg2_type      = ARG_ANYTHING,
3811         .arg3_type      = ARG_ANYTHING,
3812 };
3813
3814 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3815            u64, flags)
3816 {
3817         return __bpf_skb_change_head(skb, head_room, flags);
3818 }
3819
3820 static const struct bpf_func_proto sk_skb_change_head_proto = {
3821         .func           = sk_skb_change_head,
3822         .gpl_only       = false,
3823         .ret_type       = RET_INTEGER,
3824         .arg1_type      = ARG_PTR_TO_CTX,
3825         .arg2_type      = ARG_ANYTHING,
3826         .arg3_type      = ARG_ANYTHING,
3827 };
3828
3829 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3830 {
3831         return xdp_get_buff_len(xdp);
3832 }
3833
3834 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3835         .func           = bpf_xdp_get_buff_len,
3836         .gpl_only       = false,
3837         .ret_type       = RET_INTEGER,
3838         .arg1_type      = ARG_PTR_TO_CTX,
3839 };
3840
3841 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3842
3843 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3844         .func           = bpf_xdp_get_buff_len,
3845         .gpl_only       = false,
3846         .arg1_type      = ARG_PTR_TO_BTF_ID,
3847         .arg1_btf_id    = &bpf_xdp_get_buff_len_bpf_ids[0],
3848 };
3849
3850 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3851 {
3852         return xdp_data_meta_unsupported(xdp) ? 0 :
3853                xdp->data - xdp->data_meta;
3854 }
3855
3856 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3857 {
3858         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3859         unsigned long metalen = xdp_get_metalen(xdp);
3860         void *data_start = xdp_frame_end + metalen;
3861         void *data = xdp->data + offset;
3862
3863         if (unlikely(data < data_start ||
3864                      data > xdp->data_end - ETH_HLEN))
3865                 return -EINVAL;
3866
3867         if (metalen)
3868                 memmove(xdp->data_meta + offset,
3869                         xdp->data_meta, metalen);
3870         xdp->data_meta += offset;
3871         xdp->data = data;
3872
3873         return 0;
3874 }
3875
3876 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3877         .func           = bpf_xdp_adjust_head,
3878         .gpl_only       = false,
3879         .ret_type       = RET_INTEGER,
3880         .arg1_type      = ARG_PTR_TO_CTX,
3881         .arg2_type      = ARG_ANYTHING,
3882 };
3883
3884 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3885                              void *buf, unsigned long len, bool flush)
3886 {
3887         unsigned long ptr_len, ptr_off = 0;
3888         skb_frag_t *next_frag, *end_frag;
3889         struct skb_shared_info *sinfo;
3890         void *src, *dst;
3891         u8 *ptr_buf;
3892
3893         if (likely(xdp->data_end - xdp->data >= off + len)) {
3894                 src = flush ? buf : xdp->data + off;
3895                 dst = flush ? xdp->data + off : buf;
3896                 memcpy(dst, src, len);
3897                 return;
3898         }
3899
3900         sinfo = xdp_get_shared_info_from_buff(xdp);
3901         end_frag = &sinfo->frags[sinfo->nr_frags];
3902         next_frag = &sinfo->frags[0];
3903
3904         ptr_len = xdp->data_end - xdp->data;
3905         ptr_buf = xdp->data;
3906
3907         while (true) {
3908                 if (off < ptr_off + ptr_len) {
3909                         unsigned long copy_off = off - ptr_off;
3910                         unsigned long copy_len = min(len, ptr_len - copy_off);
3911
3912                         src = flush ? buf : ptr_buf + copy_off;
3913                         dst = flush ? ptr_buf + copy_off : buf;
3914                         memcpy(dst, src, copy_len);
3915
3916                         off += copy_len;
3917                         len -= copy_len;
3918                         buf += copy_len;
3919                 }
3920
3921                 if (!len || next_frag == end_frag)
3922                         break;
3923
3924                 ptr_off += ptr_len;
3925                 ptr_buf = skb_frag_address(next_frag);
3926                 ptr_len = skb_frag_size(next_frag);
3927                 next_frag++;
3928         }
3929 }
3930
3931 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3932 {
3933         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3934         u32 size = xdp->data_end - xdp->data;
3935         void *addr = xdp->data;
3936         int i;
3937
3938         if (unlikely(offset > 0xffff || len > 0xffff))
3939                 return ERR_PTR(-EFAULT);
3940
3941         if (offset + len > xdp_get_buff_len(xdp))
3942                 return ERR_PTR(-EINVAL);
3943
3944         if (offset < size) /* linear area */
3945                 goto out;
3946
3947         offset -= size;
3948         for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3949                 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3950
3951                 if  (offset < frag_size) {
3952                         addr = skb_frag_address(&sinfo->frags[i]);
3953                         size = frag_size;
3954                         break;
3955                 }
3956                 offset -= frag_size;
3957         }
3958 out:
3959         return offset + len <= size ? addr + offset : NULL;
3960 }
3961
3962 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3963            void *, buf, u32, len)
3964 {
3965         void *ptr;
3966
3967         ptr = bpf_xdp_pointer(xdp, offset, len);
3968         if (IS_ERR(ptr))
3969                 return PTR_ERR(ptr);
3970
3971         if (!ptr)
3972                 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3973         else
3974                 memcpy(buf, ptr, len);
3975
3976         return 0;
3977 }
3978
3979 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3980         .func           = bpf_xdp_load_bytes,
3981         .gpl_only       = false,
3982         .ret_type       = RET_INTEGER,
3983         .arg1_type      = ARG_PTR_TO_CTX,
3984         .arg2_type      = ARG_ANYTHING,
3985         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3986         .arg4_type      = ARG_CONST_SIZE,
3987 };
3988
3989 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3990            void *, buf, u32, len)
3991 {
3992         void *ptr;
3993
3994         ptr = bpf_xdp_pointer(xdp, offset, len);
3995         if (IS_ERR(ptr))
3996                 return PTR_ERR(ptr);
3997
3998         if (!ptr)
3999                 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4000         else
4001                 memcpy(ptr, buf, len);
4002
4003         return 0;
4004 }
4005
4006 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4007         .func           = bpf_xdp_store_bytes,
4008         .gpl_only       = false,
4009         .ret_type       = RET_INTEGER,
4010         .arg1_type      = ARG_PTR_TO_CTX,
4011         .arg2_type      = ARG_ANYTHING,
4012         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4013         .arg4_type      = ARG_CONST_SIZE,
4014 };
4015
4016 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4017 {
4018         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4019         skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4020         struct xdp_rxq_info *rxq = xdp->rxq;
4021         unsigned int tailroom;
4022
4023         if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4024                 return -EOPNOTSUPP;
4025
4026         tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4027         if (unlikely(offset > tailroom))
4028                 return -EINVAL;
4029
4030         memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4031         skb_frag_size_add(frag, offset);
4032         sinfo->xdp_frags_size += offset;
4033
4034         return 0;
4035 }
4036
4037 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4038 {
4039         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4040         int i, n_frags_free = 0, len_free = 0;
4041
4042         if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4043                 return -EINVAL;
4044
4045         for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4046                 skb_frag_t *frag = &sinfo->frags[i];
4047                 int shrink = min_t(int, offset, skb_frag_size(frag));
4048
4049                 len_free += shrink;
4050                 offset -= shrink;
4051
4052                 if (skb_frag_size(frag) == shrink) {
4053                         struct page *page = skb_frag_page(frag);
4054
4055                         __xdp_return(page_address(page), &xdp->rxq->mem,
4056                                      false, NULL);
4057                         n_frags_free++;
4058                 } else {
4059                         skb_frag_size_sub(frag, shrink);
4060                         break;
4061                 }
4062         }
4063         sinfo->nr_frags -= n_frags_free;
4064         sinfo->xdp_frags_size -= len_free;
4065
4066         if (unlikely(!sinfo->nr_frags)) {
4067                 xdp_buff_clear_frags_flag(xdp);
4068                 xdp->data_end -= offset;
4069         }
4070
4071         return 0;
4072 }
4073
4074 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4075 {
4076         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4077         void *data_end = xdp->data_end + offset;
4078
4079         if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4080                 if (offset < 0)
4081                         return bpf_xdp_frags_shrink_tail(xdp, -offset);
4082
4083                 return bpf_xdp_frags_increase_tail(xdp, offset);
4084         }
4085
4086         /* Notice that xdp_data_hard_end have reserved some tailroom */
4087         if (unlikely(data_end > data_hard_end))
4088                 return -EINVAL;
4089
4090         if (unlikely(data_end < xdp->data + ETH_HLEN))
4091                 return -EINVAL;
4092
4093         /* Clear memory area on grow, can contain uninit kernel memory */
4094         if (offset > 0)
4095                 memset(xdp->data_end, 0, offset);
4096
4097         xdp->data_end = data_end;
4098
4099         return 0;
4100 }
4101
4102 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4103         .func           = bpf_xdp_adjust_tail,
4104         .gpl_only       = false,
4105         .ret_type       = RET_INTEGER,
4106         .arg1_type      = ARG_PTR_TO_CTX,
4107         .arg2_type      = ARG_ANYTHING,
4108 };
4109
4110 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4111 {
4112         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4113         void *meta = xdp->data_meta + offset;
4114         unsigned long metalen = xdp->data - meta;
4115
4116         if (xdp_data_meta_unsupported(xdp))
4117                 return -ENOTSUPP;
4118         if (unlikely(meta < xdp_frame_end ||
4119                      meta > xdp->data))
4120                 return -EINVAL;
4121         if (unlikely(xdp_metalen_invalid(metalen)))
4122                 return -EACCES;
4123
4124         xdp->data_meta = meta;
4125
4126         return 0;
4127 }
4128
4129 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4130         .func           = bpf_xdp_adjust_meta,
4131         .gpl_only       = false,
4132         .ret_type       = RET_INTEGER,
4133         .arg1_type      = ARG_PTR_TO_CTX,
4134         .arg2_type      = ARG_ANYTHING,
4135 };
4136
4137 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4138  * below:
4139  *
4140  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4141  *    of the redirect and store it (along with some other metadata) in a per-CPU
4142  *    struct bpf_redirect_info.
4143  *
4144  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4145  *    call xdp_do_redirect() which will use the information in struct
4146  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4147  *    bulk queue structure.
4148  *
4149  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4150  *    which will flush all the different bulk queues, thus completing the
4151  *    redirect.
4152  *
4153  * Pointers to the map entries will be kept around for this whole sequence of
4154  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4155  * the core code; instead, the RCU protection relies on everything happening
4156  * inside a single NAPI poll sequence, which means it's between a pair of calls
4157  * to local_bh_disable()/local_bh_enable().
4158  *
4159  * The map entries are marked as __rcu and the map code makes sure to
4160  * dereference those pointers with rcu_dereference_check() in a way that works
4161  * for both sections that to hold an rcu_read_lock() and sections that are
4162  * called from NAPI without a separate rcu_read_lock(). The code below does not
4163  * use RCU annotations, but relies on those in the map code.
4164  */
4165 void xdp_do_flush(void)
4166 {
4167         __dev_flush();
4168         __cpu_map_flush();
4169         __xsk_map_flush();
4170 }
4171 EXPORT_SYMBOL_GPL(xdp_do_flush);
4172
4173 void bpf_clear_redirect_map(struct bpf_map *map)
4174 {
4175         struct bpf_redirect_info *ri;
4176         int cpu;
4177
4178         for_each_possible_cpu(cpu) {
4179                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4180                 /* Avoid polluting remote cacheline due to writes if
4181                  * not needed. Once we pass this test, we need the
4182                  * cmpxchg() to make sure it hasn't been changed in
4183                  * the meantime by remote CPU.
4184                  */
4185                 if (unlikely(READ_ONCE(ri->map) == map))
4186                         cmpxchg(&ri->map, map, NULL);
4187         }
4188 }
4189
4190 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4191 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4192
4193 u32 xdp_master_redirect(struct xdp_buff *xdp)
4194 {
4195         struct net_device *master, *slave;
4196         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4197
4198         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4199         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4200         if (slave && slave != xdp->rxq->dev) {
4201                 /* The target device is different from the receiving device, so
4202                  * redirect it to the new device.
4203                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4204                  * drivers to unmap the packet from their rx ring.
4205                  */
4206                 ri->tgt_index = slave->ifindex;
4207                 ri->map_id = INT_MAX;
4208                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4209                 return XDP_REDIRECT;
4210         }
4211         return XDP_TX;
4212 }
4213 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4214
4215 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4216                                         struct net_device *dev,
4217                                         struct xdp_buff *xdp,
4218                                         struct bpf_prog *xdp_prog)
4219 {
4220         enum bpf_map_type map_type = ri->map_type;
4221         void *fwd = ri->tgt_value;
4222         u32 map_id = ri->map_id;
4223         int err;
4224
4225         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4226         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4227
4228         err = __xsk_map_redirect(fwd, xdp);
4229         if (unlikely(err))
4230                 goto err;
4231
4232         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4233         return 0;
4234 err:
4235         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4236         return err;
4237 }
4238
4239 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4240                                                    struct net_device *dev,
4241                                                    struct xdp_frame *xdpf,
4242                                                    struct bpf_prog *xdp_prog)
4243 {
4244         enum bpf_map_type map_type = ri->map_type;
4245         void *fwd = ri->tgt_value;
4246         u32 map_id = ri->map_id;
4247         u32 flags = ri->flags;
4248         struct bpf_map *map;
4249         int err;
4250
4251         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4252         ri->flags = 0;
4253         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4254
4255         if (unlikely(!xdpf)) {
4256                 err = -EOVERFLOW;
4257                 goto err;
4258         }
4259
4260         switch (map_type) {
4261         case BPF_MAP_TYPE_DEVMAP:
4262                 fallthrough;
4263         case BPF_MAP_TYPE_DEVMAP_HASH:
4264                 if (unlikely(flags & BPF_F_BROADCAST)) {
4265                         map = READ_ONCE(ri->map);
4266
4267                         /* The map pointer is cleared when the map is being torn
4268                          * down by bpf_clear_redirect_map()
4269                          */
4270                         if (unlikely(!map)) {
4271                                 err = -ENOENT;
4272                                 break;
4273                         }
4274
4275                         WRITE_ONCE(ri->map, NULL);
4276                         err = dev_map_enqueue_multi(xdpf, dev, map,
4277                                                     flags & BPF_F_EXCLUDE_INGRESS);
4278                 } else {
4279                         err = dev_map_enqueue(fwd, xdpf, dev);
4280                 }
4281                 break;
4282         case BPF_MAP_TYPE_CPUMAP:
4283                 err = cpu_map_enqueue(fwd, xdpf, dev);
4284                 break;
4285         case BPF_MAP_TYPE_UNSPEC:
4286                 if (map_id == INT_MAX) {
4287                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4288                         if (unlikely(!fwd)) {
4289                                 err = -EINVAL;
4290                                 break;
4291                         }
4292                         err = dev_xdp_enqueue(fwd, xdpf, dev);
4293                         break;
4294                 }
4295                 fallthrough;
4296         default:
4297                 err = -EBADRQC;
4298         }
4299
4300         if (unlikely(err))
4301                 goto err;
4302
4303         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4304         return 0;
4305 err:
4306         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4307         return err;
4308 }
4309
4310 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4311                     struct bpf_prog *xdp_prog)
4312 {
4313         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4314         enum bpf_map_type map_type = ri->map_type;
4315
4316         /* XDP_REDIRECT is not fully supported yet for xdp frags since
4317          * not all XDP capable drivers can map non-linear xdp_frame in
4318          * ndo_xdp_xmit.
4319          */
4320         if (unlikely(xdp_buff_has_frags(xdp) &&
4321                      map_type != BPF_MAP_TYPE_CPUMAP))
4322                 return -EOPNOTSUPP;
4323
4324         if (map_type == BPF_MAP_TYPE_XSKMAP)
4325                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4326
4327         return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4328                                        xdp_prog);
4329 }
4330 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4331
4332 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4333                           struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4334 {
4335         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4336         enum bpf_map_type map_type = ri->map_type;
4337
4338         if (map_type == BPF_MAP_TYPE_XSKMAP)
4339                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4340
4341         return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4342 }
4343 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4344
4345 static int xdp_do_generic_redirect_map(struct net_device *dev,
4346                                        struct sk_buff *skb,
4347                                        struct xdp_buff *xdp,
4348                                        struct bpf_prog *xdp_prog, void *fwd,
4349                                        enum bpf_map_type map_type, u32 map_id,
4350                                        u32 flags)
4351 {
4352         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4353         struct bpf_map *map;
4354         int err;
4355
4356         switch (map_type) {
4357         case BPF_MAP_TYPE_DEVMAP:
4358                 fallthrough;
4359         case BPF_MAP_TYPE_DEVMAP_HASH:
4360                 if (unlikely(flags & BPF_F_BROADCAST)) {
4361                         map = READ_ONCE(ri->map);
4362
4363                         /* The map pointer is cleared when the map is being torn
4364                          * down by bpf_clear_redirect_map()
4365                          */
4366                         if (unlikely(!map)) {
4367                                 err = -ENOENT;
4368                                 break;
4369                         }
4370
4371                         WRITE_ONCE(ri->map, NULL);
4372                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4373                                                      flags & BPF_F_EXCLUDE_INGRESS);
4374                 } else {
4375                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4376                 }
4377                 if (unlikely(err))
4378                         goto err;
4379                 break;
4380         case BPF_MAP_TYPE_XSKMAP:
4381                 err = xsk_generic_rcv(fwd, xdp);
4382                 if (err)
4383                         goto err;
4384                 consume_skb(skb);
4385                 break;
4386         case BPF_MAP_TYPE_CPUMAP:
4387                 err = cpu_map_generic_redirect(fwd, skb);
4388                 if (unlikely(err))
4389                         goto err;
4390                 break;
4391         default:
4392                 err = -EBADRQC;
4393                 goto err;
4394         }
4395
4396         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4397         return 0;
4398 err:
4399         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4400         return err;
4401 }
4402
4403 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4404                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4405 {
4406         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4407         enum bpf_map_type map_type = ri->map_type;
4408         void *fwd = ri->tgt_value;
4409         u32 map_id = ri->map_id;
4410         u32 flags = ri->flags;
4411         int err;
4412
4413         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4414         ri->flags = 0;
4415         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4416
4417         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4418                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4419                 if (unlikely(!fwd)) {
4420                         err = -EINVAL;
4421                         goto err;
4422                 }
4423
4424                 err = xdp_ok_fwd_dev(fwd, skb->len);
4425                 if (unlikely(err))
4426                         goto err;
4427
4428                 skb->dev = fwd;
4429                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4430                 generic_xdp_tx(skb, xdp_prog);
4431                 return 0;
4432         }
4433
4434         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4435 err:
4436         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4437         return err;
4438 }
4439
4440 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4441 {
4442         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4443
4444         if (unlikely(flags))
4445                 return XDP_ABORTED;
4446
4447         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4448          * by map_idr) is used for ifindex based XDP redirect.
4449          */
4450         ri->tgt_index = ifindex;
4451         ri->map_id = INT_MAX;
4452         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4453
4454         return XDP_REDIRECT;
4455 }
4456
4457 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4458         .func           = bpf_xdp_redirect,
4459         .gpl_only       = false,
4460         .ret_type       = RET_INTEGER,
4461         .arg1_type      = ARG_ANYTHING,
4462         .arg2_type      = ARG_ANYTHING,
4463 };
4464
4465 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4466            u64, flags)
4467 {
4468         return map->ops->map_redirect(map, ifindex, flags);
4469 }
4470
4471 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4472         .func           = bpf_xdp_redirect_map,
4473         .gpl_only       = false,
4474         .ret_type       = RET_INTEGER,
4475         .arg1_type      = ARG_CONST_MAP_PTR,
4476         .arg2_type      = ARG_ANYTHING,
4477         .arg3_type      = ARG_ANYTHING,
4478 };
4479
4480 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4481                                   unsigned long off, unsigned long len)
4482 {
4483         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4484
4485         if (unlikely(!ptr))
4486                 return len;
4487         if (ptr != dst_buff)
4488                 memcpy(dst_buff, ptr, len);
4489
4490         return 0;
4491 }
4492
4493 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4494            u64, flags, void *, meta, u64, meta_size)
4495 {
4496         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4497
4498         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4499                 return -EINVAL;
4500         if (unlikely(!skb || skb_size > skb->len))
4501                 return -EFAULT;
4502
4503         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4504                                 bpf_skb_copy);
4505 }
4506
4507 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4508         .func           = bpf_skb_event_output,
4509         .gpl_only       = true,
4510         .ret_type       = RET_INTEGER,
4511         .arg1_type      = ARG_PTR_TO_CTX,
4512         .arg2_type      = ARG_CONST_MAP_PTR,
4513         .arg3_type      = ARG_ANYTHING,
4514         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4515         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4516 };
4517
4518 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4519
4520 const struct bpf_func_proto bpf_skb_output_proto = {
4521         .func           = bpf_skb_event_output,
4522         .gpl_only       = true,
4523         .ret_type       = RET_INTEGER,
4524         .arg1_type      = ARG_PTR_TO_BTF_ID,
4525         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4526         .arg2_type      = ARG_CONST_MAP_PTR,
4527         .arg3_type      = ARG_ANYTHING,
4528         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4529         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4530 };
4531
4532 static unsigned short bpf_tunnel_key_af(u64 flags)
4533 {
4534         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4535 }
4536
4537 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4538            u32, size, u64, flags)
4539 {
4540         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4541         u8 compat[sizeof(struct bpf_tunnel_key)];
4542         void *to_orig = to;
4543         int err;
4544
4545         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4546                                          BPF_F_TUNINFO_FLAGS)))) {
4547                 err = -EINVAL;
4548                 goto err_clear;
4549         }
4550         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4551                 err = -EPROTO;
4552                 goto err_clear;
4553         }
4554         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4555                 err = -EINVAL;
4556                 switch (size) {
4557                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4558                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4559                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4560                         goto set_compat;
4561                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4562                         /* Fixup deprecated structure layouts here, so we have
4563                          * a common path later on.
4564                          */
4565                         if (ip_tunnel_info_af(info) != AF_INET)
4566                                 goto err_clear;
4567 set_compat:
4568                         to = (struct bpf_tunnel_key *)compat;
4569                         break;
4570                 default:
4571                         goto err_clear;
4572                 }
4573         }
4574
4575         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4576         to->tunnel_tos = info->key.tos;
4577         to->tunnel_ttl = info->key.ttl;
4578         if (flags & BPF_F_TUNINFO_FLAGS)
4579                 to->tunnel_flags = info->key.tun_flags;
4580         else
4581                 to->tunnel_ext = 0;
4582
4583         if (flags & BPF_F_TUNINFO_IPV6) {
4584                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4585                        sizeof(to->remote_ipv6));
4586                 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4587                        sizeof(to->local_ipv6));
4588                 to->tunnel_label = be32_to_cpu(info->key.label);
4589         } else {
4590                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4591                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4592                 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4593                 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4594                 to->tunnel_label = 0;
4595         }
4596
4597         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4598                 memcpy(to_orig, to, size);
4599
4600         return 0;
4601 err_clear:
4602         memset(to_orig, 0, size);
4603         return err;
4604 }
4605
4606 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4607         .func           = bpf_skb_get_tunnel_key,
4608         .gpl_only       = false,
4609         .ret_type       = RET_INTEGER,
4610         .arg1_type      = ARG_PTR_TO_CTX,
4611         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4612         .arg3_type      = ARG_CONST_SIZE,
4613         .arg4_type      = ARG_ANYTHING,
4614 };
4615
4616 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4617 {
4618         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4619         int err;
4620
4621         if (unlikely(!info ||
4622                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4623                 err = -ENOENT;
4624                 goto err_clear;
4625         }
4626         if (unlikely(size < info->options_len)) {
4627                 err = -ENOMEM;
4628                 goto err_clear;
4629         }
4630
4631         ip_tunnel_info_opts_get(to, info);
4632         if (size > info->options_len)
4633                 memset(to + info->options_len, 0, size - info->options_len);
4634
4635         return info->options_len;
4636 err_clear:
4637         memset(to, 0, size);
4638         return err;
4639 }
4640
4641 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4642         .func           = bpf_skb_get_tunnel_opt,
4643         .gpl_only       = false,
4644         .ret_type       = RET_INTEGER,
4645         .arg1_type      = ARG_PTR_TO_CTX,
4646         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4647         .arg3_type      = ARG_CONST_SIZE,
4648 };
4649
4650 static struct metadata_dst __percpu *md_dst;
4651
4652 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4653            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4654 {
4655         struct metadata_dst *md = this_cpu_ptr(md_dst);
4656         u8 compat[sizeof(struct bpf_tunnel_key)];
4657         struct ip_tunnel_info *info;
4658
4659         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4660                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4661                 return -EINVAL;
4662         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4663                 switch (size) {
4664                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4665                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4666                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4667                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4668                         /* Fixup deprecated structure layouts here, so we have
4669                          * a common path later on.
4670                          */
4671                         memcpy(compat, from, size);
4672                         memset(compat + size, 0, sizeof(compat) - size);
4673                         from = (const struct bpf_tunnel_key *) compat;
4674                         break;
4675                 default:
4676                         return -EINVAL;
4677                 }
4678         }
4679         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4680                      from->tunnel_ext))
4681                 return -EINVAL;
4682
4683         skb_dst_drop(skb);
4684         dst_hold((struct dst_entry *) md);
4685         skb_dst_set(skb, (struct dst_entry *) md);
4686
4687         info = &md->u.tun_info;
4688         memset(info, 0, sizeof(*info));
4689         info->mode = IP_TUNNEL_INFO_TX;
4690
4691         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4692         if (flags & BPF_F_DONT_FRAGMENT)
4693                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4694         if (flags & BPF_F_ZERO_CSUM_TX)
4695                 info->key.tun_flags &= ~TUNNEL_CSUM;
4696         if (flags & BPF_F_SEQ_NUMBER)
4697                 info->key.tun_flags |= TUNNEL_SEQ;
4698
4699         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4700         info->key.tos = from->tunnel_tos;
4701         info->key.ttl = from->tunnel_ttl;
4702
4703         if (flags & BPF_F_TUNINFO_IPV6) {
4704                 info->mode |= IP_TUNNEL_INFO_IPV6;
4705                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4706                        sizeof(from->remote_ipv6));
4707                 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4708                        sizeof(from->local_ipv6));
4709                 info->key.label = cpu_to_be32(from->tunnel_label) &
4710                                   IPV6_FLOWLABEL_MASK;
4711         } else {
4712                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4713                 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4714                 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4715         }
4716
4717         return 0;
4718 }
4719
4720 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4721         .func           = bpf_skb_set_tunnel_key,
4722         .gpl_only       = false,
4723         .ret_type       = RET_INTEGER,
4724         .arg1_type      = ARG_PTR_TO_CTX,
4725         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4726         .arg3_type      = ARG_CONST_SIZE,
4727         .arg4_type      = ARG_ANYTHING,
4728 };
4729
4730 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4731            const u8 *, from, u32, size)
4732 {
4733         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4734         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4735
4736         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4737                 return -EINVAL;
4738         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4739                 return -ENOMEM;
4740
4741         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4742
4743         return 0;
4744 }
4745
4746 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4747         .func           = bpf_skb_set_tunnel_opt,
4748         .gpl_only       = false,
4749         .ret_type       = RET_INTEGER,
4750         .arg1_type      = ARG_PTR_TO_CTX,
4751         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4752         .arg3_type      = ARG_CONST_SIZE,
4753 };
4754
4755 static const struct bpf_func_proto *
4756 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4757 {
4758         if (!md_dst) {
4759                 struct metadata_dst __percpu *tmp;
4760
4761                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4762                                                 METADATA_IP_TUNNEL,
4763                                                 GFP_KERNEL);
4764                 if (!tmp)
4765                         return NULL;
4766                 if (cmpxchg(&md_dst, NULL, tmp))
4767                         metadata_dst_free_percpu(tmp);
4768         }
4769
4770         switch (which) {
4771         case BPF_FUNC_skb_set_tunnel_key:
4772                 return &bpf_skb_set_tunnel_key_proto;
4773         case BPF_FUNC_skb_set_tunnel_opt:
4774                 return &bpf_skb_set_tunnel_opt_proto;
4775         default:
4776                 return NULL;
4777         }
4778 }
4779
4780 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4781            u32, idx)
4782 {
4783         struct bpf_array *array = container_of(map, struct bpf_array, map);
4784         struct cgroup *cgrp;
4785         struct sock *sk;
4786
4787         sk = skb_to_full_sk(skb);
4788         if (!sk || !sk_fullsock(sk))
4789                 return -ENOENT;
4790         if (unlikely(idx >= array->map.max_entries))
4791                 return -E2BIG;
4792
4793         cgrp = READ_ONCE(array->ptrs[idx]);
4794         if (unlikely(!cgrp))
4795                 return -EAGAIN;
4796
4797         return sk_under_cgroup_hierarchy(sk, cgrp);
4798 }
4799
4800 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4801         .func           = bpf_skb_under_cgroup,
4802         .gpl_only       = false,
4803         .ret_type       = RET_INTEGER,
4804         .arg1_type      = ARG_PTR_TO_CTX,
4805         .arg2_type      = ARG_CONST_MAP_PTR,
4806         .arg3_type      = ARG_ANYTHING,
4807 };
4808
4809 #ifdef CONFIG_SOCK_CGROUP_DATA
4810 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4811 {
4812         struct cgroup *cgrp;
4813
4814         sk = sk_to_full_sk(sk);
4815         if (!sk || !sk_fullsock(sk))
4816                 return 0;
4817
4818         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4819         return cgroup_id(cgrp);
4820 }
4821
4822 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4823 {
4824         return __bpf_sk_cgroup_id(skb->sk);
4825 }
4826
4827 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4828         .func           = bpf_skb_cgroup_id,
4829         .gpl_only       = false,
4830         .ret_type       = RET_INTEGER,
4831         .arg1_type      = ARG_PTR_TO_CTX,
4832 };
4833
4834 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4835                                               int ancestor_level)
4836 {
4837         struct cgroup *ancestor;
4838         struct cgroup *cgrp;
4839
4840         sk = sk_to_full_sk(sk);
4841         if (!sk || !sk_fullsock(sk))
4842                 return 0;
4843
4844         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4845         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4846         if (!ancestor)
4847                 return 0;
4848
4849         return cgroup_id(ancestor);
4850 }
4851
4852 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4853            ancestor_level)
4854 {
4855         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4856 }
4857
4858 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4859         .func           = bpf_skb_ancestor_cgroup_id,
4860         .gpl_only       = false,
4861         .ret_type       = RET_INTEGER,
4862         .arg1_type      = ARG_PTR_TO_CTX,
4863         .arg2_type      = ARG_ANYTHING,
4864 };
4865
4866 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4867 {
4868         return __bpf_sk_cgroup_id(sk);
4869 }
4870
4871 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4872         .func           = bpf_sk_cgroup_id,
4873         .gpl_only       = false,
4874         .ret_type       = RET_INTEGER,
4875         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4876 };
4877
4878 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4879 {
4880         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4881 }
4882
4883 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4884         .func           = bpf_sk_ancestor_cgroup_id,
4885         .gpl_only       = false,
4886         .ret_type       = RET_INTEGER,
4887         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4888         .arg2_type      = ARG_ANYTHING,
4889 };
4890 #endif
4891
4892 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4893                                   unsigned long off, unsigned long len)
4894 {
4895         struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4896
4897         bpf_xdp_copy_buf(xdp, off, dst, len, false);
4898         return 0;
4899 }
4900
4901 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4902            u64, flags, void *, meta, u64, meta_size)
4903 {
4904         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4905
4906         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4907                 return -EINVAL;
4908
4909         if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4910                 return -EFAULT;
4911
4912         return bpf_event_output(map, flags, meta, meta_size, xdp,
4913                                 xdp_size, bpf_xdp_copy);
4914 }
4915
4916 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4917         .func           = bpf_xdp_event_output,
4918         .gpl_only       = true,
4919         .ret_type       = RET_INTEGER,
4920         .arg1_type      = ARG_PTR_TO_CTX,
4921         .arg2_type      = ARG_CONST_MAP_PTR,
4922         .arg3_type      = ARG_ANYTHING,
4923         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4924         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4925 };
4926
4927 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4928
4929 const struct bpf_func_proto bpf_xdp_output_proto = {
4930         .func           = bpf_xdp_event_output,
4931         .gpl_only       = true,
4932         .ret_type       = RET_INTEGER,
4933         .arg1_type      = ARG_PTR_TO_BTF_ID,
4934         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4935         .arg2_type      = ARG_CONST_MAP_PTR,
4936         .arg3_type      = ARG_ANYTHING,
4937         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4938         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4939 };
4940
4941 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4942 {
4943         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4944 }
4945
4946 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4947         .func           = bpf_get_socket_cookie,
4948         .gpl_only       = false,
4949         .ret_type       = RET_INTEGER,
4950         .arg1_type      = ARG_PTR_TO_CTX,
4951 };
4952
4953 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4954 {
4955         return __sock_gen_cookie(ctx->sk);
4956 }
4957
4958 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4959         .func           = bpf_get_socket_cookie_sock_addr,
4960         .gpl_only       = false,
4961         .ret_type       = RET_INTEGER,
4962         .arg1_type      = ARG_PTR_TO_CTX,
4963 };
4964
4965 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4966 {
4967         return __sock_gen_cookie(ctx);
4968 }
4969
4970 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4971         .func           = bpf_get_socket_cookie_sock,
4972         .gpl_only       = false,
4973         .ret_type       = RET_INTEGER,
4974         .arg1_type      = ARG_PTR_TO_CTX,
4975 };
4976
4977 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4978 {
4979         return sk ? sock_gen_cookie(sk) : 0;
4980 }
4981
4982 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4983         .func           = bpf_get_socket_ptr_cookie,
4984         .gpl_only       = false,
4985         .ret_type       = RET_INTEGER,
4986         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4987 };
4988
4989 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4990 {
4991         return __sock_gen_cookie(ctx->sk);
4992 }
4993
4994 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4995         .func           = bpf_get_socket_cookie_sock_ops,
4996         .gpl_only       = false,
4997         .ret_type       = RET_INTEGER,
4998         .arg1_type      = ARG_PTR_TO_CTX,
4999 };
5000
5001 static u64 __bpf_get_netns_cookie(struct sock *sk)
5002 {
5003         const struct net *net = sk ? sock_net(sk) : &init_net;
5004
5005         return net->net_cookie;
5006 }
5007
5008 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5009 {
5010         return __bpf_get_netns_cookie(ctx);
5011 }
5012
5013 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5014         .func           = bpf_get_netns_cookie_sock,
5015         .gpl_only       = false,
5016         .ret_type       = RET_INTEGER,
5017         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5018 };
5019
5020 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5021 {
5022         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5023 }
5024
5025 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5026         .func           = bpf_get_netns_cookie_sock_addr,
5027         .gpl_only       = false,
5028         .ret_type       = RET_INTEGER,
5029         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5030 };
5031
5032 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5033 {
5034         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5035 }
5036
5037 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5038         .func           = bpf_get_netns_cookie_sock_ops,
5039         .gpl_only       = false,
5040         .ret_type       = RET_INTEGER,
5041         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5042 };
5043
5044 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5045 {
5046         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5047 }
5048
5049 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5050         .func           = bpf_get_netns_cookie_sk_msg,
5051         .gpl_only       = false,
5052         .ret_type       = RET_INTEGER,
5053         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5054 };
5055
5056 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5057 {
5058         struct sock *sk = sk_to_full_sk(skb->sk);
5059         kuid_t kuid;
5060
5061         if (!sk || !sk_fullsock(sk))
5062                 return overflowuid;
5063         kuid = sock_net_uid(sock_net(sk), sk);
5064         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5065 }
5066
5067 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5068         .func           = bpf_get_socket_uid,
5069         .gpl_only       = false,
5070         .ret_type       = RET_INTEGER,
5071         .arg1_type      = ARG_PTR_TO_CTX,
5072 };
5073
5074 static int sol_socket_sockopt(struct sock *sk, int optname,
5075                               char *optval, int *optlen,
5076                               bool getopt)
5077 {
5078         switch (optname) {
5079         case SO_REUSEADDR:
5080         case SO_SNDBUF:
5081         case SO_RCVBUF:
5082         case SO_KEEPALIVE:
5083         case SO_PRIORITY:
5084         case SO_REUSEPORT:
5085         case SO_RCVLOWAT:
5086         case SO_MARK:
5087         case SO_MAX_PACING_RATE:
5088         case SO_BINDTOIFINDEX:
5089         case SO_TXREHASH:
5090                 if (*optlen != sizeof(int))
5091                         return -EINVAL;
5092                 break;
5093         case SO_BINDTODEVICE:
5094                 break;
5095         default:
5096                 return -EINVAL;
5097         }
5098
5099         if (getopt) {
5100                 if (optname == SO_BINDTODEVICE)
5101                         return -EINVAL;
5102                 return sk_getsockopt(sk, SOL_SOCKET, optname,
5103                                      KERNEL_SOCKPTR(optval),
5104                                      KERNEL_SOCKPTR(optlen));
5105         }
5106
5107         return sk_setsockopt(sk, SOL_SOCKET, optname,
5108                              KERNEL_SOCKPTR(optval), *optlen);
5109 }
5110
5111 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5112                                   char *optval, int optlen)
5113 {
5114         struct tcp_sock *tp = tcp_sk(sk);
5115         unsigned long timeout;
5116         int val;
5117
5118         if (optlen != sizeof(int))
5119                 return -EINVAL;
5120
5121         val = *(int *)optval;
5122
5123         /* Only some options are supported */
5124         switch (optname) {
5125         case TCP_BPF_IW:
5126                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5127                         return -EINVAL;
5128                 tcp_snd_cwnd_set(tp, val);
5129                 break;
5130         case TCP_BPF_SNDCWND_CLAMP:
5131                 if (val <= 0)
5132                         return -EINVAL;
5133                 tp->snd_cwnd_clamp = val;
5134                 tp->snd_ssthresh = val;
5135                 break;
5136         case TCP_BPF_DELACK_MAX:
5137                 timeout = usecs_to_jiffies(val);
5138                 if (timeout > TCP_DELACK_MAX ||
5139                     timeout < TCP_TIMEOUT_MIN)
5140                         return -EINVAL;
5141                 inet_csk(sk)->icsk_delack_max = timeout;
5142                 break;
5143         case TCP_BPF_RTO_MIN:
5144                 timeout = usecs_to_jiffies(val);
5145                 if (timeout > TCP_RTO_MIN ||
5146                     timeout < TCP_TIMEOUT_MIN)
5147                         return -EINVAL;
5148                 inet_csk(sk)->icsk_rto_min = timeout;
5149                 break;
5150         default:
5151                 return -EINVAL;
5152         }
5153
5154         return 0;
5155 }
5156
5157 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5158                                       int *optlen, bool getopt)
5159 {
5160         struct tcp_sock *tp;
5161         int ret;
5162
5163         if (*optlen < 2)
5164                 return -EINVAL;
5165
5166         if (getopt) {
5167                 if (!inet_csk(sk)->icsk_ca_ops)
5168                         return -EINVAL;
5169                 /* BPF expects NULL-terminated tcp-cc string */
5170                 optval[--(*optlen)] = '\0';
5171                 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5172                                          KERNEL_SOCKPTR(optval),
5173                                          KERNEL_SOCKPTR(optlen));
5174         }
5175
5176         /* "cdg" is the only cc that alloc a ptr
5177          * in inet_csk_ca area.  The bpf-tcp-cc may
5178          * overwrite this ptr after switching to cdg.
5179          */
5180         if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5181                 return -ENOTSUPP;
5182
5183         /* It stops this looping
5184          *
5185          * .init => bpf_setsockopt(tcp_cc) => .init =>
5186          * bpf_setsockopt(tcp_cc)" => .init => ....
5187          *
5188          * The second bpf_setsockopt(tcp_cc) is not allowed
5189          * in order to break the loop when both .init
5190          * are the same bpf prog.
5191          *
5192          * This applies even the second bpf_setsockopt(tcp_cc)
5193          * does not cause a loop.  This limits only the first
5194          * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5195          * pick a fallback cc (eg. peer does not support ECN)
5196          * and the second '.init' cannot fallback to
5197          * another.
5198          */
5199         tp = tcp_sk(sk);
5200         if (tp->bpf_chg_cc_inprogress)
5201                 return -EBUSY;
5202
5203         tp->bpf_chg_cc_inprogress = 1;
5204         ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5205                                 KERNEL_SOCKPTR(optval), *optlen);
5206         tp->bpf_chg_cc_inprogress = 0;
5207         return ret;
5208 }
5209
5210 static int sol_tcp_sockopt(struct sock *sk, int optname,
5211                            char *optval, int *optlen,
5212                            bool getopt)
5213 {
5214         if (sk->sk_prot->setsockopt != tcp_setsockopt)
5215                 return -EINVAL;
5216
5217         switch (optname) {
5218         case TCP_NODELAY:
5219         case TCP_MAXSEG:
5220         case TCP_KEEPIDLE:
5221         case TCP_KEEPINTVL:
5222         case TCP_KEEPCNT:
5223         case TCP_SYNCNT:
5224         case TCP_WINDOW_CLAMP:
5225         case TCP_THIN_LINEAR_TIMEOUTS:
5226         case TCP_USER_TIMEOUT:
5227         case TCP_NOTSENT_LOWAT:
5228         case TCP_SAVE_SYN:
5229                 if (*optlen != sizeof(int))
5230                         return -EINVAL;
5231                 break;
5232         case TCP_CONGESTION:
5233                 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5234         case TCP_SAVED_SYN:
5235                 if (*optlen < 1)
5236                         return -EINVAL;
5237                 break;
5238         default:
5239                 if (getopt)
5240                         return -EINVAL;
5241                 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5242         }
5243
5244         if (getopt) {
5245                 if (optname == TCP_SAVED_SYN) {
5246                         struct tcp_sock *tp = tcp_sk(sk);
5247
5248                         if (!tp->saved_syn ||
5249                             *optlen > tcp_saved_syn_len(tp->saved_syn))
5250                                 return -EINVAL;
5251                         memcpy(optval, tp->saved_syn->data, *optlen);
5252                         /* It cannot free tp->saved_syn here because it
5253                          * does not know if the user space still needs it.
5254                          */
5255                         return 0;
5256                 }
5257
5258                 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5259                                          KERNEL_SOCKPTR(optval),
5260                                          KERNEL_SOCKPTR(optlen));
5261         }
5262
5263         return do_tcp_setsockopt(sk, SOL_TCP, optname,
5264                                  KERNEL_SOCKPTR(optval), *optlen);
5265 }
5266
5267 static int sol_ip_sockopt(struct sock *sk, int optname,
5268                           char *optval, int *optlen,
5269                           bool getopt)
5270 {
5271         if (sk->sk_family != AF_INET)
5272                 return -EINVAL;
5273
5274         switch (optname) {
5275         case IP_TOS:
5276                 if (*optlen != sizeof(int))
5277                         return -EINVAL;
5278                 break;
5279         default:
5280                 return -EINVAL;
5281         }
5282
5283         if (getopt)
5284                 return do_ip_getsockopt(sk, SOL_IP, optname,
5285                                         KERNEL_SOCKPTR(optval),
5286                                         KERNEL_SOCKPTR(optlen));
5287
5288         return do_ip_setsockopt(sk, SOL_IP, optname,
5289                                 KERNEL_SOCKPTR(optval), *optlen);
5290 }
5291
5292 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5293                             char *optval, int *optlen,
5294                             bool getopt)
5295 {
5296         if (sk->sk_family != AF_INET6)
5297                 return -EINVAL;
5298
5299         switch (optname) {
5300         case IPV6_TCLASS:
5301         case IPV6_AUTOFLOWLABEL:
5302                 if (*optlen != sizeof(int))
5303                         return -EINVAL;
5304                 break;
5305         default:
5306                 return -EINVAL;
5307         }
5308
5309         if (getopt)
5310                 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5311                                                       KERNEL_SOCKPTR(optval),
5312                                                       KERNEL_SOCKPTR(optlen));
5313
5314         return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5315                                               KERNEL_SOCKPTR(optval), *optlen);
5316 }
5317
5318 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5319                             char *optval, int optlen)
5320 {
5321         if (!sk_fullsock(sk))
5322                 return -EINVAL;
5323
5324         if (level == SOL_SOCKET)
5325                 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5326         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5327                 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5328         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5329                 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5330         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5331                 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5332
5333         return -EINVAL;
5334 }
5335
5336 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5337                            char *optval, int optlen)
5338 {
5339         if (sk_fullsock(sk))
5340                 sock_owned_by_me(sk);
5341         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5342 }
5343
5344 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5345                             char *optval, int optlen)
5346 {
5347         int err, saved_optlen = optlen;
5348
5349         if (!sk_fullsock(sk)) {
5350                 err = -EINVAL;
5351                 goto done;
5352         }
5353
5354         if (level == SOL_SOCKET)
5355                 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5356         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5357                 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5358         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5359                 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5360         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5361                 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5362         else
5363                 err = -EINVAL;
5364
5365 done:
5366         if (err)
5367                 optlen = 0;
5368         if (optlen < saved_optlen)
5369                 memset(optval + optlen, 0, saved_optlen - optlen);
5370         return err;
5371 }
5372
5373 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5374                            char *optval, int optlen)
5375 {
5376         if (sk_fullsock(sk))
5377                 sock_owned_by_me(sk);
5378         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5379 }
5380
5381 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5382            int, optname, char *, optval, int, optlen)
5383 {
5384         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5385 }
5386
5387 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5388         .func           = bpf_sk_setsockopt,
5389         .gpl_only       = false,
5390         .ret_type       = RET_INTEGER,
5391         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5392         .arg2_type      = ARG_ANYTHING,
5393         .arg3_type      = ARG_ANYTHING,
5394         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5395         .arg5_type      = ARG_CONST_SIZE,
5396 };
5397
5398 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5399            int, optname, char *, optval, int, optlen)
5400 {
5401         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5402 }
5403
5404 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5405         .func           = bpf_sk_getsockopt,
5406         .gpl_only       = false,
5407         .ret_type       = RET_INTEGER,
5408         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5409         .arg2_type      = ARG_ANYTHING,
5410         .arg3_type      = ARG_ANYTHING,
5411         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5412         .arg5_type      = ARG_CONST_SIZE,
5413 };
5414
5415 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5416            int, optname, char *, optval, int, optlen)
5417 {
5418         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5419 }
5420
5421 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5422         .func           = bpf_unlocked_sk_setsockopt,
5423         .gpl_only       = false,
5424         .ret_type       = RET_INTEGER,
5425         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5426         .arg2_type      = ARG_ANYTHING,
5427         .arg3_type      = ARG_ANYTHING,
5428         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5429         .arg5_type      = ARG_CONST_SIZE,
5430 };
5431
5432 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5433            int, optname, char *, optval, int, optlen)
5434 {
5435         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5436 }
5437
5438 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5439         .func           = bpf_unlocked_sk_getsockopt,
5440         .gpl_only       = false,
5441         .ret_type       = RET_INTEGER,
5442         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5443         .arg2_type      = ARG_ANYTHING,
5444         .arg3_type      = ARG_ANYTHING,
5445         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5446         .arg5_type      = ARG_CONST_SIZE,
5447 };
5448
5449 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5450            int, level, int, optname, char *, optval, int, optlen)
5451 {
5452         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5453 }
5454
5455 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5456         .func           = bpf_sock_addr_setsockopt,
5457         .gpl_only       = false,
5458         .ret_type       = RET_INTEGER,
5459         .arg1_type      = ARG_PTR_TO_CTX,
5460         .arg2_type      = ARG_ANYTHING,
5461         .arg3_type      = ARG_ANYTHING,
5462         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5463         .arg5_type      = ARG_CONST_SIZE,
5464 };
5465
5466 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5467            int, level, int, optname, char *, optval, int, optlen)
5468 {
5469         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5470 }
5471
5472 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5473         .func           = bpf_sock_addr_getsockopt,
5474         .gpl_only       = false,
5475         .ret_type       = RET_INTEGER,
5476         .arg1_type      = ARG_PTR_TO_CTX,
5477         .arg2_type      = ARG_ANYTHING,
5478         .arg3_type      = ARG_ANYTHING,
5479         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5480         .arg5_type      = ARG_CONST_SIZE,
5481 };
5482
5483 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5484            int, level, int, optname, char *, optval, int, optlen)
5485 {
5486         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5487 }
5488
5489 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5490         .func           = bpf_sock_ops_setsockopt,
5491         .gpl_only       = false,
5492         .ret_type       = RET_INTEGER,
5493         .arg1_type      = ARG_PTR_TO_CTX,
5494         .arg2_type      = ARG_ANYTHING,
5495         .arg3_type      = ARG_ANYTHING,
5496         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5497         .arg5_type      = ARG_CONST_SIZE,
5498 };
5499
5500 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5501                                 int optname, const u8 **start)
5502 {
5503         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5504         const u8 *hdr_start;
5505         int ret;
5506
5507         if (syn_skb) {
5508                 /* sk is a request_sock here */
5509
5510                 if (optname == TCP_BPF_SYN) {
5511                         hdr_start = syn_skb->data;
5512                         ret = tcp_hdrlen(syn_skb);
5513                 } else if (optname == TCP_BPF_SYN_IP) {
5514                         hdr_start = skb_network_header(syn_skb);
5515                         ret = skb_network_header_len(syn_skb) +
5516                                 tcp_hdrlen(syn_skb);
5517                 } else {
5518                         /* optname == TCP_BPF_SYN_MAC */
5519                         hdr_start = skb_mac_header(syn_skb);
5520                         ret = skb_mac_header_len(syn_skb) +
5521                                 skb_network_header_len(syn_skb) +
5522                                 tcp_hdrlen(syn_skb);
5523                 }
5524         } else {
5525                 struct sock *sk = bpf_sock->sk;
5526                 struct saved_syn *saved_syn;
5527
5528                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5529                         /* synack retransmit. bpf_sock->syn_skb will
5530                          * not be available.  It has to resort to
5531                          * saved_syn (if it is saved).
5532                          */
5533                         saved_syn = inet_reqsk(sk)->saved_syn;
5534                 else
5535                         saved_syn = tcp_sk(sk)->saved_syn;
5536
5537                 if (!saved_syn)
5538                         return -ENOENT;
5539
5540                 if (optname == TCP_BPF_SYN) {
5541                         hdr_start = saved_syn->data +
5542                                 saved_syn->mac_hdrlen +
5543                                 saved_syn->network_hdrlen;
5544                         ret = saved_syn->tcp_hdrlen;
5545                 } else if (optname == TCP_BPF_SYN_IP) {
5546                         hdr_start = saved_syn->data +
5547                                 saved_syn->mac_hdrlen;
5548                         ret = saved_syn->network_hdrlen +
5549                                 saved_syn->tcp_hdrlen;
5550                 } else {
5551                         /* optname == TCP_BPF_SYN_MAC */
5552
5553                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5554                         if (!saved_syn->mac_hdrlen)
5555                                 return -ENOENT;
5556
5557                         hdr_start = saved_syn->data;
5558                         ret = saved_syn->mac_hdrlen +
5559                                 saved_syn->network_hdrlen +
5560                                 saved_syn->tcp_hdrlen;
5561                 }
5562         }
5563
5564         *start = hdr_start;
5565         return ret;
5566 }
5567
5568 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5569            int, level, int, optname, char *, optval, int, optlen)
5570 {
5571         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5572             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5573                 int ret, copy_len = 0;
5574                 const u8 *start;
5575
5576                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5577                 if (ret > 0) {
5578                         copy_len = ret;
5579                         if (optlen < copy_len) {
5580                                 copy_len = optlen;
5581                                 ret = -ENOSPC;
5582                         }
5583
5584                         memcpy(optval, start, copy_len);
5585                 }
5586
5587                 /* Zero out unused buffer at the end */
5588                 memset(optval + copy_len, 0, optlen - copy_len);
5589
5590                 return ret;
5591         }
5592
5593         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5594 }
5595
5596 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5597         .func           = bpf_sock_ops_getsockopt,
5598         .gpl_only       = false,
5599         .ret_type       = RET_INTEGER,
5600         .arg1_type      = ARG_PTR_TO_CTX,
5601         .arg2_type      = ARG_ANYTHING,
5602         .arg3_type      = ARG_ANYTHING,
5603         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5604         .arg5_type      = ARG_CONST_SIZE,
5605 };
5606
5607 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5608            int, argval)
5609 {
5610         struct sock *sk = bpf_sock->sk;
5611         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5612
5613         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5614                 return -EINVAL;
5615
5616         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5617
5618         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5619 }
5620
5621 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5622         .func           = bpf_sock_ops_cb_flags_set,
5623         .gpl_only       = false,
5624         .ret_type       = RET_INTEGER,
5625         .arg1_type      = ARG_PTR_TO_CTX,
5626         .arg2_type      = ARG_ANYTHING,
5627 };
5628
5629 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5630 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5631
5632 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5633            int, addr_len)
5634 {
5635 #ifdef CONFIG_INET
5636         struct sock *sk = ctx->sk;
5637         u32 flags = BIND_FROM_BPF;
5638         int err;
5639
5640         err = -EINVAL;
5641         if (addr_len < offsetofend(struct sockaddr, sa_family))
5642                 return err;
5643         if (addr->sa_family == AF_INET) {
5644                 if (addr_len < sizeof(struct sockaddr_in))
5645                         return err;
5646                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5647                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5648                 return __inet_bind(sk, addr, addr_len, flags);
5649 #if IS_ENABLED(CONFIG_IPV6)
5650         } else if (addr->sa_family == AF_INET6) {
5651                 if (addr_len < SIN6_LEN_RFC2133)
5652                         return err;
5653                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5654                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5655                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5656                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5657                  */
5658                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5659 #endif /* CONFIG_IPV6 */
5660         }
5661 #endif /* CONFIG_INET */
5662
5663         return -EAFNOSUPPORT;
5664 }
5665
5666 static const struct bpf_func_proto bpf_bind_proto = {
5667         .func           = bpf_bind,
5668         .gpl_only       = false,
5669         .ret_type       = RET_INTEGER,
5670         .arg1_type      = ARG_PTR_TO_CTX,
5671         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5672         .arg3_type      = ARG_CONST_SIZE,
5673 };
5674
5675 #ifdef CONFIG_XFRM
5676 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5677            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5678 {
5679         const struct sec_path *sp = skb_sec_path(skb);
5680         const struct xfrm_state *x;
5681
5682         if (!sp || unlikely(index >= sp->len || flags))
5683                 goto err_clear;
5684
5685         x = sp->xvec[index];
5686
5687         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5688                 goto err_clear;
5689
5690         to->reqid = x->props.reqid;
5691         to->spi = x->id.spi;
5692         to->family = x->props.family;
5693         to->ext = 0;
5694
5695         if (to->family == AF_INET6) {
5696                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5697                        sizeof(to->remote_ipv6));
5698         } else {
5699                 to->remote_ipv4 = x->props.saddr.a4;
5700                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5701         }
5702
5703         return 0;
5704 err_clear:
5705         memset(to, 0, size);
5706         return -EINVAL;
5707 }
5708
5709 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5710         .func           = bpf_skb_get_xfrm_state,
5711         .gpl_only       = false,
5712         .ret_type       = RET_INTEGER,
5713         .arg1_type      = ARG_PTR_TO_CTX,
5714         .arg2_type      = ARG_ANYTHING,
5715         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5716         .arg4_type      = ARG_CONST_SIZE,
5717         .arg5_type      = ARG_ANYTHING,
5718 };
5719 #endif
5720
5721 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5722 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5723 {
5724         params->h_vlan_TCI = 0;
5725         params->h_vlan_proto = 0;
5726         if (mtu)
5727                 params->mtu_result = mtu; /* union with tot_len */
5728
5729         return 0;
5730 }
5731 #endif
5732
5733 #if IS_ENABLED(CONFIG_INET)
5734 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5735                                u32 flags, bool check_mtu)
5736 {
5737         struct fib_nh_common *nhc;
5738         struct in_device *in_dev;
5739         struct neighbour *neigh;
5740         struct net_device *dev;
5741         struct fib_result res;
5742         struct flowi4 fl4;
5743         u32 mtu = 0;
5744         int err;
5745
5746         dev = dev_get_by_index_rcu(net, params->ifindex);
5747         if (unlikely(!dev))
5748                 return -ENODEV;
5749
5750         /* verify forwarding is enabled on this interface */
5751         in_dev = __in_dev_get_rcu(dev);
5752         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5753                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5754
5755         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5756                 fl4.flowi4_iif = 1;
5757                 fl4.flowi4_oif = params->ifindex;
5758         } else {
5759                 fl4.flowi4_iif = params->ifindex;
5760                 fl4.flowi4_oif = 0;
5761         }
5762         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5763         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5764         fl4.flowi4_flags = 0;
5765
5766         fl4.flowi4_proto = params->l4_protocol;
5767         fl4.daddr = params->ipv4_dst;
5768         fl4.saddr = params->ipv4_src;
5769         fl4.fl4_sport = params->sport;
5770         fl4.fl4_dport = params->dport;
5771         fl4.flowi4_multipath_hash = 0;
5772
5773         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5774                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5775                 struct fib_table *tb;
5776
5777                 if (flags & BPF_FIB_LOOKUP_TBID) {
5778                         tbid = params->tbid;
5779                         /* zero out for vlan output */
5780                         params->tbid = 0;
5781                 }
5782
5783                 tb = fib_get_table(net, tbid);
5784                 if (unlikely(!tb))
5785                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5786
5787                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5788         } else {
5789                 fl4.flowi4_mark = 0;
5790                 fl4.flowi4_secid = 0;
5791                 fl4.flowi4_tun_key.tun_id = 0;
5792                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5793
5794                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5795         }
5796
5797         if (err) {
5798                 /* map fib lookup errors to RTN_ type */
5799                 if (err == -EINVAL)
5800                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5801                 if (err == -EHOSTUNREACH)
5802                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5803                 if (err == -EACCES)
5804                         return BPF_FIB_LKUP_RET_PROHIBIT;
5805
5806                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5807         }
5808
5809         if (res.type != RTN_UNICAST)
5810                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5811
5812         if (fib_info_num_path(res.fi) > 1)
5813                 fib_select_path(net, &res, &fl4, NULL);
5814
5815         if (check_mtu) {
5816                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5817                 if (params->tot_len > mtu) {
5818                         params->mtu_result = mtu; /* union with tot_len */
5819                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5820                 }
5821         }
5822
5823         nhc = res.nhc;
5824
5825         /* do not handle lwt encaps right now */
5826         if (nhc->nhc_lwtstate)
5827                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5828
5829         dev = nhc->nhc_dev;
5830
5831         params->rt_metric = res.fi->fib_priority;
5832         params->ifindex = dev->ifindex;
5833
5834         if (flags & BPF_FIB_LOOKUP_SRC)
5835                 params->ipv4_src = fib_result_prefsrc(net, &res);
5836
5837         /* xdp and cls_bpf programs are run in RCU-bh so
5838          * rcu_read_lock_bh is not needed here
5839          */
5840         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5841                 if (nhc->nhc_gw_family)
5842                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5843         } else {
5844                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5845
5846                 params->family = AF_INET6;
5847                 *dst = nhc->nhc_gw.ipv6;
5848         }
5849
5850         if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5851                 goto set_fwd_params;
5852
5853         if (likely(nhc->nhc_gw_family != AF_INET6))
5854                 neigh = __ipv4_neigh_lookup_noref(dev,
5855                                                   (__force u32)params->ipv4_dst);
5856         else
5857                 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5858
5859         if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5860                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5861         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5862         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5863
5864 set_fwd_params:
5865         return bpf_fib_set_fwd_params(params, mtu);
5866 }
5867 #endif
5868
5869 #if IS_ENABLED(CONFIG_IPV6)
5870 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5871                                u32 flags, bool check_mtu)
5872 {
5873         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5874         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5875         struct fib6_result res = {};
5876         struct neighbour *neigh;
5877         struct net_device *dev;
5878         struct inet6_dev *idev;
5879         struct flowi6 fl6;
5880         int strict = 0;
5881         int oif, err;
5882         u32 mtu = 0;
5883
5884         /* link local addresses are never forwarded */
5885         if (rt6_need_strict(dst) || rt6_need_strict(src))
5886                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5887
5888         dev = dev_get_by_index_rcu(net, params->ifindex);
5889         if (unlikely(!dev))
5890                 return -ENODEV;
5891
5892         idev = __in6_dev_get_safely(dev);
5893         if (unlikely(!idev || !idev->cnf.forwarding))
5894                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5895
5896         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5897                 fl6.flowi6_iif = 1;
5898                 oif = fl6.flowi6_oif = params->ifindex;
5899         } else {
5900                 oif = fl6.flowi6_iif = params->ifindex;
5901                 fl6.flowi6_oif = 0;
5902                 strict = RT6_LOOKUP_F_HAS_SADDR;
5903         }
5904         fl6.flowlabel = params->flowinfo;
5905         fl6.flowi6_scope = 0;
5906         fl6.flowi6_flags = 0;
5907         fl6.mp_hash = 0;
5908
5909         fl6.flowi6_proto = params->l4_protocol;
5910         fl6.daddr = *dst;
5911         fl6.saddr = *src;
5912         fl6.fl6_sport = params->sport;
5913         fl6.fl6_dport = params->dport;
5914
5915         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5916                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5917                 struct fib6_table *tb;
5918
5919                 if (flags & BPF_FIB_LOOKUP_TBID) {
5920                         tbid = params->tbid;
5921                         /* zero out for vlan output */
5922                         params->tbid = 0;
5923                 }
5924
5925                 tb = ipv6_stub->fib6_get_table(net, tbid);
5926                 if (unlikely(!tb))
5927                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5928
5929                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5930                                                    strict);
5931         } else {
5932                 fl6.flowi6_mark = 0;
5933                 fl6.flowi6_secid = 0;
5934                 fl6.flowi6_tun_key.tun_id = 0;
5935                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5936
5937                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5938         }
5939
5940         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5941                      res.f6i == net->ipv6.fib6_null_entry))
5942                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5943
5944         switch (res.fib6_type) {
5945         /* only unicast is forwarded */
5946         case RTN_UNICAST:
5947                 break;
5948         case RTN_BLACKHOLE:
5949                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5950         case RTN_UNREACHABLE:
5951                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5952         case RTN_PROHIBIT:
5953                 return BPF_FIB_LKUP_RET_PROHIBIT;
5954         default:
5955                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5956         }
5957
5958         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5959                                     fl6.flowi6_oif != 0, NULL, strict);
5960
5961         if (check_mtu) {
5962                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5963                 if (params->tot_len > mtu) {
5964                         params->mtu_result = mtu; /* union with tot_len */
5965                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5966                 }
5967         }
5968
5969         if (res.nh->fib_nh_lws)
5970                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5971
5972         if (res.nh->fib_nh_gw_family)
5973                 *dst = res.nh->fib_nh_gw6;
5974
5975         dev = res.nh->fib_nh_dev;
5976         params->rt_metric = res.f6i->fib6_metric;
5977         params->ifindex = dev->ifindex;
5978
5979         if (flags & BPF_FIB_LOOKUP_SRC) {
5980                 if (res.f6i->fib6_prefsrc.plen) {
5981                         *src = res.f6i->fib6_prefsrc.addr;
5982                 } else {
5983                         err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
5984                                                                 &fl6.daddr, 0,
5985                                                                 src);
5986                         if (err)
5987                                 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
5988                 }
5989         }
5990
5991         if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5992                 goto set_fwd_params;
5993
5994         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5995          * not needed here.
5996          */
5997         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5998         if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5999                 return BPF_FIB_LKUP_RET_NO_NEIGH;
6000         memcpy(params->dmac, neigh->ha, ETH_ALEN);
6001         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6002
6003 set_fwd_params:
6004         return bpf_fib_set_fwd_params(params, mtu);
6005 }
6006 #endif
6007
6008 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6009                              BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6010                              BPF_FIB_LOOKUP_SRC)
6011
6012 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6013            struct bpf_fib_lookup *, params, int, plen, u32, flags)
6014 {
6015         if (plen < sizeof(*params))
6016                 return -EINVAL;
6017
6018         if (flags & ~BPF_FIB_LOOKUP_MASK)
6019                 return -EINVAL;
6020
6021         switch (params->family) {
6022 #if IS_ENABLED(CONFIG_INET)
6023         case AF_INET:
6024                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6025                                            flags, true);
6026 #endif
6027 #if IS_ENABLED(CONFIG_IPV6)
6028         case AF_INET6:
6029                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6030                                            flags, true);
6031 #endif
6032         }
6033         return -EAFNOSUPPORT;
6034 }
6035
6036 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6037         .func           = bpf_xdp_fib_lookup,
6038         .gpl_only       = true,
6039         .ret_type       = RET_INTEGER,
6040         .arg1_type      = ARG_PTR_TO_CTX,
6041         .arg2_type      = ARG_PTR_TO_MEM,
6042         .arg3_type      = ARG_CONST_SIZE,
6043         .arg4_type      = ARG_ANYTHING,
6044 };
6045
6046 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6047            struct bpf_fib_lookup *, params, int, plen, u32, flags)
6048 {
6049         struct net *net = dev_net(skb->dev);
6050         int rc = -EAFNOSUPPORT;
6051         bool check_mtu = false;
6052
6053         if (plen < sizeof(*params))
6054                 return -EINVAL;
6055
6056         if (flags & ~BPF_FIB_LOOKUP_MASK)
6057                 return -EINVAL;
6058
6059         if (params->tot_len)
6060                 check_mtu = true;
6061
6062         switch (params->family) {
6063 #if IS_ENABLED(CONFIG_INET)
6064         case AF_INET:
6065                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6066                 break;
6067 #endif
6068 #if IS_ENABLED(CONFIG_IPV6)
6069         case AF_INET6:
6070                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6071                 break;
6072 #endif
6073         }
6074
6075         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6076                 struct net_device *dev;
6077
6078                 /* When tot_len isn't provided by user, check skb
6079                  * against MTU of FIB lookup resulting net_device
6080                  */
6081                 dev = dev_get_by_index_rcu(net, params->ifindex);
6082                 if (!is_skb_forwardable(dev, skb))
6083                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6084
6085                 params->mtu_result = dev->mtu; /* union with tot_len */
6086         }
6087
6088         return rc;
6089 }
6090
6091 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6092         .func           = bpf_skb_fib_lookup,
6093         .gpl_only       = true,
6094         .ret_type       = RET_INTEGER,
6095         .arg1_type      = ARG_PTR_TO_CTX,
6096         .arg2_type      = ARG_PTR_TO_MEM,
6097         .arg3_type      = ARG_CONST_SIZE,
6098         .arg4_type      = ARG_ANYTHING,
6099 };
6100
6101 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6102                                             u32 ifindex)
6103 {
6104         struct net *netns = dev_net(dev_curr);
6105
6106         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6107         if (ifindex == 0)
6108                 return dev_curr;
6109
6110         return dev_get_by_index_rcu(netns, ifindex);
6111 }
6112
6113 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6114            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6115 {
6116         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6117         struct net_device *dev = skb->dev;
6118         int skb_len, dev_len;
6119         int mtu;
6120
6121         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6122                 return -EINVAL;
6123
6124         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6125                 return -EINVAL;
6126
6127         dev = __dev_via_ifindex(dev, ifindex);
6128         if (unlikely(!dev))
6129                 return -ENODEV;
6130
6131         mtu = READ_ONCE(dev->mtu);
6132
6133         dev_len = mtu + dev->hard_header_len;
6134
6135         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6136         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6137
6138         skb_len += len_diff; /* minus result pass check */
6139         if (skb_len <= dev_len) {
6140                 ret = BPF_MTU_CHK_RET_SUCCESS;
6141                 goto out;
6142         }
6143         /* At this point, skb->len exceed MTU, but as it include length of all
6144          * segments, it can still be below MTU.  The SKB can possibly get
6145          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6146          * must choose if segs are to be MTU checked.
6147          */
6148         if (skb_is_gso(skb)) {
6149                 ret = BPF_MTU_CHK_RET_SUCCESS;
6150
6151                 if (flags & BPF_MTU_CHK_SEGS &&
6152                     !skb_gso_validate_network_len(skb, mtu))
6153                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6154         }
6155 out:
6156         /* BPF verifier guarantees valid pointer */
6157         *mtu_len = mtu;
6158
6159         return ret;
6160 }
6161
6162 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6163            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6164 {
6165         struct net_device *dev = xdp->rxq->dev;
6166         int xdp_len = xdp->data_end - xdp->data;
6167         int ret = BPF_MTU_CHK_RET_SUCCESS;
6168         int mtu, dev_len;
6169
6170         /* XDP variant doesn't support multi-buffer segment check (yet) */
6171         if (unlikely(flags))
6172                 return -EINVAL;
6173
6174         dev = __dev_via_ifindex(dev, ifindex);
6175         if (unlikely(!dev))
6176                 return -ENODEV;
6177
6178         mtu = READ_ONCE(dev->mtu);
6179
6180         /* Add L2-header as dev MTU is L3 size */
6181         dev_len = mtu + dev->hard_header_len;
6182
6183         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6184         if (*mtu_len)
6185                 xdp_len = *mtu_len + dev->hard_header_len;
6186
6187         xdp_len += len_diff; /* minus result pass check */
6188         if (xdp_len > dev_len)
6189                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6190
6191         /* BPF verifier guarantees valid pointer */
6192         *mtu_len = mtu;
6193
6194         return ret;
6195 }
6196
6197 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6198         .func           = bpf_skb_check_mtu,
6199         .gpl_only       = true,
6200         .ret_type       = RET_INTEGER,
6201         .arg1_type      = ARG_PTR_TO_CTX,
6202         .arg2_type      = ARG_ANYTHING,
6203         .arg3_type      = ARG_PTR_TO_INT,
6204         .arg4_type      = ARG_ANYTHING,
6205         .arg5_type      = ARG_ANYTHING,
6206 };
6207
6208 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6209         .func           = bpf_xdp_check_mtu,
6210         .gpl_only       = true,
6211         .ret_type       = RET_INTEGER,
6212         .arg1_type      = ARG_PTR_TO_CTX,
6213         .arg2_type      = ARG_ANYTHING,
6214         .arg3_type      = ARG_PTR_TO_INT,
6215         .arg4_type      = ARG_ANYTHING,
6216         .arg5_type      = ARG_ANYTHING,
6217 };
6218
6219 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6220 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6221 {
6222         int err;
6223         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6224
6225         if (!seg6_validate_srh(srh, len, false))
6226                 return -EINVAL;
6227
6228         switch (type) {
6229         case BPF_LWT_ENCAP_SEG6_INLINE:
6230                 if (skb->protocol != htons(ETH_P_IPV6))
6231                         return -EBADMSG;
6232
6233                 err = seg6_do_srh_inline(skb, srh);
6234                 break;
6235         case BPF_LWT_ENCAP_SEG6:
6236                 skb_reset_inner_headers(skb);
6237                 skb->encapsulation = 1;
6238                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6239                 break;
6240         default:
6241                 return -EINVAL;
6242         }
6243
6244         bpf_compute_data_pointers(skb);
6245         if (err)
6246                 return err;
6247
6248         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6249
6250         return seg6_lookup_nexthop(skb, NULL, 0);
6251 }
6252 #endif /* CONFIG_IPV6_SEG6_BPF */
6253
6254 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6255 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6256                              bool ingress)
6257 {
6258         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6259 }
6260 #endif
6261
6262 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6263            u32, len)
6264 {
6265         switch (type) {
6266 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6267         case BPF_LWT_ENCAP_SEG6:
6268         case BPF_LWT_ENCAP_SEG6_INLINE:
6269                 return bpf_push_seg6_encap(skb, type, hdr, len);
6270 #endif
6271 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6272         case BPF_LWT_ENCAP_IP:
6273                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6274 #endif
6275         default:
6276                 return -EINVAL;
6277         }
6278 }
6279
6280 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6281            void *, hdr, u32, len)
6282 {
6283         switch (type) {
6284 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6285         case BPF_LWT_ENCAP_IP:
6286                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6287 #endif
6288         default:
6289                 return -EINVAL;
6290         }
6291 }
6292
6293 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6294         .func           = bpf_lwt_in_push_encap,
6295         .gpl_only       = false,
6296         .ret_type       = RET_INTEGER,
6297         .arg1_type      = ARG_PTR_TO_CTX,
6298         .arg2_type      = ARG_ANYTHING,
6299         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6300         .arg4_type      = ARG_CONST_SIZE
6301 };
6302
6303 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6304         .func           = bpf_lwt_xmit_push_encap,
6305         .gpl_only       = false,
6306         .ret_type       = RET_INTEGER,
6307         .arg1_type      = ARG_PTR_TO_CTX,
6308         .arg2_type      = ARG_ANYTHING,
6309         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6310         .arg4_type      = ARG_CONST_SIZE
6311 };
6312
6313 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6314 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6315            const void *, from, u32, len)
6316 {
6317         struct seg6_bpf_srh_state *srh_state =
6318                 this_cpu_ptr(&seg6_bpf_srh_states);
6319         struct ipv6_sr_hdr *srh = srh_state->srh;
6320         void *srh_tlvs, *srh_end, *ptr;
6321         int srhoff = 0;
6322
6323         if (srh == NULL)
6324                 return -EINVAL;
6325
6326         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6327         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6328
6329         ptr = skb->data + offset;
6330         if (ptr >= srh_tlvs && ptr + len <= srh_end)
6331                 srh_state->valid = false;
6332         else if (ptr < (void *)&srh->flags ||
6333                  ptr + len > (void *)&srh->segments)
6334                 return -EFAULT;
6335
6336         if (unlikely(bpf_try_make_writable(skb, offset + len)))
6337                 return -EFAULT;
6338         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6339                 return -EINVAL;
6340         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6341
6342         memcpy(skb->data + offset, from, len);
6343         return 0;
6344 }
6345
6346 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6347         .func           = bpf_lwt_seg6_store_bytes,
6348         .gpl_only       = false,
6349         .ret_type       = RET_INTEGER,
6350         .arg1_type      = ARG_PTR_TO_CTX,
6351         .arg2_type      = ARG_ANYTHING,
6352         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6353         .arg4_type      = ARG_CONST_SIZE
6354 };
6355
6356 static void bpf_update_srh_state(struct sk_buff *skb)
6357 {
6358         struct seg6_bpf_srh_state *srh_state =
6359                 this_cpu_ptr(&seg6_bpf_srh_states);
6360         int srhoff = 0;
6361
6362         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6363                 srh_state->srh = NULL;
6364         } else {
6365                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6366                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6367                 srh_state->valid = true;
6368         }
6369 }
6370
6371 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6372            u32, action, void *, param, u32, param_len)
6373 {
6374         struct seg6_bpf_srh_state *srh_state =
6375                 this_cpu_ptr(&seg6_bpf_srh_states);
6376         int hdroff = 0;
6377         int err;
6378
6379         switch (action) {
6380         case SEG6_LOCAL_ACTION_END_X:
6381                 if (!seg6_bpf_has_valid_srh(skb))
6382                         return -EBADMSG;
6383                 if (param_len != sizeof(struct in6_addr))
6384                         return -EINVAL;
6385                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6386         case SEG6_LOCAL_ACTION_END_T:
6387                 if (!seg6_bpf_has_valid_srh(skb))
6388                         return -EBADMSG;
6389                 if (param_len != sizeof(int))
6390                         return -EINVAL;
6391                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6392         case SEG6_LOCAL_ACTION_END_DT6:
6393                 if (!seg6_bpf_has_valid_srh(skb))
6394                         return -EBADMSG;
6395                 if (param_len != sizeof(int))
6396                         return -EINVAL;
6397
6398                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6399                         return -EBADMSG;
6400                 if (!pskb_pull(skb, hdroff))
6401                         return -EBADMSG;
6402
6403                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6404                 skb_reset_network_header(skb);
6405                 skb_reset_transport_header(skb);
6406                 skb->encapsulation = 0;
6407
6408                 bpf_compute_data_pointers(skb);
6409                 bpf_update_srh_state(skb);
6410                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6411         case SEG6_LOCAL_ACTION_END_B6:
6412                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6413                         return -EBADMSG;
6414                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6415                                           param, param_len);
6416                 if (!err)
6417                         bpf_update_srh_state(skb);
6418
6419                 return err;
6420         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6421                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6422                         return -EBADMSG;
6423                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6424                                           param, param_len);
6425                 if (!err)
6426                         bpf_update_srh_state(skb);
6427
6428                 return err;
6429         default:
6430                 return -EINVAL;
6431         }
6432 }
6433
6434 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6435         .func           = bpf_lwt_seg6_action,
6436         .gpl_only       = false,
6437         .ret_type       = RET_INTEGER,
6438         .arg1_type      = ARG_PTR_TO_CTX,
6439         .arg2_type      = ARG_ANYTHING,
6440         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6441         .arg4_type      = ARG_CONST_SIZE
6442 };
6443
6444 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6445            s32, len)
6446 {
6447         struct seg6_bpf_srh_state *srh_state =
6448                 this_cpu_ptr(&seg6_bpf_srh_states);
6449         struct ipv6_sr_hdr *srh = srh_state->srh;
6450         void *srh_end, *srh_tlvs, *ptr;
6451         struct ipv6hdr *hdr;
6452         int srhoff = 0;
6453         int ret;
6454
6455         if (unlikely(srh == NULL))
6456                 return -EINVAL;
6457
6458         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6459                         ((srh->first_segment + 1) << 4));
6460         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6461                         srh_state->hdrlen);
6462         ptr = skb->data + offset;
6463
6464         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6465                 return -EFAULT;
6466         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6467                 return -EFAULT;
6468
6469         if (len > 0) {
6470                 ret = skb_cow_head(skb, len);
6471                 if (unlikely(ret < 0))
6472                         return ret;
6473
6474                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6475         } else {
6476                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6477         }
6478
6479         bpf_compute_data_pointers(skb);
6480         if (unlikely(ret < 0))
6481                 return ret;
6482
6483         hdr = (struct ipv6hdr *)skb->data;
6484         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6485
6486         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6487                 return -EINVAL;
6488         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6489         srh_state->hdrlen += len;
6490         srh_state->valid = false;
6491         return 0;
6492 }
6493
6494 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6495         .func           = bpf_lwt_seg6_adjust_srh,
6496         .gpl_only       = false,
6497         .ret_type       = RET_INTEGER,
6498         .arg1_type      = ARG_PTR_TO_CTX,
6499         .arg2_type      = ARG_ANYTHING,
6500         .arg3_type      = ARG_ANYTHING,
6501 };
6502 #endif /* CONFIG_IPV6_SEG6_BPF */
6503
6504 #ifdef CONFIG_INET
6505 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6506                               int dif, int sdif, u8 family, u8 proto)
6507 {
6508         struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6509         bool refcounted = false;
6510         struct sock *sk = NULL;
6511
6512         if (family == AF_INET) {
6513                 __be32 src4 = tuple->ipv4.saddr;
6514                 __be32 dst4 = tuple->ipv4.daddr;
6515
6516                 if (proto == IPPROTO_TCP)
6517                         sk = __inet_lookup(net, hinfo, NULL, 0,
6518                                            src4, tuple->ipv4.sport,
6519                                            dst4, tuple->ipv4.dport,
6520                                            dif, sdif, &refcounted);
6521                 else
6522                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6523                                                dst4, tuple->ipv4.dport,
6524                                                dif, sdif, &udp_table, NULL);
6525 #if IS_ENABLED(CONFIG_IPV6)
6526         } else {
6527                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6528                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6529
6530                 if (proto == IPPROTO_TCP)
6531                         sk = __inet6_lookup(net, hinfo, NULL, 0,
6532                                             src6, tuple->ipv6.sport,
6533                                             dst6, ntohs(tuple->ipv6.dport),
6534                                             dif, sdif, &refcounted);
6535                 else if (likely(ipv6_bpf_stub))
6536                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6537                                                             src6, tuple->ipv6.sport,
6538                                                             dst6, tuple->ipv6.dport,
6539                                                             dif, sdif,
6540                                                             &udp_table, NULL);
6541 #endif
6542         }
6543
6544         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6545                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6546                 sk = NULL;
6547         }
6548         return sk;
6549 }
6550
6551 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6552  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6553  */
6554 static struct sock *
6555 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6556                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6557                  u64 flags, int sdif)
6558 {
6559         struct sock *sk = NULL;
6560         struct net *net;
6561         u8 family;
6562
6563         if (len == sizeof(tuple->ipv4))
6564                 family = AF_INET;
6565         else if (len == sizeof(tuple->ipv6))
6566                 family = AF_INET6;
6567         else
6568                 return NULL;
6569
6570         if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6571                 goto out;
6572
6573         if (sdif < 0) {
6574                 if (family == AF_INET)
6575                         sdif = inet_sdif(skb);
6576                 else
6577                         sdif = inet6_sdif(skb);
6578         }
6579
6580         if ((s32)netns_id < 0) {
6581                 net = caller_net;
6582                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6583         } else {
6584                 net = get_net_ns_by_id(caller_net, netns_id);
6585                 if (unlikely(!net))
6586                         goto out;
6587                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6588                 put_net(net);
6589         }
6590
6591 out:
6592         return sk;
6593 }
6594
6595 static struct sock *
6596 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6597                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6598                 u64 flags, int sdif)
6599 {
6600         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6601                                            ifindex, proto, netns_id, flags,
6602                                            sdif);
6603
6604         if (sk) {
6605                 struct sock *sk2 = sk_to_full_sk(sk);
6606
6607                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6608                  * sock refcnt is decremented to prevent a request_sock leak.
6609                  */
6610                 if (!sk_fullsock(sk2))
6611                         sk2 = NULL;
6612                 if (sk2 != sk) {
6613                         sock_gen_put(sk);
6614                         /* Ensure there is no need to bump sk2 refcnt */
6615                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6616                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6617                                 return NULL;
6618                         }
6619                         sk = sk2;
6620                 }
6621         }
6622
6623         return sk;
6624 }
6625
6626 static struct sock *
6627 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6628                u8 proto, u64 netns_id, u64 flags)
6629 {
6630         struct net *caller_net;
6631         int ifindex;
6632
6633         if (skb->dev) {
6634                 caller_net = dev_net(skb->dev);
6635                 ifindex = skb->dev->ifindex;
6636         } else {
6637                 caller_net = sock_net(skb->sk);
6638                 ifindex = 0;
6639         }
6640
6641         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6642                                 netns_id, flags, -1);
6643 }
6644
6645 static struct sock *
6646 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6647               u8 proto, u64 netns_id, u64 flags)
6648 {
6649         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6650                                          flags);
6651
6652         if (sk) {
6653                 struct sock *sk2 = sk_to_full_sk(sk);
6654
6655                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6656                  * sock refcnt is decremented to prevent a request_sock leak.
6657                  */
6658                 if (!sk_fullsock(sk2))
6659                         sk2 = NULL;
6660                 if (sk2 != sk) {
6661                         sock_gen_put(sk);
6662                         /* Ensure there is no need to bump sk2 refcnt */
6663                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6664                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6665                                 return NULL;
6666                         }
6667                         sk = sk2;
6668                 }
6669         }
6670
6671         return sk;
6672 }
6673
6674 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6675            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6676 {
6677         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6678                                              netns_id, flags);
6679 }
6680
6681 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6682         .func           = bpf_skc_lookup_tcp,
6683         .gpl_only       = false,
6684         .pkt_access     = true,
6685         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6686         .arg1_type      = ARG_PTR_TO_CTX,
6687         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6688         .arg3_type      = ARG_CONST_SIZE,
6689         .arg4_type      = ARG_ANYTHING,
6690         .arg5_type      = ARG_ANYTHING,
6691 };
6692
6693 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6694            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6695 {
6696         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6697                                             netns_id, flags);
6698 }
6699
6700 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6701         .func           = bpf_sk_lookup_tcp,
6702         .gpl_only       = false,
6703         .pkt_access     = true,
6704         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6705         .arg1_type      = ARG_PTR_TO_CTX,
6706         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6707         .arg3_type      = ARG_CONST_SIZE,
6708         .arg4_type      = ARG_ANYTHING,
6709         .arg5_type      = ARG_ANYTHING,
6710 };
6711
6712 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6713            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6714 {
6715         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6716                                             netns_id, flags);
6717 }
6718
6719 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6720         .func           = bpf_sk_lookup_udp,
6721         .gpl_only       = false,
6722         .pkt_access     = true,
6723         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6724         .arg1_type      = ARG_PTR_TO_CTX,
6725         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6726         .arg3_type      = ARG_CONST_SIZE,
6727         .arg4_type      = ARG_ANYTHING,
6728         .arg5_type      = ARG_ANYTHING,
6729 };
6730
6731 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6732            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6733 {
6734         struct net_device *dev = skb->dev;
6735         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6736         struct net *caller_net = dev_net(dev);
6737
6738         return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6739                                                ifindex, IPPROTO_TCP, netns_id,
6740                                                flags, sdif);
6741 }
6742
6743 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6744         .func           = bpf_tc_skc_lookup_tcp,
6745         .gpl_only       = false,
6746         .pkt_access     = true,
6747         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6748         .arg1_type      = ARG_PTR_TO_CTX,
6749         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6750         .arg3_type      = ARG_CONST_SIZE,
6751         .arg4_type      = ARG_ANYTHING,
6752         .arg5_type      = ARG_ANYTHING,
6753 };
6754
6755 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6756            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6757 {
6758         struct net_device *dev = skb->dev;
6759         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6760         struct net *caller_net = dev_net(dev);
6761
6762         return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6763                                               ifindex, IPPROTO_TCP, netns_id,
6764                                               flags, sdif);
6765 }
6766
6767 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6768         .func           = bpf_tc_sk_lookup_tcp,
6769         .gpl_only       = false,
6770         .pkt_access     = true,
6771         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6772         .arg1_type      = ARG_PTR_TO_CTX,
6773         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6774         .arg3_type      = ARG_CONST_SIZE,
6775         .arg4_type      = ARG_ANYTHING,
6776         .arg5_type      = ARG_ANYTHING,
6777 };
6778
6779 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6780            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6781 {
6782         struct net_device *dev = skb->dev;
6783         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6784         struct net *caller_net = dev_net(dev);
6785
6786         return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6787                                               ifindex, IPPROTO_UDP, netns_id,
6788                                               flags, sdif);
6789 }
6790
6791 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6792         .func           = bpf_tc_sk_lookup_udp,
6793         .gpl_only       = false,
6794         .pkt_access     = true,
6795         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6796         .arg1_type      = ARG_PTR_TO_CTX,
6797         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6798         .arg3_type      = ARG_CONST_SIZE,
6799         .arg4_type      = ARG_ANYTHING,
6800         .arg5_type      = ARG_ANYTHING,
6801 };
6802
6803 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6804 {
6805         if (sk && sk_is_refcounted(sk))
6806                 sock_gen_put(sk);
6807         return 0;
6808 }
6809
6810 static const struct bpf_func_proto bpf_sk_release_proto = {
6811         .func           = bpf_sk_release,
6812         .gpl_only       = false,
6813         .ret_type       = RET_INTEGER,
6814         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6815 };
6816
6817 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6818            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6819 {
6820         struct net_device *dev = ctx->rxq->dev;
6821         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6822         struct net *caller_net = dev_net(dev);
6823
6824         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6825                                               ifindex, IPPROTO_UDP, netns_id,
6826                                               flags, sdif);
6827 }
6828
6829 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6830         .func           = bpf_xdp_sk_lookup_udp,
6831         .gpl_only       = false,
6832         .pkt_access     = true,
6833         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6834         .arg1_type      = ARG_PTR_TO_CTX,
6835         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6836         .arg3_type      = ARG_CONST_SIZE,
6837         .arg4_type      = ARG_ANYTHING,
6838         .arg5_type      = ARG_ANYTHING,
6839 };
6840
6841 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6842            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6843 {
6844         struct net_device *dev = ctx->rxq->dev;
6845         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6846         struct net *caller_net = dev_net(dev);
6847
6848         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6849                                                ifindex, IPPROTO_TCP, netns_id,
6850                                                flags, sdif);
6851 }
6852
6853 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6854         .func           = bpf_xdp_skc_lookup_tcp,
6855         .gpl_only       = false,
6856         .pkt_access     = true,
6857         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6858         .arg1_type      = ARG_PTR_TO_CTX,
6859         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6860         .arg3_type      = ARG_CONST_SIZE,
6861         .arg4_type      = ARG_ANYTHING,
6862         .arg5_type      = ARG_ANYTHING,
6863 };
6864
6865 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6866            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6867 {
6868         struct net_device *dev = ctx->rxq->dev;
6869         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6870         struct net *caller_net = dev_net(dev);
6871
6872         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6873                                               ifindex, IPPROTO_TCP, netns_id,
6874                                               flags, sdif);
6875 }
6876
6877 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6878         .func           = bpf_xdp_sk_lookup_tcp,
6879         .gpl_only       = false,
6880         .pkt_access     = true,
6881         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6882         .arg1_type      = ARG_PTR_TO_CTX,
6883         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6884         .arg3_type      = ARG_CONST_SIZE,
6885         .arg4_type      = ARG_ANYTHING,
6886         .arg5_type      = ARG_ANYTHING,
6887 };
6888
6889 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6890            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6891 {
6892         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6893                                                sock_net(ctx->sk), 0,
6894                                                IPPROTO_TCP, netns_id, flags,
6895                                                -1);
6896 }
6897
6898 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6899         .func           = bpf_sock_addr_skc_lookup_tcp,
6900         .gpl_only       = false,
6901         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6902         .arg1_type      = ARG_PTR_TO_CTX,
6903         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6904         .arg3_type      = ARG_CONST_SIZE,
6905         .arg4_type      = ARG_ANYTHING,
6906         .arg5_type      = ARG_ANYTHING,
6907 };
6908
6909 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6910            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6911 {
6912         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6913                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6914                                               netns_id, flags, -1);
6915 }
6916
6917 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6918         .func           = bpf_sock_addr_sk_lookup_tcp,
6919         .gpl_only       = false,
6920         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6921         .arg1_type      = ARG_PTR_TO_CTX,
6922         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6923         .arg3_type      = ARG_CONST_SIZE,
6924         .arg4_type      = ARG_ANYTHING,
6925         .arg5_type      = ARG_ANYTHING,
6926 };
6927
6928 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6929            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6930 {
6931         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6932                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6933                                               netns_id, flags, -1);
6934 }
6935
6936 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6937         .func           = bpf_sock_addr_sk_lookup_udp,
6938         .gpl_only       = false,
6939         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6940         .arg1_type      = ARG_PTR_TO_CTX,
6941         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6942         .arg3_type      = ARG_CONST_SIZE,
6943         .arg4_type      = ARG_ANYTHING,
6944         .arg5_type      = ARG_ANYTHING,
6945 };
6946
6947 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6948                                   struct bpf_insn_access_aux *info)
6949 {
6950         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6951                                           icsk_retransmits))
6952                 return false;
6953
6954         if (off % size != 0)
6955                 return false;
6956
6957         switch (off) {
6958         case offsetof(struct bpf_tcp_sock, bytes_received):
6959         case offsetof(struct bpf_tcp_sock, bytes_acked):
6960                 return size == sizeof(__u64);
6961         default:
6962                 return size == sizeof(__u32);
6963         }
6964 }
6965
6966 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6967                                     const struct bpf_insn *si,
6968                                     struct bpf_insn *insn_buf,
6969                                     struct bpf_prog *prog, u32 *target_size)
6970 {
6971         struct bpf_insn *insn = insn_buf;
6972
6973 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6974         do {                                                            \
6975                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6976                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6977                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6978                                       si->dst_reg, si->src_reg,         \
6979                                       offsetof(struct tcp_sock, FIELD)); \
6980         } while (0)
6981
6982 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6983         do {                                                            \
6984                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6985                                           FIELD) >                      \
6986                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6987                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6988                                         struct inet_connection_sock,    \
6989                                         FIELD),                         \
6990                                       si->dst_reg, si->src_reg,         \
6991                                       offsetof(                         \
6992                                         struct inet_connection_sock,    \
6993                                         FIELD));                        \
6994         } while (0)
6995
6996         if (insn > insn_buf)
6997                 return insn - insn_buf;
6998
6999         switch (si->off) {
7000         case offsetof(struct bpf_tcp_sock, rtt_min):
7001                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7002                              sizeof(struct minmax));
7003                 BUILD_BUG_ON(sizeof(struct minmax) <
7004                              sizeof(struct minmax_sample));
7005
7006                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7007                                       offsetof(struct tcp_sock, rtt_min) +
7008                                       offsetof(struct minmax_sample, v));
7009                 break;
7010         case offsetof(struct bpf_tcp_sock, snd_cwnd):
7011                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7012                 break;
7013         case offsetof(struct bpf_tcp_sock, srtt_us):
7014                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7015                 break;
7016         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7017                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7018                 break;
7019         case offsetof(struct bpf_tcp_sock, rcv_nxt):
7020                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7021                 break;
7022         case offsetof(struct bpf_tcp_sock, snd_nxt):
7023                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7024                 break;
7025         case offsetof(struct bpf_tcp_sock, snd_una):
7026                 BPF_TCP_SOCK_GET_COMMON(snd_una);
7027                 break;
7028         case offsetof(struct bpf_tcp_sock, mss_cache):
7029                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7030                 break;
7031         case offsetof(struct bpf_tcp_sock, ecn_flags):
7032                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7033                 break;
7034         case offsetof(struct bpf_tcp_sock, rate_delivered):
7035                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7036                 break;
7037         case offsetof(struct bpf_tcp_sock, rate_interval_us):
7038                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7039                 break;
7040         case offsetof(struct bpf_tcp_sock, packets_out):
7041                 BPF_TCP_SOCK_GET_COMMON(packets_out);
7042                 break;
7043         case offsetof(struct bpf_tcp_sock, retrans_out):
7044                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7045                 break;
7046         case offsetof(struct bpf_tcp_sock, total_retrans):
7047                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7048                 break;
7049         case offsetof(struct bpf_tcp_sock, segs_in):
7050                 BPF_TCP_SOCK_GET_COMMON(segs_in);
7051                 break;
7052         case offsetof(struct bpf_tcp_sock, data_segs_in):
7053                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7054                 break;
7055         case offsetof(struct bpf_tcp_sock, segs_out):
7056                 BPF_TCP_SOCK_GET_COMMON(segs_out);
7057                 break;
7058         case offsetof(struct bpf_tcp_sock, data_segs_out):
7059                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7060                 break;
7061         case offsetof(struct bpf_tcp_sock, lost_out):
7062                 BPF_TCP_SOCK_GET_COMMON(lost_out);
7063                 break;
7064         case offsetof(struct bpf_tcp_sock, sacked_out):
7065                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7066                 break;
7067         case offsetof(struct bpf_tcp_sock, bytes_received):
7068                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7069                 break;
7070         case offsetof(struct bpf_tcp_sock, bytes_acked):
7071                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7072                 break;
7073         case offsetof(struct bpf_tcp_sock, dsack_dups):
7074                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7075                 break;
7076         case offsetof(struct bpf_tcp_sock, delivered):
7077                 BPF_TCP_SOCK_GET_COMMON(delivered);
7078                 break;
7079         case offsetof(struct bpf_tcp_sock, delivered_ce):
7080                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7081                 break;
7082         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7083                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7084                 break;
7085         }
7086
7087         return insn - insn_buf;
7088 }
7089
7090 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7091 {
7092         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7093                 return (unsigned long)sk;
7094
7095         return (unsigned long)NULL;
7096 }
7097
7098 const struct bpf_func_proto bpf_tcp_sock_proto = {
7099         .func           = bpf_tcp_sock,
7100         .gpl_only       = false,
7101         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
7102         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
7103 };
7104
7105 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7106 {
7107         sk = sk_to_full_sk(sk);
7108
7109         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7110                 return (unsigned long)sk;
7111
7112         return (unsigned long)NULL;
7113 }
7114
7115 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7116         .func           = bpf_get_listener_sock,
7117         .gpl_only       = false,
7118         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7119         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
7120 };
7121
7122 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7123 {
7124         unsigned int iphdr_len;
7125
7126         switch (skb_protocol(skb, true)) {
7127         case cpu_to_be16(ETH_P_IP):
7128                 iphdr_len = sizeof(struct iphdr);
7129                 break;
7130         case cpu_to_be16(ETH_P_IPV6):
7131                 iphdr_len = sizeof(struct ipv6hdr);
7132                 break;
7133         default:
7134                 return 0;
7135         }
7136
7137         if (skb_headlen(skb) < iphdr_len)
7138                 return 0;
7139
7140         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7141                 return 0;
7142
7143         return INET_ECN_set_ce(skb);
7144 }
7145
7146 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7147                                   struct bpf_insn_access_aux *info)
7148 {
7149         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7150                 return false;
7151
7152         if (off % size != 0)
7153                 return false;
7154
7155         switch (off) {
7156         default:
7157                 return size == sizeof(__u32);
7158         }
7159 }
7160
7161 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7162                                     const struct bpf_insn *si,
7163                                     struct bpf_insn *insn_buf,
7164                                     struct bpf_prog *prog, u32 *target_size)
7165 {
7166         struct bpf_insn *insn = insn_buf;
7167
7168 #define BPF_XDP_SOCK_GET(FIELD)                                         \
7169         do {                                                            \
7170                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
7171                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
7172                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7173                                       si->dst_reg, si->src_reg,         \
7174                                       offsetof(struct xdp_sock, FIELD)); \
7175         } while (0)
7176
7177         switch (si->off) {
7178         case offsetof(struct bpf_xdp_sock, queue_id):
7179                 BPF_XDP_SOCK_GET(queue_id);
7180                 break;
7181         }
7182
7183         return insn - insn_buf;
7184 }
7185
7186 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7187         .func           = bpf_skb_ecn_set_ce,
7188         .gpl_only       = false,
7189         .ret_type       = RET_INTEGER,
7190         .arg1_type      = ARG_PTR_TO_CTX,
7191 };
7192
7193 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7194            struct tcphdr *, th, u32, th_len)
7195 {
7196 #ifdef CONFIG_SYN_COOKIES
7197         u32 cookie;
7198         int ret;
7199
7200         if (unlikely(!sk || th_len < sizeof(*th)))
7201                 return -EINVAL;
7202
7203         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7204         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7205                 return -EINVAL;
7206
7207         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7208                 return -EINVAL;
7209
7210         if (!th->ack || th->rst || th->syn)
7211                 return -ENOENT;
7212
7213         if (unlikely(iph_len < sizeof(struct iphdr)))
7214                 return -EINVAL;
7215
7216         if (tcp_synq_no_recent_overflow(sk))
7217                 return -ENOENT;
7218
7219         cookie = ntohl(th->ack_seq) - 1;
7220
7221         /* Both struct iphdr and struct ipv6hdr have the version field at the
7222          * same offset so we can cast to the shorter header (struct iphdr).
7223          */
7224         switch (((struct iphdr *)iph)->version) {
7225         case 4:
7226                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7227                         return -EINVAL;
7228
7229                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7230                 break;
7231
7232 #if IS_BUILTIN(CONFIG_IPV6)
7233         case 6:
7234                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7235                         return -EINVAL;
7236
7237                 if (sk->sk_family != AF_INET6)
7238                         return -EINVAL;
7239
7240                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7241                 break;
7242 #endif /* CONFIG_IPV6 */
7243
7244         default:
7245                 return -EPROTONOSUPPORT;
7246         }
7247
7248         if (ret > 0)
7249                 return 0;
7250
7251         return -ENOENT;
7252 #else
7253         return -ENOTSUPP;
7254 #endif
7255 }
7256
7257 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7258         .func           = bpf_tcp_check_syncookie,
7259         .gpl_only       = true,
7260         .pkt_access     = true,
7261         .ret_type       = RET_INTEGER,
7262         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7263         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7264         .arg3_type      = ARG_CONST_SIZE,
7265         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7266         .arg5_type      = ARG_CONST_SIZE,
7267 };
7268
7269 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7270            struct tcphdr *, th, u32, th_len)
7271 {
7272 #ifdef CONFIG_SYN_COOKIES
7273         u32 cookie;
7274         u16 mss;
7275
7276         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7277                 return -EINVAL;
7278
7279         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7280                 return -EINVAL;
7281
7282         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7283                 return -ENOENT;
7284
7285         if (!th->syn || th->ack || th->fin || th->rst)
7286                 return -EINVAL;
7287
7288         if (unlikely(iph_len < sizeof(struct iphdr)))
7289                 return -EINVAL;
7290
7291         /* Both struct iphdr and struct ipv6hdr have the version field at the
7292          * same offset so we can cast to the shorter header (struct iphdr).
7293          */
7294         switch (((struct iphdr *)iph)->version) {
7295         case 4:
7296                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7297                         return -EINVAL;
7298
7299                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7300                 break;
7301
7302 #if IS_BUILTIN(CONFIG_IPV6)
7303         case 6:
7304                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7305                         return -EINVAL;
7306
7307                 if (sk->sk_family != AF_INET6)
7308                         return -EINVAL;
7309
7310                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7311                 break;
7312 #endif /* CONFIG_IPV6 */
7313
7314         default:
7315                 return -EPROTONOSUPPORT;
7316         }
7317         if (mss == 0)
7318                 return -ENOENT;
7319
7320         return cookie | ((u64)mss << 32);
7321 #else
7322         return -EOPNOTSUPP;
7323 #endif /* CONFIG_SYN_COOKIES */
7324 }
7325
7326 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7327         .func           = bpf_tcp_gen_syncookie,
7328         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
7329         .pkt_access     = true,
7330         .ret_type       = RET_INTEGER,
7331         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7332         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7333         .arg3_type      = ARG_CONST_SIZE,
7334         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7335         .arg5_type      = ARG_CONST_SIZE,
7336 };
7337
7338 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7339 {
7340         if (!sk || flags != 0)
7341                 return -EINVAL;
7342         if (!skb_at_tc_ingress(skb))
7343                 return -EOPNOTSUPP;
7344         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7345                 return -ENETUNREACH;
7346         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7347                 return -ESOCKTNOSUPPORT;
7348         if (sk_unhashed(sk))
7349                 return -EOPNOTSUPP;
7350         if (sk_is_refcounted(sk) &&
7351             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7352                 return -ENOENT;
7353
7354         skb_orphan(skb);
7355         skb->sk = sk;
7356         skb->destructor = sock_pfree;
7357
7358         return 0;
7359 }
7360
7361 static const struct bpf_func_proto bpf_sk_assign_proto = {
7362         .func           = bpf_sk_assign,
7363         .gpl_only       = false,
7364         .ret_type       = RET_INTEGER,
7365         .arg1_type      = ARG_PTR_TO_CTX,
7366         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7367         .arg3_type      = ARG_ANYTHING,
7368 };
7369
7370 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7371                                     u8 search_kind, const u8 *magic,
7372                                     u8 magic_len, bool *eol)
7373 {
7374         u8 kind, kind_len;
7375
7376         *eol = false;
7377
7378         while (op < opend) {
7379                 kind = op[0];
7380
7381                 if (kind == TCPOPT_EOL) {
7382                         *eol = true;
7383                         return ERR_PTR(-ENOMSG);
7384                 } else if (kind == TCPOPT_NOP) {
7385                         op++;
7386                         continue;
7387                 }
7388
7389                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7390                         /* Something is wrong in the received header.
7391                          * Follow the TCP stack's tcp_parse_options()
7392                          * and just bail here.
7393                          */
7394                         return ERR_PTR(-EFAULT);
7395
7396                 kind_len = op[1];
7397                 if (search_kind == kind) {
7398                         if (!magic_len)
7399                                 return op;
7400
7401                         if (magic_len > kind_len - 2)
7402                                 return ERR_PTR(-ENOMSG);
7403
7404                         if (!memcmp(&op[2], magic, magic_len))
7405                                 return op;
7406                 }
7407
7408                 op += kind_len;
7409         }
7410
7411         return ERR_PTR(-ENOMSG);
7412 }
7413
7414 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7415            void *, search_res, u32, len, u64, flags)
7416 {
7417         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7418         const u8 *op, *opend, *magic, *search = search_res;
7419         u8 search_kind, search_len, copy_len, magic_len;
7420         int ret;
7421
7422         /* 2 byte is the minimal option len except TCPOPT_NOP and
7423          * TCPOPT_EOL which are useless for the bpf prog to learn
7424          * and this helper disallow loading them also.
7425          */
7426         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7427                 return -EINVAL;
7428
7429         search_kind = search[0];
7430         search_len = search[1];
7431
7432         if (search_len > len || search_kind == TCPOPT_NOP ||
7433             search_kind == TCPOPT_EOL)
7434                 return -EINVAL;
7435
7436         if (search_kind == TCPOPT_EXP || search_kind == 253) {
7437                 /* 16 or 32 bit magic.  +2 for kind and kind length */
7438                 if (search_len != 4 && search_len != 6)
7439                         return -EINVAL;
7440                 magic = &search[2];
7441                 magic_len = search_len - 2;
7442         } else {
7443                 if (search_len)
7444                         return -EINVAL;
7445                 magic = NULL;
7446                 magic_len = 0;
7447         }
7448
7449         if (load_syn) {
7450                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7451                 if (ret < 0)
7452                         return ret;
7453
7454                 opend = op + ret;
7455                 op += sizeof(struct tcphdr);
7456         } else {
7457                 if (!bpf_sock->skb ||
7458                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7459                         /* This bpf_sock->op cannot call this helper */
7460                         return -EPERM;
7461
7462                 opend = bpf_sock->skb_data_end;
7463                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7464         }
7465
7466         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7467                                 &eol);
7468         if (IS_ERR(op))
7469                 return PTR_ERR(op);
7470
7471         copy_len = op[1];
7472         ret = copy_len;
7473         if (copy_len > len) {
7474                 ret = -ENOSPC;
7475                 copy_len = len;
7476         }
7477
7478         memcpy(search_res, op, copy_len);
7479         return ret;
7480 }
7481
7482 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7483         .func           = bpf_sock_ops_load_hdr_opt,
7484         .gpl_only       = false,
7485         .ret_type       = RET_INTEGER,
7486         .arg1_type      = ARG_PTR_TO_CTX,
7487         .arg2_type      = ARG_PTR_TO_MEM,
7488         .arg3_type      = ARG_CONST_SIZE,
7489         .arg4_type      = ARG_ANYTHING,
7490 };
7491
7492 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7493            const void *, from, u32, len, u64, flags)
7494 {
7495         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7496         const u8 *op, *new_op, *magic = NULL;
7497         struct sk_buff *skb;
7498         bool eol;
7499
7500         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7501                 return -EPERM;
7502
7503         if (len < 2 || flags)
7504                 return -EINVAL;
7505
7506         new_op = from;
7507         new_kind = new_op[0];
7508         new_kind_len = new_op[1];
7509
7510         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7511             new_kind == TCPOPT_EOL)
7512                 return -EINVAL;
7513
7514         if (new_kind_len > bpf_sock->remaining_opt_len)
7515                 return -ENOSPC;
7516
7517         /* 253 is another experimental kind */
7518         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7519                 if (new_kind_len < 4)
7520                         return -EINVAL;
7521                 /* Match for the 2 byte magic also.
7522                  * RFC 6994: the magic could be 2 or 4 bytes.
7523                  * Hence, matching by 2 byte only is on the
7524                  * conservative side but it is the right
7525                  * thing to do for the 'search-for-duplication'
7526                  * purpose.
7527                  */
7528                 magic = &new_op[2];
7529                 magic_len = 2;
7530         }
7531
7532         /* Check for duplication */
7533         skb = bpf_sock->skb;
7534         op = skb->data + sizeof(struct tcphdr);
7535         opend = bpf_sock->skb_data_end;
7536
7537         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7538                                 &eol);
7539         if (!IS_ERR(op))
7540                 return -EEXIST;
7541
7542         if (PTR_ERR(op) != -ENOMSG)
7543                 return PTR_ERR(op);
7544
7545         if (eol)
7546                 /* The option has been ended.  Treat it as no more
7547                  * header option can be written.
7548                  */
7549                 return -ENOSPC;
7550
7551         /* No duplication found.  Store the header option. */
7552         memcpy(opend, from, new_kind_len);
7553
7554         bpf_sock->remaining_opt_len -= new_kind_len;
7555         bpf_sock->skb_data_end += new_kind_len;
7556
7557         return 0;
7558 }
7559
7560 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7561         .func           = bpf_sock_ops_store_hdr_opt,
7562         .gpl_only       = false,
7563         .ret_type       = RET_INTEGER,
7564         .arg1_type      = ARG_PTR_TO_CTX,
7565         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7566         .arg3_type      = ARG_CONST_SIZE,
7567         .arg4_type      = ARG_ANYTHING,
7568 };
7569
7570 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7571            u32, len, u64, flags)
7572 {
7573         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7574                 return -EPERM;
7575
7576         if (flags || len < 2)
7577                 return -EINVAL;
7578
7579         if (len > bpf_sock->remaining_opt_len)
7580                 return -ENOSPC;
7581
7582         bpf_sock->remaining_opt_len -= len;
7583
7584         return 0;
7585 }
7586
7587 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7588         .func           = bpf_sock_ops_reserve_hdr_opt,
7589         .gpl_only       = false,
7590         .ret_type       = RET_INTEGER,
7591         .arg1_type      = ARG_PTR_TO_CTX,
7592         .arg2_type      = ARG_ANYTHING,
7593         .arg3_type      = ARG_ANYTHING,
7594 };
7595
7596 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7597            u64, tstamp, u32, tstamp_type)
7598 {
7599         /* skb_clear_delivery_time() is done for inet protocol */
7600         if (skb->protocol != htons(ETH_P_IP) &&
7601             skb->protocol != htons(ETH_P_IPV6))
7602                 return -EOPNOTSUPP;
7603
7604         switch (tstamp_type) {
7605         case BPF_SKB_TSTAMP_DELIVERY_MONO:
7606                 if (!tstamp)
7607                         return -EINVAL;
7608                 skb->tstamp = tstamp;
7609                 skb->mono_delivery_time = 1;
7610                 break;
7611         case BPF_SKB_TSTAMP_UNSPEC:
7612                 if (tstamp)
7613                         return -EINVAL;
7614                 skb->tstamp = 0;
7615                 skb->mono_delivery_time = 0;
7616                 break;
7617         default:
7618                 return -EINVAL;
7619         }
7620
7621         return 0;
7622 }
7623
7624 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7625         .func           = bpf_skb_set_tstamp,
7626         .gpl_only       = false,
7627         .ret_type       = RET_INTEGER,
7628         .arg1_type      = ARG_PTR_TO_CTX,
7629         .arg2_type      = ARG_ANYTHING,
7630         .arg3_type      = ARG_ANYTHING,
7631 };
7632
7633 #ifdef CONFIG_SYN_COOKIES
7634 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7635            struct tcphdr *, th, u32, th_len)
7636 {
7637         u32 cookie;
7638         u16 mss;
7639
7640         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7641                 return -EINVAL;
7642
7643         mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7644         cookie = __cookie_v4_init_sequence(iph, th, &mss);
7645
7646         return cookie | ((u64)mss << 32);
7647 }
7648
7649 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7650         .func           = bpf_tcp_raw_gen_syncookie_ipv4,
7651         .gpl_only       = true, /* __cookie_v4_init_sequence() is GPL */
7652         .pkt_access     = true,
7653         .ret_type       = RET_INTEGER,
7654         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7655         .arg1_size      = sizeof(struct iphdr),
7656         .arg2_type      = ARG_PTR_TO_MEM,
7657         .arg3_type      = ARG_CONST_SIZE,
7658 };
7659
7660 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7661            struct tcphdr *, th, u32, th_len)
7662 {
7663 #if IS_BUILTIN(CONFIG_IPV6)
7664         const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7665                 sizeof(struct ipv6hdr);
7666         u32 cookie;
7667         u16 mss;
7668
7669         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7670                 return -EINVAL;
7671
7672         mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7673         cookie = __cookie_v6_init_sequence(iph, th, &mss);
7674
7675         return cookie | ((u64)mss << 32);
7676 #else
7677         return -EPROTONOSUPPORT;
7678 #endif
7679 }
7680
7681 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7682         .func           = bpf_tcp_raw_gen_syncookie_ipv6,
7683         .gpl_only       = true, /* __cookie_v6_init_sequence() is GPL */
7684         .pkt_access     = true,
7685         .ret_type       = RET_INTEGER,
7686         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7687         .arg1_size      = sizeof(struct ipv6hdr),
7688         .arg2_type      = ARG_PTR_TO_MEM,
7689         .arg3_type      = ARG_CONST_SIZE,
7690 };
7691
7692 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7693            struct tcphdr *, th)
7694 {
7695         u32 cookie = ntohl(th->ack_seq) - 1;
7696
7697         if (__cookie_v4_check(iph, th, cookie) > 0)
7698                 return 0;
7699
7700         return -EACCES;
7701 }
7702
7703 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7704         .func           = bpf_tcp_raw_check_syncookie_ipv4,
7705         .gpl_only       = true, /* __cookie_v4_check is GPL */
7706         .pkt_access     = true,
7707         .ret_type       = RET_INTEGER,
7708         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7709         .arg1_size      = sizeof(struct iphdr),
7710         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7711         .arg2_size      = sizeof(struct tcphdr),
7712 };
7713
7714 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7715            struct tcphdr *, th)
7716 {
7717 #if IS_BUILTIN(CONFIG_IPV6)
7718         u32 cookie = ntohl(th->ack_seq) - 1;
7719
7720         if (__cookie_v6_check(iph, th, cookie) > 0)
7721                 return 0;
7722
7723         return -EACCES;
7724 #else
7725         return -EPROTONOSUPPORT;
7726 #endif
7727 }
7728
7729 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7730         .func           = bpf_tcp_raw_check_syncookie_ipv6,
7731         .gpl_only       = true, /* __cookie_v6_check is GPL */
7732         .pkt_access     = true,
7733         .ret_type       = RET_INTEGER,
7734         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7735         .arg1_size      = sizeof(struct ipv6hdr),
7736         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7737         .arg2_size      = sizeof(struct tcphdr),
7738 };
7739 #endif /* CONFIG_SYN_COOKIES */
7740
7741 #endif /* CONFIG_INET */
7742
7743 bool bpf_helper_changes_pkt_data(void *func)
7744 {
7745         if (func == bpf_skb_vlan_push ||
7746             func == bpf_skb_vlan_pop ||
7747             func == bpf_skb_store_bytes ||
7748             func == bpf_skb_change_proto ||
7749             func == bpf_skb_change_head ||
7750             func == sk_skb_change_head ||
7751             func == bpf_skb_change_tail ||
7752             func == sk_skb_change_tail ||
7753             func == bpf_skb_adjust_room ||
7754             func == sk_skb_adjust_room ||
7755             func == bpf_skb_pull_data ||
7756             func == sk_skb_pull_data ||
7757             func == bpf_clone_redirect ||
7758             func == bpf_l3_csum_replace ||
7759             func == bpf_l4_csum_replace ||
7760             func == bpf_xdp_adjust_head ||
7761             func == bpf_xdp_adjust_meta ||
7762             func == bpf_msg_pull_data ||
7763             func == bpf_msg_push_data ||
7764             func == bpf_msg_pop_data ||
7765             func == bpf_xdp_adjust_tail ||
7766 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7767             func == bpf_lwt_seg6_store_bytes ||
7768             func == bpf_lwt_seg6_adjust_srh ||
7769             func == bpf_lwt_seg6_action ||
7770 #endif
7771 #ifdef CONFIG_INET
7772             func == bpf_sock_ops_store_hdr_opt ||
7773 #endif
7774             func == bpf_lwt_in_push_encap ||
7775             func == bpf_lwt_xmit_push_encap)
7776                 return true;
7777
7778         return false;
7779 }
7780
7781 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7782 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7783
7784 static const struct bpf_func_proto *
7785 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7786 {
7787         const struct bpf_func_proto *func_proto;
7788
7789         func_proto = cgroup_common_func_proto(func_id, prog);
7790         if (func_proto)
7791                 return func_proto;
7792
7793         func_proto = cgroup_current_func_proto(func_id, prog);
7794         if (func_proto)
7795                 return func_proto;
7796
7797         switch (func_id) {
7798         case BPF_FUNC_get_socket_cookie:
7799                 return &bpf_get_socket_cookie_sock_proto;
7800         case BPF_FUNC_get_netns_cookie:
7801                 return &bpf_get_netns_cookie_sock_proto;
7802         case BPF_FUNC_perf_event_output:
7803                 return &bpf_event_output_data_proto;
7804         case BPF_FUNC_sk_storage_get:
7805                 return &bpf_sk_storage_get_cg_sock_proto;
7806         case BPF_FUNC_ktime_get_coarse_ns:
7807                 return &bpf_ktime_get_coarse_ns_proto;
7808         default:
7809                 return bpf_base_func_proto(func_id);
7810         }
7811 }
7812
7813 static const struct bpf_func_proto *
7814 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7815 {
7816         const struct bpf_func_proto *func_proto;
7817
7818         func_proto = cgroup_common_func_proto(func_id, prog);
7819         if (func_proto)
7820                 return func_proto;
7821
7822         func_proto = cgroup_current_func_proto(func_id, prog);
7823         if (func_proto)
7824                 return func_proto;
7825
7826         switch (func_id) {
7827         case BPF_FUNC_bind:
7828                 switch (prog->expected_attach_type) {
7829                 case BPF_CGROUP_INET4_CONNECT:
7830                 case BPF_CGROUP_INET6_CONNECT:
7831                         return &bpf_bind_proto;
7832                 default:
7833                         return NULL;
7834                 }
7835         case BPF_FUNC_get_socket_cookie:
7836                 return &bpf_get_socket_cookie_sock_addr_proto;
7837         case BPF_FUNC_get_netns_cookie:
7838                 return &bpf_get_netns_cookie_sock_addr_proto;
7839         case BPF_FUNC_perf_event_output:
7840                 return &bpf_event_output_data_proto;
7841 #ifdef CONFIG_INET
7842         case BPF_FUNC_sk_lookup_tcp:
7843                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7844         case BPF_FUNC_sk_lookup_udp:
7845                 return &bpf_sock_addr_sk_lookup_udp_proto;
7846         case BPF_FUNC_sk_release:
7847                 return &bpf_sk_release_proto;
7848         case BPF_FUNC_skc_lookup_tcp:
7849                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7850 #endif /* CONFIG_INET */
7851         case BPF_FUNC_sk_storage_get:
7852                 return &bpf_sk_storage_get_proto;
7853         case BPF_FUNC_sk_storage_delete:
7854                 return &bpf_sk_storage_delete_proto;
7855         case BPF_FUNC_setsockopt:
7856                 switch (prog->expected_attach_type) {
7857                 case BPF_CGROUP_INET4_BIND:
7858                 case BPF_CGROUP_INET6_BIND:
7859                 case BPF_CGROUP_INET4_CONNECT:
7860                 case BPF_CGROUP_INET6_CONNECT:
7861                 case BPF_CGROUP_UDP4_RECVMSG:
7862                 case BPF_CGROUP_UDP6_RECVMSG:
7863                 case BPF_CGROUP_UDP4_SENDMSG:
7864                 case BPF_CGROUP_UDP6_SENDMSG:
7865                 case BPF_CGROUP_INET4_GETPEERNAME:
7866                 case BPF_CGROUP_INET6_GETPEERNAME:
7867                 case BPF_CGROUP_INET4_GETSOCKNAME:
7868                 case BPF_CGROUP_INET6_GETSOCKNAME:
7869                         return &bpf_sock_addr_setsockopt_proto;
7870                 default:
7871                         return NULL;
7872                 }
7873         case BPF_FUNC_getsockopt:
7874                 switch (prog->expected_attach_type) {
7875                 case BPF_CGROUP_INET4_BIND:
7876                 case BPF_CGROUP_INET6_BIND:
7877                 case BPF_CGROUP_INET4_CONNECT:
7878                 case BPF_CGROUP_INET6_CONNECT:
7879                 case BPF_CGROUP_UDP4_RECVMSG:
7880                 case BPF_CGROUP_UDP6_RECVMSG:
7881                 case BPF_CGROUP_UDP4_SENDMSG:
7882                 case BPF_CGROUP_UDP6_SENDMSG:
7883                 case BPF_CGROUP_INET4_GETPEERNAME:
7884                 case BPF_CGROUP_INET6_GETPEERNAME:
7885                 case BPF_CGROUP_INET4_GETSOCKNAME:
7886                 case BPF_CGROUP_INET6_GETSOCKNAME:
7887                         return &bpf_sock_addr_getsockopt_proto;
7888                 default:
7889                         return NULL;
7890                 }
7891         default:
7892                 return bpf_sk_base_func_proto(func_id);
7893         }
7894 }
7895
7896 static const struct bpf_func_proto *
7897 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7898 {
7899         switch (func_id) {
7900         case BPF_FUNC_skb_load_bytes:
7901                 return &bpf_skb_load_bytes_proto;
7902         case BPF_FUNC_skb_load_bytes_relative:
7903                 return &bpf_skb_load_bytes_relative_proto;
7904         case BPF_FUNC_get_socket_cookie:
7905                 return &bpf_get_socket_cookie_proto;
7906         case BPF_FUNC_get_socket_uid:
7907                 return &bpf_get_socket_uid_proto;
7908         case BPF_FUNC_perf_event_output:
7909                 return &bpf_skb_event_output_proto;
7910         default:
7911                 return bpf_sk_base_func_proto(func_id);
7912         }
7913 }
7914
7915 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7916 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7917
7918 static const struct bpf_func_proto *
7919 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7920 {
7921         const struct bpf_func_proto *func_proto;
7922
7923         func_proto = cgroup_common_func_proto(func_id, prog);
7924         if (func_proto)
7925                 return func_proto;
7926
7927         switch (func_id) {
7928         case BPF_FUNC_sk_fullsock:
7929                 return &bpf_sk_fullsock_proto;
7930         case BPF_FUNC_sk_storage_get:
7931                 return &bpf_sk_storage_get_proto;
7932         case BPF_FUNC_sk_storage_delete:
7933                 return &bpf_sk_storage_delete_proto;
7934         case BPF_FUNC_perf_event_output:
7935                 return &bpf_skb_event_output_proto;
7936 #ifdef CONFIG_SOCK_CGROUP_DATA
7937         case BPF_FUNC_skb_cgroup_id:
7938                 return &bpf_skb_cgroup_id_proto;
7939         case BPF_FUNC_skb_ancestor_cgroup_id:
7940                 return &bpf_skb_ancestor_cgroup_id_proto;
7941         case BPF_FUNC_sk_cgroup_id:
7942                 return &bpf_sk_cgroup_id_proto;
7943         case BPF_FUNC_sk_ancestor_cgroup_id:
7944                 return &bpf_sk_ancestor_cgroup_id_proto;
7945 #endif
7946 #ifdef CONFIG_INET
7947         case BPF_FUNC_sk_lookup_tcp:
7948                 return &bpf_sk_lookup_tcp_proto;
7949         case BPF_FUNC_sk_lookup_udp:
7950                 return &bpf_sk_lookup_udp_proto;
7951         case BPF_FUNC_sk_release:
7952                 return &bpf_sk_release_proto;
7953         case BPF_FUNC_skc_lookup_tcp:
7954                 return &bpf_skc_lookup_tcp_proto;
7955         case BPF_FUNC_tcp_sock:
7956                 return &bpf_tcp_sock_proto;
7957         case BPF_FUNC_get_listener_sock:
7958                 return &bpf_get_listener_sock_proto;
7959         case BPF_FUNC_skb_ecn_set_ce:
7960                 return &bpf_skb_ecn_set_ce_proto;
7961 #endif
7962         default:
7963                 return sk_filter_func_proto(func_id, prog);
7964         }
7965 }
7966
7967 static const struct bpf_func_proto *
7968 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7969 {
7970         switch (func_id) {
7971         case BPF_FUNC_skb_store_bytes:
7972                 return &bpf_skb_store_bytes_proto;
7973         case BPF_FUNC_skb_load_bytes:
7974                 return &bpf_skb_load_bytes_proto;
7975         case BPF_FUNC_skb_load_bytes_relative:
7976                 return &bpf_skb_load_bytes_relative_proto;
7977         case BPF_FUNC_skb_pull_data:
7978                 return &bpf_skb_pull_data_proto;
7979         case BPF_FUNC_csum_diff:
7980                 return &bpf_csum_diff_proto;
7981         case BPF_FUNC_csum_update:
7982                 return &bpf_csum_update_proto;
7983         case BPF_FUNC_csum_level:
7984                 return &bpf_csum_level_proto;
7985         case BPF_FUNC_l3_csum_replace:
7986                 return &bpf_l3_csum_replace_proto;
7987         case BPF_FUNC_l4_csum_replace:
7988                 return &bpf_l4_csum_replace_proto;
7989         case BPF_FUNC_clone_redirect:
7990                 return &bpf_clone_redirect_proto;
7991         case BPF_FUNC_get_cgroup_classid:
7992                 return &bpf_get_cgroup_classid_proto;
7993         case BPF_FUNC_skb_vlan_push:
7994                 return &bpf_skb_vlan_push_proto;
7995         case BPF_FUNC_skb_vlan_pop:
7996                 return &bpf_skb_vlan_pop_proto;
7997         case BPF_FUNC_skb_change_proto:
7998                 return &bpf_skb_change_proto_proto;
7999         case BPF_FUNC_skb_change_type:
8000                 return &bpf_skb_change_type_proto;
8001         case BPF_FUNC_skb_adjust_room:
8002                 return &bpf_skb_adjust_room_proto;
8003         case BPF_FUNC_skb_change_tail:
8004                 return &bpf_skb_change_tail_proto;
8005         case BPF_FUNC_skb_change_head:
8006                 return &bpf_skb_change_head_proto;
8007         case BPF_FUNC_skb_get_tunnel_key:
8008                 return &bpf_skb_get_tunnel_key_proto;
8009         case BPF_FUNC_skb_set_tunnel_key:
8010                 return bpf_get_skb_set_tunnel_proto(func_id);
8011         case BPF_FUNC_skb_get_tunnel_opt:
8012                 return &bpf_skb_get_tunnel_opt_proto;
8013         case BPF_FUNC_skb_set_tunnel_opt:
8014                 return bpf_get_skb_set_tunnel_proto(func_id);
8015         case BPF_FUNC_redirect:
8016                 return &bpf_redirect_proto;
8017         case BPF_FUNC_redirect_neigh:
8018                 return &bpf_redirect_neigh_proto;
8019         case BPF_FUNC_redirect_peer:
8020                 return &bpf_redirect_peer_proto;
8021         case BPF_FUNC_get_route_realm:
8022                 return &bpf_get_route_realm_proto;
8023         case BPF_FUNC_get_hash_recalc:
8024                 return &bpf_get_hash_recalc_proto;
8025         case BPF_FUNC_set_hash_invalid:
8026                 return &bpf_set_hash_invalid_proto;
8027         case BPF_FUNC_set_hash:
8028                 return &bpf_set_hash_proto;
8029         case BPF_FUNC_perf_event_output:
8030                 return &bpf_skb_event_output_proto;
8031         case BPF_FUNC_get_smp_processor_id:
8032                 return &bpf_get_smp_processor_id_proto;
8033         case BPF_FUNC_skb_under_cgroup:
8034                 return &bpf_skb_under_cgroup_proto;
8035         case BPF_FUNC_get_socket_cookie:
8036                 return &bpf_get_socket_cookie_proto;
8037         case BPF_FUNC_get_socket_uid:
8038                 return &bpf_get_socket_uid_proto;
8039         case BPF_FUNC_fib_lookup:
8040                 return &bpf_skb_fib_lookup_proto;
8041         case BPF_FUNC_check_mtu:
8042                 return &bpf_skb_check_mtu_proto;
8043         case BPF_FUNC_sk_fullsock:
8044                 return &bpf_sk_fullsock_proto;
8045         case BPF_FUNC_sk_storage_get:
8046                 return &bpf_sk_storage_get_proto;
8047         case BPF_FUNC_sk_storage_delete:
8048                 return &bpf_sk_storage_delete_proto;
8049 #ifdef CONFIG_XFRM
8050         case BPF_FUNC_skb_get_xfrm_state:
8051                 return &bpf_skb_get_xfrm_state_proto;
8052 #endif
8053 #ifdef CONFIG_CGROUP_NET_CLASSID
8054         case BPF_FUNC_skb_cgroup_classid:
8055                 return &bpf_skb_cgroup_classid_proto;
8056 #endif
8057 #ifdef CONFIG_SOCK_CGROUP_DATA
8058         case BPF_FUNC_skb_cgroup_id:
8059                 return &bpf_skb_cgroup_id_proto;
8060         case BPF_FUNC_skb_ancestor_cgroup_id:
8061                 return &bpf_skb_ancestor_cgroup_id_proto;
8062 #endif
8063 #ifdef CONFIG_INET
8064         case BPF_FUNC_sk_lookup_tcp:
8065                 return &bpf_tc_sk_lookup_tcp_proto;
8066         case BPF_FUNC_sk_lookup_udp:
8067                 return &bpf_tc_sk_lookup_udp_proto;
8068         case BPF_FUNC_sk_release:
8069                 return &bpf_sk_release_proto;
8070         case BPF_FUNC_tcp_sock:
8071                 return &bpf_tcp_sock_proto;
8072         case BPF_FUNC_get_listener_sock:
8073                 return &bpf_get_listener_sock_proto;
8074         case BPF_FUNC_skc_lookup_tcp:
8075                 return &bpf_tc_skc_lookup_tcp_proto;
8076         case BPF_FUNC_tcp_check_syncookie:
8077                 return &bpf_tcp_check_syncookie_proto;
8078         case BPF_FUNC_skb_ecn_set_ce:
8079                 return &bpf_skb_ecn_set_ce_proto;
8080         case BPF_FUNC_tcp_gen_syncookie:
8081                 return &bpf_tcp_gen_syncookie_proto;
8082         case BPF_FUNC_sk_assign:
8083                 return &bpf_sk_assign_proto;
8084         case BPF_FUNC_skb_set_tstamp:
8085                 return &bpf_skb_set_tstamp_proto;
8086 #ifdef CONFIG_SYN_COOKIES
8087         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8088                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8089         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8090                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8091         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8092                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8093         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8094                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8095 #endif
8096 #endif
8097         default:
8098                 return bpf_sk_base_func_proto(func_id);
8099         }
8100 }
8101
8102 static const struct bpf_func_proto *
8103 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8104 {
8105         switch (func_id) {
8106         case BPF_FUNC_perf_event_output:
8107                 return &bpf_xdp_event_output_proto;
8108         case BPF_FUNC_get_smp_processor_id:
8109                 return &bpf_get_smp_processor_id_proto;
8110         case BPF_FUNC_csum_diff:
8111                 return &bpf_csum_diff_proto;
8112         case BPF_FUNC_xdp_adjust_head:
8113                 return &bpf_xdp_adjust_head_proto;
8114         case BPF_FUNC_xdp_adjust_meta:
8115                 return &bpf_xdp_adjust_meta_proto;
8116         case BPF_FUNC_redirect:
8117                 return &bpf_xdp_redirect_proto;
8118         case BPF_FUNC_redirect_map:
8119                 return &bpf_xdp_redirect_map_proto;
8120         case BPF_FUNC_xdp_adjust_tail:
8121                 return &bpf_xdp_adjust_tail_proto;
8122         case BPF_FUNC_xdp_get_buff_len:
8123                 return &bpf_xdp_get_buff_len_proto;
8124         case BPF_FUNC_xdp_load_bytes:
8125                 return &bpf_xdp_load_bytes_proto;
8126         case BPF_FUNC_xdp_store_bytes:
8127                 return &bpf_xdp_store_bytes_proto;
8128         case BPF_FUNC_fib_lookup:
8129                 return &bpf_xdp_fib_lookup_proto;
8130         case BPF_FUNC_check_mtu:
8131                 return &bpf_xdp_check_mtu_proto;
8132 #ifdef CONFIG_INET
8133         case BPF_FUNC_sk_lookup_udp:
8134                 return &bpf_xdp_sk_lookup_udp_proto;
8135         case BPF_FUNC_sk_lookup_tcp:
8136                 return &bpf_xdp_sk_lookup_tcp_proto;
8137         case BPF_FUNC_sk_release:
8138                 return &bpf_sk_release_proto;
8139         case BPF_FUNC_skc_lookup_tcp:
8140                 return &bpf_xdp_skc_lookup_tcp_proto;
8141         case BPF_FUNC_tcp_check_syncookie:
8142                 return &bpf_tcp_check_syncookie_proto;
8143         case BPF_FUNC_tcp_gen_syncookie:
8144                 return &bpf_tcp_gen_syncookie_proto;
8145 #ifdef CONFIG_SYN_COOKIES
8146         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8147                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8148         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8149                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8150         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8151                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8152         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8153                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8154 #endif
8155 #endif
8156         default:
8157                 return bpf_sk_base_func_proto(func_id);
8158         }
8159
8160 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8161         /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8162          * kfuncs are defined in two different modules, and we want to be able
8163          * to use them interchangably with the same BTF type ID. Because modules
8164          * can't de-duplicate BTF IDs between each other, we need the type to be
8165          * referenced in the vmlinux BTF or the verifier will get confused about
8166          * the different types. So we add this dummy type reference which will
8167          * be included in vmlinux BTF, allowing both modules to refer to the
8168          * same type ID.
8169          */
8170         BTF_TYPE_EMIT(struct nf_conn___init);
8171 #endif
8172 }
8173
8174 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8175 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8176
8177 static const struct bpf_func_proto *
8178 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8179 {
8180         const struct bpf_func_proto *func_proto;
8181
8182         func_proto = cgroup_common_func_proto(func_id, prog);
8183         if (func_proto)
8184                 return func_proto;
8185
8186         switch (func_id) {
8187         case BPF_FUNC_setsockopt:
8188                 return &bpf_sock_ops_setsockopt_proto;
8189         case BPF_FUNC_getsockopt:
8190                 return &bpf_sock_ops_getsockopt_proto;
8191         case BPF_FUNC_sock_ops_cb_flags_set:
8192                 return &bpf_sock_ops_cb_flags_set_proto;
8193         case BPF_FUNC_sock_map_update:
8194                 return &bpf_sock_map_update_proto;
8195         case BPF_FUNC_sock_hash_update:
8196                 return &bpf_sock_hash_update_proto;
8197         case BPF_FUNC_get_socket_cookie:
8198                 return &bpf_get_socket_cookie_sock_ops_proto;
8199         case BPF_FUNC_perf_event_output:
8200                 return &bpf_event_output_data_proto;
8201         case BPF_FUNC_sk_storage_get:
8202                 return &bpf_sk_storage_get_proto;
8203         case BPF_FUNC_sk_storage_delete:
8204                 return &bpf_sk_storage_delete_proto;
8205         case BPF_FUNC_get_netns_cookie:
8206                 return &bpf_get_netns_cookie_sock_ops_proto;
8207 #ifdef CONFIG_INET
8208         case BPF_FUNC_load_hdr_opt:
8209                 return &bpf_sock_ops_load_hdr_opt_proto;
8210         case BPF_FUNC_store_hdr_opt:
8211                 return &bpf_sock_ops_store_hdr_opt_proto;
8212         case BPF_FUNC_reserve_hdr_opt:
8213                 return &bpf_sock_ops_reserve_hdr_opt_proto;
8214         case BPF_FUNC_tcp_sock:
8215                 return &bpf_tcp_sock_proto;
8216 #endif /* CONFIG_INET */
8217         default:
8218                 return bpf_sk_base_func_proto(func_id);
8219         }
8220 }
8221
8222 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8223 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8224
8225 static const struct bpf_func_proto *
8226 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8227 {
8228         switch (func_id) {
8229         case BPF_FUNC_msg_redirect_map:
8230                 return &bpf_msg_redirect_map_proto;
8231         case BPF_FUNC_msg_redirect_hash:
8232                 return &bpf_msg_redirect_hash_proto;
8233         case BPF_FUNC_msg_apply_bytes:
8234                 return &bpf_msg_apply_bytes_proto;
8235         case BPF_FUNC_msg_cork_bytes:
8236                 return &bpf_msg_cork_bytes_proto;
8237         case BPF_FUNC_msg_pull_data:
8238                 return &bpf_msg_pull_data_proto;
8239         case BPF_FUNC_msg_push_data:
8240                 return &bpf_msg_push_data_proto;
8241         case BPF_FUNC_msg_pop_data:
8242                 return &bpf_msg_pop_data_proto;
8243         case BPF_FUNC_perf_event_output:
8244                 return &bpf_event_output_data_proto;
8245         case BPF_FUNC_get_current_uid_gid:
8246                 return &bpf_get_current_uid_gid_proto;
8247         case BPF_FUNC_get_current_pid_tgid:
8248                 return &bpf_get_current_pid_tgid_proto;
8249         case BPF_FUNC_sk_storage_get:
8250                 return &bpf_sk_storage_get_proto;
8251         case BPF_FUNC_sk_storage_delete:
8252                 return &bpf_sk_storage_delete_proto;
8253         case BPF_FUNC_get_netns_cookie:
8254                 return &bpf_get_netns_cookie_sk_msg_proto;
8255 #ifdef CONFIG_CGROUPS
8256         case BPF_FUNC_get_current_cgroup_id:
8257                 return &bpf_get_current_cgroup_id_proto;
8258         case BPF_FUNC_get_current_ancestor_cgroup_id:
8259                 return &bpf_get_current_ancestor_cgroup_id_proto;
8260 #endif
8261 #ifdef CONFIG_CGROUP_NET_CLASSID
8262         case BPF_FUNC_get_cgroup_classid:
8263                 return &bpf_get_cgroup_classid_curr_proto;
8264 #endif
8265         default:
8266                 return bpf_sk_base_func_proto(func_id);
8267         }
8268 }
8269
8270 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8271 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8272
8273 static const struct bpf_func_proto *
8274 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8275 {
8276         switch (func_id) {
8277         case BPF_FUNC_skb_store_bytes:
8278                 return &bpf_skb_store_bytes_proto;
8279         case BPF_FUNC_skb_load_bytes:
8280                 return &bpf_skb_load_bytes_proto;
8281         case BPF_FUNC_skb_pull_data:
8282                 return &sk_skb_pull_data_proto;
8283         case BPF_FUNC_skb_change_tail:
8284                 return &sk_skb_change_tail_proto;
8285         case BPF_FUNC_skb_change_head:
8286                 return &sk_skb_change_head_proto;
8287         case BPF_FUNC_skb_adjust_room:
8288                 return &sk_skb_adjust_room_proto;
8289         case BPF_FUNC_get_socket_cookie:
8290                 return &bpf_get_socket_cookie_proto;
8291         case BPF_FUNC_get_socket_uid:
8292                 return &bpf_get_socket_uid_proto;
8293         case BPF_FUNC_sk_redirect_map:
8294                 return &bpf_sk_redirect_map_proto;
8295         case BPF_FUNC_sk_redirect_hash:
8296                 return &bpf_sk_redirect_hash_proto;
8297         case BPF_FUNC_perf_event_output:
8298                 return &bpf_skb_event_output_proto;
8299 #ifdef CONFIG_INET
8300         case BPF_FUNC_sk_lookup_tcp:
8301                 return &bpf_sk_lookup_tcp_proto;
8302         case BPF_FUNC_sk_lookup_udp:
8303                 return &bpf_sk_lookup_udp_proto;
8304         case BPF_FUNC_sk_release:
8305                 return &bpf_sk_release_proto;
8306         case BPF_FUNC_skc_lookup_tcp:
8307                 return &bpf_skc_lookup_tcp_proto;
8308 #endif
8309         default:
8310                 return bpf_sk_base_func_proto(func_id);
8311         }
8312 }
8313
8314 static const struct bpf_func_proto *
8315 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8316 {
8317         switch (func_id) {
8318         case BPF_FUNC_skb_load_bytes:
8319                 return &bpf_flow_dissector_load_bytes_proto;
8320         default:
8321                 return bpf_sk_base_func_proto(func_id);
8322         }
8323 }
8324
8325 static const struct bpf_func_proto *
8326 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8327 {
8328         switch (func_id) {
8329         case BPF_FUNC_skb_load_bytes:
8330                 return &bpf_skb_load_bytes_proto;
8331         case BPF_FUNC_skb_pull_data:
8332                 return &bpf_skb_pull_data_proto;
8333         case BPF_FUNC_csum_diff:
8334                 return &bpf_csum_diff_proto;
8335         case BPF_FUNC_get_cgroup_classid:
8336                 return &bpf_get_cgroup_classid_proto;
8337         case BPF_FUNC_get_route_realm:
8338                 return &bpf_get_route_realm_proto;
8339         case BPF_FUNC_get_hash_recalc:
8340                 return &bpf_get_hash_recalc_proto;
8341         case BPF_FUNC_perf_event_output:
8342                 return &bpf_skb_event_output_proto;
8343         case BPF_FUNC_get_smp_processor_id:
8344                 return &bpf_get_smp_processor_id_proto;
8345         case BPF_FUNC_skb_under_cgroup:
8346                 return &bpf_skb_under_cgroup_proto;
8347         default:
8348                 return bpf_sk_base_func_proto(func_id);
8349         }
8350 }
8351
8352 static const struct bpf_func_proto *
8353 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8354 {
8355         switch (func_id) {
8356         case BPF_FUNC_lwt_push_encap:
8357                 return &bpf_lwt_in_push_encap_proto;
8358         default:
8359                 return lwt_out_func_proto(func_id, prog);
8360         }
8361 }
8362
8363 static const struct bpf_func_proto *
8364 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8365 {
8366         switch (func_id) {
8367         case BPF_FUNC_skb_get_tunnel_key:
8368                 return &bpf_skb_get_tunnel_key_proto;
8369         case BPF_FUNC_skb_set_tunnel_key:
8370                 return bpf_get_skb_set_tunnel_proto(func_id);
8371         case BPF_FUNC_skb_get_tunnel_opt:
8372                 return &bpf_skb_get_tunnel_opt_proto;
8373         case BPF_FUNC_skb_set_tunnel_opt:
8374                 return bpf_get_skb_set_tunnel_proto(func_id);
8375         case BPF_FUNC_redirect:
8376                 return &bpf_redirect_proto;
8377         case BPF_FUNC_clone_redirect:
8378                 return &bpf_clone_redirect_proto;
8379         case BPF_FUNC_skb_change_tail:
8380                 return &bpf_skb_change_tail_proto;
8381         case BPF_FUNC_skb_change_head:
8382                 return &bpf_skb_change_head_proto;
8383         case BPF_FUNC_skb_store_bytes:
8384                 return &bpf_skb_store_bytes_proto;
8385         case BPF_FUNC_csum_update:
8386                 return &bpf_csum_update_proto;
8387         case BPF_FUNC_csum_level:
8388                 return &bpf_csum_level_proto;
8389         case BPF_FUNC_l3_csum_replace:
8390                 return &bpf_l3_csum_replace_proto;
8391         case BPF_FUNC_l4_csum_replace:
8392                 return &bpf_l4_csum_replace_proto;
8393         case BPF_FUNC_set_hash_invalid:
8394                 return &bpf_set_hash_invalid_proto;
8395         case BPF_FUNC_lwt_push_encap:
8396                 return &bpf_lwt_xmit_push_encap_proto;
8397         default:
8398                 return lwt_out_func_proto(func_id, prog);
8399         }
8400 }
8401
8402 static const struct bpf_func_proto *
8403 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8404 {
8405         switch (func_id) {
8406 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8407         case BPF_FUNC_lwt_seg6_store_bytes:
8408                 return &bpf_lwt_seg6_store_bytes_proto;
8409         case BPF_FUNC_lwt_seg6_action:
8410                 return &bpf_lwt_seg6_action_proto;
8411         case BPF_FUNC_lwt_seg6_adjust_srh:
8412                 return &bpf_lwt_seg6_adjust_srh_proto;
8413 #endif
8414         default:
8415                 return lwt_out_func_proto(func_id, prog);
8416         }
8417 }
8418
8419 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8420                                     const struct bpf_prog *prog,
8421                                     struct bpf_insn_access_aux *info)
8422 {
8423         const int size_default = sizeof(__u32);
8424
8425         if (off < 0 || off >= sizeof(struct __sk_buff))
8426                 return false;
8427
8428         /* The verifier guarantees that size > 0. */
8429         if (off % size != 0)
8430                 return false;
8431
8432         switch (off) {
8433         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8434                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8435                         return false;
8436                 break;
8437         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8438         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8439         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8440         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8441         case bpf_ctx_range(struct __sk_buff, data):
8442         case bpf_ctx_range(struct __sk_buff, data_meta):
8443         case bpf_ctx_range(struct __sk_buff, data_end):
8444                 if (size != size_default)
8445                         return false;
8446                 break;
8447         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8448                 return false;
8449         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8450                 if (type == BPF_WRITE || size != sizeof(__u64))
8451                         return false;
8452                 break;
8453         case bpf_ctx_range(struct __sk_buff, tstamp):
8454                 if (size != sizeof(__u64))
8455                         return false;
8456                 break;
8457         case offsetof(struct __sk_buff, sk):
8458                 if (type == BPF_WRITE || size != sizeof(__u64))
8459                         return false;
8460                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8461                 break;
8462         case offsetof(struct __sk_buff, tstamp_type):
8463                 return false;
8464         case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8465                 /* Explicitly prohibit access to padding in __sk_buff. */
8466                 return false;
8467         default:
8468                 /* Only narrow read access allowed for now. */
8469                 if (type == BPF_WRITE) {
8470                         if (size != size_default)
8471                                 return false;
8472                 } else {
8473                         bpf_ctx_record_field_size(info, size_default);
8474                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8475                                 return false;
8476                 }
8477         }
8478
8479         return true;
8480 }
8481
8482 static bool sk_filter_is_valid_access(int off, int size,
8483                                       enum bpf_access_type type,
8484                                       const struct bpf_prog *prog,
8485                                       struct bpf_insn_access_aux *info)
8486 {
8487         switch (off) {
8488         case bpf_ctx_range(struct __sk_buff, tc_classid):
8489         case bpf_ctx_range(struct __sk_buff, data):
8490         case bpf_ctx_range(struct __sk_buff, data_meta):
8491         case bpf_ctx_range(struct __sk_buff, data_end):
8492         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8493         case bpf_ctx_range(struct __sk_buff, tstamp):
8494         case bpf_ctx_range(struct __sk_buff, wire_len):
8495         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8496                 return false;
8497         }
8498
8499         if (type == BPF_WRITE) {
8500                 switch (off) {
8501                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8502                         break;
8503                 default:
8504                         return false;
8505                 }
8506         }
8507
8508         return bpf_skb_is_valid_access(off, size, type, prog, info);
8509 }
8510
8511 static bool cg_skb_is_valid_access(int off, int size,
8512                                    enum bpf_access_type type,
8513                                    const struct bpf_prog *prog,
8514                                    struct bpf_insn_access_aux *info)
8515 {
8516         switch (off) {
8517         case bpf_ctx_range(struct __sk_buff, tc_classid):
8518         case bpf_ctx_range(struct __sk_buff, data_meta):
8519         case bpf_ctx_range(struct __sk_buff, wire_len):
8520                 return false;
8521         case bpf_ctx_range(struct __sk_buff, data):
8522         case bpf_ctx_range(struct __sk_buff, data_end):
8523                 if (!bpf_capable())
8524                         return false;
8525                 break;
8526         }
8527
8528         if (type == BPF_WRITE) {
8529                 switch (off) {
8530                 case bpf_ctx_range(struct __sk_buff, mark):
8531                 case bpf_ctx_range(struct __sk_buff, priority):
8532                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8533                         break;
8534                 case bpf_ctx_range(struct __sk_buff, tstamp):
8535                         if (!bpf_capable())
8536                                 return false;
8537                         break;
8538                 default:
8539                         return false;
8540                 }
8541         }
8542
8543         switch (off) {
8544         case bpf_ctx_range(struct __sk_buff, data):
8545                 info->reg_type = PTR_TO_PACKET;
8546                 break;
8547         case bpf_ctx_range(struct __sk_buff, data_end):
8548                 info->reg_type = PTR_TO_PACKET_END;
8549                 break;
8550         }
8551
8552         return bpf_skb_is_valid_access(off, size, type, prog, info);
8553 }
8554
8555 static bool lwt_is_valid_access(int off, int size,
8556                                 enum bpf_access_type type,
8557                                 const struct bpf_prog *prog,
8558                                 struct bpf_insn_access_aux *info)
8559 {
8560         switch (off) {
8561         case bpf_ctx_range(struct __sk_buff, tc_classid):
8562         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8563         case bpf_ctx_range(struct __sk_buff, data_meta):
8564         case bpf_ctx_range(struct __sk_buff, tstamp):
8565         case bpf_ctx_range(struct __sk_buff, wire_len):
8566         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8567                 return false;
8568         }
8569
8570         if (type == BPF_WRITE) {
8571                 switch (off) {
8572                 case bpf_ctx_range(struct __sk_buff, mark):
8573                 case bpf_ctx_range(struct __sk_buff, priority):
8574                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8575                         break;
8576                 default:
8577                         return false;
8578                 }
8579         }
8580
8581         switch (off) {
8582         case bpf_ctx_range(struct __sk_buff, data):
8583                 info->reg_type = PTR_TO_PACKET;
8584                 break;
8585         case bpf_ctx_range(struct __sk_buff, data_end):
8586                 info->reg_type = PTR_TO_PACKET_END;
8587                 break;
8588         }
8589
8590         return bpf_skb_is_valid_access(off, size, type, prog, info);
8591 }
8592
8593 /* Attach type specific accesses */
8594 static bool __sock_filter_check_attach_type(int off,
8595                                             enum bpf_access_type access_type,
8596                                             enum bpf_attach_type attach_type)
8597 {
8598         switch (off) {
8599         case offsetof(struct bpf_sock, bound_dev_if):
8600         case offsetof(struct bpf_sock, mark):
8601         case offsetof(struct bpf_sock, priority):
8602                 switch (attach_type) {
8603                 case BPF_CGROUP_INET_SOCK_CREATE:
8604                 case BPF_CGROUP_INET_SOCK_RELEASE:
8605                         goto full_access;
8606                 default:
8607                         return false;
8608                 }
8609         case bpf_ctx_range(struct bpf_sock, src_ip4):
8610                 switch (attach_type) {
8611                 case BPF_CGROUP_INET4_POST_BIND:
8612                         goto read_only;
8613                 default:
8614                         return false;
8615                 }
8616         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8617                 switch (attach_type) {
8618                 case BPF_CGROUP_INET6_POST_BIND:
8619                         goto read_only;
8620                 default:
8621                         return false;
8622                 }
8623         case bpf_ctx_range(struct bpf_sock, src_port):
8624                 switch (attach_type) {
8625                 case BPF_CGROUP_INET4_POST_BIND:
8626                 case BPF_CGROUP_INET6_POST_BIND:
8627                         goto read_only;
8628                 default:
8629                         return false;
8630                 }
8631         }
8632 read_only:
8633         return access_type == BPF_READ;
8634 full_access:
8635         return true;
8636 }
8637
8638 bool bpf_sock_common_is_valid_access(int off, int size,
8639                                      enum bpf_access_type type,
8640                                      struct bpf_insn_access_aux *info)
8641 {
8642         switch (off) {
8643         case bpf_ctx_range_till(struct bpf_sock, type, priority):
8644                 return false;
8645         default:
8646                 return bpf_sock_is_valid_access(off, size, type, info);
8647         }
8648 }
8649
8650 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8651                               struct bpf_insn_access_aux *info)
8652 {
8653         const int size_default = sizeof(__u32);
8654         int field_size;
8655
8656         if (off < 0 || off >= sizeof(struct bpf_sock))
8657                 return false;
8658         if (off % size != 0)
8659                 return false;
8660
8661         switch (off) {
8662         case offsetof(struct bpf_sock, state):
8663         case offsetof(struct bpf_sock, family):
8664         case offsetof(struct bpf_sock, type):
8665         case offsetof(struct bpf_sock, protocol):
8666         case offsetof(struct bpf_sock, src_port):
8667         case offsetof(struct bpf_sock, rx_queue_mapping):
8668         case bpf_ctx_range(struct bpf_sock, src_ip4):
8669         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8670         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8671         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8672                 bpf_ctx_record_field_size(info, size_default);
8673                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8674         case bpf_ctx_range(struct bpf_sock, dst_port):
8675                 field_size = size == size_default ?
8676                         size_default : sizeof_field(struct bpf_sock, dst_port);
8677                 bpf_ctx_record_field_size(info, field_size);
8678                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8679         case offsetofend(struct bpf_sock, dst_port) ...
8680              offsetof(struct bpf_sock, dst_ip4) - 1:
8681                 return false;
8682         }
8683
8684         return size == size_default;
8685 }
8686
8687 static bool sock_filter_is_valid_access(int off, int size,
8688                                         enum bpf_access_type type,
8689                                         const struct bpf_prog *prog,
8690                                         struct bpf_insn_access_aux *info)
8691 {
8692         if (!bpf_sock_is_valid_access(off, size, type, info))
8693                 return false;
8694         return __sock_filter_check_attach_type(off, type,
8695                                                prog->expected_attach_type);
8696 }
8697
8698 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8699                              const struct bpf_prog *prog)
8700 {
8701         /* Neither direct read nor direct write requires any preliminary
8702          * action.
8703          */
8704         return 0;
8705 }
8706
8707 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8708                                 const struct bpf_prog *prog, int drop_verdict)
8709 {
8710         struct bpf_insn *insn = insn_buf;
8711
8712         if (!direct_write)
8713                 return 0;
8714
8715         /* if (!skb->cloned)
8716          *       goto start;
8717          *
8718          * (Fast-path, otherwise approximation that we might be
8719          *  a clone, do the rest in helper.)
8720          */
8721         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8722         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8723         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8724
8725         /* ret = bpf_skb_pull_data(skb, 0); */
8726         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8727         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8728         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8729                                BPF_FUNC_skb_pull_data);
8730         /* if (!ret)
8731          *      goto restore;
8732          * return TC_ACT_SHOT;
8733          */
8734         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8735         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8736         *insn++ = BPF_EXIT_INSN();
8737
8738         /* restore: */
8739         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8740         /* start: */
8741         *insn++ = prog->insnsi[0];
8742
8743         return insn - insn_buf;
8744 }
8745
8746 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8747                           struct bpf_insn *insn_buf)
8748 {
8749         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8750         struct bpf_insn *insn = insn_buf;
8751
8752         if (!indirect) {
8753                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8754         } else {
8755                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8756                 if (orig->imm)
8757                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8758         }
8759         /* We're guaranteed here that CTX is in R6. */
8760         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8761
8762         switch (BPF_SIZE(orig->code)) {
8763         case BPF_B:
8764                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8765                 break;
8766         case BPF_H:
8767                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8768                 break;
8769         case BPF_W:
8770                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8771                 break;
8772         }
8773
8774         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8775         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8776         *insn++ = BPF_EXIT_INSN();
8777
8778         return insn - insn_buf;
8779 }
8780
8781 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8782                                const struct bpf_prog *prog)
8783 {
8784         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8785 }
8786
8787 static bool tc_cls_act_is_valid_access(int off, int size,
8788                                        enum bpf_access_type type,
8789                                        const struct bpf_prog *prog,
8790                                        struct bpf_insn_access_aux *info)
8791 {
8792         if (type == BPF_WRITE) {
8793                 switch (off) {
8794                 case bpf_ctx_range(struct __sk_buff, mark):
8795                 case bpf_ctx_range(struct __sk_buff, tc_index):
8796                 case bpf_ctx_range(struct __sk_buff, priority):
8797                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8798                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8799                 case bpf_ctx_range(struct __sk_buff, tstamp):
8800                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8801                         break;
8802                 default:
8803                         return false;
8804                 }
8805         }
8806
8807         switch (off) {
8808         case bpf_ctx_range(struct __sk_buff, data):
8809                 info->reg_type = PTR_TO_PACKET;
8810                 break;
8811         case bpf_ctx_range(struct __sk_buff, data_meta):
8812                 info->reg_type = PTR_TO_PACKET_META;
8813                 break;
8814         case bpf_ctx_range(struct __sk_buff, data_end):
8815                 info->reg_type = PTR_TO_PACKET_END;
8816                 break;
8817         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8818                 return false;
8819         case offsetof(struct __sk_buff, tstamp_type):
8820                 /* The convert_ctx_access() on reading and writing
8821                  * __sk_buff->tstamp depends on whether the bpf prog
8822                  * has used __sk_buff->tstamp_type or not.
8823                  * Thus, we need to set prog->tstamp_type_access
8824                  * earlier during is_valid_access() here.
8825                  */
8826                 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8827                 return size == sizeof(__u8);
8828         }
8829
8830         return bpf_skb_is_valid_access(off, size, type, prog, info);
8831 }
8832
8833 DEFINE_MUTEX(nf_conn_btf_access_lock);
8834 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8835
8836 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, const struct btf *btf,
8837                               const struct btf_type *t, int off, int size,
8838                               enum bpf_access_type atype, u32 *next_btf_id,
8839                               enum bpf_type_flag *flag);
8840 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8841
8842 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8843                                         const struct btf *btf,
8844                                         const struct btf_type *t, int off,
8845                                         int size, enum bpf_access_type atype,
8846                                         u32 *next_btf_id,
8847                                         enum bpf_type_flag *flag)
8848 {
8849         int ret = -EACCES;
8850
8851         if (atype == BPF_READ)
8852                 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8853                                          flag);
8854
8855         mutex_lock(&nf_conn_btf_access_lock);
8856         if (nfct_btf_struct_access)
8857                 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8858         mutex_unlock(&nf_conn_btf_access_lock);
8859
8860         return ret;
8861 }
8862
8863 static bool __is_valid_xdp_access(int off, int size)
8864 {
8865         if (off < 0 || off >= sizeof(struct xdp_md))
8866                 return false;
8867         if (off % size != 0)
8868                 return false;
8869         if (size != sizeof(__u32))
8870                 return false;
8871
8872         return true;
8873 }
8874
8875 static bool xdp_is_valid_access(int off, int size,
8876                                 enum bpf_access_type type,
8877                                 const struct bpf_prog *prog,
8878                                 struct bpf_insn_access_aux *info)
8879 {
8880         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8881                 switch (off) {
8882                 case offsetof(struct xdp_md, egress_ifindex):
8883                         return false;
8884                 }
8885         }
8886
8887         if (type == BPF_WRITE) {
8888                 if (bpf_prog_is_dev_bound(prog->aux)) {
8889                         switch (off) {
8890                         case offsetof(struct xdp_md, rx_queue_index):
8891                                 return __is_valid_xdp_access(off, size);
8892                         }
8893                 }
8894                 return false;
8895         }
8896
8897         switch (off) {
8898         case offsetof(struct xdp_md, data):
8899                 info->reg_type = PTR_TO_PACKET;
8900                 break;
8901         case offsetof(struct xdp_md, data_meta):
8902                 info->reg_type = PTR_TO_PACKET_META;
8903                 break;
8904         case offsetof(struct xdp_md, data_end):
8905                 info->reg_type = PTR_TO_PACKET_END;
8906                 break;
8907         }
8908
8909         return __is_valid_xdp_access(off, size);
8910 }
8911
8912 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8913 {
8914         const u32 act_max = XDP_REDIRECT;
8915
8916         pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8917                      act > act_max ? "Illegal" : "Driver unsupported",
8918                      act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8919 }
8920 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8921
8922 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8923                                  const struct btf *btf,
8924                                  const struct btf_type *t, int off,
8925                                  int size, enum bpf_access_type atype,
8926                                  u32 *next_btf_id,
8927                                  enum bpf_type_flag *flag)
8928 {
8929         int ret = -EACCES;
8930
8931         if (atype == BPF_READ)
8932                 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8933                                          flag);
8934
8935         mutex_lock(&nf_conn_btf_access_lock);
8936         if (nfct_btf_struct_access)
8937                 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8938         mutex_unlock(&nf_conn_btf_access_lock);
8939
8940         return ret;
8941 }
8942
8943 static bool sock_addr_is_valid_access(int off, int size,
8944                                       enum bpf_access_type type,
8945                                       const struct bpf_prog *prog,
8946                                       struct bpf_insn_access_aux *info)
8947 {
8948         const int size_default = sizeof(__u32);
8949
8950         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8951                 return false;
8952         if (off % size != 0)
8953                 return false;
8954
8955         /* Disallow access to IPv6 fields from IPv4 contex and vise
8956          * versa.
8957          */
8958         switch (off) {
8959         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8960                 switch (prog->expected_attach_type) {
8961                 case BPF_CGROUP_INET4_BIND:
8962                 case BPF_CGROUP_INET4_CONNECT:
8963                 case BPF_CGROUP_INET4_GETPEERNAME:
8964                 case BPF_CGROUP_INET4_GETSOCKNAME:
8965                 case BPF_CGROUP_UDP4_SENDMSG:
8966                 case BPF_CGROUP_UDP4_RECVMSG:
8967                         break;
8968                 default:
8969                         return false;
8970                 }
8971                 break;
8972         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8973                 switch (prog->expected_attach_type) {
8974                 case BPF_CGROUP_INET6_BIND:
8975                 case BPF_CGROUP_INET6_CONNECT:
8976                 case BPF_CGROUP_INET6_GETPEERNAME:
8977                 case BPF_CGROUP_INET6_GETSOCKNAME:
8978                 case BPF_CGROUP_UDP6_SENDMSG:
8979                 case BPF_CGROUP_UDP6_RECVMSG:
8980                         break;
8981                 default:
8982                         return false;
8983                 }
8984                 break;
8985         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8986                 switch (prog->expected_attach_type) {
8987                 case BPF_CGROUP_UDP4_SENDMSG:
8988                         break;
8989                 default:
8990                         return false;
8991                 }
8992                 break;
8993         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8994                                 msg_src_ip6[3]):
8995                 switch (prog->expected_attach_type) {
8996                 case BPF_CGROUP_UDP6_SENDMSG:
8997                         break;
8998                 default:
8999                         return false;
9000                 }
9001                 break;
9002         }
9003
9004         switch (off) {
9005         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9006         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9007         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9008         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9009                                 msg_src_ip6[3]):
9010         case bpf_ctx_range(struct bpf_sock_addr, user_port):
9011                 if (type == BPF_READ) {
9012                         bpf_ctx_record_field_size(info, size_default);
9013
9014                         if (bpf_ctx_wide_access_ok(off, size,
9015                                                    struct bpf_sock_addr,
9016                                                    user_ip6))
9017                                 return true;
9018
9019                         if (bpf_ctx_wide_access_ok(off, size,
9020                                                    struct bpf_sock_addr,
9021                                                    msg_src_ip6))
9022                                 return true;
9023
9024                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9025                                 return false;
9026                 } else {
9027                         if (bpf_ctx_wide_access_ok(off, size,
9028                                                    struct bpf_sock_addr,
9029                                                    user_ip6))
9030                                 return true;
9031
9032                         if (bpf_ctx_wide_access_ok(off, size,
9033                                                    struct bpf_sock_addr,
9034                                                    msg_src_ip6))
9035                                 return true;
9036
9037                         if (size != size_default)
9038                                 return false;
9039                 }
9040                 break;
9041         case offsetof(struct bpf_sock_addr, sk):
9042                 if (type != BPF_READ)
9043                         return false;
9044                 if (size != sizeof(__u64))
9045                         return false;
9046                 info->reg_type = PTR_TO_SOCKET;
9047                 break;
9048         default:
9049                 if (type == BPF_READ) {
9050                         if (size != size_default)
9051                                 return false;
9052                 } else {
9053                         return false;
9054                 }
9055         }
9056
9057         return true;
9058 }
9059
9060 static bool sock_ops_is_valid_access(int off, int size,
9061                                      enum bpf_access_type type,
9062                                      const struct bpf_prog *prog,
9063                                      struct bpf_insn_access_aux *info)
9064 {
9065         const int size_default = sizeof(__u32);
9066
9067         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9068                 return false;
9069
9070         /* The verifier guarantees that size > 0. */
9071         if (off % size != 0)
9072                 return false;
9073
9074         if (type == BPF_WRITE) {
9075                 switch (off) {
9076                 case offsetof(struct bpf_sock_ops, reply):
9077                 case offsetof(struct bpf_sock_ops, sk_txhash):
9078                         if (size != size_default)
9079                                 return false;
9080                         break;
9081                 default:
9082                         return false;
9083                 }
9084         } else {
9085                 switch (off) {
9086                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9087                                         bytes_acked):
9088                         if (size != sizeof(__u64))
9089                                 return false;
9090                         break;
9091                 case offsetof(struct bpf_sock_ops, sk):
9092                         if (size != sizeof(__u64))
9093                                 return false;
9094                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
9095                         break;
9096                 case offsetof(struct bpf_sock_ops, skb_data):
9097                         if (size != sizeof(__u64))
9098                                 return false;
9099                         info->reg_type = PTR_TO_PACKET;
9100                         break;
9101                 case offsetof(struct bpf_sock_ops, skb_data_end):
9102                         if (size != sizeof(__u64))
9103                                 return false;
9104                         info->reg_type = PTR_TO_PACKET_END;
9105                         break;
9106                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9107                         bpf_ctx_record_field_size(info, size_default);
9108                         return bpf_ctx_narrow_access_ok(off, size,
9109                                                         size_default);
9110                 default:
9111                         if (size != size_default)
9112                                 return false;
9113                         break;
9114                 }
9115         }
9116
9117         return true;
9118 }
9119
9120 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9121                            const struct bpf_prog *prog)
9122 {
9123         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9124 }
9125
9126 static bool sk_skb_is_valid_access(int off, int size,
9127                                    enum bpf_access_type type,
9128                                    const struct bpf_prog *prog,
9129                                    struct bpf_insn_access_aux *info)
9130 {
9131         switch (off) {
9132         case bpf_ctx_range(struct __sk_buff, tc_classid):
9133         case bpf_ctx_range(struct __sk_buff, data_meta):
9134         case bpf_ctx_range(struct __sk_buff, tstamp):
9135         case bpf_ctx_range(struct __sk_buff, wire_len):
9136         case bpf_ctx_range(struct __sk_buff, hwtstamp):
9137                 return false;
9138         }
9139
9140         if (type == BPF_WRITE) {
9141                 switch (off) {
9142                 case bpf_ctx_range(struct __sk_buff, tc_index):
9143                 case bpf_ctx_range(struct __sk_buff, priority):
9144                         break;
9145                 default:
9146                         return false;
9147                 }
9148         }
9149
9150         switch (off) {
9151         case bpf_ctx_range(struct __sk_buff, mark):
9152                 return false;
9153         case bpf_ctx_range(struct __sk_buff, data):
9154                 info->reg_type = PTR_TO_PACKET;
9155                 break;
9156         case bpf_ctx_range(struct __sk_buff, data_end):
9157                 info->reg_type = PTR_TO_PACKET_END;
9158                 break;
9159         }
9160
9161         return bpf_skb_is_valid_access(off, size, type, prog, info);
9162 }
9163
9164 static bool sk_msg_is_valid_access(int off, int size,
9165                                    enum bpf_access_type type,
9166                                    const struct bpf_prog *prog,
9167                                    struct bpf_insn_access_aux *info)
9168 {
9169         if (type == BPF_WRITE)
9170                 return false;
9171
9172         if (off % size != 0)
9173                 return false;
9174
9175         switch (off) {
9176         case offsetof(struct sk_msg_md, data):
9177                 info->reg_type = PTR_TO_PACKET;
9178                 if (size != sizeof(__u64))
9179                         return false;
9180                 break;
9181         case offsetof(struct sk_msg_md, data_end):
9182                 info->reg_type = PTR_TO_PACKET_END;
9183                 if (size != sizeof(__u64))
9184                         return false;
9185                 break;
9186         case offsetof(struct sk_msg_md, sk):
9187                 if (size != sizeof(__u64))
9188                         return false;
9189                 info->reg_type = PTR_TO_SOCKET;
9190                 break;
9191         case bpf_ctx_range(struct sk_msg_md, family):
9192         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9193         case bpf_ctx_range(struct sk_msg_md, local_ip4):
9194         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9195         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9196         case bpf_ctx_range(struct sk_msg_md, remote_port):
9197         case bpf_ctx_range(struct sk_msg_md, local_port):
9198         case bpf_ctx_range(struct sk_msg_md, size):
9199                 if (size != sizeof(__u32))
9200                         return false;
9201                 break;
9202         default:
9203                 return false;
9204         }
9205         return true;
9206 }
9207
9208 static bool flow_dissector_is_valid_access(int off, int size,
9209                                            enum bpf_access_type type,
9210                                            const struct bpf_prog *prog,
9211                                            struct bpf_insn_access_aux *info)
9212 {
9213         const int size_default = sizeof(__u32);
9214
9215         if (off < 0 || off >= sizeof(struct __sk_buff))
9216                 return false;
9217
9218         if (type == BPF_WRITE)
9219                 return false;
9220
9221         switch (off) {
9222         case bpf_ctx_range(struct __sk_buff, data):
9223                 if (size != size_default)
9224                         return false;
9225                 info->reg_type = PTR_TO_PACKET;
9226                 return true;
9227         case bpf_ctx_range(struct __sk_buff, data_end):
9228                 if (size != size_default)
9229                         return false;
9230                 info->reg_type = PTR_TO_PACKET_END;
9231                 return true;
9232         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9233                 if (size != sizeof(__u64))
9234                         return false;
9235                 info->reg_type = PTR_TO_FLOW_KEYS;
9236                 return true;
9237         default:
9238                 return false;
9239         }
9240 }
9241
9242 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9243                                              const struct bpf_insn *si,
9244                                              struct bpf_insn *insn_buf,
9245                                              struct bpf_prog *prog,
9246                                              u32 *target_size)
9247
9248 {
9249         struct bpf_insn *insn = insn_buf;
9250
9251         switch (si->off) {
9252         case offsetof(struct __sk_buff, data):
9253                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9254                                       si->dst_reg, si->src_reg,
9255                                       offsetof(struct bpf_flow_dissector, data));
9256                 break;
9257
9258         case offsetof(struct __sk_buff, data_end):
9259                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9260                                       si->dst_reg, si->src_reg,
9261                                       offsetof(struct bpf_flow_dissector, data_end));
9262                 break;
9263
9264         case offsetof(struct __sk_buff, flow_keys):
9265                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9266                                       si->dst_reg, si->src_reg,
9267                                       offsetof(struct bpf_flow_dissector, flow_keys));
9268                 break;
9269         }
9270
9271         return insn - insn_buf;
9272 }
9273
9274 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9275                                                      struct bpf_insn *insn)
9276 {
9277         __u8 value_reg = si->dst_reg;
9278         __u8 skb_reg = si->src_reg;
9279         /* AX is needed because src_reg and dst_reg could be the same */
9280         __u8 tmp_reg = BPF_REG_AX;
9281
9282         *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9283                               PKT_VLAN_PRESENT_OFFSET);
9284         *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9285                                 SKB_MONO_DELIVERY_TIME_MASK, 2);
9286         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9287         *insn++ = BPF_JMP_A(1);
9288         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9289
9290         return insn;
9291 }
9292
9293 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9294                                                   struct bpf_insn *insn)
9295 {
9296         /* si->dst_reg = skb_shinfo(SKB); */
9297 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9298         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9299                               BPF_REG_AX, si->src_reg,
9300                               offsetof(struct sk_buff, end));
9301         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9302                               si->dst_reg, si->src_reg,
9303                               offsetof(struct sk_buff, head));
9304         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9305 #else
9306         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9307                               si->dst_reg, si->src_reg,
9308                               offsetof(struct sk_buff, end));
9309 #endif
9310
9311         return insn;
9312 }
9313
9314 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9315                                                 const struct bpf_insn *si,
9316                                                 struct bpf_insn *insn)
9317 {
9318         __u8 value_reg = si->dst_reg;
9319         __u8 skb_reg = si->src_reg;
9320
9321 #ifdef CONFIG_NET_CLS_ACT
9322         /* If the tstamp_type is read,
9323          * the bpf prog is aware the tstamp could have delivery time.
9324          * Thus, read skb->tstamp as is if tstamp_type_access is true.
9325          */
9326         if (!prog->tstamp_type_access) {
9327                 /* AX is needed because src_reg and dst_reg could be the same */
9328                 __u8 tmp_reg = BPF_REG_AX;
9329
9330                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9331                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9332                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9333                 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9334                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9335                 /* skb->tc_at_ingress && skb->mono_delivery_time,
9336                  * read 0 as the (rcv) timestamp.
9337                  */
9338                 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9339                 *insn++ = BPF_JMP_A(1);
9340         }
9341 #endif
9342
9343         *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9344                               offsetof(struct sk_buff, tstamp));
9345         return insn;
9346 }
9347
9348 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9349                                                  const struct bpf_insn *si,
9350                                                  struct bpf_insn *insn)
9351 {
9352         __u8 value_reg = si->src_reg;
9353         __u8 skb_reg = si->dst_reg;
9354
9355 #ifdef CONFIG_NET_CLS_ACT
9356         /* If the tstamp_type is read,
9357          * the bpf prog is aware the tstamp could have delivery time.
9358          * Thus, write skb->tstamp as is if tstamp_type_access is true.
9359          * Otherwise, writing at ingress will have to clear the
9360          * mono_delivery_time bit also.
9361          */
9362         if (!prog->tstamp_type_access) {
9363                 __u8 tmp_reg = BPF_REG_AX;
9364
9365                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9366                 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9367                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9368                 /* goto <store> */
9369                 *insn++ = BPF_JMP_A(2);
9370                 /* <clear>: mono_delivery_time */
9371                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9372                 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9373         }
9374 #endif
9375
9376         /* <store>: skb->tstamp = tstamp */
9377         *insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9378                               offsetof(struct sk_buff, tstamp));
9379         return insn;
9380 }
9381
9382 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9383                                   const struct bpf_insn *si,
9384                                   struct bpf_insn *insn_buf,
9385                                   struct bpf_prog *prog, u32 *target_size)
9386 {
9387         struct bpf_insn *insn = insn_buf;
9388         int off;
9389
9390         switch (si->off) {
9391         case offsetof(struct __sk_buff, len):
9392                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9393                                       bpf_target_off(struct sk_buff, len, 4,
9394                                                      target_size));
9395                 break;
9396
9397         case offsetof(struct __sk_buff, protocol):
9398                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9399                                       bpf_target_off(struct sk_buff, protocol, 2,
9400                                                      target_size));
9401                 break;
9402
9403         case offsetof(struct __sk_buff, vlan_proto):
9404                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9405                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
9406                                                      target_size));
9407                 break;
9408
9409         case offsetof(struct __sk_buff, priority):
9410                 if (type == BPF_WRITE)
9411                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9412                                               bpf_target_off(struct sk_buff, priority, 4,
9413                                                              target_size));
9414                 else
9415                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9416                                               bpf_target_off(struct sk_buff, priority, 4,
9417                                                              target_size));
9418                 break;
9419
9420         case offsetof(struct __sk_buff, ingress_ifindex):
9421                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9422                                       bpf_target_off(struct sk_buff, skb_iif, 4,
9423                                                      target_size));
9424                 break;
9425
9426         case offsetof(struct __sk_buff, ifindex):
9427                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9428                                       si->dst_reg, si->src_reg,
9429                                       offsetof(struct sk_buff, dev));
9430                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9431                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9432                                       bpf_target_off(struct net_device, ifindex, 4,
9433                                                      target_size));
9434                 break;
9435
9436         case offsetof(struct __sk_buff, hash):
9437                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9438                                       bpf_target_off(struct sk_buff, hash, 4,
9439                                                      target_size));
9440                 break;
9441
9442         case offsetof(struct __sk_buff, mark):
9443                 if (type == BPF_WRITE)
9444                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9445                                               bpf_target_off(struct sk_buff, mark, 4,
9446                                                              target_size));
9447                 else
9448                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9449                                               bpf_target_off(struct sk_buff, mark, 4,
9450                                                              target_size));
9451                 break;
9452
9453         case offsetof(struct __sk_buff, pkt_type):
9454                 *target_size = 1;
9455                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9456                                       PKT_TYPE_OFFSET);
9457                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9458 #ifdef __BIG_ENDIAN_BITFIELD
9459                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9460 #endif
9461                 break;
9462
9463         case offsetof(struct __sk_buff, queue_mapping):
9464                 if (type == BPF_WRITE) {
9465                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9466                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9467                                               bpf_target_off(struct sk_buff,
9468                                                              queue_mapping,
9469                                                              2, target_size));
9470                 } else {
9471                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9472                                               bpf_target_off(struct sk_buff,
9473                                                              queue_mapping,
9474                                                              2, target_size));
9475                 }
9476                 break;
9477
9478         case offsetof(struct __sk_buff, vlan_present):
9479                 *target_size = 1;
9480                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9481                                       PKT_VLAN_PRESENT_OFFSET);
9482                 if (PKT_VLAN_PRESENT_BIT)
9483                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9484                 if (PKT_VLAN_PRESENT_BIT < 7)
9485                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9486                 break;
9487
9488         case offsetof(struct __sk_buff, vlan_tci):
9489                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9490                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
9491                                                      target_size));
9492                 break;
9493
9494         case offsetof(struct __sk_buff, cb[0]) ...
9495              offsetofend(struct __sk_buff, cb[4]) - 1:
9496                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9497                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9498                               offsetof(struct qdisc_skb_cb, data)) %
9499                              sizeof(__u64));
9500
9501                 prog->cb_access = 1;
9502                 off  = si->off;
9503                 off -= offsetof(struct __sk_buff, cb[0]);
9504                 off += offsetof(struct sk_buff, cb);
9505                 off += offsetof(struct qdisc_skb_cb, data);
9506                 if (type == BPF_WRITE)
9507                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9508                                               si->src_reg, off);
9509                 else
9510                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9511                                               si->src_reg, off);
9512                 break;
9513
9514         case offsetof(struct __sk_buff, tc_classid):
9515                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9516
9517                 off  = si->off;
9518                 off -= offsetof(struct __sk_buff, tc_classid);
9519                 off += offsetof(struct sk_buff, cb);
9520                 off += offsetof(struct qdisc_skb_cb, tc_classid);
9521                 *target_size = 2;
9522                 if (type == BPF_WRITE)
9523                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9524                                               si->src_reg, off);
9525                 else
9526                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9527                                               si->src_reg, off);
9528                 break;
9529
9530         case offsetof(struct __sk_buff, data):
9531                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9532                                       si->dst_reg, si->src_reg,
9533                                       offsetof(struct sk_buff, data));
9534                 break;
9535
9536         case offsetof(struct __sk_buff, data_meta):
9537                 off  = si->off;
9538                 off -= offsetof(struct __sk_buff, data_meta);
9539                 off += offsetof(struct sk_buff, cb);
9540                 off += offsetof(struct bpf_skb_data_end, data_meta);
9541                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9542                                       si->src_reg, off);
9543                 break;
9544
9545         case offsetof(struct __sk_buff, data_end):
9546                 off  = si->off;
9547                 off -= offsetof(struct __sk_buff, data_end);
9548                 off += offsetof(struct sk_buff, cb);
9549                 off += offsetof(struct bpf_skb_data_end, data_end);
9550                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9551                                       si->src_reg, off);
9552                 break;
9553
9554         case offsetof(struct __sk_buff, tc_index):
9555 #ifdef CONFIG_NET_SCHED
9556                 if (type == BPF_WRITE)
9557                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9558                                               bpf_target_off(struct sk_buff, tc_index, 2,
9559                                                              target_size));
9560                 else
9561                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9562                                               bpf_target_off(struct sk_buff, tc_index, 2,
9563                                                              target_size));
9564 #else
9565                 *target_size = 2;
9566                 if (type == BPF_WRITE)
9567                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9568                 else
9569                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9570 #endif
9571                 break;
9572
9573         case offsetof(struct __sk_buff, napi_id):
9574 #if defined(CONFIG_NET_RX_BUSY_POLL)
9575                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9576                                       bpf_target_off(struct sk_buff, napi_id, 4,
9577                                                      target_size));
9578                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9579                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9580 #else
9581                 *target_size = 4;
9582                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9583 #endif
9584                 break;
9585         case offsetof(struct __sk_buff, family):
9586                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9587
9588                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9589                                       si->dst_reg, si->src_reg,
9590                                       offsetof(struct sk_buff, sk));
9591                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9592                                       bpf_target_off(struct sock_common,
9593                                                      skc_family,
9594                                                      2, target_size));
9595                 break;
9596         case offsetof(struct __sk_buff, remote_ip4):
9597                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9598
9599                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9600                                       si->dst_reg, si->src_reg,
9601                                       offsetof(struct sk_buff, sk));
9602                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9603                                       bpf_target_off(struct sock_common,
9604                                                      skc_daddr,
9605                                                      4, target_size));
9606                 break;
9607         case offsetof(struct __sk_buff, local_ip4):
9608                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9609                                           skc_rcv_saddr) != 4);
9610
9611                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9612                                       si->dst_reg, si->src_reg,
9613                                       offsetof(struct sk_buff, sk));
9614                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9615                                       bpf_target_off(struct sock_common,
9616                                                      skc_rcv_saddr,
9617                                                      4, target_size));
9618                 break;
9619         case offsetof(struct __sk_buff, remote_ip6[0]) ...
9620              offsetof(struct __sk_buff, remote_ip6[3]):
9621 #if IS_ENABLED(CONFIG_IPV6)
9622                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9623                                           skc_v6_daddr.s6_addr32[0]) != 4);
9624
9625                 off = si->off;
9626                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9627
9628                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9629                                       si->dst_reg, si->src_reg,
9630                                       offsetof(struct sk_buff, sk));
9631                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9632                                       offsetof(struct sock_common,
9633                                                skc_v6_daddr.s6_addr32[0]) +
9634                                       off);
9635 #else
9636                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9637 #endif
9638                 break;
9639         case offsetof(struct __sk_buff, local_ip6[0]) ...
9640              offsetof(struct __sk_buff, local_ip6[3]):
9641 #if IS_ENABLED(CONFIG_IPV6)
9642                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9643                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9644
9645                 off = si->off;
9646                 off -= offsetof(struct __sk_buff, local_ip6[0]);
9647
9648                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9649                                       si->dst_reg, si->src_reg,
9650                                       offsetof(struct sk_buff, sk));
9651                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9652                                       offsetof(struct sock_common,
9653                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9654                                       off);
9655 #else
9656                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9657 #endif
9658                 break;
9659
9660         case offsetof(struct __sk_buff, remote_port):
9661                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9662
9663                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9664                                       si->dst_reg, si->src_reg,
9665                                       offsetof(struct sk_buff, sk));
9666                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9667                                       bpf_target_off(struct sock_common,
9668                                                      skc_dport,
9669                                                      2, target_size));
9670 #ifndef __BIG_ENDIAN_BITFIELD
9671                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9672 #endif
9673                 break;
9674
9675         case offsetof(struct __sk_buff, local_port):
9676                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9677
9678                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9679                                       si->dst_reg, si->src_reg,
9680                                       offsetof(struct sk_buff, sk));
9681                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9682                                       bpf_target_off(struct sock_common,
9683                                                      skc_num, 2, target_size));
9684                 break;
9685
9686         case offsetof(struct __sk_buff, tstamp):
9687                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9688
9689                 if (type == BPF_WRITE)
9690                         insn = bpf_convert_tstamp_write(prog, si, insn);
9691                 else
9692                         insn = bpf_convert_tstamp_read(prog, si, insn);
9693                 break;
9694
9695         case offsetof(struct __sk_buff, tstamp_type):
9696                 insn = bpf_convert_tstamp_type_read(si, insn);
9697                 break;
9698
9699         case offsetof(struct __sk_buff, gso_segs):
9700                 insn = bpf_convert_shinfo_access(si, insn);
9701                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9702                                       si->dst_reg, si->dst_reg,
9703                                       bpf_target_off(struct skb_shared_info,
9704                                                      gso_segs, 2,
9705                                                      target_size));
9706                 break;
9707         case offsetof(struct __sk_buff, gso_size):
9708                 insn = bpf_convert_shinfo_access(si, insn);
9709                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9710                                       si->dst_reg, si->dst_reg,
9711                                       bpf_target_off(struct skb_shared_info,
9712                                                      gso_size, 2,
9713                                                      target_size));
9714                 break;
9715         case offsetof(struct __sk_buff, wire_len):
9716                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9717
9718                 off = si->off;
9719                 off -= offsetof(struct __sk_buff, wire_len);
9720                 off += offsetof(struct sk_buff, cb);
9721                 off += offsetof(struct qdisc_skb_cb, pkt_len);
9722                 *target_size = 4;
9723                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9724                 break;
9725
9726         case offsetof(struct __sk_buff, sk):
9727                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9728                                       si->dst_reg, si->src_reg,
9729                                       offsetof(struct sk_buff, sk));
9730                 break;
9731         case offsetof(struct __sk_buff, hwtstamp):
9732                 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9733                 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9734
9735                 insn = bpf_convert_shinfo_access(si, insn);
9736                 *insn++ = BPF_LDX_MEM(BPF_DW,
9737                                       si->dst_reg, si->dst_reg,
9738                                       bpf_target_off(struct skb_shared_info,
9739                                                      hwtstamps, 8,
9740                                                      target_size));
9741                 break;
9742         }
9743
9744         return insn - insn_buf;
9745 }
9746
9747 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9748                                 const struct bpf_insn *si,
9749                                 struct bpf_insn *insn_buf,
9750                                 struct bpf_prog *prog, u32 *target_size)
9751 {
9752         struct bpf_insn *insn = insn_buf;
9753         int off;
9754
9755         switch (si->off) {
9756         case offsetof(struct bpf_sock, bound_dev_if):
9757                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9758
9759                 if (type == BPF_WRITE)
9760                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9761                                         offsetof(struct sock, sk_bound_dev_if));
9762                 else
9763                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9764                                       offsetof(struct sock, sk_bound_dev_if));
9765                 break;
9766
9767         case offsetof(struct bpf_sock, mark):
9768                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9769
9770                 if (type == BPF_WRITE)
9771                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9772                                         offsetof(struct sock, sk_mark));
9773                 else
9774                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9775                                       offsetof(struct sock, sk_mark));
9776                 break;
9777
9778         case offsetof(struct bpf_sock, priority):
9779                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9780
9781                 if (type == BPF_WRITE)
9782                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9783                                         offsetof(struct sock, sk_priority));
9784                 else
9785                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9786                                       offsetof(struct sock, sk_priority));
9787                 break;
9788
9789         case offsetof(struct bpf_sock, family):
9790                 *insn++ = BPF_LDX_MEM(
9791                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9792                         si->dst_reg, si->src_reg,
9793                         bpf_target_off(struct sock_common,
9794                                        skc_family,
9795                                        sizeof_field(struct sock_common,
9796                                                     skc_family),
9797                                        target_size));
9798                 break;
9799
9800         case offsetof(struct bpf_sock, type):
9801                 *insn++ = BPF_LDX_MEM(
9802                         BPF_FIELD_SIZEOF(struct sock, sk_type),
9803                         si->dst_reg, si->src_reg,
9804                         bpf_target_off(struct sock, sk_type,
9805                                        sizeof_field(struct sock, sk_type),
9806                                        target_size));
9807                 break;
9808
9809         case offsetof(struct bpf_sock, protocol):
9810                 *insn++ = BPF_LDX_MEM(
9811                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9812                         si->dst_reg, si->src_reg,
9813                         bpf_target_off(struct sock, sk_protocol,
9814                                        sizeof_field(struct sock, sk_protocol),
9815                                        target_size));
9816                 break;
9817
9818         case offsetof(struct bpf_sock, src_ip4):
9819                 *insn++ = BPF_LDX_MEM(
9820                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9821                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9822                                        sizeof_field(struct sock_common,
9823                                                     skc_rcv_saddr),
9824                                        target_size));
9825                 break;
9826
9827         case offsetof(struct bpf_sock, dst_ip4):
9828                 *insn++ = BPF_LDX_MEM(
9829                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9830                         bpf_target_off(struct sock_common, skc_daddr,
9831                                        sizeof_field(struct sock_common,
9832                                                     skc_daddr),
9833                                        target_size));
9834                 break;
9835
9836         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9837 #if IS_ENABLED(CONFIG_IPV6)
9838                 off = si->off;
9839                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9840                 *insn++ = BPF_LDX_MEM(
9841                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9842                         bpf_target_off(
9843                                 struct sock_common,
9844                                 skc_v6_rcv_saddr.s6_addr32[0],
9845                                 sizeof_field(struct sock_common,
9846                                              skc_v6_rcv_saddr.s6_addr32[0]),
9847                                 target_size) + off);
9848 #else
9849                 (void)off;
9850                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9851 #endif
9852                 break;
9853
9854         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9855 #if IS_ENABLED(CONFIG_IPV6)
9856                 off = si->off;
9857                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9858                 *insn++ = BPF_LDX_MEM(
9859                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9860                         bpf_target_off(struct sock_common,
9861                                        skc_v6_daddr.s6_addr32[0],
9862                                        sizeof_field(struct sock_common,
9863                                                     skc_v6_daddr.s6_addr32[0]),
9864                                        target_size) + off);
9865 #else
9866                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9867                 *target_size = 4;
9868 #endif
9869                 break;
9870
9871         case offsetof(struct bpf_sock, src_port):
9872                 *insn++ = BPF_LDX_MEM(
9873                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9874                         si->dst_reg, si->src_reg,
9875                         bpf_target_off(struct sock_common, skc_num,
9876                                        sizeof_field(struct sock_common,
9877                                                     skc_num),
9878                                        target_size));
9879                 break;
9880
9881         case offsetof(struct bpf_sock, dst_port):
9882                 *insn++ = BPF_LDX_MEM(
9883                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9884                         si->dst_reg, si->src_reg,
9885                         bpf_target_off(struct sock_common, skc_dport,
9886                                        sizeof_field(struct sock_common,
9887                                                     skc_dport),
9888                                        target_size));
9889                 break;
9890
9891         case offsetof(struct bpf_sock, state):
9892                 *insn++ = BPF_LDX_MEM(
9893                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9894                         si->dst_reg, si->src_reg,
9895                         bpf_target_off(struct sock_common, skc_state,
9896                                        sizeof_field(struct sock_common,
9897                                                     skc_state),
9898                                        target_size));
9899                 break;
9900         case offsetof(struct bpf_sock, rx_queue_mapping):
9901 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9902                 *insn++ = BPF_LDX_MEM(
9903                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9904                         si->dst_reg, si->src_reg,
9905                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9906                                        sizeof_field(struct sock,
9907                                                     sk_rx_queue_mapping),
9908                                        target_size));
9909                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9910                                       1);
9911                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9912 #else
9913                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9914                 *target_size = 2;
9915 #endif
9916                 break;
9917         }
9918
9919         return insn - insn_buf;
9920 }
9921
9922 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9923                                          const struct bpf_insn *si,
9924                                          struct bpf_insn *insn_buf,
9925                                          struct bpf_prog *prog, u32 *target_size)
9926 {
9927         struct bpf_insn *insn = insn_buf;
9928
9929         switch (si->off) {
9930         case offsetof(struct __sk_buff, ifindex):
9931                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9932                                       si->dst_reg, si->src_reg,
9933                                       offsetof(struct sk_buff, dev));
9934                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9935                                       bpf_target_off(struct net_device, ifindex, 4,
9936                                                      target_size));
9937                 break;
9938         default:
9939                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9940                                               target_size);
9941         }
9942
9943         return insn - insn_buf;
9944 }
9945
9946 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9947                                   const struct bpf_insn *si,
9948                                   struct bpf_insn *insn_buf,
9949                                   struct bpf_prog *prog, u32 *target_size)
9950 {
9951         struct bpf_insn *insn = insn_buf;
9952
9953         switch (si->off) {
9954         case offsetof(struct xdp_md, data):
9955                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9956                                       si->dst_reg, si->src_reg,
9957                                       offsetof(struct xdp_buff, data));
9958                 break;
9959         case offsetof(struct xdp_md, data_meta):
9960                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9961                                       si->dst_reg, si->src_reg,
9962                                       offsetof(struct xdp_buff, data_meta));
9963                 break;
9964         case offsetof(struct xdp_md, data_end):
9965                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9966                                       si->dst_reg, si->src_reg,
9967                                       offsetof(struct xdp_buff, data_end));
9968                 break;
9969         case offsetof(struct xdp_md, ingress_ifindex):
9970                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9971                                       si->dst_reg, si->src_reg,
9972                                       offsetof(struct xdp_buff, rxq));
9973                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9974                                       si->dst_reg, si->dst_reg,
9975                                       offsetof(struct xdp_rxq_info, dev));
9976                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9977                                       offsetof(struct net_device, ifindex));
9978                 break;
9979         case offsetof(struct xdp_md, rx_queue_index):
9980                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9981                                       si->dst_reg, si->src_reg,
9982                                       offsetof(struct xdp_buff, rxq));
9983                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9984                                       offsetof(struct xdp_rxq_info,
9985                                                queue_index));
9986                 break;
9987         case offsetof(struct xdp_md, egress_ifindex):
9988                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9989                                       si->dst_reg, si->src_reg,
9990                                       offsetof(struct xdp_buff, txq));
9991                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9992                                       si->dst_reg, si->dst_reg,
9993                                       offsetof(struct xdp_txq_info, dev));
9994                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9995                                       offsetof(struct net_device, ifindex));
9996                 break;
9997         }
9998
9999         return insn - insn_buf;
10000 }
10001
10002 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10003  * context Structure, F is Field in context structure that contains a pointer
10004  * to Nested Structure of type NS that has the field NF.
10005  *
10006  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10007  * sure that SIZE is not greater than actual size of S.F.NF.
10008  *
10009  * If offset OFF is provided, the load happens from that offset relative to
10010  * offset of NF.
10011  */
10012 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
10013         do {                                                                   \
10014                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10015                                       si->src_reg, offsetof(S, F));            \
10016                 *insn++ = BPF_LDX_MEM(                                         \
10017                         SIZE, si->dst_reg, si->dst_reg,                        \
10018                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
10019                                        target_size)                            \
10020                                 + OFF);                                        \
10021         } while (0)
10022
10023 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
10024         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
10025                                              BPF_FIELD_SIZEOF(NS, NF), 0)
10026
10027 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10028  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10029  *
10030  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10031  * "register" since two registers available in convert_ctx_access are not
10032  * enough: we can't override neither SRC, since it contains value to store, nor
10033  * DST since it contains pointer to context that may be used by later
10034  * instructions. But we need a temporary place to save pointer to nested
10035  * structure whose field we want to store to.
10036  */
10037 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
10038         do {                                                                   \
10039                 int tmp_reg = BPF_REG_9;                                       \
10040                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
10041                         --tmp_reg;                                             \
10042                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
10043                         --tmp_reg;                                             \
10044                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
10045                                       offsetof(S, TF));                        \
10046                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
10047                                       si->dst_reg, offsetof(S, F));            \
10048                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
10049                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
10050                                        target_size)                            \
10051                                 + OFF);                                        \
10052                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
10053                                       offsetof(S, TF));                        \
10054         } while (0)
10055
10056 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10057                                                       TF)                      \
10058         do {                                                                   \
10059                 if (type == BPF_WRITE) {                                       \
10060                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10061                                                          OFF, TF);             \
10062                 } else {                                                       \
10063                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
10064                                 S, NS, F, NF, SIZE, OFF);  \
10065                 }                                                              \
10066         } while (0)
10067
10068 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
10069         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
10070                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10071
10072 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10073                                         const struct bpf_insn *si,
10074                                         struct bpf_insn *insn_buf,
10075                                         struct bpf_prog *prog, u32 *target_size)
10076 {
10077         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10078         struct bpf_insn *insn = insn_buf;
10079
10080         switch (si->off) {
10081         case offsetof(struct bpf_sock_addr, user_family):
10082                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10083                                             struct sockaddr, uaddr, sa_family);
10084                 break;
10085
10086         case offsetof(struct bpf_sock_addr, user_ip4):
10087                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10088                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10089                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10090                 break;
10091
10092         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10093                 off = si->off;
10094                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10095                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10096                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10097                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10098                         tmp_reg);
10099                 break;
10100
10101         case offsetof(struct bpf_sock_addr, user_port):
10102                 /* To get port we need to know sa_family first and then treat
10103                  * sockaddr as either sockaddr_in or sockaddr_in6.
10104                  * Though we can simplify since port field has same offset and
10105                  * size in both structures.
10106                  * Here we check this invariant and use just one of the
10107                  * structures if it's true.
10108                  */
10109                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10110                              offsetof(struct sockaddr_in6, sin6_port));
10111                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10112                              sizeof_field(struct sockaddr_in6, sin6_port));
10113                 /* Account for sin6_port being smaller than user_port. */
10114                 port_size = min(port_size, BPF_LDST_BYTES(si));
10115                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10116                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10117                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10118                 break;
10119
10120         case offsetof(struct bpf_sock_addr, family):
10121                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10122                                             struct sock, sk, sk_family);
10123                 break;
10124
10125         case offsetof(struct bpf_sock_addr, type):
10126                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10127                                             struct sock, sk, sk_type);
10128                 break;
10129
10130         case offsetof(struct bpf_sock_addr, protocol):
10131                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10132                                             struct sock, sk, sk_protocol);
10133                 break;
10134
10135         case offsetof(struct bpf_sock_addr, msg_src_ip4):
10136                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10137                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10138                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10139                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10140                 break;
10141
10142         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10143                                 msg_src_ip6[3]):
10144                 off = si->off;
10145                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10146                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10147                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10148                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10149                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10150                 break;
10151         case offsetof(struct bpf_sock_addr, sk):
10152                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10153                                       si->dst_reg, si->src_reg,
10154                                       offsetof(struct bpf_sock_addr_kern, sk));
10155                 break;
10156         }
10157
10158         return insn - insn_buf;
10159 }
10160
10161 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10162                                        const struct bpf_insn *si,
10163                                        struct bpf_insn *insn_buf,
10164                                        struct bpf_prog *prog,
10165                                        u32 *target_size)
10166 {
10167         struct bpf_insn *insn = insn_buf;
10168         int off;
10169
10170 /* Helper macro for adding read access to tcp_sock or sock fields. */
10171 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10172         do {                                                                  \
10173                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10174                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10175                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10176                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10177                         reg--;                                                \
10178                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10179                         reg--;                                                \
10180                 if (si->dst_reg == si->src_reg) {                             \
10181                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10182                                           offsetof(struct bpf_sock_ops_kern,  \
10183                                           temp));                             \
10184                         fullsock_reg = reg;                                   \
10185                         jmp += 2;                                             \
10186                 }                                                             \
10187                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10188                                                 struct bpf_sock_ops_kern,     \
10189                                                 is_fullsock),                 \
10190                                       fullsock_reg, si->src_reg,              \
10191                                       offsetof(struct bpf_sock_ops_kern,      \
10192                                                is_fullsock));                 \
10193                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10194                 if (si->dst_reg == si->src_reg)                               \
10195                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10196                                       offsetof(struct bpf_sock_ops_kern,      \
10197                                       temp));                                 \
10198                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10199                                                 struct bpf_sock_ops_kern, sk),\
10200                                       si->dst_reg, si->src_reg,               \
10201                                       offsetof(struct bpf_sock_ops_kern, sk));\
10202                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
10203                                                        OBJ_FIELD),            \
10204                                       si->dst_reg, si->dst_reg,               \
10205                                       offsetof(OBJ, OBJ_FIELD));              \
10206                 if (si->dst_reg == si->src_reg) {                             \
10207                         *insn++ = BPF_JMP_A(1);                               \
10208                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10209                                       offsetof(struct bpf_sock_ops_kern,      \
10210                                       temp));                                 \
10211                 }                                                             \
10212         } while (0)
10213
10214 #define SOCK_OPS_GET_SK()                                                             \
10215         do {                                                                  \
10216                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10217                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10218                         reg--;                                                \
10219                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10220                         reg--;                                                \
10221                 if (si->dst_reg == si->src_reg) {                             \
10222                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10223                                           offsetof(struct bpf_sock_ops_kern,  \
10224                                           temp));                             \
10225                         fullsock_reg = reg;                                   \
10226                         jmp += 2;                                             \
10227                 }                                                             \
10228                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10229                                                 struct bpf_sock_ops_kern,     \
10230                                                 is_fullsock),                 \
10231                                       fullsock_reg, si->src_reg,              \
10232                                       offsetof(struct bpf_sock_ops_kern,      \
10233                                                is_fullsock));                 \
10234                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10235                 if (si->dst_reg == si->src_reg)                               \
10236                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10237                                       offsetof(struct bpf_sock_ops_kern,      \
10238                                       temp));                                 \
10239                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10240                                                 struct bpf_sock_ops_kern, sk),\
10241                                       si->dst_reg, si->src_reg,               \
10242                                       offsetof(struct bpf_sock_ops_kern, sk));\
10243                 if (si->dst_reg == si->src_reg) {                             \
10244                         *insn++ = BPF_JMP_A(1);                               \
10245                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10246                                       offsetof(struct bpf_sock_ops_kern,      \
10247                                       temp));                                 \
10248                 }                                                             \
10249         } while (0)
10250
10251 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10252                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10253
10254 /* Helper macro for adding write access to tcp_sock or sock fields.
10255  * The macro is called with two registers, dst_reg which contains a pointer
10256  * to ctx (context) and src_reg which contains the value that should be
10257  * stored. However, we need an additional register since we cannot overwrite
10258  * dst_reg because it may be used later in the program.
10259  * Instead we "borrow" one of the other register. We first save its value
10260  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10261  * it at the end of the macro.
10262  */
10263 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10264         do {                                                                  \
10265                 int reg = BPF_REG_9;                                          \
10266                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10267                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10268                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10269                         reg--;                                                \
10270                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10271                         reg--;                                                \
10272                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
10273                                       offsetof(struct bpf_sock_ops_kern,      \
10274                                                temp));                        \
10275                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10276                                                 struct bpf_sock_ops_kern,     \
10277                                                 is_fullsock),                 \
10278                                       reg, si->dst_reg,                       \
10279                                       offsetof(struct bpf_sock_ops_kern,      \
10280                                                is_fullsock));                 \
10281                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
10282                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10283                                                 struct bpf_sock_ops_kern, sk),\
10284                                       reg, si->dst_reg,                       \
10285                                       offsetof(struct bpf_sock_ops_kern, sk));\
10286                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
10287                                       reg, si->src_reg,                       \
10288                                       offsetof(OBJ, OBJ_FIELD));              \
10289                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
10290                                       offsetof(struct bpf_sock_ops_kern,      \
10291                                                temp));                        \
10292         } while (0)
10293
10294 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
10295         do {                                                                  \
10296                 if (TYPE == BPF_WRITE)                                        \
10297                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10298                 else                                                          \
10299                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10300         } while (0)
10301
10302         if (insn > insn_buf)
10303                 return insn - insn_buf;
10304
10305         switch (si->off) {
10306         case offsetof(struct bpf_sock_ops, op):
10307                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10308                                                        op),
10309                                       si->dst_reg, si->src_reg,
10310                                       offsetof(struct bpf_sock_ops_kern, op));
10311                 break;
10312
10313         case offsetof(struct bpf_sock_ops, replylong[0]) ...
10314              offsetof(struct bpf_sock_ops, replylong[3]):
10315                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10316                              sizeof_field(struct bpf_sock_ops_kern, reply));
10317                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10318                              sizeof_field(struct bpf_sock_ops_kern, replylong));
10319                 off = si->off;
10320                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10321                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10322                 if (type == BPF_WRITE)
10323                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10324                                               off);
10325                 else
10326                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10327                                               off);
10328                 break;
10329
10330         case offsetof(struct bpf_sock_ops, family):
10331                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10332
10333                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10334                                               struct bpf_sock_ops_kern, sk),
10335                                       si->dst_reg, si->src_reg,
10336                                       offsetof(struct bpf_sock_ops_kern, sk));
10337                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10338                                       offsetof(struct sock_common, skc_family));
10339                 break;
10340
10341         case offsetof(struct bpf_sock_ops, remote_ip4):
10342                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10343
10344                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10345                                                 struct bpf_sock_ops_kern, sk),
10346                                       si->dst_reg, si->src_reg,
10347                                       offsetof(struct bpf_sock_ops_kern, sk));
10348                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10349                                       offsetof(struct sock_common, skc_daddr));
10350                 break;
10351
10352         case offsetof(struct bpf_sock_ops, local_ip4):
10353                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10354                                           skc_rcv_saddr) != 4);
10355
10356                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10357                                               struct bpf_sock_ops_kern, sk),
10358                                       si->dst_reg, si->src_reg,
10359                                       offsetof(struct bpf_sock_ops_kern, sk));
10360                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10361                                       offsetof(struct sock_common,
10362                                                skc_rcv_saddr));
10363                 break;
10364
10365         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10366              offsetof(struct bpf_sock_ops, remote_ip6[3]):
10367 #if IS_ENABLED(CONFIG_IPV6)
10368                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10369                                           skc_v6_daddr.s6_addr32[0]) != 4);
10370
10371                 off = si->off;
10372                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10373                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10374                                                 struct bpf_sock_ops_kern, sk),
10375                                       si->dst_reg, si->src_reg,
10376                                       offsetof(struct bpf_sock_ops_kern, sk));
10377                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10378                                       offsetof(struct sock_common,
10379                                                skc_v6_daddr.s6_addr32[0]) +
10380                                       off);
10381 #else
10382                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10383 #endif
10384                 break;
10385
10386         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10387              offsetof(struct bpf_sock_ops, local_ip6[3]):
10388 #if IS_ENABLED(CONFIG_IPV6)
10389                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10390                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10391
10392                 off = si->off;
10393                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10394                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10395                                                 struct bpf_sock_ops_kern, sk),
10396                                       si->dst_reg, si->src_reg,
10397                                       offsetof(struct bpf_sock_ops_kern, sk));
10398                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10399                                       offsetof(struct sock_common,
10400                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10401                                       off);
10402 #else
10403                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10404 #endif
10405                 break;
10406
10407         case offsetof(struct bpf_sock_ops, remote_port):
10408                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10409
10410                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10411                                                 struct bpf_sock_ops_kern, sk),
10412                                       si->dst_reg, si->src_reg,
10413                                       offsetof(struct bpf_sock_ops_kern, sk));
10414                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10415                                       offsetof(struct sock_common, skc_dport));
10416 #ifndef __BIG_ENDIAN_BITFIELD
10417                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10418 #endif
10419                 break;
10420
10421         case offsetof(struct bpf_sock_ops, local_port):
10422                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10423
10424                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10425                                                 struct bpf_sock_ops_kern, sk),
10426                                       si->dst_reg, si->src_reg,
10427                                       offsetof(struct bpf_sock_ops_kern, sk));
10428                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10429                                       offsetof(struct sock_common, skc_num));
10430                 break;
10431
10432         case offsetof(struct bpf_sock_ops, is_fullsock):
10433                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10434                                                 struct bpf_sock_ops_kern,
10435                                                 is_fullsock),
10436                                       si->dst_reg, si->src_reg,
10437                                       offsetof(struct bpf_sock_ops_kern,
10438                                                is_fullsock));
10439                 break;
10440
10441         case offsetof(struct bpf_sock_ops, state):
10442                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10443
10444                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10445                                                 struct bpf_sock_ops_kern, sk),
10446                                       si->dst_reg, si->src_reg,
10447                                       offsetof(struct bpf_sock_ops_kern, sk));
10448                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10449                                       offsetof(struct sock_common, skc_state));
10450                 break;
10451
10452         case offsetof(struct bpf_sock_ops, rtt_min):
10453                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10454                              sizeof(struct minmax));
10455                 BUILD_BUG_ON(sizeof(struct minmax) <
10456                              sizeof(struct minmax_sample));
10457
10458                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10459                                                 struct bpf_sock_ops_kern, sk),
10460                                       si->dst_reg, si->src_reg,
10461                                       offsetof(struct bpf_sock_ops_kern, sk));
10462                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10463                                       offsetof(struct tcp_sock, rtt_min) +
10464                                       sizeof_field(struct minmax_sample, t));
10465                 break;
10466
10467         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10468                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10469                                    struct tcp_sock);
10470                 break;
10471
10472         case offsetof(struct bpf_sock_ops, sk_txhash):
10473                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10474                                           struct sock, type);
10475                 break;
10476         case offsetof(struct bpf_sock_ops, snd_cwnd):
10477                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10478                 break;
10479         case offsetof(struct bpf_sock_ops, srtt_us):
10480                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10481                 break;
10482         case offsetof(struct bpf_sock_ops, snd_ssthresh):
10483                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10484                 break;
10485         case offsetof(struct bpf_sock_ops, rcv_nxt):
10486                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10487                 break;
10488         case offsetof(struct bpf_sock_ops, snd_nxt):
10489                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10490                 break;
10491         case offsetof(struct bpf_sock_ops, snd_una):
10492                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10493                 break;
10494         case offsetof(struct bpf_sock_ops, mss_cache):
10495                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10496                 break;
10497         case offsetof(struct bpf_sock_ops, ecn_flags):
10498                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10499                 break;
10500         case offsetof(struct bpf_sock_ops, rate_delivered):
10501                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10502                 break;
10503         case offsetof(struct bpf_sock_ops, rate_interval_us):
10504                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10505                 break;
10506         case offsetof(struct bpf_sock_ops, packets_out):
10507                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10508                 break;
10509         case offsetof(struct bpf_sock_ops, retrans_out):
10510                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10511                 break;
10512         case offsetof(struct bpf_sock_ops, total_retrans):
10513                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10514                 break;
10515         case offsetof(struct bpf_sock_ops, segs_in):
10516                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10517                 break;
10518         case offsetof(struct bpf_sock_ops, data_segs_in):
10519                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10520                 break;
10521         case offsetof(struct bpf_sock_ops, segs_out):
10522                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10523                 break;
10524         case offsetof(struct bpf_sock_ops, data_segs_out):
10525                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10526                 break;
10527         case offsetof(struct bpf_sock_ops, lost_out):
10528                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10529                 break;
10530         case offsetof(struct bpf_sock_ops, sacked_out):
10531                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10532                 break;
10533         case offsetof(struct bpf_sock_ops, bytes_received):
10534                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10535                 break;
10536         case offsetof(struct bpf_sock_ops, bytes_acked):
10537                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10538                 break;
10539         case offsetof(struct bpf_sock_ops, sk):
10540                 SOCK_OPS_GET_SK();
10541                 break;
10542         case offsetof(struct bpf_sock_ops, skb_data_end):
10543                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10544                                                        skb_data_end),
10545                                       si->dst_reg, si->src_reg,
10546                                       offsetof(struct bpf_sock_ops_kern,
10547                                                skb_data_end));
10548                 break;
10549         case offsetof(struct bpf_sock_ops, skb_data):
10550                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10551                                                        skb),
10552                                       si->dst_reg, si->src_reg,
10553                                       offsetof(struct bpf_sock_ops_kern,
10554                                                skb));
10555                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10556                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10557                                       si->dst_reg, si->dst_reg,
10558                                       offsetof(struct sk_buff, data));
10559                 break;
10560         case offsetof(struct bpf_sock_ops, skb_len):
10561                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10562                                                        skb),
10563                                       si->dst_reg, si->src_reg,
10564                                       offsetof(struct bpf_sock_ops_kern,
10565                                                skb));
10566                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10567                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10568                                       si->dst_reg, si->dst_reg,
10569                                       offsetof(struct sk_buff, len));
10570                 break;
10571         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10572                 off = offsetof(struct sk_buff, cb);
10573                 off += offsetof(struct tcp_skb_cb, tcp_flags);
10574                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10575                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10576                                                        skb),
10577                                       si->dst_reg, si->src_reg,
10578                                       offsetof(struct bpf_sock_ops_kern,
10579                                                skb));
10580                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10581                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10582                                                        tcp_flags),
10583                                       si->dst_reg, si->dst_reg, off);
10584                 break;
10585         }
10586         return insn - insn_buf;
10587 }
10588
10589 /* data_end = skb->data + skb_headlen() */
10590 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10591                                                     struct bpf_insn *insn)
10592 {
10593         int reg;
10594         int temp_reg_off = offsetof(struct sk_buff, cb) +
10595                            offsetof(struct sk_skb_cb, temp_reg);
10596
10597         if (si->src_reg == si->dst_reg) {
10598                 /* We need an extra register, choose and save a register. */
10599                 reg = BPF_REG_9;
10600                 if (si->src_reg == reg || si->dst_reg == reg)
10601                         reg--;
10602                 if (si->src_reg == reg || si->dst_reg == reg)
10603                         reg--;
10604                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10605         } else {
10606                 reg = si->dst_reg;
10607         }
10608
10609         /* reg = skb->data */
10610         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10611                               reg, si->src_reg,
10612                               offsetof(struct sk_buff, data));
10613         /* AX = skb->len */
10614         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10615                               BPF_REG_AX, si->src_reg,
10616                               offsetof(struct sk_buff, len));
10617         /* reg = skb->data + skb->len */
10618         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10619         /* AX = skb->data_len */
10620         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10621                               BPF_REG_AX, si->src_reg,
10622                               offsetof(struct sk_buff, data_len));
10623
10624         /* reg = skb->data + skb->len - skb->data_len */
10625         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10626
10627         if (si->src_reg == si->dst_reg) {
10628                 /* Restore the saved register */
10629                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10630                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10631                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10632         }
10633
10634         return insn;
10635 }
10636
10637 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10638                                      const struct bpf_insn *si,
10639                                      struct bpf_insn *insn_buf,
10640                                      struct bpf_prog *prog, u32 *target_size)
10641 {
10642         struct bpf_insn *insn = insn_buf;
10643         int off;
10644
10645         switch (si->off) {
10646         case offsetof(struct __sk_buff, data_end):
10647                 insn = bpf_convert_data_end_access(si, insn);
10648                 break;
10649         case offsetof(struct __sk_buff, cb[0]) ...
10650              offsetofend(struct __sk_buff, cb[4]) - 1:
10651                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10652                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10653                               offsetof(struct sk_skb_cb, data)) %
10654                              sizeof(__u64));
10655
10656                 prog->cb_access = 1;
10657                 off  = si->off;
10658                 off -= offsetof(struct __sk_buff, cb[0]);
10659                 off += offsetof(struct sk_buff, cb);
10660                 off += offsetof(struct sk_skb_cb, data);
10661                 if (type == BPF_WRITE)
10662                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10663                                               si->src_reg, off);
10664                 else
10665                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10666                                               si->src_reg, off);
10667                 break;
10668
10669
10670         default:
10671                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10672                                               target_size);
10673         }
10674
10675         return insn - insn_buf;
10676 }
10677
10678 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10679                                      const struct bpf_insn *si,
10680                                      struct bpf_insn *insn_buf,
10681                                      struct bpf_prog *prog, u32 *target_size)
10682 {
10683         struct bpf_insn *insn = insn_buf;
10684 #if IS_ENABLED(CONFIG_IPV6)
10685         int off;
10686 #endif
10687
10688         /* convert ctx uses the fact sg element is first in struct */
10689         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10690
10691         switch (si->off) {
10692         case offsetof(struct sk_msg_md, data):
10693                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10694                                       si->dst_reg, si->src_reg,
10695                                       offsetof(struct sk_msg, data));
10696                 break;
10697         case offsetof(struct sk_msg_md, data_end):
10698                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10699                                       si->dst_reg, si->src_reg,
10700                                       offsetof(struct sk_msg, data_end));
10701                 break;
10702         case offsetof(struct sk_msg_md, family):
10703                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10704
10705                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10706                                               struct sk_msg, sk),
10707                                       si->dst_reg, si->src_reg,
10708                                       offsetof(struct sk_msg, sk));
10709                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10710                                       offsetof(struct sock_common, skc_family));
10711                 break;
10712
10713         case offsetof(struct sk_msg_md, remote_ip4):
10714                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10715
10716                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10717                                                 struct sk_msg, sk),
10718                                       si->dst_reg, si->src_reg,
10719                                       offsetof(struct sk_msg, sk));
10720                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10721                                       offsetof(struct sock_common, skc_daddr));
10722                 break;
10723
10724         case offsetof(struct sk_msg_md, local_ip4):
10725                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10726                                           skc_rcv_saddr) != 4);
10727
10728                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10729                                               struct sk_msg, sk),
10730                                       si->dst_reg, si->src_reg,
10731                                       offsetof(struct sk_msg, sk));
10732                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10733                                       offsetof(struct sock_common,
10734                                                skc_rcv_saddr));
10735                 break;
10736
10737         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10738              offsetof(struct sk_msg_md, remote_ip6[3]):
10739 #if IS_ENABLED(CONFIG_IPV6)
10740                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10741                                           skc_v6_daddr.s6_addr32[0]) != 4);
10742
10743                 off = si->off;
10744                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10745                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10746                                                 struct sk_msg, sk),
10747                                       si->dst_reg, si->src_reg,
10748                                       offsetof(struct sk_msg, sk));
10749                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10750                                       offsetof(struct sock_common,
10751                                                skc_v6_daddr.s6_addr32[0]) +
10752                                       off);
10753 #else
10754                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10755 #endif
10756                 break;
10757
10758         case offsetof(struct sk_msg_md, local_ip6[0]) ...
10759              offsetof(struct sk_msg_md, local_ip6[3]):
10760 #if IS_ENABLED(CONFIG_IPV6)
10761                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10762                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10763
10764                 off = si->off;
10765                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10766                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10767                                                 struct sk_msg, sk),
10768                                       si->dst_reg, si->src_reg,
10769                                       offsetof(struct sk_msg, sk));
10770                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10771                                       offsetof(struct sock_common,
10772                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10773                                       off);
10774 #else
10775                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10776 #endif
10777                 break;
10778
10779         case offsetof(struct sk_msg_md, remote_port):
10780                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10781
10782                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10783                                                 struct sk_msg, sk),
10784                                       si->dst_reg, si->src_reg,
10785                                       offsetof(struct sk_msg, sk));
10786                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10787                                       offsetof(struct sock_common, skc_dport));
10788 #ifndef __BIG_ENDIAN_BITFIELD
10789                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10790 #endif
10791                 break;
10792
10793         case offsetof(struct sk_msg_md, local_port):
10794                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10795
10796                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10797                                                 struct sk_msg, sk),
10798                                       si->dst_reg, si->src_reg,
10799                                       offsetof(struct sk_msg, sk));
10800                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10801                                       offsetof(struct sock_common, skc_num));
10802                 break;
10803
10804         case offsetof(struct sk_msg_md, size):
10805                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10806                                       si->dst_reg, si->src_reg,
10807                                       offsetof(struct sk_msg_sg, size));
10808                 break;
10809
10810         case offsetof(struct sk_msg_md, sk):
10811                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10812                                       si->dst_reg, si->src_reg,
10813                                       offsetof(struct sk_msg, sk));
10814                 break;
10815         }
10816
10817         return insn - insn_buf;
10818 }
10819
10820 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10821         .get_func_proto         = sk_filter_func_proto,
10822         .is_valid_access        = sk_filter_is_valid_access,
10823         .convert_ctx_access     = bpf_convert_ctx_access,
10824         .gen_ld_abs             = bpf_gen_ld_abs,
10825 };
10826
10827 const struct bpf_prog_ops sk_filter_prog_ops = {
10828         .test_run               = bpf_prog_test_run_skb,
10829 };
10830
10831 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10832         .get_func_proto         = tc_cls_act_func_proto,
10833         .is_valid_access        = tc_cls_act_is_valid_access,
10834         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10835         .gen_prologue           = tc_cls_act_prologue,
10836         .gen_ld_abs             = bpf_gen_ld_abs,
10837         .btf_struct_access      = tc_cls_act_btf_struct_access,
10838 };
10839
10840 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10841         .test_run               = bpf_prog_test_run_skb,
10842 };
10843
10844 const struct bpf_verifier_ops xdp_verifier_ops = {
10845         .get_func_proto         = xdp_func_proto,
10846         .is_valid_access        = xdp_is_valid_access,
10847         .convert_ctx_access     = xdp_convert_ctx_access,
10848         .gen_prologue           = bpf_noop_prologue,
10849         .btf_struct_access      = xdp_btf_struct_access,
10850 };
10851
10852 const struct bpf_prog_ops xdp_prog_ops = {
10853         .test_run               = bpf_prog_test_run_xdp,
10854 };
10855
10856 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10857         .get_func_proto         = cg_skb_func_proto,
10858         .is_valid_access        = cg_skb_is_valid_access,
10859         .convert_ctx_access     = bpf_convert_ctx_access,
10860 };
10861
10862 const struct bpf_prog_ops cg_skb_prog_ops = {
10863         .test_run               = bpf_prog_test_run_skb,
10864 };
10865
10866 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10867         .get_func_proto         = lwt_in_func_proto,
10868         .is_valid_access        = lwt_is_valid_access,
10869         .convert_ctx_access     = bpf_convert_ctx_access,
10870 };
10871
10872 const struct bpf_prog_ops lwt_in_prog_ops = {
10873         .test_run               = bpf_prog_test_run_skb,
10874 };
10875
10876 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10877         .get_func_proto         = lwt_out_func_proto,
10878         .is_valid_access        = lwt_is_valid_access,
10879         .convert_ctx_access     = bpf_convert_ctx_access,
10880 };
10881
10882 const struct bpf_prog_ops lwt_out_prog_ops = {
10883         .test_run               = bpf_prog_test_run_skb,
10884 };
10885
10886 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10887         .get_func_proto         = lwt_xmit_func_proto,
10888         .is_valid_access        = lwt_is_valid_access,
10889         .convert_ctx_access     = bpf_convert_ctx_access,
10890         .gen_prologue           = tc_cls_act_prologue,
10891 };
10892
10893 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10894         .test_run               = bpf_prog_test_run_skb,
10895 };
10896
10897 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10898         .get_func_proto         = lwt_seg6local_func_proto,
10899         .is_valid_access        = lwt_is_valid_access,
10900         .convert_ctx_access     = bpf_convert_ctx_access,
10901 };
10902
10903 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10904         .test_run               = bpf_prog_test_run_skb,
10905 };
10906
10907 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10908         .get_func_proto         = sock_filter_func_proto,
10909         .is_valid_access        = sock_filter_is_valid_access,
10910         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10911 };
10912
10913 const struct bpf_prog_ops cg_sock_prog_ops = {
10914 };
10915
10916 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10917         .get_func_proto         = sock_addr_func_proto,
10918         .is_valid_access        = sock_addr_is_valid_access,
10919         .convert_ctx_access     = sock_addr_convert_ctx_access,
10920 };
10921
10922 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10923 };
10924
10925 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10926         .get_func_proto         = sock_ops_func_proto,
10927         .is_valid_access        = sock_ops_is_valid_access,
10928         .convert_ctx_access     = sock_ops_convert_ctx_access,
10929 };
10930
10931 const struct bpf_prog_ops sock_ops_prog_ops = {
10932 };
10933
10934 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10935         .get_func_proto         = sk_skb_func_proto,
10936         .is_valid_access        = sk_skb_is_valid_access,
10937         .convert_ctx_access     = sk_skb_convert_ctx_access,
10938         .gen_prologue           = sk_skb_prologue,
10939 };
10940
10941 const struct bpf_prog_ops sk_skb_prog_ops = {
10942 };
10943
10944 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10945         .get_func_proto         = sk_msg_func_proto,
10946         .is_valid_access        = sk_msg_is_valid_access,
10947         .convert_ctx_access     = sk_msg_convert_ctx_access,
10948         .gen_prologue           = bpf_noop_prologue,
10949 };
10950
10951 const struct bpf_prog_ops sk_msg_prog_ops = {
10952 };
10953
10954 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10955         .get_func_proto         = flow_dissector_func_proto,
10956         .is_valid_access        = flow_dissector_is_valid_access,
10957         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10958 };
10959
10960 const struct bpf_prog_ops flow_dissector_prog_ops = {
10961         .test_run               = bpf_prog_test_run_flow_dissector,
10962 };
10963
10964 int sk_detach_filter(struct sock *sk)
10965 {
10966         int ret = -ENOENT;
10967         struct sk_filter *filter;
10968
10969         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10970                 return -EPERM;
10971
10972         filter = rcu_dereference_protected(sk->sk_filter,
10973                                            lockdep_sock_is_held(sk));
10974         if (filter) {
10975                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10976                 sk_filter_uncharge(sk, filter);
10977                 ret = 0;
10978         }
10979
10980         return ret;
10981 }
10982 EXPORT_SYMBOL_GPL(sk_detach_filter);
10983
10984 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10985 {
10986         struct sock_fprog_kern *fprog;
10987         struct sk_filter *filter;
10988         int ret = 0;
10989
10990         sockopt_lock_sock(sk);
10991         filter = rcu_dereference_protected(sk->sk_filter,
10992                                            lockdep_sock_is_held(sk));
10993         if (!filter)
10994                 goto out;
10995
10996         /* We're copying the filter that has been originally attached,
10997          * so no conversion/decode needed anymore. eBPF programs that
10998          * have no original program cannot be dumped through this.
10999          */
11000         ret = -EACCES;
11001         fprog = filter->prog->orig_prog;
11002         if (!fprog)
11003                 goto out;
11004
11005         ret = fprog->len;
11006         if (!len)
11007                 /* User space only enquires number of filter blocks. */
11008                 goto out;
11009
11010         ret = -EINVAL;
11011         if (len < fprog->len)
11012                 goto out;
11013
11014         ret = -EFAULT;
11015         if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11016                 goto out;
11017
11018         /* Instead of bytes, the API requests to return the number
11019          * of filter blocks.
11020          */
11021         ret = fprog->len;
11022 out:
11023         sockopt_release_sock(sk);
11024         return ret;
11025 }
11026
11027 #ifdef CONFIG_INET
11028 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11029                                     struct sock_reuseport *reuse,
11030                                     struct sock *sk, struct sk_buff *skb,
11031                                     struct sock *migrating_sk,
11032                                     u32 hash)
11033 {
11034         reuse_kern->skb = skb;
11035         reuse_kern->sk = sk;
11036         reuse_kern->selected_sk = NULL;
11037         reuse_kern->migrating_sk = migrating_sk;
11038         reuse_kern->data_end = skb->data + skb_headlen(skb);
11039         reuse_kern->hash = hash;
11040         reuse_kern->reuseport_id = reuse->reuseport_id;
11041         reuse_kern->bind_inany = reuse->bind_inany;
11042 }
11043
11044 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11045                                   struct bpf_prog *prog, struct sk_buff *skb,
11046                                   struct sock *migrating_sk,
11047                                   u32 hash)
11048 {
11049         struct sk_reuseport_kern reuse_kern;
11050         enum sk_action action;
11051
11052         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11053         action = bpf_prog_run(prog, &reuse_kern);
11054
11055         if (action == SK_PASS)
11056                 return reuse_kern.selected_sk;
11057         else
11058                 return ERR_PTR(-ECONNREFUSED);
11059 }
11060
11061 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11062            struct bpf_map *, map, void *, key, u32, flags)
11063 {
11064         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11065         struct sock_reuseport *reuse;
11066         struct sock *selected_sk;
11067
11068         selected_sk = map->ops->map_lookup_elem(map, key);
11069         if (!selected_sk)
11070                 return -ENOENT;
11071
11072         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11073         if (!reuse) {
11074                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11075                 if (sk_is_refcounted(selected_sk))
11076                         sock_put(selected_sk);
11077
11078                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11079                  * The only (!reuse) case here is - the sk has already been
11080                  * unhashed (e.g. by close()), so treat it as -ENOENT.
11081                  *
11082                  * Other maps (e.g. sock_map) do not provide this guarantee and
11083                  * the sk may never be in the reuseport group to begin with.
11084                  */
11085                 return is_sockarray ? -ENOENT : -EINVAL;
11086         }
11087
11088         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11089                 struct sock *sk = reuse_kern->sk;
11090
11091                 if (sk->sk_protocol != selected_sk->sk_protocol)
11092                         return -EPROTOTYPE;
11093                 else if (sk->sk_family != selected_sk->sk_family)
11094                         return -EAFNOSUPPORT;
11095
11096                 /* Catch all. Likely bound to a different sockaddr. */
11097                 return -EBADFD;
11098         }
11099
11100         reuse_kern->selected_sk = selected_sk;
11101
11102         return 0;
11103 }
11104
11105 static const struct bpf_func_proto sk_select_reuseport_proto = {
11106         .func           = sk_select_reuseport,
11107         .gpl_only       = false,
11108         .ret_type       = RET_INTEGER,
11109         .arg1_type      = ARG_PTR_TO_CTX,
11110         .arg2_type      = ARG_CONST_MAP_PTR,
11111         .arg3_type      = ARG_PTR_TO_MAP_KEY,
11112         .arg4_type      = ARG_ANYTHING,
11113 };
11114
11115 BPF_CALL_4(sk_reuseport_load_bytes,
11116            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11117            void *, to, u32, len)
11118 {
11119         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11120 }
11121
11122 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11123         .func           = sk_reuseport_load_bytes,
11124         .gpl_only       = false,
11125         .ret_type       = RET_INTEGER,
11126         .arg1_type      = ARG_PTR_TO_CTX,
11127         .arg2_type      = ARG_ANYTHING,
11128         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
11129         .arg4_type      = ARG_CONST_SIZE,
11130 };
11131
11132 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11133            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11134            void *, to, u32, len, u32, start_header)
11135 {
11136         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11137                                                len, start_header);
11138 }
11139
11140 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11141         .func           = sk_reuseport_load_bytes_relative,
11142         .gpl_only       = false,
11143         .ret_type       = RET_INTEGER,
11144         .arg1_type      = ARG_PTR_TO_CTX,
11145         .arg2_type      = ARG_ANYTHING,
11146         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
11147         .arg4_type      = ARG_CONST_SIZE,
11148         .arg5_type      = ARG_ANYTHING,
11149 };
11150
11151 static const struct bpf_func_proto *
11152 sk_reuseport_func_proto(enum bpf_func_id func_id,
11153                         const struct bpf_prog *prog)
11154 {
11155         switch (func_id) {
11156         case BPF_FUNC_sk_select_reuseport:
11157                 return &sk_select_reuseport_proto;
11158         case BPF_FUNC_skb_load_bytes:
11159                 return &sk_reuseport_load_bytes_proto;
11160         case BPF_FUNC_skb_load_bytes_relative:
11161                 return &sk_reuseport_load_bytes_relative_proto;
11162         case BPF_FUNC_get_socket_cookie:
11163                 return &bpf_get_socket_ptr_cookie_proto;
11164         case BPF_FUNC_ktime_get_coarse_ns:
11165                 return &bpf_ktime_get_coarse_ns_proto;
11166         default:
11167                 return bpf_base_func_proto(func_id);
11168         }
11169 }
11170
11171 static bool
11172 sk_reuseport_is_valid_access(int off, int size,
11173                              enum bpf_access_type type,
11174                              const struct bpf_prog *prog,
11175                              struct bpf_insn_access_aux *info)
11176 {
11177         const u32 size_default = sizeof(__u32);
11178
11179         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11180             off % size || type != BPF_READ)
11181                 return false;
11182
11183         switch (off) {
11184         case offsetof(struct sk_reuseport_md, data):
11185                 info->reg_type = PTR_TO_PACKET;
11186                 return size == sizeof(__u64);
11187
11188         case offsetof(struct sk_reuseport_md, data_end):
11189                 info->reg_type = PTR_TO_PACKET_END;
11190                 return size == sizeof(__u64);
11191
11192         case offsetof(struct sk_reuseport_md, hash):
11193                 return size == size_default;
11194
11195         case offsetof(struct sk_reuseport_md, sk):
11196                 info->reg_type = PTR_TO_SOCKET;
11197                 return size == sizeof(__u64);
11198
11199         case offsetof(struct sk_reuseport_md, migrating_sk):
11200                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11201                 return size == sizeof(__u64);
11202
11203         /* Fields that allow narrowing */
11204         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11205                 if (size < sizeof_field(struct sk_buff, protocol))
11206                         return false;
11207                 fallthrough;
11208         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11209         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11210         case bpf_ctx_range(struct sk_reuseport_md, len):
11211                 bpf_ctx_record_field_size(info, size_default);
11212                 return bpf_ctx_narrow_access_ok(off, size, size_default);
11213
11214         default:
11215                 return false;
11216         }
11217 }
11218
11219 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
11220         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11221                               si->dst_reg, si->src_reg,                 \
11222                               bpf_target_off(struct sk_reuseport_kern, F, \
11223                                              sizeof_field(struct sk_reuseport_kern, F), \
11224                                              target_size));             \
11225         })
11226
11227 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
11228         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11229                                     struct sk_buff,                     \
11230                                     skb,                                \
11231                                     SKB_FIELD)
11232
11233 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
11234         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11235                                     struct sock,                        \
11236                                     sk,                                 \
11237                                     SK_FIELD)
11238
11239 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11240                                            const struct bpf_insn *si,
11241                                            struct bpf_insn *insn_buf,
11242                                            struct bpf_prog *prog,
11243                                            u32 *target_size)
11244 {
11245         struct bpf_insn *insn = insn_buf;
11246
11247         switch (si->off) {
11248         case offsetof(struct sk_reuseport_md, data):
11249                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11250                 break;
11251
11252         case offsetof(struct sk_reuseport_md, len):
11253                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11254                 break;
11255
11256         case offsetof(struct sk_reuseport_md, eth_protocol):
11257                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11258                 break;
11259
11260         case offsetof(struct sk_reuseport_md, ip_protocol):
11261                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11262                 break;
11263
11264         case offsetof(struct sk_reuseport_md, data_end):
11265                 SK_REUSEPORT_LOAD_FIELD(data_end);
11266                 break;
11267
11268         case offsetof(struct sk_reuseport_md, hash):
11269                 SK_REUSEPORT_LOAD_FIELD(hash);
11270                 break;
11271
11272         case offsetof(struct sk_reuseport_md, bind_inany):
11273                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11274                 break;
11275
11276         case offsetof(struct sk_reuseport_md, sk):
11277                 SK_REUSEPORT_LOAD_FIELD(sk);
11278                 break;
11279
11280         case offsetof(struct sk_reuseport_md, migrating_sk):
11281                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11282                 break;
11283         }
11284
11285         return insn - insn_buf;
11286 }
11287
11288 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11289         .get_func_proto         = sk_reuseport_func_proto,
11290         .is_valid_access        = sk_reuseport_is_valid_access,
11291         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
11292 };
11293
11294 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11295 };
11296
11297 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11298 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11299
11300 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11301            struct sock *, sk, u64, flags)
11302 {
11303         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11304                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11305                 return -EINVAL;
11306         if (unlikely(sk && sk_is_refcounted(sk)))
11307                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11308         if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11309                 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11310         if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11311                 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11312
11313         /* Check if socket is suitable for packet L3/L4 protocol */
11314         if (sk && sk->sk_protocol != ctx->protocol)
11315                 return -EPROTOTYPE;
11316         if (sk && sk->sk_family != ctx->family &&
11317             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11318                 return -EAFNOSUPPORT;
11319
11320         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11321                 return -EEXIST;
11322
11323         /* Select socket as lookup result */
11324         ctx->selected_sk = sk;
11325         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11326         return 0;
11327 }
11328
11329 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11330         .func           = bpf_sk_lookup_assign,
11331         .gpl_only       = false,
11332         .ret_type       = RET_INTEGER,
11333         .arg1_type      = ARG_PTR_TO_CTX,
11334         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
11335         .arg3_type      = ARG_ANYTHING,
11336 };
11337
11338 static const struct bpf_func_proto *
11339 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11340 {
11341         switch (func_id) {
11342         case BPF_FUNC_perf_event_output:
11343                 return &bpf_event_output_data_proto;
11344         case BPF_FUNC_sk_assign:
11345                 return &bpf_sk_lookup_assign_proto;
11346         case BPF_FUNC_sk_release:
11347                 return &bpf_sk_release_proto;
11348         default:
11349                 return bpf_sk_base_func_proto(func_id);
11350         }
11351 }
11352
11353 static bool sk_lookup_is_valid_access(int off, int size,
11354                                       enum bpf_access_type type,
11355                                       const struct bpf_prog *prog,
11356                                       struct bpf_insn_access_aux *info)
11357 {
11358         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11359                 return false;
11360         if (off % size != 0)
11361                 return false;
11362         if (type != BPF_READ)
11363                 return false;
11364
11365         switch (off) {
11366         case offsetof(struct bpf_sk_lookup, sk):
11367                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11368                 return size == sizeof(__u64);
11369
11370         case bpf_ctx_range(struct bpf_sk_lookup, family):
11371         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11372         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11373         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11374         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11375         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11376         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11377         case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11378                 bpf_ctx_record_field_size(info, sizeof(__u32));
11379                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11380
11381         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11382                 /* Allow 4-byte access to 2-byte field for backward compatibility */
11383                 if (size == sizeof(__u32))
11384                         return true;
11385                 bpf_ctx_record_field_size(info, sizeof(__be16));
11386                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11387
11388         case offsetofend(struct bpf_sk_lookup, remote_port) ...
11389              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11390                 /* Allow access to zero padding for backward compatibility */
11391                 bpf_ctx_record_field_size(info, sizeof(__u16));
11392                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11393
11394         default:
11395                 return false;
11396         }
11397 }
11398
11399 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11400                                         const struct bpf_insn *si,
11401                                         struct bpf_insn *insn_buf,
11402                                         struct bpf_prog *prog,
11403                                         u32 *target_size)
11404 {
11405         struct bpf_insn *insn = insn_buf;
11406
11407         switch (si->off) {
11408         case offsetof(struct bpf_sk_lookup, sk):
11409                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11410                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
11411                 break;
11412
11413         case offsetof(struct bpf_sk_lookup, family):
11414                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11415                                       bpf_target_off(struct bpf_sk_lookup_kern,
11416                                                      family, 2, target_size));
11417                 break;
11418
11419         case offsetof(struct bpf_sk_lookup, protocol):
11420                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11421                                       bpf_target_off(struct bpf_sk_lookup_kern,
11422                                                      protocol, 2, target_size));
11423                 break;
11424
11425         case offsetof(struct bpf_sk_lookup, remote_ip4):
11426                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11427                                       bpf_target_off(struct bpf_sk_lookup_kern,
11428                                                      v4.saddr, 4, target_size));
11429                 break;
11430
11431         case offsetof(struct bpf_sk_lookup, local_ip4):
11432                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11433                                       bpf_target_off(struct bpf_sk_lookup_kern,
11434                                                      v4.daddr, 4, target_size));
11435                 break;
11436
11437         case bpf_ctx_range_till(struct bpf_sk_lookup,
11438                                 remote_ip6[0], remote_ip6[3]): {
11439 #if IS_ENABLED(CONFIG_IPV6)
11440                 int off = si->off;
11441
11442                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11443                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11444                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11445                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11446                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11447                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11448 #else
11449                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11450 #endif
11451                 break;
11452         }
11453         case bpf_ctx_range_till(struct bpf_sk_lookup,
11454                                 local_ip6[0], local_ip6[3]): {
11455 #if IS_ENABLED(CONFIG_IPV6)
11456                 int off = si->off;
11457
11458                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11459                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11460                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11461                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11462                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11463                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11464 #else
11465                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11466 #endif
11467                 break;
11468         }
11469         case offsetof(struct bpf_sk_lookup, remote_port):
11470                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11471                                       bpf_target_off(struct bpf_sk_lookup_kern,
11472                                                      sport, 2, target_size));
11473                 break;
11474
11475         case offsetofend(struct bpf_sk_lookup, remote_port):
11476                 *target_size = 2;
11477                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11478                 break;
11479
11480         case offsetof(struct bpf_sk_lookup, local_port):
11481                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11482                                       bpf_target_off(struct bpf_sk_lookup_kern,
11483                                                      dport, 2, target_size));
11484                 break;
11485
11486         case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11487                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11488                                       bpf_target_off(struct bpf_sk_lookup_kern,
11489                                                      ingress_ifindex, 4, target_size));
11490                 break;
11491         }
11492
11493         return insn - insn_buf;
11494 }
11495
11496 const struct bpf_prog_ops sk_lookup_prog_ops = {
11497         .test_run = bpf_prog_test_run_sk_lookup,
11498 };
11499
11500 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11501         .get_func_proto         = sk_lookup_func_proto,
11502         .is_valid_access        = sk_lookup_is_valid_access,
11503         .convert_ctx_access     = sk_lookup_convert_ctx_access,
11504 };
11505
11506 #endif /* CONFIG_INET */
11507
11508 DEFINE_BPF_DISPATCHER(xdp)
11509
11510 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11511 {
11512         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11513 }
11514
11515 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11516 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11517 BTF_SOCK_TYPE_xxx
11518 #undef BTF_SOCK_TYPE
11519
11520 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11521 {
11522         /* tcp6_sock type is not generated in dwarf and hence btf,
11523          * trigger an explicit type generation here.
11524          */
11525         BTF_TYPE_EMIT(struct tcp6_sock);
11526         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11527             sk->sk_family == AF_INET6)
11528                 return (unsigned long)sk;
11529
11530         return (unsigned long)NULL;
11531 }
11532
11533 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11534         .func                   = bpf_skc_to_tcp6_sock,
11535         .gpl_only               = false,
11536         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11537         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11538         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11539 };
11540
11541 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11542 {
11543         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11544                 return (unsigned long)sk;
11545
11546         return (unsigned long)NULL;
11547 }
11548
11549 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11550         .func                   = bpf_skc_to_tcp_sock,
11551         .gpl_only               = false,
11552         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11553         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11554         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11555 };
11556
11557 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11558 {
11559         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11560          * generated if CONFIG_INET=n. Trigger an explicit generation here.
11561          */
11562         BTF_TYPE_EMIT(struct inet_timewait_sock);
11563         BTF_TYPE_EMIT(struct tcp_timewait_sock);
11564
11565 #ifdef CONFIG_INET
11566         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11567                 return (unsigned long)sk;
11568 #endif
11569
11570 #if IS_BUILTIN(CONFIG_IPV6)
11571         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11572                 return (unsigned long)sk;
11573 #endif
11574
11575         return (unsigned long)NULL;
11576 }
11577
11578 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11579         .func                   = bpf_skc_to_tcp_timewait_sock,
11580         .gpl_only               = false,
11581         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11582         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11583         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11584 };
11585
11586 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11587 {
11588 #ifdef CONFIG_INET
11589         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11590                 return (unsigned long)sk;
11591 #endif
11592
11593 #if IS_BUILTIN(CONFIG_IPV6)
11594         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11595                 return (unsigned long)sk;
11596 #endif
11597
11598         return (unsigned long)NULL;
11599 }
11600
11601 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11602         .func                   = bpf_skc_to_tcp_request_sock,
11603         .gpl_only               = false,
11604         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11605         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11606         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11607 };
11608
11609 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11610 {
11611         /* udp6_sock type is not generated in dwarf and hence btf,
11612          * trigger an explicit type generation here.
11613          */
11614         BTF_TYPE_EMIT(struct udp6_sock);
11615         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11616             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11617                 return (unsigned long)sk;
11618
11619         return (unsigned long)NULL;
11620 }
11621
11622 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11623         .func                   = bpf_skc_to_udp6_sock,
11624         .gpl_only               = false,
11625         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11626         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11627         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11628 };
11629
11630 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11631 {
11632         /* unix_sock type is not generated in dwarf and hence btf,
11633          * trigger an explicit type generation here.
11634          */
11635         BTF_TYPE_EMIT(struct unix_sock);
11636         if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11637                 return (unsigned long)sk;
11638
11639         return (unsigned long)NULL;
11640 }
11641
11642 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11643         .func                   = bpf_skc_to_unix_sock,
11644         .gpl_only               = false,
11645         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11646         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11647         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11648 };
11649
11650 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11651 {
11652         BTF_TYPE_EMIT(struct mptcp_sock);
11653         return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11654 }
11655
11656 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11657         .func           = bpf_skc_to_mptcp_sock,
11658         .gpl_only       = false,
11659         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11660         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
11661         .ret_btf_id     = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11662 };
11663
11664 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11665 {
11666         return (unsigned long)sock_from_file(file);
11667 }
11668
11669 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11670 BTF_ID(struct, socket)
11671 BTF_ID(struct, file)
11672
11673 const struct bpf_func_proto bpf_sock_from_file_proto = {
11674         .func           = bpf_sock_from_file,
11675         .gpl_only       = false,
11676         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11677         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
11678         .arg1_type      = ARG_PTR_TO_BTF_ID,
11679         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
11680 };
11681
11682 static const struct bpf_func_proto *
11683 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11684 {
11685         const struct bpf_func_proto *func;
11686
11687         switch (func_id) {
11688         case BPF_FUNC_skc_to_tcp6_sock:
11689                 func = &bpf_skc_to_tcp6_sock_proto;
11690                 break;
11691         case BPF_FUNC_skc_to_tcp_sock:
11692                 func = &bpf_skc_to_tcp_sock_proto;
11693                 break;
11694         case BPF_FUNC_skc_to_tcp_timewait_sock:
11695                 func = &bpf_skc_to_tcp_timewait_sock_proto;
11696                 break;
11697         case BPF_FUNC_skc_to_tcp_request_sock:
11698                 func = &bpf_skc_to_tcp_request_sock_proto;
11699                 break;
11700         case BPF_FUNC_skc_to_udp6_sock:
11701                 func = &bpf_skc_to_udp6_sock_proto;
11702                 break;
11703         case BPF_FUNC_skc_to_unix_sock:
11704                 func = &bpf_skc_to_unix_sock_proto;
11705                 break;
11706         case BPF_FUNC_skc_to_mptcp_sock:
11707                 func = &bpf_skc_to_mptcp_sock_proto;
11708                 break;
11709         case BPF_FUNC_ktime_get_coarse_ns:
11710                 return &bpf_ktime_get_coarse_ns_proto;
11711         default:
11712                 return bpf_base_func_proto(func_id);
11713         }
11714
11715         if (!perfmon_capable())
11716                 return NULL;
11717
11718         return func;
11719 }