GNU Linux-libre 6.8.7-gnu
[releases.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220                                     unsigned long *flags)
221 {
222         if (IS_ENABLED(CONFIG_RPS))
223                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225                 local_irq_save(*flags);
226 }
227
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230         if (IS_ENABLED(CONFIG_RPS))
231                 spin_lock_irq(&sd->input_pkt_queue.lock);
232         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233                 local_irq_disable();
234 }
235
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237                                           unsigned long *flags)
238 {
239         if (IS_ENABLED(CONFIG_RPS))
240                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242                 local_irq_restore(*flags);
243 }
244
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247         if (IS_ENABLED(CONFIG_RPS))
248                 spin_unlock_irq(&sd->input_pkt_queue.lock);
249         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250                 local_irq_enable();
251 }
252
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254                                                        const char *name)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259         if (!name_node)
260                 return NULL;
261         INIT_HLIST_NODE(&name_node->hlist);
262         name_node->dev = dev;
263         name_node->name = name;
264         return name_node;
265 }
266
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270         struct netdev_name_node *name_node;
271
272         name_node = netdev_name_node_alloc(dev, dev->name);
273         if (!name_node)
274                 return NULL;
275         INIT_LIST_HEAD(&name_node->list);
276         return name_node;
277 }
278
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281         kfree(name_node);
282 }
283
284 static void netdev_name_node_add(struct net *net,
285                                  struct netdev_name_node *name_node)
286 {
287         hlist_add_head_rcu(&name_node->hlist,
288                            dev_name_hash(net, name_node->name));
289 }
290
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293         hlist_del_rcu(&name_node->hlist);
294 }
295
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297                                                         const char *name)
298 {
299         struct hlist_head *head = dev_name_hash(net, name);
300         struct netdev_name_node *name_node;
301
302         hlist_for_each_entry(name_node, head, hlist)
303                 if (!strcmp(name_node->name, name))
304                         return name_node;
305         return NULL;
306 }
307
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309                                                             const char *name)
310 {
311         struct hlist_head *head = dev_name_hash(net, name);
312         struct netdev_name_node *name_node;
313
314         hlist_for_each_entry_rcu(name_node, head, hlist)
315                 if (!strcmp(name_node->name, name))
316                         return name_node;
317         return NULL;
318 }
319
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322         return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328         struct netdev_name_node *name_node;
329         struct net *net = dev_net(dev);
330
331         name_node = netdev_name_node_lookup(net, name);
332         if (name_node)
333                 return -EEXIST;
334         name_node = netdev_name_node_alloc(dev, name);
335         if (!name_node)
336                 return -ENOMEM;
337         netdev_name_node_add(net, name_node);
338         /* The node that holds dev->name acts as a head of per-device list. */
339         list_add_tail_rcu(&name_node->list, &dev->name_node->list);
340
341         return 0;
342 }
343
344 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345 {
346         list_del(&name_node->list);
347         kfree(name_node->name);
348         netdev_name_node_free(name_node);
349 }
350
351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352 {
353         struct netdev_name_node *name_node;
354         struct net *net = dev_net(dev);
355
356         name_node = netdev_name_node_lookup(net, name);
357         if (!name_node)
358                 return -ENOENT;
359         /* lookup might have found our primary name or a name belonging
360          * to another device.
361          */
362         if (name_node == dev->name_node || name_node->dev != dev)
363                 return -EINVAL;
364
365         netdev_name_node_del(name_node);
366         synchronize_rcu();
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct netdev_name_node *name_node;
384         struct net *net = dev_net(dev);
385
386         ASSERT_RTNL();
387
388         write_lock(&dev_base_lock);
389         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
390         netdev_name_node_add(net, dev->name_node);
391         hlist_add_head_rcu(&dev->index_hlist,
392                            dev_index_hash(net, dev->ifindex));
393         write_unlock(&dev_base_lock);
394
395         netdev_for_each_altname(dev, name_node)
396                 netdev_name_node_add(net, name_node);
397
398         /* We reserved the ifindex, this can't fail */
399         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
400
401         dev_base_seq_inc(net);
402 }
403
404 /* Device list removal
405  * caller must respect a RCU grace period before freeing/reusing dev
406  */
407 static void unlist_netdevice(struct net_device *dev, bool lock)
408 {
409         struct netdev_name_node *name_node;
410         struct net *net = dev_net(dev);
411
412         ASSERT_RTNL();
413
414         xa_erase(&net->dev_by_index, dev->ifindex);
415
416         netdev_for_each_altname(dev, name_node)
417                 netdev_name_node_del(name_node);
418
419         /* Unlink dev from the device chain */
420         if (lock)
421                 write_lock(&dev_base_lock);
422         list_del_rcu(&dev->dev_list);
423         netdev_name_node_del(dev->name_node);
424         hlist_del_rcu(&dev->index_hlist);
425         if (lock)
426                 write_unlock(&dev_base_lock);
427
428         dev_base_seq_inc(dev_net(dev));
429 }
430
431 /*
432  *      Our notifier list
433  */
434
435 static RAW_NOTIFIER_HEAD(netdev_chain);
436
437 /*
438  *      Device drivers call our routines to queue packets here. We empty the
439  *      queue in the local softnet handler.
440  */
441
442 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
443 EXPORT_PER_CPU_SYMBOL(softnet_data);
444
445 #ifdef CONFIG_LOCKDEP
446 /*
447  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
448  * according to dev->type
449  */
450 static const unsigned short netdev_lock_type[] = {
451          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
452          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
453          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
454          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
455          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
456          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
457          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
458          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
459          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
460          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
461          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
462          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
463          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
464          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
465          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
466
467 static const char *const netdev_lock_name[] = {
468         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
469         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
470         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
471         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
472         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
473         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
474         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
475         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
476         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
477         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
478         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
479         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
480         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
481         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
482         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
483
484 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
485 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
486
487 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
488 {
489         int i;
490
491         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
492                 if (netdev_lock_type[i] == dev_type)
493                         return i;
494         /* the last key is used by default */
495         return ARRAY_SIZE(netdev_lock_type) - 1;
496 }
497
498 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
499                                                  unsigned short dev_type)
500 {
501         int i;
502
503         i = netdev_lock_pos(dev_type);
504         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
505                                    netdev_lock_name[i]);
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510         int i;
511
512         i = netdev_lock_pos(dev->type);
513         lockdep_set_class_and_name(&dev->addr_list_lock,
514                                    &netdev_addr_lock_key[i],
515                                    netdev_lock_name[i]);
516 }
517 #else
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519                                                  unsigned short dev_type)
520 {
521 }
522
523 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
524 {
525 }
526 #endif
527
528 /*******************************************************************************
529  *
530  *              Protocol management and registration routines
531  *
532  *******************************************************************************/
533
534
535 /*
536  *      Add a protocol ID to the list. Now that the input handler is
537  *      smarter we can dispense with all the messy stuff that used to be
538  *      here.
539  *
540  *      BEWARE!!! Protocol handlers, mangling input packets,
541  *      MUST BE last in hash buckets and checking protocol handlers
542  *      MUST start from promiscuous ptype_all chain in net_bh.
543  *      It is true now, do not change it.
544  *      Explanation follows: if protocol handler, mangling packet, will
545  *      be the first on list, it is not able to sense, that packet
546  *      is cloned and should be copied-on-write, so that it will
547  *      change it and subsequent readers will get broken packet.
548  *                                                      --ANK (980803)
549  */
550
551 static inline struct list_head *ptype_head(const struct packet_type *pt)
552 {
553         if (pt->type == htons(ETH_P_ALL))
554                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
555         else
556                 return pt->dev ? &pt->dev->ptype_specific :
557                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
558 }
559
560 /**
561  *      dev_add_pack - add packet handler
562  *      @pt: packet type declaration
563  *
564  *      Add a protocol handler to the networking stack. The passed &packet_type
565  *      is linked into kernel lists and may not be freed until it has been
566  *      removed from the kernel lists.
567  *
568  *      This call does not sleep therefore it can not
569  *      guarantee all CPU's that are in middle of receiving packets
570  *      will see the new packet type (until the next received packet).
571  */
572
573 void dev_add_pack(struct packet_type *pt)
574 {
575         struct list_head *head = ptype_head(pt);
576
577         spin_lock(&ptype_lock);
578         list_add_rcu(&pt->list, head);
579         spin_unlock(&ptype_lock);
580 }
581 EXPORT_SYMBOL(dev_add_pack);
582
583 /**
584  *      __dev_remove_pack        - remove packet handler
585  *      @pt: packet type declaration
586  *
587  *      Remove a protocol handler that was previously added to the kernel
588  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
589  *      from the kernel lists and can be freed or reused once this function
590  *      returns.
591  *
592  *      The packet type might still be in use by receivers
593  *      and must not be freed until after all the CPU's have gone
594  *      through a quiescent state.
595  */
596 void __dev_remove_pack(struct packet_type *pt)
597 {
598         struct list_head *head = ptype_head(pt);
599         struct packet_type *pt1;
600
601         spin_lock(&ptype_lock);
602
603         list_for_each_entry(pt1, head, list) {
604                 if (pt == pt1) {
605                         list_del_rcu(&pt->list);
606                         goto out;
607                 }
608         }
609
610         pr_warn("dev_remove_pack: %p not found\n", pt);
611 out:
612         spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(__dev_remove_pack);
615
616 /**
617  *      dev_remove_pack  - remove packet handler
618  *      @pt: packet type declaration
619  *
620  *      Remove a protocol handler that was previously added to the kernel
621  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
622  *      from the kernel lists and can be freed or reused once this function
623  *      returns.
624  *
625  *      This call sleeps to guarantee that no CPU is looking at the packet
626  *      type after return.
627  */
628 void dev_remove_pack(struct packet_type *pt)
629 {
630         __dev_remove_pack(pt);
631
632         synchronize_net();
633 }
634 EXPORT_SYMBOL(dev_remove_pack);
635
636
637 /*******************************************************************************
638  *
639  *                          Device Interface Subroutines
640  *
641  *******************************************************************************/
642
643 /**
644  *      dev_get_iflink  - get 'iflink' value of a interface
645  *      @dev: targeted interface
646  *
647  *      Indicates the ifindex the interface is linked to.
648  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
649  */
650
651 int dev_get_iflink(const struct net_device *dev)
652 {
653         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
654                 return dev->netdev_ops->ndo_get_iflink(dev);
655
656         return dev->ifindex;
657 }
658 EXPORT_SYMBOL(dev_get_iflink);
659
660 /**
661  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
662  *      @dev: targeted interface
663  *      @skb: The packet.
664  *
665  *      For better visibility of tunnel traffic OVS needs to retrieve
666  *      egress tunnel information for a packet. Following API allows
667  *      user to get this info.
668  */
669 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
670 {
671         struct ip_tunnel_info *info;
672
673         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
674                 return -EINVAL;
675
676         info = skb_tunnel_info_unclone(skb);
677         if (!info)
678                 return -ENOMEM;
679         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
680                 return -EINVAL;
681
682         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
683 }
684 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
685
686 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
687 {
688         int k = stack->num_paths++;
689
690         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
691                 return NULL;
692
693         return &stack->path[k];
694 }
695
696 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
697                           struct net_device_path_stack *stack)
698 {
699         const struct net_device *last_dev;
700         struct net_device_path_ctx ctx = {
701                 .dev    = dev,
702         };
703         struct net_device_path *path;
704         int ret = 0;
705
706         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
707         stack->num_paths = 0;
708         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
709                 last_dev = ctx.dev;
710                 path = dev_fwd_path(stack);
711                 if (!path)
712                         return -1;
713
714                 memset(path, 0, sizeof(struct net_device_path));
715                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
716                 if (ret < 0)
717                         return -1;
718
719                 if (WARN_ON_ONCE(last_dev == ctx.dev))
720                         return -1;
721         }
722
723         if (!ctx.dev)
724                 return ret;
725
726         path = dev_fwd_path(stack);
727         if (!path)
728                 return -1;
729         path->type = DEV_PATH_ETHERNET;
730         path->dev = ctx.dev;
731
732         return ret;
733 }
734 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
735
736 /**
737  *      __dev_get_by_name       - find a device by its name
738  *      @net: the applicable net namespace
739  *      @name: name to find
740  *
741  *      Find an interface by name. Must be called under RTNL semaphore
742  *      or @dev_base_lock. If the name is found a pointer to the device
743  *      is returned. If the name is not found then %NULL is returned. The
744  *      reference counters are not incremented so the caller must be
745  *      careful with locks.
746  */
747
748 struct net_device *__dev_get_by_name(struct net *net, const char *name)
749 {
750         struct netdev_name_node *node_name;
751
752         node_name = netdev_name_node_lookup(net, name);
753         return node_name ? node_name->dev : NULL;
754 }
755 EXPORT_SYMBOL(__dev_get_by_name);
756
757 /**
758  * dev_get_by_name_rcu  - find a device by its name
759  * @net: the applicable net namespace
760  * @name: name to find
761  *
762  * Find an interface by name.
763  * If the name is found a pointer to the device is returned.
764  * If the name is not found then %NULL is returned.
765  * The reference counters are not incremented so the caller must be
766  * careful with locks. The caller must hold RCU lock.
767  */
768
769 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
770 {
771         struct netdev_name_node *node_name;
772
773         node_name = netdev_name_node_lookup_rcu(net, name);
774         return node_name ? node_name->dev : NULL;
775 }
776 EXPORT_SYMBOL(dev_get_by_name_rcu);
777
778 /* Deprecated for new users, call netdev_get_by_name() instead */
779 struct net_device *dev_get_by_name(struct net *net, const char *name)
780 {
781         struct net_device *dev;
782
783         rcu_read_lock();
784         dev = dev_get_by_name_rcu(net, name);
785         dev_hold(dev);
786         rcu_read_unlock();
787         return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790
791 /**
792  *      netdev_get_by_name() - find a device by its name
793  *      @net: the applicable net namespace
794  *      @name: name to find
795  *      @tracker: tracking object for the acquired reference
796  *      @gfp: allocation flags for the tracker
797  *
798  *      Find an interface by name. This can be called from any
799  *      context and does its own locking. The returned handle has
800  *      the usage count incremented and the caller must use netdev_put() to
801  *      release it when it is no longer needed. %NULL is returned if no
802  *      matching device is found.
803  */
804 struct net_device *netdev_get_by_name(struct net *net, const char *name,
805                                       netdevice_tracker *tracker, gfp_t gfp)
806 {
807         struct net_device *dev;
808
809         dev = dev_get_by_name(net, name);
810         if (dev)
811                 netdev_tracker_alloc(dev, tracker, gfp);
812         return dev;
813 }
814 EXPORT_SYMBOL(netdev_get_by_name);
815
816 /**
817  *      __dev_get_by_index - find a device by its ifindex
818  *      @net: the applicable net namespace
819  *      @ifindex: index of device
820  *
821  *      Search for an interface by index. Returns %NULL if the device
822  *      is not found or a pointer to the device. The device has not
823  *      had its reference counter increased so the caller must be careful
824  *      about locking. The caller must hold either the RTNL semaphore
825  *      or @dev_base_lock.
826  */
827
828 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
829 {
830         struct net_device *dev;
831         struct hlist_head *head = dev_index_hash(net, ifindex);
832
833         hlist_for_each_entry(dev, head, index_hlist)
834                 if (dev->ifindex == ifindex)
835                         return dev;
836
837         return NULL;
838 }
839 EXPORT_SYMBOL(__dev_get_by_index);
840
841 /**
842  *      dev_get_by_index_rcu - find a device by its ifindex
843  *      @net: the applicable net namespace
844  *      @ifindex: index of device
845  *
846  *      Search for an interface by index. Returns %NULL if the device
847  *      is not found or a pointer to the device. The device has not
848  *      had its reference counter increased so the caller must be careful
849  *      about locking. The caller must hold RCU lock.
850  */
851
852 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855         struct hlist_head *head = dev_index_hash(net, ifindex);
856
857         hlist_for_each_entry_rcu(dev, head, index_hlist)
858                 if (dev->ifindex == ifindex)
859                         return dev;
860
861         return NULL;
862 }
863 EXPORT_SYMBOL(dev_get_by_index_rcu);
864
865 /* Deprecated for new users, call netdev_get_by_index() instead */
866 struct net_device *dev_get_by_index(struct net *net, int ifindex)
867 {
868         struct net_device *dev;
869
870         rcu_read_lock();
871         dev = dev_get_by_index_rcu(net, ifindex);
872         dev_hold(dev);
873         rcu_read_unlock();
874         return dev;
875 }
876 EXPORT_SYMBOL(dev_get_by_index);
877
878 /**
879  *      netdev_get_by_index() - find a device by its ifindex
880  *      @net: the applicable net namespace
881  *      @ifindex: index of device
882  *      @tracker: tracking object for the acquired reference
883  *      @gfp: allocation flags for the tracker
884  *
885  *      Search for an interface by index. Returns NULL if the device
886  *      is not found or a pointer to the device. The device returned has
887  *      had a reference added and the pointer is safe until the user calls
888  *      netdev_put() to indicate they have finished with it.
889  */
890 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
891                                        netdevice_tracker *tracker, gfp_t gfp)
892 {
893         struct net_device *dev;
894
895         dev = dev_get_by_index(net, ifindex);
896         if (dev)
897                 netdev_tracker_alloc(dev, tracker, gfp);
898         return dev;
899 }
900 EXPORT_SYMBOL(netdev_get_by_index);
901
902 /**
903  *      dev_get_by_napi_id - find a device by napi_id
904  *      @napi_id: ID of the NAPI struct
905  *
906  *      Search for an interface by NAPI ID. Returns %NULL if the device
907  *      is not found or a pointer to the device. The device has not had
908  *      its reference counter increased so the caller must be careful
909  *      about locking. The caller must hold RCU lock.
910  */
911
912 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
913 {
914         struct napi_struct *napi;
915
916         WARN_ON_ONCE(!rcu_read_lock_held());
917
918         if (napi_id < MIN_NAPI_ID)
919                 return NULL;
920
921         napi = napi_by_id(napi_id);
922
923         return napi ? napi->dev : NULL;
924 }
925 EXPORT_SYMBOL(dev_get_by_napi_id);
926
927 /**
928  *      netdev_get_name - get a netdevice name, knowing its ifindex.
929  *      @net: network namespace
930  *      @name: a pointer to the buffer where the name will be stored.
931  *      @ifindex: the ifindex of the interface to get the name from.
932  */
933 int netdev_get_name(struct net *net, char *name, int ifindex)
934 {
935         struct net_device *dev;
936         int ret;
937
938         down_read(&devnet_rename_sem);
939         rcu_read_lock();
940
941         dev = dev_get_by_index_rcu(net, ifindex);
942         if (!dev) {
943                 ret = -ENODEV;
944                 goto out;
945         }
946
947         strcpy(name, dev->name);
948
949         ret = 0;
950 out:
951         rcu_read_unlock();
952         up_read(&devnet_rename_sem);
953         return ret;
954 }
955
956 /**
957  *      dev_getbyhwaddr_rcu - find a device by its hardware address
958  *      @net: the applicable net namespace
959  *      @type: media type of device
960  *      @ha: hardware address
961  *
962  *      Search for an interface by MAC address. Returns NULL if the device
963  *      is not found or a pointer to the device.
964  *      The caller must hold RCU or RTNL.
965  *      The returned device has not had its ref count increased
966  *      and the caller must therefore be careful about locking
967  *
968  */
969
970 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
971                                        const char *ha)
972 {
973         struct net_device *dev;
974
975         for_each_netdev_rcu(net, dev)
976                 if (dev->type == type &&
977                     !memcmp(dev->dev_addr, ha, dev->addr_len))
978                         return dev;
979
980         return NULL;
981 }
982 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
983
984 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
985 {
986         struct net_device *dev, *ret = NULL;
987
988         rcu_read_lock();
989         for_each_netdev_rcu(net, dev)
990                 if (dev->type == type) {
991                         dev_hold(dev);
992                         ret = dev;
993                         break;
994                 }
995         rcu_read_unlock();
996         return ret;
997 }
998 EXPORT_SYMBOL(dev_getfirstbyhwtype);
999
1000 /**
1001  *      __dev_get_by_flags - find any device with given flags
1002  *      @net: the applicable net namespace
1003  *      @if_flags: IFF_* values
1004  *      @mask: bitmask of bits in if_flags to check
1005  *
1006  *      Search for any interface with the given flags. Returns NULL if a device
1007  *      is not found or a pointer to the device. Must be called inside
1008  *      rtnl_lock(), and result refcount is unchanged.
1009  */
1010
1011 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1012                                       unsigned short mask)
1013 {
1014         struct net_device *dev, *ret;
1015
1016         ASSERT_RTNL();
1017
1018         ret = NULL;
1019         for_each_netdev(net, dev) {
1020                 if (((dev->flags ^ if_flags) & mask) == 0) {
1021                         ret = dev;
1022                         break;
1023                 }
1024         }
1025         return ret;
1026 }
1027 EXPORT_SYMBOL(__dev_get_by_flags);
1028
1029 /**
1030  *      dev_valid_name - check if name is okay for network device
1031  *      @name: name string
1032  *
1033  *      Network device names need to be valid file names to
1034  *      allow sysfs to work.  We also disallow any kind of
1035  *      whitespace.
1036  */
1037 bool dev_valid_name(const char *name)
1038 {
1039         if (*name == '\0')
1040                 return false;
1041         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1042                 return false;
1043         if (!strcmp(name, ".") || !strcmp(name, ".."))
1044                 return false;
1045
1046         while (*name) {
1047                 if (*name == '/' || *name == ':' || isspace(*name))
1048                         return false;
1049                 name++;
1050         }
1051         return true;
1052 }
1053 EXPORT_SYMBOL(dev_valid_name);
1054
1055 /**
1056  *      __dev_alloc_name - allocate a name for a device
1057  *      @net: network namespace to allocate the device name in
1058  *      @name: name format string
1059  *      @res: result name string
1060  *
1061  *      Passed a format string - eg "lt%d" it will try and find a suitable
1062  *      id. It scans list of devices to build up a free map, then chooses
1063  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1064  *      while allocating the name and adding the device in order to avoid
1065  *      duplicates.
1066  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1067  *      Returns the number of the unit assigned or a negative errno code.
1068  */
1069
1070 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1071 {
1072         int i = 0;
1073         const char *p;
1074         const int max_netdevices = 8*PAGE_SIZE;
1075         unsigned long *inuse;
1076         struct net_device *d;
1077         char buf[IFNAMSIZ];
1078
1079         /* Verify the string as this thing may have come from the user.
1080          * There must be one "%d" and no other "%" characters.
1081          */
1082         p = strchr(name, '%');
1083         if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1084                 return -EINVAL;
1085
1086         /* Use one page as a bit array of possible slots */
1087         inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1088         if (!inuse)
1089                 return -ENOMEM;
1090
1091         for_each_netdev(net, d) {
1092                 struct netdev_name_node *name_node;
1093
1094                 netdev_for_each_altname(d, name_node) {
1095                         if (!sscanf(name_node->name, name, &i))
1096                                 continue;
1097                         if (i < 0 || i >= max_netdevices)
1098                                 continue;
1099
1100                         /* avoid cases where sscanf is not exact inverse of printf */
1101                         snprintf(buf, IFNAMSIZ, name, i);
1102                         if (!strncmp(buf, name_node->name, IFNAMSIZ))
1103                                 __set_bit(i, inuse);
1104                 }
1105                 if (!sscanf(d->name, name, &i))
1106                         continue;
1107                 if (i < 0 || i >= max_netdevices)
1108                         continue;
1109
1110                 /* avoid cases where sscanf is not exact inverse of printf */
1111                 snprintf(buf, IFNAMSIZ, name, i);
1112                 if (!strncmp(buf, d->name, IFNAMSIZ))
1113                         __set_bit(i, inuse);
1114         }
1115
1116         i = find_first_zero_bit(inuse, max_netdevices);
1117         bitmap_free(inuse);
1118         if (i == max_netdevices)
1119                 return -ENFILE;
1120
1121         /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1122         strscpy(buf, name, IFNAMSIZ);
1123         snprintf(res, IFNAMSIZ, buf, i);
1124         return i;
1125 }
1126
1127 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1128 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1129                                const char *want_name, char *out_name,
1130                                int dup_errno)
1131 {
1132         if (!dev_valid_name(want_name))
1133                 return -EINVAL;
1134
1135         if (strchr(want_name, '%'))
1136                 return __dev_alloc_name(net, want_name, out_name);
1137
1138         if (netdev_name_in_use(net, want_name))
1139                 return -dup_errno;
1140         if (out_name != want_name)
1141                 strscpy(out_name, want_name, IFNAMSIZ);
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_alloc_name - allocate a name for a device
1147  *      @dev: device
1148  *      @name: name format string
1149  *
1150  *      Passed a format string - eg "lt%d" it will try and find a suitable
1151  *      id. It scans list of devices to build up a free map, then chooses
1152  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1153  *      while allocating the name and adding the device in order to avoid
1154  *      duplicates.
1155  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1156  *      Returns the number of the unit assigned or a negative errno code.
1157  */
1158
1159 int dev_alloc_name(struct net_device *dev, const char *name)
1160 {
1161         return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1162 }
1163 EXPORT_SYMBOL(dev_alloc_name);
1164
1165 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1166                               const char *name)
1167 {
1168         int ret;
1169
1170         ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1171         return ret < 0 ? ret : 0;
1172 }
1173
1174 /**
1175  *      dev_change_name - change name of a device
1176  *      @dev: device
1177  *      @newname: name (or format string) must be at least IFNAMSIZ
1178  *
1179  *      Change name of a device, can pass format strings "eth%d".
1180  *      for wildcarding.
1181  */
1182 int dev_change_name(struct net_device *dev, const char *newname)
1183 {
1184         unsigned char old_assign_type;
1185         char oldname[IFNAMSIZ];
1186         int err = 0;
1187         int ret;
1188         struct net *net;
1189
1190         ASSERT_RTNL();
1191         BUG_ON(!dev_net(dev));
1192
1193         net = dev_net(dev);
1194
1195         down_write(&devnet_rename_sem);
1196
1197         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1198                 up_write(&devnet_rename_sem);
1199                 return 0;
1200         }
1201
1202         memcpy(oldname, dev->name, IFNAMSIZ);
1203
1204         err = dev_get_valid_name(net, dev, newname);
1205         if (err < 0) {
1206                 up_write(&devnet_rename_sem);
1207                 return err;
1208         }
1209
1210         if (oldname[0] && !strchr(oldname, '%'))
1211                 netdev_info(dev, "renamed from %s%s\n", oldname,
1212                             dev->flags & IFF_UP ? " (while UP)" : "");
1213
1214         old_assign_type = dev->name_assign_type;
1215         dev->name_assign_type = NET_NAME_RENAMED;
1216
1217 rollback:
1218         ret = device_rename(&dev->dev, dev->name);
1219         if (ret) {
1220                 memcpy(dev->name, oldname, IFNAMSIZ);
1221                 dev->name_assign_type = old_assign_type;
1222                 up_write(&devnet_rename_sem);
1223                 return ret;
1224         }
1225
1226         up_write(&devnet_rename_sem);
1227
1228         netdev_adjacent_rename_links(dev, oldname);
1229
1230         write_lock(&dev_base_lock);
1231         netdev_name_node_del(dev->name_node);
1232         write_unlock(&dev_base_lock);
1233
1234         synchronize_rcu();
1235
1236         write_lock(&dev_base_lock);
1237         netdev_name_node_add(net, dev->name_node);
1238         write_unlock(&dev_base_lock);
1239
1240         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1241         ret = notifier_to_errno(ret);
1242
1243         if (ret) {
1244                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1245                 if (err >= 0) {
1246                         err = ret;
1247                         down_write(&devnet_rename_sem);
1248                         memcpy(dev->name, oldname, IFNAMSIZ);
1249                         memcpy(oldname, newname, IFNAMSIZ);
1250                         dev->name_assign_type = old_assign_type;
1251                         old_assign_type = NET_NAME_RENAMED;
1252                         goto rollback;
1253                 } else {
1254                         netdev_err(dev, "name change rollback failed: %d\n",
1255                                    ret);
1256                 }
1257         }
1258
1259         return err;
1260 }
1261
1262 /**
1263  *      dev_set_alias - change ifalias of a device
1264  *      @dev: device
1265  *      @alias: name up to IFALIASZ
1266  *      @len: limit of bytes to copy from info
1267  *
1268  *      Set ifalias for a device,
1269  */
1270 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1271 {
1272         struct dev_ifalias *new_alias = NULL;
1273
1274         if (len >= IFALIASZ)
1275                 return -EINVAL;
1276
1277         if (len) {
1278                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1279                 if (!new_alias)
1280                         return -ENOMEM;
1281
1282                 memcpy(new_alias->ifalias, alias, len);
1283                 new_alias->ifalias[len] = 0;
1284         }
1285
1286         mutex_lock(&ifalias_mutex);
1287         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1288                                         mutex_is_locked(&ifalias_mutex));
1289         mutex_unlock(&ifalias_mutex);
1290
1291         if (new_alias)
1292                 kfree_rcu(new_alias, rcuhead);
1293
1294         return len;
1295 }
1296 EXPORT_SYMBOL(dev_set_alias);
1297
1298 /**
1299  *      dev_get_alias - get ifalias of a device
1300  *      @dev: device
1301  *      @name: buffer to store name of ifalias
1302  *      @len: size of buffer
1303  *
1304  *      get ifalias for a device.  Caller must make sure dev cannot go
1305  *      away,  e.g. rcu read lock or own a reference count to device.
1306  */
1307 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1308 {
1309         const struct dev_ifalias *alias;
1310         int ret = 0;
1311
1312         rcu_read_lock();
1313         alias = rcu_dereference(dev->ifalias);
1314         if (alias)
1315                 ret = snprintf(name, len, "%s", alias->ifalias);
1316         rcu_read_unlock();
1317
1318         return ret;
1319 }
1320
1321 /**
1322  *      netdev_features_change - device changes features
1323  *      @dev: device to cause notification
1324  *
1325  *      Called to indicate a device has changed features.
1326  */
1327 void netdev_features_change(struct net_device *dev)
1328 {
1329         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1330 }
1331 EXPORT_SYMBOL(netdev_features_change);
1332
1333 /**
1334  *      netdev_state_change - device changes state
1335  *      @dev: device to cause notification
1336  *
1337  *      Called to indicate a device has changed state. This function calls
1338  *      the notifier chains for netdev_chain and sends a NEWLINK message
1339  *      to the routing socket.
1340  */
1341 void netdev_state_change(struct net_device *dev)
1342 {
1343         if (dev->flags & IFF_UP) {
1344                 struct netdev_notifier_change_info change_info = {
1345                         .info.dev = dev,
1346                 };
1347
1348                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1349                                               &change_info.info);
1350                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1351         }
1352 }
1353 EXPORT_SYMBOL(netdev_state_change);
1354
1355 /**
1356  * __netdev_notify_peers - notify network peers about existence of @dev,
1357  * to be called when rtnl lock is already held.
1358  * @dev: network device
1359  *
1360  * Generate traffic such that interested network peers are aware of
1361  * @dev, such as by generating a gratuitous ARP. This may be used when
1362  * a device wants to inform the rest of the network about some sort of
1363  * reconfiguration such as a failover event or virtual machine
1364  * migration.
1365  */
1366 void __netdev_notify_peers(struct net_device *dev)
1367 {
1368         ASSERT_RTNL();
1369         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371 }
1372 EXPORT_SYMBOL(__netdev_notify_peers);
1373
1374 /**
1375  * netdev_notify_peers - notify network peers about existence of @dev
1376  * @dev: network device
1377  *
1378  * Generate traffic such that interested network peers are aware of
1379  * @dev, such as by generating a gratuitous ARP. This may be used when
1380  * a device wants to inform the rest of the network about some sort of
1381  * reconfiguration such as a failover event or virtual machine
1382  * migration.
1383  */
1384 void netdev_notify_peers(struct net_device *dev)
1385 {
1386         rtnl_lock();
1387         __netdev_notify_peers(dev);
1388         rtnl_unlock();
1389 }
1390 EXPORT_SYMBOL(netdev_notify_peers);
1391
1392 static int napi_threaded_poll(void *data);
1393
1394 static int napi_kthread_create(struct napi_struct *n)
1395 {
1396         int err = 0;
1397
1398         /* Create and wake up the kthread once to put it in
1399          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1400          * warning and work with loadavg.
1401          */
1402         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1403                                 n->dev->name, n->napi_id);
1404         if (IS_ERR(n->thread)) {
1405                 err = PTR_ERR(n->thread);
1406                 pr_err("kthread_run failed with err %d\n", err);
1407                 n->thread = NULL;
1408         }
1409
1410         return err;
1411 }
1412
1413 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1414 {
1415         const struct net_device_ops *ops = dev->netdev_ops;
1416         int ret;
1417
1418         ASSERT_RTNL();
1419         dev_addr_check(dev);
1420
1421         if (!netif_device_present(dev)) {
1422                 /* may be detached because parent is runtime-suspended */
1423                 if (dev->dev.parent)
1424                         pm_runtime_resume(dev->dev.parent);
1425                 if (!netif_device_present(dev))
1426                         return -ENODEV;
1427         }
1428
1429         /* Block netpoll from trying to do any rx path servicing.
1430          * If we don't do this there is a chance ndo_poll_controller
1431          * or ndo_poll may be running while we open the device
1432          */
1433         netpoll_poll_disable(dev);
1434
1435         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1436         ret = notifier_to_errno(ret);
1437         if (ret)
1438                 return ret;
1439
1440         set_bit(__LINK_STATE_START, &dev->state);
1441
1442         if (ops->ndo_validate_addr)
1443                 ret = ops->ndo_validate_addr(dev);
1444
1445         if (!ret && ops->ndo_open)
1446                 ret = ops->ndo_open(dev);
1447
1448         netpoll_poll_enable(dev);
1449
1450         if (ret)
1451                 clear_bit(__LINK_STATE_START, &dev->state);
1452         else {
1453                 dev->flags |= IFF_UP;
1454                 dev_set_rx_mode(dev);
1455                 dev_activate(dev);
1456                 add_device_randomness(dev->dev_addr, dev->addr_len);
1457         }
1458
1459         return ret;
1460 }
1461
1462 /**
1463  *      dev_open        - prepare an interface for use.
1464  *      @dev: device to open
1465  *      @extack: netlink extended ack
1466  *
1467  *      Takes a device from down to up state. The device's private open
1468  *      function is invoked and then the multicast lists are loaded. Finally
1469  *      the device is moved into the up state and a %NETDEV_UP message is
1470  *      sent to the netdev notifier chain.
1471  *
1472  *      Calling this function on an active interface is a nop. On a failure
1473  *      a negative errno code is returned.
1474  */
1475 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1476 {
1477         int ret;
1478
1479         if (dev->flags & IFF_UP)
1480                 return 0;
1481
1482         ret = __dev_open(dev, extack);
1483         if (ret < 0)
1484                 return ret;
1485
1486         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1487         call_netdevice_notifiers(NETDEV_UP, dev);
1488
1489         return ret;
1490 }
1491 EXPORT_SYMBOL(dev_open);
1492
1493 static void __dev_close_many(struct list_head *head)
1494 {
1495         struct net_device *dev;
1496
1497         ASSERT_RTNL();
1498         might_sleep();
1499
1500         list_for_each_entry(dev, head, close_list) {
1501                 /* Temporarily disable netpoll until the interface is down */
1502                 netpoll_poll_disable(dev);
1503
1504                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1505
1506                 clear_bit(__LINK_STATE_START, &dev->state);
1507
1508                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1509                  * can be even on different cpu. So just clear netif_running().
1510                  *
1511                  * dev->stop() will invoke napi_disable() on all of it's
1512                  * napi_struct instances on this device.
1513                  */
1514                 smp_mb__after_atomic(); /* Commit netif_running(). */
1515         }
1516
1517         dev_deactivate_many(head);
1518
1519         list_for_each_entry(dev, head, close_list) {
1520                 const struct net_device_ops *ops = dev->netdev_ops;
1521
1522                 /*
1523                  *      Call the device specific close. This cannot fail.
1524                  *      Only if device is UP
1525                  *
1526                  *      We allow it to be called even after a DETACH hot-plug
1527                  *      event.
1528                  */
1529                 if (ops->ndo_stop)
1530                         ops->ndo_stop(dev);
1531
1532                 dev->flags &= ~IFF_UP;
1533                 netpoll_poll_enable(dev);
1534         }
1535 }
1536
1537 static void __dev_close(struct net_device *dev)
1538 {
1539         LIST_HEAD(single);
1540
1541         list_add(&dev->close_list, &single);
1542         __dev_close_many(&single);
1543         list_del(&single);
1544 }
1545
1546 void dev_close_many(struct list_head *head, bool unlink)
1547 {
1548         struct net_device *dev, *tmp;
1549
1550         /* Remove the devices that don't need to be closed */
1551         list_for_each_entry_safe(dev, tmp, head, close_list)
1552                 if (!(dev->flags & IFF_UP))
1553                         list_del_init(&dev->close_list);
1554
1555         __dev_close_many(head);
1556
1557         list_for_each_entry_safe(dev, tmp, head, close_list) {
1558                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1559                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1560                 if (unlink)
1561                         list_del_init(&dev->close_list);
1562         }
1563 }
1564 EXPORT_SYMBOL(dev_close_many);
1565
1566 /**
1567  *      dev_close - shutdown an interface.
1568  *      @dev: device to shutdown
1569  *
1570  *      This function moves an active device into down state. A
1571  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1572  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1573  *      chain.
1574  */
1575 void dev_close(struct net_device *dev)
1576 {
1577         if (dev->flags & IFF_UP) {
1578                 LIST_HEAD(single);
1579
1580                 list_add(&dev->close_list, &single);
1581                 dev_close_many(&single, true);
1582                 list_del(&single);
1583         }
1584 }
1585 EXPORT_SYMBOL(dev_close);
1586
1587
1588 /**
1589  *      dev_disable_lro - disable Large Receive Offload on a device
1590  *      @dev: device
1591  *
1592  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1593  *      called under RTNL.  This is needed if received packets may be
1594  *      forwarded to another interface.
1595  */
1596 void dev_disable_lro(struct net_device *dev)
1597 {
1598         struct net_device *lower_dev;
1599         struct list_head *iter;
1600
1601         dev->wanted_features &= ~NETIF_F_LRO;
1602         netdev_update_features(dev);
1603
1604         if (unlikely(dev->features & NETIF_F_LRO))
1605                 netdev_WARN(dev, "failed to disable LRO!\n");
1606
1607         netdev_for_each_lower_dev(dev, lower_dev, iter)
1608                 dev_disable_lro(lower_dev);
1609 }
1610 EXPORT_SYMBOL(dev_disable_lro);
1611
1612 /**
1613  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1614  *      @dev: device
1615  *
1616  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1617  *      called under RTNL.  This is needed if Generic XDP is installed on
1618  *      the device.
1619  */
1620 static void dev_disable_gro_hw(struct net_device *dev)
1621 {
1622         dev->wanted_features &= ~NETIF_F_GRO_HW;
1623         netdev_update_features(dev);
1624
1625         if (unlikely(dev->features & NETIF_F_GRO_HW))
1626                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1627 }
1628
1629 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1630 {
1631 #define N(val)                                          \
1632         case NETDEV_##val:                              \
1633                 return "NETDEV_" __stringify(val);
1634         switch (cmd) {
1635         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1636         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1637         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1638         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1639         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1640         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1641         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1642         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1643         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1644         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1645         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1646         N(XDP_FEAT_CHANGE)
1647         }
1648 #undef N
1649         return "UNKNOWN_NETDEV_EVENT";
1650 }
1651 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1652
1653 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1654                                    struct net_device *dev)
1655 {
1656         struct netdev_notifier_info info = {
1657                 .dev = dev,
1658         };
1659
1660         return nb->notifier_call(nb, val, &info);
1661 }
1662
1663 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1664                                              struct net_device *dev)
1665 {
1666         int err;
1667
1668         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1669         err = notifier_to_errno(err);
1670         if (err)
1671                 return err;
1672
1673         if (!(dev->flags & IFF_UP))
1674                 return 0;
1675
1676         call_netdevice_notifier(nb, NETDEV_UP, dev);
1677         return 0;
1678 }
1679
1680 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1681                                                 struct net_device *dev)
1682 {
1683         if (dev->flags & IFF_UP) {
1684                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1685                                         dev);
1686                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1687         }
1688         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1689 }
1690
1691 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1692                                                  struct net *net)
1693 {
1694         struct net_device *dev;
1695         int err;
1696
1697         for_each_netdev(net, dev) {
1698                 err = call_netdevice_register_notifiers(nb, dev);
1699                 if (err)
1700                         goto rollback;
1701         }
1702         return 0;
1703
1704 rollback:
1705         for_each_netdev_continue_reverse(net, dev)
1706                 call_netdevice_unregister_notifiers(nb, dev);
1707         return err;
1708 }
1709
1710 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1711                                                     struct net *net)
1712 {
1713         struct net_device *dev;
1714
1715         for_each_netdev(net, dev)
1716                 call_netdevice_unregister_notifiers(nb, dev);
1717 }
1718
1719 static int dev_boot_phase = 1;
1720
1721 /**
1722  * register_netdevice_notifier - register a network notifier block
1723  * @nb: notifier
1724  *
1725  * Register a notifier to be called when network device events occur.
1726  * The notifier passed is linked into the kernel structures and must
1727  * not be reused until it has been unregistered. A negative errno code
1728  * is returned on a failure.
1729  *
1730  * When registered all registration and up events are replayed
1731  * to the new notifier to allow device to have a race free
1732  * view of the network device list.
1733  */
1734
1735 int register_netdevice_notifier(struct notifier_block *nb)
1736 {
1737         struct net *net;
1738         int err;
1739
1740         /* Close race with setup_net() and cleanup_net() */
1741         down_write(&pernet_ops_rwsem);
1742         rtnl_lock();
1743         err = raw_notifier_chain_register(&netdev_chain, nb);
1744         if (err)
1745                 goto unlock;
1746         if (dev_boot_phase)
1747                 goto unlock;
1748         for_each_net(net) {
1749                 err = call_netdevice_register_net_notifiers(nb, net);
1750                 if (err)
1751                         goto rollback;
1752         }
1753
1754 unlock:
1755         rtnl_unlock();
1756         up_write(&pernet_ops_rwsem);
1757         return err;
1758
1759 rollback:
1760         for_each_net_continue_reverse(net)
1761                 call_netdevice_unregister_net_notifiers(nb, net);
1762
1763         raw_notifier_chain_unregister(&netdev_chain, nb);
1764         goto unlock;
1765 }
1766 EXPORT_SYMBOL(register_netdevice_notifier);
1767
1768 /**
1769  * unregister_netdevice_notifier - unregister a network notifier block
1770  * @nb: notifier
1771  *
1772  * Unregister a notifier previously registered by
1773  * register_netdevice_notifier(). The notifier is unlinked into the
1774  * kernel structures and may then be reused. A negative errno code
1775  * is returned on a failure.
1776  *
1777  * After unregistering unregister and down device events are synthesized
1778  * for all devices on the device list to the removed notifier to remove
1779  * the need for special case cleanup code.
1780  */
1781
1782 int unregister_netdevice_notifier(struct notifier_block *nb)
1783 {
1784         struct net *net;
1785         int err;
1786
1787         /* Close race with setup_net() and cleanup_net() */
1788         down_write(&pernet_ops_rwsem);
1789         rtnl_lock();
1790         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1791         if (err)
1792                 goto unlock;
1793
1794         for_each_net(net)
1795                 call_netdevice_unregister_net_notifiers(nb, net);
1796
1797 unlock:
1798         rtnl_unlock();
1799         up_write(&pernet_ops_rwsem);
1800         return err;
1801 }
1802 EXPORT_SYMBOL(unregister_netdevice_notifier);
1803
1804 static int __register_netdevice_notifier_net(struct net *net,
1805                                              struct notifier_block *nb,
1806                                              bool ignore_call_fail)
1807 {
1808         int err;
1809
1810         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1811         if (err)
1812                 return err;
1813         if (dev_boot_phase)
1814                 return 0;
1815
1816         err = call_netdevice_register_net_notifiers(nb, net);
1817         if (err && !ignore_call_fail)
1818                 goto chain_unregister;
1819
1820         return 0;
1821
1822 chain_unregister:
1823         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1824         return err;
1825 }
1826
1827 static int __unregister_netdevice_notifier_net(struct net *net,
1828                                                struct notifier_block *nb)
1829 {
1830         int err;
1831
1832         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1833         if (err)
1834                 return err;
1835
1836         call_netdevice_unregister_net_notifiers(nb, net);
1837         return 0;
1838 }
1839
1840 /**
1841  * register_netdevice_notifier_net - register a per-netns network notifier block
1842  * @net: network namespace
1843  * @nb: notifier
1844  *
1845  * Register a notifier to be called when network device events occur.
1846  * The notifier passed is linked into the kernel structures and must
1847  * not be reused until it has been unregistered. A negative errno code
1848  * is returned on a failure.
1849  *
1850  * When registered all registration and up events are replayed
1851  * to the new notifier to allow device to have a race free
1852  * view of the network device list.
1853  */
1854
1855 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1856 {
1857         int err;
1858
1859         rtnl_lock();
1860         err = __register_netdevice_notifier_net(net, nb, false);
1861         rtnl_unlock();
1862         return err;
1863 }
1864 EXPORT_SYMBOL(register_netdevice_notifier_net);
1865
1866 /**
1867  * unregister_netdevice_notifier_net - unregister a per-netns
1868  *                                     network notifier block
1869  * @net: network namespace
1870  * @nb: notifier
1871  *
1872  * Unregister a notifier previously registered by
1873  * register_netdevice_notifier_net(). The notifier is unlinked from the
1874  * kernel structures and may then be reused. A negative errno code
1875  * is returned on a failure.
1876  *
1877  * After unregistering unregister and down device events are synthesized
1878  * for all devices on the device list to the removed notifier to remove
1879  * the need for special case cleanup code.
1880  */
1881
1882 int unregister_netdevice_notifier_net(struct net *net,
1883                                       struct notifier_block *nb)
1884 {
1885         int err;
1886
1887         rtnl_lock();
1888         err = __unregister_netdevice_notifier_net(net, nb);
1889         rtnl_unlock();
1890         return err;
1891 }
1892 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1893
1894 static void __move_netdevice_notifier_net(struct net *src_net,
1895                                           struct net *dst_net,
1896                                           struct notifier_block *nb)
1897 {
1898         __unregister_netdevice_notifier_net(src_net, nb);
1899         __register_netdevice_notifier_net(dst_net, nb, true);
1900 }
1901
1902 int register_netdevice_notifier_dev_net(struct net_device *dev,
1903                                         struct notifier_block *nb,
1904                                         struct netdev_net_notifier *nn)
1905 {
1906         int err;
1907
1908         rtnl_lock();
1909         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1910         if (!err) {
1911                 nn->nb = nb;
1912                 list_add(&nn->list, &dev->net_notifier_list);
1913         }
1914         rtnl_unlock();
1915         return err;
1916 }
1917 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1918
1919 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1920                                           struct notifier_block *nb,
1921                                           struct netdev_net_notifier *nn)
1922 {
1923         int err;
1924
1925         rtnl_lock();
1926         list_del(&nn->list);
1927         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1928         rtnl_unlock();
1929         return err;
1930 }
1931 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1932
1933 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1934                                              struct net *net)
1935 {
1936         struct netdev_net_notifier *nn;
1937
1938         list_for_each_entry(nn, &dev->net_notifier_list, list)
1939                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1940 }
1941
1942 /**
1943  *      call_netdevice_notifiers_info - call all network notifier blocks
1944  *      @val: value passed unmodified to notifier function
1945  *      @info: notifier information data
1946  *
1947  *      Call all network notifier blocks.  Parameters and return value
1948  *      are as for raw_notifier_call_chain().
1949  */
1950
1951 int call_netdevice_notifiers_info(unsigned long val,
1952                                   struct netdev_notifier_info *info)
1953 {
1954         struct net *net = dev_net(info->dev);
1955         int ret;
1956
1957         ASSERT_RTNL();
1958
1959         /* Run per-netns notifier block chain first, then run the global one.
1960          * Hopefully, one day, the global one is going to be removed after
1961          * all notifier block registrators get converted to be per-netns.
1962          */
1963         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1964         if (ret & NOTIFY_STOP_MASK)
1965                 return ret;
1966         return raw_notifier_call_chain(&netdev_chain, val, info);
1967 }
1968
1969 /**
1970  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1971  *                                             for and rollback on error
1972  *      @val_up: value passed unmodified to notifier function
1973  *      @val_down: value passed unmodified to the notifier function when
1974  *                 recovering from an error on @val_up
1975  *      @info: notifier information data
1976  *
1977  *      Call all per-netns network notifier blocks, but not notifier blocks on
1978  *      the global notifier chain. Parameters and return value are as for
1979  *      raw_notifier_call_chain_robust().
1980  */
1981
1982 static int
1983 call_netdevice_notifiers_info_robust(unsigned long val_up,
1984                                      unsigned long val_down,
1985                                      struct netdev_notifier_info *info)
1986 {
1987         struct net *net = dev_net(info->dev);
1988
1989         ASSERT_RTNL();
1990
1991         return raw_notifier_call_chain_robust(&net->netdev_chain,
1992                                               val_up, val_down, info);
1993 }
1994
1995 static int call_netdevice_notifiers_extack(unsigned long val,
1996                                            struct net_device *dev,
1997                                            struct netlink_ext_ack *extack)
1998 {
1999         struct netdev_notifier_info info = {
2000                 .dev = dev,
2001                 .extack = extack,
2002         };
2003
2004         return call_netdevice_notifiers_info(val, &info);
2005 }
2006
2007 /**
2008  *      call_netdevice_notifiers - call all network notifier blocks
2009  *      @val: value passed unmodified to notifier function
2010  *      @dev: net_device pointer passed unmodified to notifier function
2011  *
2012  *      Call all network notifier blocks.  Parameters and return value
2013  *      are as for raw_notifier_call_chain().
2014  */
2015
2016 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2017 {
2018         return call_netdevice_notifiers_extack(val, dev, NULL);
2019 }
2020 EXPORT_SYMBOL(call_netdevice_notifiers);
2021
2022 /**
2023  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2024  *      @val: value passed unmodified to notifier function
2025  *      @dev: net_device pointer passed unmodified to notifier function
2026  *      @arg: additional u32 argument passed to the notifier function
2027  *
2028  *      Call all network notifier blocks.  Parameters and return value
2029  *      are as for raw_notifier_call_chain().
2030  */
2031 static int call_netdevice_notifiers_mtu(unsigned long val,
2032                                         struct net_device *dev, u32 arg)
2033 {
2034         struct netdev_notifier_info_ext info = {
2035                 .info.dev = dev,
2036                 .ext.mtu = arg,
2037         };
2038
2039         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2040
2041         return call_netdevice_notifiers_info(val, &info.info);
2042 }
2043
2044 #ifdef CONFIG_NET_INGRESS
2045 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2046
2047 void net_inc_ingress_queue(void)
2048 {
2049         static_branch_inc(&ingress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2052
2053 void net_dec_ingress_queue(void)
2054 {
2055         static_branch_dec(&ingress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2058 #endif
2059
2060 #ifdef CONFIG_NET_EGRESS
2061 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2062
2063 void net_inc_egress_queue(void)
2064 {
2065         static_branch_inc(&egress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2068
2069 void net_dec_egress_queue(void)
2070 {
2071         static_branch_dec(&egress_needed_key);
2072 }
2073 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2074 #endif
2075
2076 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2077 EXPORT_SYMBOL(netstamp_needed_key);
2078 #ifdef CONFIG_JUMP_LABEL
2079 static atomic_t netstamp_needed_deferred;
2080 static atomic_t netstamp_wanted;
2081 static void netstamp_clear(struct work_struct *work)
2082 {
2083         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2084         int wanted;
2085
2086         wanted = atomic_add_return(deferred, &netstamp_wanted);
2087         if (wanted > 0)
2088                 static_branch_enable(&netstamp_needed_key);
2089         else
2090                 static_branch_disable(&netstamp_needed_key);
2091 }
2092 static DECLARE_WORK(netstamp_work, netstamp_clear);
2093 #endif
2094
2095 void net_enable_timestamp(void)
2096 {
2097 #ifdef CONFIG_JUMP_LABEL
2098         int wanted = atomic_read(&netstamp_wanted);
2099
2100         while (wanted > 0) {
2101                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2102                         return;
2103         }
2104         atomic_inc(&netstamp_needed_deferred);
2105         schedule_work(&netstamp_work);
2106 #else
2107         static_branch_inc(&netstamp_needed_key);
2108 #endif
2109 }
2110 EXPORT_SYMBOL(net_enable_timestamp);
2111
2112 void net_disable_timestamp(void)
2113 {
2114 #ifdef CONFIG_JUMP_LABEL
2115         int wanted = atomic_read(&netstamp_wanted);
2116
2117         while (wanted > 1) {
2118                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2119                         return;
2120         }
2121         atomic_dec(&netstamp_needed_deferred);
2122         schedule_work(&netstamp_work);
2123 #else
2124         static_branch_dec(&netstamp_needed_key);
2125 #endif
2126 }
2127 EXPORT_SYMBOL(net_disable_timestamp);
2128
2129 static inline void net_timestamp_set(struct sk_buff *skb)
2130 {
2131         skb->tstamp = 0;
2132         skb->mono_delivery_time = 0;
2133         if (static_branch_unlikely(&netstamp_needed_key))
2134                 skb->tstamp = ktime_get_real();
2135 }
2136
2137 #define net_timestamp_check(COND, SKB)                          \
2138         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2139                 if ((COND) && !(SKB)->tstamp)                   \
2140                         (SKB)->tstamp = ktime_get_real();       \
2141         }                                                       \
2142
2143 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2144 {
2145         return __is_skb_forwardable(dev, skb, true);
2146 }
2147 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2148
2149 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2150                               bool check_mtu)
2151 {
2152         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2153
2154         if (likely(!ret)) {
2155                 skb->protocol = eth_type_trans(skb, dev);
2156                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2157         }
2158
2159         return ret;
2160 }
2161
2162 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2163 {
2164         return __dev_forward_skb2(dev, skb, true);
2165 }
2166 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2167
2168 /**
2169  * dev_forward_skb - loopback an skb to another netif
2170  *
2171  * @dev: destination network device
2172  * @skb: buffer to forward
2173  *
2174  * return values:
2175  *      NET_RX_SUCCESS  (no congestion)
2176  *      NET_RX_DROP     (packet was dropped, but freed)
2177  *
2178  * dev_forward_skb can be used for injecting an skb from the
2179  * start_xmit function of one device into the receive queue
2180  * of another device.
2181  *
2182  * The receiving device may be in another namespace, so
2183  * we have to clear all information in the skb that could
2184  * impact namespace isolation.
2185  */
2186 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2187 {
2188         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2189 }
2190 EXPORT_SYMBOL_GPL(dev_forward_skb);
2191
2192 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2193 {
2194         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2195 }
2196
2197 static inline int deliver_skb(struct sk_buff *skb,
2198                               struct packet_type *pt_prev,
2199                               struct net_device *orig_dev)
2200 {
2201         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2202                 return -ENOMEM;
2203         refcount_inc(&skb->users);
2204         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2205 }
2206
2207 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2208                                           struct packet_type **pt,
2209                                           struct net_device *orig_dev,
2210                                           __be16 type,
2211                                           struct list_head *ptype_list)
2212 {
2213         struct packet_type *ptype, *pt_prev = *pt;
2214
2215         list_for_each_entry_rcu(ptype, ptype_list, list) {
2216                 if (ptype->type != type)
2217                         continue;
2218                 if (pt_prev)
2219                         deliver_skb(skb, pt_prev, orig_dev);
2220                 pt_prev = ptype;
2221         }
2222         *pt = pt_prev;
2223 }
2224
2225 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2226 {
2227         if (!ptype->af_packet_priv || !skb->sk)
2228                 return false;
2229
2230         if (ptype->id_match)
2231                 return ptype->id_match(ptype, skb->sk);
2232         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2233                 return true;
2234
2235         return false;
2236 }
2237
2238 /**
2239  * dev_nit_active - return true if any network interface taps are in use
2240  *
2241  * @dev: network device to check for the presence of taps
2242  */
2243 bool dev_nit_active(struct net_device *dev)
2244 {
2245         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2246 }
2247 EXPORT_SYMBOL_GPL(dev_nit_active);
2248
2249 /*
2250  *      Support routine. Sends outgoing frames to any network
2251  *      taps currently in use.
2252  */
2253
2254 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2255 {
2256         struct packet_type *ptype;
2257         struct sk_buff *skb2 = NULL;
2258         struct packet_type *pt_prev = NULL;
2259         struct list_head *ptype_list = &ptype_all;
2260
2261         rcu_read_lock();
2262 again:
2263         list_for_each_entry_rcu(ptype, ptype_list, list) {
2264                 if (READ_ONCE(ptype->ignore_outgoing))
2265                         continue;
2266
2267                 /* Never send packets back to the socket
2268                  * they originated from - MvS (miquels@drinkel.ow.org)
2269                  */
2270                 if (skb_loop_sk(ptype, skb))
2271                         continue;
2272
2273                 if (pt_prev) {
2274                         deliver_skb(skb2, pt_prev, skb->dev);
2275                         pt_prev = ptype;
2276                         continue;
2277                 }
2278
2279                 /* need to clone skb, done only once */
2280                 skb2 = skb_clone(skb, GFP_ATOMIC);
2281                 if (!skb2)
2282                         goto out_unlock;
2283
2284                 net_timestamp_set(skb2);
2285
2286                 /* skb->nh should be correctly
2287                  * set by sender, so that the second statement is
2288                  * just protection against buggy protocols.
2289                  */
2290                 skb_reset_mac_header(skb2);
2291
2292                 if (skb_network_header(skb2) < skb2->data ||
2293                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2294                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2295                                              ntohs(skb2->protocol),
2296                                              dev->name);
2297                         skb_reset_network_header(skb2);
2298                 }
2299
2300                 skb2->transport_header = skb2->network_header;
2301                 skb2->pkt_type = PACKET_OUTGOING;
2302                 pt_prev = ptype;
2303         }
2304
2305         if (ptype_list == &ptype_all) {
2306                 ptype_list = &dev->ptype_all;
2307                 goto again;
2308         }
2309 out_unlock:
2310         if (pt_prev) {
2311                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2312                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2313                 else
2314                         kfree_skb(skb2);
2315         }
2316         rcu_read_unlock();
2317 }
2318 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2319
2320 /**
2321  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2322  * @dev: Network device
2323  * @txq: number of queues available
2324  *
2325  * If real_num_tx_queues is changed the tc mappings may no longer be
2326  * valid. To resolve this verify the tc mapping remains valid and if
2327  * not NULL the mapping. With no priorities mapping to this
2328  * offset/count pair it will no longer be used. In the worst case TC0
2329  * is invalid nothing can be done so disable priority mappings. If is
2330  * expected that drivers will fix this mapping if they can before
2331  * calling netif_set_real_num_tx_queues.
2332  */
2333 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2334 {
2335         int i;
2336         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2337
2338         /* If TC0 is invalidated disable TC mapping */
2339         if (tc->offset + tc->count > txq) {
2340                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2341                 dev->num_tc = 0;
2342                 return;
2343         }
2344
2345         /* Invalidated prio to tc mappings set to TC0 */
2346         for (i = 1; i < TC_BITMASK + 1; i++) {
2347                 int q = netdev_get_prio_tc_map(dev, i);
2348
2349                 tc = &dev->tc_to_txq[q];
2350                 if (tc->offset + tc->count > txq) {
2351                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2352                                     i, q);
2353                         netdev_set_prio_tc_map(dev, i, 0);
2354                 }
2355         }
2356 }
2357
2358 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2359 {
2360         if (dev->num_tc) {
2361                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2362                 int i;
2363
2364                 /* walk through the TCs and see if it falls into any of them */
2365                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2366                         if ((txq - tc->offset) < tc->count)
2367                                 return i;
2368                 }
2369
2370                 /* didn't find it, just return -1 to indicate no match */
2371                 return -1;
2372         }
2373
2374         return 0;
2375 }
2376 EXPORT_SYMBOL(netdev_txq_to_tc);
2377
2378 #ifdef CONFIG_XPS
2379 static struct static_key xps_needed __read_mostly;
2380 static struct static_key xps_rxqs_needed __read_mostly;
2381 static DEFINE_MUTEX(xps_map_mutex);
2382 #define xmap_dereference(P)             \
2383         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2384
2385 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2386                              struct xps_dev_maps *old_maps, int tci, u16 index)
2387 {
2388         struct xps_map *map = NULL;
2389         int pos;
2390
2391         map = xmap_dereference(dev_maps->attr_map[tci]);
2392         if (!map)
2393                 return false;
2394
2395         for (pos = map->len; pos--;) {
2396                 if (map->queues[pos] != index)
2397                         continue;
2398
2399                 if (map->len > 1) {
2400                         map->queues[pos] = map->queues[--map->len];
2401                         break;
2402                 }
2403
2404                 if (old_maps)
2405                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2406                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2407                 kfree_rcu(map, rcu);
2408                 return false;
2409         }
2410
2411         return true;
2412 }
2413
2414 static bool remove_xps_queue_cpu(struct net_device *dev,
2415                                  struct xps_dev_maps *dev_maps,
2416                                  int cpu, u16 offset, u16 count)
2417 {
2418         int num_tc = dev_maps->num_tc;
2419         bool active = false;
2420         int tci;
2421
2422         for (tci = cpu * num_tc; num_tc--; tci++) {
2423                 int i, j;
2424
2425                 for (i = count, j = offset; i--; j++) {
2426                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2427                                 break;
2428                 }
2429
2430                 active |= i < 0;
2431         }
2432
2433         return active;
2434 }
2435
2436 static void reset_xps_maps(struct net_device *dev,
2437                            struct xps_dev_maps *dev_maps,
2438                            enum xps_map_type type)
2439 {
2440         static_key_slow_dec_cpuslocked(&xps_needed);
2441         if (type == XPS_RXQS)
2442                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2443
2444         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2445
2446         kfree_rcu(dev_maps, rcu);
2447 }
2448
2449 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2450                            u16 offset, u16 count)
2451 {
2452         struct xps_dev_maps *dev_maps;
2453         bool active = false;
2454         int i, j;
2455
2456         dev_maps = xmap_dereference(dev->xps_maps[type]);
2457         if (!dev_maps)
2458                 return;
2459
2460         for (j = 0; j < dev_maps->nr_ids; j++)
2461                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2462         if (!active)
2463                 reset_xps_maps(dev, dev_maps, type);
2464
2465         if (type == XPS_CPUS) {
2466                 for (i = offset + (count - 1); count--; i--)
2467                         netdev_queue_numa_node_write(
2468                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2469         }
2470 }
2471
2472 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2473                                    u16 count)
2474 {
2475         if (!static_key_false(&xps_needed))
2476                 return;
2477
2478         cpus_read_lock();
2479         mutex_lock(&xps_map_mutex);
2480
2481         if (static_key_false(&xps_rxqs_needed))
2482                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2483
2484         clean_xps_maps(dev, XPS_CPUS, offset, count);
2485
2486         mutex_unlock(&xps_map_mutex);
2487         cpus_read_unlock();
2488 }
2489
2490 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2491 {
2492         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2493 }
2494
2495 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2496                                       u16 index, bool is_rxqs_map)
2497 {
2498         struct xps_map *new_map;
2499         int alloc_len = XPS_MIN_MAP_ALLOC;
2500         int i, pos;
2501
2502         for (pos = 0; map && pos < map->len; pos++) {
2503                 if (map->queues[pos] != index)
2504                         continue;
2505                 return map;
2506         }
2507
2508         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2509         if (map) {
2510                 if (pos < map->alloc_len)
2511                         return map;
2512
2513                 alloc_len = map->alloc_len * 2;
2514         }
2515
2516         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2517          *  map
2518          */
2519         if (is_rxqs_map)
2520                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2521         else
2522                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2523                                        cpu_to_node(attr_index));
2524         if (!new_map)
2525                 return NULL;
2526
2527         for (i = 0; i < pos; i++)
2528                 new_map->queues[i] = map->queues[i];
2529         new_map->alloc_len = alloc_len;
2530         new_map->len = pos;
2531
2532         return new_map;
2533 }
2534
2535 /* Copy xps maps at a given index */
2536 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2537                               struct xps_dev_maps *new_dev_maps, int index,
2538                               int tc, bool skip_tc)
2539 {
2540         int i, tci = index * dev_maps->num_tc;
2541         struct xps_map *map;
2542
2543         /* copy maps belonging to foreign traffic classes */
2544         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2545                 if (i == tc && skip_tc)
2546                         continue;
2547
2548                 /* fill in the new device map from the old device map */
2549                 map = xmap_dereference(dev_maps->attr_map[tci]);
2550                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2551         }
2552 }
2553
2554 /* Must be called under cpus_read_lock */
2555 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2556                           u16 index, enum xps_map_type type)
2557 {
2558         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2559         const unsigned long *online_mask = NULL;
2560         bool active = false, copy = false;
2561         int i, j, tci, numa_node_id = -2;
2562         int maps_sz, num_tc = 1, tc = 0;
2563         struct xps_map *map, *new_map;
2564         unsigned int nr_ids;
2565
2566         WARN_ON_ONCE(index >= dev->num_tx_queues);
2567
2568         if (dev->num_tc) {
2569                 /* Do not allow XPS on subordinate device directly */
2570                 num_tc = dev->num_tc;
2571                 if (num_tc < 0)
2572                         return -EINVAL;
2573
2574                 /* If queue belongs to subordinate dev use its map */
2575                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2576
2577                 tc = netdev_txq_to_tc(dev, index);
2578                 if (tc < 0)
2579                         return -EINVAL;
2580         }
2581
2582         mutex_lock(&xps_map_mutex);
2583
2584         dev_maps = xmap_dereference(dev->xps_maps[type]);
2585         if (type == XPS_RXQS) {
2586                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2587                 nr_ids = dev->num_rx_queues;
2588         } else {
2589                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2590                 if (num_possible_cpus() > 1)
2591                         online_mask = cpumask_bits(cpu_online_mask);
2592                 nr_ids = nr_cpu_ids;
2593         }
2594
2595         if (maps_sz < L1_CACHE_BYTES)
2596                 maps_sz = L1_CACHE_BYTES;
2597
2598         /* The old dev_maps could be larger or smaller than the one we're
2599          * setting up now, as dev->num_tc or nr_ids could have been updated in
2600          * between. We could try to be smart, but let's be safe instead and only
2601          * copy foreign traffic classes if the two map sizes match.
2602          */
2603         if (dev_maps &&
2604             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2605                 copy = true;
2606
2607         /* allocate memory for queue storage */
2608         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2609              j < nr_ids;) {
2610                 if (!new_dev_maps) {
2611                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2612                         if (!new_dev_maps) {
2613                                 mutex_unlock(&xps_map_mutex);
2614                                 return -ENOMEM;
2615                         }
2616
2617                         new_dev_maps->nr_ids = nr_ids;
2618                         new_dev_maps->num_tc = num_tc;
2619                 }
2620
2621                 tci = j * num_tc + tc;
2622                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2623
2624                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2625                 if (!map)
2626                         goto error;
2627
2628                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2629         }
2630
2631         if (!new_dev_maps)
2632                 goto out_no_new_maps;
2633
2634         if (!dev_maps) {
2635                 /* Increment static keys at most once per type */
2636                 static_key_slow_inc_cpuslocked(&xps_needed);
2637                 if (type == XPS_RXQS)
2638                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2639         }
2640
2641         for (j = 0; j < nr_ids; j++) {
2642                 bool skip_tc = false;
2643
2644                 tci = j * num_tc + tc;
2645                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2646                     netif_attr_test_online(j, online_mask, nr_ids)) {
2647                         /* add tx-queue to CPU/rx-queue maps */
2648                         int pos = 0;
2649
2650                         skip_tc = true;
2651
2652                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2653                         while ((pos < map->len) && (map->queues[pos] != index))
2654                                 pos++;
2655
2656                         if (pos == map->len)
2657                                 map->queues[map->len++] = index;
2658 #ifdef CONFIG_NUMA
2659                         if (type == XPS_CPUS) {
2660                                 if (numa_node_id == -2)
2661                                         numa_node_id = cpu_to_node(j);
2662                                 else if (numa_node_id != cpu_to_node(j))
2663                                         numa_node_id = -1;
2664                         }
2665 #endif
2666                 }
2667
2668                 if (copy)
2669                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2670                                           skip_tc);
2671         }
2672
2673         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2674
2675         /* Cleanup old maps */
2676         if (!dev_maps)
2677                 goto out_no_old_maps;
2678
2679         for (j = 0; j < dev_maps->nr_ids; j++) {
2680                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2681                         map = xmap_dereference(dev_maps->attr_map[tci]);
2682                         if (!map)
2683                                 continue;
2684
2685                         if (copy) {
2686                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2687                                 if (map == new_map)
2688                                         continue;
2689                         }
2690
2691                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2692                         kfree_rcu(map, rcu);
2693                 }
2694         }
2695
2696         old_dev_maps = dev_maps;
2697
2698 out_no_old_maps:
2699         dev_maps = new_dev_maps;
2700         active = true;
2701
2702 out_no_new_maps:
2703         if (type == XPS_CPUS)
2704                 /* update Tx queue numa node */
2705                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2706                                              (numa_node_id >= 0) ?
2707                                              numa_node_id : NUMA_NO_NODE);
2708
2709         if (!dev_maps)
2710                 goto out_no_maps;
2711
2712         /* removes tx-queue from unused CPUs/rx-queues */
2713         for (j = 0; j < dev_maps->nr_ids; j++) {
2714                 tci = j * dev_maps->num_tc;
2715
2716                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2717                         if (i == tc &&
2718                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2719                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2720                                 continue;
2721
2722                         active |= remove_xps_queue(dev_maps,
2723                                                    copy ? old_dev_maps : NULL,
2724                                                    tci, index);
2725                 }
2726         }
2727
2728         if (old_dev_maps)
2729                 kfree_rcu(old_dev_maps, rcu);
2730
2731         /* free map if not active */
2732         if (!active)
2733                 reset_xps_maps(dev, dev_maps, type);
2734
2735 out_no_maps:
2736         mutex_unlock(&xps_map_mutex);
2737
2738         return 0;
2739 error:
2740         /* remove any maps that we added */
2741         for (j = 0; j < nr_ids; j++) {
2742                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2743                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2744                         map = copy ?
2745                               xmap_dereference(dev_maps->attr_map[tci]) :
2746                               NULL;
2747                         if (new_map && new_map != map)
2748                                 kfree(new_map);
2749                 }
2750         }
2751
2752         mutex_unlock(&xps_map_mutex);
2753
2754         kfree(new_dev_maps);
2755         return -ENOMEM;
2756 }
2757 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2758
2759 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2760                         u16 index)
2761 {
2762         int ret;
2763
2764         cpus_read_lock();
2765         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2766         cpus_read_unlock();
2767
2768         return ret;
2769 }
2770 EXPORT_SYMBOL(netif_set_xps_queue);
2771
2772 #endif
2773 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2774 {
2775         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2776
2777         /* Unbind any subordinate channels */
2778         while (txq-- != &dev->_tx[0]) {
2779                 if (txq->sb_dev)
2780                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2781         }
2782 }
2783
2784 void netdev_reset_tc(struct net_device *dev)
2785 {
2786 #ifdef CONFIG_XPS
2787         netif_reset_xps_queues_gt(dev, 0);
2788 #endif
2789         netdev_unbind_all_sb_channels(dev);
2790
2791         /* Reset TC configuration of device */
2792         dev->num_tc = 0;
2793         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2794         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2795 }
2796 EXPORT_SYMBOL(netdev_reset_tc);
2797
2798 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2799 {
2800         if (tc >= dev->num_tc)
2801                 return -EINVAL;
2802
2803 #ifdef CONFIG_XPS
2804         netif_reset_xps_queues(dev, offset, count);
2805 #endif
2806         dev->tc_to_txq[tc].count = count;
2807         dev->tc_to_txq[tc].offset = offset;
2808         return 0;
2809 }
2810 EXPORT_SYMBOL(netdev_set_tc_queue);
2811
2812 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2813 {
2814         if (num_tc > TC_MAX_QUEUE)
2815                 return -EINVAL;
2816
2817 #ifdef CONFIG_XPS
2818         netif_reset_xps_queues_gt(dev, 0);
2819 #endif
2820         netdev_unbind_all_sb_channels(dev);
2821
2822         dev->num_tc = num_tc;
2823         return 0;
2824 }
2825 EXPORT_SYMBOL(netdev_set_num_tc);
2826
2827 void netdev_unbind_sb_channel(struct net_device *dev,
2828                               struct net_device *sb_dev)
2829 {
2830         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2831
2832 #ifdef CONFIG_XPS
2833         netif_reset_xps_queues_gt(sb_dev, 0);
2834 #endif
2835         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2836         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2837
2838         while (txq-- != &dev->_tx[0]) {
2839                 if (txq->sb_dev == sb_dev)
2840                         txq->sb_dev = NULL;
2841         }
2842 }
2843 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2844
2845 int netdev_bind_sb_channel_queue(struct net_device *dev,
2846                                  struct net_device *sb_dev,
2847                                  u8 tc, u16 count, u16 offset)
2848 {
2849         /* Make certain the sb_dev and dev are already configured */
2850         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2851                 return -EINVAL;
2852
2853         /* We cannot hand out queues we don't have */
2854         if ((offset + count) > dev->real_num_tx_queues)
2855                 return -EINVAL;
2856
2857         /* Record the mapping */
2858         sb_dev->tc_to_txq[tc].count = count;
2859         sb_dev->tc_to_txq[tc].offset = offset;
2860
2861         /* Provide a way for Tx queue to find the tc_to_txq map or
2862          * XPS map for itself.
2863          */
2864         while (count--)
2865                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2866
2867         return 0;
2868 }
2869 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2870
2871 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2872 {
2873         /* Do not use a multiqueue device to represent a subordinate channel */
2874         if (netif_is_multiqueue(dev))
2875                 return -ENODEV;
2876
2877         /* We allow channels 1 - 32767 to be used for subordinate channels.
2878          * Channel 0 is meant to be "native" mode and used only to represent
2879          * the main root device. We allow writing 0 to reset the device back
2880          * to normal mode after being used as a subordinate channel.
2881          */
2882         if (channel > S16_MAX)
2883                 return -EINVAL;
2884
2885         dev->num_tc = -channel;
2886
2887         return 0;
2888 }
2889 EXPORT_SYMBOL(netdev_set_sb_channel);
2890
2891 /*
2892  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2893  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2894  */
2895 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2896 {
2897         bool disabling;
2898         int rc;
2899
2900         disabling = txq < dev->real_num_tx_queues;
2901
2902         if (txq < 1 || txq > dev->num_tx_queues)
2903                 return -EINVAL;
2904
2905         if (dev->reg_state == NETREG_REGISTERED ||
2906             dev->reg_state == NETREG_UNREGISTERING) {
2907                 ASSERT_RTNL();
2908
2909                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2910                                                   txq);
2911                 if (rc)
2912                         return rc;
2913
2914                 if (dev->num_tc)
2915                         netif_setup_tc(dev, txq);
2916
2917                 dev_qdisc_change_real_num_tx(dev, txq);
2918
2919                 dev->real_num_tx_queues = txq;
2920
2921                 if (disabling) {
2922                         synchronize_net();
2923                         qdisc_reset_all_tx_gt(dev, txq);
2924 #ifdef CONFIG_XPS
2925                         netif_reset_xps_queues_gt(dev, txq);
2926 #endif
2927                 }
2928         } else {
2929                 dev->real_num_tx_queues = txq;
2930         }
2931
2932         return 0;
2933 }
2934 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2935
2936 #ifdef CONFIG_SYSFS
2937 /**
2938  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2939  *      @dev: Network device
2940  *      @rxq: Actual number of RX queues
2941  *
2942  *      This must be called either with the rtnl_lock held or before
2943  *      registration of the net device.  Returns 0 on success, or a
2944  *      negative error code.  If called before registration, it always
2945  *      succeeds.
2946  */
2947 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2948 {
2949         int rc;
2950
2951         if (rxq < 1 || rxq > dev->num_rx_queues)
2952                 return -EINVAL;
2953
2954         if (dev->reg_state == NETREG_REGISTERED) {
2955                 ASSERT_RTNL();
2956
2957                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2958                                                   rxq);
2959                 if (rc)
2960                         return rc;
2961         }
2962
2963         dev->real_num_rx_queues = rxq;
2964         return 0;
2965 }
2966 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2967 #endif
2968
2969 /**
2970  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2971  *      @dev: Network device
2972  *      @txq: Actual number of TX queues
2973  *      @rxq: Actual number of RX queues
2974  *
2975  *      Set the real number of both TX and RX queues.
2976  *      Does nothing if the number of queues is already correct.
2977  */
2978 int netif_set_real_num_queues(struct net_device *dev,
2979                               unsigned int txq, unsigned int rxq)
2980 {
2981         unsigned int old_rxq = dev->real_num_rx_queues;
2982         int err;
2983
2984         if (txq < 1 || txq > dev->num_tx_queues ||
2985             rxq < 1 || rxq > dev->num_rx_queues)
2986                 return -EINVAL;
2987
2988         /* Start from increases, so the error path only does decreases -
2989          * decreases can't fail.
2990          */
2991         if (rxq > dev->real_num_rx_queues) {
2992                 err = netif_set_real_num_rx_queues(dev, rxq);
2993                 if (err)
2994                         return err;
2995         }
2996         if (txq > dev->real_num_tx_queues) {
2997                 err = netif_set_real_num_tx_queues(dev, txq);
2998                 if (err)
2999                         goto undo_rx;
3000         }
3001         if (rxq < dev->real_num_rx_queues)
3002                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3003         if (txq < dev->real_num_tx_queues)
3004                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3005
3006         return 0;
3007 undo_rx:
3008         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3009         return err;
3010 }
3011 EXPORT_SYMBOL(netif_set_real_num_queues);
3012
3013 /**
3014  * netif_set_tso_max_size() - set the max size of TSO frames supported
3015  * @dev:        netdev to update
3016  * @size:       max skb->len of a TSO frame
3017  *
3018  * Set the limit on the size of TSO super-frames the device can handle.
3019  * Unless explicitly set the stack will assume the value of
3020  * %GSO_LEGACY_MAX_SIZE.
3021  */
3022 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3023 {
3024         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3025         if (size < READ_ONCE(dev->gso_max_size))
3026                 netif_set_gso_max_size(dev, size);
3027         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3028                 netif_set_gso_ipv4_max_size(dev, size);
3029 }
3030 EXPORT_SYMBOL(netif_set_tso_max_size);
3031
3032 /**
3033  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3034  * @dev:        netdev to update
3035  * @segs:       max number of TCP segments
3036  *
3037  * Set the limit on the number of TCP segments the device can generate from
3038  * a single TSO super-frame.
3039  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3040  */
3041 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3042 {
3043         dev->tso_max_segs = segs;
3044         if (segs < READ_ONCE(dev->gso_max_segs))
3045                 netif_set_gso_max_segs(dev, segs);
3046 }
3047 EXPORT_SYMBOL(netif_set_tso_max_segs);
3048
3049 /**
3050  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3051  * @to:         netdev to update
3052  * @from:       netdev from which to copy the limits
3053  */
3054 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3055 {
3056         netif_set_tso_max_size(to, from->tso_max_size);
3057         netif_set_tso_max_segs(to, from->tso_max_segs);
3058 }
3059 EXPORT_SYMBOL(netif_inherit_tso_max);
3060
3061 /**
3062  * netif_get_num_default_rss_queues - default number of RSS queues
3063  *
3064  * Default value is the number of physical cores if there are only 1 or 2, or
3065  * divided by 2 if there are more.
3066  */
3067 int netif_get_num_default_rss_queues(void)
3068 {
3069         cpumask_var_t cpus;
3070         int cpu, count = 0;
3071
3072         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3073                 return 1;
3074
3075         cpumask_copy(cpus, cpu_online_mask);
3076         for_each_cpu(cpu, cpus) {
3077                 ++count;
3078                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3079         }
3080         free_cpumask_var(cpus);
3081
3082         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3083 }
3084 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3085
3086 static void __netif_reschedule(struct Qdisc *q)
3087 {
3088         struct softnet_data *sd;
3089         unsigned long flags;
3090
3091         local_irq_save(flags);
3092         sd = this_cpu_ptr(&softnet_data);
3093         q->next_sched = NULL;
3094         *sd->output_queue_tailp = q;
3095         sd->output_queue_tailp = &q->next_sched;
3096         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3097         local_irq_restore(flags);
3098 }
3099
3100 void __netif_schedule(struct Qdisc *q)
3101 {
3102         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3103                 __netif_reschedule(q);
3104 }
3105 EXPORT_SYMBOL(__netif_schedule);
3106
3107 struct dev_kfree_skb_cb {
3108         enum skb_drop_reason reason;
3109 };
3110
3111 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3112 {
3113         return (struct dev_kfree_skb_cb *)skb->cb;
3114 }
3115
3116 void netif_schedule_queue(struct netdev_queue *txq)
3117 {
3118         rcu_read_lock();
3119         if (!netif_xmit_stopped(txq)) {
3120                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3121
3122                 __netif_schedule(q);
3123         }
3124         rcu_read_unlock();
3125 }
3126 EXPORT_SYMBOL(netif_schedule_queue);
3127
3128 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3129 {
3130         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3131                 struct Qdisc *q;
3132
3133                 rcu_read_lock();
3134                 q = rcu_dereference(dev_queue->qdisc);
3135                 __netif_schedule(q);
3136                 rcu_read_unlock();
3137         }
3138 }
3139 EXPORT_SYMBOL(netif_tx_wake_queue);
3140
3141 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3142 {
3143         unsigned long flags;
3144
3145         if (unlikely(!skb))
3146                 return;
3147
3148         if (likely(refcount_read(&skb->users) == 1)) {
3149                 smp_rmb();
3150                 refcount_set(&skb->users, 0);
3151         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3152                 return;
3153         }
3154         get_kfree_skb_cb(skb)->reason = reason;
3155         local_irq_save(flags);
3156         skb->next = __this_cpu_read(softnet_data.completion_queue);
3157         __this_cpu_write(softnet_data.completion_queue, skb);
3158         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3159         local_irq_restore(flags);
3160 }
3161 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3162
3163 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3164 {
3165         if (in_hardirq() || irqs_disabled())
3166                 dev_kfree_skb_irq_reason(skb, reason);
3167         else
3168                 kfree_skb_reason(skb, reason);
3169 }
3170 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3171
3172
3173 /**
3174  * netif_device_detach - mark device as removed
3175  * @dev: network device
3176  *
3177  * Mark device as removed from system and therefore no longer available.
3178  */
3179 void netif_device_detach(struct net_device *dev)
3180 {
3181         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3182             netif_running(dev)) {
3183                 netif_tx_stop_all_queues(dev);
3184         }
3185 }
3186 EXPORT_SYMBOL(netif_device_detach);
3187
3188 /**
3189  * netif_device_attach - mark device as attached
3190  * @dev: network device
3191  *
3192  * Mark device as attached from system and restart if needed.
3193  */
3194 void netif_device_attach(struct net_device *dev)
3195 {
3196         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3197             netif_running(dev)) {
3198                 netif_tx_wake_all_queues(dev);
3199                 __netdev_watchdog_up(dev);
3200         }
3201 }
3202 EXPORT_SYMBOL(netif_device_attach);
3203
3204 /*
3205  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3206  * to be used as a distribution range.
3207  */
3208 static u16 skb_tx_hash(const struct net_device *dev,
3209                        const struct net_device *sb_dev,
3210                        struct sk_buff *skb)
3211 {
3212         u32 hash;
3213         u16 qoffset = 0;
3214         u16 qcount = dev->real_num_tx_queues;
3215
3216         if (dev->num_tc) {
3217                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3218
3219                 qoffset = sb_dev->tc_to_txq[tc].offset;
3220                 qcount = sb_dev->tc_to_txq[tc].count;
3221                 if (unlikely(!qcount)) {
3222                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3223                                              sb_dev->name, qoffset, tc);
3224                         qoffset = 0;
3225                         qcount = dev->real_num_tx_queues;
3226                 }
3227         }
3228
3229         if (skb_rx_queue_recorded(skb)) {
3230                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3231                 hash = skb_get_rx_queue(skb);
3232                 if (hash >= qoffset)
3233                         hash -= qoffset;
3234                 while (unlikely(hash >= qcount))
3235                         hash -= qcount;
3236                 return hash + qoffset;
3237         }
3238
3239         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3240 }
3241
3242 void skb_warn_bad_offload(const struct sk_buff *skb)
3243 {
3244         static const netdev_features_t null_features;
3245         struct net_device *dev = skb->dev;
3246         const char *name = "";
3247
3248         if (!net_ratelimit())
3249                 return;
3250
3251         if (dev) {
3252                 if (dev->dev.parent)
3253                         name = dev_driver_string(dev->dev.parent);
3254                 else
3255                         name = netdev_name(dev);
3256         }
3257         skb_dump(KERN_WARNING, skb, false);
3258         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3259              name, dev ? &dev->features : &null_features,
3260              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3261 }
3262
3263 /*
3264  * Invalidate hardware checksum when packet is to be mangled, and
3265  * complete checksum manually on outgoing path.
3266  */
3267 int skb_checksum_help(struct sk_buff *skb)
3268 {
3269         __wsum csum;
3270         int ret = 0, offset;
3271
3272         if (skb->ip_summed == CHECKSUM_COMPLETE)
3273                 goto out_set_summed;
3274
3275         if (unlikely(skb_is_gso(skb))) {
3276                 skb_warn_bad_offload(skb);
3277                 return -EINVAL;
3278         }
3279
3280         /* Before computing a checksum, we should make sure no frag could
3281          * be modified by an external entity : checksum could be wrong.
3282          */
3283         if (skb_has_shared_frag(skb)) {
3284                 ret = __skb_linearize(skb);
3285                 if (ret)
3286                         goto out;
3287         }
3288
3289         offset = skb_checksum_start_offset(skb);
3290         ret = -EINVAL;
3291         if (unlikely(offset >= skb_headlen(skb))) {
3292                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3293                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3294                           offset, skb_headlen(skb));
3295                 goto out;
3296         }
3297         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3298
3299         offset += skb->csum_offset;
3300         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3301                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3302                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3303                           offset + sizeof(__sum16), skb_headlen(skb));
3304                 goto out;
3305         }
3306         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3307         if (ret)
3308                 goto out;
3309
3310         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3311 out_set_summed:
3312         skb->ip_summed = CHECKSUM_NONE;
3313 out:
3314         return ret;
3315 }
3316 EXPORT_SYMBOL(skb_checksum_help);
3317
3318 int skb_crc32c_csum_help(struct sk_buff *skb)
3319 {
3320         __le32 crc32c_csum;
3321         int ret = 0, offset, start;
3322
3323         if (skb->ip_summed != CHECKSUM_PARTIAL)
3324                 goto out;
3325
3326         if (unlikely(skb_is_gso(skb)))
3327                 goto out;
3328
3329         /* Before computing a checksum, we should make sure no frag could
3330          * be modified by an external entity : checksum could be wrong.
3331          */
3332         if (unlikely(skb_has_shared_frag(skb))) {
3333                 ret = __skb_linearize(skb);
3334                 if (ret)
3335                         goto out;
3336         }
3337         start = skb_checksum_start_offset(skb);
3338         offset = start + offsetof(struct sctphdr, checksum);
3339         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3340                 ret = -EINVAL;
3341                 goto out;
3342         }
3343
3344         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3345         if (ret)
3346                 goto out;
3347
3348         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3349                                                   skb->len - start, ~(__u32)0,
3350                                                   crc32c_csum_stub));
3351         *(__le32 *)(skb->data + offset) = crc32c_csum;
3352         skb_reset_csum_not_inet(skb);
3353 out:
3354         return ret;
3355 }
3356
3357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3358 {
3359         __be16 type = skb->protocol;
3360
3361         /* Tunnel gso handlers can set protocol to ethernet. */
3362         if (type == htons(ETH_P_TEB)) {
3363                 struct ethhdr *eth;
3364
3365                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3366                         return 0;
3367
3368                 eth = (struct ethhdr *)skb->data;
3369                 type = eth->h_proto;
3370         }
3371
3372         return vlan_get_protocol_and_depth(skb, type, depth);
3373 }
3374
3375
3376 /* Take action when hardware reception checksum errors are detected. */
3377 #ifdef CONFIG_BUG
3378 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379 {
3380         netdev_err(dev, "hw csum failure\n");
3381         skb_dump(KERN_ERR, skb, true);
3382         dump_stack();
3383 }
3384
3385 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3386 {
3387         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3388 }
3389 EXPORT_SYMBOL(netdev_rx_csum_fault);
3390 #endif
3391
3392 /* XXX: check that highmem exists at all on the given machine. */
3393 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3394 {
3395 #ifdef CONFIG_HIGHMEM
3396         int i;
3397
3398         if (!(dev->features & NETIF_F_HIGHDMA)) {
3399                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3400                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3401
3402                         if (PageHighMem(skb_frag_page(frag)))
3403                                 return 1;
3404                 }
3405         }
3406 #endif
3407         return 0;
3408 }
3409
3410 /* If MPLS offload request, verify we are testing hardware MPLS features
3411  * instead of standard features for the netdev.
3412  */
3413 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3414 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3415                                            netdev_features_t features,
3416                                            __be16 type)
3417 {
3418         if (eth_p_mpls(type))
3419                 features &= skb->dev->mpls_features;
3420
3421         return features;
3422 }
3423 #else
3424 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3425                                            netdev_features_t features,
3426                                            __be16 type)
3427 {
3428         return features;
3429 }
3430 #endif
3431
3432 static netdev_features_t harmonize_features(struct sk_buff *skb,
3433         netdev_features_t features)
3434 {
3435         __be16 type;
3436
3437         type = skb_network_protocol(skb, NULL);
3438         features = net_mpls_features(skb, features, type);
3439
3440         if (skb->ip_summed != CHECKSUM_NONE &&
3441             !can_checksum_protocol(features, type)) {
3442                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3443         }
3444         if (illegal_highdma(skb->dev, skb))
3445                 features &= ~NETIF_F_SG;
3446
3447         return features;
3448 }
3449
3450 netdev_features_t passthru_features_check(struct sk_buff *skb,
3451                                           struct net_device *dev,
3452                                           netdev_features_t features)
3453 {
3454         return features;
3455 }
3456 EXPORT_SYMBOL(passthru_features_check);
3457
3458 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3459                                              struct net_device *dev,
3460                                              netdev_features_t features)
3461 {
3462         return vlan_features_check(skb, features);
3463 }
3464
3465 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3466                                             struct net_device *dev,
3467                                             netdev_features_t features)
3468 {
3469         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3470
3471         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3472                 return features & ~NETIF_F_GSO_MASK;
3473
3474         if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3475                 return features & ~NETIF_F_GSO_MASK;
3476
3477         if (!skb_shinfo(skb)->gso_type) {
3478                 skb_warn_bad_offload(skb);
3479                 return features & ~NETIF_F_GSO_MASK;
3480         }
3481
3482         /* Support for GSO partial features requires software
3483          * intervention before we can actually process the packets
3484          * so we need to strip support for any partial features now
3485          * and we can pull them back in after we have partially
3486          * segmented the frame.
3487          */
3488         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3489                 features &= ~dev->gso_partial_features;
3490
3491         /* Make sure to clear the IPv4 ID mangling feature if the
3492          * IPv4 header has the potential to be fragmented.
3493          */
3494         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3495                 struct iphdr *iph = skb->encapsulation ?
3496                                     inner_ip_hdr(skb) : ip_hdr(skb);
3497
3498                 if (!(iph->frag_off & htons(IP_DF)))
3499                         features &= ~NETIF_F_TSO_MANGLEID;
3500         }
3501
3502         return features;
3503 }
3504
3505 netdev_features_t netif_skb_features(struct sk_buff *skb)
3506 {
3507         struct net_device *dev = skb->dev;
3508         netdev_features_t features = dev->features;
3509
3510         if (skb_is_gso(skb))
3511                 features = gso_features_check(skb, dev, features);
3512
3513         /* If encapsulation offload request, verify we are testing
3514          * hardware encapsulation features instead of standard
3515          * features for the netdev
3516          */
3517         if (skb->encapsulation)
3518                 features &= dev->hw_enc_features;
3519
3520         if (skb_vlan_tagged(skb))
3521                 features = netdev_intersect_features(features,
3522                                                      dev->vlan_features |
3523                                                      NETIF_F_HW_VLAN_CTAG_TX |
3524                                                      NETIF_F_HW_VLAN_STAG_TX);
3525
3526         if (dev->netdev_ops->ndo_features_check)
3527                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3528                                                                 features);
3529         else
3530                 features &= dflt_features_check(skb, dev, features);
3531
3532         return harmonize_features(skb, features);
3533 }
3534 EXPORT_SYMBOL(netif_skb_features);
3535
3536 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3537                     struct netdev_queue *txq, bool more)
3538 {
3539         unsigned int len;
3540         int rc;
3541
3542         if (dev_nit_active(dev))
3543                 dev_queue_xmit_nit(skb, dev);
3544
3545         len = skb->len;
3546         trace_net_dev_start_xmit(skb, dev);
3547         rc = netdev_start_xmit(skb, dev, txq, more);
3548         trace_net_dev_xmit(skb, rc, dev, len);
3549
3550         return rc;
3551 }
3552
3553 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3554                                     struct netdev_queue *txq, int *ret)
3555 {
3556         struct sk_buff *skb = first;
3557         int rc = NETDEV_TX_OK;
3558
3559         while (skb) {
3560                 struct sk_buff *next = skb->next;
3561
3562                 skb_mark_not_on_list(skb);
3563                 rc = xmit_one(skb, dev, txq, next != NULL);
3564                 if (unlikely(!dev_xmit_complete(rc))) {
3565                         skb->next = next;
3566                         goto out;
3567                 }
3568
3569                 skb = next;
3570                 if (netif_tx_queue_stopped(txq) && skb) {
3571                         rc = NETDEV_TX_BUSY;
3572                         break;
3573                 }
3574         }
3575
3576 out:
3577         *ret = rc;
3578         return skb;
3579 }
3580
3581 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3582                                           netdev_features_t features)
3583 {
3584         if (skb_vlan_tag_present(skb) &&
3585             !vlan_hw_offload_capable(features, skb->vlan_proto))
3586                 skb = __vlan_hwaccel_push_inside(skb);
3587         return skb;
3588 }
3589
3590 int skb_csum_hwoffload_help(struct sk_buff *skb,
3591                             const netdev_features_t features)
3592 {
3593         if (unlikely(skb_csum_is_sctp(skb)))
3594                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3595                         skb_crc32c_csum_help(skb);
3596
3597         if (features & NETIF_F_HW_CSUM)
3598                 return 0;
3599
3600         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3601                 switch (skb->csum_offset) {
3602                 case offsetof(struct tcphdr, check):
3603                 case offsetof(struct udphdr, check):
3604                         return 0;
3605                 }
3606         }
3607
3608         return skb_checksum_help(skb);
3609 }
3610 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3611
3612 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3613 {
3614         netdev_features_t features;
3615
3616         features = netif_skb_features(skb);
3617         skb = validate_xmit_vlan(skb, features);
3618         if (unlikely(!skb))
3619                 goto out_null;
3620
3621         skb = sk_validate_xmit_skb(skb, dev);
3622         if (unlikely(!skb))
3623                 goto out_null;
3624
3625         if (netif_needs_gso(skb, features)) {
3626                 struct sk_buff *segs;
3627
3628                 segs = skb_gso_segment(skb, features);
3629                 if (IS_ERR(segs)) {
3630                         goto out_kfree_skb;
3631                 } else if (segs) {
3632                         consume_skb(skb);
3633                         skb = segs;
3634                 }
3635         } else {
3636                 if (skb_needs_linearize(skb, features) &&
3637                     __skb_linearize(skb))
3638                         goto out_kfree_skb;
3639
3640                 /* If packet is not checksummed and device does not
3641                  * support checksumming for this protocol, complete
3642                  * checksumming here.
3643                  */
3644                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3645                         if (skb->encapsulation)
3646                                 skb_set_inner_transport_header(skb,
3647                                                                skb_checksum_start_offset(skb));
3648                         else
3649                                 skb_set_transport_header(skb,
3650                                                          skb_checksum_start_offset(skb));
3651                         if (skb_csum_hwoffload_help(skb, features))
3652                                 goto out_kfree_skb;
3653                 }
3654         }
3655
3656         skb = validate_xmit_xfrm(skb, features, again);
3657
3658         return skb;
3659
3660 out_kfree_skb:
3661         kfree_skb(skb);
3662 out_null:
3663         dev_core_stats_tx_dropped_inc(dev);
3664         return NULL;
3665 }
3666
3667 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3668 {
3669         struct sk_buff *next, *head = NULL, *tail;
3670
3671         for (; skb != NULL; skb = next) {
3672                 next = skb->next;
3673                 skb_mark_not_on_list(skb);
3674
3675                 /* in case skb wont be segmented, point to itself */
3676                 skb->prev = skb;
3677
3678                 skb = validate_xmit_skb(skb, dev, again);
3679                 if (!skb)
3680                         continue;
3681
3682                 if (!head)
3683                         head = skb;
3684                 else
3685                         tail->next = skb;
3686                 /* If skb was segmented, skb->prev points to
3687                  * the last segment. If not, it still contains skb.
3688                  */
3689                 tail = skb->prev;
3690         }
3691         return head;
3692 }
3693 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3694
3695 static void qdisc_pkt_len_init(struct sk_buff *skb)
3696 {
3697         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3698
3699         qdisc_skb_cb(skb)->pkt_len = skb->len;
3700
3701         /* To get more precise estimation of bytes sent on wire,
3702          * we add to pkt_len the headers size of all segments
3703          */
3704         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3705                 u16 gso_segs = shinfo->gso_segs;
3706                 unsigned int hdr_len;
3707
3708                 /* mac layer + network layer */
3709                 hdr_len = skb_transport_offset(skb);
3710
3711                 /* + transport layer */
3712                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3713                         const struct tcphdr *th;
3714                         struct tcphdr _tcphdr;
3715
3716                         th = skb_header_pointer(skb, hdr_len,
3717                                                 sizeof(_tcphdr), &_tcphdr);
3718                         if (likely(th))
3719                                 hdr_len += __tcp_hdrlen(th);
3720                 } else {
3721                         struct udphdr _udphdr;
3722
3723                         if (skb_header_pointer(skb, hdr_len,
3724                                                sizeof(_udphdr), &_udphdr))
3725                                 hdr_len += sizeof(struct udphdr);
3726                 }
3727
3728                 if (shinfo->gso_type & SKB_GSO_DODGY)
3729                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3730                                                 shinfo->gso_size);
3731
3732                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3733         }
3734 }
3735
3736 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3737                              struct sk_buff **to_free,
3738                              struct netdev_queue *txq)
3739 {
3740         int rc;
3741
3742         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3743         if (rc == NET_XMIT_SUCCESS)
3744                 trace_qdisc_enqueue(q, txq, skb);
3745         return rc;
3746 }
3747
3748 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3749                                  struct net_device *dev,
3750                                  struct netdev_queue *txq)
3751 {
3752         spinlock_t *root_lock = qdisc_lock(q);
3753         struct sk_buff *to_free = NULL;
3754         bool contended;
3755         int rc;
3756
3757         qdisc_calculate_pkt_len(skb, q);
3758
3759         tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3760
3761         if (q->flags & TCQ_F_NOLOCK) {
3762                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3763                     qdisc_run_begin(q)) {
3764                         /* Retest nolock_qdisc_is_empty() within the protection
3765                          * of q->seqlock to protect from racing with requeuing.
3766                          */
3767                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3768                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769                                 __qdisc_run(q);
3770                                 qdisc_run_end(q);
3771
3772                                 goto no_lock_out;
3773                         }
3774
3775                         qdisc_bstats_cpu_update(q, skb);
3776                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3777                             !nolock_qdisc_is_empty(q))
3778                                 __qdisc_run(q);
3779
3780                         qdisc_run_end(q);
3781                         return NET_XMIT_SUCCESS;
3782                 }
3783
3784                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3785                 qdisc_run(q);
3786
3787 no_lock_out:
3788                 if (unlikely(to_free))
3789                         kfree_skb_list_reason(to_free,
3790                                               tcf_get_drop_reason(to_free));
3791                 return rc;
3792         }
3793
3794         /*
3795          * Heuristic to force contended enqueues to serialize on a
3796          * separate lock before trying to get qdisc main lock.
3797          * This permits qdisc->running owner to get the lock more
3798          * often and dequeue packets faster.
3799          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3800          * and then other tasks will only enqueue packets. The packets will be
3801          * sent after the qdisc owner is scheduled again. To prevent this
3802          * scenario the task always serialize on the lock.
3803          */
3804         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3805         if (unlikely(contended))
3806                 spin_lock(&q->busylock);
3807
3808         spin_lock(root_lock);
3809         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3810                 __qdisc_drop(skb, &to_free);
3811                 rc = NET_XMIT_DROP;
3812         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3813                    qdisc_run_begin(q)) {
3814                 /*
3815                  * This is a work-conserving queue; there are no old skbs
3816                  * waiting to be sent out; and the qdisc is not running -
3817                  * xmit the skb directly.
3818                  */
3819
3820                 qdisc_bstats_update(q, skb);
3821
3822                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3823                         if (unlikely(contended)) {
3824                                 spin_unlock(&q->busylock);
3825                                 contended = false;
3826                         }
3827                         __qdisc_run(q);
3828                 }
3829
3830                 qdisc_run_end(q);
3831                 rc = NET_XMIT_SUCCESS;
3832         } else {
3833                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3834                 if (qdisc_run_begin(q)) {
3835                         if (unlikely(contended)) {
3836                                 spin_unlock(&q->busylock);
3837                                 contended = false;
3838                         }
3839                         __qdisc_run(q);
3840                         qdisc_run_end(q);
3841                 }
3842         }
3843         spin_unlock(root_lock);
3844         if (unlikely(to_free))
3845                 kfree_skb_list_reason(to_free,
3846                                       tcf_get_drop_reason(to_free));
3847         if (unlikely(contended))
3848                 spin_unlock(&q->busylock);
3849         return rc;
3850 }
3851
3852 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3853 static void skb_update_prio(struct sk_buff *skb)
3854 {
3855         const struct netprio_map *map;
3856         const struct sock *sk;
3857         unsigned int prioidx;
3858
3859         if (skb->priority)
3860                 return;
3861         map = rcu_dereference_bh(skb->dev->priomap);
3862         if (!map)
3863                 return;
3864         sk = skb_to_full_sk(skb);
3865         if (!sk)
3866                 return;
3867
3868         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3869
3870         if (prioidx < map->priomap_len)
3871                 skb->priority = map->priomap[prioidx];
3872 }
3873 #else
3874 #define skb_update_prio(skb)
3875 #endif
3876
3877 /**
3878  *      dev_loopback_xmit - loop back @skb
3879  *      @net: network namespace this loopback is happening in
3880  *      @sk:  sk needed to be a netfilter okfn
3881  *      @skb: buffer to transmit
3882  */
3883 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3884 {
3885         skb_reset_mac_header(skb);
3886         __skb_pull(skb, skb_network_offset(skb));
3887         skb->pkt_type = PACKET_LOOPBACK;
3888         if (skb->ip_summed == CHECKSUM_NONE)
3889                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3890         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3891         skb_dst_force(skb);
3892         netif_rx(skb);
3893         return 0;
3894 }
3895 EXPORT_SYMBOL(dev_loopback_xmit);
3896
3897 #ifdef CONFIG_NET_EGRESS
3898 static struct netdev_queue *
3899 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3900 {
3901         int qm = skb_get_queue_mapping(skb);
3902
3903         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3904 }
3905
3906 static bool netdev_xmit_txqueue_skipped(void)
3907 {
3908         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3909 }
3910
3911 void netdev_xmit_skip_txqueue(bool skip)
3912 {
3913         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3914 }
3915 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3916 #endif /* CONFIG_NET_EGRESS */
3917
3918 #ifdef CONFIG_NET_XGRESS
3919 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3920                   enum skb_drop_reason *drop_reason)
3921 {
3922         int ret = TC_ACT_UNSPEC;
3923 #ifdef CONFIG_NET_CLS_ACT
3924         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3925         struct tcf_result res;
3926
3927         if (!miniq)
3928                 return ret;
3929
3930         tc_skb_cb(skb)->mru = 0;
3931         tc_skb_cb(skb)->post_ct = false;
3932         tcf_set_drop_reason(skb, *drop_reason);
3933
3934         mini_qdisc_bstats_cpu_update(miniq, skb);
3935         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3936         /* Only tcf related quirks below. */
3937         switch (ret) {
3938         case TC_ACT_SHOT:
3939                 *drop_reason = tcf_get_drop_reason(skb);
3940                 mini_qdisc_qstats_cpu_drop(miniq);
3941                 break;
3942         case TC_ACT_OK:
3943         case TC_ACT_RECLASSIFY:
3944                 skb->tc_index = TC_H_MIN(res.classid);
3945                 break;
3946         }
3947 #endif /* CONFIG_NET_CLS_ACT */
3948         return ret;
3949 }
3950
3951 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3952
3953 void tcx_inc(void)
3954 {
3955         static_branch_inc(&tcx_needed_key);
3956 }
3957
3958 void tcx_dec(void)
3959 {
3960         static_branch_dec(&tcx_needed_key);
3961 }
3962
3963 static __always_inline enum tcx_action_base
3964 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3965         const bool needs_mac)
3966 {
3967         const struct bpf_mprog_fp *fp;
3968         const struct bpf_prog *prog;
3969         int ret = TCX_NEXT;
3970
3971         if (needs_mac)
3972                 __skb_push(skb, skb->mac_len);
3973         bpf_mprog_foreach_prog(entry, fp, prog) {
3974                 bpf_compute_data_pointers(skb);
3975                 ret = bpf_prog_run(prog, skb);
3976                 if (ret != TCX_NEXT)
3977                         break;
3978         }
3979         if (needs_mac)
3980                 __skb_pull(skb, skb->mac_len);
3981         return tcx_action_code(skb, ret);
3982 }
3983
3984 static __always_inline struct sk_buff *
3985 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3986                    struct net_device *orig_dev, bool *another)
3987 {
3988         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3989         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3990         int sch_ret;
3991
3992         if (!entry)
3993                 return skb;
3994         if (*pt_prev) {
3995                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3996                 *pt_prev = NULL;
3997         }
3998
3999         qdisc_skb_cb(skb)->pkt_len = skb->len;
4000         tcx_set_ingress(skb, true);
4001
4002         if (static_branch_unlikely(&tcx_needed_key)) {
4003                 sch_ret = tcx_run(entry, skb, true);
4004                 if (sch_ret != TC_ACT_UNSPEC)
4005                         goto ingress_verdict;
4006         }
4007         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4008 ingress_verdict:
4009         switch (sch_ret) {
4010         case TC_ACT_REDIRECT:
4011                 /* skb_mac_header check was done by BPF, so we can safely
4012                  * push the L2 header back before redirecting to another
4013                  * netdev.
4014                  */
4015                 __skb_push(skb, skb->mac_len);
4016                 if (skb_do_redirect(skb) == -EAGAIN) {
4017                         __skb_pull(skb, skb->mac_len);
4018                         *another = true;
4019                         break;
4020                 }
4021                 *ret = NET_RX_SUCCESS;
4022                 return NULL;
4023         case TC_ACT_SHOT:
4024                 kfree_skb_reason(skb, drop_reason);
4025                 *ret = NET_RX_DROP;
4026                 return NULL;
4027         /* used by tc_run */
4028         case TC_ACT_STOLEN:
4029         case TC_ACT_QUEUED:
4030         case TC_ACT_TRAP:
4031                 consume_skb(skb);
4032                 fallthrough;
4033         case TC_ACT_CONSUMED:
4034                 *ret = NET_RX_SUCCESS;
4035                 return NULL;
4036         }
4037
4038         return skb;
4039 }
4040
4041 static __always_inline struct sk_buff *
4042 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4043 {
4044         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4045         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4046         int sch_ret;
4047
4048         if (!entry)
4049                 return skb;
4050
4051         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4052          * already set by the caller.
4053          */
4054         if (static_branch_unlikely(&tcx_needed_key)) {
4055                 sch_ret = tcx_run(entry, skb, false);
4056                 if (sch_ret != TC_ACT_UNSPEC)
4057                         goto egress_verdict;
4058         }
4059         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4060 egress_verdict:
4061         switch (sch_ret) {
4062         case TC_ACT_REDIRECT:
4063                 /* No need to push/pop skb's mac_header here on egress! */
4064                 skb_do_redirect(skb);
4065                 *ret = NET_XMIT_SUCCESS;
4066                 return NULL;
4067         case TC_ACT_SHOT:
4068                 kfree_skb_reason(skb, drop_reason);
4069                 *ret = NET_XMIT_DROP;
4070                 return NULL;
4071         /* used by tc_run */
4072         case TC_ACT_STOLEN:
4073         case TC_ACT_QUEUED:
4074         case TC_ACT_TRAP:
4075                 consume_skb(skb);
4076                 fallthrough;
4077         case TC_ACT_CONSUMED:
4078                 *ret = NET_XMIT_SUCCESS;
4079                 return NULL;
4080         }
4081
4082         return skb;
4083 }
4084 #else
4085 static __always_inline struct sk_buff *
4086 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4087                    struct net_device *orig_dev, bool *another)
4088 {
4089         return skb;
4090 }
4091
4092 static __always_inline struct sk_buff *
4093 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4094 {
4095         return skb;
4096 }
4097 #endif /* CONFIG_NET_XGRESS */
4098
4099 #ifdef CONFIG_XPS
4100 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4101                                struct xps_dev_maps *dev_maps, unsigned int tci)
4102 {
4103         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4104         struct xps_map *map;
4105         int queue_index = -1;
4106
4107         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4108                 return queue_index;
4109
4110         tci *= dev_maps->num_tc;
4111         tci += tc;
4112
4113         map = rcu_dereference(dev_maps->attr_map[tci]);
4114         if (map) {
4115                 if (map->len == 1)
4116                         queue_index = map->queues[0];
4117                 else
4118                         queue_index = map->queues[reciprocal_scale(
4119                                                 skb_get_hash(skb), map->len)];
4120                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4121                         queue_index = -1;
4122         }
4123         return queue_index;
4124 }
4125 #endif
4126
4127 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4128                          struct sk_buff *skb)
4129 {
4130 #ifdef CONFIG_XPS
4131         struct xps_dev_maps *dev_maps;
4132         struct sock *sk = skb->sk;
4133         int queue_index = -1;
4134
4135         if (!static_key_false(&xps_needed))
4136                 return -1;
4137
4138         rcu_read_lock();
4139         if (!static_key_false(&xps_rxqs_needed))
4140                 goto get_cpus_map;
4141
4142         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4143         if (dev_maps) {
4144                 int tci = sk_rx_queue_get(sk);
4145
4146                 if (tci >= 0)
4147                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4148                                                           tci);
4149         }
4150
4151 get_cpus_map:
4152         if (queue_index < 0) {
4153                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4154                 if (dev_maps) {
4155                         unsigned int tci = skb->sender_cpu - 1;
4156
4157                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4158                                                           tci);
4159                 }
4160         }
4161         rcu_read_unlock();
4162
4163         return queue_index;
4164 #else
4165         return -1;
4166 #endif
4167 }
4168
4169 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4170                      struct net_device *sb_dev)
4171 {
4172         return 0;
4173 }
4174 EXPORT_SYMBOL(dev_pick_tx_zero);
4175
4176 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4177                        struct net_device *sb_dev)
4178 {
4179         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4180 }
4181 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4182
4183 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4184                      struct net_device *sb_dev)
4185 {
4186         struct sock *sk = skb->sk;
4187         int queue_index = sk_tx_queue_get(sk);
4188
4189         sb_dev = sb_dev ? : dev;
4190
4191         if (queue_index < 0 || skb->ooo_okay ||
4192             queue_index >= dev->real_num_tx_queues) {
4193                 int new_index = get_xps_queue(dev, sb_dev, skb);
4194
4195                 if (new_index < 0)
4196                         new_index = skb_tx_hash(dev, sb_dev, skb);
4197
4198                 if (queue_index != new_index && sk &&
4199                     sk_fullsock(sk) &&
4200                     rcu_access_pointer(sk->sk_dst_cache))
4201                         sk_tx_queue_set(sk, new_index);
4202
4203                 queue_index = new_index;
4204         }
4205
4206         return queue_index;
4207 }
4208 EXPORT_SYMBOL(netdev_pick_tx);
4209
4210 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4211                                          struct sk_buff *skb,
4212                                          struct net_device *sb_dev)
4213 {
4214         int queue_index = 0;
4215
4216 #ifdef CONFIG_XPS
4217         u32 sender_cpu = skb->sender_cpu - 1;
4218
4219         if (sender_cpu >= (u32)NR_CPUS)
4220                 skb->sender_cpu = raw_smp_processor_id() + 1;
4221 #endif
4222
4223         if (dev->real_num_tx_queues != 1) {
4224                 const struct net_device_ops *ops = dev->netdev_ops;
4225
4226                 if (ops->ndo_select_queue)
4227                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4228                 else
4229                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4230
4231                 queue_index = netdev_cap_txqueue(dev, queue_index);
4232         }
4233
4234         skb_set_queue_mapping(skb, queue_index);
4235         return netdev_get_tx_queue(dev, queue_index);
4236 }
4237
4238 /**
4239  * __dev_queue_xmit() - transmit a buffer
4240  * @skb:        buffer to transmit
4241  * @sb_dev:     suboordinate device used for L2 forwarding offload
4242  *
4243  * Queue a buffer for transmission to a network device. The caller must
4244  * have set the device and priority and built the buffer before calling
4245  * this function. The function can be called from an interrupt.
4246  *
4247  * When calling this method, interrupts MUST be enabled. This is because
4248  * the BH enable code must have IRQs enabled so that it will not deadlock.
4249  *
4250  * Regardless of the return value, the skb is consumed, so it is currently
4251  * difficult to retry a send to this method. (You can bump the ref count
4252  * before sending to hold a reference for retry if you are careful.)
4253  *
4254  * Return:
4255  * * 0                          - buffer successfully transmitted
4256  * * positive qdisc return code - NET_XMIT_DROP etc.
4257  * * negative errno             - other errors
4258  */
4259 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4260 {
4261         struct net_device *dev = skb->dev;
4262         struct netdev_queue *txq = NULL;
4263         struct Qdisc *q;
4264         int rc = -ENOMEM;
4265         bool again = false;
4266
4267         skb_reset_mac_header(skb);
4268         skb_assert_len(skb);
4269
4270         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4271                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4272
4273         /* Disable soft irqs for various locks below. Also
4274          * stops preemption for RCU.
4275          */
4276         rcu_read_lock_bh();
4277
4278         skb_update_prio(skb);
4279
4280         qdisc_pkt_len_init(skb);
4281         tcx_set_ingress(skb, false);
4282 #ifdef CONFIG_NET_EGRESS
4283         if (static_branch_unlikely(&egress_needed_key)) {
4284                 if (nf_hook_egress_active()) {
4285                         skb = nf_hook_egress(skb, &rc, dev);
4286                         if (!skb)
4287                                 goto out;
4288                 }
4289
4290                 netdev_xmit_skip_txqueue(false);
4291
4292                 nf_skip_egress(skb, true);
4293                 skb = sch_handle_egress(skb, &rc, dev);
4294                 if (!skb)
4295                         goto out;
4296                 nf_skip_egress(skb, false);
4297
4298                 if (netdev_xmit_txqueue_skipped())
4299                         txq = netdev_tx_queue_mapping(dev, skb);
4300         }
4301 #endif
4302         /* If device/qdisc don't need skb->dst, release it right now while
4303          * its hot in this cpu cache.
4304          */
4305         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4306                 skb_dst_drop(skb);
4307         else
4308                 skb_dst_force(skb);
4309
4310         if (!txq)
4311                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4312
4313         q = rcu_dereference_bh(txq->qdisc);
4314
4315         trace_net_dev_queue(skb);
4316         if (q->enqueue) {
4317                 rc = __dev_xmit_skb(skb, q, dev, txq);
4318                 goto out;
4319         }
4320
4321         /* The device has no queue. Common case for software devices:
4322          * loopback, all the sorts of tunnels...
4323
4324          * Really, it is unlikely that netif_tx_lock protection is necessary
4325          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4326          * counters.)
4327          * However, it is possible, that they rely on protection
4328          * made by us here.
4329
4330          * Check this and shot the lock. It is not prone from deadlocks.
4331          *Either shot noqueue qdisc, it is even simpler 8)
4332          */
4333         if (dev->flags & IFF_UP) {
4334                 int cpu = smp_processor_id(); /* ok because BHs are off */
4335
4336                 /* Other cpus might concurrently change txq->xmit_lock_owner
4337                  * to -1 or to their cpu id, but not to our id.
4338                  */
4339                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4340                         if (dev_xmit_recursion())
4341                                 goto recursion_alert;
4342
4343                         skb = validate_xmit_skb(skb, dev, &again);
4344                         if (!skb)
4345                                 goto out;
4346
4347                         HARD_TX_LOCK(dev, txq, cpu);
4348
4349                         if (!netif_xmit_stopped(txq)) {
4350                                 dev_xmit_recursion_inc();
4351                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4352                                 dev_xmit_recursion_dec();
4353                                 if (dev_xmit_complete(rc)) {
4354                                         HARD_TX_UNLOCK(dev, txq);
4355                                         goto out;
4356                                 }
4357                         }
4358                         HARD_TX_UNLOCK(dev, txq);
4359                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4360                                              dev->name);
4361                 } else {
4362                         /* Recursion is detected! It is possible,
4363                          * unfortunately
4364                          */
4365 recursion_alert:
4366                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4367                                              dev->name);
4368                 }
4369         }
4370
4371         rc = -ENETDOWN;
4372         rcu_read_unlock_bh();
4373
4374         dev_core_stats_tx_dropped_inc(dev);
4375         kfree_skb_list(skb);
4376         return rc;
4377 out:
4378         rcu_read_unlock_bh();
4379         return rc;
4380 }
4381 EXPORT_SYMBOL(__dev_queue_xmit);
4382
4383 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4384 {
4385         struct net_device *dev = skb->dev;
4386         struct sk_buff *orig_skb = skb;
4387         struct netdev_queue *txq;
4388         int ret = NETDEV_TX_BUSY;
4389         bool again = false;
4390
4391         if (unlikely(!netif_running(dev) ||
4392                      !netif_carrier_ok(dev)))
4393                 goto drop;
4394
4395         skb = validate_xmit_skb_list(skb, dev, &again);
4396         if (skb != orig_skb)
4397                 goto drop;
4398
4399         skb_set_queue_mapping(skb, queue_id);
4400         txq = skb_get_tx_queue(dev, skb);
4401
4402         local_bh_disable();
4403
4404         dev_xmit_recursion_inc();
4405         HARD_TX_LOCK(dev, txq, smp_processor_id());
4406         if (!netif_xmit_frozen_or_drv_stopped(txq))
4407                 ret = netdev_start_xmit(skb, dev, txq, false);
4408         HARD_TX_UNLOCK(dev, txq);
4409         dev_xmit_recursion_dec();
4410
4411         local_bh_enable();
4412         return ret;
4413 drop:
4414         dev_core_stats_tx_dropped_inc(dev);
4415         kfree_skb_list(skb);
4416         return NET_XMIT_DROP;
4417 }
4418 EXPORT_SYMBOL(__dev_direct_xmit);
4419
4420 /*************************************************************************
4421  *                      Receiver routines
4422  *************************************************************************/
4423
4424 int netdev_max_backlog __read_mostly = 1000;
4425 EXPORT_SYMBOL(netdev_max_backlog);
4426
4427 int netdev_tstamp_prequeue __read_mostly = 1;
4428 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4429 int netdev_budget __read_mostly = 300;
4430 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4431 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4432 int weight_p __read_mostly = 64;           /* old backlog weight */
4433 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4434 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4435 int dev_rx_weight __read_mostly = 64;
4436 int dev_tx_weight __read_mostly = 64;
4437
4438 /* Called with irq disabled */
4439 static inline void ____napi_schedule(struct softnet_data *sd,
4440                                      struct napi_struct *napi)
4441 {
4442         struct task_struct *thread;
4443
4444         lockdep_assert_irqs_disabled();
4445
4446         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4447                 /* Paired with smp_mb__before_atomic() in
4448                  * napi_enable()/dev_set_threaded().
4449                  * Use READ_ONCE() to guarantee a complete
4450                  * read on napi->thread. Only call
4451                  * wake_up_process() when it's not NULL.
4452                  */
4453                 thread = READ_ONCE(napi->thread);
4454                 if (thread) {
4455                         /* Avoid doing set_bit() if the thread is in
4456                          * INTERRUPTIBLE state, cause napi_thread_wait()
4457                          * makes sure to proceed with napi polling
4458                          * if the thread is explicitly woken from here.
4459                          */
4460                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4461                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4462                         wake_up_process(thread);
4463                         return;
4464                 }
4465         }
4466
4467         list_add_tail(&napi->poll_list, &sd->poll_list);
4468         WRITE_ONCE(napi->list_owner, smp_processor_id());
4469         /* If not called from net_rx_action()
4470          * we have to raise NET_RX_SOFTIRQ.
4471          */
4472         if (!sd->in_net_rx_action)
4473                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4474 }
4475
4476 #ifdef CONFIG_RPS
4477
4478 /* One global table that all flow-based protocols share. */
4479 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4480 EXPORT_SYMBOL(rps_sock_flow_table);
4481 u32 rps_cpu_mask __read_mostly;
4482 EXPORT_SYMBOL(rps_cpu_mask);
4483
4484 struct static_key_false rps_needed __read_mostly;
4485 EXPORT_SYMBOL(rps_needed);
4486 struct static_key_false rfs_needed __read_mostly;
4487 EXPORT_SYMBOL(rfs_needed);
4488
4489 static struct rps_dev_flow *
4490 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4491             struct rps_dev_flow *rflow, u16 next_cpu)
4492 {
4493         if (next_cpu < nr_cpu_ids) {
4494 #ifdef CONFIG_RFS_ACCEL
4495                 struct netdev_rx_queue *rxqueue;
4496                 struct rps_dev_flow_table *flow_table;
4497                 struct rps_dev_flow *old_rflow;
4498                 u32 flow_id;
4499                 u16 rxq_index;
4500                 int rc;
4501
4502                 /* Should we steer this flow to a different hardware queue? */
4503                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4504                     !(dev->features & NETIF_F_NTUPLE))
4505                         goto out;
4506                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4507                 if (rxq_index == skb_get_rx_queue(skb))
4508                         goto out;
4509
4510                 rxqueue = dev->_rx + rxq_index;
4511                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4512                 if (!flow_table)
4513                         goto out;
4514                 flow_id = skb_get_hash(skb) & flow_table->mask;
4515                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4516                                                         rxq_index, flow_id);
4517                 if (rc < 0)
4518                         goto out;
4519                 old_rflow = rflow;
4520                 rflow = &flow_table->flows[flow_id];
4521                 rflow->filter = rc;
4522                 if (old_rflow->filter == rflow->filter)
4523                         old_rflow->filter = RPS_NO_FILTER;
4524         out:
4525 #endif
4526                 rflow->last_qtail =
4527                         per_cpu(softnet_data, next_cpu).input_queue_head;
4528         }
4529
4530         rflow->cpu = next_cpu;
4531         return rflow;
4532 }
4533
4534 /*
4535  * get_rps_cpu is called from netif_receive_skb and returns the target
4536  * CPU from the RPS map of the receiving queue for a given skb.
4537  * rcu_read_lock must be held on entry.
4538  */
4539 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4540                        struct rps_dev_flow **rflowp)
4541 {
4542         const struct rps_sock_flow_table *sock_flow_table;
4543         struct netdev_rx_queue *rxqueue = dev->_rx;
4544         struct rps_dev_flow_table *flow_table;
4545         struct rps_map *map;
4546         int cpu = -1;
4547         u32 tcpu;
4548         u32 hash;
4549
4550         if (skb_rx_queue_recorded(skb)) {
4551                 u16 index = skb_get_rx_queue(skb);
4552
4553                 if (unlikely(index >= dev->real_num_rx_queues)) {
4554                         WARN_ONCE(dev->real_num_rx_queues > 1,
4555                                   "%s received packet on queue %u, but number "
4556                                   "of RX queues is %u\n",
4557                                   dev->name, index, dev->real_num_rx_queues);
4558                         goto done;
4559                 }
4560                 rxqueue += index;
4561         }
4562
4563         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4564
4565         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4566         map = rcu_dereference(rxqueue->rps_map);
4567         if (!flow_table && !map)
4568                 goto done;
4569
4570         skb_reset_network_header(skb);
4571         hash = skb_get_hash(skb);
4572         if (!hash)
4573                 goto done;
4574
4575         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4576         if (flow_table && sock_flow_table) {
4577                 struct rps_dev_flow *rflow;
4578                 u32 next_cpu;
4579                 u32 ident;
4580
4581                 /* First check into global flow table if there is a match.
4582                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4583                  */
4584                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4585                 if ((ident ^ hash) & ~rps_cpu_mask)
4586                         goto try_rps;
4587
4588                 next_cpu = ident & rps_cpu_mask;
4589
4590                 /* OK, now we know there is a match,
4591                  * we can look at the local (per receive queue) flow table
4592                  */
4593                 rflow = &flow_table->flows[hash & flow_table->mask];
4594                 tcpu = rflow->cpu;
4595
4596                 /*
4597                  * If the desired CPU (where last recvmsg was done) is
4598                  * different from current CPU (one in the rx-queue flow
4599                  * table entry), switch if one of the following holds:
4600                  *   - Current CPU is unset (>= nr_cpu_ids).
4601                  *   - Current CPU is offline.
4602                  *   - The current CPU's queue tail has advanced beyond the
4603                  *     last packet that was enqueued using this table entry.
4604                  *     This guarantees that all previous packets for the flow
4605                  *     have been dequeued, thus preserving in order delivery.
4606                  */
4607                 if (unlikely(tcpu != next_cpu) &&
4608                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4609                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4610                       rflow->last_qtail)) >= 0)) {
4611                         tcpu = next_cpu;
4612                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4613                 }
4614
4615                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4616                         *rflowp = rflow;
4617                         cpu = tcpu;
4618                         goto done;
4619                 }
4620         }
4621
4622 try_rps:
4623
4624         if (map) {
4625                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4626                 if (cpu_online(tcpu)) {
4627                         cpu = tcpu;
4628                         goto done;
4629                 }
4630         }
4631
4632 done:
4633         return cpu;
4634 }
4635
4636 #ifdef CONFIG_RFS_ACCEL
4637
4638 /**
4639  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4640  * @dev: Device on which the filter was set
4641  * @rxq_index: RX queue index
4642  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4643  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4644  *
4645  * Drivers that implement ndo_rx_flow_steer() should periodically call
4646  * this function for each installed filter and remove the filters for
4647  * which it returns %true.
4648  */
4649 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4650                          u32 flow_id, u16 filter_id)
4651 {
4652         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4653         struct rps_dev_flow_table *flow_table;
4654         struct rps_dev_flow *rflow;
4655         bool expire = true;
4656         unsigned int cpu;
4657
4658         rcu_read_lock();
4659         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4660         if (flow_table && flow_id <= flow_table->mask) {
4661                 rflow = &flow_table->flows[flow_id];
4662                 cpu = READ_ONCE(rflow->cpu);
4663                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4664                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4665                            rflow->last_qtail) <
4666                      (int)(10 * flow_table->mask)))
4667                         expire = false;
4668         }
4669         rcu_read_unlock();
4670         return expire;
4671 }
4672 EXPORT_SYMBOL(rps_may_expire_flow);
4673
4674 #endif /* CONFIG_RFS_ACCEL */
4675
4676 /* Called from hardirq (IPI) context */
4677 static void rps_trigger_softirq(void *data)
4678 {
4679         struct softnet_data *sd = data;
4680
4681         ____napi_schedule(sd, &sd->backlog);
4682         sd->received_rps++;
4683 }
4684
4685 #endif /* CONFIG_RPS */
4686
4687 /* Called from hardirq (IPI) context */
4688 static void trigger_rx_softirq(void *data)
4689 {
4690         struct softnet_data *sd = data;
4691
4692         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4693         smp_store_release(&sd->defer_ipi_scheduled, 0);
4694 }
4695
4696 /*
4697  * After we queued a packet into sd->input_pkt_queue,
4698  * we need to make sure this queue is serviced soon.
4699  *
4700  * - If this is another cpu queue, link it to our rps_ipi_list,
4701  *   and make sure we will process rps_ipi_list from net_rx_action().
4702  *
4703  * - If this is our own queue, NAPI schedule our backlog.
4704  *   Note that this also raises NET_RX_SOFTIRQ.
4705  */
4706 static void napi_schedule_rps(struct softnet_data *sd)
4707 {
4708         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4709
4710 #ifdef CONFIG_RPS
4711         if (sd != mysd) {
4712                 sd->rps_ipi_next = mysd->rps_ipi_list;
4713                 mysd->rps_ipi_list = sd;
4714
4715                 /* If not called from net_rx_action() or napi_threaded_poll()
4716                  * we have to raise NET_RX_SOFTIRQ.
4717                  */
4718                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4719                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4720                 return;
4721         }
4722 #endif /* CONFIG_RPS */
4723         __napi_schedule_irqoff(&mysd->backlog);
4724 }
4725
4726 #ifdef CONFIG_NET_FLOW_LIMIT
4727 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4728 #endif
4729
4730 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4731 {
4732 #ifdef CONFIG_NET_FLOW_LIMIT
4733         struct sd_flow_limit *fl;
4734         struct softnet_data *sd;
4735         unsigned int old_flow, new_flow;
4736
4737         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4738                 return false;
4739
4740         sd = this_cpu_ptr(&softnet_data);
4741
4742         rcu_read_lock();
4743         fl = rcu_dereference(sd->flow_limit);
4744         if (fl) {
4745                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4746                 old_flow = fl->history[fl->history_head];
4747                 fl->history[fl->history_head] = new_flow;
4748
4749                 fl->history_head++;
4750                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4751
4752                 if (likely(fl->buckets[old_flow]))
4753                         fl->buckets[old_flow]--;
4754
4755                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4756                         fl->count++;
4757                         rcu_read_unlock();
4758                         return true;
4759                 }
4760         }
4761         rcu_read_unlock();
4762 #endif
4763         return false;
4764 }
4765
4766 /*
4767  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4768  * queue (may be a remote CPU queue).
4769  */
4770 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4771                               unsigned int *qtail)
4772 {
4773         enum skb_drop_reason reason;
4774         struct softnet_data *sd;
4775         unsigned long flags;
4776         unsigned int qlen;
4777
4778         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4779         sd = &per_cpu(softnet_data, cpu);
4780
4781         rps_lock_irqsave(sd, &flags);
4782         if (!netif_running(skb->dev))
4783                 goto drop;
4784         qlen = skb_queue_len(&sd->input_pkt_queue);
4785         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4786                 if (qlen) {
4787 enqueue:
4788                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4789                         input_queue_tail_incr_save(sd, qtail);
4790                         rps_unlock_irq_restore(sd, &flags);
4791                         return NET_RX_SUCCESS;
4792                 }
4793
4794                 /* Schedule NAPI for backlog device
4795                  * We can use non atomic operation since we own the queue lock
4796                  */
4797                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4798                         napi_schedule_rps(sd);
4799                 goto enqueue;
4800         }
4801         reason = SKB_DROP_REASON_CPU_BACKLOG;
4802
4803 drop:
4804         sd->dropped++;
4805         rps_unlock_irq_restore(sd, &flags);
4806
4807         dev_core_stats_rx_dropped_inc(skb->dev);
4808         kfree_skb_reason(skb, reason);
4809         return NET_RX_DROP;
4810 }
4811
4812 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4813 {
4814         struct net_device *dev = skb->dev;
4815         struct netdev_rx_queue *rxqueue;
4816
4817         rxqueue = dev->_rx;
4818
4819         if (skb_rx_queue_recorded(skb)) {
4820                 u16 index = skb_get_rx_queue(skb);
4821
4822                 if (unlikely(index >= dev->real_num_rx_queues)) {
4823                         WARN_ONCE(dev->real_num_rx_queues > 1,
4824                                   "%s received packet on queue %u, but number "
4825                                   "of RX queues is %u\n",
4826                                   dev->name, index, dev->real_num_rx_queues);
4827
4828                         return rxqueue; /* Return first rxqueue */
4829                 }
4830                 rxqueue += index;
4831         }
4832         return rxqueue;
4833 }
4834
4835 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4836                              struct bpf_prog *xdp_prog)
4837 {
4838         void *orig_data, *orig_data_end, *hard_start;
4839         struct netdev_rx_queue *rxqueue;
4840         bool orig_bcast, orig_host;
4841         u32 mac_len, frame_sz;
4842         __be16 orig_eth_type;
4843         struct ethhdr *eth;
4844         u32 metalen, act;
4845         int off;
4846
4847         /* The XDP program wants to see the packet starting at the MAC
4848          * header.
4849          */
4850         mac_len = skb->data - skb_mac_header(skb);
4851         hard_start = skb->data - skb_headroom(skb);
4852
4853         /* SKB "head" area always have tailroom for skb_shared_info */
4854         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4855         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4856
4857         rxqueue = netif_get_rxqueue(skb);
4858         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4859         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4860                          skb_headlen(skb) + mac_len, true);
4861
4862         orig_data_end = xdp->data_end;
4863         orig_data = xdp->data;
4864         eth = (struct ethhdr *)xdp->data;
4865         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4866         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4867         orig_eth_type = eth->h_proto;
4868
4869         act = bpf_prog_run_xdp(xdp_prog, xdp);
4870
4871         /* check if bpf_xdp_adjust_head was used */
4872         off = xdp->data - orig_data;
4873         if (off) {
4874                 if (off > 0)
4875                         __skb_pull(skb, off);
4876                 else if (off < 0)
4877                         __skb_push(skb, -off);
4878
4879                 skb->mac_header += off;
4880                 skb_reset_network_header(skb);
4881         }
4882
4883         /* check if bpf_xdp_adjust_tail was used */
4884         off = xdp->data_end - orig_data_end;
4885         if (off != 0) {
4886                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4887                 skb->len += off; /* positive on grow, negative on shrink */
4888         }
4889
4890         /* check if XDP changed eth hdr such SKB needs update */
4891         eth = (struct ethhdr *)xdp->data;
4892         if ((orig_eth_type != eth->h_proto) ||
4893             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4894                                                   skb->dev->dev_addr)) ||
4895             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4896                 __skb_push(skb, ETH_HLEN);
4897                 skb->pkt_type = PACKET_HOST;
4898                 skb->protocol = eth_type_trans(skb, skb->dev);
4899         }
4900
4901         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4902          * before calling us again on redirect path. We do not call do_redirect
4903          * as we leave that up to the caller.
4904          *
4905          * Caller is responsible for managing lifetime of skb (i.e. calling
4906          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4907          */
4908         switch (act) {
4909         case XDP_REDIRECT:
4910         case XDP_TX:
4911                 __skb_push(skb, mac_len);
4912                 break;
4913         case XDP_PASS:
4914                 metalen = xdp->data - xdp->data_meta;
4915                 if (metalen)
4916                         skb_metadata_set(skb, metalen);
4917                 break;
4918         }
4919
4920         return act;
4921 }
4922
4923 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4924                                      struct xdp_buff *xdp,
4925                                      struct bpf_prog *xdp_prog)
4926 {
4927         u32 act = XDP_DROP;
4928
4929         /* Reinjected packets coming from act_mirred or similar should
4930          * not get XDP generic processing.
4931          */
4932         if (skb_is_redirected(skb))
4933                 return XDP_PASS;
4934
4935         /* XDP packets must be linear and must have sufficient headroom
4936          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4937          * native XDP provides, thus we need to do it here as well.
4938          */
4939         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4940             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4941                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4942                 int troom = skb->tail + skb->data_len - skb->end;
4943
4944                 /* In case we have to go down the path and also linearize,
4945                  * then lets do the pskb_expand_head() work just once here.
4946                  */
4947                 if (pskb_expand_head(skb,
4948                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4949                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4950                         goto do_drop;
4951                 if (skb_linearize(skb))
4952                         goto do_drop;
4953         }
4954
4955         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4956         switch (act) {
4957         case XDP_REDIRECT:
4958         case XDP_TX:
4959         case XDP_PASS:
4960                 break;
4961         default:
4962                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4963                 fallthrough;
4964         case XDP_ABORTED:
4965                 trace_xdp_exception(skb->dev, xdp_prog, act);
4966                 fallthrough;
4967         case XDP_DROP:
4968         do_drop:
4969                 kfree_skb(skb);
4970                 break;
4971         }
4972
4973         return act;
4974 }
4975
4976 /* When doing generic XDP we have to bypass the qdisc layer and the
4977  * network taps in order to match in-driver-XDP behavior. This also means
4978  * that XDP packets are able to starve other packets going through a qdisc,
4979  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4980  * queues, so they do not have this starvation issue.
4981  */
4982 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4983 {
4984         struct net_device *dev = skb->dev;
4985         struct netdev_queue *txq;
4986         bool free_skb = true;
4987         int cpu, rc;
4988
4989         txq = netdev_core_pick_tx(dev, skb, NULL);
4990         cpu = smp_processor_id();
4991         HARD_TX_LOCK(dev, txq, cpu);
4992         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4993                 rc = netdev_start_xmit(skb, dev, txq, 0);
4994                 if (dev_xmit_complete(rc))
4995                         free_skb = false;
4996         }
4997         HARD_TX_UNLOCK(dev, txq);
4998         if (free_skb) {
4999                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5000                 dev_core_stats_tx_dropped_inc(dev);
5001                 kfree_skb(skb);
5002         }
5003 }
5004
5005 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5006
5007 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5008 {
5009         if (xdp_prog) {
5010                 struct xdp_buff xdp;
5011                 u32 act;
5012                 int err;
5013
5014                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5015                 if (act != XDP_PASS) {
5016                         switch (act) {
5017                         case XDP_REDIRECT:
5018                                 err = xdp_do_generic_redirect(skb->dev, skb,
5019                                                               &xdp, xdp_prog);
5020                                 if (err)
5021                                         goto out_redir;
5022                                 break;
5023                         case XDP_TX:
5024                                 generic_xdp_tx(skb, xdp_prog);
5025                                 break;
5026                         }
5027                         return XDP_DROP;
5028                 }
5029         }
5030         return XDP_PASS;
5031 out_redir:
5032         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5033         return XDP_DROP;
5034 }
5035 EXPORT_SYMBOL_GPL(do_xdp_generic);
5036
5037 static int netif_rx_internal(struct sk_buff *skb)
5038 {
5039         int ret;
5040
5041         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5042
5043         trace_netif_rx(skb);
5044
5045 #ifdef CONFIG_RPS
5046         if (static_branch_unlikely(&rps_needed)) {
5047                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5048                 int cpu;
5049
5050                 rcu_read_lock();
5051
5052                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5053                 if (cpu < 0)
5054                         cpu = smp_processor_id();
5055
5056                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5057
5058                 rcu_read_unlock();
5059         } else
5060 #endif
5061         {
5062                 unsigned int qtail;
5063
5064                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5065         }
5066         return ret;
5067 }
5068
5069 /**
5070  *      __netif_rx      -       Slightly optimized version of netif_rx
5071  *      @skb: buffer to post
5072  *
5073  *      This behaves as netif_rx except that it does not disable bottom halves.
5074  *      As a result this function may only be invoked from the interrupt context
5075  *      (either hard or soft interrupt).
5076  */
5077 int __netif_rx(struct sk_buff *skb)
5078 {
5079         int ret;
5080
5081         lockdep_assert_once(hardirq_count() | softirq_count());
5082
5083         trace_netif_rx_entry(skb);
5084         ret = netif_rx_internal(skb);
5085         trace_netif_rx_exit(ret);
5086         return ret;
5087 }
5088 EXPORT_SYMBOL(__netif_rx);
5089
5090 /**
5091  *      netif_rx        -       post buffer to the network code
5092  *      @skb: buffer to post
5093  *
5094  *      This function receives a packet from a device driver and queues it for
5095  *      the upper (protocol) levels to process via the backlog NAPI device. It
5096  *      always succeeds. The buffer may be dropped during processing for
5097  *      congestion control or by the protocol layers.
5098  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5099  *      driver should use NAPI and GRO.
5100  *      This function can used from interrupt and from process context. The
5101  *      caller from process context must not disable interrupts before invoking
5102  *      this function.
5103  *
5104  *      return values:
5105  *      NET_RX_SUCCESS  (no congestion)
5106  *      NET_RX_DROP     (packet was dropped)
5107  *
5108  */
5109 int netif_rx(struct sk_buff *skb)
5110 {
5111         bool need_bh_off = !(hardirq_count() | softirq_count());
5112         int ret;
5113
5114         if (need_bh_off)
5115                 local_bh_disable();
5116         trace_netif_rx_entry(skb);
5117         ret = netif_rx_internal(skb);
5118         trace_netif_rx_exit(ret);
5119         if (need_bh_off)
5120                 local_bh_enable();
5121         return ret;
5122 }
5123 EXPORT_SYMBOL(netif_rx);
5124
5125 static __latent_entropy void net_tx_action(struct softirq_action *h)
5126 {
5127         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5128
5129         if (sd->completion_queue) {
5130                 struct sk_buff *clist;
5131
5132                 local_irq_disable();
5133                 clist = sd->completion_queue;
5134                 sd->completion_queue = NULL;
5135                 local_irq_enable();
5136
5137                 while (clist) {
5138                         struct sk_buff *skb = clist;
5139
5140                         clist = clist->next;
5141
5142                         WARN_ON(refcount_read(&skb->users));
5143                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5144                                 trace_consume_skb(skb, net_tx_action);
5145                         else
5146                                 trace_kfree_skb(skb, net_tx_action,
5147                                                 get_kfree_skb_cb(skb)->reason);
5148
5149                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5150                                 __kfree_skb(skb);
5151                         else
5152                                 __napi_kfree_skb(skb,
5153                                                  get_kfree_skb_cb(skb)->reason);
5154                 }
5155         }
5156
5157         if (sd->output_queue) {
5158                 struct Qdisc *head;
5159
5160                 local_irq_disable();
5161                 head = sd->output_queue;
5162                 sd->output_queue = NULL;
5163                 sd->output_queue_tailp = &sd->output_queue;
5164                 local_irq_enable();
5165
5166                 rcu_read_lock();
5167
5168                 while (head) {
5169                         struct Qdisc *q = head;
5170                         spinlock_t *root_lock = NULL;
5171
5172                         head = head->next_sched;
5173
5174                         /* We need to make sure head->next_sched is read
5175                          * before clearing __QDISC_STATE_SCHED
5176                          */
5177                         smp_mb__before_atomic();
5178
5179                         if (!(q->flags & TCQ_F_NOLOCK)) {
5180                                 root_lock = qdisc_lock(q);
5181                                 spin_lock(root_lock);
5182                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5183                                                      &q->state))) {
5184                                 /* There is a synchronize_net() between
5185                                  * STATE_DEACTIVATED flag being set and
5186                                  * qdisc_reset()/some_qdisc_is_busy() in
5187                                  * dev_deactivate(), so we can safely bail out
5188                                  * early here to avoid data race between
5189                                  * qdisc_deactivate() and some_qdisc_is_busy()
5190                                  * for lockless qdisc.
5191                                  */
5192                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5193                                 continue;
5194                         }
5195
5196                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5197                         qdisc_run(q);
5198                         if (root_lock)
5199                                 spin_unlock(root_lock);
5200                 }
5201
5202                 rcu_read_unlock();
5203         }
5204
5205         xfrm_dev_backlog(sd);
5206 }
5207
5208 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5209 /* This hook is defined here for ATM LANE */
5210 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5211                              unsigned char *addr) __read_mostly;
5212 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5213 #endif
5214
5215 /**
5216  *      netdev_is_rx_handler_busy - check if receive handler is registered
5217  *      @dev: device to check
5218  *
5219  *      Check if a receive handler is already registered for a given device.
5220  *      Return true if there one.
5221  *
5222  *      The caller must hold the rtnl_mutex.
5223  */
5224 bool netdev_is_rx_handler_busy(struct net_device *dev)
5225 {
5226         ASSERT_RTNL();
5227         return dev && rtnl_dereference(dev->rx_handler);
5228 }
5229 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5230
5231 /**
5232  *      netdev_rx_handler_register - register receive handler
5233  *      @dev: device to register a handler for
5234  *      @rx_handler: receive handler to register
5235  *      @rx_handler_data: data pointer that is used by rx handler
5236  *
5237  *      Register a receive handler for a device. This handler will then be
5238  *      called from __netif_receive_skb. A negative errno code is returned
5239  *      on a failure.
5240  *
5241  *      The caller must hold the rtnl_mutex.
5242  *
5243  *      For a general description of rx_handler, see enum rx_handler_result.
5244  */
5245 int netdev_rx_handler_register(struct net_device *dev,
5246                                rx_handler_func_t *rx_handler,
5247                                void *rx_handler_data)
5248 {
5249         if (netdev_is_rx_handler_busy(dev))
5250                 return -EBUSY;
5251
5252         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5253                 return -EINVAL;
5254
5255         /* Note: rx_handler_data must be set before rx_handler */
5256         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5257         rcu_assign_pointer(dev->rx_handler, rx_handler);
5258
5259         return 0;
5260 }
5261 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5262
5263 /**
5264  *      netdev_rx_handler_unregister - unregister receive handler
5265  *      @dev: device to unregister a handler from
5266  *
5267  *      Unregister a receive handler from a device.
5268  *
5269  *      The caller must hold the rtnl_mutex.
5270  */
5271 void netdev_rx_handler_unregister(struct net_device *dev)
5272 {
5273
5274         ASSERT_RTNL();
5275         RCU_INIT_POINTER(dev->rx_handler, NULL);
5276         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5277          * section has a guarantee to see a non NULL rx_handler_data
5278          * as well.
5279          */
5280         synchronize_net();
5281         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5282 }
5283 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5284
5285 /*
5286  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5287  * the special handling of PFMEMALLOC skbs.
5288  */
5289 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5290 {
5291         switch (skb->protocol) {
5292         case htons(ETH_P_ARP):
5293         case htons(ETH_P_IP):
5294         case htons(ETH_P_IPV6):
5295         case htons(ETH_P_8021Q):
5296         case htons(ETH_P_8021AD):
5297                 return true;
5298         default:
5299                 return false;
5300         }
5301 }
5302
5303 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5304                              int *ret, struct net_device *orig_dev)
5305 {
5306         if (nf_hook_ingress_active(skb)) {
5307                 int ingress_retval;
5308
5309                 if (*pt_prev) {
5310                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5311                         *pt_prev = NULL;
5312                 }
5313
5314                 rcu_read_lock();
5315                 ingress_retval = nf_hook_ingress(skb);
5316                 rcu_read_unlock();
5317                 return ingress_retval;
5318         }
5319         return 0;
5320 }
5321
5322 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5323                                     struct packet_type **ppt_prev)
5324 {
5325         struct packet_type *ptype, *pt_prev;
5326         rx_handler_func_t *rx_handler;
5327         struct sk_buff *skb = *pskb;
5328         struct net_device *orig_dev;
5329         bool deliver_exact = false;
5330         int ret = NET_RX_DROP;
5331         __be16 type;
5332
5333         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5334
5335         trace_netif_receive_skb(skb);
5336
5337         orig_dev = skb->dev;
5338
5339         skb_reset_network_header(skb);
5340         if (!skb_transport_header_was_set(skb))
5341                 skb_reset_transport_header(skb);
5342         skb_reset_mac_len(skb);
5343
5344         pt_prev = NULL;
5345
5346 another_round:
5347         skb->skb_iif = skb->dev->ifindex;
5348
5349         __this_cpu_inc(softnet_data.processed);
5350
5351         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5352                 int ret2;
5353
5354                 migrate_disable();
5355                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5356                 migrate_enable();
5357
5358                 if (ret2 != XDP_PASS) {
5359                         ret = NET_RX_DROP;
5360                         goto out;
5361                 }
5362         }
5363
5364         if (eth_type_vlan(skb->protocol)) {
5365                 skb = skb_vlan_untag(skb);
5366                 if (unlikely(!skb))
5367                         goto out;
5368         }
5369
5370         if (skb_skip_tc_classify(skb))
5371                 goto skip_classify;
5372
5373         if (pfmemalloc)
5374                 goto skip_taps;
5375
5376         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5377                 if (pt_prev)
5378                         ret = deliver_skb(skb, pt_prev, orig_dev);
5379                 pt_prev = ptype;
5380         }
5381
5382         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5383                 if (pt_prev)
5384                         ret = deliver_skb(skb, pt_prev, orig_dev);
5385                 pt_prev = ptype;
5386         }
5387
5388 skip_taps:
5389 #ifdef CONFIG_NET_INGRESS
5390         if (static_branch_unlikely(&ingress_needed_key)) {
5391                 bool another = false;
5392
5393                 nf_skip_egress(skb, true);
5394                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5395                                          &another);
5396                 if (another)
5397                         goto another_round;
5398                 if (!skb)
5399                         goto out;
5400
5401                 nf_skip_egress(skb, false);
5402                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5403                         goto out;
5404         }
5405 #endif
5406         skb_reset_redirect(skb);
5407 skip_classify:
5408         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5409                 goto drop;
5410
5411         if (skb_vlan_tag_present(skb)) {
5412                 if (pt_prev) {
5413                         ret = deliver_skb(skb, pt_prev, orig_dev);
5414                         pt_prev = NULL;
5415                 }
5416                 if (vlan_do_receive(&skb))
5417                         goto another_round;
5418                 else if (unlikely(!skb))
5419                         goto out;
5420         }
5421
5422         rx_handler = rcu_dereference(skb->dev->rx_handler);
5423         if (rx_handler) {
5424                 if (pt_prev) {
5425                         ret = deliver_skb(skb, pt_prev, orig_dev);
5426                         pt_prev = NULL;
5427                 }
5428                 switch (rx_handler(&skb)) {
5429                 case RX_HANDLER_CONSUMED:
5430                         ret = NET_RX_SUCCESS;
5431                         goto out;
5432                 case RX_HANDLER_ANOTHER:
5433                         goto another_round;
5434                 case RX_HANDLER_EXACT:
5435                         deliver_exact = true;
5436                         break;
5437                 case RX_HANDLER_PASS:
5438                         break;
5439                 default:
5440                         BUG();
5441                 }
5442         }
5443
5444         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5445 check_vlan_id:
5446                 if (skb_vlan_tag_get_id(skb)) {
5447                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5448                          * find vlan device.
5449                          */
5450                         skb->pkt_type = PACKET_OTHERHOST;
5451                 } else if (eth_type_vlan(skb->protocol)) {
5452                         /* Outer header is 802.1P with vlan 0, inner header is
5453                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5454                          * not find vlan dev for vlan id 0.
5455                          */
5456                         __vlan_hwaccel_clear_tag(skb);
5457                         skb = skb_vlan_untag(skb);
5458                         if (unlikely(!skb))
5459                                 goto out;
5460                         if (vlan_do_receive(&skb))
5461                                 /* After stripping off 802.1P header with vlan 0
5462                                  * vlan dev is found for inner header.
5463                                  */
5464                                 goto another_round;
5465                         else if (unlikely(!skb))
5466                                 goto out;
5467                         else
5468                                 /* We have stripped outer 802.1P vlan 0 header.
5469                                  * But could not find vlan dev.
5470                                  * check again for vlan id to set OTHERHOST.
5471                                  */
5472                                 goto check_vlan_id;
5473                 }
5474                 /* Note: we might in the future use prio bits
5475                  * and set skb->priority like in vlan_do_receive()
5476                  * For the time being, just ignore Priority Code Point
5477                  */
5478                 __vlan_hwaccel_clear_tag(skb);
5479         }
5480
5481         type = skb->protocol;
5482
5483         /* deliver only exact match when indicated */
5484         if (likely(!deliver_exact)) {
5485                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5486                                        &ptype_base[ntohs(type) &
5487                                                    PTYPE_HASH_MASK]);
5488         }
5489
5490         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5491                                &orig_dev->ptype_specific);
5492
5493         if (unlikely(skb->dev != orig_dev)) {
5494                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5495                                        &skb->dev->ptype_specific);
5496         }
5497
5498         if (pt_prev) {
5499                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5500                         goto drop;
5501                 *ppt_prev = pt_prev;
5502         } else {
5503 drop:
5504                 if (!deliver_exact)
5505                         dev_core_stats_rx_dropped_inc(skb->dev);
5506                 else
5507                         dev_core_stats_rx_nohandler_inc(skb->dev);
5508                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5509                 /* Jamal, now you will not able to escape explaining
5510                  * me how you were going to use this. :-)
5511                  */
5512                 ret = NET_RX_DROP;
5513         }
5514
5515 out:
5516         /* The invariant here is that if *ppt_prev is not NULL
5517          * then skb should also be non-NULL.
5518          *
5519          * Apparently *ppt_prev assignment above holds this invariant due to
5520          * skb dereferencing near it.
5521          */
5522         *pskb = skb;
5523         return ret;
5524 }
5525
5526 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5527 {
5528         struct net_device *orig_dev = skb->dev;
5529         struct packet_type *pt_prev = NULL;
5530         int ret;
5531
5532         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5533         if (pt_prev)
5534                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5535                                          skb->dev, pt_prev, orig_dev);
5536         return ret;
5537 }
5538
5539 /**
5540  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5541  *      @skb: buffer to process
5542  *
5543  *      More direct receive version of netif_receive_skb().  It should
5544  *      only be used by callers that have a need to skip RPS and Generic XDP.
5545  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5546  *
5547  *      This function may only be called from softirq context and interrupts
5548  *      should be enabled.
5549  *
5550  *      Return values (usually ignored):
5551  *      NET_RX_SUCCESS: no congestion
5552  *      NET_RX_DROP: packet was dropped
5553  */
5554 int netif_receive_skb_core(struct sk_buff *skb)
5555 {
5556         int ret;
5557
5558         rcu_read_lock();
5559         ret = __netif_receive_skb_one_core(skb, false);
5560         rcu_read_unlock();
5561
5562         return ret;
5563 }
5564 EXPORT_SYMBOL(netif_receive_skb_core);
5565
5566 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5567                                                   struct packet_type *pt_prev,
5568                                                   struct net_device *orig_dev)
5569 {
5570         struct sk_buff *skb, *next;
5571
5572         if (!pt_prev)
5573                 return;
5574         if (list_empty(head))
5575                 return;
5576         if (pt_prev->list_func != NULL)
5577                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5578                                    ip_list_rcv, head, pt_prev, orig_dev);
5579         else
5580                 list_for_each_entry_safe(skb, next, head, list) {
5581                         skb_list_del_init(skb);
5582                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5583                 }
5584 }
5585
5586 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5587 {
5588         /* Fast-path assumptions:
5589          * - There is no RX handler.
5590          * - Only one packet_type matches.
5591          * If either of these fails, we will end up doing some per-packet
5592          * processing in-line, then handling the 'last ptype' for the whole
5593          * sublist.  This can't cause out-of-order delivery to any single ptype,
5594          * because the 'last ptype' must be constant across the sublist, and all
5595          * other ptypes are handled per-packet.
5596          */
5597         /* Current (common) ptype of sublist */
5598         struct packet_type *pt_curr = NULL;
5599         /* Current (common) orig_dev of sublist */
5600         struct net_device *od_curr = NULL;
5601         struct list_head sublist;
5602         struct sk_buff *skb, *next;
5603
5604         INIT_LIST_HEAD(&sublist);
5605         list_for_each_entry_safe(skb, next, head, list) {
5606                 struct net_device *orig_dev = skb->dev;
5607                 struct packet_type *pt_prev = NULL;
5608
5609                 skb_list_del_init(skb);
5610                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5611                 if (!pt_prev)
5612                         continue;
5613                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5614                         /* dispatch old sublist */
5615                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5616                         /* start new sublist */
5617                         INIT_LIST_HEAD(&sublist);
5618                         pt_curr = pt_prev;
5619                         od_curr = orig_dev;
5620                 }
5621                 list_add_tail(&skb->list, &sublist);
5622         }
5623
5624         /* dispatch final sublist */
5625         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5626 }
5627
5628 static int __netif_receive_skb(struct sk_buff *skb)
5629 {
5630         int ret;
5631
5632         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5633                 unsigned int noreclaim_flag;
5634
5635                 /*
5636                  * PFMEMALLOC skbs are special, they should
5637                  * - be delivered to SOCK_MEMALLOC sockets only
5638                  * - stay away from userspace
5639                  * - have bounded memory usage
5640                  *
5641                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5642                  * context down to all allocation sites.
5643                  */
5644                 noreclaim_flag = memalloc_noreclaim_save();
5645                 ret = __netif_receive_skb_one_core(skb, true);
5646                 memalloc_noreclaim_restore(noreclaim_flag);
5647         } else
5648                 ret = __netif_receive_skb_one_core(skb, false);
5649
5650         return ret;
5651 }
5652
5653 static void __netif_receive_skb_list(struct list_head *head)
5654 {
5655         unsigned long noreclaim_flag = 0;
5656         struct sk_buff *skb, *next;
5657         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5658
5659         list_for_each_entry_safe(skb, next, head, list) {
5660                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5661                         struct list_head sublist;
5662
5663                         /* Handle the previous sublist */
5664                         list_cut_before(&sublist, head, &skb->list);
5665                         if (!list_empty(&sublist))
5666                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5667                         pfmemalloc = !pfmemalloc;
5668                         /* See comments in __netif_receive_skb */
5669                         if (pfmemalloc)
5670                                 noreclaim_flag = memalloc_noreclaim_save();
5671                         else
5672                                 memalloc_noreclaim_restore(noreclaim_flag);
5673                 }
5674         }
5675         /* Handle the remaining sublist */
5676         if (!list_empty(head))
5677                 __netif_receive_skb_list_core(head, pfmemalloc);
5678         /* Restore pflags */
5679         if (pfmemalloc)
5680                 memalloc_noreclaim_restore(noreclaim_flag);
5681 }
5682
5683 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5684 {
5685         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5686         struct bpf_prog *new = xdp->prog;
5687         int ret = 0;
5688
5689         switch (xdp->command) {
5690         case XDP_SETUP_PROG:
5691                 rcu_assign_pointer(dev->xdp_prog, new);
5692                 if (old)
5693                         bpf_prog_put(old);
5694
5695                 if (old && !new) {
5696                         static_branch_dec(&generic_xdp_needed_key);
5697                 } else if (new && !old) {
5698                         static_branch_inc(&generic_xdp_needed_key);
5699                         dev_disable_lro(dev);
5700                         dev_disable_gro_hw(dev);
5701                 }
5702                 break;
5703
5704         default:
5705                 ret = -EINVAL;
5706                 break;
5707         }
5708
5709         return ret;
5710 }
5711
5712 static int netif_receive_skb_internal(struct sk_buff *skb)
5713 {
5714         int ret;
5715
5716         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5717
5718         if (skb_defer_rx_timestamp(skb))
5719                 return NET_RX_SUCCESS;
5720
5721         rcu_read_lock();
5722 #ifdef CONFIG_RPS
5723         if (static_branch_unlikely(&rps_needed)) {
5724                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5725                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5726
5727                 if (cpu >= 0) {
5728                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5729                         rcu_read_unlock();
5730                         return ret;
5731                 }
5732         }
5733 #endif
5734         ret = __netif_receive_skb(skb);
5735         rcu_read_unlock();
5736         return ret;
5737 }
5738
5739 void netif_receive_skb_list_internal(struct list_head *head)
5740 {
5741         struct sk_buff *skb, *next;
5742         struct list_head sublist;
5743
5744         INIT_LIST_HEAD(&sublist);
5745         list_for_each_entry_safe(skb, next, head, list) {
5746                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5747                 skb_list_del_init(skb);
5748                 if (!skb_defer_rx_timestamp(skb))
5749                         list_add_tail(&skb->list, &sublist);
5750         }
5751         list_splice_init(&sublist, head);
5752
5753         rcu_read_lock();
5754 #ifdef CONFIG_RPS
5755         if (static_branch_unlikely(&rps_needed)) {
5756                 list_for_each_entry_safe(skb, next, head, list) {
5757                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5758                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5759
5760                         if (cpu >= 0) {
5761                                 /* Will be handled, remove from list */
5762                                 skb_list_del_init(skb);
5763                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5764                         }
5765                 }
5766         }
5767 #endif
5768         __netif_receive_skb_list(head);
5769         rcu_read_unlock();
5770 }
5771
5772 /**
5773  *      netif_receive_skb - process receive buffer from network
5774  *      @skb: buffer to process
5775  *
5776  *      netif_receive_skb() is the main receive data processing function.
5777  *      It always succeeds. The buffer may be dropped during processing
5778  *      for congestion control or by the protocol layers.
5779  *
5780  *      This function may only be called from softirq context and interrupts
5781  *      should be enabled.
5782  *
5783  *      Return values (usually ignored):
5784  *      NET_RX_SUCCESS: no congestion
5785  *      NET_RX_DROP: packet was dropped
5786  */
5787 int netif_receive_skb(struct sk_buff *skb)
5788 {
5789         int ret;
5790
5791         trace_netif_receive_skb_entry(skb);
5792
5793         ret = netif_receive_skb_internal(skb);
5794         trace_netif_receive_skb_exit(ret);
5795
5796         return ret;
5797 }
5798 EXPORT_SYMBOL(netif_receive_skb);
5799
5800 /**
5801  *      netif_receive_skb_list - process many receive buffers from network
5802  *      @head: list of skbs to process.
5803  *
5804  *      Since return value of netif_receive_skb() is normally ignored, and
5805  *      wouldn't be meaningful for a list, this function returns void.
5806  *
5807  *      This function may only be called from softirq context and interrupts
5808  *      should be enabled.
5809  */
5810 void netif_receive_skb_list(struct list_head *head)
5811 {
5812         struct sk_buff *skb;
5813
5814         if (list_empty(head))
5815                 return;
5816         if (trace_netif_receive_skb_list_entry_enabled()) {
5817                 list_for_each_entry(skb, head, list)
5818                         trace_netif_receive_skb_list_entry(skb);
5819         }
5820         netif_receive_skb_list_internal(head);
5821         trace_netif_receive_skb_list_exit(0);
5822 }
5823 EXPORT_SYMBOL(netif_receive_skb_list);
5824
5825 static DEFINE_PER_CPU(struct work_struct, flush_works);
5826
5827 /* Network device is going away, flush any packets still pending */
5828 static void flush_backlog(struct work_struct *work)
5829 {
5830         struct sk_buff *skb, *tmp;
5831         struct softnet_data *sd;
5832
5833         local_bh_disable();
5834         sd = this_cpu_ptr(&softnet_data);
5835
5836         rps_lock_irq_disable(sd);
5837         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5838                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5839                         __skb_unlink(skb, &sd->input_pkt_queue);
5840                         dev_kfree_skb_irq(skb);
5841                         input_queue_head_incr(sd);
5842                 }
5843         }
5844         rps_unlock_irq_enable(sd);
5845
5846         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5847                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5848                         __skb_unlink(skb, &sd->process_queue);
5849                         kfree_skb(skb);
5850                         input_queue_head_incr(sd);
5851                 }
5852         }
5853         local_bh_enable();
5854 }
5855
5856 static bool flush_required(int cpu)
5857 {
5858 #if IS_ENABLED(CONFIG_RPS)
5859         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5860         bool do_flush;
5861
5862         rps_lock_irq_disable(sd);
5863
5864         /* as insertion into process_queue happens with the rps lock held,
5865          * process_queue access may race only with dequeue
5866          */
5867         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5868                    !skb_queue_empty_lockless(&sd->process_queue);
5869         rps_unlock_irq_enable(sd);
5870
5871         return do_flush;
5872 #endif
5873         /* without RPS we can't safely check input_pkt_queue: during a
5874          * concurrent remote skb_queue_splice() we can detect as empty both
5875          * input_pkt_queue and process_queue even if the latter could end-up
5876          * containing a lot of packets.
5877          */
5878         return true;
5879 }
5880
5881 static void flush_all_backlogs(void)
5882 {
5883         static cpumask_t flush_cpus;
5884         unsigned int cpu;
5885
5886         /* since we are under rtnl lock protection we can use static data
5887          * for the cpumask and avoid allocating on stack the possibly
5888          * large mask
5889          */
5890         ASSERT_RTNL();
5891
5892         cpus_read_lock();
5893
5894         cpumask_clear(&flush_cpus);
5895         for_each_online_cpu(cpu) {
5896                 if (flush_required(cpu)) {
5897                         queue_work_on(cpu, system_highpri_wq,
5898                                       per_cpu_ptr(&flush_works, cpu));
5899                         cpumask_set_cpu(cpu, &flush_cpus);
5900                 }
5901         }
5902
5903         /* we can have in flight packet[s] on the cpus we are not flushing,
5904          * synchronize_net() in unregister_netdevice_many() will take care of
5905          * them
5906          */
5907         for_each_cpu(cpu, &flush_cpus)
5908                 flush_work(per_cpu_ptr(&flush_works, cpu));
5909
5910         cpus_read_unlock();
5911 }
5912
5913 static void net_rps_send_ipi(struct softnet_data *remsd)
5914 {
5915 #ifdef CONFIG_RPS
5916         while (remsd) {
5917                 struct softnet_data *next = remsd->rps_ipi_next;
5918
5919                 if (cpu_online(remsd->cpu))
5920                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5921                 remsd = next;
5922         }
5923 #endif
5924 }
5925
5926 /*
5927  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5928  * Note: called with local irq disabled, but exits with local irq enabled.
5929  */
5930 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5931 {
5932 #ifdef CONFIG_RPS
5933         struct softnet_data *remsd = sd->rps_ipi_list;
5934
5935         if (remsd) {
5936                 sd->rps_ipi_list = NULL;
5937
5938                 local_irq_enable();
5939
5940                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5941                 net_rps_send_ipi(remsd);
5942         } else
5943 #endif
5944                 local_irq_enable();
5945 }
5946
5947 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5948 {
5949 #ifdef CONFIG_RPS
5950         return sd->rps_ipi_list != NULL;
5951 #else
5952         return false;
5953 #endif
5954 }
5955
5956 static int process_backlog(struct napi_struct *napi, int quota)
5957 {
5958         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5959         bool again = true;
5960         int work = 0;
5961
5962         /* Check if we have pending ipi, its better to send them now,
5963          * not waiting net_rx_action() end.
5964          */
5965         if (sd_has_rps_ipi_waiting(sd)) {
5966                 local_irq_disable();
5967                 net_rps_action_and_irq_enable(sd);
5968         }
5969
5970         napi->weight = READ_ONCE(dev_rx_weight);
5971         while (again) {
5972                 struct sk_buff *skb;
5973
5974                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5975                         rcu_read_lock();
5976                         __netif_receive_skb(skb);
5977                         rcu_read_unlock();
5978                         input_queue_head_incr(sd);
5979                         if (++work >= quota)
5980                                 return work;
5981
5982                 }
5983
5984                 rps_lock_irq_disable(sd);
5985                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5986                         /*
5987                          * Inline a custom version of __napi_complete().
5988                          * only current cpu owns and manipulates this napi,
5989                          * and NAPI_STATE_SCHED is the only possible flag set
5990                          * on backlog.
5991                          * We can use a plain write instead of clear_bit(),
5992                          * and we dont need an smp_mb() memory barrier.
5993                          */
5994                         napi->state = 0;
5995                         again = false;
5996                 } else {
5997                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5998                                                    &sd->process_queue);
5999                 }
6000                 rps_unlock_irq_enable(sd);
6001         }
6002
6003         return work;
6004 }
6005
6006 /**
6007  * __napi_schedule - schedule for receive
6008  * @n: entry to schedule
6009  *
6010  * The entry's receive function will be scheduled to run.
6011  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6012  */
6013 void __napi_schedule(struct napi_struct *n)
6014 {
6015         unsigned long flags;
6016
6017         local_irq_save(flags);
6018         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6019         local_irq_restore(flags);
6020 }
6021 EXPORT_SYMBOL(__napi_schedule);
6022
6023 /**
6024  *      napi_schedule_prep - check if napi can be scheduled
6025  *      @n: napi context
6026  *
6027  * Test if NAPI routine is already running, and if not mark
6028  * it as running.  This is used as a condition variable to
6029  * insure only one NAPI poll instance runs.  We also make
6030  * sure there is no pending NAPI disable.
6031  */
6032 bool napi_schedule_prep(struct napi_struct *n)
6033 {
6034         unsigned long new, val = READ_ONCE(n->state);
6035
6036         do {
6037                 if (unlikely(val & NAPIF_STATE_DISABLE))
6038                         return false;
6039                 new = val | NAPIF_STATE_SCHED;
6040
6041                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6042                  * This was suggested by Alexander Duyck, as compiler
6043                  * emits better code than :
6044                  * if (val & NAPIF_STATE_SCHED)
6045                  *     new |= NAPIF_STATE_MISSED;
6046                  */
6047                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6048                                                    NAPIF_STATE_MISSED;
6049         } while (!try_cmpxchg(&n->state, &val, new));
6050
6051         return !(val & NAPIF_STATE_SCHED);
6052 }
6053 EXPORT_SYMBOL(napi_schedule_prep);
6054
6055 /**
6056  * __napi_schedule_irqoff - schedule for receive
6057  * @n: entry to schedule
6058  *
6059  * Variant of __napi_schedule() assuming hard irqs are masked.
6060  *
6061  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6062  * because the interrupt disabled assumption might not be true
6063  * due to force-threaded interrupts and spinlock substitution.
6064  */
6065 void __napi_schedule_irqoff(struct napi_struct *n)
6066 {
6067         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6068                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6069         else
6070                 __napi_schedule(n);
6071 }
6072 EXPORT_SYMBOL(__napi_schedule_irqoff);
6073
6074 bool napi_complete_done(struct napi_struct *n, int work_done)
6075 {
6076         unsigned long flags, val, new, timeout = 0;
6077         bool ret = true;
6078
6079         /*
6080          * 1) Don't let napi dequeue from the cpu poll list
6081          *    just in case its running on a different cpu.
6082          * 2) If we are busy polling, do nothing here, we have
6083          *    the guarantee we will be called later.
6084          */
6085         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6086                                  NAPIF_STATE_IN_BUSY_POLL)))
6087                 return false;
6088
6089         if (work_done) {
6090                 if (n->gro_bitmask)
6091                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6092                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6093         }
6094         if (n->defer_hard_irqs_count > 0) {
6095                 n->defer_hard_irqs_count--;
6096                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6097                 if (timeout)
6098                         ret = false;
6099         }
6100         if (n->gro_bitmask) {
6101                 /* When the NAPI instance uses a timeout and keeps postponing
6102                  * it, we need to bound somehow the time packets are kept in
6103                  * the GRO layer
6104                  */
6105                 napi_gro_flush(n, !!timeout);
6106         }
6107
6108         gro_normal_list(n);
6109
6110         if (unlikely(!list_empty(&n->poll_list))) {
6111                 /* If n->poll_list is not empty, we need to mask irqs */
6112                 local_irq_save(flags);
6113                 list_del_init(&n->poll_list);
6114                 local_irq_restore(flags);
6115         }
6116         WRITE_ONCE(n->list_owner, -1);
6117
6118         val = READ_ONCE(n->state);
6119         do {
6120                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6121
6122                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6123                               NAPIF_STATE_SCHED_THREADED |
6124                               NAPIF_STATE_PREFER_BUSY_POLL);
6125
6126                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6127                  * because we will call napi->poll() one more time.
6128                  * This C code was suggested by Alexander Duyck to help gcc.
6129                  */
6130                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6131                                                     NAPIF_STATE_SCHED;
6132         } while (!try_cmpxchg(&n->state, &val, new));
6133
6134         if (unlikely(val & NAPIF_STATE_MISSED)) {
6135                 __napi_schedule(n);
6136                 return false;
6137         }
6138
6139         if (timeout)
6140                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6141                               HRTIMER_MODE_REL_PINNED);
6142         return ret;
6143 }
6144 EXPORT_SYMBOL(napi_complete_done);
6145
6146 /* must be called under rcu_read_lock(), as we dont take a reference */
6147 struct napi_struct *napi_by_id(unsigned int napi_id)
6148 {
6149         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6150         struct napi_struct *napi;
6151
6152         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6153                 if (napi->napi_id == napi_id)
6154                         return napi;
6155
6156         return NULL;
6157 }
6158
6159 #if defined(CONFIG_NET_RX_BUSY_POLL)
6160
6161 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6162 {
6163         if (!skip_schedule) {
6164                 gro_normal_list(napi);
6165                 __napi_schedule(napi);
6166                 return;
6167         }
6168
6169         if (napi->gro_bitmask) {
6170                 /* flush too old packets
6171                  * If HZ < 1000, flush all packets.
6172                  */
6173                 napi_gro_flush(napi, HZ >= 1000);
6174         }
6175
6176         gro_normal_list(napi);
6177         clear_bit(NAPI_STATE_SCHED, &napi->state);
6178 }
6179
6180 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6181                            u16 budget)
6182 {
6183         bool skip_schedule = false;
6184         unsigned long timeout;
6185         int rc;
6186
6187         /* Busy polling means there is a high chance device driver hard irq
6188          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6189          * set in napi_schedule_prep().
6190          * Since we are about to call napi->poll() once more, we can safely
6191          * clear NAPI_STATE_MISSED.
6192          *
6193          * Note: x86 could use a single "lock and ..." instruction
6194          * to perform these two clear_bit()
6195          */
6196         clear_bit(NAPI_STATE_MISSED, &napi->state);
6197         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6198
6199         local_bh_disable();
6200
6201         if (prefer_busy_poll) {
6202                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6203                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6204                 if (napi->defer_hard_irqs_count && timeout) {
6205                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6206                         skip_schedule = true;
6207                 }
6208         }
6209
6210         /* All we really want here is to re-enable device interrupts.
6211          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6212          */
6213         rc = napi->poll(napi, budget);
6214         /* We can't gro_normal_list() here, because napi->poll() might have
6215          * rearmed the napi (napi_complete_done()) in which case it could
6216          * already be running on another CPU.
6217          */
6218         trace_napi_poll(napi, rc, budget);
6219         netpoll_poll_unlock(have_poll_lock);
6220         if (rc == budget)
6221                 __busy_poll_stop(napi, skip_schedule);
6222         local_bh_enable();
6223 }
6224
6225 void napi_busy_loop(unsigned int napi_id,
6226                     bool (*loop_end)(void *, unsigned long),
6227                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6228 {
6229         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6230         int (*napi_poll)(struct napi_struct *napi, int budget);
6231         void *have_poll_lock = NULL;
6232         struct napi_struct *napi;
6233
6234 restart:
6235         napi_poll = NULL;
6236
6237         rcu_read_lock();
6238
6239         napi = napi_by_id(napi_id);
6240         if (!napi)
6241                 goto out;
6242
6243         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6244                 preempt_disable();
6245         for (;;) {
6246                 int work = 0;
6247
6248                 local_bh_disable();
6249                 if (!napi_poll) {
6250                         unsigned long val = READ_ONCE(napi->state);
6251
6252                         /* If multiple threads are competing for this napi,
6253                          * we avoid dirtying napi->state as much as we can.
6254                          */
6255                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6256                                    NAPIF_STATE_IN_BUSY_POLL)) {
6257                                 if (prefer_busy_poll)
6258                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6259                                 goto count;
6260                         }
6261                         if (cmpxchg(&napi->state, val,
6262                                     val | NAPIF_STATE_IN_BUSY_POLL |
6263                                           NAPIF_STATE_SCHED) != val) {
6264                                 if (prefer_busy_poll)
6265                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6266                                 goto count;
6267                         }
6268                         have_poll_lock = netpoll_poll_lock(napi);
6269                         napi_poll = napi->poll;
6270                 }
6271                 work = napi_poll(napi, budget);
6272                 trace_napi_poll(napi, work, budget);
6273                 gro_normal_list(napi);
6274 count:
6275                 if (work > 0)
6276                         __NET_ADD_STATS(dev_net(napi->dev),
6277                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6278                 local_bh_enable();
6279
6280                 if (!loop_end || loop_end(loop_end_arg, start_time))
6281                         break;
6282
6283                 if (unlikely(need_resched())) {
6284                         if (napi_poll)
6285                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6286                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6287                                 preempt_enable();
6288                         rcu_read_unlock();
6289                         cond_resched();
6290                         if (loop_end(loop_end_arg, start_time))
6291                                 return;
6292                         goto restart;
6293                 }
6294                 cpu_relax();
6295         }
6296         if (napi_poll)
6297                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6298         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6299                 preempt_enable();
6300 out:
6301         rcu_read_unlock();
6302 }
6303 EXPORT_SYMBOL(napi_busy_loop);
6304
6305 #endif /* CONFIG_NET_RX_BUSY_POLL */
6306
6307 static void napi_hash_add(struct napi_struct *napi)
6308 {
6309         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6310                 return;
6311
6312         spin_lock(&napi_hash_lock);
6313
6314         /* 0..NR_CPUS range is reserved for sender_cpu use */
6315         do {
6316                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6317                         napi_gen_id = MIN_NAPI_ID;
6318         } while (napi_by_id(napi_gen_id));
6319         napi->napi_id = napi_gen_id;
6320
6321         hlist_add_head_rcu(&napi->napi_hash_node,
6322                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6323
6324         spin_unlock(&napi_hash_lock);
6325 }
6326
6327 /* Warning : caller is responsible to make sure rcu grace period
6328  * is respected before freeing memory containing @napi
6329  */
6330 static void napi_hash_del(struct napi_struct *napi)
6331 {
6332         spin_lock(&napi_hash_lock);
6333
6334         hlist_del_init_rcu(&napi->napi_hash_node);
6335
6336         spin_unlock(&napi_hash_lock);
6337 }
6338
6339 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6340 {
6341         struct napi_struct *napi;
6342
6343         napi = container_of(timer, struct napi_struct, timer);
6344
6345         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6346          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6347          */
6348         if (!napi_disable_pending(napi) &&
6349             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6350                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6351                 __napi_schedule_irqoff(napi);
6352         }
6353
6354         return HRTIMER_NORESTART;
6355 }
6356
6357 static void init_gro_hash(struct napi_struct *napi)
6358 {
6359         int i;
6360
6361         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6362                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6363                 napi->gro_hash[i].count = 0;
6364         }
6365         napi->gro_bitmask = 0;
6366 }
6367
6368 int dev_set_threaded(struct net_device *dev, bool threaded)
6369 {
6370         struct napi_struct *napi;
6371         int err = 0;
6372
6373         if (dev->threaded == threaded)
6374                 return 0;
6375
6376         if (threaded) {
6377                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6378                         if (!napi->thread) {
6379                                 err = napi_kthread_create(napi);
6380                                 if (err) {
6381                                         threaded = false;
6382                                         break;
6383                                 }
6384                         }
6385                 }
6386         }
6387
6388         dev->threaded = threaded;
6389
6390         /* Make sure kthread is created before THREADED bit
6391          * is set.
6392          */
6393         smp_mb__before_atomic();
6394
6395         /* Setting/unsetting threaded mode on a napi might not immediately
6396          * take effect, if the current napi instance is actively being
6397          * polled. In this case, the switch between threaded mode and
6398          * softirq mode will happen in the next round of napi_schedule().
6399          * This should not cause hiccups/stalls to the live traffic.
6400          */
6401         list_for_each_entry(napi, &dev->napi_list, dev_list)
6402                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6403
6404         return err;
6405 }
6406 EXPORT_SYMBOL(dev_set_threaded);
6407
6408 /**
6409  * netif_queue_set_napi - Associate queue with the napi
6410  * @dev: device to which NAPI and queue belong
6411  * @queue_index: Index of queue
6412  * @type: queue type as RX or TX
6413  * @napi: NAPI context, pass NULL to clear previously set NAPI
6414  *
6415  * Set queue with its corresponding napi context. This should be done after
6416  * registering the NAPI handler for the queue-vector and the queues have been
6417  * mapped to the corresponding interrupt vector.
6418  */
6419 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6420                           enum netdev_queue_type type, struct napi_struct *napi)
6421 {
6422         struct netdev_rx_queue *rxq;
6423         struct netdev_queue *txq;
6424
6425         if (WARN_ON_ONCE(napi && !napi->dev))
6426                 return;
6427         if (dev->reg_state >= NETREG_REGISTERED)
6428                 ASSERT_RTNL();
6429
6430         switch (type) {
6431         case NETDEV_QUEUE_TYPE_RX:
6432                 rxq = __netif_get_rx_queue(dev, queue_index);
6433                 rxq->napi = napi;
6434                 return;
6435         case NETDEV_QUEUE_TYPE_TX:
6436                 txq = netdev_get_tx_queue(dev, queue_index);
6437                 txq->napi = napi;
6438                 return;
6439         default:
6440                 return;
6441         }
6442 }
6443 EXPORT_SYMBOL(netif_queue_set_napi);
6444
6445 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6446                            int (*poll)(struct napi_struct *, int), int weight)
6447 {
6448         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6449                 return;
6450
6451         INIT_LIST_HEAD(&napi->poll_list);
6452         INIT_HLIST_NODE(&napi->napi_hash_node);
6453         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6454         napi->timer.function = napi_watchdog;
6455         init_gro_hash(napi);
6456         napi->skb = NULL;
6457         INIT_LIST_HEAD(&napi->rx_list);
6458         napi->rx_count = 0;
6459         napi->poll = poll;
6460         if (weight > NAPI_POLL_WEIGHT)
6461                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6462                                 weight);
6463         napi->weight = weight;
6464         napi->dev = dev;
6465 #ifdef CONFIG_NETPOLL
6466         napi->poll_owner = -1;
6467 #endif
6468         napi->list_owner = -1;
6469         set_bit(NAPI_STATE_SCHED, &napi->state);
6470         set_bit(NAPI_STATE_NPSVC, &napi->state);
6471         list_add_rcu(&napi->dev_list, &dev->napi_list);
6472         napi_hash_add(napi);
6473         napi_get_frags_check(napi);
6474         /* Create kthread for this napi if dev->threaded is set.
6475          * Clear dev->threaded if kthread creation failed so that
6476          * threaded mode will not be enabled in napi_enable().
6477          */
6478         if (dev->threaded && napi_kthread_create(napi))
6479                 dev->threaded = 0;
6480         netif_napi_set_irq(napi, -1);
6481 }
6482 EXPORT_SYMBOL(netif_napi_add_weight);
6483
6484 void napi_disable(struct napi_struct *n)
6485 {
6486         unsigned long val, new;
6487
6488         might_sleep();
6489         set_bit(NAPI_STATE_DISABLE, &n->state);
6490
6491         val = READ_ONCE(n->state);
6492         do {
6493                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6494                         usleep_range(20, 200);
6495                         val = READ_ONCE(n->state);
6496                 }
6497
6498                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6499                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6500         } while (!try_cmpxchg(&n->state, &val, new));
6501
6502         hrtimer_cancel(&n->timer);
6503
6504         clear_bit(NAPI_STATE_DISABLE, &n->state);
6505 }
6506 EXPORT_SYMBOL(napi_disable);
6507
6508 /**
6509  *      napi_enable - enable NAPI scheduling
6510  *      @n: NAPI context
6511  *
6512  * Resume NAPI from being scheduled on this context.
6513  * Must be paired with napi_disable.
6514  */
6515 void napi_enable(struct napi_struct *n)
6516 {
6517         unsigned long new, val = READ_ONCE(n->state);
6518
6519         do {
6520                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6521
6522                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6523                 if (n->dev->threaded && n->thread)
6524                         new |= NAPIF_STATE_THREADED;
6525         } while (!try_cmpxchg(&n->state, &val, new));
6526 }
6527 EXPORT_SYMBOL(napi_enable);
6528
6529 static void flush_gro_hash(struct napi_struct *napi)
6530 {
6531         int i;
6532
6533         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6534                 struct sk_buff *skb, *n;
6535
6536                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6537                         kfree_skb(skb);
6538                 napi->gro_hash[i].count = 0;
6539         }
6540 }
6541
6542 /* Must be called in process context */
6543 void __netif_napi_del(struct napi_struct *napi)
6544 {
6545         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6546                 return;
6547
6548         napi_hash_del(napi);
6549         list_del_rcu(&napi->dev_list);
6550         napi_free_frags(napi);
6551
6552         flush_gro_hash(napi);
6553         napi->gro_bitmask = 0;
6554
6555         if (napi->thread) {
6556                 kthread_stop(napi->thread);
6557                 napi->thread = NULL;
6558         }
6559 }
6560 EXPORT_SYMBOL(__netif_napi_del);
6561
6562 static int __napi_poll(struct napi_struct *n, bool *repoll)
6563 {
6564         int work, weight;
6565
6566         weight = n->weight;
6567
6568         /* This NAPI_STATE_SCHED test is for avoiding a race
6569          * with netpoll's poll_napi().  Only the entity which
6570          * obtains the lock and sees NAPI_STATE_SCHED set will
6571          * actually make the ->poll() call.  Therefore we avoid
6572          * accidentally calling ->poll() when NAPI is not scheduled.
6573          */
6574         work = 0;
6575         if (napi_is_scheduled(n)) {
6576                 work = n->poll(n, weight);
6577                 trace_napi_poll(n, work, weight);
6578
6579                 xdp_do_check_flushed(n);
6580         }
6581
6582         if (unlikely(work > weight))
6583                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6584                                 n->poll, work, weight);
6585
6586         if (likely(work < weight))
6587                 return work;
6588
6589         /* Drivers must not modify the NAPI state if they
6590          * consume the entire weight.  In such cases this code
6591          * still "owns" the NAPI instance and therefore can
6592          * move the instance around on the list at-will.
6593          */
6594         if (unlikely(napi_disable_pending(n))) {
6595                 napi_complete(n);
6596                 return work;
6597         }
6598
6599         /* The NAPI context has more processing work, but busy-polling
6600          * is preferred. Exit early.
6601          */
6602         if (napi_prefer_busy_poll(n)) {
6603                 if (napi_complete_done(n, work)) {
6604                         /* If timeout is not set, we need to make sure
6605                          * that the NAPI is re-scheduled.
6606                          */
6607                         napi_schedule(n);
6608                 }
6609                 return work;
6610         }
6611
6612         if (n->gro_bitmask) {
6613                 /* flush too old packets
6614                  * If HZ < 1000, flush all packets.
6615                  */
6616                 napi_gro_flush(n, HZ >= 1000);
6617         }
6618
6619         gro_normal_list(n);
6620
6621         /* Some drivers may have called napi_schedule
6622          * prior to exhausting their budget.
6623          */
6624         if (unlikely(!list_empty(&n->poll_list))) {
6625                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6626                              n->dev ? n->dev->name : "backlog");
6627                 return work;
6628         }
6629
6630         *repoll = true;
6631
6632         return work;
6633 }
6634
6635 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6636 {
6637         bool do_repoll = false;
6638         void *have;
6639         int work;
6640
6641         list_del_init(&n->poll_list);
6642
6643         have = netpoll_poll_lock(n);
6644
6645         work = __napi_poll(n, &do_repoll);
6646
6647         if (do_repoll)
6648                 list_add_tail(&n->poll_list, repoll);
6649
6650         netpoll_poll_unlock(have);
6651
6652         return work;
6653 }
6654
6655 static int napi_thread_wait(struct napi_struct *napi)
6656 {
6657         bool woken = false;
6658
6659         set_current_state(TASK_INTERRUPTIBLE);
6660
6661         while (!kthread_should_stop()) {
6662                 /* Testing SCHED_THREADED bit here to make sure the current
6663                  * kthread owns this napi and could poll on this napi.
6664                  * Testing SCHED bit is not enough because SCHED bit might be
6665                  * set by some other busy poll thread or by napi_disable().
6666                  */
6667                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6668                         WARN_ON(!list_empty(&napi->poll_list));
6669                         __set_current_state(TASK_RUNNING);
6670                         return 0;
6671                 }
6672
6673                 schedule();
6674                 /* woken being true indicates this thread owns this napi. */
6675                 woken = true;
6676                 set_current_state(TASK_INTERRUPTIBLE);
6677         }
6678         __set_current_state(TASK_RUNNING);
6679
6680         return -1;
6681 }
6682
6683 static void skb_defer_free_flush(struct softnet_data *sd)
6684 {
6685         struct sk_buff *skb, *next;
6686
6687         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6688         if (!READ_ONCE(sd->defer_list))
6689                 return;
6690
6691         spin_lock(&sd->defer_lock);
6692         skb = sd->defer_list;
6693         sd->defer_list = NULL;
6694         sd->defer_count = 0;
6695         spin_unlock(&sd->defer_lock);
6696
6697         while (skb != NULL) {
6698                 next = skb->next;
6699                 napi_consume_skb(skb, 1);
6700                 skb = next;
6701         }
6702 }
6703
6704 static int napi_threaded_poll(void *data)
6705 {
6706         struct napi_struct *napi = data;
6707         struct softnet_data *sd;
6708         void *have;
6709
6710         while (!napi_thread_wait(napi)) {
6711                 unsigned long last_qs = jiffies;
6712
6713                 for (;;) {
6714                         bool repoll = false;
6715
6716                         local_bh_disable();
6717                         sd = this_cpu_ptr(&softnet_data);
6718                         sd->in_napi_threaded_poll = true;
6719
6720                         have = netpoll_poll_lock(napi);
6721                         __napi_poll(napi, &repoll);
6722                         netpoll_poll_unlock(have);
6723
6724                         sd->in_napi_threaded_poll = false;
6725                         barrier();
6726
6727                         if (sd_has_rps_ipi_waiting(sd)) {
6728                                 local_irq_disable();
6729                                 net_rps_action_and_irq_enable(sd);
6730                         }
6731                         skb_defer_free_flush(sd);
6732                         local_bh_enable();
6733
6734                         if (!repoll)
6735                                 break;
6736
6737                         rcu_softirq_qs_periodic(last_qs);
6738                         cond_resched();
6739                 }
6740         }
6741         return 0;
6742 }
6743
6744 static __latent_entropy void net_rx_action(struct softirq_action *h)
6745 {
6746         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6747         unsigned long time_limit = jiffies +
6748                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6749         int budget = READ_ONCE(netdev_budget);
6750         LIST_HEAD(list);
6751         LIST_HEAD(repoll);
6752
6753 start:
6754         sd->in_net_rx_action = true;
6755         local_irq_disable();
6756         list_splice_init(&sd->poll_list, &list);
6757         local_irq_enable();
6758
6759         for (;;) {
6760                 struct napi_struct *n;
6761
6762                 skb_defer_free_flush(sd);
6763
6764                 if (list_empty(&list)) {
6765                         if (list_empty(&repoll)) {
6766                                 sd->in_net_rx_action = false;
6767                                 barrier();
6768                                 /* We need to check if ____napi_schedule()
6769                                  * had refilled poll_list while
6770                                  * sd->in_net_rx_action was true.
6771                                  */
6772                                 if (!list_empty(&sd->poll_list))
6773                                         goto start;
6774                                 if (!sd_has_rps_ipi_waiting(sd))
6775                                         goto end;
6776                         }
6777                         break;
6778                 }
6779
6780                 n = list_first_entry(&list, struct napi_struct, poll_list);
6781                 budget -= napi_poll(n, &repoll);
6782
6783                 /* If softirq window is exhausted then punt.
6784                  * Allow this to run for 2 jiffies since which will allow
6785                  * an average latency of 1.5/HZ.
6786                  */
6787                 if (unlikely(budget <= 0 ||
6788                              time_after_eq(jiffies, time_limit))) {
6789                         sd->time_squeeze++;
6790                         break;
6791                 }
6792         }
6793
6794         local_irq_disable();
6795
6796         list_splice_tail_init(&sd->poll_list, &list);
6797         list_splice_tail(&repoll, &list);
6798         list_splice(&list, &sd->poll_list);
6799         if (!list_empty(&sd->poll_list))
6800                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6801         else
6802                 sd->in_net_rx_action = false;
6803
6804         net_rps_action_and_irq_enable(sd);
6805 end:;
6806 }
6807
6808 struct netdev_adjacent {
6809         struct net_device *dev;
6810         netdevice_tracker dev_tracker;
6811
6812         /* upper master flag, there can only be one master device per list */
6813         bool master;
6814
6815         /* lookup ignore flag */
6816         bool ignore;
6817
6818         /* counter for the number of times this device was added to us */
6819         u16 ref_nr;
6820
6821         /* private field for the users */
6822         void *private;
6823
6824         struct list_head list;
6825         struct rcu_head rcu;
6826 };
6827
6828 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6829                                                  struct list_head *adj_list)
6830 {
6831         struct netdev_adjacent *adj;
6832
6833         list_for_each_entry(adj, adj_list, list) {
6834                 if (adj->dev == adj_dev)
6835                         return adj;
6836         }
6837         return NULL;
6838 }
6839
6840 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6841                                     struct netdev_nested_priv *priv)
6842 {
6843         struct net_device *dev = (struct net_device *)priv->data;
6844
6845         return upper_dev == dev;
6846 }
6847
6848 /**
6849  * netdev_has_upper_dev - Check if device is linked to an upper device
6850  * @dev: device
6851  * @upper_dev: upper device to check
6852  *
6853  * Find out if a device is linked to specified upper device and return true
6854  * in case it is. Note that this checks only immediate upper device,
6855  * not through a complete stack of devices. The caller must hold the RTNL lock.
6856  */
6857 bool netdev_has_upper_dev(struct net_device *dev,
6858                           struct net_device *upper_dev)
6859 {
6860         struct netdev_nested_priv priv = {
6861                 .data = (void *)upper_dev,
6862         };
6863
6864         ASSERT_RTNL();
6865
6866         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6867                                              &priv);
6868 }
6869 EXPORT_SYMBOL(netdev_has_upper_dev);
6870
6871 /**
6872  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6873  * @dev: device
6874  * @upper_dev: upper device to check
6875  *
6876  * Find out if a device is linked to specified upper device and return true
6877  * in case it is. Note that this checks the entire upper device chain.
6878  * The caller must hold rcu lock.
6879  */
6880
6881 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6882                                   struct net_device *upper_dev)
6883 {
6884         struct netdev_nested_priv priv = {
6885                 .data = (void *)upper_dev,
6886         };
6887
6888         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6889                                                &priv);
6890 }
6891 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6892
6893 /**
6894  * netdev_has_any_upper_dev - Check if device is linked to some device
6895  * @dev: device
6896  *
6897  * Find out if a device is linked to an upper device and return true in case
6898  * it is. The caller must hold the RTNL lock.
6899  */
6900 bool netdev_has_any_upper_dev(struct net_device *dev)
6901 {
6902         ASSERT_RTNL();
6903
6904         return !list_empty(&dev->adj_list.upper);
6905 }
6906 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6907
6908 /**
6909  * netdev_master_upper_dev_get - Get master upper device
6910  * @dev: device
6911  *
6912  * Find a master upper device and return pointer to it or NULL in case
6913  * it's not there. The caller must hold the RTNL lock.
6914  */
6915 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6916 {
6917         struct netdev_adjacent *upper;
6918
6919         ASSERT_RTNL();
6920
6921         if (list_empty(&dev->adj_list.upper))
6922                 return NULL;
6923
6924         upper = list_first_entry(&dev->adj_list.upper,
6925                                  struct netdev_adjacent, list);
6926         if (likely(upper->master))
6927                 return upper->dev;
6928         return NULL;
6929 }
6930 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6931
6932 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6933 {
6934         struct netdev_adjacent *upper;
6935
6936         ASSERT_RTNL();
6937
6938         if (list_empty(&dev->adj_list.upper))
6939                 return NULL;
6940
6941         upper = list_first_entry(&dev->adj_list.upper,
6942                                  struct netdev_adjacent, list);
6943         if (likely(upper->master) && !upper->ignore)
6944                 return upper->dev;
6945         return NULL;
6946 }
6947
6948 /**
6949  * netdev_has_any_lower_dev - Check if device is linked to some device
6950  * @dev: device
6951  *
6952  * Find out if a device is linked to a lower device and return true in case
6953  * it is. The caller must hold the RTNL lock.
6954  */
6955 static bool netdev_has_any_lower_dev(struct net_device *dev)
6956 {
6957         ASSERT_RTNL();
6958
6959         return !list_empty(&dev->adj_list.lower);
6960 }
6961
6962 void *netdev_adjacent_get_private(struct list_head *adj_list)
6963 {
6964         struct netdev_adjacent *adj;
6965
6966         adj = list_entry(adj_list, struct netdev_adjacent, list);
6967
6968         return adj->private;
6969 }
6970 EXPORT_SYMBOL(netdev_adjacent_get_private);
6971
6972 /**
6973  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6974  * @dev: device
6975  * @iter: list_head ** of the current position
6976  *
6977  * Gets the next device from the dev's upper list, starting from iter
6978  * position. The caller must hold RCU read lock.
6979  */
6980 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6981                                                  struct list_head **iter)
6982 {
6983         struct netdev_adjacent *upper;
6984
6985         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6986
6987         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6988
6989         if (&upper->list == &dev->adj_list.upper)
6990                 return NULL;
6991
6992         *iter = &upper->list;
6993
6994         return upper->dev;
6995 }
6996 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6997
6998 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6999                                                   struct list_head **iter,
7000                                                   bool *ignore)
7001 {
7002         struct netdev_adjacent *upper;
7003
7004         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7005
7006         if (&upper->list == &dev->adj_list.upper)
7007                 return NULL;
7008
7009         *iter = &upper->list;
7010         *ignore = upper->ignore;
7011
7012         return upper->dev;
7013 }
7014
7015 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7016                                                     struct list_head **iter)
7017 {
7018         struct netdev_adjacent *upper;
7019
7020         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7021
7022         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7023
7024         if (&upper->list == &dev->adj_list.upper)
7025                 return NULL;
7026
7027         *iter = &upper->list;
7028
7029         return upper->dev;
7030 }
7031
7032 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7033                                        int (*fn)(struct net_device *dev,
7034                                          struct netdev_nested_priv *priv),
7035                                        struct netdev_nested_priv *priv)
7036 {
7037         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7038         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7039         int ret, cur = 0;
7040         bool ignore;
7041
7042         now = dev;
7043         iter = &dev->adj_list.upper;
7044
7045         while (1) {
7046                 if (now != dev) {
7047                         ret = fn(now, priv);
7048                         if (ret)
7049                                 return ret;
7050                 }
7051
7052                 next = NULL;
7053                 while (1) {
7054                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7055                         if (!udev)
7056                                 break;
7057                         if (ignore)
7058                                 continue;
7059
7060                         next = udev;
7061                         niter = &udev->adj_list.upper;
7062                         dev_stack[cur] = now;
7063                         iter_stack[cur++] = iter;
7064                         break;
7065                 }
7066
7067                 if (!next) {
7068                         if (!cur)
7069                                 return 0;
7070                         next = dev_stack[--cur];
7071                         niter = iter_stack[cur];
7072                 }
7073
7074                 now = next;
7075                 iter = niter;
7076         }
7077
7078         return 0;
7079 }
7080
7081 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7082                                   int (*fn)(struct net_device *dev,
7083                                             struct netdev_nested_priv *priv),
7084                                   struct netdev_nested_priv *priv)
7085 {
7086         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7087         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7088         int ret, cur = 0;
7089
7090         now = dev;
7091         iter = &dev->adj_list.upper;
7092
7093         while (1) {
7094                 if (now != dev) {
7095                         ret = fn(now, priv);
7096                         if (ret)
7097                                 return ret;
7098                 }
7099
7100                 next = NULL;
7101                 while (1) {
7102                         udev = netdev_next_upper_dev_rcu(now, &iter);
7103                         if (!udev)
7104                                 break;
7105
7106                         next = udev;
7107                         niter = &udev->adj_list.upper;
7108                         dev_stack[cur] = now;
7109                         iter_stack[cur++] = iter;
7110                         break;
7111                 }
7112
7113                 if (!next) {
7114                         if (!cur)
7115                                 return 0;
7116                         next = dev_stack[--cur];
7117                         niter = iter_stack[cur];
7118                 }
7119
7120                 now = next;
7121                 iter = niter;
7122         }
7123
7124         return 0;
7125 }
7126 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7127
7128 static bool __netdev_has_upper_dev(struct net_device *dev,
7129                                    struct net_device *upper_dev)
7130 {
7131         struct netdev_nested_priv priv = {
7132                 .flags = 0,
7133                 .data = (void *)upper_dev,
7134         };
7135
7136         ASSERT_RTNL();
7137
7138         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7139                                            &priv);
7140 }
7141
7142 /**
7143  * netdev_lower_get_next_private - Get the next ->private from the
7144  *                                 lower neighbour list
7145  * @dev: device
7146  * @iter: list_head ** of the current position
7147  *
7148  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7149  * list, starting from iter position. The caller must hold either hold the
7150  * RTNL lock or its own locking that guarantees that the neighbour lower
7151  * list will remain unchanged.
7152  */
7153 void *netdev_lower_get_next_private(struct net_device *dev,
7154                                     struct list_head **iter)
7155 {
7156         struct netdev_adjacent *lower;
7157
7158         lower = list_entry(*iter, struct netdev_adjacent, list);
7159
7160         if (&lower->list == &dev->adj_list.lower)
7161                 return NULL;
7162
7163         *iter = lower->list.next;
7164
7165         return lower->private;
7166 }
7167 EXPORT_SYMBOL(netdev_lower_get_next_private);
7168
7169 /**
7170  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7171  *                                     lower neighbour list, RCU
7172  *                                     variant
7173  * @dev: device
7174  * @iter: list_head ** of the current position
7175  *
7176  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7177  * list, starting from iter position. The caller must hold RCU read lock.
7178  */
7179 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7180                                         struct list_head **iter)
7181 {
7182         struct netdev_adjacent *lower;
7183
7184         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7185
7186         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7187
7188         if (&lower->list == &dev->adj_list.lower)
7189                 return NULL;
7190
7191         *iter = &lower->list;
7192
7193         return lower->private;
7194 }
7195 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7196
7197 /**
7198  * netdev_lower_get_next - Get the next device from the lower neighbour
7199  *                         list
7200  * @dev: device
7201  * @iter: list_head ** of the current position
7202  *
7203  * Gets the next netdev_adjacent from the dev's lower neighbour
7204  * list, starting from iter position. The caller must hold RTNL lock or
7205  * its own locking that guarantees that the neighbour lower
7206  * list will remain unchanged.
7207  */
7208 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7209 {
7210         struct netdev_adjacent *lower;
7211
7212         lower = list_entry(*iter, struct netdev_adjacent, list);
7213
7214         if (&lower->list == &dev->adj_list.lower)
7215                 return NULL;
7216
7217         *iter = lower->list.next;
7218
7219         return lower->dev;
7220 }
7221 EXPORT_SYMBOL(netdev_lower_get_next);
7222
7223 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7224                                                 struct list_head **iter)
7225 {
7226         struct netdev_adjacent *lower;
7227
7228         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7229
7230         if (&lower->list == &dev->adj_list.lower)
7231                 return NULL;
7232
7233         *iter = &lower->list;
7234
7235         return lower->dev;
7236 }
7237
7238 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7239                                                   struct list_head **iter,
7240                                                   bool *ignore)
7241 {
7242         struct netdev_adjacent *lower;
7243
7244         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7245
7246         if (&lower->list == &dev->adj_list.lower)
7247                 return NULL;
7248
7249         *iter = &lower->list;
7250         *ignore = lower->ignore;
7251
7252         return lower->dev;
7253 }
7254
7255 int netdev_walk_all_lower_dev(struct net_device *dev,
7256                               int (*fn)(struct net_device *dev,
7257                                         struct netdev_nested_priv *priv),
7258                               struct netdev_nested_priv *priv)
7259 {
7260         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7261         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7262         int ret, cur = 0;
7263
7264         now = dev;
7265         iter = &dev->adj_list.lower;
7266
7267         while (1) {
7268                 if (now != dev) {
7269                         ret = fn(now, priv);
7270                         if (ret)
7271                                 return ret;
7272                 }
7273
7274                 next = NULL;
7275                 while (1) {
7276                         ldev = netdev_next_lower_dev(now, &iter);
7277                         if (!ldev)
7278                                 break;
7279
7280                         next = ldev;
7281                         niter = &ldev->adj_list.lower;
7282                         dev_stack[cur] = now;
7283                         iter_stack[cur++] = iter;
7284                         break;
7285                 }
7286
7287                 if (!next) {
7288                         if (!cur)
7289                                 return 0;
7290                         next = dev_stack[--cur];
7291                         niter = iter_stack[cur];
7292                 }
7293
7294                 now = next;
7295                 iter = niter;
7296         }
7297
7298         return 0;
7299 }
7300 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7301
7302 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7303                                        int (*fn)(struct net_device *dev,
7304                                          struct netdev_nested_priv *priv),
7305                                        struct netdev_nested_priv *priv)
7306 {
7307         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7308         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7309         int ret, cur = 0;
7310         bool ignore;
7311
7312         now = dev;
7313         iter = &dev->adj_list.lower;
7314
7315         while (1) {
7316                 if (now != dev) {
7317                         ret = fn(now, priv);
7318                         if (ret)
7319                                 return ret;
7320                 }
7321
7322                 next = NULL;
7323                 while (1) {
7324                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7325                         if (!ldev)
7326                                 break;
7327                         if (ignore)
7328                                 continue;
7329
7330                         next = ldev;
7331                         niter = &ldev->adj_list.lower;
7332                         dev_stack[cur] = now;
7333                         iter_stack[cur++] = iter;
7334                         break;
7335                 }
7336
7337                 if (!next) {
7338                         if (!cur)
7339                                 return 0;
7340                         next = dev_stack[--cur];
7341                         niter = iter_stack[cur];
7342                 }
7343
7344                 now = next;
7345                 iter = niter;
7346         }
7347
7348         return 0;
7349 }
7350
7351 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7352                                              struct list_head **iter)
7353 {
7354         struct netdev_adjacent *lower;
7355
7356         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7357         if (&lower->list == &dev->adj_list.lower)
7358                 return NULL;
7359
7360         *iter = &lower->list;
7361
7362         return lower->dev;
7363 }
7364 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7365
7366 static u8 __netdev_upper_depth(struct net_device *dev)
7367 {
7368         struct net_device *udev;
7369         struct list_head *iter;
7370         u8 max_depth = 0;
7371         bool ignore;
7372
7373         for (iter = &dev->adj_list.upper,
7374              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7375              udev;
7376              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7377                 if (ignore)
7378                         continue;
7379                 if (max_depth < udev->upper_level)
7380                         max_depth = udev->upper_level;
7381         }
7382
7383         return max_depth;
7384 }
7385
7386 static u8 __netdev_lower_depth(struct net_device *dev)
7387 {
7388         struct net_device *ldev;
7389         struct list_head *iter;
7390         u8 max_depth = 0;
7391         bool ignore;
7392
7393         for (iter = &dev->adj_list.lower,
7394              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7395              ldev;
7396              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7397                 if (ignore)
7398                         continue;
7399                 if (max_depth < ldev->lower_level)
7400                         max_depth = ldev->lower_level;
7401         }
7402
7403         return max_depth;
7404 }
7405
7406 static int __netdev_update_upper_level(struct net_device *dev,
7407                                        struct netdev_nested_priv *__unused)
7408 {
7409         dev->upper_level = __netdev_upper_depth(dev) + 1;
7410         return 0;
7411 }
7412
7413 #ifdef CONFIG_LOCKDEP
7414 static LIST_HEAD(net_unlink_list);
7415
7416 static void net_unlink_todo(struct net_device *dev)
7417 {
7418         if (list_empty(&dev->unlink_list))
7419                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7420 }
7421 #endif
7422
7423 static int __netdev_update_lower_level(struct net_device *dev,
7424                                        struct netdev_nested_priv *priv)
7425 {
7426         dev->lower_level = __netdev_lower_depth(dev) + 1;
7427
7428 #ifdef CONFIG_LOCKDEP
7429         if (!priv)
7430                 return 0;
7431
7432         if (priv->flags & NESTED_SYNC_IMM)
7433                 dev->nested_level = dev->lower_level - 1;
7434         if (priv->flags & NESTED_SYNC_TODO)
7435                 net_unlink_todo(dev);
7436 #endif
7437         return 0;
7438 }
7439
7440 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7441                                   int (*fn)(struct net_device *dev,
7442                                             struct netdev_nested_priv *priv),
7443                                   struct netdev_nested_priv *priv)
7444 {
7445         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7446         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7447         int ret, cur = 0;
7448
7449         now = dev;
7450         iter = &dev->adj_list.lower;
7451
7452         while (1) {
7453                 if (now != dev) {
7454                         ret = fn(now, priv);
7455                         if (ret)
7456                                 return ret;
7457                 }
7458
7459                 next = NULL;
7460                 while (1) {
7461                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7462                         if (!ldev)
7463                                 break;
7464
7465                         next = ldev;
7466                         niter = &ldev->adj_list.lower;
7467                         dev_stack[cur] = now;
7468                         iter_stack[cur++] = iter;
7469                         break;
7470                 }
7471
7472                 if (!next) {
7473                         if (!cur)
7474                                 return 0;
7475                         next = dev_stack[--cur];
7476                         niter = iter_stack[cur];
7477                 }
7478
7479                 now = next;
7480                 iter = niter;
7481         }
7482
7483         return 0;
7484 }
7485 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7486
7487 /**
7488  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7489  *                                     lower neighbour list, RCU
7490  *                                     variant
7491  * @dev: device
7492  *
7493  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7494  * list. The caller must hold RCU read lock.
7495  */
7496 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7497 {
7498         struct netdev_adjacent *lower;
7499
7500         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7501                         struct netdev_adjacent, list);
7502         if (lower)
7503                 return lower->private;
7504         return NULL;
7505 }
7506 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7507
7508 /**
7509  * netdev_master_upper_dev_get_rcu - Get master upper device
7510  * @dev: device
7511  *
7512  * Find a master upper device and return pointer to it or NULL in case
7513  * it's not there. The caller must hold the RCU read lock.
7514  */
7515 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7516 {
7517         struct netdev_adjacent *upper;
7518
7519         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7520                                        struct netdev_adjacent, list);
7521         if (upper && likely(upper->master))
7522                 return upper->dev;
7523         return NULL;
7524 }
7525 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7526
7527 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7528                               struct net_device *adj_dev,
7529                               struct list_head *dev_list)
7530 {
7531         char linkname[IFNAMSIZ+7];
7532
7533         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7534                 "upper_%s" : "lower_%s", adj_dev->name);
7535         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7536                                  linkname);
7537 }
7538 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7539                                char *name,
7540                                struct list_head *dev_list)
7541 {
7542         char linkname[IFNAMSIZ+7];
7543
7544         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7545                 "upper_%s" : "lower_%s", name);
7546         sysfs_remove_link(&(dev->dev.kobj), linkname);
7547 }
7548
7549 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7550                                                  struct net_device *adj_dev,
7551                                                  struct list_head *dev_list)
7552 {
7553         return (dev_list == &dev->adj_list.upper ||
7554                 dev_list == &dev->adj_list.lower) &&
7555                 net_eq(dev_net(dev), dev_net(adj_dev));
7556 }
7557
7558 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7559                                         struct net_device *adj_dev,
7560                                         struct list_head *dev_list,
7561                                         void *private, bool master)
7562 {
7563         struct netdev_adjacent *adj;
7564         int ret;
7565
7566         adj = __netdev_find_adj(adj_dev, dev_list);
7567
7568         if (adj) {
7569                 adj->ref_nr += 1;
7570                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7571                          dev->name, adj_dev->name, adj->ref_nr);
7572
7573                 return 0;
7574         }
7575
7576         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7577         if (!adj)
7578                 return -ENOMEM;
7579
7580         adj->dev = adj_dev;
7581         adj->master = master;
7582         adj->ref_nr = 1;
7583         adj->private = private;
7584         adj->ignore = false;
7585         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7586
7587         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7588                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7589
7590         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7591                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7592                 if (ret)
7593                         goto free_adj;
7594         }
7595
7596         /* Ensure that master link is always the first item in list. */
7597         if (master) {
7598                 ret = sysfs_create_link(&(dev->dev.kobj),
7599                                         &(adj_dev->dev.kobj), "master");
7600                 if (ret)
7601                         goto remove_symlinks;
7602
7603                 list_add_rcu(&adj->list, dev_list);
7604         } else {
7605                 list_add_tail_rcu(&adj->list, dev_list);
7606         }
7607
7608         return 0;
7609
7610 remove_symlinks:
7611         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7612                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7613 free_adj:
7614         netdev_put(adj_dev, &adj->dev_tracker);
7615         kfree(adj);
7616
7617         return ret;
7618 }
7619
7620 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7621                                          struct net_device *adj_dev,
7622                                          u16 ref_nr,
7623                                          struct list_head *dev_list)
7624 {
7625         struct netdev_adjacent *adj;
7626
7627         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7628                  dev->name, adj_dev->name, ref_nr);
7629
7630         adj = __netdev_find_adj(adj_dev, dev_list);
7631
7632         if (!adj) {
7633                 pr_err("Adjacency does not exist for device %s from %s\n",
7634                        dev->name, adj_dev->name);
7635                 WARN_ON(1);
7636                 return;
7637         }
7638
7639         if (adj->ref_nr > ref_nr) {
7640                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7641                          dev->name, adj_dev->name, ref_nr,
7642                          adj->ref_nr - ref_nr);
7643                 adj->ref_nr -= ref_nr;
7644                 return;
7645         }
7646
7647         if (adj->master)
7648                 sysfs_remove_link(&(dev->dev.kobj), "master");
7649
7650         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7651                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7652
7653         list_del_rcu(&adj->list);
7654         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7655                  adj_dev->name, dev->name, adj_dev->name);
7656         netdev_put(adj_dev, &adj->dev_tracker);
7657         kfree_rcu(adj, rcu);
7658 }
7659
7660 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7661                                             struct net_device *upper_dev,
7662                                             struct list_head *up_list,
7663                                             struct list_head *down_list,
7664                                             void *private, bool master)
7665 {
7666         int ret;
7667
7668         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7669                                            private, master);
7670         if (ret)
7671                 return ret;
7672
7673         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7674                                            private, false);
7675         if (ret) {
7676                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7677                 return ret;
7678         }
7679
7680         return 0;
7681 }
7682
7683 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7684                                                struct net_device *upper_dev,
7685                                                u16 ref_nr,
7686                                                struct list_head *up_list,
7687                                                struct list_head *down_list)
7688 {
7689         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7690         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7691 }
7692
7693 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7694                                                 struct net_device *upper_dev,
7695                                                 void *private, bool master)
7696 {
7697         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7698                                                 &dev->adj_list.upper,
7699                                                 &upper_dev->adj_list.lower,
7700                                                 private, master);
7701 }
7702
7703 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7704                                                    struct net_device *upper_dev)
7705 {
7706         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7707                                            &dev->adj_list.upper,
7708                                            &upper_dev->adj_list.lower);
7709 }
7710
7711 static int __netdev_upper_dev_link(struct net_device *dev,
7712                                    struct net_device *upper_dev, bool master,
7713                                    void *upper_priv, void *upper_info,
7714                                    struct netdev_nested_priv *priv,
7715                                    struct netlink_ext_ack *extack)
7716 {
7717         struct netdev_notifier_changeupper_info changeupper_info = {
7718                 .info = {
7719                         .dev = dev,
7720                         .extack = extack,
7721                 },
7722                 .upper_dev = upper_dev,
7723                 .master = master,
7724                 .linking = true,
7725                 .upper_info = upper_info,
7726         };
7727         struct net_device *master_dev;
7728         int ret = 0;
7729
7730         ASSERT_RTNL();
7731
7732         if (dev == upper_dev)
7733                 return -EBUSY;
7734
7735         /* To prevent loops, check if dev is not upper device to upper_dev. */
7736         if (__netdev_has_upper_dev(upper_dev, dev))
7737                 return -EBUSY;
7738
7739         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7740                 return -EMLINK;
7741
7742         if (!master) {
7743                 if (__netdev_has_upper_dev(dev, upper_dev))
7744                         return -EEXIST;
7745         } else {
7746                 master_dev = __netdev_master_upper_dev_get(dev);
7747                 if (master_dev)
7748                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7749         }
7750
7751         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7752                                             &changeupper_info.info);
7753         ret = notifier_to_errno(ret);
7754         if (ret)
7755                 return ret;
7756
7757         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7758                                                    master);
7759         if (ret)
7760                 return ret;
7761
7762         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7763                                             &changeupper_info.info);
7764         ret = notifier_to_errno(ret);
7765         if (ret)
7766                 goto rollback;
7767
7768         __netdev_update_upper_level(dev, NULL);
7769         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7770
7771         __netdev_update_lower_level(upper_dev, priv);
7772         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7773                                     priv);
7774
7775         return 0;
7776
7777 rollback:
7778         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7779
7780         return ret;
7781 }
7782
7783 /**
7784  * netdev_upper_dev_link - Add a link to the upper device
7785  * @dev: device
7786  * @upper_dev: new upper device
7787  * @extack: netlink extended ack
7788  *
7789  * Adds a link to device which is upper to this one. The caller must hold
7790  * the RTNL lock. On a failure a negative errno code is returned.
7791  * On success the reference counts are adjusted and the function
7792  * returns zero.
7793  */
7794 int netdev_upper_dev_link(struct net_device *dev,
7795                           struct net_device *upper_dev,
7796                           struct netlink_ext_ack *extack)
7797 {
7798         struct netdev_nested_priv priv = {
7799                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7800                 .data = NULL,
7801         };
7802
7803         return __netdev_upper_dev_link(dev, upper_dev, false,
7804                                        NULL, NULL, &priv, extack);
7805 }
7806 EXPORT_SYMBOL(netdev_upper_dev_link);
7807
7808 /**
7809  * netdev_master_upper_dev_link - Add a master link to the upper device
7810  * @dev: device
7811  * @upper_dev: new upper device
7812  * @upper_priv: upper device private
7813  * @upper_info: upper info to be passed down via notifier
7814  * @extack: netlink extended ack
7815  *
7816  * Adds a link to device which is upper to this one. In this case, only
7817  * one master upper device can be linked, although other non-master devices
7818  * might be linked as well. The caller must hold the RTNL lock.
7819  * On a failure a negative errno code is returned. On success the reference
7820  * counts are adjusted and the function returns zero.
7821  */
7822 int netdev_master_upper_dev_link(struct net_device *dev,
7823                                  struct net_device *upper_dev,
7824                                  void *upper_priv, void *upper_info,
7825                                  struct netlink_ext_ack *extack)
7826 {
7827         struct netdev_nested_priv priv = {
7828                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7829                 .data = NULL,
7830         };
7831
7832         return __netdev_upper_dev_link(dev, upper_dev, true,
7833                                        upper_priv, upper_info, &priv, extack);
7834 }
7835 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7836
7837 static void __netdev_upper_dev_unlink(struct net_device *dev,
7838                                       struct net_device *upper_dev,
7839                                       struct netdev_nested_priv *priv)
7840 {
7841         struct netdev_notifier_changeupper_info changeupper_info = {
7842                 .info = {
7843                         .dev = dev,
7844                 },
7845                 .upper_dev = upper_dev,
7846                 .linking = false,
7847         };
7848
7849         ASSERT_RTNL();
7850
7851         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7852
7853         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7854                                       &changeupper_info.info);
7855
7856         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7857
7858         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7859                                       &changeupper_info.info);
7860
7861         __netdev_update_upper_level(dev, NULL);
7862         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7863
7864         __netdev_update_lower_level(upper_dev, priv);
7865         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7866                                     priv);
7867 }
7868
7869 /**
7870  * netdev_upper_dev_unlink - Removes a link to upper device
7871  * @dev: device
7872  * @upper_dev: new upper device
7873  *
7874  * Removes a link to device which is upper to this one. The caller must hold
7875  * the RTNL lock.
7876  */
7877 void netdev_upper_dev_unlink(struct net_device *dev,
7878                              struct net_device *upper_dev)
7879 {
7880         struct netdev_nested_priv priv = {
7881                 .flags = NESTED_SYNC_TODO,
7882                 .data = NULL,
7883         };
7884
7885         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7886 }
7887 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7888
7889 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7890                                       struct net_device *lower_dev,
7891                                       bool val)
7892 {
7893         struct netdev_adjacent *adj;
7894
7895         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7896         if (adj)
7897                 adj->ignore = val;
7898
7899         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7900         if (adj)
7901                 adj->ignore = val;
7902 }
7903
7904 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7905                                         struct net_device *lower_dev)
7906 {
7907         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7908 }
7909
7910 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7911                                        struct net_device *lower_dev)
7912 {
7913         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7914 }
7915
7916 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7917                                    struct net_device *new_dev,
7918                                    struct net_device *dev,
7919                                    struct netlink_ext_ack *extack)
7920 {
7921         struct netdev_nested_priv priv = {
7922                 .flags = 0,
7923                 .data = NULL,
7924         };
7925         int err;
7926
7927         if (!new_dev)
7928                 return 0;
7929
7930         if (old_dev && new_dev != old_dev)
7931                 netdev_adjacent_dev_disable(dev, old_dev);
7932         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7933                                       extack);
7934         if (err) {
7935                 if (old_dev && new_dev != old_dev)
7936                         netdev_adjacent_dev_enable(dev, old_dev);
7937                 return err;
7938         }
7939
7940         return 0;
7941 }
7942 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7943
7944 void netdev_adjacent_change_commit(struct net_device *old_dev,
7945                                    struct net_device *new_dev,
7946                                    struct net_device *dev)
7947 {
7948         struct netdev_nested_priv priv = {
7949                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7950                 .data = NULL,
7951         };
7952
7953         if (!new_dev || !old_dev)
7954                 return;
7955
7956         if (new_dev == old_dev)
7957                 return;
7958
7959         netdev_adjacent_dev_enable(dev, old_dev);
7960         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7961 }
7962 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7963
7964 void netdev_adjacent_change_abort(struct net_device *old_dev,
7965                                   struct net_device *new_dev,
7966                                   struct net_device *dev)
7967 {
7968         struct netdev_nested_priv priv = {
7969                 .flags = 0,
7970                 .data = NULL,
7971         };
7972
7973         if (!new_dev)
7974                 return;
7975
7976         if (old_dev && new_dev != old_dev)
7977                 netdev_adjacent_dev_enable(dev, old_dev);
7978
7979         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7980 }
7981 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7982
7983 /**
7984  * netdev_bonding_info_change - Dispatch event about slave change
7985  * @dev: device
7986  * @bonding_info: info to dispatch
7987  *
7988  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7989  * The caller must hold the RTNL lock.
7990  */
7991 void netdev_bonding_info_change(struct net_device *dev,
7992                                 struct netdev_bonding_info *bonding_info)
7993 {
7994         struct netdev_notifier_bonding_info info = {
7995                 .info.dev = dev,
7996         };
7997
7998         memcpy(&info.bonding_info, bonding_info,
7999                sizeof(struct netdev_bonding_info));
8000         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8001                                       &info.info);
8002 }
8003 EXPORT_SYMBOL(netdev_bonding_info_change);
8004
8005 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8006                                            struct netlink_ext_ack *extack)
8007 {
8008         struct netdev_notifier_offload_xstats_info info = {
8009                 .info.dev = dev,
8010                 .info.extack = extack,
8011                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8012         };
8013         int err;
8014         int rc;
8015
8016         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8017                                          GFP_KERNEL);
8018         if (!dev->offload_xstats_l3)
8019                 return -ENOMEM;
8020
8021         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8022                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
8023                                                   &info.info);
8024         err = notifier_to_errno(rc);
8025         if (err)
8026                 goto free_stats;
8027
8028         return 0;
8029
8030 free_stats:
8031         kfree(dev->offload_xstats_l3);
8032         dev->offload_xstats_l3 = NULL;
8033         return err;
8034 }
8035
8036 int netdev_offload_xstats_enable(struct net_device *dev,
8037                                  enum netdev_offload_xstats_type type,
8038                                  struct netlink_ext_ack *extack)
8039 {
8040         ASSERT_RTNL();
8041
8042         if (netdev_offload_xstats_enabled(dev, type))
8043                 return -EALREADY;
8044
8045         switch (type) {
8046         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8047                 return netdev_offload_xstats_enable_l3(dev, extack);
8048         }
8049
8050         WARN_ON(1);
8051         return -EINVAL;
8052 }
8053 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8054
8055 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8056 {
8057         struct netdev_notifier_offload_xstats_info info = {
8058                 .info.dev = dev,
8059                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8060         };
8061
8062         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8063                                       &info.info);
8064         kfree(dev->offload_xstats_l3);
8065         dev->offload_xstats_l3 = NULL;
8066 }
8067
8068 int netdev_offload_xstats_disable(struct net_device *dev,
8069                                   enum netdev_offload_xstats_type type)
8070 {
8071         ASSERT_RTNL();
8072
8073         if (!netdev_offload_xstats_enabled(dev, type))
8074                 return -EALREADY;
8075
8076         switch (type) {
8077         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8078                 netdev_offload_xstats_disable_l3(dev);
8079                 return 0;
8080         }
8081
8082         WARN_ON(1);
8083         return -EINVAL;
8084 }
8085 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8086
8087 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8088 {
8089         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8090 }
8091
8092 static struct rtnl_hw_stats64 *
8093 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8094                               enum netdev_offload_xstats_type type)
8095 {
8096         switch (type) {
8097         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8098                 return dev->offload_xstats_l3;
8099         }
8100
8101         WARN_ON(1);
8102         return NULL;
8103 }
8104
8105 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8106                                    enum netdev_offload_xstats_type type)
8107 {
8108         ASSERT_RTNL();
8109
8110         return netdev_offload_xstats_get_ptr(dev, type);
8111 }
8112 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8113
8114 struct netdev_notifier_offload_xstats_ru {
8115         bool used;
8116 };
8117
8118 struct netdev_notifier_offload_xstats_rd {
8119         struct rtnl_hw_stats64 stats;
8120         bool used;
8121 };
8122
8123 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8124                                   const struct rtnl_hw_stats64 *src)
8125 {
8126         dest->rx_packets          += src->rx_packets;
8127         dest->tx_packets          += src->tx_packets;
8128         dest->rx_bytes            += src->rx_bytes;
8129         dest->tx_bytes            += src->tx_bytes;
8130         dest->rx_errors           += src->rx_errors;
8131         dest->tx_errors           += src->tx_errors;
8132         dest->rx_dropped          += src->rx_dropped;
8133         dest->tx_dropped          += src->tx_dropped;
8134         dest->multicast           += src->multicast;
8135 }
8136
8137 static int netdev_offload_xstats_get_used(struct net_device *dev,
8138                                           enum netdev_offload_xstats_type type,
8139                                           bool *p_used,
8140                                           struct netlink_ext_ack *extack)
8141 {
8142         struct netdev_notifier_offload_xstats_ru report_used = {};
8143         struct netdev_notifier_offload_xstats_info info = {
8144                 .info.dev = dev,
8145                 .info.extack = extack,
8146                 .type = type,
8147                 .report_used = &report_used,
8148         };
8149         int rc;
8150
8151         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8152         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8153                                            &info.info);
8154         *p_used = report_used.used;
8155         return notifier_to_errno(rc);
8156 }
8157
8158 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8159                                            enum netdev_offload_xstats_type type,
8160                                            struct rtnl_hw_stats64 *p_stats,
8161                                            bool *p_used,
8162                                            struct netlink_ext_ack *extack)
8163 {
8164         struct netdev_notifier_offload_xstats_rd report_delta = {};
8165         struct netdev_notifier_offload_xstats_info info = {
8166                 .info.dev = dev,
8167                 .info.extack = extack,
8168                 .type = type,
8169                 .report_delta = &report_delta,
8170         };
8171         struct rtnl_hw_stats64 *stats;
8172         int rc;
8173
8174         stats = netdev_offload_xstats_get_ptr(dev, type);
8175         if (WARN_ON(!stats))
8176                 return -EINVAL;
8177
8178         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8179                                            &info.info);
8180
8181         /* Cache whatever we got, even if there was an error, otherwise the
8182          * successful stats retrievals would get lost.
8183          */
8184         netdev_hw_stats64_add(stats, &report_delta.stats);
8185
8186         if (p_stats)
8187                 *p_stats = *stats;
8188         *p_used = report_delta.used;
8189
8190         return notifier_to_errno(rc);
8191 }
8192
8193 int netdev_offload_xstats_get(struct net_device *dev,
8194                               enum netdev_offload_xstats_type type,
8195                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8196                               struct netlink_ext_ack *extack)
8197 {
8198         ASSERT_RTNL();
8199
8200         if (p_stats)
8201                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8202                                                        p_used, extack);
8203         else
8204                 return netdev_offload_xstats_get_used(dev, type, p_used,
8205                                                       extack);
8206 }
8207 EXPORT_SYMBOL(netdev_offload_xstats_get);
8208
8209 void
8210 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8211                                    const struct rtnl_hw_stats64 *stats)
8212 {
8213         report_delta->used = true;
8214         netdev_hw_stats64_add(&report_delta->stats, stats);
8215 }
8216 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8217
8218 void
8219 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8220 {
8221         report_used->used = true;
8222 }
8223 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8224
8225 void netdev_offload_xstats_push_delta(struct net_device *dev,
8226                                       enum netdev_offload_xstats_type type,
8227                                       const struct rtnl_hw_stats64 *p_stats)
8228 {
8229         struct rtnl_hw_stats64 *stats;
8230
8231         ASSERT_RTNL();
8232
8233         stats = netdev_offload_xstats_get_ptr(dev, type);
8234         if (WARN_ON(!stats))
8235                 return;
8236
8237         netdev_hw_stats64_add(stats, p_stats);
8238 }
8239 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8240
8241 /**
8242  * netdev_get_xmit_slave - Get the xmit slave of master device
8243  * @dev: device
8244  * @skb: The packet
8245  * @all_slaves: assume all the slaves are active
8246  *
8247  * The reference counters are not incremented so the caller must be
8248  * careful with locks. The caller must hold RCU lock.
8249  * %NULL is returned if no slave is found.
8250  */
8251
8252 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8253                                          struct sk_buff *skb,
8254                                          bool all_slaves)
8255 {
8256         const struct net_device_ops *ops = dev->netdev_ops;
8257
8258         if (!ops->ndo_get_xmit_slave)
8259                 return NULL;
8260         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8261 }
8262 EXPORT_SYMBOL(netdev_get_xmit_slave);
8263
8264 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8265                                                   struct sock *sk)
8266 {
8267         const struct net_device_ops *ops = dev->netdev_ops;
8268
8269         if (!ops->ndo_sk_get_lower_dev)
8270                 return NULL;
8271         return ops->ndo_sk_get_lower_dev(dev, sk);
8272 }
8273
8274 /**
8275  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8276  * @dev: device
8277  * @sk: the socket
8278  *
8279  * %NULL is returned if no lower device is found.
8280  */
8281
8282 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8283                                             struct sock *sk)
8284 {
8285         struct net_device *lower;
8286
8287         lower = netdev_sk_get_lower_dev(dev, sk);
8288         while (lower) {
8289                 dev = lower;
8290                 lower = netdev_sk_get_lower_dev(dev, sk);
8291         }
8292
8293         return dev;
8294 }
8295 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8296
8297 static void netdev_adjacent_add_links(struct net_device *dev)
8298 {
8299         struct netdev_adjacent *iter;
8300
8301         struct net *net = dev_net(dev);
8302
8303         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8304                 if (!net_eq(net, dev_net(iter->dev)))
8305                         continue;
8306                 netdev_adjacent_sysfs_add(iter->dev, dev,
8307                                           &iter->dev->adj_list.lower);
8308                 netdev_adjacent_sysfs_add(dev, iter->dev,
8309                                           &dev->adj_list.upper);
8310         }
8311
8312         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8313                 if (!net_eq(net, dev_net(iter->dev)))
8314                         continue;
8315                 netdev_adjacent_sysfs_add(iter->dev, dev,
8316                                           &iter->dev->adj_list.upper);
8317                 netdev_adjacent_sysfs_add(dev, iter->dev,
8318                                           &dev->adj_list.lower);
8319         }
8320 }
8321
8322 static void netdev_adjacent_del_links(struct net_device *dev)
8323 {
8324         struct netdev_adjacent *iter;
8325
8326         struct net *net = dev_net(dev);
8327
8328         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8329                 if (!net_eq(net, dev_net(iter->dev)))
8330                         continue;
8331                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8332                                           &iter->dev->adj_list.lower);
8333                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8334                                           &dev->adj_list.upper);
8335         }
8336
8337         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8338                 if (!net_eq(net, dev_net(iter->dev)))
8339                         continue;
8340                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8341                                           &iter->dev->adj_list.upper);
8342                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8343                                           &dev->adj_list.lower);
8344         }
8345 }
8346
8347 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8348 {
8349         struct netdev_adjacent *iter;
8350
8351         struct net *net = dev_net(dev);
8352
8353         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8354                 if (!net_eq(net, dev_net(iter->dev)))
8355                         continue;
8356                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8357                                           &iter->dev->adj_list.lower);
8358                 netdev_adjacent_sysfs_add(iter->dev, dev,
8359                                           &iter->dev->adj_list.lower);
8360         }
8361
8362         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8363                 if (!net_eq(net, dev_net(iter->dev)))
8364                         continue;
8365                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8366                                           &iter->dev->adj_list.upper);
8367                 netdev_adjacent_sysfs_add(iter->dev, dev,
8368                                           &iter->dev->adj_list.upper);
8369         }
8370 }
8371
8372 void *netdev_lower_dev_get_private(struct net_device *dev,
8373                                    struct net_device *lower_dev)
8374 {
8375         struct netdev_adjacent *lower;
8376
8377         if (!lower_dev)
8378                 return NULL;
8379         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8380         if (!lower)
8381                 return NULL;
8382
8383         return lower->private;
8384 }
8385 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8386
8387
8388 /**
8389  * netdev_lower_state_changed - Dispatch event about lower device state change
8390  * @lower_dev: device
8391  * @lower_state_info: state to dispatch
8392  *
8393  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8394  * The caller must hold the RTNL lock.
8395  */
8396 void netdev_lower_state_changed(struct net_device *lower_dev,
8397                                 void *lower_state_info)
8398 {
8399         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8400                 .info.dev = lower_dev,
8401         };
8402
8403         ASSERT_RTNL();
8404         changelowerstate_info.lower_state_info = lower_state_info;
8405         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8406                                       &changelowerstate_info.info);
8407 }
8408 EXPORT_SYMBOL(netdev_lower_state_changed);
8409
8410 static void dev_change_rx_flags(struct net_device *dev, int flags)
8411 {
8412         const struct net_device_ops *ops = dev->netdev_ops;
8413
8414         if (ops->ndo_change_rx_flags)
8415                 ops->ndo_change_rx_flags(dev, flags);
8416 }
8417
8418 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8419 {
8420         unsigned int old_flags = dev->flags;
8421         kuid_t uid;
8422         kgid_t gid;
8423
8424         ASSERT_RTNL();
8425
8426         dev->flags |= IFF_PROMISC;
8427         dev->promiscuity += inc;
8428         if (dev->promiscuity == 0) {
8429                 /*
8430                  * Avoid overflow.
8431                  * If inc causes overflow, untouch promisc and return error.
8432                  */
8433                 if (inc < 0)
8434                         dev->flags &= ~IFF_PROMISC;
8435                 else {
8436                         dev->promiscuity -= inc;
8437                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8438                         return -EOVERFLOW;
8439                 }
8440         }
8441         if (dev->flags != old_flags) {
8442                 netdev_info(dev, "%s promiscuous mode\n",
8443                             dev->flags & IFF_PROMISC ? "entered" : "left");
8444                 if (audit_enabled) {
8445                         current_uid_gid(&uid, &gid);
8446                         audit_log(audit_context(), GFP_ATOMIC,
8447                                   AUDIT_ANOM_PROMISCUOUS,
8448                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8449                                   dev->name, (dev->flags & IFF_PROMISC),
8450                                   (old_flags & IFF_PROMISC),
8451                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8452                                   from_kuid(&init_user_ns, uid),
8453                                   from_kgid(&init_user_ns, gid),
8454                                   audit_get_sessionid(current));
8455                 }
8456
8457                 dev_change_rx_flags(dev, IFF_PROMISC);
8458         }
8459         if (notify)
8460                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8461         return 0;
8462 }
8463
8464 /**
8465  *      dev_set_promiscuity     - update promiscuity count on a device
8466  *      @dev: device
8467  *      @inc: modifier
8468  *
8469  *      Add or remove promiscuity from a device. While the count in the device
8470  *      remains above zero the interface remains promiscuous. Once it hits zero
8471  *      the device reverts back to normal filtering operation. A negative inc
8472  *      value is used to drop promiscuity on the device.
8473  *      Return 0 if successful or a negative errno code on error.
8474  */
8475 int dev_set_promiscuity(struct net_device *dev, int inc)
8476 {
8477         unsigned int old_flags = dev->flags;
8478         int err;
8479
8480         err = __dev_set_promiscuity(dev, inc, true);
8481         if (err < 0)
8482                 return err;
8483         if (dev->flags != old_flags)
8484                 dev_set_rx_mode(dev);
8485         return err;
8486 }
8487 EXPORT_SYMBOL(dev_set_promiscuity);
8488
8489 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8490 {
8491         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8492
8493         ASSERT_RTNL();
8494
8495         dev->flags |= IFF_ALLMULTI;
8496         dev->allmulti += inc;
8497         if (dev->allmulti == 0) {
8498                 /*
8499                  * Avoid overflow.
8500                  * If inc causes overflow, untouch allmulti and return error.
8501                  */
8502                 if (inc < 0)
8503                         dev->flags &= ~IFF_ALLMULTI;
8504                 else {
8505                         dev->allmulti -= inc;
8506                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8507                         return -EOVERFLOW;
8508                 }
8509         }
8510         if (dev->flags ^ old_flags) {
8511                 netdev_info(dev, "%s allmulticast mode\n",
8512                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8513                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8514                 dev_set_rx_mode(dev);
8515                 if (notify)
8516                         __dev_notify_flags(dev, old_flags,
8517                                            dev->gflags ^ old_gflags, 0, NULL);
8518         }
8519         return 0;
8520 }
8521
8522 /**
8523  *      dev_set_allmulti        - update allmulti count on a device
8524  *      @dev: device
8525  *      @inc: modifier
8526  *
8527  *      Add or remove reception of all multicast frames to a device. While the
8528  *      count in the device remains above zero the interface remains listening
8529  *      to all interfaces. Once it hits zero the device reverts back to normal
8530  *      filtering operation. A negative @inc value is used to drop the counter
8531  *      when releasing a resource needing all multicasts.
8532  *      Return 0 if successful or a negative errno code on error.
8533  */
8534
8535 int dev_set_allmulti(struct net_device *dev, int inc)
8536 {
8537         return __dev_set_allmulti(dev, inc, true);
8538 }
8539 EXPORT_SYMBOL(dev_set_allmulti);
8540
8541 /*
8542  *      Upload unicast and multicast address lists to device and
8543  *      configure RX filtering. When the device doesn't support unicast
8544  *      filtering it is put in promiscuous mode while unicast addresses
8545  *      are present.
8546  */
8547 void __dev_set_rx_mode(struct net_device *dev)
8548 {
8549         const struct net_device_ops *ops = dev->netdev_ops;
8550
8551         /* dev_open will call this function so the list will stay sane. */
8552         if (!(dev->flags&IFF_UP))
8553                 return;
8554
8555         if (!netif_device_present(dev))
8556                 return;
8557
8558         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8559                 /* Unicast addresses changes may only happen under the rtnl,
8560                  * therefore calling __dev_set_promiscuity here is safe.
8561                  */
8562                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8563                         __dev_set_promiscuity(dev, 1, false);
8564                         dev->uc_promisc = true;
8565                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8566                         __dev_set_promiscuity(dev, -1, false);
8567                         dev->uc_promisc = false;
8568                 }
8569         }
8570
8571         if (ops->ndo_set_rx_mode)
8572                 ops->ndo_set_rx_mode(dev);
8573 }
8574
8575 void dev_set_rx_mode(struct net_device *dev)
8576 {
8577         netif_addr_lock_bh(dev);
8578         __dev_set_rx_mode(dev);
8579         netif_addr_unlock_bh(dev);
8580 }
8581
8582 /**
8583  *      dev_get_flags - get flags reported to userspace
8584  *      @dev: device
8585  *
8586  *      Get the combination of flag bits exported through APIs to userspace.
8587  */
8588 unsigned int dev_get_flags(const struct net_device *dev)
8589 {
8590         unsigned int flags;
8591
8592         flags = (dev->flags & ~(IFF_PROMISC |
8593                                 IFF_ALLMULTI |
8594                                 IFF_RUNNING |
8595                                 IFF_LOWER_UP |
8596                                 IFF_DORMANT)) |
8597                 (dev->gflags & (IFF_PROMISC |
8598                                 IFF_ALLMULTI));
8599
8600         if (netif_running(dev)) {
8601                 if (netif_oper_up(dev))
8602                         flags |= IFF_RUNNING;
8603                 if (netif_carrier_ok(dev))
8604                         flags |= IFF_LOWER_UP;
8605                 if (netif_dormant(dev))
8606                         flags |= IFF_DORMANT;
8607         }
8608
8609         return flags;
8610 }
8611 EXPORT_SYMBOL(dev_get_flags);
8612
8613 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8614                        struct netlink_ext_ack *extack)
8615 {
8616         unsigned int old_flags = dev->flags;
8617         int ret;
8618
8619         ASSERT_RTNL();
8620
8621         /*
8622          *      Set the flags on our device.
8623          */
8624
8625         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8626                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8627                                IFF_AUTOMEDIA)) |
8628                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8629                                     IFF_ALLMULTI));
8630
8631         /*
8632          *      Load in the correct multicast list now the flags have changed.
8633          */
8634
8635         if ((old_flags ^ flags) & IFF_MULTICAST)
8636                 dev_change_rx_flags(dev, IFF_MULTICAST);
8637
8638         dev_set_rx_mode(dev);
8639
8640         /*
8641          *      Have we downed the interface. We handle IFF_UP ourselves
8642          *      according to user attempts to set it, rather than blindly
8643          *      setting it.
8644          */
8645
8646         ret = 0;
8647         if ((old_flags ^ flags) & IFF_UP) {
8648                 if (old_flags & IFF_UP)
8649                         __dev_close(dev);
8650                 else
8651                         ret = __dev_open(dev, extack);
8652         }
8653
8654         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8655                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8656                 unsigned int old_flags = dev->flags;
8657
8658                 dev->gflags ^= IFF_PROMISC;
8659
8660                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8661                         if (dev->flags != old_flags)
8662                                 dev_set_rx_mode(dev);
8663         }
8664
8665         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8666          * is important. Some (broken) drivers set IFF_PROMISC, when
8667          * IFF_ALLMULTI is requested not asking us and not reporting.
8668          */
8669         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8670                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8671
8672                 dev->gflags ^= IFF_ALLMULTI;
8673                 __dev_set_allmulti(dev, inc, false);
8674         }
8675
8676         return ret;
8677 }
8678
8679 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8680                         unsigned int gchanges, u32 portid,
8681                         const struct nlmsghdr *nlh)
8682 {
8683         unsigned int changes = dev->flags ^ old_flags;
8684
8685         if (gchanges)
8686                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8687
8688         if (changes & IFF_UP) {
8689                 if (dev->flags & IFF_UP)
8690                         call_netdevice_notifiers(NETDEV_UP, dev);
8691                 else
8692                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8693         }
8694
8695         if (dev->flags & IFF_UP &&
8696             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8697                 struct netdev_notifier_change_info change_info = {
8698                         .info = {
8699                                 .dev = dev,
8700                         },
8701                         .flags_changed = changes,
8702                 };
8703
8704                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8705         }
8706 }
8707
8708 /**
8709  *      dev_change_flags - change device settings
8710  *      @dev: device
8711  *      @flags: device state flags
8712  *      @extack: netlink extended ack
8713  *
8714  *      Change settings on device based state flags. The flags are
8715  *      in the userspace exported format.
8716  */
8717 int dev_change_flags(struct net_device *dev, unsigned int flags,
8718                      struct netlink_ext_ack *extack)
8719 {
8720         int ret;
8721         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8722
8723         ret = __dev_change_flags(dev, flags, extack);
8724         if (ret < 0)
8725                 return ret;
8726
8727         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8728         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8729         return ret;
8730 }
8731 EXPORT_SYMBOL(dev_change_flags);
8732
8733 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8734 {
8735         const struct net_device_ops *ops = dev->netdev_ops;
8736
8737         if (ops->ndo_change_mtu)
8738                 return ops->ndo_change_mtu(dev, new_mtu);
8739
8740         /* Pairs with all the lockless reads of dev->mtu in the stack */
8741         WRITE_ONCE(dev->mtu, new_mtu);
8742         return 0;
8743 }
8744 EXPORT_SYMBOL(__dev_set_mtu);
8745
8746 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8747                      struct netlink_ext_ack *extack)
8748 {
8749         /* MTU must be positive, and in range */
8750         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8751                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8752                 return -EINVAL;
8753         }
8754
8755         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8756                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8757                 return -EINVAL;
8758         }
8759         return 0;
8760 }
8761
8762 /**
8763  *      dev_set_mtu_ext - Change maximum transfer unit
8764  *      @dev: device
8765  *      @new_mtu: new transfer unit
8766  *      @extack: netlink extended ack
8767  *
8768  *      Change the maximum transfer size of the network device.
8769  */
8770 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8771                     struct netlink_ext_ack *extack)
8772 {
8773         int err, orig_mtu;
8774
8775         if (new_mtu == dev->mtu)
8776                 return 0;
8777
8778         err = dev_validate_mtu(dev, new_mtu, extack);
8779         if (err)
8780                 return err;
8781
8782         if (!netif_device_present(dev))
8783                 return -ENODEV;
8784
8785         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8786         err = notifier_to_errno(err);
8787         if (err)
8788                 return err;
8789
8790         orig_mtu = dev->mtu;
8791         err = __dev_set_mtu(dev, new_mtu);
8792
8793         if (!err) {
8794                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8795                                                    orig_mtu);
8796                 err = notifier_to_errno(err);
8797                 if (err) {
8798                         /* setting mtu back and notifying everyone again,
8799                          * so that they have a chance to revert changes.
8800                          */
8801                         __dev_set_mtu(dev, orig_mtu);
8802                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8803                                                      new_mtu);
8804                 }
8805         }
8806         return err;
8807 }
8808
8809 int dev_set_mtu(struct net_device *dev, int new_mtu)
8810 {
8811         struct netlink_ext_ack extack;
8812         int err;
8813
8814         memset(&extack, 0, sizeof(extack));
8815         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8816         if (err && extack._msg)
8817                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8818         return err;
8819 }
8820 EXPORT_SYMBOL(dev_set_mtu);
8821
8822 /**
8823  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8824  *      @dev: device
8825  *      @new_len: new tx queue length
8826  */
8827 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8828 {
8829         unsigned int orig_len = dev->tx_queue_len;
8830         int res;
8831
8832         if (new_len != (unsigned int)new_len)
8833                 return -ERANGE;
8834
8835         if (new_len != orig_len) {
8836                 dev->tx_queue_len = new_len;
8837                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8838                 res = notifier_to_errno(res);
8839                 if (res)
8840                         goto err_rollback;
8841                 res = dev_qdisc_change_tx_queue_len(dev);
8842                 if (res)
8843                         goto err_rollback;
8844         }
8845
8846         return 0;
8847
8848 err_rollback:
8849         netdev_err(dev, "refused to change device tx_queue_len\n");
8850         dev->tx_queue_len = orig_len;
8851         return res;
8852 }
8853
8854 /**
8855  *      dev_set_group - Change group this device belongs to
8856  *      @dev: device
8857  *      @new_group: group this device should belong to
8858  */
8859 void dev_set_group(struct net_device *dev, int new_group)
8860 {
8861         dev->group = new_group;
8862 }
8863
8864 /**
8865  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8866  *      @dev: device
8867  *      @addr: new address
8868  *      @extack: netlink extended ack
8869  */
8870 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8871                               struct netlink_ext_ack *extack)
8872 {
8873         struct netdev_notifier_pre_changeaddr_info info = {
8874                 .info.dev = dev,
8875                 .info.extack = extack,
8876                 .dev_addr = addr,
8877         };
8878         int rc;
8879
8880         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8881         return notifier_to_errno(rc);
8882 }
8883 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8884
8885 /**
8886  *      dev_set_mac_address - Change Media Access Control Address
8887  *      @dev: device
8888  *      @sa: new address
8889  *      @extack: netlink extended ack
8890  *
8891  *      Change the hardware (MAC) address of the device
8892  */
8893 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8894                         struct netlink_ext_ack *extack)
8895 {
8896         const struct net_device_ops *ops = dev->netdev_ops;
8897         int err;
8898
8899         if (!ops->ndo_set_mac_address)
8900                 return -EOPNOTSUPP;
8901         if (sa->sa_family != dev->type)
8902                 return -EINVAL;
8903         if (!netif_device_present(dev))
8904                 return -ENODEV;
8905         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8906         if (err)
8907                 return err;
8908         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8909                 err = ops->ndo_set_mac_address(dev, sa);
8910                 if (err)
8911                         return err;
8912         }
8913         dev->addr_assign_type = NET_ADDR_SET;
8914         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8915         add_device_randomness(dev->dev_addr, dev->addr_len);
8916         return 0;
8917 }
8918 EXPORT_SYMBOL(dev_set_mac_address);
8919
8920 static DECLARE_RWSEM(dev_addr_sem);
8921
8922 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8923                              struct netlink_ext_ack *extack)
8924 {
8925         int ret;
8926
8927         down_write(&dev_addr_sem);
8928         ret = dev_set_mac_address(dev, sa, extack);
8929         up_write(&dev_addr_sem);
8930         return ret;
8931 }
8932 EXPORT_SYMBOL(dev_set_mac_address_user);
8933
8934 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8935 {
8936         size_t size = sizeof(sa->sa_data_min);
8937         struct net_device *dev;
8938         int ret = 0;
8939
8940         down_read(&dev_addr_sem);
8941         rcu_read_lock();
8942
8943         dev = dev_get_by_name_rcu(net, dev_name);
8944         if (!dev) {
8945                 ret = -ENODEV;
8946                 goto unlock;
8947         }
8948         if (!dev->addr_len)
8949                 memset(sa->sa_data, 0, size);
8950         else
8951                 memcpy(sa->sa_data, dev->dev_addr,
8952                        min_t(size_t, size, dev->addr_len));
8953         sa->sa_family = dev->type;
8954
8955 unlock:
8956         rcu_read_unlock();
8957         up_read(&dev_addr_sem);
8958         return ret;
8959 }
8960 EXPORT_SYMBOL(dev_get_mac_address);
8961
8962 /**
8963  *      dev_change_carrier - Change device carrier
8964  *      @dev: device
8965  *      @new_carrier: new value
8966  *
8967  *      Change device carrier
8968  */
8969 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8970 {
8971         const struct net_device_ops *ops = dev->netdev_ops;
8972
8973         if (!ops->ndo_change_carrier)
8974                 return -EOPNOTSUPP;
8975         if (!netif_device_present(dev))
8976                 return -ENODEV;
8977         return ops->ndo_change_carrier(dev, new_carrier);
8978 }
8979
8980 /**
8981  *      dev_get_phys_port_id - Get device physical port ID
8982  *      @dev: device
8983  *      @ppid: port ID
8984  *
8985  *      Get device physical port ID
8986  */
8987 int dev_get_phys_port_id(struct net_device *dev,
8988                          struct netdev_phys_item_id *ppid)
8989 {
8990         const struct net_device_ops *ops = dev->netdev_ops;
8991
8992         if (!ops->ndo_get_phys_port_id)
8993                 return -EOPNOTSUPP;
8994         return ops->ndo_get_phys_port_id(dev, ppid);
8995 }
8996
8997 /**
8998  *      dev_get_phys_port_name - Get device physical port name
8999  *      @dev: device
9000  *      @name: port name
9001  *      @len: limit of bytes to copy to name
9002  *
9003  *      Get device physical port name
9004  */
9005 int dev_get_phys_port_name(struct net_device *dev,
9006                            char *name, size_t len)
9007 {
9008         const struct net_device_ops *ops = dev->netdev_ops;
9009         int err;
9010
9011         if (ops->ndo_get_phys_port_name) {
9012                 err = ops->ndo_get_phys_port_name(dev, name, len);
9013                 if (err != -EOPNOTSUPP)
9014                         return err;
9015         }
9016         return devlink_compat_phys_port_name_get(dev, name, len);
9017 }
9018
9019 /**
9020  *      dev_get_port_parent_id - Get the device's port parent identifier
9021  *      @dev: network device
9022  *      @ppid: pointer to a storage for the port's parent identifier
9023  *      @recurse: allow/disallow recursion to lower devices
9024  *
9025  *      Get the devices's port parent identifier
9026  */
9027 int dev_get_port_parent_id(struct net_device *dev,
9028                            struct netdev_phys_item_id *ppid,
9029                            bool recurse)
9030 {
9031         const struct net_device_ops *ops = dev->netdev_ops;
9032         struct netdev_phys_item_id first = { };
9033         struct net_device *lower_dev;
9034         struct list_head *iter;
9035         int err;
9036
9037         if (ops->ndo_get_port_parent_id) {
9038                 err = ops->ndo_get_port_parent_id(dev, ppid);
9039                 if (err != -EOPNOTSUPP)
9040                         return err;
9041         }
9042
9043         err = devlink_compat_switch_id_get(dev, ppid);
9044         if (!recurse || err != -EOPNOTSUPP)
9045                 return err;
9046
9047         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9048                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9049                 if (err)
9050                         break;
9051                 if (!first.id_len)
9052                         first = *ppid;
9053                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9054                         return -EOPNOTSUPP;
9055         }
9056
9057         return err;
9058 }
9059 EXPORT_SYMBOL(dev_get_port_parent_id);
9060
9061 /**
9062  *      netdev_port_same_parent_id - Indicate if two network devices have
9063  *      the same port parent identifier
9064  *      @a: first network device
9065  *      @b: second network device
9066  */
9067 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9068 {
9069         struct netdev_phys_item_id a_id = { };
9070         struct netdev_phys_item_id b_id = { };
9071
9072         if (dev_get_port_parent_id(a, &a_id, true) ||
9073             dev_get_port_parent_id(b, &b_id, true))
9074                 return false;
9075
9076         return netdev_phys_item_id_same(&a_id, &b_id);
9077 }
9078 EXPORT_SYMBOL(netdev_port_same_parent_id);
9079
9080 /**
9081  *      dev_change_proto_down - set carrier according to proto_down.
9082  *
9083  *      @dev: device
9084  *      @proto_down: new value
9085  */
9086 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9087 {
9088         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9089                 return -EOPNOTSUPP;
9090         if (!netif_device_present(dev))
9091                 return -ENODEV;
9092         if (proto_down)
9093                 netif_carrier_off(dev);
9094         else
9095                 netif_carrier_on(dev);
9096         dev->proto_down = proto_down;
9097         return 0;
9098 }
9099
9100 /**
9101  *      dev_change_proto_down_reason - proto down reason
9102  *
9103  *      @dev: device
9104  *      @mask: proto down mask
9105  *      @value: proto down value
9106  */
9107 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9108                                   u32 value)
9109 {
9110         int b;
9111
9112         if (!mask) {
9113                 dev->proto_down_reason = value;
9114         } else {
9115                 for_each_set_bit(b, &mask, 32) {
9116                         if (value & (1 << b))
9117                                 dev->proto_down_reason |= BIT(b);
9118                         else
9119                                 dev->proto_down_reason &= ~BIT(b);
9120                 }
9121         }
9122 }
9123
9124 struct bpf_xdp_link {
9125         struct bpf_link link;
9126         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9127         int flags;
9128 };
9129
9130 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9131 {
9132         if (flags & XDP_FLAGS_HW_MODE)
9133                 return XDP_MODE_HW;
9134         if (flags & XDP_FLAGS_DRV_MODE)
9135                 return XDP_MODE_DRV;
9136         if (flags & XDP_FLAGS_SKB_MODE)
9137                 return XDP_MODE_SKB;
9138         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9139 }
9140
9141 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9142 {
9143         switch (mode) {
9144         case XDP_MODE_SKB:
9145                 return generic_xdp_install;
9146         case XDP_MODE_DRV:
9147         case XDP_MODE_HW:
9148                 return dev->netdev_ops->ndo_bpf;
9149         default:
9150                 return NULL;
9151         }
9152 }
9153
9154 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9155                                          enum bpf_xdp_mode mode)
9156 {
9157         return dev->xdp_state[mode].link;
9158 }
9159
9160 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9161                                      enum bpf_xdp_mode mode)
9162 {
9163         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9164
9165         if (link)
9166                 return link->link.prog;
9167         return dev->xdp_state[mode].prog;
9168 }
9169
9170 u8 dev_xdp_prog_count(struct net_device *dev)
9171 {
9172         u8 count = 0;
9173         int i;
9174
9175         for (i = 0; i < __MAX_XDP_MODE; i++)
9176                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9177                         count++;
9178         return count;
9179 }
9180 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9181
9182 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9183 {
9184         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9185
9186         return prog ? prog->aux->id : 0;
9187 }
9188
9189 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9190                              struct bpf_xdp_link *link)
9191 {
9192         dev->xdp_state[mode].link = link;
9193         dev->xdp_state[mode].prog = NULL;
9194 }
9195
9196 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9197                              struct bpf_prog *prog)
9198 {
9199         dev->xdp_state[mode].link = NULL;
9200         dev->xdp_state[mode].prog = prog;
9201 }
9202
9203 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9204                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9205                            u32 flags, struct bpf_prog *prog)
9206 {
9207         struct netdev_bpf xdp;
9208         int err;
9209
9210         memset(&xdp, 0, sizeof(xdp));
9211         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9212         xdp.extack = extack;
9213         xdp.flags = flags;
9214         xdp.prog = prog;
9215
9216         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9217          * "moved" into driver), so they don't increment it on their own, but
9218          * they do decrement refcnt when program is detached or replaced.
9219          * Given net_device also owns link/prog, we need to bump refcnt here
9220          * to prevent drivers from underflowing it.
9221          */
9222         if (prog)
9223                 bpf_prog_inc(prog);
9224         err = bpf_op(dev, &xdp);
9225         if (err) {
9226                 if (prog)
9227                         bpf_prog_put(prog);
9228                 return err;
9229         }
9230
9231         if (mode != XDP_MODE_HW)
9232                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9233
9234         return 0;
9235 }
9236
9237 static void dev_xdp_uninstall(struct net_device *dev)
9238 {
9239         struct bpf_xdp_link *link;
9240         struct bpf_prog *prog;
9241         enum bpf_xdp_mode mode;
9242         bpf_op_t bpf_op;
9243
9244         ASSERT_RTNL();
9245
9246         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9247                 prog = dev_xdp_prog(dev, mode);
9248                 if (!prog)
9249                         continue;
9250
9251                 bpf_op = dev_xdp_bpf_op(dev, mode);
9252                 if (!bpf_op)
9253                         continue;
9254
9255                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9256
9257                 /* auto-detach link from net device */
9258                 link = dev_xdp_link(dev, mode);
9259                 if (link)
9260                         link->dev = NULL;
9261                 else
9262                         bpf_prog_put(prog);
9263
9264                 dev_xdp_set_link(dev, mode, NULL);
9265         }
9266 }
9267
9268 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9269                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9270                           struct bpf_prog *old_prog, u32 flags)
9271 {
9272         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9273         struct bpf_prog *cur_prog;
9274         struct net_device *upper;
9275         struct list_head *iter;
9276         enum bpf_xdp_mode mode;
9277         bpf_op_t bpf_op;
9278         int err;
9279
9280         ASSERT_RTNL();
9281
9282         /* either link or prog attachment, never both */
9283         if (link && (new_prog || old_prog))
9284                 return -EINVAL;
9285         /* link supports only XDP mode flags */
9286         if (link && (flags & ~XDP_FLAGS_MODES)) {
9287                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9288                 return -EINVAL;
9289         }
9290         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9291         if (num_modes > 1) {
9292                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9293                 return -EINVAL;
9294         }
9295         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9296         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9297                 NL_SET_ERR_MSG(extack,
9298                                "More than one program loaded, unset mode is ambiguous");
9299                 return -EINVAL;
9300         }
9301         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9302         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9303                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9304                 return -EINVAL;
9305         }
9306
9307         mode = dev_xdp_mode(dev, flags);
9308         /* can't replace attached link */
9309         if (dev_xdp_link(dev, mode)) {
9310                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9311                 return -EBUSY;
9312         }
9313
9314         /* don't allow if an upper device already has a program */
9315         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9316                 if (dev_xdp_prog_count(upper) > 0) {
9317                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9318                         return -EEXIST;
9319                 }
9320         }
9321
9322         cur_prog = dev_xdp_prog(dev, mode);
9323         /* can't replace attached prog with link */
9324         if (link && cur_prog) {
9325                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9326                 return -EBUSY;
9327         }
9328         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9329                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9330                 return -EEXIST;
9331         }
9332
9333         /* put effective new program into new_prog */
9334         if (link)
9335                 new_prog = link->link.prog;
9336
9337         if (new_prog) {
9338                 bool offload = mode == XDP_MODE_HW;
9339                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9340                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9341
9342                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9343                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9344                         return -EBUSY;
9345                 }
9346                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9347                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9348                         return -EEXIST;
9349                 }
9350                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9351                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9352                         return -EINVAL;
9353                 }
9354                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9355                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9356                         return -EINVAL;
9357                 }
9358                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9359                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9360                         return -EINVAL;
9361                 }
9362                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9363                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9364                         return -EINVAL;
9365                 }
9366         }
9367
9368         /* don't call drivers if the effective program didn't change */
9369         if (new_prog != cur_prog) {
9370                 bpf_op = dev_xdp_bpf_op(dev, mode);
9371                 if (!bpf_op) {
9372                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9373                         return -EOPNOTSUPP;
9374                 }
9375
9376                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9377                 if (err)
9378                         return err;
9379         }
9380
9381         if (link)
9382                 dev_xdp_set_link(dev, mode, link);
9383         else
9384                 dev_xdp_set_prog(dev, mode, new_prog);
9385         if (cur_prog)
9386                 bpf_prog_put(cur_prog);
9387
9388         return 0;
9389 }
9390
9391 static int dev_xdp_attach_link(struct net_device *dev,
9392                                struct netlink_ext_ack *extack,
9393                                struct bpf_xdp_link *link)
9394 {
9395         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9396 }
9397
9398 static int dev_xdp_detach_link(struct net_device *dev,
9399                                struct netlink_ext_ack *extack,
9400                                struct bpf_xdp_link *link)
9401 {
9402         enum bpf_xdp_mode mode;
9403         bpf_op_t bpf_op;
9404
9405         ASSERT_RTNL();
9406
9407         mode = dev_xdp_mode(dev, link->flags);
9408         if (dev_xdp_link(dev, mode) != link)
9409                 return -EINVAL;
9410
9411         bpf_op = dev_xdp_bpf_op(dev, mode);
9412         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9413         dev_xdp_set_link(dev, mode, NULL);
9414         return 0;
9415 }
9416
9417 static void bpf_xdp_link_release(struct bpf_link *link)
9418 {
9419         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9420
9421         rtnl_lock();
9422
9423         /* if racing with net_device's tear down, xdp_link->dev might be
9424          * already NULL, in which case link was already auto-detached
9425          */
9426         if (xdp_link->dev) {
9427                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9428                 xdp_link->dev = NULL;
9429         }
9430
9431         rtnl_unlock();
9432 }
9433
9434 static int bpf_xdp_link_detach(struct bpf_link *link)
9435 {
9436         bpf_xdp_link_release(link);
9437         return 0;
9438 }
9439
9440 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9441 {
9442         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9443
9444         kfree(xdp_link);
9445 }
9446
9447 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9448                                      struct seq_file *seq)
9449 {
9450         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9451         u32 ifindex = 0;
9452
9453         rtnl_lock();
9454         if (xdp_link->dev)
9455                 ifindex = xdp_link->dev->ifindex;
9456         rtnl_unlock();
9457
9458         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9459 }
9460
9461 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9462                                        struct bpf_link_info *info)
9463 {
9464         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9465         u32 ifindex = 0;
9466
9467         rtnl_lock();
9468         if (xdp_link->dev)
9469                 ifindex = xdp_link->dev->ifindex;
9470         rtnl_unlock();
9471
9472         info->xdp.ifindex = ifindex;
9473         return 0;
9474 }
9475
9476 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9477                                struct bpf_prog *old_prog)
9478 {
9479         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9480         enum bpf_xdp_mode mode;
9481         bpf_op_t bpf_op;
9482         int err = 0;
9483
9484         rtnl_lock();
9485
9486         /* link might have been auto-released already, so fail */
9487         if (!xdp_link->dev) {
9488                 err = -ENOLINK;
9489                 goto out_unlock;
9490         }
9491
9492         if (old_prog && link->prog != old_prog) {
9493                 err = -EPERM;
9494                 goto out_unlock;
9495         }
9496         old_prog = link->prog;
9497         if (old_prog->type != new_prog->type ||
9498             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9499                 err = -EINVAL;
9500                 goto out_unlock;
9501         }
9502
9503         if (old_prog == new_prog) {
9504                 /* no-op, don't disturb drivers */
9505                 bpf_prog_put(new_prog);
9506                 goto out_unlock;
9507         }
9508
9509         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9510         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9511         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9512                               xdp_link->flags, new_prog);
9513         if (err)
9514                 goto out_unlock;
9515
9516         old_prog = xchg(&link->prog, new_prog);
9517         bpf_prog_put(old_prog);
9518
9519 out_unlock:
9520         rtnl_unlock();
9521         return err;
9522 }
9523
9524 static const struct bpf_link_ops bpf_xdp_link_lops = {
9525         .release = bpf_xdp_link_release,
9526         .dealloc = bpf_xdp_link_dealloc,
9527         .detach = bpf_xdp_link_detach,
9528         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9529         .fill_link_info = bpf_xdp_link_fill_link_info,
9530         .update_prog = bpf_xdp_link_update,
9531 };
9532
9533 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9534 {
9535         struct net *net = current->nsproxy->net_ns;
9536         struct bpf_link_primer link_primer;
9537         struct netlink_ext_ack extack = {};
9538         struct bpf_xdp_link *link;
9539         struct net_device *dev;
9540         int err, fd;
9541
9542         rtnl_lock();
9543         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9544         if (!dev) {
9545                 rtnl_unlock();
9546                 return -EINVAL;
9547         }
9548
9549         link = kzalloc(sizeof(*link), GFP_USER);
9550         if (!link) {
9551                 err = -ENOMEM;
9552                 goto unlock;
9553         }
9554
9555         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9556         link->dev = dev;
9557         link->flags = attr->link_create.flags;
9558
9559         err = bpf_link_prime(&link->link, &link_primer);
9560         if (err) {
9561                 kfree(link);
9562                 goto unlock;
9563         }
9564
9565         err = dev_xdp_attach_link(dev, &extack, link);
9566         rtnl_unlock();
9567
9568         if (err) {
9569                 link->dev = NULL;
9570                 bpf_link_cleanup(&link_primer);
9571                 trace_bpf_xdp_link_attach_failed(extack._msg);
9572                 goto out_put_dev;
9573         }
9574
9575         fd = bpf_link_settle(&link_primer);
9576         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9577         dev_put(dev);
9578         return fd;
9579
9580 unlock:
9581         rtnl_unlock();
9582
9583 out_put_dev:
9584         dev_put(dev);
9585         return err;
9586 }
9587
9588 /**
9589  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9590  *      @dev: device
9591  *      @extack: netlink extended ack
9592  *      @fd: new program fd or negative value to clear
9593  *      @expected_fd: old program fd that userspace expects to replace or clear
9594  *      @flags: xdp-related flags
9595  *
9596  *      Set or clear a bpf program for a device
9597  */
9598 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9599                       int fd, int expected_fd, u32 flags)
9600 {
9601         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9602         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9603         int err;
9604
9605         ASSERT_RTNL();
9606
9607         if (fd >= 0) {
9608                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9609                                                  mode != XDP_MODE_SKB);
9610                 if (IS_ERR(new_prog))
9611                         return PTR_ERR(new_prog);
9612         }
9613
9614         if (expected_fd >= 0) {
9615                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9616                                                  mode != XDP_MODE_SKB);
9617                 if (IS_ERR(old_prog)) {
9618                         err = PTR_ERR(old_prog);
9619                         old_prog = NULL;
9620                         goto err_out;
9621                 }
9622         }
9623
9624         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9625
9626 err_out:
9627         if (err && new_prog)
9628                 bpf_prog_put(new_prog);
9629         if (old_prog)
9630                 bpf_prog_put(old_prog);
9631         return err;
9632 }
9633
9634 /**
9635  * dev_index_reserve() - allocate an ifindex in a namespace
9636  * @net: the applicable net namespace
9637  * @ifindex: requested ifindex, pass %0 to get one allocated
9638  *
9639  * Allocate a ifindex for a new device. Caller must either use the ifindex
9640  * to store the device (via list_netdevice()) or call dev_index_release()
9641  * to give the index up.
9642  *
9643  * Return: a suitable unique value for a new device interface number or -errno.
9644  */
9645 static int dev_index_reserve(struct net *net, u32 ifindex)
9646 {
9647         int err;
9648
9649         if (ifindex > INT_MAX) {
9650                 DEBUG_NET_WARN_ON_ONCE(1);
9651                 return -EINVAL;
9652         }
9653
9654         if (!ifindex)
9655                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9656                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9657         else
9658                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9659         if (err < 0)
9660                 return err;
9661
9662         return ifindex;
9663 }
9664
9665 static void dev_index_release(struct net *net, int ifindex)
9666 {
9667         /* Expect only unused indexes, unlist_netdevice() removes the used */
9668         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9669 }
9670
9671 /* Delayed registration/unregisteration */
9672 LIST_HEAD(net_todo_list);
9673 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9674
9675 static void net_set_todo(struct net_device *dev)
9676 {
9677         list_add_tail(&dev->todo_list, &net_todo_list);
9678         atomic_inc(&dev_net(dev)->dev_unreg_count);
9679 }
9680
9681 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9682         struct net_device *upper, netdev_features_t features)
9683 {
9684         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9685         netdev_features_t feature;
9686         int feature_bit;
9687
9688         for_each_netdev_feature(upper_disables, feature_bit) {
9689                 feature = __NETIF_F_BIT(feature_bit);
9690                 if (!(upper->wanted_features & feature)
9691                     && (features & feature)) {
9692                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9693                                    &feature, upper->name);
9694                         features &= ~feature;
9695                 }
9696         }
9697
9698         return features;
9699 }
9700
9701 static void netdev_sync_lower_features(struct net_device *upper,
9702         struct net_device *lower, netdev_features_t features)
9703 {
9704         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9705         netdev_features_t feature;
9706         int feature_bit;
9707
9708         for_each_netdev_feature(upper_disables, feature_bit) {
9709                 feature = __NETIF_F_BIT(feature_bit);
9710                 if (!(features & feature) && (lower->features & feature)) {
9711                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9712                                    &feature, lower->name);
9713                         lower->wanted_features &= ~feature;
9714                         __netdev_update_features(lower);
9715
9716                         if (unlikely(lower->features & feature))
9717                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9718                                             &feature, lower->name);
9719                         else
9720                                 netdev_features_change(lower);
9721                 }
9722         }
9723 }
9724
9725 static netdev_features_t netdev_fix_features(struct net_device *dev,
9726         netdev_features_t features)
9727 {
9728         /* Fix illegal checksum combinations */
9729         if ((features & NETIF_F_HW_CSUM) &&
9730             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9731                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9732                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9733         }
9734
9735         /* TSO requires that SG is present as well. */
9736         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9737                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9738                 features &= ~NETIF_F_ALL_TSO;
9739         }
9740
9741         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9742                                         !(features & NETIF_F_IP_CSUM)) {
9743                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9744                 features &= ~NETIF_F_TSO;
9745                 features &= ~NETIF_F_TSO_ECN;
9746         }
9747
9748         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9749                                          !(features & NETIF_F_IPV6_CSUM)) {
9750                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9751                 features &= ~NETIF_F_TSO6;
9752         }
9753
9754         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9755         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9756                 features &= ~NETIF_F_TSO_MANGLEID;
9757
9758         /* TSO ECN requires that TSO is present as well. */
9759         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9760                 features &= ~NETIF_F_TSO_ECN;
9761
9762         /* Software GSO depends on SG. */
9763         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9764                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9765                 features &= ~NETIF_F_GSO;
9766         }
9767
9768         /* GSO partial features require GSO partial be set */
9769         if ((features & dev->gso_partial_features) &&
9770             !(features & NETIF_F_GSO_PARTIAL)) {
9771                 netdev_dbg(dev,
9772                            "Dropping partially supported GSO features since no GSO partial.\n");
9773                 features &= ~dev->gso_partial_features;
9774         }
9775
9776         if (!(features & NETIF_F_RXCSUM)) {
9777                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9778                  * successfully merged by hardware must also have the
9779                  * checksum verified by hardware.  If the user does not
9780                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9781                  */
9782                 if (features & NETIF_F_GRO_HW) {
9783                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9784                         features &= ~NETIF_F_GRO_HW;
9785                 }
9786         }
9787
9788         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9789         if (features & NETIF_F_RXFCS) {
9790                 if (features & NETIF_F_LRO) {
9791                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9792                         features &= ~NETIF_F_LRO;
9793                 }
9794
9795                 if (features & NETIF_F_GRO_HW) {
9796                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9797                         features &= ~NETIF_F_GRO_HW;
9798                 }
9799         }
9800
9801         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9802                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9803                 features &= ~NETIF_F_LRO;
9804         }
9805
9806         if (features & NETIF_F_HW_TLS_TX) {
9807                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9808                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9809                 bool hw_csum = features & NETIF_F_HW_CSUM;
9810
9811                 if (!ip_csum && !hw_csum) {
9812                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9813                         features &= ~NETIF_F_HW_TLS_TX;
9814                 }
9815         }
9816
9817         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9818                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9819                 features &= ~NETIF_F_HW_TLS_RX;
9820         }
9821
9822         return features;
9823 }
9824
9825 int __netdev_update_features(struct net_device *dev)
9826 {
9827         struct net_device *upper, *lower;
9828         netdev_features_t features;
9829         struct list_head *iter;
9830         int err = -1;
9831
9832         ASSERT_RTNL();
9833
9834         features = netdev_get_wanted_features(dev);
9835
9836         if (dev->netdev_ops->ndo_fix_features)
9837                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9838
9839         /* driver might be less strict about feature dependencies */
9840         features = netdev_fix_features(dev, features);
9841
9842         /* some features can't be enabled if they're off on an upper device */
9843         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9844                 features = netdev_sync_upper_features(dev, upper, features);
9845
9846         if (dev->features == features)
9847                 goto sync_lower;
9848
9849         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9850                 &dev->features, &features);
9851
9852         if (dev->netdev_ops->ndo_set_features)
9853                 err = dev->netdev_ops->ndo_set_features(dev, features);
9854         else
9855                 err = 0;
9856
9857         if (unlikely(err < 0)) {
9858                 netdev_err(dev,
9859                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9860                         err, &features, &dev->features);
9861                 /* return non-0 since some features might have changed and
9862                  * it's better to fire a spurious notification than miss it
9863                  */
9864                 return -1;
9865         }
9866
9867 sync_lower:
9868         /* some features must be disabled on lower devices when disabled
9869          * on an upper device (think: bonding master or bridge)
9870          */
9871         netdev_for_each_lower_dev(dev, lower, iter)
9872                 netdev_sync_lower_features(dev, lower, features);
9873
9874         if (!err) {
9875                 netdev_features_t diff = features ^ dev->features;
9876
9877                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9878                         /* udp_tunnel_{get,drop}_rx_info both need
9879                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9880                          * device, or they won't do anything.
9881                          * Thus we need to update dev->features
9882                          * *before* calling udp_tunnel_get_rx_info,
9883                          * but *after* calling udp_tunnel_drop_rx_info.
9884                          */
9885                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9886                                 dev->features = features;
9887                                 udp_tunnel_get_rx_info(dev);
9888                         } else {
9889                                 udp_tunnel_drop_rx_info(dev);
9890                         }
9891                 }
9892
9893                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9894                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9895                                 dev->features = features;
9896                                 err |= vlan_get_rx_ctag_filter_info(dev);
9897                         } else {
9898                                 vlan_drop_rx_ctag_filter_info(dev);
9899                         }
9900                 }
9901
9902                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9903                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9904                                 dev->features = features;
9905                                 err |= vlan_get_rx_stag_filter_info(dev);
9906                         } else {
9907                                 vlan_drop_rx_stag_filter_info(dev);
9908                         }
9909                 }
9910
9911                 dev->features = features;
9912         }
9913
9914         return err < 0 ? 0 : 1;
9915 }
9916
9917 /**
9918  *      netdev_update_features - recalculate device features
9919  *      @dev: the device to check
9920  *
9921  *      Recalculate dev->features set and send notifications if it
9922  *      has changed. Should be called after driver or hardware dependent
9923  *      conditions might have changed that influence the features.
9924  */
9925 void netdev_update_features(struct net_device *dev)
9926 {
9927         if (__netdev_update_features(dev))
9928                 netdev_features_change(dev);
9929 }
9930 EXPORT_SYMBOL(netdev_update_features);
9931
9932 /**
9933  *      netdev_change_features - recalculate device features
9934  *      @dev: the device to check
9935  *
9936  *      Recalculate dev->features set and send notifications even
9937  *      if they have not changed. Should be called instead of
9938  *      netdev_update_features() if also dev->vlan_features might
9939  *      have changed to allow the changes to be propagated to stacked
9940  *      VLAN devices.
9941  */
9942 void netdev_change_features(struct net_device *dev)
9943 {
9944         __netdev_update_features(dev);
9945         netdev_features_change(dev);
9946 }
9947 EXPORT_SYMBOL(netdev_change_features);
9948
9949 /**
9950  *      netif_stacked_transfer_operstate -      transfer operstate
9951  *      @rootdev: the root or lower level device to transfer state from
9952  *      @dev: the device to transfer operstate to
9953  *
9954  *      Transfer operational state from root to device. This is normally
9955  *      called when a stacking relationship exists between the root
9956  *      device and the device(a leaf device).
9957  */
9958 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9959                                         struct net_device *dev)
9960 {
9961         if (rootdev->operstate == IF_OPER_DORMANT)
9962                 netif_dormant_on(dev);
9963         else
9964                 netif_dormant_off(dev);
9965
9966         if (rootdev->operstate == IF_OPER_TESTING)
9967                 netif_testing_on(dev);
9968         else
9969                 netif_testing_off(dev);
9970
9971         if (netif_carrier_ok(rootdev))
9972                 netif_carrier_on(dev);
9973         else
9974                 netif_carrier_off(dev);
9975 }
9976 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9977
9978 static int netif_alloc_rx_queues(struct net_device *dev)
9979 {
9980         unsigned int i, count = dev->num_rx_queues;
9981         struct netdev_rx_queue *rx;
9982         size_t sz = count * sizeof(*rx);
9983         int err = 0;
9984
9985         BUG_ON(count < 1);
9986
9987         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9988         if (!rx)
9989                 return -ENOMEM;
9990
9991         dev->_rx = rx;
9992
9993         for (i = 0; i < count; i++) {
9994                 rx[i].dev = dev;
9995
9996                 /* XDP RX-queue setup */
9997                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9998                 if (err < 0)
9999                         goto err_rxq_info;
10000         }
10001         return 0;
10002
10003 err_rxq_info:
10004         /* Rollback successful reg's and free other resources */
10005         while (i--)
10006                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10007         kvfree(dev->_rx);
10008         dev->_rx = NULL;
10009         return err;
10010 }
10011
10012 static void netif_free_rx_queues(struct net_device *dev)
10013 {
10014         unsigned int i, count = dev->num_rx_queues;
10015
10016         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10017         if (!dev->_rx)
10018                 return;
10019
10020         for (i = 0; i < count; i++)
10021                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10022
10023         kvfree(dev->_rx);
10024 }
10025
10026 static void netdev_init_one_queue(struct net_device *dev,
10027                                   struct netdev_queue *queue, void *_unused)
10028 {
10029         /* Initialize queue lock */
10030         spin_lock_init(&queue->_xmit_lock);
10031         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10032         queue->xmit_lock_owner = -1;
10033         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10034         queue->dev = dev;
10035 #ifdef CONFIG_BQL
10036         dql_init(&queue->dql, HZ);
10037 #endif
10038 }
10039
10040 static void netif_free_tx_queues(struct net_device *dev)
10041 {
10042         kvfree(dev->_tx);
10043 }
10044
10045 static int netif_alloc_netdev_queues(struct net_device *dev)
10046 {
10047         unsigned int count = dev->num_tx_queues;
10048         struct netdev_queue *tx;
10049         size_t sz = count * sizeof(*tx);
10050
10051         if (count < 1 || count > 0xffff)
10052                 return -EINVAL;
10053
10054         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10055         if (!tx)
10056                 return -ENOMEM;
10057
10058         dev->_tx = tx;
10059
10060         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10061         spin_lock_init(&dev->tx_global_lock);
10062
10063         return 0;
10064 }
10065
10066 void netif_tx_stop_all_queues(struct net_device *dev)
10067 {
10068         unsigned int i;
10069
10070         for (i = 0; i < dev->num_tx_queues; i++) {
10071                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10072
10073                 netif_tx_stop_queue(txq);
10074         }
10075 }
10076 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10077
10078 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10079 {
10080         void __percpu *v;
10081
10082         /* Drivers implementing ndo_get_peer_dev must support tstat
10083          * accounting, so that skb_do_redirect() can bump the dev's
10084          * RX stats upon network namespace switch.
10085          */
10086         if (dev->netdev_ops->ndo_get_peer_dev &&
10087             dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10088                 return -EOPNOTSUPP;
10089
10090         switch (dev->pcpu_stat_type) {
10091         case NETDEV_PCPU_STAT_NONE:
10092                 return 0;
10093         case NETDEV_PCPU_STAT_LSTATS:
10094                 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10095                 break;
10096         case NETDEV_PCPU_STAT_TSTATS:
10097                 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10098                 break;
10099         case NETDEV_PCPU_STAT_DSTATS:
10100                 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10101                 break;
10102         default:
10103                 return -EINVAL;
10104         }
10105
10106         return v ? 0 : -ENOMEM;
10107 }
10108
10109 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10110 {
10111         switch (dev->pcpu_stat_type) {
10112         case NETDEV_PCPU_STAT_NONE:
10113                 return;
10114         case NETDEV_PCPU_STAT_LSTATS:
10115                 free_percpu(dev->lstats);
10116                 break;
10117         case NETDEV_PCPU_STAT_TSTATS:
10118                 free_percpu(dev->tstats);
10119                 break;
10120         case NETDEV_PCPU_STAT_DSTATS:
10121                 free_percpu(dev->dstats);
10122                 break;
10123         }
10124 }
10125
10126 /**
10127  * register_netdevice() - register a network device
10128  * @dev: device to register
10129  *
10130  * Take a prepared network device structure and make it externally accessible.
10131  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10132  * Callers must hold the rtnl lock - you may want register_netdev()
10133  * instead of this.
10134  */
10135 int register_netdevice(struct net_device *dev)
10136 {
10137         int ret;
10138         struct net *net = dev_net(dev);
10139
10140         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10141                      NETDEV_FEATURE_COUNT);
10142         BUG_ON(dev_boot_phase);
10143         ASSERT_RTNL();
10144
10145         might_sleep();
10146
10147         /* When net_device's are persistent, this will be fatal. */
10148         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10149         BUG_ON(!net);
10150
10151         ret = ethtool_check_ops(dev->ethtool_ops);
10152         if (ret)
10153                 return ret;
10154
10155         spin_lock_init(&dev->addr_list_lock);
10156         netdev_set_addr_lockdep_class(dev);
10157
10158         ret = dev_get_valid_name(net, dev, dev->name);
10159         if (ret < 0)
10160                 goto out;
10161
10162         ret = -ENOMEM;
10163         dev->name_node = netdev_name_node_head_alloc(dev);
10164         if (!dev->name_node)
10165                 goto out;
10166
10167         /* Init, if this function is available */
10168         if (dev->netdev_ops->ndo_init) {
10169                 ret = dev->netdev_ops->ndo_init(dev);
10170                 if (ret) {
10171                         if (ret > 0)
10172                                 ret = -EIO;
10173                         goto err_free_name;
10174                 }
10175         }
10176
10177         if (((dev->hw_features | dev->features) &
10178              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10179             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10180              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10181                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10182                 ret = -EINVAL;
10183                 goto err_uninit;
10184         }
10185
10186         ret = netdev_do_alloc_pcpu_stats(dev);
10187         if (ret)
10188                 goto err_uninit;
10189
10190         ret = dev_index_reserve(net, dev->ifindex);
10191         if (ret < 0)
10192                 goto err_free_pcpu;
10193         dev->ifindex = ret;
10194
10195         /* Transfer changeable features to wanted_features and enable
10196          * software offloads (GSO and GRO).
10197          */
10198         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10199         dev->features |= NETIF_F_SOFT_FEATURES;
10200
10201         if (dev->udp_tunnel_nic_info) {
10202                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10203                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10204         }
10205
10206         dev->wanted_features = dev->features & dev->hw_features;
10207
10208         if (!(dev->flags & IFF_LOOPBACK))
10209                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10210
10211         /* If IPv4 TCP segmentation offload is supported we should also
10212          * allow the device to enable segmenting the frame with the option
10213          * of ignoring a static IP ID value.  This doesn't enable the
10214          * feature itself but allows the user to enable it later.
10215          */
10216         if (dev->hw_features & NETIF_F_TSO)
10217                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10218         if (dev->vlan_features & NETIF_F_TSO)
10219                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10220         if (dev->mpls_features & NETIF_F_TSO)
10221                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10222         if (dev->hw_enc_features & NETIF_F_TSO)
10223                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10224
10225         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10226          */
10227         dev->vlan_features |= NETIF_F_HIGHDMA;
10228
10229         /* Make NETIF_F_SG inheritable to tunnel devices.
10230          */
10231         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10232
10233         /* Make NETIF_F_SG inheritable to MPLS.
10234          */
10235         dev->mpls_features |= NETIF_F_SG;
10236
10237         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10238         ret = notifier_to_errno(ret);
10239         if (ret)
10240                 goto err_ifindex_release;
10241
10242         ret = netdev_register_kobject(dev);
10243         write_lock(&dev_base_lock);
10244         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10245         write_unlock(&dev_base_lock);
10246         if (ret)
10247                 goto err_uninit_notify;
10248
10249         __netdev_update_features(dev);
10250
10251         /*
10252          *      Default initial state at registry is that the
10253          *      device is present.
10254          */
10255
10256         set_bit(__LINK_STATE_PRESENT, &dev->state);
10257
10258         linkwatch_init_dev(dev);
10259
10260         dev_init_scheduler(dev);
10261
10262         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10263         list_netdevice(dev);
10264
10265         add_device_randomness(dev->dev_addr, dev->addr_len);
10266
10267         /* If the device has permanent device address, driver should
10268          * set dev_addr and also addr_assign_type should be set to
10269          * NET_ADDR_PERM (default value).
10270          */
10271         if (dev->addr_assign_type == NET_ADDR_PERM)
10272                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10273
10274         /* Notify protocols, that a new device appeared. */
10275         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10276         ret = notifier_to_errno(ret);
10277         if (ret) {
10278                 /* Expect explicit free_netdev() on failure */
10279                 dev->needs_free_netdev = false;
10280                 unregister_netdevice_queue(dev, NULL);
10281                 goto out;
10282         }
10283         /*
10284          *      Prevent userspace races by waiting until the network
10285          *      device is fully setup before sending notifications.
10286          */
10287         if (!dev->rtnl_link_ops ||
10288             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10289                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10290
10291 out:
10292         return ret;
10293
10294 err_uninit_notify:
10295         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10296 err_ifindex_release:
10297         dev_index_release(net, dev->ifindex);
10298 err_free_pcpu:
10299         netdev_do_free_pcpu_stats(dev);
10300 err_uninit:
10301         if (dev->netdev_ops->ndo_uninit)
10302                 dev->netdev_ops->ndo_uninit(dev);
10303         if (dev->priv_destructor)
10304                 dev->priv_destructor(dev);
10305 err_free_name:
10306         netdev_name_node_free(dev->name_node);
10307         goto out;
10308 }
10309 EXPORT_SYMBOL(register_netdevice);
10310
10311 /**
10312  *      init_dummy_netdev       - init a dummy network device for NAPI
10313  *      @dev: device to init
10314  *
10315  *      This takes a network device structure and initialize the minimum
10316  *      amount of fields so it can be used to schedule NAPI polls without
10317  *      registering a full blown interface. This is to be used by drivers
10318  *      that need to tie several hardware interfaces to a single NAPI
10319  *      poll scheduler due to HW limitations.
10320  */
10321 int init_dummy_netdev(struct net_device *dev)
10322 {
10323         /* Clear everything. Note we don't initialize spinlocks
10324          * are they aren't supposed to be taken by any of the
10325          * NAPI code and this dummy netdev is supposed to be
10326          * only ever used for NAPI polls
10327          */
10328         memset(dev, 0, sizeof(struct net_device));
10329
10330         /* make sure we BUG if trying to hit standard
10331          * register/unregister code path
10332          */
10333         dev->reg_state = NETREG_DUMMY;
10334
10335         /* NAPI wants this */
10336         INIT_LIST_HEAD(&dev->napi_list);
10337
10338         /* a dummy interface is started by default */
10339         set_bit(__LINK_STATE_PRESENT, &dev->state);
10340         set_bit(__LINK_STATE_START, &dev->state);
10341
10342         /* napi_busy_loop stats accounting wants this */
10343         dev_net_set(dev, &init_net);
10344
10345         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10346          * because users of this 'device' dont need to change
10347          * its refcount.
10348          */
10349
10350         return 0;
10351 }
10352 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10353
10354
10355 /**
10356  *      register_netdev - register a network device
10357  *      @dev: device to register
10358  *
10359  *      Take a completed network device structure and add it to the kernel
10360  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10361  *      chain. 0 is returned on success. A negative errno code is returned
10362  *      on a failure to set up the device, or if the name is a duplicate.
10363  *
10364  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10365  *      and expands the device name if you passed a format string to
10366  *      alloc_netdev.
10367  */
10368 int register_netdev(struct net_device *dev)
10369 {
10370         int err;
10371
10372         if (rtnl_lock_killable())
10373                 return -EINTR;
10374         err = register_netdevice(dev);
10375         rtnl_unlock();
10376         return err;
10377 }
10378 EXPORT_SYMBOL(register_netdev);
10379
10380 int netdev_refcnt_read(const struct net_device *dev)
10381 {
10382 #ifdef CONFIG_PCPU_DEV_REFCNT
10383         int i, refcnt = 0;
10384
10385         for_each_possible_cpu(i)
10386                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10387         return refcnt;
10388 #else
10389         return refcount_read(&dev->dev_refcnt);
10390 #endif
10391 }
10392 EXPORT_SYMBOL(netdev_refcnt_read);
10393
10394 int netdev_unregister_timeout_secs __read_mostly = 10;
10395
10396 #define WAIT_REFS_MIN_MSECS 1
10397 #define WAIT_REFS_MAX_MSECS 250
10398 /**
10399  * netdev_wait_allrefs_any - wait until all references are gone.
10400  * @list: list of net_devices to wait on
10401  *
10402  * This is called when unregistering network devices.
10403  *
10404  * Any protocol or device that holds a reference should register
10405  * for netdevice notification, and cleanup and put back the
10406  * reference if they receive an UNREGISTER event.
10407  * We can get stuck here if buggy protocols don't correctly
10408  * call dev_put.
10409  */
10410 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10411 {
10412         unsigned long rebroadcast_time, warning_time;
10413         struct net_device *dev;
10414         int wait = 0;
10415
10416         rebroadcast_time = warning_time = jiffies;
10417
10418         list_for_each_entry(dev, list, todo_list)
10419                 if (netdev_refcnt_read(dev) == 1)
10420                         return dev;
10421
10422         while (true) {
10423                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10424                         rtnl_lock();
10425
10426                         /* Rebroadcast unregister notification */
10427                         list_for_each_entry(dev, list, todo_list)
10428                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10429
10430                         __rtnl_unlock();
10431                         rcu_barrier();
10432                         rtnl_lock();
10433
10434                         list_for_each_entry(dev, list, todo_list)
10435                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10436                                              &dev->state)) {
10437                                         /* We must not have linkwatch events
10438                                          * pending on unregister. If this
10439                                          * happens, we simply run the queue
10440                                          * unscheduled, resulting in a noop
10441                                          * for this device.
10442                                          */
10443                                         linkwatch_run_queue();
10444                                         break;
10445                                 }
10446
10447                         __rtnl_unlock();
10448
10449                         rebroadcast_time = jiffies;
10450                 }
10451
10452                 if (!wait) {
10453                         rcu_barrier();
10454                         wait = WAIT_REFS_MIN_MSECS;
10455                 } else {
10456                         msleep(wait);
10457                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10458                 }
10459
10460                 list_for_each_entry(dev, list, todo_list)
10461                         if (netdev_refcnt_read(dev) == 1)
10462                                 return dev;
10463
10464                 if (time_after(jiffies, warning_time +
10465                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10466                         list_for_each_entry(dev, list, todo_list) {
10467                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10468                                          dev->name, netdev_refcnt_read(dev));
10469                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10470                         }
10471
10472                         warning_time = jiffies;
10473                 }
10474         }
10475 }
10476
10477 /* The sequence is:
10478  *
10479  *      rtnl_lock();
10480  *      ...
10481  *      register_netdevice(x1);
10482  *      register_netdevice(x2);
10483  *      ...
10484  *      unregister_netdevice(y1);
10485  *      unregister_netdevice(y2);
10486  *      ...
10487  *      rtnl_unlock();
10488  *      free_netdev(y1);
10489  *      free_netdev(y2);
10490  *
10491  * We are invoked by rtnl_unlock().
10492  * This allows us to deal with problems:
10493  * 1) We can delete sysfs objects which invoke hotplug
10494  *    without deadlocking with linkwatch via keventd.
10495  * 2) Since we run with the RTNL semaphore not held, we can sleep
10496  *    safely in order to wait for the netdev refcnt to drop to zero.
10497  *
10498  * We must not return until all unregister events added during
10499  * the interval the lock was held have been completed.
10500  */
10501 void netdev_run_todo(void)
10502 {
10503         struct net_device *dev, *tmp;
10504         struct list_head list;
10505 #ifdef CONFIG_LOCKDEP
10506         struct list_head unlink_list;
10507
10508         list_replace_init(&net_unlink_list, &unlink_list);
10509
10510         while (!list_empty(&unlink_list)) {
10511                 struct net_device *dev = list_first_entry(&unlink_list,
10512                                                           struct net_device,
10513                                                           unlink_list);
10514                 list_del_init(&dev->unlink_list);
10515                 dev->nested_level = dev->lower_level - 1;
10516         }
10517 #endif
10518
10519         /* Snapshot list, allow later requests */
10520         list_replace_init(&net_todo_list, &list);
10521
10522         __rtnl_unlock();
10523
10524         /* Wait for rcu callbacks to finish before next phase */
10525         if (!list_empty(&list))
10526                 rcu_barrier();
10527
10528         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10529                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10530                         netdev_WARN(dev, "run_todo but not unregistering\n");
10531                         list_del(&dev->todo_list);
10532                         continue;
10533                 }
10534
10535                 write_lock(&dev_base_lock);
10536                 dev->reg_state = NETREG_UNREGISTERED;
10537                 write_unlock(&dev_base_lock);
10538                 linkwatch_sync_dev(dev);
10539         }
10540
10541         while (!list_empty(&list)) {
10542                 dev = netdev_wait_allrefs_any(&list);
10543                 list_del(&dev->todo_list);
10544
10545                 /* paranoia */
10546                 BUG_ON(netdev_refcnt_read(dev) != 1);
10547                 BUG_ON(!list_empty(&dev->ptype_all));
10548                 BUG_ON(!list_empty(&dev->ptype_specific));
10549                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10550                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10551
10552                 netdev_do_free_pcpu_stats(dev);
10553                 if (dev->priv_destructor)
10554                         dev->priv_destructor(dev);
10555                 if (dev->needs_free_netdev)
10556                         free_netdev(dev);
10557
10558                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10559                         wake_up(&netdev_unregistering_wq);
10560
10561                 /* Free network device */
10562                 kobject_put(&dev->dev.kobj);
10563         }
10564 }
10565
10566 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10567  * all the same fields in the same order as net_device_stats, with only
10568  * the type differing, but rtnl_link_stats64 may have additional fields
10569  * at the end for newer counters.
10570  */
10571 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10572                              const struct net_device_stats *netdev_stats)
10573 {
10574         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10575         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10576         u64 *dst = (u64 *)stats64;
10577
10578         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10579         for (i = 0; i < n; i++)
10580                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10581         /* zero out counters that only exist in rtnl_link_stats64 */
10582         memset((char *)stats64 + n * sizeof(u64), 0,
10583                sizeof(*stats64) - n * sizeof(u64));
10584 }
10585 EXPORT_SYMBOL(netdev_stats_to_stats64);
10586
10587 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10588                 struct net_device *dev)
10589 {
10590         struct net_device_core_stats __percpu *p;
10591
10592         p = alloc_percpu_gfp(struct net_device_core_stats,
10593                              GFP_ATOMIC | __GFP_NOWARN);
10594
10595         if (p && cmpxchg(&dev->core_stats, NULL, p))
10596                 free_percpu(p);
10597
10598         /* This READ_ONCE() pairs with the cmpxchg() above */
10599         return READ_ONCE(dev->core_stats);
10600 }
10601
10602 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10603 {
10604         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10605         struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10606         unsigned long __percpu *field;
10607
10608         if (unlikely(!p)) {
10609                 p = netdev_core_stats_alloc(dev);
10610                 if (!p)
10611                         return;
10612         }
10613
10614         field = (__force unsigned long __percpu *)((__force void *)p + offset);
10615         this_cpu_inc(*field);
10616 }
10617 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10618
10619 /**
10620  *      dev_get_stats   - get network device statistics
10621  *      @dev: device to get statistics from
10622  *      @storage: place to store stats
10623  *
10624  *      Get network statistics from device. Return @storage.
10625  *      The device driver may provide its own method by setting
10626  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10627  *      otherwise the internal statistics structure is used.
10628  */
10629 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10630                                         struct rtnl_link_stats64 *storage)
10631 {
10632         const struct net_device_ops *ops = dev->netdev_ops;
10633         const struct net_device_core_stats __percpu *p;
10634
10635         if (ops->ndo_get_stats64) {
10636                 memset(storage, 0, sizeof(*storage));
10637                 ops->ndo_get_stats64(dev, storage);
10638         } else if (ops->ndo_get_stats) {
10639                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10640         } else {
10641                 netdev_stats_to_stats64(storage, &dev->stats);
10642         }
10643
10644         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10645         p = READ_ONCE(dev->core_stats);
10646         if (p) {
10647                 const struct net_device_core_stats *core_stats;
10648                 int i;
10649
10650                 for_each_possible_cpu(i) {
10651                         core_stats = per_cpu_ptr(p, i);
10652                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10653                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10654                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10655                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10656                 }
10657         }
10658         return storage;
10659 }
10660 EXPORT_SYMBOL(dev_get_stats);
10661
10662 /**
10663  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10664  *      @s: place to store stats
10665  *      @netstats: per-cpu network stats to read from
10666  *
10667  *      Read per-cpu network statistics and populate the related fields in @s.
10668  */
10669 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10670                            const struct pcpu_sw_netstats __percpu *netstats)
10671 {
10672         int cpu;
10673
10674         for_each_possible_cpu(cpu) {
10675                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10676                 const struct pcpu_sw_netstats *stats;
10677                 unsigned int start;
10678
10679                 stats = per_cpu_ptr(netstats, cpu);
10680                 do {
10681                         start = u64_stats_fetch_begin(&stats->syncp);
10682                         rx_packets = u64_stats_read(&stats->rx_packets);
10683                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10684                         tx_packets = u64_stats_read(&stats->tx_packets);
10685                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10686                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10687
10688                 s->rx_packets += rx_packets;
10689                 s->rx_bytes   += rx_bytes;
10690                 s->tx_packets += tx_packets;
10691                 s->tx_bytes   += tx_bytes;
10692         }
10693 }
10694 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10695
10696 /**
10697  *      dev_get_tstats64 - ndo_get_stats64 implementation
10698  *      @dev: device to get statistics from
10699  *      @s: place to store stats
10700  *
10701  *      Populate @s from dev->stats and dev->tstats. Can be used as
10702  *      ndo_get_stats64() callback.
10703  */
10704 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10705 {
10706         netdev_stats_to_stats64(s, &dev->stats);
10707         dev_fetch_sw_netstats(s, dev->tstats);
10708 }
10709 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10710
10711 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10712 {
10713         struct netdev_queue *queue = dev_ingress_queue(dev);
10714
10715 #ifdef CONFIG_NET_CLS_ACT
10716         if (queue)
10717                 return queue;
10718         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10719         if (!queue)
10720                 return NULL;
10721         netdev_init_one_queue(dev, queue, NULL);
10722         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10723         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10724         rcu_assign_pointer(dev->ingress_queue, queue);
10725 #endif
10726         return queue;
10727 }
10728
10729 static const struct ethtool_ops default_ethtool_ops;
10730
10731 void netdev_set_default_ethtool_ops(struct net_device *dev,
10732                                     const struct ethtool_ops *ops)
10733 {
10734         if (dev->ethtool_ops == &default_ethtool_ops)
10735                 dev->ethtool_ops = ops;
10736 }
10737 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10738
10739 /**
10740  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10741  * @dev: netdev to enable the IRQ coalescing on
10742  *
10743  * Sets a conservative default for SW IRQ coalescing. Users can use
10744  * sysfs attributes to override the default values.
10745  */
10746 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10747 {
10748         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10749
10750         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10751                 dev->gro_flush_timeout = 20000;
10752                 dev->napi_defer_hard_irqs = 1;
10753         }
10754 }
10755 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10756
10757 void netdev_freemem(struct net_device *dev)
10758 {
10759         char *addr = (char *)dev - dev->padded;
10760
10761         kvfree(addr);
10762 }
10763
10764 /**
10765  * alloc_netdev_mqs - allocate network device
10766  * @sizeof_priv: size of private data to allocate space for
10767  * @name: device name format string
10768  * @name_assign_type: origin of device name
10769  * @setup: callback to initialize device
10770  * @txqs: the number of TX subqueues to allocate
10771  * @rxqs: the number of RX subqueues to allocate
10772  *
10773  * Allocates a struct net_device with private data area for driver use
10774  * and performs basic initialization.  Also allocates subqueue structs
10775  * for each queue on the device.
10776  */
10777 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10778                 unsigned char name_assign_type,
10779                 void (*setup)(struct net_device *),
10780                 unsigned int txqs, unsigned int rxqs)
10781 {
10782         struct net_device *dev;
10783         unsigned int alloc_size;
10784         struct net_device *p;
10785
10786         BUG_ON(strlen(name) >= sizeof(dev->name));
10787
10788         if (txqs < 1) {
10789                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10790                 return NULL;
10791         }
10792
10793         if (rxqs < 1) {
10794                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10795                 return NULL;
10796         }
10797
10798         alloc_size = sizeof(struct net_device);
10799         if (sizeof_priv) {
10800                 /* ensure 32-byte alignment of private area */
10801                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10802                 alloc_size += sizeof_priv;
10803         }
10804         /* ensure 32-byte alignment of whole construct */
10805         alloc_size += NETDEV_ALIGN - 1;
10806
10807         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10808         if (!p)
10809                 return NULL;
10810
10811         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10812         dev->padded = (char *)dev - (char *)p;
10813
10814         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10815 #ifdef CONFIG_PCPU_DEV_REFCNT
10816         dev->pcpu_refcnt = alloc_percpu(int);
10817         if (!dev->pcpu_refcnt)
10818                 goto free_dev;
10819         __dev_hold(dev);
10820 #else
10821         refcount_set(&dev->dev_refcnt, 1);
10822 #endif
10823
10824         if (dev_addr_init(dev))
10825                 goto free_pcpu;
10826
10827         dev_mc_init(dev);
10828         dev_uc_init(dev);
10829
10830         dev_net_set(dev, &init_net);
10831
10832         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10833         dev->xdp_zc_max_segs = 1;
10834         dev->gso_max_segs = GSO_MAX_SEGS;
10835         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10836         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10837         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10838         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10839         dev->tso_max_segs = TSO_MAX_SEGS;
10840         dev->upper_level = 1;
10841         dev->lower_level = 1;
10842 #ifdef CONFIG_LOCKDEP
10843         dev->nested_level = 0;
10844         INIT_LIST_HEAD(&dev->unlink_list);
10845 #endif
10846
10847         INIT_LIST_HEAD(&dev->napi_list);
10848         INIT_LIST_HEAD(&dev->unreg_list);
10849         INIT_LIST_HEAD(&dev->close_list);
10850         INIT_LIST_HEAD(&dev->link_watch_list);
10851         INIT_LIST_HEAD(&dev->adj_list.upper);
10852         INIT_LIST_HEAD(&dev->adj_list.lower);
10853         INIT_LIST_HEAD(&dev->ptype_all);
10854         INIT_LIST_HEAD(&dev->ptype_specific);
10855         INIT_LIST_HEAD(&dev->net_notifier_list);
10856 #ifdef CONFIG_NET_SCHED
10857         hash_init(dev->qdisc_hash);
10858 #endif
10859         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10860         setup(dev);
10861
10862         if (!dev->tx_queue_len) {
10863                 dev->priv_flags |= IFF_NO_QUEUE;
10864                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10865         }
10866
10867         dev->num_tx_queues = txqs;
10868         dev->real_num_tx_queues = txqs;
10869         if (netif_alloc_netdev_queues(dev))
10870                 goto free_all;
10871
10872         dev->num_rx_queues = rxqs;
10873         dev->real_num_rx_queues = rxqs;
10874         if (netif_alloc_rx_queues(dev))
10875                 goto free_all;
10876
10877         strcpy(dev->name, name);
10878         dev->name_assign_type = name_assign_type;
10879         dev->group = INIT_NETDEV_GROUP;
10880         if (!dev->ethtool_ops)
10881                 dev->ethtool_ops = &default_ethtool_ops;
10882
10883         nf_hook_netdev_init(dev);
10884
10885         return dev;
10886
10887 free_all:
10888         free_netdev(dev);
10889         return NULL;
10890
10891 free_pcpu:
10892 #ifdef CONFIG_PCPU_DEV_REFCNT
10893         free_percpu(dev->pcpu_refcnt);
10894 free_dev:
10895 #endif
10896         netdev_freemem(dev);
10897         return NULL;
10898 }
10899 EXPORT_SYMBOL(alloc_netdev_mqs);
10900
10901 /**
10902  * free_netdev - free network device
10903  * @dev: device
10904  *
10905  * This function does the last stage of destroying an allocated device
10906  * interface. The reference to the device object is released. If this
10907  * is the last reference then it will be freed.Must be called in process
10908  * context.
10909  */
10910 void free_netdev(struct net_device *dev)
10911 {
10912         struct napi_struct *p, *n;
10913
10914         might_sleep();
10915
10916         /* When called immediately after register_netdevice() failed the unwind
10917          * handling may still be dismantling the device. Handle that case by
10918          * deferring the free.
10919          */
10920         if (dev->reg_state == NETREG_UNREGISTERING) {
10921                 ASSERT_RTNL();
10922                 dev->needs_free_netdev = true;
10923                 return;
10924         }
10925
10926         netif_free_tx_queues(dev);
10927         netif_free_rx_queues(dev);
10928
10929         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10930
10931         /* Flush device addresses */
10932         dev_addr_flush(dev);
10933
10934         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10935                 netif_napi_del(p);
10936
10937         ref_tracker_dir_exit(&dev->refcnt_tracker);
10938 #ifdef CONFIG_PCPU_DEV_REFCNT
10939         free_percpu(dev->pcpu_refcnt);
10940         dev->pcpu_refcnt = NULL;
10941 #endif
10942         free_percpu(dev->core_stats);
10943         dev->core_stats = NULL;
10944         free_percpu(dev->xdp_bulkq);
10945         dev->xdp_bulkq = NULL;
10946
10947         /*  Compatibility with error handling in drivers */
10948         if (dev->reg_state == NETREG_UNINITIALIZED) {
10949                 netdev_freemem(dev);
10950                 return;
10951         }
10952
10953         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10954         dev->reg_state = NETREG_RELEASED;
10955
10956         /* will free via device release */
10957         put_device(&dev->dev);
10958 }
10959 EXPORT_SYMBOL(free_netdev);
10960
10961 /**
10962  *      synchronize_net -  Synchronize with packet receive processing
10963  *
10964  *      Wait for packets currently being received to be done.
10965  *      Does not block later packets from starting.
10966  */
10967 void synchronize_net(void)
10968 {
10969         might_sleep();
10970         if (rtnl_is_locked())
10971                 synchronize_rcu_expedited();
10972         else
10973                 synchronize_rcu();
10974 }
10975 EXPORT_SYMBOL(synchronize_net);
10976
10977 /**
10978  *      unregister_netdevice_queue - remove device from the kernel
10979  *      @dev: device
10980  *      @head: list
10981  *
10982  *      This function shuts down a device interface and removes it
10983  *      from the kernel tables.
10984  *      If head not NULL, device is queued to be unregistered later.
10985  *
10986  *      Callers must hold the rtnl semaphore.  You may want
10987  *      unregister_netdev() instead of this.
10988  */
10989
10990 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10991 {
10992         ASSERT_RTNL();
10993
10994         if (head) {
10995                 list_move_tail(&dev->unreg_list, head);
10996         } else {
10997                 LIST_HEAD(single);
10998
10999                 list_add(&dev->unreg_list, &single);
11000                 unregister_netdevice_many(&single);
11001         }
11002 }
11003 EXPORT_SYMBOL(unregister_netdevice_queue);
11004
11005 void unregister_netdevice_many_notify(struct list_head *head,
11006                                       u32 portid, const struct nlmsghdr *nlh)
11007 {
11008         struct net_device *dev, *tmp;
11009         LIST_HEAD(close_head);
11010
11011         BUG_ON(dev_boot_phase);
11012         ASSERT_RTNL();
11013
11014         if (list_empty(head))
11015                 return;
11016
11017         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11018                 /* Some devices call without registering
11019                  * for initialization unwind. Remove those
11020                  * devices and proceed with the remaining.
11021                  */
11022                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11023                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11024                                  dev->name, dev);
11025
11026                         WARN_ON(1);
11027                         list_del(&dev->unreg_list);
11028                         continue;
11029                 }
11030                 dev->dismantle = true;
11031                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11032         }
11033
11034         /* If device is running, close it first. */
11035         list_for_each_entry(dev, head, unreg_list)
11036                 list_add_tail(&dev->close_list, &close_head);
11037         dev_close_many(&close_head, true);
11038
11039         list_for_each_entry(dev, head, unreg_list) {
11040                 /* And unlink it from device chain. */
11041                 write_lock(&dev_base_lock);
11042                 unlist_netdevice(dev, false);
11043                 dev->reg_state = NETREG_UNREGISTERING;
11044                 write_unlock(&dev_base_lock);
11045         }
11046         flush_all_backlogs();
11047
11048         synchronize_net();
11049
11050         list_for_each_entry(dev, head, unreg_list) {
11051                 struct sk_buff *skb = NULL;
11052
11053                 /* Shutdown queueing discipline. */
11054                 dev_shutdown(dev);
11055                 dev_tcx_uninstall(dev);
11056                 dev_xdp_uninstall(dev);
11057                 bpf_dev_bound_netdev_unregister(dev);
11058
11059                 netdev_offload_xstats_disable_all(dev);
11060
11061                 /* Notify protocols, that we are about to destroy
11062                  * this device. They should clean all the things.
11063                  */
11064                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11065
11066                 if (!dev->rtnl_link_ops ||
11067                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11068                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11069                                                      GFP_KERNEL, NULL, 0,
11070                                                      portid, nlh);
11071
11072                 /*
11073                  *      Flush the unicast and multicast chains
11074                  */
11075                 dev_uc_flush(dev);
11076                 dev_mc_flush(dev);
11077
11078                 netdev_name_node_alt_flush(dev);
11079                 netdev_name_node_free(dev->name_node);
11080
11081                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11082
11083                 if (dev->netdev_ops->ndo_uninit)
11084                         dev->netdev_ops->ndo_uninit(dev);
11085
11086                 if (skb)
11087                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11088
11089                 /* Notifier chain MUST detach us all upper devices. */
11090                 WARN_ON(netdev_has_any_upper_dev(dev));
11091                 WARN_ON(netdev_has_any_lower_dev(dev));
11092
11093                 /* Remove entries from kobject tree */
11094                 netdev_unregister_kobject(dev);
11095 #ifdef CONFIG_XPS
11096                 /* Remove XPS queueing entries */
11097                 netif_reset_xps_queues_gt(dev, 0);
11098 #endif
11099         }
11100
11101         synchronize_net();
11102
11103         list_for_each_entry(dev, head, unreg_list) {
11104                 netdev_put(dev, &dev->dev_registered_tracker);
11105                 net_set_todo(dev);
11106         }
11107
11108         list_del(head);
11109 }
11110
11111 /**
11112  *      unregister_netdevice_many - unregister many devices
11113  *      @head: list of devices
11114  *
11115  *  Note: As most callers use a stack allocated list_head,
11116  *  we force a list_del() to make sure stack wont be corrupted later.
11117  */
11118 void unregister_netdevice_many(struct list_head *head)
11119 {
11120         unregister_netdevice_many_notify(head, 0, NULL);
11121 }
11122 EXPORT_SYMBOL(unregister_netdevice_many);
11123
11124 /**
11125  *      unregister_netdev - remove device from the kernel
11126  *      @dev: device
11127  *
11128  *      This function shuts down a device interface and removes it
11129  *      from the kernel tables.
11130  *
11131  *      This is just a wrapper for unregister_netdevice that takes
11132  *      the rtnl semaphore.  In general you want to use this and not
11133  *      unregister_netdevice.
11134  */
11135 void unregister_netdev(struct net_device *dev)
11136 {
11137         rtnl_lock();
11138         unregister_netdevice(dev);
11139         rtnl_unlock();
11140 }
11141 EXPORT_SYMBOL(unregister_netdev);
11142
11143 /**
11144  *      __dev_change_net_namespace - move device to different nethost namespace
11145  *      @dev: device
11146  *      @net: network namespace
11147  *      @pat: If not NULL name pattern to try if the current device name
11148  *            is already taken in the destination network namespace.
11149  *      @new_ifindex: If not zero, specifies device index in the target
11150  *                    namespace.
11151  *
11152  *      This function shuts down a device interface and moves it
11153  *      to a new network namespace. On success 0 is returned, on
11154  *      a failure a netagive errno code is returned.
11155  *
11156  *      Callers must hold the rtnl semaphore.
11157  */
11158
11159 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11160                                const char *pat, int new_ifindex)
11161 {
11162         struct netdev_name_node *name_node;
11163         struct net *net_old = dev_net(dev);
11164         char new_name[IFNAMSIZ] = {};
11165         int err, new_nsid;
11166
11167         ASSERT_RTNL();
11168
11169         /* Don't allow namespace local devices to be moved. */
11170         err = -EINVAL;
11171         if (dev->features & NETIF_F_NETNS_LOCAL)
11172                 goto out;
11173
11174         /* Ensure the device has been registrered */
11175         if (dev->reg_state != NETREG_REGISTERED)
11176                 goto out;
11177
11178         /* Get out if there is nothing todo */
11179         err = 0;
11180         if (net_eq(net_old, net))
11181                 goto out;
11182
11183         /* Pick the destination device name, and ensure
11184          * we can use it in the destination network namespace.
11185          */
11186         err = -EEXIST;
11187         if (netdev_name_in_use(net, dev->name)) {
11188                 /* We get here if we can't use the current device name */
11189                 if (!pat)
11190                         goto out;
11191                 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11192                 if (err < 0)
11193                         goto out;
11194         }
11195         /* Check that none of the altnames conflicts. */
11196         err = -EEXIST;
11197         netdev_for_each_altname(dev, name_node)
11198                 if (netdev_name_in_use(net, name_node->name))
11199                         goto out;
11200
11201         /* Check that new_ifindex isn't used yet. */
11202         if (new_ifindex) {
11203                 err = dev_index_reserve(net, new_ifindex);
11204                 if (err < 0)
11205                         goto out;
11206         } else {
11207                 /* If there is an ifindex conflict assign a new one */
11208                 err = dev_index_reserve(net, dev->ifindex);
11209                 if (err == -EBUSY)
11210                         err = dev_index_reserve(net, 0);
11211                 if (err < 0)
11212                         goto out;
11213                 new_ifindex = err;
11214         }
11215
11216         /*
11217          * And now a mini version of register_netdevice unregister_netdevice.
11218          */
11219
11220         /* If device is running close it first. */
11221         dev_close(dev);
11222
11223         /* And unlink it from device chain */
11224         unlist_netdevice(dev, true);
11225
11226         synchronize_net();
11227
11228         /* Shutdown queueing discipline. */
11229         dev_shutdown(dev);
11230
11231         /* Notify protocols, that we are about to destroy
11232          * this device. They should clean all the things.
11233          *
11234          * Note that dev->reg_state stays at NETREG_REGISTERED.
11235          * This is wanted because this way 8021q and macvlan know
11236          * the device is just moving and can keep their slaves up.
11237          */
11238         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11239         rcu_barrier();
11240
11241         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11242
11243         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11244                             new_ifindex);
11245
11246         /*
11247          *      Flush the unicast and multicast chains
11248          */
11249         dev_uc_flush(dev);
11250         dev_mc_flush(dev);
11251
11252         /* Send a netdev-removed uevent to the old namespace */
11253         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11254         netdev_adjacent_del_links(dev);
11255
11256         /* Move per-net netdevice notifiers that are following the netdevice */
11257         move_netdevice_notifiers_dev_net(dev, net);
11258
11259         /* Actually switch the network namespace */
11260         dev_net_set(dev, net);
11261         dev->ifindex = new_ifindex;
11262
11263         if (new_name[0]) /* Rename the netdev to prepared name */
11264                 strscpy(dev->name, new_name, IFNAMSIZ);
11265
11266         /* Fixup kobjects */
11267         dev_set_uevent_suppress(&dev->dev, 1);
11268         err = device_rename(&dev->dev, dev->name);
11269         dev_set_uevent_suppress(&dev->dev, 0);
11270         WARN_ON(err);
11271
11272         /* Send a netdev-add uevent to the new namespace */
11273         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11274         netdev_adjacent_add_links(dev);
11275
11276         /* Adapt owner in case owning user namespace of target network
11277          * namespace is different from the original one.
11278          */
11279         err = netdev_change_owner(dev, net_old, net);
11280         WARN_ON(err);
11281
11282         /* Add the device back in the hashes */
11283         list_netdevice(dev);
11284
11285         /* Notify protocols, that a new device appeared. */
11286         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11287
11288         /*
11289          *      Prevent userspace races by waiting until the network
11290          *      device is fully setup before sending notifications.
11291          */
11292         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11293
11294         synchronize_net();
11295         err = 0;
11296 out:
11297         return err;
11298 }
11299 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11300
11301 static int dev_cpu_dead(unsigned int oldcpu)
11302 {
11303         struct sk_buff **list_skb;
11304         struct sk_buff *skb;
11305         unsigned int cpu;
11306         struct softnet_data *sd, *oldsd, *remsd = NULL;
11307
11308         local_irq_disable();
11309         cpu = smp_processor_id();
11310         sd = &per_cpu(softnet_data, cpu);
11311         oldsd = &per_cpu(softnet_data, oldcpu);
11312
11313         /* Find end of our completion_queue. */
11314         list_skb = &sd->completion_queue;
11315         while (*list_skb)
11316                 list_skb = &(*list_skb)->next;
11317         /* Append completion queue from offline CPU. */
11318         *list_skb = oldsd->completion_queue;
11319         oldsd->completion_queue = NULL;
11320
11321         /* Append output queue from offline CPU. */
11322         if (oldsd->output_queue) {
11323                 *sd->output_queue_tailp = oldsd->output_queue;
11324                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11325                 oldsd->output_queue = NULL;
11326                 oldsd->output_queue_tailp = &oldsd->output_queue;
11327         }
11328         /* Append NAPI poll list from offline CPU, with one exception :
11329          * process_backlog() must be called by cpu owning percpu backlog.
11330          * We properly handle process_queue & input_pkt_queue later.
11331          */
11332         while (!list_empty(&oldsd->poll_list)) {
11333                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11334                                                             struct napi_struct,
11335                                                             poll_list);
11336
11337                 list_del_init(&napi->poll_list);
11338                 if (napi->poll == process_backlog)
11339                         napi->state = 0;
11340                 else
11341                         ____napi_schedule(sd, napi);
11342         }
11343
11344         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11345         local_irq_enable();
11346
11347 #ifdef CONFIG_RPS
11348         remsd = oldsd->rps_ipi_list;
11349         oldsd->rps_ipi_list = NULL;
11350 #endif
11351         /* send out pending IPI's on offline CPU */
11352         net_rps_send_ipi(remsd);
11353
11354         /* Process offline CPU's input_pkt_queue */
11355         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11356                 netif_rx(skb);
11357                 input_queue_head_incr(oldsd);
11358         }
11359         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11360                 netif_rx(skb);
11361                 input_queue_head_incr(oldsd);
11362         }
11363
11364         return 0;
11365 }
11366
11367 /**
11368  *      netdev_increment_features - increment feature set by one
11369  *      @all: current feature set
11370  *      @one: new feature set
11371  *      @mask: mask feature set
11372  *
11373  *      Computes a new feature set after adding a device with feature set
11374  *      @one to the master device with current feature set @all.  Will not
11375  *      enable anything that is off in @mask. Returns the new feature set.
11376  */
11377 netdev_features_t netdev_increment_features(netdev_features_t all,
11378         netdev_features_t one, netdev_features_t mask)
11379 {
11380         if (mask & NETIF_F_HW_CSUM)
11381                 mask |= NETIF_F_CSUM_MASK;
11382         mask |= NETIF_F_VLAN_CHALLENGED;
11383
11384         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11385         all &= one | ~NETIF_F_ALL_FOR_ALL;
11386
11387         /* If one device supports hw checksumming, set for all. */
11388         if (all & NETIF_F_HW_CSUM)
11389                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11390
11391         return all;
11392 }
11393 EXPORT_SYMBOL(netdev_increment_features);
11394
11395 static struct hlist_head * __net_init netdev_create_hash(void)
11396 {
11397         int i;
11398         struct hlist_head *hash;
11399
11400         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11401         if (hash != NULL)
11402                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11403                         INIT_HLIST_HEAD(&hash[i]);
11404
11405         return hash;
11406 }
11407
11408 /* Initialize per network namespace state */
11409 static int __net_init netdev_init(struct net *net)
11410 {
11411         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11412                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11413
11414         INIT_LIST_HEAD(&net->dev_base_head);
11415
11416         net->dev_name_head = netdev_create_hash();
11417         if (net->dev_name_head == NULL)
11418                 goto err_name;
11419
11420         net->dev_index_head = netdev_create_hash();
11421         if (net->dev_index_head == NULL)
11422                 goto err_idx;
11423
11424         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11425
11426         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11427
11428         return 0;
11429
11430 err_idx:
11431         kfree(net->dev_name_head);
11432 err_name:
11433         return -ENOMEM;
11434 }
11435
11436 /**
11437  *      netdev_drivername - network driver for the device
11438  *      @dev: network device
11439  *
11440  *      Determine network driver for device.
11441  */
11442 const char *netdev_drivername(const struct net_device *dev)
11443 {
11444         const struct device_driver *driver;
11445         const struct device *parent;
11446         const char *empty = "";
11447
11448         parent = dev->dev.parent;
11449         if (!parent)
11450                 return empty;
11451
11452         driver = parent->driver;
11453         if (driver && driver->name)
11454                 return driver->name;
11455         return empty;
11456 }
11457
11458 static void __netdev_printk(const char *level, const struct net_device *dev,
11459                             struct va_format *vaf)
11460 {
11461         if (dev && dev->dev.parent) {
11462                 dev_printk_emit(level[1] - '0',
11463                                 dev->dev.parent,
11464                                 "%s %s %s%s: %pV",
11465                                 dev_driver_string(dev->dev.parent),
11466                                 dev_name(dev->dev.parent),
11467                                 netdev_name(dev), netdev_reg_state(dev),
11468                                 vaf);
11469         } else if (dev) {
11470                 printk("%s%s%s: %pV",
11471                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11472         } else {
11473                 printk("%s(NULL net_device): %pV", level, vaf);
11474         }
11475 }
11476
11477 void netdev_printk(const char *level, const struct net_device *dev,
11478                    const char *format, ...)
11479 {
11480         struct va_format vaf;
11481         va_list args;
11482
11483         va_start(args, format);
11484
11485         vaf.fmt = format;
11486         vaf.va = &args;
11487
11488         __netdev_printk(level, dev, &vaf);
11489
11490         va_end(args);
11491 }
11492 EXPORT_SYMBOL(netdev_printk);
11493
11494 #define define_netdev_printk_level(func, level)                 \
11495 void func(const struct net_device *dev, const char *fmt, ...)   \
11496 {                                                               \
11497         struct va_format vaf;                                   \
11498         va_list args;                                           \
11499                                                                 \
11500         va_start(args, fmt);                                    \
11501                                                                 \
11502         vaf.fmt = fmt;                                          \
11503         vaf.va = &args;                                         \
11504                                                                 \
11505         __netdev_printk(level, dev, &vaf);                      \
11506                                                                 \
11507         va_end(args);                                           \
11508 }                                                               \
11509 EXPORT_SYMBOL(func);
11510
11511 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11512 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11513 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11514 define_netdev_printk_level(netdev_err, KERN_ERR);
11515 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11516 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11517 define_netdev_printk_level(netdev_info, KERN_INFO);
11518
11519 static void __net_exit netdev_exit(struct net *net)
11520 {
11521         kfree(net->dev_name_head);
11522         kfree(net->dev_index_head);
11523         xa_destroy(&net->dev_by_index);
11524         if (net != &init_net)
11525                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11526 }
11527
11528 static struct pernet_operations __net_initdata netdev_net_ops = {
11529         .init = netdev_init,
11530         .exit = netdev_exit,
11531 };
11532
11533 static void __net_exit default_device_exit_net(struct net *net)
11534 {
11535         struct netdev_name_node *name_node, *tmp;
11536         struct net_device *dev, *aux;
11537         /*
11538          * Push all migratable network devices back to the
11539          * initial network namespace
11540          */
11541         ASSERT_RTNL();
11542         for_each_netdev_safe(net, dev, aux) {
11543                 int err;
11544                 char fb_name[IFNAMSIZ];
11545
11546                 /* Ignore unmoveable devices (i.e. loopback) */
11547                 if (dev->features & NETIF_F_NETNS_LOCAL)
11548                         continue;
11549
11550                 /* Leave virtual devices for the generic cleanup */
11551                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11552                         continue;
11553
11554                 /* Push remaining network devices to init_net */
11555                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11556                 if (netdev_name_in_use(&init_net, fb_name))
11557                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11558
11559                 netdev_for_each_altname_safe(dev, name_node, tmp)
11560                         if (netdev_name_in_use(&init_net, name_node->name)) {
11561                                 netdev_name_node_del(name_node);
11562                                 synchronize_rcu();
11563                                 __netdev_name_node_alt_destroy(name_node);
11564                         }
11565
11566                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11567                 if (err) {
11568                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11569                                  __func__, dev->name, err);
11570                         BUG();
11571                 }
11572         }
11573 }
11574
11575 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11576 {
11577         /* At exit all network devices most be removed from a network
11578          * namespace.  Do this in the reverse order of registration.
11579          * Do this across as many network namespaces as possible to
11580          * improve batching efficiency.
11581          */
11582         struct net_device *dev;
11583         struct net *net;
11584         LIST_HEAD(dev_kill_list);
11585
11586         rtnl_lock();
11587         list_for_each_entry(net, net_list, exit_list) {
11588                 default_device_exit_net(net);
11589                 cond_resched();
11590         }
11591
11592         list_for_each_entry(net, net_list, exit_list) {
11593                 for_each_netdev_reverse(net, dev) {
11594                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11595                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11596                         else
11597                                 unregister_netdevice_queue(dev, &dev_kill_list);
11598                 }
11599         }
11600         unregister_netdevice_many(&dev_kill_list);
11601         rtnl_unlock();
11602 }
11603
11604 static struct pernet_operations __net_initdata default_device_ops = {
11605         .exit_batch = default_device_exit_batch,
11606 };
11607
11608 static void __init net_dev_struct_check(void)
11609 {
11610         /* TX read-mostly hotpath */
11611         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11612         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11613         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11614         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11615         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11616         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11617         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11618         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11619         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11620         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11621         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11622         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11623         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11624 #ifdef CONFIG_XPS
11625         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11626 #endif
11627 #ifdef CONFIG_NETFILTER_EGRESS
11628         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11629 #endif
11630 #ifdef CONFIG_NET_XGRESS
11631         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11632 #endif
11633         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11634
11635         /* TXRX read-mostly hotpath */
11636         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11637         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11638         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11639         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11640         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11641         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11642         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11643
11644         /* RX read-mostly hotpath */
11645         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11646         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11647         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11648         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11649         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11650         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11651         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11652         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11653         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11654         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11655         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11656 #ifdef CONFIG_NETPOLL
11657         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11658 #endif
11659 #ifdef CONFIG_NET_XGRESS
11660         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11661 #endif
11662         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11663 }
11664
11665 /*
11666  *      Initialize the DEV module. At boot time this walks the device list and
11667  *      unhooks any devices that fail to initialise (normally hardware not
11668  *      present) and leaves us with a valid list of present and active devices.
11669  *
11670  */
11671
11672 /*
11673  *       This is called single threaded during boot, so no need
11674  *       to take the rtnl semaphore.
11675  */
11676 static int __init net_dev_init(void)
11677 {
11678         int i, rc = -ENOMEM;
11679
11680         BUG_ON(!dev_boot_phase);
11681
11682         net_dev_struct_check();
11683
11684         if (dev_proc_init())
11685                 goto out;
11686
11687         if (netdev_kobject_init())
11688                 goto out;
11689
11690         INIT_LIST_HEAD(&ptype_all);
11691         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11692                 INIT_LIST_HEAD(&ptype_base[i]);
11693
11694         if (register_pernet_subsys(&netdev_net_ops))
11695                 goto out;
11696
11697         /*
11698          *      Initialise the packet receive queues.
11699          */
11700
11701         for_each_possible_cpu(i) {
11702                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11703                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11704
11705                 INIT_WORK(flush, flush_backlog);
11706
11707                 skb_queue_head_init(&sd->input_pkt_queue);
11708                 skb_queue_head_init(&sd->process_queue);
11709 #ifdef CONFIG_XFRM_OFFLOAD
11710                 skb_queue_head_init(&sd->xfrm_backlog);
11711 #endif
11712                 INIT_LIST_HEAD(&sd->poll_list);
11713                 sd->output_queue_tailp = &sd->output_queue;
11714 #ifdef CONFIG_RPS
11715                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11716                 sd->cpu = i;
11717 #endif
11718                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11719                 spin_lock_init(&sd->defer_lock);
11720
11721                 init_gro_hash(&sd->backlog);
11722                 sd->backlog.poll = process_backlog;
11723                 sd->backlog.weight = weight_p;
11724         }
11725
11726         dev_boot_phase = 0;
11727
11728         /* The loopback device is special if any other network devices
11729          * is present in a network namespace the loopback device must
11730          * be present. Since we now dynamically allocate and free the
11731          * loopback device ensure this invariant is maintained by
11732          * keeping the loopback device as the first device on the
11733          * list of network devices.  Ensuring the loopback devices
11734          * is the first device that appears and the last network device
11735          * that disappears.
11736          */
11737         if (register_pernet_device(&loopback_net_ops))
11738                 goto out;
11739
11740         if (register_pernet_device(&default_device_ops))
11741                 goto out;
11742
11743         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11744         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11745
11746         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11747                                        NULL, dev_cpu_dead);
11748         WARN_ON(rc < 0);
11749         rc = 0;
11750 out:
11751         return rc;
11752 }
11753
11754 subsys_initcall(net_dev_init);