GNU Linux-libre 4.19.211-gnu1
[releases.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/rwsem.h>
87 #include <linux/string.h>
88 #include <linux/mm.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/errno.h>
92 #include <linux/interrupt.h>
93 #include <linux/if_ether.h>
94 #include <linux/netdevice.h>
95 #include <linux/etherdevice.h>
96 #include <linux/ethtool.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153 #define MAX_NEST_DEV 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  */
904 int netdev_get_name(struct net *net, char *name, int ifindex)
905 {
906         struct net_device *dev;
907         int ret;
908
909         down_read(&devnet_rename_sem);
910         rcu_read_lock();
911
912         dev = dev_get_by_index_rcu(net, ifindex);
913         if (!dev) {
914                 ret = -ENODEV;
915                 goto out;
916         }
917
918         strcpy(name, dev->name);
919
920         ret = 0;
921 out:
922         rcu_read_unlock();
923         up_read(&devnet_rename_sem);
924         return ret;
925 }
926
927 /**
928  *      dev_getbyhwaddr_rcu - find a device by its hardware address
929  *      @net: the applicable net namespace
930  *      @type: media type of device
931  *      @ha: hardware address
932  *
933  *      Search for an interface by MAC address. Returns NULL if the device
934  *      is not found or a pointer to the device.
935  *      The caller must hold RCU or RTNL.
936  *      The returned device has not had its ref count increased
937  *      and the caller must therefore be careful about locking
938  *
939  */
940
941 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
942                                        const char *ha)
943 {
944         struct net_device *dev;
945
946         for_each_netdev_rcu(net, dev)
947                 if (dev->type == type &&
948                     !memcmp(dev->dev_addr, ha, dev->addr_len))
949                         return dev;
950
951         return NULL;
952 }
953 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
954
955 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
956 {
957         struct net_device *dev;
958
959         ASSERT_RTNL();
960         for_each_netdev(net, dev)
961                 if (dev->type == type)
962                         return dev;
963
964         return NULL;
965 }
966 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
967
968 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
969 {
970         struct net_device *dev, *ret = NULL;
971
972         rcu_read_lock();
973         for_each_netdev_rcu(net, dev)
974                 if (dev->type == type) {
975                         dev_hold(dev);
976                         ret = dev;
977                         break;
978                 }
979         rcu_read_unlock();
980         return ret;
981 }
982 EXPORT_SYMBOL(dev_getfirstbyhwtype);
983
984 /**
985  *      __dev_get_by_flags - find any device with given flags
986  *      @net: the applicable net namespace
987  *      @if_flags: IFF_* values
988  *      @mask: bitmask of bits in if_flags to check
989  *
990  *      Search for any interface with the given flags. Returns NULL if a device
991  *      is not found or a pointer to the device. Must be called inside
992  *      rtnl_lock(), and result refcount is unchanged.
993  */
994
995 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
996                                       unsigned short mask)
997 {
998         struct net_device *dev, *ret;
999
1000         ASSERT_RTNL();
1001
1002         ret = NULL;
1003         for_each_netdev(net, dev) {
1004                 if (((dev->flags ^ if_flags) & mask) == 0) {
1005                         ret = dev;
1006                         break;
1007                 }
1008         }
1009         return ret;
1010 }
1011 EXPORT_SYMBOL(__dev_get_by_flags);
1012
1013 /**
1014  *      dev_valid_name - check if name is okay for network device
1015  *      @name: name string
1016  *
1017  *      Network device names need to be valid file names to
1018  *      to allow sysfs to work.  We also disallow any kind of
1019  *      whitespace.
1020  */
1021 bool dev_valid_name(const char *name)
1022 {
1023         if (*name == '\0')
1024                 return false;
1025         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1026                 return false;
1027         if (!strcmp(name, ".") || !strcmp(name, ".."))
1028                 return false;
1029
1030         while (*name) {
1031                 if (*name == '/' || *name == ':' || isspace(*name))
1032                         return false;
1033                 name++;
1034         }
1035         return true;
1036 }
1037 EXPORT_SYMBOL(dev_valid_name);
1038
1039 /**
1040  *      __dev_alloc_name - allocate a name for a device
1041  *      @net: network namespace to allocate the device name in
1042  *      @name: name format string
1043  *      @buf:  scratch buffer and result name string
1044  *
1045  *      Passed a format string - eg "lt%d" it will try and find a suitable
1046  *      id. It scans list of devices to build up a free map, then chooses
1047  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1048  *      while allocating the name and adding the device in order to avoid
1049  *      duplicates.
1050  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051  *      Returns the number of the unit assigned or a negative errno code.
1052  */
1053
1054 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1055 {
1056         int i = 0;
1057         const char *p;
1058         const int max_netdevices = 8*PAGE_SIZE;
1059         unsigned long *inuse;
1060         struct net_device *d;
1061
1062         if (!dev_valid_name(name))
1063                 return -EINVAL;
1064
1065         p = strchr(name, '%');
1066         if (p) {
1067                 /*
1068                  * Verify the string as this thing may have come from
1069                  * the user.  There must be either one "%d" and no other "%"
1070                  * characters.
1071                  */
1072                 if (p[1] != 'd' || strchr(p + 2, '%'))
1073                         return -EINVAL;
1074
1075                 /* Use one page as a bit array of possible slots */
1076                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077                 if (!inuse)
1078                         return -ENOMEM;
1079
1080                 for_each_netdev(net, d) {
1081                         if (!sscanf(d->name, name, &i))
1082                                 continue;
1083                         if (i < 0 || i >= max_netdevices)
1084                                 continue;
1085
1086                         /*  avoid cases where sscanf is not exact inverse of printf */
1087                         snprintf(buf, IFNAMSIZ, name, i);
1088                         if (!strncmp(buf, d->name, IFNAMSIZ))
1089                                 set_bit(i, inuse);
1090                 }
1091
1092                 i = find_first_zero_bit(inuse, max_netdevices);
1093                 free_page((unsigned long) inuse);
1094         }
1095
1096         snprintf(buf, IFNAMSIZ, name, i);
1097         if (!__dev_get_by_name(net, buf))
1098                 return i;
1099
1100         /* It is possible to run out of possible slots
1101          * when the name is long and there isn't enough space left
1102          * for the digits, or if all bits are used.
1103          */
1104         return -ENFILE;
1105 }
1106
1107 static int dev_alloc_name_ns(struct net *net,
1108                              struct net_device *dev,
1109                              const char *name)
1110 {
1111         char buf[IFNAMSIZ];
1112         int ret;
1113
1114         BUG_ON(!net);
1115         ret = __dev_alloc_name(net, name, buf);
1116         if (ret >= 0)
1117                 strlcpy(dev->name, buf, IFNAMSIZ);
1118         return ret;
1119 }
1120
1121 /**
1122  *      dev_alloc_name - allocate a name for a device
1123  *      @dev: device
1124  *      @name: name format string
1125  *
1126  *      Passed a format string - eg "lt%d" it will try and find a suitable
1127  *      id. It scans list of devices to build up a free map, then chooses
1128  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1129  *      while allocating the name and adding the device in order to avoid
1130  *      duplicates.
1131  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1132  *      Returns the number of the unit assigned or a negative errno code.
1133  */
1134
1135 int dev_alloc_name(struct net_device *dev, const char *name)
1136 {
1137         return dev_alloc_name_ns(dev_net(dev), dev, name);
1138 }
1139 EXPORT_SYMBOL(dev_alloc_name);
1140
1141 int dev_get_valid_name(struct net *net, struct net_device *dev,
1142                        const char *name)
1143 {
1144         BUG_ON(!net);
1145
1146         if (!dev_valid_name(name))
1147                 return -EINVAL;
1148
1149         if (strchr(name, '%'))
1150                 return dev_alloc_name_ns(net, dev, name);
1151         else if (__dev_get_by_name(net, name))
1152                 return -EEXIST;
1153         else if (dev->name != name)
1154                 strlcpy(dev->name, name, IFNAMSIZ);
1155
1156         return 0;
1157 }
1158 EXPORT_SYMBOL(dev_get_valid_name);
1159
1160 /**
1161  *      dev_change_name - change name of a device
1162  *      @dev: device
1163  *      @newname: name (or format string) must be at least IFNAMSIZ
1164  *
1165  *      Change name of a device, can pass format strings "eth%d".
1166  *      for wildcarding.
1167  */
1168 int dev_change_name(struct net_device *dev, const char *newname)
1169 {
1170         unsigned char old_assign_type;
1171         char oldname[IFNAMSIZ];
1172         int err = 0;
1173         int ret;
1174         struct net *net;
1175
1176         ASSERT_RTNL();
1177         BUG_ON(!dev_net(dev));
1178
1179         net = dev_net(dev);
1180
1181         /* Some auto-enslaved devices e.g. failover slaves are
1182          * special, as userspace might rename the device after
1183          * the interface had been brought up and running since
1184          * the point kernel initiated auto-enslavement. Allow
1185          * live name change even when these slave devices are
1186          * up and running.
1187          *
1188          * Typically, users of these auto-enslaving devices
1189          * don't actually care about slave name change, as
1190          * they are supposed to operate on master interface
1191          * directly.
1192          */
1193         if (dev->flags & IFF_UP &&
1194             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1195                 return -EBUSY;
1196
1197         down_write(&devnet_rename_sem);
1198
1199         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1200                 up_write(&devnet_rename_sem);
1201                 return 0;
1202         }
1203
1204         memcpy(oldname, dev->name, IFNAMSIZ);
1205
1206         err = dev_get_valid_name(net, dev, newname);
1207         if (err < 0) {
1208                 up_write(&devnet_rename_sem);
1209                 return err;
1210         }
1211
1212         if (oldname[0] && !strchr(oldname, '%'))
1213                 netdev_info(dev, "renamed from %s\n", oldname);
1214
1215         old_assign_type = dev->name_assign_type;
1216         dev->name_assign_type = NET_NAME_RENAMED;
1217
1218 rollback:
1219         ret = device_rename(&dev->dev, dev->name);
1220         if (ret) {
1221                 memcpy(dev->name, oldname, IFNAMSIZ);
1222                 dev->name_assign_type = old_assign_type;
1223                 up_write(&devnet_rename_sem);
1224                 return ret;
1225         }
1226
1227         up_write(&devnet_rename_sem);
1228
1229         netdev_adjacent_rename_links(dev, oldname);
1230
1231         write_lock_bh(&dev_base_lock);
1232         hlist_del_rcu(&dev->name_hlist);
1233         write_unlock_bh(&dev_base_lock);
1234
1235         synchronize_rcu();
1236
1237         write_lock_bh(&dev_base_lock);
1238         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1239         write_unlock_bh(&dev_base_lock);
1240
1241         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242         ret = notifier_to_errno(ret);
1243
1244         if (ret) {
1245                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1246                 if (err >= 0) {
1247                         err = ret;
1248                         down_write(&devnet_rename_sem);
1249                         memcpy(dev->name, oldname, IFNAMSIZ);
1250                         memcpy(oldname, newname, IFNAMSIZ);
1251                         dev->name_assign_type = old_assign_type;
1252                         old_assign_type = NET_NAME_RENAMED;
1253                         goto rollback;
1254                 } else {
1255                         pr_err("%s: name change rollback failed: %d\n",
1256                                dev->name, ret);
1257                 }
1258         }
1259
1260         return err;
1261 }
1262
1263 /**
1264  *      dev_set_alias - change ifalias of a device
1265  *      @dev: device
1266  *      @alias: name up to IFALIASZ
1267  *      @len: limit of bytes to copy from info
1268  *
1269  *      Set ifalias for a device,
1270  */
1271 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1272 {
1273         struct dev_ifalias *new_alias = NULL;
1274
1275         if (len >= IFALIASZ)
1276                 return -EINVAL;
1277
1278         if (len) {
1279                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1280                 if (!new_alias)
1281                         return -ENOMEM;
1282
1283                 memcpy(new_alias->ifalias, alias, len);
1284                 new_alias->ifalias[len] = 0;
1285         }
1286
1287         mutex_lock(&ifalias_mutex);
1288         rcu_swap_protected(dev->ifalias, new_alias,
1289                            mutex_is_locked(&ifalias_mutex));
1290         mutex_unlock(&ifalias_mutex);
1291
1292         if (new_alias)
1293                 kfree_rcu(new_alias, rcuhead);
1294
1295         return len;
1296 }
1297 EXPORT_SYMBOL(dev_set_alias);
1298
1299 /**
1300  *      dev_get_alias - get ifalias of a device
1301  *      @dev: device
1302  *      @name: buffer to store name of ifalias
1303  *      @len: size of buffer
1304  *
1305  *      get ifalias for a device.  Caller must make sure dev cannot go
1306  *      away,  e.g. rcu read lock or own a reference count to device.
1307  */
1308 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1309 {
1310         const struct dev_ifalias *alias;
1311         int ret = 0;
1312
1313         rcu_read_lock();
1314         alias = rcu_dereference(dev->ifalias);
1315         if (alias)
1316                 ret = snprintf(name, len, "%s", alias->ifalias);
1317         rcu_read_unlock();
1318
1319         return ret;
1320 }
1321
1322 /**
1323  *      netdev_features_change - device changes features
1324  *      @dev: device to cause notification
1325  *
1326  *      Called to indicate a device has changed features.
1327  */
1328 void netdev_features_change(struct net_device *dev)
1329 {
1330         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1331 }
1332 EXPORT_SYMBOL(netdev_features_change);
1333
1334 /**
1335  *      netdev_state_change - device changes state
1336  *      @dev: device to cause notification
1337  *
1338  *      Called to indicate a device has changed state. This function calls
1339  *      the notifier chains for netdev_chain and sends a NEWLINK message
1340  *      to the routing socket.
1341  */
1342 void netdev_state_change(struct net_device *dev)
1343 {
1344         if (dev->flags & IFF_UP) {
1345                 struct netdev_notifier_change_info change_info = {
1346                         .info.dev = dev,
1347                 };
1348
1349                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1350                                               &change_info.info);
1351                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1352         }
1353 }
1354 EXPORT_SYMBOL(netdev_state_change);
1355
1356 /**
1357  * netdev_notify_peers - notify network peers about existence of @dev
1358  * @dev: network device
1359  *
1360  * Generate traffic such that interested network peers are aware of
1361  * @dev, such as by generating a gratuitous ARP. This may be used when
1362  * a device wants to inform the rest of the network about some sort of
1363  * reconfiguration such as a failover event or virtual machine
1364  * migration.
1365  */
1366 void netdev_notify_peers(struct net_device *dev)
1367 {
1368         rtnl_lock();
1369         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371         rtnl_unlock();
1372 }
1373 EXPORT_SYMBOL(netdev_notify_peers);
1374
1375 static int __dev_open(struct net_device *dev)
1376 {
1377         const struct net_device_ops *ops = dev->netdev_ops;
1378         int ret;
1379
1380         ASSERT_RTNL();
1381
1382         if (!netif_device_present(dev))
1383                 return -ENODEV;
1384
1385         /* Block netpoll from trying to do any rx path servicing.
1386          * If we don't do this there is a chance ndo_poll_controller
1387          * or ndo_poll may be running while we open the device
1388          */
1389         netpoll_poll_disable(dev);
1390
1391         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1392         ret = notifier_to_errno(ret);
1393         if (ret)
1394                 return ret;
1395
1396         set_bit(__LINK_STATE_START, &dev->state);
1397
1398         if (ops->ndo_validate_addr)
1399                 ret = ops->ndo_validate_addr(dev);
1400
1401         if (!ret && ops->ndo_open)
1402                 ret = ops->ndo_open(dev);
1403
1404         netpoll_poll_enable(dev);
1405
1406         if (ret)
1407                 clear_bit(__LINK_STATE_START, &dev->state);
1408         else {
1409                 dev->flags |= IFF_UP;
1410                 dev_set_rx_mode(dev);
1411                 dev_activate(dev);
1412                 add_device_randomness(dev->dev_addr, dev->addr_len);
1413         }
1414
1415         return ret;
1416 }
1417
1418 /**
1419  *      dev_open        - prepare an interface for use.
1420  *      @dev:   device to open
1421  *
1422  *      Takes a device from down to up state. The device's private open
1423  *      function is invoked and then the multicast lists are loaded. Finally
1424  *      the device is moved into the up state and a %NETDEV_UP message is
1425  *      sent to the netdev notifier chain.
1426  *
1427  *      Calling this function on an active interface is a nop. On a failure
1428  *      a negative errno code is returned.
1429  */
1430 int dev_open(struct net_device *dev)
1431 {
1432         int ret;
1433
1434         if (dev->flags & IFF_UP)
1435                 return 0;
1436
1437         ret = __dev_open(dev);
1438         if (ret < 0)
1439                 return ret;
1440
1441         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1442         call_netdevice_notifiers(NETDEV_UP, dev);
1443
1444         return ret;
1445 }
1446 EXPORT_SYMBOL(dev_open);
1447
1448 static void __dev_close_many(struct list_head *head)
1449 {
1450         struct net_device *dev;
1451
1452         ASSERT_RTNL();
1453         might_sleep();
1454
1455         list_for_each_entry(dev, head, close_list) {
1456                 /* Temporarily disable netpoll until the interface is down */
1457                 netpoll_poll_disable(dev);
1458
1459                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1460
1461                 clear_bit(__LINK_STATE_START, &dev->state);
1462
1463                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1464                  * can be even on different cpu. So just clear netif_running().
1465                  *
1466                  * dev->stop() will invoke napi_disable() on all of it's
1467                  * napi_struct instances on this device.
1468                  */
1469                 smp_mb__after_atomic(); /* Commit netif_running(). */
1470         }
1471
1472         dev_deactivate_many(head);
1473
1474         list_for_each_entry(dev, head, close_list) {
1475                 const struct net_device_ops *ops = dev->netdev_ops;
1476
1477                 /*
1478                  *      Call the device specific close. This cannot fail.
1479                  *      Only if device is UP
1480                  *
1481                  *      We allow it to be called even after a DETACH hot-plug
1482                  *      event.
1483                  */
1484                 if (ops->ndo_stop)
1485                         ops->ndo_stop(dev);
1486
1487                 dev->flags &= ~IFF_UP;
1488                 netpoll_poll_enable(dev);
1489         }
1490 }
1491
1492 static void __dev_close(struct net_device *dev)
1493 {
1494         LIST_HEAD(single);
1495
1496         list_add(&dev->close_list, &single);
1497         __dev_close_many(&single);
1498         list_del(&single);
1499 }
1500
1501 void dev_close_many(struct list_head *head, bool unlink)
1502 {
1503         struct net_device *dev, *tmp;
1504
1505         /* Remove the devices that don't need to be closed */
1506         list_for_each_entry_safe(dev, tmp, head, close_list)
1507                 if (!(dev->flags & IFF_UP))
1508                         list_del_init(&dev->close_list);
1509
1510         __dev_close_many(head);
1511
1512         list_for_each_entry_safe(dev, tmp, head, close_list) {
1513                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1514                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1515                 if (unlink)
1516                         list_del_init(&dev->close_list);
1517         }
1518 }
1519 EXPORT_SYMBOL(dev_close_many);
1520
1521 /**
1522  *      dev_close - shutdown an interface.
1523  *      @dev: device to shutdown
1524  *
1525  *      This function moves an active device into down state. A
1526  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1527  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1528  *      chain.
1529  */
1530 void dev_close(struct net_device *dev)
1531 {
1532         if (dev->flags & IFF_UP) {
1533                 LIST_HEAD(single);
1534
1535                 list_add(&dev->close_list, &single);
1536                 dev_close_many(&single, true);
1537                 list_del(&single);
1538         }
1539 }
1540 EXPORT_SYMBOL(dev_close);
1541
1542
1543 /**
1544  *      dev_disable_lro - disable Large Receive Offload on a device
1545  *      @dev: device
1546  *
1547  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1548  *      called under RTNL.  This is needed if received packets may be
1549  *      forwarded to another interface.
1550  */
1551 void dev_disable_lro(struct net_device *dev)
1552 {
1553         struct net_device *lower_dev;
1554         struct list_head *iter;
1555
1556         dev->wanted_features &= ~NETIF_F_LRO;
1557         netdev_update_features(dev);
1558
1559         if (unlikely(dev->features & NETIF_F_LRO))
1560                 netdev_WARN(dev, "failed to disable LRO!\n");
1561
1562         netdev_for_each_lower_dev(dev, lower_dev, iter)
1563                 dev_disable_lro(lower_dev);
1564 }
1565 EXPORT_SYMBOL(dev_disable_lro);
1566
1567 /**
1568  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1569  *      @dev: device
1570  *
1571  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1572  *      called under RTNL.  This is needed if Generic XDP is installed on
1573  *      the device.
1574  */
1575 static void dev_disable_gro_hw(struct net_device *dev)
1576 {
1577         dev->wanted_features &= ~NETIF_F_GRO_HW;
1578         netdev_update_features(dev);
1579
1580         if (unlikely(dev->features & NETIF_F_GRO_HW))
1581                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1582 }
1583
1584 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1585 {
1586 #define N(val)                                          \
1587         case NETDEV_##val:                              \
1588                 return "NETDEV_" __stringify(val);
1589         switch (cmd) {
1590         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1591         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1592         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1593         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1594         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1595         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1596         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1597         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1598         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1599         }
1600 #undef N
1601         return "UNKNOWN_NETDEV_EVENT";
1602 }
1603 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1604
1605 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1606                                    struct net_device *dev)
1607 {
1608         struct netdev_notifier_info info = {
1609                 .dev = dev,
1610         };
1611
1612         return nb->notifier_call(nb, val, &info);
1613 }
1614
1615 static int dev_boot_phase = 1;
1616
1617 /**
1618  * register_netdevice_notifier - register a network notifier block
1619  * @nb: notifier
1620  *
1621  * Register a notifier to be called when network device events occur.
1622  * The notifier passed is linked into the kernel structures and must
1623  * not be reused until it has been unregistered. A negative errno code
1624  * is returned on a failure.
1625  *
1626  * When registered all registration and up events are replayed
1627  * to the new notifier to allow device to have a race free
1628  * view of the network device list.
1629  */
1630
1631 int register_netdevice_notifier(struct notifier_block *nb)
1632 {
1633         struct net_device *dev;
1634         struct net_device *last;
1635         struct net *net;
1636         int err;
1637
1638         /* Close race with setup_net() and cleanup_net() */
1639         down_write(&pernet_ops_rwsem);
1640         rtnl_lock();
1641         err = raw_notifier_chain_register(&netdev_chain, nb);
1642         if (err)
1643                 goto unlock;
1644         if (dev_boot_phase)
1645                 goto unlock;
1646         for_each_net(net) {
1647                 for_each_netdev(net, dev) {
1648                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1649                         err = notifier_to_errno(err);
1650                         if (err)
1651                                 goto rollback;
1652
1653                         if (!(dev->flags & IFF_UP))
1654                                 continue;
1655
1656                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1657                 }
1658         }
1659
1660 unlock:
1661         rtnl_unlock();
1662         up_write(&pernet_ops_rwsem);
1663         return err;
1664
1665 rollback:
1666         last = dev;
1667         for_each_net(net) {
1668                 for_each_netdev(net, dev) {
1669                         if (dev == last)
1670                                 goto outroll;
1671
1672                         if (dev->flags & IFF_UP) {
1673                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1674                                                         dev);
1675                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1676                         }
1677                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1678                 }
1679         }
1680
1681 outroll:
1682         raw_notifier_chain_unregister(&netdev_chain, nb);
1683         goto unlock;
1684 }
1685 EXPORT_SYMBOL(register_netdevice_notifier);
1686
1687 /**
1688  * unregister_netdevice_notifier - unregister a network notifier block
1689  * @nb: notifier
1690  *
1691  * Unregister a notifier previously registered by
1692  * register_netdevice_notifier(). The notifier is unlinked into the
1693  * kernel structures and may then be reused. A negative errno code
1694  * is returned on a failure.
1695  *
1696  * After unregistering unregister and down device events are synthesized
1697  * for all devices on the device list to the removed notifier to remove
1698  * the need for special case cleanup code.
1699  */
1700
1701 int unregister_netdevice_notifier(struct notifier_block *nb)
1702 {
1703         struct net_device *dev;
1704         struct net *net;
1705         int err;
1706
1707         /* Close race with setup_net() and cleanup_net() */
1708         down_write(&pernet_ops_rwsem);
1709         rtnl_lock();
1710         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1711         if (err)
1712                 goto unlock;
1713
1714         for_each_net(net) {
1715                 for_each_netdev(net, dev) {
1716                         if (dev->flags & IFF_UP) {
1717                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1718                                                         dev);
1719                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1720                         }
1721                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1722                 }
1723         }
1724 unlock:
1725         rtnl_unlock();
1726         up_write(&pernet_ops_rwsem);
1727         return err;
1728 }
1729 EXPORT_SYMBOL(unregister_netdevice_notifier);
1730
1731 /**
1732  *      call_netdevice_notifiers_info - call all network notifier blocks
1733  *      @val: value passed unmodified to notifier function
1734  *      @info: notifier information data
1735  *
1736  *      Call all network notifier blocks.  Parameters and return value
1737  *      are as for raw_notifier_call_chain().
1738  */
1739
1740 static int call_netdevice_notifiers_info(unsigned long val,
1741                                          struct netdev_notifier_info *info)
1742 {
1743         ASSERT_RTNL();
1744         return raw_notifier_call_chain(&netdev_chain, val, info);
1745 }
1746
1747 /**
1748  *      call_netdevice_notifiers - call all network notifier blocks
1749  *      @val: value passed unmodified to notifier function
1750  *      @dev: net_device pointer passed unmodified to notifier function
1751  *
1752  *      Call all network notifier blocks.  Parameters and return value
1753  *      are as for raw_notifier_call_chain().
1754  */
1755
1756 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1757 {
1758         struct netdev_notifier_info info = {
1759                 .dev = dev,
1760         };
1761
1762         return call_netdevice_notifiers_info(val, &info);
1763 }
1764 EXPORT_SYMBOL(call_netdevice_notifiers);
1765
1766 /**
1767  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1768  *      @val: value passed unmodified to notifier function
1769  *      @dev: net_device pointer passed unmodified to notifier function
1770  *      @arg: additional u32 argument passed to the notifier function
1771  *
1772  *      Call all network notifier blocks.  Parameters and return value
1773  *      are as for raw_notifier_call_chain().
1774  */
1775 static int call_netdevice_notifiers_mtu(unsigned long val,
1776                                         struct net_device *dev, u32 arg)
1777 {
1778         struct netdev_notifier_info_ext info = {
1779                 .info.dev = dev,
1780                 .ext.mtu = arg,
1781         };
1782
1783         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1784
1785         return call_netdevice_notifiers_info(val, &info.info);
1786 }
1787
1788 #ifdef CONFIG_NET_INGRESS
1789 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1790
1791 void net_inc_ingress_queue(void)
1792 {
1793         static_branch_inc(&ingress_needed_key);
1794 }
1795 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1796
1797 void net_dec_ingress_queue(void)
1798 {
1799         static_branch_dec(&ingress_needed_key);
1800 }
1801 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1802 #endif
1803
1804 #ifdef CONFIG_NET_EGRESS
1805 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1806
1807 void net_inc_egress_queue(void)
1808 {
1809         static_branch_inc(&egress_needed_key);
1810 }
1811 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1812
1813 void net_dec_egress_queue(void)
1814 {
1815         static_branch_dec(&egress_needed_key);
1816 }
1817 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1818 #endif
1819
1820 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1821 #ifdef CONFIG_JUMP_LABEL
1822 static atomic_t netstamp_needed_deferred;
1823 static atomic_t netstamp_wanted;
1824 static void netstamp_clear(struct work_struct *work)
1825 {
1826         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1827         int wanted;
1828
1829         wanted = atomic_add_return(deferred, &netstamp_wanted);
1830         if (wanted > 0)
1831                 static_branch_enable(&netstamp_needed_key);
1832         else
1833                 static_branch_disable(&netstamp_needed_key);
1834 }
1835 static DECLARE_WORK(netstamp_work, netstamp_clear);
1836 #endif
1837
1838 void net_enable_timestamp(void)
1839 {
1840 #ifdef CONFIG_JUMP_LABEL
1841         int wanted;
1842
1843         while (1) {
1844                 wanted = atomic_read(&netstamp_wanted);
1845                 if (wanted <= 0)
1846                         break;
1847                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1848                         return;
1849         }
1850         atomic_inc(&netstamp_needed_deferred);
1851         schedule_work(&netstamp_work);
1852 #else
1853         static_branch_inc(&netstamp_needed_key);
1854 #endif
1855 }
1856 EXPORT_SYMBOL(net_enable_timestamp);
1857
1858 void net_disable_timestamp(void)
1859 {
1860 #ifdef CONFIG_JUMP_LABEL
1861         int wanted;
1862
1863         while (1) {
1864                 wanted = atomic_read(&netstamp_wanted);
1865                 if (wanted <= 1)
1866                         break;
1867                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1868                         return;
1869         }
1870         atomic_dec(&netstamp_needed_deferred);
1871         schedule_work(&netstamp_work);
1872 #else
1873         static_branch_dec(&netstamp_needed_key);
1874 #endif
1875 }
1876 EXPORT_SYMBOL(net_disable_timestamp);
1877
1878 static inline void net_timestamp_set(struct sk_buff *skb)
1879 {
1880         skb->tstamp = 0;
1881         if (static_branch_unlikely(&netstamp_needed_key))
1882                 __net_timestamp(skb);
1883 }
1884
1885 #define net_timestamp_check(COND, SKB)                          \
1886         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1887                 if ((COND) && !(SKB)->tstamp)                   \
1888                         __net_timestamp(SKB);                   \
1889         }                                                       \
1890
1891 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1892 {
1893         unsigned int len;
1894
1895         if (!(dev->flags & IFF_UP))
1896                 return false;
1897
1898         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1899         if (skb->len <= len)
1900                 return true;
1901
1902         /* if TSO is enabled, we don't care about the length as the packet
1903          * could be forwarded without being segmented before
1904          */
1905         if (skb_is_gso(skb))
1906                 return true;
1907
1908         return false;
1909 }
1910 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1911
1912 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914         int ret = ____dev_forward_skb(dev, skb);
1915
1916         if (likely(!ret)) {
1917                 skb->protocol = eth_type_trans(skb, dev);
1918                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1919         }
1920
1921         return ret;
1922 }
1923 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1924
1925 /**
1926  * dev_forward_skb - loopback an skb to another netif
1927  *
1928  * @dev: destination network device
1929  * @skb: buffer to forward
1930  *
1931  * return values:
1932  *      NET_RX_SUCCESS  (no congestion)
1933  *      NET_RX_DROP     (packet was dropped, but freed)
1934  *
1935  * dev_forward_skb can be used for injecting an skb from the
1936  * start_xmit function of one device into the receive queue
1937  * of another device.
1938  *
1939  * The receiving device may be in another namespace, so
1940  * we have to clear all information in the skb that could
1941  * impact namespace isolation.
1942  */
1943 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1944 {
1945         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1946 }
1947 EXPORT_SYMBOL_GPL(dev_forward_skb);
1948
1949 static inline int deliver_skb(struct sk_buff *skb,
1950                               struct packet_type *pt_prev,
1951                               struct net_device *orig_dev)
1952 {
1953         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1954                 return -ENOMEM;
1955         refcount_inc(&skb->users);
1956         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1957 }
1958
1959 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1960                                           struct packet_type **pt,
1961                                           struct net_device *orig_dev,
1962                                           __be16 type,
1963                                           struct list_head *ptype_list)
1964 {
1965         struct packet_type *ptype, *pt_prev = *pt;
1966
1967         list_for_each_entry_rcu(ptype, ptype_list, list) {
1968                 if (ptype->type != type)
1969                         continue;
1970                 if (pt_prev)
1971                         deliver_skb(skb, pt_prev, orig_dev);
1972                 pt_prev = ptype;
1973         }
1974         *pt = pt_prev;
1975 }
1976
1977 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1978 {
1979         if (!ptype->af_packet_priv || !skb->sk)
1980                 return false;
1981
1982         if (ptype->id_match)
1983                 return ptype->id_match(ptype, skb->sk);
1984         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1985                 return true;
1986
1987         return false;
1988 }
1989
1990 /*
1991  *      Support routine. Sends outgoing frames to any network
1992  *      taps currently in use.
1993  */
1994
1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996 {
1997         struct packet_type *ptype;
1998         struct sk_buff *skb2 = NULL;
1999         struct packet_type *pt_prev = NULL;
2000         struct list_head *ptype_list = &ptype_all;
2001
2002         rcu_read_lock();
2003 again:
2004         list_for_each_entry_rcu(ptype, ptype_list, list) {
2005                 /* Never send packets back to the socket
2006                  * they originated from - MvS (miquels@drinkel.ow.org)
2007                  */
2008                 if (skb_loop_sk(ptype, skb))
2009                         continue;
2010
2011                 if (pt_prev) {
2012                         deliver_skb(skb2, pt_prev, skb->dev);
2013                         pt_prev = ptype;
2014                         continue;
2015                 }
2016
2017                 /* need to clone skb, done only once */
2018                 skb2 = skb_clone(skb, GFP_ATOMIC);
2019                 if (!skb2)
2020                         goto out_unlock;
2021
2022                 net_timestamp_set(skb2);
2023
2024                 /* skb->nh should be correctly
2025                  * set by sender, so that the second statement is
2026                  * just protection against buggy protocols.
2027                  */
2028                 skb_reset_mac_header(skb2);
2029
2030                 if (skb_network_header(skb2) < skb2->data ||
2031                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2032                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2033                                              ntohs(skb2->protocol),
2034                                              dev->name);
2035                         skb_reset_network_header(skb2);
2036                 }
2037
2038                 skb2->transport_header = skb2->network_header;
2039                 skb2->pkt_type = PACKET_OUTGOING;
2040                 pt_prev = ptype;
2041         }
2042
2043         if (ptype_list == &ptype_all) {
2044                 ptype_list = &dev->ptype_all;
2045                 goto again;
2046         }
2047 out_unlock:
2048         if (pt_prev) {
2049                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2050                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2051                 else
2052                         kfree_skb(skb2);
2053         }
2054         rcu_read_unlock();
2055 }
2056 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2057
2058 /**
2059  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2060  * @dev: Network device
2061  * @txq: number of queues available
2062  *
2063  * If real_num_tx_queues is changed the tc mappings may no longer be
2064  * valid. To resolve this verify the tc mapping remains valid and if
2065  * not NULL the mapping. With no priorities mapping to this
2066  * offset/count pair it will no longer be used. In the worst case TC0
2067  * is invalid nothing can be done so disable priority mappings. If is
2068  * expected that drivers will fix this mapping if they can before
2069  * calling netif_set_real_num_tx_queues.
2070  */
2071 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2072 {
2073         int i;
2074         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2075
2076         /* If TC0 is invalidated disable TC mapping */
2077         if (tc->offset + tc->count > txq) {
2078                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2079                 dev->num_tc = 0;
2080                 return;
2081         }
2082
2083         /* Invalidated prio to tc mappings set to TC0 */
2084         for (i = 1; i < TC_BITMASK + 1; i++) {
2085                 int q = netdev_get_prio_tc_map(dev, i);
2086
2087                 tc = &dev->tc_to_txq[q];
2088                 if (tc->offset + tc->count > txq) {
2089                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2090                                 i, q);
2091                         netdev_set_prio_tc_map(dev, i, 0);
2092                 }
2093         }
2094 }
2095
2096 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2097 {
2098         if (dev->num_tc) {
2099                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2100                 int i;
2101
2102                 /* walk through the TCs and see if it falls into any of them */
2103                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2104                         if ((txq - tc->offset) < tc->count)
2105                                 return i;
2106                 }
2107
2108                 /* didn't find it, just return -1 to indicate no match */
2109                 return -1;
2110         }
2111
2112         return 0;
2113 }
2114 EXPORT_SYMBOL(netdev_txq_to_tc);
2115
2116 #ifdef CONFIG_XPS
2117 struct static_key xps_needed __read_mostly;
2118 EXPORT_SYMBOL(xps_needed);
2119 struct static_key xps_rxqs_needed __read_mostly;
2120 EXPORT_SYMBOL(xps_rxqs_needed);
2121 static DEFINE_MUTEX(xps_map_mutex);
2122 #define xmap_dereference(P)             \
2123         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2124
2125 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2126                              int tci, u16 index)
2127 {
2128         struct xps_map *map = NULL;
2129         int pos;
2130
2131         if (dev_maps)
2132                 map = xmap_dereference(dev_maps->attr_map[tci]);
2133         if (!map)
2134                 return false;
2135
2136         for (pos = map->len; pos--;) {
2137                 if (map->queues[pos] != index)
2138                         continue;
2139
2140                 if (map->len > 1) {
2141                         map->queues[pos] = map->queues[--map->len];
2142                         break;
2143                 }
2144
2145                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2146                 kfree_rcu(map, rcu);
2147                 return false;
2148         }
2149
2150         return true;
2151 }
2152
2153 static bool remove_xps_queue_cpu(struct net_device *dev,
2154                                  struct xps_dev_maps *dev_maps,
2155                                  int cpu, u16 offset, u16 count)
2156 {
2157         int num_tc = dev->num_tc ? : 1;
2158         bool active = false;
2159         int tci;
2160
2161         for (tci = cpu * num_tc; num_tc--; tci++) {
2162                 int i, j;
2163
2164                 for (i = count, j = offset; i--; j++) {
2165                         if (!remove_xps_queue(dev_maps, tci, j))
2166                                 break;
2167                 }
2168
2169                 active |= i < 0;
2170         }
2171
2172         return active;
2173 }
2174
2175 static void reset_xps_maps(struct net_device *dev,
2176                            struct xps_dev_maps *dev_maps,
2177                            bool is_rxqs_map)
2178 {
2179         if (is_rxqs_map) {
2180                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2181                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2182         } else {
2183                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2184         }
2185         static_key_slow_dec_cpuslocked(&xps_needed);
2186         kfree_rcu(dev_maps, rcu);
2187 }
2188
2189 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2190                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2191                            u16 offset, u16 count, bool is_rxqs_map)
2192 {
2193         bool active = false;
2194         int i, j;
2195
2196         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2197              j < nr_ids;)
2198                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2199                                                count);
2200         if (!active)
2201                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2202
2203         if (!is_rxqs_map) {
2204                 for (i = offset + (count - 1); count--; i--) {
2205                         netdev_queue_numa_node_write(
2206                                 netdev_get_tx_queue(dev, i),
2207                                 NUMA_NO_NODE);
2208                 }
2209         }
2210 }
2211
2212 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2213                                    u16 count)
2214 {
2215         const unsigned long *possible_mask = NULL;
2216         struct xps_dev_maps *dev_maps;
2217         unsigned int nr_ids;
2218
2219         if (!static_key_false(&xps_needed))
2220                 return;
2221
2222         cpus_read_lock();
2223         mutex_lock(&xps_map_mutex);
2224
2225         if (static_key_false(&xps_rxqs_needed)) {
2226                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2227                 if (dev_maps) {
2228                         nr_ids = dev->num_rx_queues;
2229                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2230                                        offset, count, true);
2231                 }
2232         }
2233
2234         dev_maps = xmap_dereference(dev->xps_cpus_map);
2235         if (!dev_maps)
2236                 goto out_no_maps;
2237
2238         if (num_possible_cpus() > 1)
2239                 possible_mask = cpumask_bits(cpu_possible_mask);
2240         nr_ids = nr_cpu_ids;
2241         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2242                        false);
2243
2244 out_no_maps:
2245         mutex_unlock(&xps_map_mutex);
2246         cpus_read_unlock();
2247 }
2248
2249 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2250 {
2251         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2252 }
2253
2254 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2255                                       u16 index, bool is_rxqs_map)
2256 {
2257         struct xps_map *new_map;
2258         int alloc_len = XPS_MIN_MAP_ALLOC;
2259         int i, pos;
2260
2261         for (pos = 0; map && pos < map->len; pos++) {
2262                 if (map->queues[pos] != index)
2263                         continue;
2264                 return map;
2265         }
2266
2267         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2268         if (map) {
2269                 if (pos < map->alloc_len)
2270                         return map;
2271
2272                 alloc_len = map->alloc_len * 2;
2273         }
2274
2275         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2276          *  map
2277          */
2278         if (is_rxqs_map)
2279                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2280         else
2281                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2282                                        cpu_to_node(attr_index));
2283         if (!new_map)
2284                 return NULL;
2285
2286         for (i = 0; i < pos; i++)
2287                 new_map->queues[i] = map->queues[i];
2288         new_map->alloc_len = alloc_len;
2289         new_map->len = pos;
2290
2291         return new_map;
2292 }
2293
2294 /* Must be called under cpus_read_lock */
2295 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2296                           u16 index, bool is_rxqs_map)
2297 {
2298         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2299         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2300         int i, j, tci, numa_node_id = -2;
2301         int maps_sz, num_tc = 1, tc = 0;
2302         struct xps_map *map, *new_map;
2303         bool active = false;
2304         unsigned int nr_ids;
2305
2306         if (dev->num_tc) {
2307                 /* Do not allow XPS on subordinate device directly */
2308                 num_tc = dev->num_tc;
2309                 if (num_tc < 0)
2310                         return -EINVAL;
2311
2312                 /* If queue belongs to subordinate dev use its map */
2313                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2314
2315                 tc = netdev_txq_to_tc(dev, index);
2316                 if (tc < 0)
2317                         return -EINVAL;
2318         }
2319
2320         mutex_lock(&xps_map_mutex);
2321         if (is_rxqs_map) {
2322                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2323                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2324                 nr_ids = dev->num_rx_queues;
2325         } else {
2326                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2327                 if (num_possible_cpus() > 1) {
2328                         online_mask = cpumask_bits(cpu_online_mask);
2329                         possible_mask = cpumask_bits(cpu_possible_mask);
2330                 }
2331                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2332                 nr_ids = nr_cpu_ids;
2333         }
2334
2335         if (maps_sz < L1_CACHE_BYTES)
2336                 maps_sz = L1_CACHE_BYTES;
2337
2338         /* allocate memory for queue storage */
2339         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2340              j < nr_ids;) {
2341                 if (!new_dev_maps)
2342                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2343                 if (!new_dev_maps) {
2344                         mutex_unlock(&xps_map_mutex);
2345                         return -ENOMEM;
2346                 }
2347
2348                 tci = j * num_tc + tc;
2349                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2350                                  NULL;
2351
2352                 map = expand_xps_map(map, j, index, is_rxqs_map);
2353                 if (!map)
2354                         goto error;
2355
2356                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2357         }
2358
2359         if (!new_dev_maps)
2360                 goto out_no_new_maps;
2361
2362         if (!dev_maps) {
2363                 /* Increment static keys at most once per type */
2364                 static_key_slow_inc_cpuslocked(&xps_needed);
2365                 if (is_rxqs_map)
2366                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2367         }
2368
2369         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2370              j < nr_ids;) {
2371                 /* copy maps belonging to foreign traffic classes */
2372                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2373                         /* fill in the new device map from the old device map */
2374                         map = xmap_dereference(dev_maps->attr_map[tci]);
2375                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2376                 }
2377
2378                 /* We need to explicitly update tci as prevous loop
2379                  * could break out early if dev_maps is NULL.
2380                  */
2381                 tci = j * num_tc + tc;
2382
2383                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2384                     netif_attr_test_online(j, online_mask, nr_ids)) {
2385                         /* add tx-queue to CPU/rx-queue maps */
2386                         int pos = 0;
2387
2388                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2389                         while ((pos < map->len) && (map->queues[pos] != index))
2390                                 pos++;
2391
2392                         if (pos == map->len)
2393                                 map->queues[map->len++] = index;
2394 #ifdef CONFIG_NUMA
2395                         if (!is_rxqs_map) {
2396                                 if (numa_node_id == -2)
2397                                         numa_node_id = cpu_to_node(j);
2398                                 else if (numa_node_id != cpu_to_node(j))
2399                                         numa_node_id = -1;
2400                         }
2401 #endif
2402                 } else if (dev_maps) {
2403                         /* fill in the new device map from the old device map */
2404                         map = xmap_dereference(dev_maps->attr_map[tci]);
2405                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2406                 }
2407
2408                 /* copy maps belonging to foreign traffic classes */
2409                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2410                         /* fill in the new device map from the old device map */
2411                         map = xmap_dereference(dev_maps->attr_map[tci]);
2412                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2413                 }
2414         }
2415
2416         if (is_rxqs_map)
2417                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2418         else
2419                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2420
2421         /* Cleanup old maps */
2422         if (!dev_maps)
2423                 goto out_no_old_maps;
2424
2425         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2426              j < nr_ids;) {
2427                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2428                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2429                         map = xmap_dereference(dev_maps->attr_map[tci]);
2430                         if (map && map != new_map)
2431                                 kfree_rcu(map, rcu);
2432                 }
2433         }
2434
2435         kfree_rcu(dev_maps, rcu);
2436
2437 out_no_old_maps:
2438         dev_maps = new_dev_maps;
2439         active = true;
2440
2441 out_no_new_maps:
2442         if (!is_rxqs_map) {
2443                 /* update Tx queue numa node */
2444                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2445                                              (numa_node_id >= 0) ?
2446                                              numa_node_id : NUMA_NO_NODE);
2447         }
2448
2449         if (!dev_maps)
2450                 goto out_no_maps;
2451
2452         /* removes tx-queue from unused CPUs/rx-queues */
2453         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2454              j < nr_ids;) {
2455                 for (i = tc, tci = j * num_tc; i--; tci++)
2456                         active |= remove_xps_queue(dev_maps, tci, index);
2457                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2458                     !netif_attr_test_online(j, online_mask, nr_ids))
2459                         active |= remove_xps_queue(dev_maps, tci, index);
2460                 for (i = num_tc - tc, tci++; --i; tci++)
2461                         active |= remove_xps_queue(dev_maps, tci, index);
2462         }
2463
2464         /* free map if not active */
2465         if (!active)
2466                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2467
2468 out_no_maps:
2469         mutex_unlock(&xps_map_mutex);
2470
2471         return 0;
2472 error:
2473         /* remove any maps that we added */
2474         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2475              j < nr_ids;) {
2476                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2477                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2478                         map = dev_maps ?
2479                               xmap_dereference(dev_maps->attr_map[tci]) :
2480                               NULL;
2481                         if (new_map && new_map != map)
2482                                 kfree(new_map);
2483                 }
2484         }
2485
2486         mutex_unlock(&xps_map_mutex);
2487
2488         kfree(new_dev_maps);
2489         return -ENOMEM;
2490 }
2491 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2492
2493 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2494                         u16 index)
2495 {
2496         int ret;
2497
2498         cpus_read_lock();
2499         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2500         cpus_read_unlock();
2501
2502         return ret;
2503 }
2504 EXPORT_SYMBOL(netif_set_xps_queue);
2505
2506 #endif
2507 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2508 {
2509         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2510
2511         /* Unbind any subordinate channels */
2512         while (txq-- != &dev->_tx[0]) {
2513                 if (txq->sb_dev)
2514                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2515         }
2516 }
2517
2518 void netdev_reset_tc(struct net_device *dev)
2519 {
2520 #ifdef CONFIG_XPS
2521         netif_reset_xps_queues_gt(dev, 0);
2522 #endif
2523         netdev_unbind_all_sb_channels(dev);
2524
2525         /* Reset TC configuration of device */
2526         dev->num_tc = 0;
2527         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2528         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2529 }
2530 EXPORT_SYMBOL(netdev_reset_tc);
2531
2532 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2533 {
2534         if (tc >= dev->num_tc)
2535                 return -EINVAL;
2536
2537 #ifdef CONFIG_XPS
2538         netif_reset_xps_queues(dev, offset, count);
2539 #endif
2540         dev->tc_to_txq[tc].count = count;
2541         dev->tc_to_txq[tc].offset = offset;
2542         return 0;
2543 }
2544 EXPORT_SYMBOL(netdev_set_tc_queue);
2545
2546 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2547 {
2548         if (num_tc > TC_MAX_QUEUE)
2549                 return -EINVAL;
2550
2551 #ifdef CONFIG_XPS
2552         netif_reset_xps_queues_gt(dev, 0);
2553 #endif
2554         netdev_unbind_all_sb_channels(dev);
2555
2556         dev->num_tc = num_tc;
2557         return 0;
2558 }
2559 EXPORT_SYMBOL(netdev_set_num_tc);
2560
2561 void netdev_unbind_sb_channel(struct net_device *dev,
2562                               struct net_device *sb_dev)
2563 {
2564         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2565
2566 #ifdef CONFIG_XPS
2567         netif_reset_xps_queues_gt(sb_dev, 0);
2568 #endif
2569         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2570         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2571
2572         while (txq-- != &dev->_tx[0]) {
2573                 if (txq->sb_dev == sb_dev)
2574                         txq->sb_dev = NULL;
2575         }
2576 }
2577 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2578
2579 int netdev_bind_sb_channel_queue(struct net_device *dev,
2580                                  struct net_device *sb_dev,
2581                                  u8 tc, u16 count, u16 offset)
2582 {
2583         /* Make certain the sb_dev and dev are already configured */
2584         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2585                 return -EINVAL;
2586
2587         /* We cannot hand out queues we don't have */
2588         if ((offset + count) > dev->real_num_tx_queues)
2589                 return -EINVAL;
2590
2591         /* Record the mapping */
2592         sb_dev->tc_to_txq[tc].count = count;
2593         sb_dev->tc_to_txq[tc].offset = offset;
2594
2595         /* Provide a way for Tx queue to find the tc_to_txq map or
2596          * XPS map for itself.
2597          */
2598         while (count--)
2599                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2600
2601         return 0;
2602 }
2603 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2604
2605 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2606 {
2607         /* Do not use a multiqueue device to represent a subordinate channel */
2608         if (netif_is_multiqueue(dev))
2609                 return -ENODEV;
2610
2611         /* We allow channels 1 - 32767 to be used for subordinate channels.
2612          * Channel 0 is meant to be "native" mode and used only to represent
2613          * the main root device. We allow writing 0 to reset the device back
2614          * to normal mode after being used as a subordinate channel.
2615          */
2616         if (channel > S16_MAX)
2617                 return -EINVAL;
2618
2619         dev->num_tc = -channel;
2620
2621         return 0;
2622 }
2623 EXPORT_SYMBOL(netdev_set_sb_channel);
2624
2625 /*
2626  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2627  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2628  */
2629 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2630 {
2631         bool disabling;
2632         int rc;
2633
2634         disabling = txq < dev->real_num_tx_queues;
2635
2636         if (txq < 1 || txq > dev->num_tx_queues)
2637                 return -EINVAL;
2638
2639         if (dev->reg_state == NETREG_REGISTERED ||
2640             dev->reg_state == NETREG_UNREGISTERING) {
2641                 ASSERT_RTNL();
2642
2643                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2644                                                   txq);
2645                 if (rc)
2646                         return rc;
2647
2648                 if (dev->num_tc)
2649                         netif_setup_tc(dev, txq);
2650
2651                 dev->real_num_tx_queues = txq;
2652
2653                 if (disabling) {
2654                         synchronize_net();
2655                         qdisc_reset_all_tx_gt(dev, txq);
2656 #ifdef CONFIG_XPS
2657                         netif_reset_xps_queues_gt(dev, txq);
2658 #endif
2659                 }
2660         } else {
2661                 dev->real_num_tx_queues = txq;
2662         }
2663
2664         return 0;
2665 }
2666 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2667
2668 #ifdef CONFIG_SYSFS
2669 /**
2670  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2671  *      @dev: Network device
2672  *      @rxq: Actual number of RX queues
2673  *
2674  *      This must be called either with the rtnl_lock held or before
2675  *      registration of the net device.  Returns 0 on success, or a
2676  *      negative error code.  If called before registration, it always
2677  *      succeeds.
2678  */
2679 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2680 {
2681         int rc;
2682
2683         if (rxq < 1 || rxq > dev->num_rx_queues)
2684                 return -EINVAL;
2685
2686         if (dev->reg_state == NETREG_REGISTERED) {
2687                 ASSERT_RTNL();
2688
2689                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2690                                                   rxq);
2691                 if (rc)
2692                         return rc;
2693         }
2694
2695         dev->real_num_rx_queues = rxq;
2696         return 0;
2697 }
2698 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2699 #endif
2700
2701 /**
2702  * netif_get_num_default_rss_queues - default number of RSS queues
2703  *
2704  * This routine should set an upper limit on the number of RSS queues
2705  * used by default by multiqueue devices.
2706  */
2707 int netif_get_num_default_rss_queues(void)
2708 {
2709         return is_kdump_kernel() ?
2710                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2711 }
2712 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2713
2714 static void __netif_reschedule(struct Qdisc *q)
2715 {
2716         struct softnet_data *sd;
2717         unsigned long flags;
2718
2719         local_irq_save(flags);
2720         sd = this_cpu_ptr(&softnet_data);
2721         q->next_sched = NULL;
2722         *sd->output_queue_tailp = q;
2723         sd->output_queue_tailp = &q->next_sched;
2724         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2725         local_irq_restore(flags);
2726 }
2727
2728 void __netif_schedule(struct Qdisc *q)
2729 {
2730         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2731                 __netif_reschedule(q);
2732 }
2733 EXPORT_SYMBOL(__netif_schedule);
2734
2735 struct dev_kfree_skb_cb {
2736         enum skb_free_reason reason;
2737 };
2738
2739 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2740 {
2741         return (struct dev_kfree_skb_cb *)skb->cb;
2742 }
2743
2744 void netif_schedule_queue(struct netdev_queue *txq)
2745 {
2746         rcu_read_lock();
2747         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2748                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2749
2750                 __netif_schedule(q);
2751         }
2752         rcu_read_unlock();
2753 }
2754 EXPORT_SYMBOL(netif_schedule_queue);
2755
2756 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2757 {
2758         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2759                 struct Qdisc *q;
2760
2761                 rcu_read_lock();
2762                 q = rcu_dereference(dev_queue->qdisc);
2763                 __netif_schedule(q);
2764                 rcu_read_unlock();
2765         }
2766 }
2767 EXPORT_SYMBOL(netif_tx_wake_queue);
2768
2769 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2770 {
2771         unsigned long flags;
2772
2773         if (unlikely(!skb))
2774                 return;
2775
2776         if (likely(refcount_read(&skb->users) == 1)) {
2777                 smp_rmb();
2778                 refcount_set(&skb->users, 0);
2779         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2780                 return;
2781         }
2782         get_kfree_skb_cb(skb)->reason = reason;
2783         local_irq_save(flags);
2784         skb->next = __this_cpu_read(softnet_data.completion_queue);
2785         __this_cpu_write(softnet_data.completion_queue, skb);
2786         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2787         local_irq_restore(flags);
2788 }
2789 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2790
2791 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2792 {
2793         if (in_irq() || irqs_disabled())
2794                 __dev_kfree_skb_irq(skb, reason);
2795         else
2796                 dev_kfree_skb(skb);
2797 }
2798 EXPORT_SYMBOL(__dev_kfree_skb_any);
2799
2800
2801 /**
2802  * netif_device_detach - mark device as removed
2803  * @dev: network device
2804  *
2805  * Mark device as removed from system and therefore no longer available.
2806  */
2807 void netif_device_detach(struct net_device *dev)
2808 {
2809         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2810             netif_running(dev)) {
2811                 netif_tx_stop_all_queues(dev);
2812         }
2813 }
2814 EXPORT_SYMBOL(netif_device_detach);
2815
2816 /**
2817  * netif_device_attach - mark device as attached
2818  * @dev: network device
2819  *
2820  * Mark device as attached from system and restart if needed.
2821  */
2822 void netif_device_attach(struct net_device *dev)
2823 {
2824         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2825             netif_running(dev)) {
2826                 netif_tx_wake_all_queues(dev);
2827                 __netdev_watchdog_up(dev);
2828         }
2829 }
2830 EXPORT_SYMBOL(netif_device_attach);
2831
2832 /*
2833  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2834  * to be used as a distribution range.
2835  */
2836 static u16 skb_tx_hash(const struct net_device *dev,
2837                        const struct net_device *sb_dev,
2838                        struct sk_buff *skb)
2839 {
2840         u32 hash;
2841         u16 qoffset = 0;
2842         u16 qcount = dev->real_num_tx_queues;
2843
2844         if (dev->num_tc) {
2845                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2846
2847                 qoffset = sb_dev->tc_to_txq[tc].offset;
2848                 qcount = sb_dev->tc_to_txq[tc].count;
2849         }
2850
2851         if (skb_rx_queue_recorded(skb)) {
2852                 hash = skb_get_rx_queue(skb);
2853                 if (hash >= qoffset)
2854                         hash -= qoffset;
2855                 while (unlikely(hash >= qcount))
2856                         hash -= qcount;
2857                 return hash + qoffset;
2858         }
2859
2860         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2861 }
2862
2863 static void skb_warn_bad_offload(const struct sk_buff *skb)
2864 {
2865         static const netdev_features_t null_features;
2866         struct net_device *dev = skb->dev;
2867         const char *name = "";
2868
2869         if (!net_ratelimit())
2870                 return;
2871
2872         if (dev) {
2873                 if (dev->dev.parent)
2874                         name = dev_driver_string(dev->dev.parent);
2875                 else
2876                         name = netdev_name(dev);
2877         }
2878         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2879              "gso_type=%d ip_summed=%d\n",
2880              name, dev ? &dev->features : &null_features,
2881              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2882              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2883              skb_shinfo(skb)->gso_type, skb->ip_summed);
2884 }
2885
2886 /*
2887  * Invalidate hardware checksum when packet is to be mangled, and
2888  * complete checksum manually on outgoing path.
2889  */
2890 int skb_checksum_help(struct sk_buff *skb)
2891 {
2892         __wsum csum;
2893         int ret = 0, offset;
2894
2895         if (skb->ip_summed == CHECKSUM_COMPLETE)
2896                 goto out_set_summed;
2897
2898         if (unlikely(skb_shinfo(skb)->gso_size)) {
2899                 skb_warn_bad_offload(skb);
2900                 return -EINVAL;
2901         }
2902
2903         /* Before computing a checksum, we should make sure no frag could
2904          * be modified by an external entity : checksum could be wrong.
2905          */
2906         if (skb_has_shared_frag(skb)) {
2907                 ret = __skb_linearize(skb);
2908                 if (ret)
2909                         goto out;
2910         }
2911
2912         offset = skb_checksum_start_offset(skb);
2913         BUG_ON(offset >= skb_headlen(skb));
2914         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2915
2916         offset += skb->csum_offset;
2917         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2918
2919         if (skb_cloned(skb) &&
2920             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2921                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2922                 if (ret)
2923                         goto out;
2924         }
2925
2926         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2927 out_set_summed:
2928         skb->ip_summed = CHECKSUM_NONE;
2929 out:
2930         return ret;
2931 }
2932 EXPORT_SYMBOL(skb_checksum_help);
2933
2934 int skb_crc32c_csum_help(struct sk_buff *skb)
2935 {
2936         __le32 crc32c_csum;
2937         int ret = 0, offset, start;
2938
2939         if (skb->ip_summed != CHECKSUM_PARTIAL)
2940                 goto out;
2941
2942         if (unlikely(skb_is_gso(skb)))
2943                 goto out;
2944
2945         /* Before computing a checksum, we should make sure no frag could
2946          * be modified by an external entity : checksum could be wrong.
2947          */
2948         if (unlikely(skb_has_shared_frag(skb))) {
2949                 ret = __skb_linearize(skb);
2950                 if (ret)
2951                         goto out;
2952         }
2953         start = skb_checksum_start_offset(skb);
2954         offset = start + offsetof(struct sctphdr, checksum);
2955         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2956                 ret = -EINVAL;
2957                 goto out;
2958         }
2959         if (skb_cloned(skb) &&
2960             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2961                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2962                 if (ret)
2963                         goto out;
2964         }
2965         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2966                                                   skb->len - start, ~(__u32)0,
2967                                                   crc32c_csum_stub));
2968         *(__le32 *)(skb->data + offset) = crc32c_csum;
2969         skb->ip_summed = CHECKSUM_NONE;
2970         skb->csum_not_inet = 0;
2971 out:
2972         return ret;
2973 }
2974
2975 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2976 {
2977         __be16 type = skb->protocol;
2978
2979         /* Tunnel gso handlers can set protocol to ethernet. */
2980         if (type == htons(ETH_P_TEB)) {
2981                 struct ethhdr *eth;
2982
2983                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2984                         return 0;
2985
2986                 eth = (struct ethhdr *)skb->data;
2987                 type = eth->h_proto;
2988         }
2989
2990         return __vlan_get_protocol(skb, type, depth);
2991 }
2992
2993 /**
2994  *      skb_mac_gso_segment - mac layer segmentation handler.
2995  *      @skb: buffer to segment
2996  *      @features: features for the output path (see dev->features)
2997  */
2998 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2999                                     netdev_features_t features)
3000 {
3001         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3002         struct packet_offload *ptype;
3003         int vlan_depth = skb->mac_len;
3004         __be16 type = skb_network_protocol(skb, &vlan_depth);
3005
3006         if (unlikely(!type))
3007                 return ERR_PTR(-EINVAL);
3008
3009         __skb_pull(skb, vlan_depth);
3010
3011         rcu_read_lock();
3012         list_for_each_entry_rcu(ptype, &offload_base, list) {
3013                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3014                         segs = ptype->callbacks.gso_segment(skb, features);
3015                         break;
3016                 }
3017         }
3018         rcu_read_unlock();
3019
3020         __skb_push(skb, skb->data - skb_mac_header(skb));
3021
3022         return segs;
3023 }
3024 EXPORT_SYMBOL(skb_mac_gso_segment);
3025
3026
3027 /* openvswitch calls this on rx path, so we need a different check.
3028  */
3029 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3030 {
3031         if (tx_path)
3032                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3033                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3034
3035         return skb->ip_summed == CHECKSUM_NONE;
3036 }
3037
3038 /**
3039  *      __skb_gso_segment - Perform segmentation on skb.
3040  *      @skb: buffer to segment
3041  *      @features: features for the output path (see dev->features)
3042  *      @tx_path: whether it is called in TX path
3043  *
3044  *      This function segments the given skb and returns a list of segments.
3045  *
3046  *      It may return NULL if the skb requires no segmentation.  This is
3047  *      only possible when GSO is used for verifying header integrity.
3048  *
3049  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3050  */
3051 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3052                                   netdev_features_t features, bool tx_path)
3053 {
3054         struct sk_buff *segs;
3055
3056         if (unlikely(skb_needs_check(skb, tx_path))) {
3057                 int err;
3058
3059                 /* We're going to init ->check field in TCP or UDP header */
3060                 err = skb_cow_head(skb, 0);
3061                 if (err < 0)
3062                         return ERR_PTR(err);
3063         }
3064
3065         /* Only report GSO partial support if it will enable us to
3066          * support segmentation on this frame without needing additional
3067          * work.
3068          */
3069         if (features & NETIF_F_GSO_PARTIAL) {
3070                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3071                 struct net_device *dev = skb->dev;
3072
3073                 partial_features |= dev->features & dev->gso_partial_features;
3074                 if (!skb_gso_ok(skb, features | partial_features))
3075                         features &= ~NETIF_F_GSO_PARTIAL;
3076         }
3077
3078         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3079                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3080
3081         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3082         SKB_GSO_CB(skb)->encap_level = 0;
3083
3084         skb_reset_mac_header(skb);
3085         skb_reset_mac_len(skb);
3086
3087         segs = skb_mac_gso_segment(skb, features);
3088
3089         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3090                 skb_warn_bad_offload(skb);
3091
3092         return segs;
3093 }
3094 EXPORT_SYMBOL(__skb_gso_segment);
3095
3096 /* Take action when hardware reception checksum errors are detected. */
3097 #ifdef CONFIG_BUG
3098 void netdev_rx_csum_fault(struct net_device *dev)
3099 {
3100         if (net_ratelimit()) {
3101                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3102                 dump_stack();
3103         }
3104 }
3105 EXPORT_SYMBOL(netdev_rx_csum_fault);
3106 #endif
3107
3108 /* XXX: check that highmem exists at all on the given machine. */
3109 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3110 {
3111 #ifdef CONFIG_HIGHMEM
3112         int i;
3113
3114         if (!(dev->features & NETIF_F_HIGHDMA)) {
3115                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3116                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3117
3118                         if (PageHighMem(skb_frag_page(frag)))
3119                                 return 1;
3120                 }
3121         }
3122 #endif
3123         return 0;
3124 }
3125
3126 /* If MPLS offload request, verify we are testing hardware MPLS features
3127  * instead of standard features for the netdev.
3128  */
3129 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3130 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3131                                            netdev_features_t features,
3132                                            __be16 type)
3133 {
3134         if (eth_p_mpls(type))
3135                 features &= skb->dev->mpls_features;
3136
3137         return features;
3138 }
3139 #else
3140 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3141                                            netdev_features_t features,
3142                                            __be16 type)
3143 {
3144         return features;
3145 }
3146 #endif
3147
3148 static netdev_features_t harmonize_features(struct sk_buff *skb,
3149         netdev_features_t features)
3150 {
3151         int tmp;
3152         __be16 type;
3153
3154         type = skb_network_protocol(skb, &tmp);
3155         features = net_mpls_features(skb, features, type);
3156
3157         if (skb->ip_summed != CHECKSUM_NONE &&
3158             !can_checksum_protocol(features, type)) {
3159                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3160         }
3161         if (illegal_highdma(skb->dev, skb))
3162                 features &= ~NETIF_F_SG;
3163
3164         return features;
3165 }
3166
3167 netdev_features_t passthru_features_check(struct sk_buff *skb,
3168                                           struct net_device *dev,
3169                                           netdev_features_t features)
3170 {
3171         return features;
3172 }
3173 EXPORT_SYMBOL(passthru_features_check);
3174
3175 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3176                                              struct net_device *dev,
3177                                              netdev_features_t features)
3178 {
3179         return vlan_features_check(skb, features);
3180 }
3181
3182 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3183                                             struct net_device *dev,
3184                                             netdev_features_t features)
3185 {
3186         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3187
3188         if (gso_segs > dev->gso_max_segs)
3189                 return features & ~NETIF_F_GSO_MASK;
3190
3191         /* Support for GSO partial features requires software
3192          * intervention before we can actually process the packets
3193          * so we need to strip support for any partial features now
3194          * and we can pull them back in after we have partially
3195          * segmented the frame.
3196          */
3197         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3198                 features &= ~dev->gso_partial_features;
3199
3200         /* Make sure to clear the IPv4 ID mangling feature if the
3201          * IPv4 header has the potential to be fragmented.
3202          */
3203         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3204                 struct iphdr *iph = skb->encapsulation ?
3205                                     inner_ip_hdr(skb) : ip_hdr(skb);
3206
3207                 if (!(iph->frag_off & htons(IP_DF)))
3208                         features &= ~NETIF_F_TSO_MANGLEID;
3209         }
3210
3211         return features;
3212 }
3213
3214 netdev_features_t netif_skb_features(struct sk_buff *skb)
3215 {
3216         struct net_device *dev = skb->dev;
3217         netdev_features_t features = dev->features;
3218
3219         if (skb_is_gso(skb))
3220                 features = gso_features_check(skb, dev, features);
3221
3222         /* If encapsulation offload request, verify we are testing
3223          * hardware encapsulation features instead of standard
3224          * features for the netdev
3225          */
3226         if (skb->encapsulation)
3227                 features &= dev->hw_enc_features;
3228
3229         if (skb_vlan_tagged(skb))
3230                 features = netdev_intersect_features(features,
3231                                                      dev->vlan_features |
3232                                                      NETIF_F_HW_VLAN_CTAG_TX |
3233                                                      NETIF_F_HW_VLAN_STAG_TX);
3234
3235         if (dev->netdev_ops->ndo_features_check)
3236                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3237                                                                 features);
3238         else
3239                 features &= dflt_features_check(skb, dev, features);
3240
3241         return harmonize_features(skb, features);
3242 }
3243 EXPORT_SYMBOL(netif_skb_features);
3244
3245 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3246                     struct netdev_queue *txq, bool more)
3247 {
3248         unsigned int len;
3249         int rc;
3250
3251         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3252                 dev_queue_xmit_nit(skb, dev);
3253
3254         len = skb->len;
3255         trace_net_dev_start_xmit(skb, dev);
3256         rc = netdev_start_xmit(skb, dev, txq, more);
3257         trace_net_dev_xmit(skb, rc, dev, len);
3258
3259         return rc;
3260 }
3261
3262 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3263                                     struct netdev_queue *txq, int *ret)
3264 {
3265         struct sk_buff *skb = first;
3266         int rc = NETDEV_TX_OK;
3267
3268         while (skb) {
3269                 struct sk_buff *next = skb->next;
3270
3271                 skb->next = NULL;
3272                 rc = xmit_one(skb, dev, txq, next != NULL);
3273                 if (unlikely(!dev_xmit_complete(rc))) {
3274                         skb->next = next;
3275                         goto out;
3276                 }
3277
3278                 skb = next;
3279                 if (netif_tx_queue_stopped(txq) && skb) {
3280                         rc = NETDEV_TX_BUSY;
3281                         break;
3282                 }
3283         }
3284
3285 out:
3286         *ret = rc;
3287         return skb;
3288 }
3289
3290 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3291                                           netdev_features_t features)
3292 {
3293         if (skb_vlan_tag_present(skb) &&
3294             !vlan_hw_offload_capable(features, skb->vlan_proto))
3295                 skb = __vlan_hwaccel_push_inside(skb);
3296         return skb;
3297 }
3298
3299 int skb_csum_hwoffload_help(struct sk_buff *skb,
3300                             const netdev_features_t features)
3301 {
3302         if (unlikely(skb->csum_not_inet))
3303                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3304                         skb_crc32c_csum_help(skb);
3305
3306         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3307 }
3308 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3309
3310 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3311 {
3312         netdev_features_t features;
3313
3314         features = netif_skb_features(skb);
3315         skb = validate_xmit_vlan(skb, features);
3316         if (unlikely(!skb))
3317                 goto out_null;
3318
3319         skb = sk_validate_xmit_skb(skb, dev);
3320         if (unlikely(!skb))
3321                 goto out_null;
3322
3323         if (netif_needs_gso(skb, features)) {
3324                 struct sk_buff *segs;
3325
3326                 segs = skb_gso_segment(skb, features);
3327                 if (IS_ERR(segs)) {
3328                         goto out_kfree_skb;
3329                 } else if (segs) {
3330                         consume_skb(skb);
3331                         skb = segs;
3332                 }
3333         } else {
3334                 if (skb_needs_linearize(skb, features) &&
3335                     __skb_linearize(skb))
3336                         goto out_kfree_skb;
3337
3338                 /* If packet is not checksummed and device does not
3339                  * support checksumming for this protocol, complete
3340                  * checksumming here.
3341                  */
3342                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3343                         if (skb->encapsulation)
3344                                 skb_set_inner_transport_header(skb,
3345                                                                skb_checksum_start_offset(skb));
3346                         else
3347                                 skb_set_transport_header(skb,
3348                                                          skb_checksum_start_offset(skb));
3349                         if (skb_csum_hwoffload_help(skb, features))
3350                                 goto out_kfree_skb;
3351                 }
3352         }
3353
3354         skb = validate_xmit_xfrm(skb, features, again);
3355
3356         return skb;
3357
3358 out_kfree_skb:
3359         kfree_skb(skb);
3360 out_null:
3361         atomic_long_inc(&dev->tx_dropped);
3362         return NULL;
3363 }
3364
3365 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3366 {
3367         struct sk_buff *next, *head = NULL, *tail;
3368
3369         for (; skb != NULL; skb = next) {
3370                 next = skb->next;
3371                 skb->next = NULL;
3372
3373                 /* in case skb wont be segmented, point to itself */
3374                 skb->prev = skb;
3375
3376                 skb = validate_xmit_skb(skb, dev, again);
3377                 if (!skb)
3378                         continue;
3379
3380                 if (!head)
3381                         head = skb;
3382                 else
3383                         tail->next = skb;
3384                 /* If skb was segmented, skb->prev points to
3385                  * the last segment. If not, it still contains skb.
3386                  */
3387                 tail = skb->prev;
3388         }
3389         return head;
3390 }
3391 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3392
3393 static void qdisc_pkt_len_init(struct sk_buff *skb)
3394 {
3395         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3396
3397         qdisc_skb_cb(skb)->pkt_len = skb->len;
3398
3399         /* To get more precise estimation of bytes sent on wire,
3400          * we add to pkt_len the headers size of all segments
3401          */
3402         if (shinfo->gso_size)  {
3403                 unsigned int hdr_len;
3404                 u16 gso_segs = shinfo->gso_segs;
3405
3406                 /* mac layer + network layer */
3407                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3408
3409                 /* + transport layer */
3410                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3411                         const struct tcphdr *th;
3412                         struct tcphdr _tcphdr;
3413
3414                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3415                                                 sizeof(_tcphdr), &_tcphdr);
3416                         if (likely(th))
3417                                 hdr_len += __tcp_hdrlen(th);
3418                 } else {
3419                         struct udphdr _udphdr;
3420
3421                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3422                                                sizeof(_udphdr), &_udphdr))
3423                                 hdr_len += sizeof(struct udphdr);
3424                 }
3425
3426                 if (shinfo->gso_type & SKB_GSO_DODGY)
3427                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3428                                                 shinfo->gso_size);
3429
3430                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3431         }
3432 }
3433
3434 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3435                                  struct net_device *dev,
3436                                  struct netdev_queue *txq)
3437 {
3438         spinlock_t *root_lock = qdisc_lock(q);
3439         struct sk_buff *to_free = NULL;
3440         bool contended;
3441         int rc;
3442
3443         qdisc_calculate_pkt_len(skb, q);
3444
3445         if (q->flags & TCQ_F_NOLOCK) {
3446                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3447                         __qdisc_drop(skb, &to_free);
3448                         rc = NET_XMIT_DROP;
3449                 } else {
3450                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3451                         qdisc_run(q);
3452                 }
3453
3454                 if (unlikely(to_free))
3455                         kfree_skb_list(to_free);
3456                 return rc;
3457         }
3458
3459         /*
3460          * Heuristic to force contended enqueues to serialize on a
3461          * separate lock before trying to get qdisc main lock.
3462          * This permits qdisc->running owner to get the lock more
3463          * often and dequeue packets faster.
3464          */
3465         contended = qdisc_is_running(q);
3466         if (unlikely(contended))
3467                 spin_lock(&q->busylock);
3468
3469         spin_lock(root_lock);
3470         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3471                 __qdisc_drop(skb, &to_free);
3472                 rc = NET_XMIT_DROP;
3473         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3474                    qdisc_run_begin(q)) {
3475                 /*
3476                  * This is a work-conserving queue; there are no old skbs
3477                  * waiting to be sent out; and the qdisc is not running -
3478                  * xmit the skb directly.
3479                  */
3480
3481                 qdisc_bstats_update(q, skb);
3482
3483                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3484                         if (unlikely(contended)) {
3485                                 spin_unlock(&q->busylock);
3486                                 contended = false;
3487                         }
3488                         __qdisc_run(q);
3489                 }
3490
3491                 qdisc_run_end(q);
3492                 rc = NET_XMIT_SUCCESS;
3493         } else {
3494                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3495                 if (qdisc_run_begin(q)) {
3496                         if (unlikely(contended)) {
3497                                 spin_unlock(&q->busylock);
3498                                 contended = false;
3499                         }
3500                         __qdisc_run(q);
3501                         qdisc_run_end(q);
3502                 }
3503         }
3504         spin_unlock(root_lock);
3505         if (unlikely(to_free))
3506                 kfree_skb_list(to_free);
3507         if (unlikely(contended))
3508                 spin_unlock(&q->busylock);
3509         return rc;
3510 }
3511
3512 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3513 static void skb_update_prio(struct sk_buff *skb)
3514 {
3515         const struct netprio_map *map;
3516         const struct sock *sk;
3517         unsigned int prioidx;
3518
3519         if (skb->priority)
3520                 return;
3521         map = rcu_dereference_bh(skb->dev->priomap);
3522         if (!map)
3523                 return;
3524         sk = skb_to_full_sk(skb);
3525         if (!sk)
3526                 return;
3527
3528         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3529
3530         if (prioidx < map->priomap_len)
3531                 skb->priority = map->priomap[prioidx];
3532 }
3533 #else
3534 #define skb_update_prio(skb)
3535 #endif
3536
3537 /**
3538  *      dev_loopback_xmit - loop back @skb
3539  *      @net: network namespace this loopback is happening in
3540  *      @sk:  sk needed to be a netfilter okfn
3541  *      @skb: buffer to transmit
3542  */
3543 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3544 {
3545         skb_reset_mac_header(skb);
3546         __skb_pull(skb, skb_network_offset(skb));
3547         skb->pkt_type = PACKET_LOOPBACK;
3548         skb->ip_summed = CHECKSUM_UNNECESSARY;
3549         WARN_ON(!skb_dst(skb));
3550         skb_dst_force(skb);
3551         netif_rx_ni(skb);
3552         return 0;
3553 }
3554 EXPORT_SYMBOL(dev_loopback_xmit);
3555
3556 #ifdef CONFIG_NET_EGRESS
3557 static struct sk_buff *
3558 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3559 {
3560         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3561         struct tcf_result cl_res;
3562
3563         if (!miniq)
3564                 return skb;
3565
3566         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3567         mini_qdisc_bstats_cpu_update(miniq, skb);
3568
3569         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3570         case TC_ACT_OK:
3571         case TC_ACT_RECLASSIFY:
3572                 skb->tc_index = TC_H_MIN(cl_res.classid);
3573                 break;
3574         case TC_ACT_SHOT:
3575                 mini_qdisc_qstats_cpu_drop(miniq);
3576                 *ret = NET_XMIT_DROP;
3577                 kfree_skb(skb);
3578                 return NULL;
3579         case TC_ACT_STOLEN:
3580         case TC_ACT_QUEUED:
3581         case TC_ACT_TRAP:
3582                 *ret = NET_XMIT_SUCCESS;
3583                 consume_skb(skb);
3584                 return NULL;
3585         case TC_ACT_REDIRECT:
3586                 /* No need to push/pop skb's mac_header here on egress! */
3587                 skb_do_redirect(skb);
3588                 *ret = NET_XMIT_SUCCESS;
3589                 return NULL;
3590         default:
3591                 break;
3592         }
3593
3594         return skb;
3595 }
3596 #endif /* CONFIG_NET_EGRESS */
3597
3598 #ifdef CONFIG_XPS
3599 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3600                                struct xps_dev_maps *dev_maps, unsigned int tci)
3601 {
3602         struct xps_map *map;
3603         int queue_index = -1;
3604
3605         if (dev->num_tc) {
3606                 tci *= dev->num_tc;
3607                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3608         }
3609
3610         map = rcu_dereference(dev_maps->attr_map[tci]);
3611         if (map) {
3612                 if (map->len == 1)
3613                         queue_index = map->queues[0];
3614                 else
3615                         queue_index = map->queues[reciprocal_scale(
3616                                                 skb_get_hash(skb), map->len)];
3617                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3618                         queue_index = -1;
3619         }
3620         return queue_index;
3621 }
3622 #endif
3623
3624 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3625                          struct sk_buff *skb)
3626 {
3627 #ifdef CONFIG_XPS
3628         struct xps_dev_maps *dev_maps;
3629         struct sock *sk = skb->sk;
3630         int queue_index = -1;
3631
3632         if (!static_key_false(&xps_needed))
3633                 return -1;
3634
3635         rcu_read_lock();
3636         if (!static_key_false(&xps_rxqs_needed))
3637                 goto get_cpus_map;
3638
3639         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3640         if (dev_maps) {
3641                 int tci = sk_rx_queue_get(sk);
3642
3643                 if (tci >= 0 && tci < dev->num_rx_queues)
3644                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3645                                                           tci);
3646         }
3647
3648 get_cpus_map:
3649         if (queue_index < 0) {
3650                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3651                 if (dev_maps) {
3652                         unsigned int tci = skb->sender_cpu - 1;
3653
3654                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3655                                                           tci);
3656                 }
3657         }
3658         rcu_read_unlock();
3659
3660         return queue_index;
3661 #else
3662         return -1;
3663 #endif
3664 }
3665
3666 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3667                      struct net_device *sb_dev,
3668                      select_queue_fallback_t fallback)
3669 {
3670         return 0;
3671 }
3672 EXPORT_SYMBOL(dev_pick_tx_zero);
3673
3674 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3675                        struct net_device *sb_dev,
3676                        select_queue_fallback_t fallback)
3677 {
3678         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3679 }
3680 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3681
3682 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3683                             struct net_device *sb_dev)
3684 {
3685         struct sock *sk = skb->sk;
3686         int queue_index = sk_tx_queue_get(sk);
3687
3688         sb_dev = sb_dev ? : dev;
3689
3690         if (queue_index < 0 || skb->ooo_okay ||
3691             queue_index >= dev->real_num_tx_queues) {
3692                 int new_index = get_xps_queue(dev, sb_dev, skb);
3693
3694                 if (new_index < 0)
3695                         new_index = skb_tx_hash(dev, sb_dev, skb);
3696
3697                 if (queue_index != new_index && sk &&
3698                     sk_fullsock(sk) &&
3699                     rcu_access_pointer(sk->sk_dst_cache))
3700                         sk_tx_queue_set(sk, new_index);
3701
3702                 queue_index = new_index;
3703         }
3704
3705         return queue_index;
3706 }
3707
3708 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3709                                     struct sk_buff *skb,
3710                                     struct net_device *sb_dev)
3711 {
3712         int queue_index = 0;
3713
3714 #ifdef CONFIG_XPS
3715         u32 sender_cpu = skb->sender_cpu - 1;
3716
3717         if (sender_cpu >= (u32)NR_CPUS)
3718                 skb->sender_cpu = raw_smp_processor_id() + 1;
3719 #endif
3720
3721         if (dev->real_num_tx_queues != 1) {
3722                 const struct net_device_ops *ops = dev->netdev_ops;
3723
3724                 if (ops->ndo_select_queue)
3725                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3726                                                             __netdev_pick_tx);
3727                 else
3728                         queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3729
3730                 queue_index = netdev_cap_txqueue(dev, queue_index);
3731         }
3732
3733         skb_set_queue_mapping(skb, queue_index);
3734         return netdev_get_tx_queue(dev, queue_index);
3735 }
3736
3737 /**
3738  *      __dev_queue_xmit - transmit a buffer
3739  *      @skb: buffer to transmit
3740  *      @sb_dev: suboordinate device used for L2 forwarding offload
3741  *
3742  *      Queue a buffer for transmission to a network device. The caller must
3743  *      have set the device and priority and built the buffer before calling
3744  *      this function. The function can be called from an interrupt.
3745  *
3746  *      A negative errno code is returned on a failure. A success does not
3747  *      guarantee the frame will be transmitted as it may be dropped due
3748  *      to congestion or traffic shaping.
3749  *
3750  * -----------------------------------------------------------------------------------
3751  *      I notice this method can also return errors from the queue disciplines,
3752  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3753  *      be positive.
3754  *
3755  *      Regardless of the return value, the skb is consumed, so it is currently
3756  *      difficult to retry a send to this method.  (You can bump the ref count
3757  *      before sending to hold a reference for retry if you are careful.)
3758  *
3759  *      When calling this method, interrupts MUST be enabled.  This is because
3760  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3761  *          --BLG
3762  */
3763 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3764 {
3765         struct net_device *dev = skb->dev;
3766         struct netdev_queue *txq;
3767         struct Qdisc *q;
3768         int rc = -ENOMEM;
3769         bool again = false;
3770
3771         skb_reset_mac_header(skb);
3772
3773         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3774                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3775
3776         /* Disable soft irqs for various locks below. Also
3777          * stops preemption for RCU.
3778          */
3779         rcu_read_lock_bh();
3780
3781         skb_update_prio(skb);
3782
3783         qdisc_pkt_len_init(skb);
3784 #ifdef CONFIG_NET_CLS_ACT
3785         skb->tc_at_ingress = 0;
3786 # ifdef CONFIG_NET_EGRESS
3787         if (static_branch_unlikely(&egress_needed_key)) {
3788                 skb = sch_handle_egress(skb, &rc, dev);
3789                 if (!skb)
3790                         goto out;
3791         }
3792 # endif
3793 #endif
3794         /* If device/qdisc don't need skb->dst, release it right now while
3795          * its hot in this cpu cache.
3796          */
3797         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3798                 skb_dst_drop(skb);
3799         else
3800                 skb_dst_force(skb);
3801
3802         txq = netdev_pick_tx(dev, skb, sb_dev);
3803         q = rcu_dereference_bh(txq->qdisc);
3804
3805         trace_net_dev_queue(skb);
3806         if (q->enqueue) {
3807                 rc = __dev_xmit_skb(skb, q, dev, txq);
3808                 goto out;
3809         }
3810
3811         /* The device has no queue. Common case for software devices:
3812          * loopback, all the sorts of tunnels...
3813
3814          * Really, it is unlikely that netif_tx_lock protection is necessary
3815          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3816          * counters.)
3817          * However, it is possible, that they rely on protection
3818          * made by us here.
3819
3820          * Check this and shot the lock. It is not prone from deadlocks.
3821          *Either shot noqueue qdisc, it is even simpler 8)
3822          */
3823         if (dev->flags & IFF_UP) {
3824                 int cpu = smp_processor_id(); /* ok because BHs are off */
3825
3826                 if (txq->xmit_lock_owner != cpu) {
3827                         if (dev_xmit_recursion())
3828                                 goto recursion_alert;
3829
3830                         skb = validate_xmit_skb(skb, dev, &again);
3831                         if (!skb)
3832                                 goto out;
3833
3834                         HARD_TX_LOCK(dev, txq, cpu);
3835
3836                         if (!netif_xmit_stopped(txq)) {
3837                                 dev_xmit_recursion_inc();
3838                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3839                                 dev_xmit_recursion_dec();
3840                                 if (dev_xmit_complete(rc)) {
3841                                         HARD_TX_UNLOCK(dev, txq);
3842                                         goto out;
3843                                 }
3844                         }
3845                         HARD_TX_UNLOCK(dev, txq);
3846                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3847                                              dev->name);
3848                 } else {
3849                         /* Recursion is detected! It is possible,
3850                          * unfortunately
3851                          */
3852 recursion_alert:
3853                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3854                                              dev->name);
3855                 }
3856         }
3857
3858         rc = -ENETDOWN;
3859         rcu_read_unlock_bh();
3860
3861         atomic_long_inc(&dev->tx_dropped);
3862         kfree_skb_list(skb);
3863         return rc;
3864 out:
3865         rcu_read_unlock_bh();
3866         return rc;
3867 }
3868
3869 int dev_queue_xmit(struct sk_buff *skb)
3870 {
3871         return __dev_queue_xmit(skb, NULL);
3872 }
3873 EXPORT_SYMBOL(dev_queue_xmit);
3874
3875 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3876 {
3877         return __dev_queue_xmit(skb, sb_dev);
3878 }
3879 EXPORT_SYMBOL(dev_queue_xmit_accel);
3880
3881 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3882 {
3883         struct net_device *dev = skb->dev;
3884         struct sk_buff *orig_skb = skb;
3885         struct netdev_queue *txq;
3886         int ret = NETDEV_TX_BUSY;
3887         bool again = false;
3888
3889         if (unlikely(!netif_running(dev) ||
3890                      !netif_carrier_ok(dev)))
3891                 goto drop;
3892
3893         skb = validate_xmit_skb_list(skb, dev, &again);
3894         if (skb != orig_skb)
3895                 goto drop;
3896
3897         skb_set_queue_mapping(skb, queue_id);
3898         txq = skb_get_tx_queue(dev, skb);
3899
3900         local_bh_disable();
3901
3902         dev_xmit_recursion_inc();
3903         HARD_TX_LOCK(dev, txq, smp_processor_id());
3904         if (!netif_xmit_frozen_or_drv_stopped(txq))
3905                 ret = netdev_start_xmit(skb, dev, txq, false);
3906         HARD_TX_UNLOCK(dev, txq);
3907         dev_xmit_recursion_dec();
3908
3909         local_bh_enable();
3910
3911         if (!dev_xmit_complete(ret))
3912                 kfree_skb(skb);
3913
3914         return ret;
3915 drop:
3916         atomic_long_inc(&dev->tx_dropped);
3917         kfree_skb_list(skb);
3918         return NET_XMIT_DROP;
3919 }
3920 EXPORT_SYMBOL(dev_direct_xmit);
3921
3922 /*************************************************************************
3923  *                      Receiver routines
3924  *************************************************************************/
3925
3926 int netdev_max_backlog __read_mostly = 1000;
3927 EXPORT_SYMBOL(netdev_max_backlog);
3928
3929 int netdev_tstamp_prequeue __read_mostly = 1;
3930 int netdev_budget __read_mostly = 300;
3931 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3932 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3933 int weight_p __read_mostly = 64;           /* old backlog weight */
3934 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3935 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3936 int dev_rx_weight __read_mostly = 64;
3937 int dev_tx_weight __read_mostly = 64;
3938
3939 /* Called with irq disabled */
3940 static inline void ____napi_schedule(struct softnet_data *sd,
3941                                      struct napi_struct *napi)
3942 {
3943         list_add_tail(&napi->poll_list, &sd->poll_list);
3944         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3945 }
3946
3947 #ifdef CONFIG_RPS
3948
3949 /* One global table that all flow-based protocols share. */
3950 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3951 EXPORT_SYMBOL(rps_sock_flow_table);
3952 u32 rps_cpu_mask __read_mostly;
3953 EXPORT_SYMBOL(rps_cpu_mask);
3954
3955 struct static_key rps_needed __read_mostly;
3956 EXPORT_SYMBOL(rps_needed);
3957 struct static_key rfs_needed __read_mostly;
3958 EXPORT_SYMBOL(rfs_needed);
3959
3960 static struct rps_dev_flow *
3961 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3962             struct rps_dev_flow *rflow, u16 next_cpu)
3963 {
3964         if (next_cpu < nr_cpu_ids) {
3965 #ifdef CONFIG_RFS_ACCEL
3966                 struct netdev_rx_queue *rxqueue;
3967                 struct rps_dev_flow_table *flow_table;
3968                 struct rps_dev_flow *old_rflow;
3969                 u32 flow_id;
3970                 u16 rxq_index;
3971                 int rc;
3972
3973                 /* Should we steer this flow to a different hardware queue? */
3974                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3975                     !(dev->features & NETIF_F_NTUPLE))
3976                         goto out;
3977                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3978                 if (rxq_index == skb_get_rx_queue(skb))
3979                         goto out;
3980
3981                 rxqueue = dev->_rx + rxq_index;
3982                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3983                 if (!flow_table)
3984                         goto out;
3985                 flow_id = skb_get_hash(skb) & flow_table->mask;
3986                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3987                                                         rxq_index, flow_id);
3988                 if (rc < 0)
3989                         goto out;
3990                 old_rflow = rflow;
3991                 rflow = &flow_table->flows[flow_id];
3992                 rflow->filter = rc;
3993                 if (old_rflow->filter == rflow->filter)
3994                         old_rflow->filter = RPS_NO_FILTER;
3995         out:
3996 #endif
3997                 rflow->last_qtail =
3998                         per_cpu(softnet_data, next_cpu).input_queue_head;
3999         }
4000
4001         rflow->cpu = next_cpu;
4002         return rflow;
4003 }
4004
4005 /*
4006  * get_rps_cpu is called from netif_receive_skb and returns the target
4007  * CPU from the RPS map of the receiving queue for a given skb.
4008  * rcu_read_lock must be held on entry.
4009  */
4010 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4011                        struct rps_dev_flow **rflowp)
4012 {
4013         const struct rps_sock_flow_table *sock_flow_table;
4014         struct netdev_rx_queue *rxqueue = dev->_rx;
4015         struct rps_dev_flow_table *flow_table;
4016         struct rps_map *map;
4017         int cpu = -1;
4018         u32 tcpu;
4019         u32 hash;
4020
4021         if (skb_rx_queue_recorded(skb)) {
4022                 u16 index = skb_get_rx_queue(skb);
4023
4024                 if (unlikely(index >= dev->real_num_rx_queues)) {
4025                         WARN_ONCE(dev->real_num_rx_queues > 1,
4026                                   "%s received packet on queue %u, but number "
4027                                   "of RX queues is %u\n",
4028                                   dev->name, index, dev->real_num_rx_queues);
4029                         goto done;
4030                 }
4031                 rxqueue += index;
4032         }
4033
4034         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4035
4036         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4037         map = rcu_dereference(rxqueue->rps_map);
4038         if (!flow_table && !map)
4039                 goto done;
4040
4041         skb_reset_network_header(skb);
4042         hash = skb_get_hash(skb);
4043         if (!hash)
4044                 goto done;
4045
4046         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4047         if (flow_table && sock_flow_table) {
4048                 struct rps_dev_flow *rflow;
4049                 u32 next_cpu;
4050                 u32 ident;
4051
4052                 /* First check into global flow table if there is a match */
4053                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4054                 if ((ident ^ hash) & ~rps_cpu_mask)
4055                         goto try_rps;
4056
4057                 next_cpu = ident & rps_cpu_mask;
4058
4059                 /* OK, now we know there is a match,
4060                  * we can look at the local (per receive queue) flow table
4061                  */
4062                 rflow = &flow_table->flows[hash & flow_table->mask];
4063                 tcpu = rflow->cpu;
4064
4065                 /*
4066                  * If the desired CPU (where last recvmsg was done) is
4067                  * different from current CPU (one in the rx-queue flow
4068                  * table entry), switch if one of the following holds:
4069                  *   - Current CPU is unset (>= nr_cpu_ids).
4070                  *   - Current CPU is offline.
4071                  *   - The current CPU's queue tail has advanced beyond the
4072                  *     last packet that was enqueued using this table entry.
4073                  *     This guarantees that all previous packets for the flow
4074                  *     have been dequeued, thus preserving in order delivery.
4075                  */
4076                 if (unlikely(tcpu != next_cpu) &&
4077                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4078                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4079                       rflow->last_qtail)) >= 0)) {
4080                         tcpu = next_cpu;
4081                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4082                 }
4083
4084                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4085                         *rflowp = rflow;
4086                         cpu = tcpu;
4087                         goto done;
4088                 }
4089         }
4090
4091 try_rps:
4092
4093         if (map) {
4094                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4095                 if (cpu_online(tcpu)) {
4096                         cpu = tcpu;
4097                         goto done;
4098                 }
4099         }
4100
4101 done:
4102         return cpu;
4103 }
4104
4105 #ifdef CONFIG_RFS_ACCEL
4106
4107 /**
4108  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4109  * @dev: Device on which the filter was set
4110  * @rxq_index: RX queue index
4111  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4112  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4113  *
4114  * Drivers that implement ndo_rx_flow_steer() should periodically call
4115  * this function for each installed filter and remove the filters for
4116  * which it returns %true.
4117  */
4118 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4119                          u32 flow_id, u16 filter_id)
4120 {
4121         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4122         struct rps_dev_flow_table *flow_table;
4123         struct rps_dev_flow *rflow;
4124         bool expire = true;
4125         unsigned int cpu;
4126
4127         rcu_read_lock();
4128         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4129         if (flow_table && flow_id <= flow_table->mask) {
4130                 rflow = &flow_table->flows[flow_id];
4131                 cpu = READ_ONCE(rflow->cpu);
4132                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4133                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4134                            rflow->last_qtail) <
4135                      (int)(10 * flow_table->mask)))
4136                         expire = false;
4137         }
4138         rcu_read_unlock();
4139         return expire;
4140 }
4141 EXPORT_SYMBOL(rps_may_expire_flow);
4142
4143 #endif /* CONFIG_RFS_ACCEL */
4144
4145 /* Called from hardirq (IPI) context */
4146 static void rps_trigger_softirq(void *data)
4147 {
4148         struct softnet_data *sd = data;
4149
4150         ____napi_schedule(sd, &sd->backlog);
4151         sd->received_rps++;
4152 }
4153
4154 #endif /* CONFIG_RPS */
4155
4156 /*
4157  * Check if this softnet_data structure is another cpu one
4158  * If yes, queue it to our IPI list and return 1
4159  * If no, return 0
4160  */
4161 static int rps_ipi_queued(struct softnet_data *sd)
4162 {
4163 #ifdef CONFIG_RPS
4164         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4165
4166         if (sd != mysd) {
4167                 sd->rps_ipi_next = mysd->rps_ipi_list;
4168                 mysd->rps_ipi_list = sd;
4169
4170                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4171                 return 1;
4172         }
4173 #endif /* CONFIG_RPS */
4174         return 0;
4175 }
4176
4177 #ifdef CONFIG_NET_FLOW_LIMIT
4178 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4179 #endif
4180
4181 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4182 {
4183 #ifdef CONFIG_NET_FLOW_LIMIT
4184         struct sd_flow_limit *fl;
4185         struct softnet_data *sd;
4186         unsigned int old_flow, new_flow;
4187
4188         if (qlen < (netdev_max_backlog >> 1))
4189                 return false;
4190
4191         sd = this_cpu_ptr(&softnet_data);
4192
4193         rcu_read_lock();
4194         fl = rcu_dereference(sd->flow_limit);
4195         if (fl) {
4196                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4197                 old_flow = fl->history[fl->history_head];
4198                 fl->history[fl->history_head] = new_flow;
4199
4200                 fl->history_head++;
4201                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4202
4203                 if (likely(fl->buckets[old_flow]))
4204                         fl->buckets[old_flow]--;
4205
4206                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4207                         fl->count++;
4208                         rcu_read_unlock();
4209                         return true;
4210                 }
4211         }
4212         rcu_read_unlock();
4213 #endif
4214         return false;
4215 }
4216
4217 /*
4218  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4219  * queue (may be a remote CPU queue).
4220  */
4221 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4222                               unsigned int *qtail)
4223 {
4224         struct softnet_data *sd;
4225         unsigned long flags;
4226         unsigned int qlen;
4227
4228         sd = &per_cpu(softnet_data, cpu);
4229
4230         local_irq_save(flags);
4231
4232         rps_lock(sd);
4233         if (!netif_running(skb->dev))
4234                 goto drop;
4235         qlen = skb_queue_len(&sd->input_pkt_queue);
4236         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4237                 if (qlen) {
4238 enqueue:
4239                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4240                         input_queue_tail_incr_save(sd, qtail);
4241                         rps_unlock(sd);
4242                         local_irq_restore(flags);
4243                         return NET_RX_SUCCESS;
4244                 }
4245
4246                 /* Schedule NAPI for backlog device
4247                  * We can use non atomic operation since we own the queue lock
4248                  */
4249                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4250                         if (!rps_ipi_queued(sd))
4251                                 ____napi_schedule(sd, &sd->backlog);
4252                 }
4253                 goto enqueue;
4254         }
4255
4256 drop:
4257         sd->dropped++;
4258         rps_unlock(sd);
4259
4260         local_irq_restore(flags);
4261
4262         atomic_long_inc(&skb->dev->rx_dropped);
4263         kfree_skb(skb);
4264         return NET_RX_DROP;
4265 }
4266
4267 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4268 {
4269         struct net_device *dev = skb->dev;
4270         struct netdev_rx_queue *rxqueue;
4271
4272         rxqueue = dev->_rx;
4273
4274         if (skb_rx_queue_recorded(skb)) {
4275                 u16 index = skb_get_rx_queue(skb);
4276
4277                 if (unlikely(index >= dev->real_num_rx_queues)) {
4278                         WARN_ONCE(dev->real_num_rx_queues > 1,
4279                                   "%s received packet on queue %u, but number "
4280                                   "of RX queues is %u\n",
4281                                   dev->name, index, dev->real_num_rx_queues);
4282
4283                         return rxqueue; /* Return first rxqueue */
4284                 }
4285                 rxqueue += index;
4286         }
4287         return rxqueue;
4288 }
4289
4290 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4291                                      struct xdp_buff *xdp,
4292                                      struct bpf_prog *xdp_prog)
4293 {
4294         struct netdev_rx_queue *rxqueue;
4295         void *orig_data, *orig_data_end;
4296         u32 metalen, act = XDP_DROP;
4297         __be16 orig_eth_type;
4298         struct ethhdr *eth;
4299         bool orig_bcast;
4300         int hlen, off;
4301         u32 mac_len;
4302
4303         /* Reinjected packets coming from act_mirred or similar should
4304          * not get XDP generic processing.
4305          */
4306         if (skb_is_tc_redirected(skb))
4307                 return XDP_PASS;
4308
4309         /* XDP packets must be linear and must have sufficient headroom
4310          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4311          * native XDP provides, thus we need to do it here as well.
4312          */
4313         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4314             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4315                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4316                 int troom = skb->tail + skb->data_len - skb->end;
4317
4318                 /* In case we have to go down the path and also linearize,
4319                  * then lets do the pskb_expand_head() work just once here.
4320                  */
4321                 if (pskb_expand_head(skb,
4322                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4323                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4324                         goto do_drop;
4325                 if (skb_linearize(skb))
4326                         goto do_drop;
4327         }
4328
4329         /* The XDP program wants to see the packet starting at the MAC
4330          * header.
4331          */
4332         mac_len = skb->data - skb_mac_header(skb);
4333         hlen = skb_headlen(skb) + mac_len;
4334         xdp->data = skb->data - mac_len;
4335         xdp->data_meta = xdp->data;
4336         xdp->data_end = xdp->data + hlen;
4337         xdp->data_hard_start = skb->data - skb_headroom(skb);
4338         orig_data_end = xdp->data_end;
4339         orig_data = xdp->data;
4340         eth = (struct ethhdr *)xdp->data;
4341         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4342         orig_eth_type = eth->h_proto;
4343
4344         rxqueue = netif_get_rxqueue(skb);
4345         xdp->rxq = &rxqueue->xdp_rxq;
4346
4347         act = bpf_prog_run_xdp(xdp_prog, xdp);
4348
4349         /* check if bpf_xdp_adjust_head was used */
4350         off = xdp->data - orig_data;
4351         if (off) {
4352                 if (off > 0)
4353                         __skb_pull(skb, off);
4354                 else if (off < 0)
4355                         __skb_push(skb, -off);
4356
4357                 skb->mac_header += off;
4358                 skb_reset_network_header(skb);
4359         }
4360
4361         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4362          * pckt.
4363          */
4364         off = orig_data_end - xdp->data_end;
4365         if (off != 0) {
4366                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4367                 skb->len -= off;
4368
4369         }
4370
4371         /* check if XDP changed eth hdr such SKB needs update */
4372         eth = (struct ethhdr *)xdp->data;
4373         if ((orig_eth_type != eth->h_proto) ||
4374             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4375                 __skb_push(skb, ETH_HLEN);
4376                 skb->protocol = eth_type_trans(skb, skb->dev);
4377         }
4378
4379         switch (act) {
4380         case XDP_REDIRECT:
4381         case XDP_TX:
4382                 __skb_push(skb, mac_len);
4383                 break;
4384         case XDP_PASS:
4385                 metalen = xdp->data - xdp->data_meta;
4386                 if (metalen)
4387                         skb_metadata_set(skb, metalen);
4388                 break;
4389         default:
4390                 bpf_warn_invalid_xdp_action(act);
4391                 /* fall through */
4392         case XDP_ABORTED:
4393                 trace_xdp_exception(skb->dev, xdp_prog, act);
4394                 /* fall through */
4395         case XDP_DROP:
4396         do_drop:
4397                 kfree_skb(skb);
4398                 break;
4399         }
4400
4401         return act;
4402 }
4403
4404 /* When doing generic XDP we have to bypass the qdisc layer and the
4405  * network taps in order to match in-driver-XDP behavior.
4406  */
4407 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4408 {
4409         struct net_device *dev = skb->dev;
4410         struct netdev_queue *txq;
4411         bool free_skb = true;
4412         int cpu, rc;
4413
4414         txq = netdev_pick_tx(dev, skb, NULL);
4415         cpu = smp_processor_id();
4416         HARD_TX_LOCK(dev, txq, cpu);
4417         if (!netif_xmit_stopped(txq)) {
4418                 rc = netdev_start_xmit(skb, dev, txq, 0);
4419                 if (dev_xmit_complete(rc))
4420                         free_skb = false;
4421         }
4422         HARD_TX_UNLOCK(dev, txq);
4423         if (free_skb) {
4424                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4425                 kfree_skb(skb);
4426         }
4427 }
4428 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4429
4430 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4431
4432 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4433 {
4434         if (xdp_prog) {
4435                 struct xdp_buff xdp;
4436                 u32 act;
4437                 int err;
4438
4439                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4440                 if (act != XDP_PASS) {
4441                         switch (act) {
4442                         case XDP_REDIRECT:
4443                                 err = xdp_do_generic_redirect(skb->dev, skb,
4444                                                               &xdp, xdp_prog);
4445                                 if (err)
4446                                         goto out_redir;
4447                                 break;
4448                         case XDP_TX:
4449                                 generic_xdp_tx(skb, xdp_prog);
4450                                 break;
4451                         }
4452                         return XDP_DROP;
4453                 }
4454         }
4455         return XDP_PASS;
4456 out_redir:
4457         kfree_skb(skb);
4458         return XDP_DROP;
4459 }
4460 EXPORT_SYMBOL_GPL(do_xdp_generic);
4461
4462 static int netif_rx_internal(struct sk_buff *skb)
4463 {
4464         int ret;
4465
4466         net_timestamp_check(netdev_tstamp_prequeue, skb);
4467
4468         trace_netif_rx(skb);
4469
4470 #ifdef CONFIG_RPS
4471         if (static_key_false(&rps_needed)) {
4472                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4473                 int cpu;
4474
4475                 preempt_disable();
4476                 rcu_read_lock();
4477
4478                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4479                 if (cpu < 0)
4480                         cpu = smp_processor_id();
4481
4482                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4483
4484                 rcu_read_unlock();
4485                 preempt_enable();
4486         } else
4487 #endif
4488         {
4489                 unsigned int qtail;
4490
4491                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4492                 put_cpu();
4493         }
4494         return ret;
4495 }
4496
4497 /**
4498  *      netif_rx        -       post buffer to the network code
4499  *      @skb: buffer to post
4500  *
4501  *      This function receives a packet from a device driver and queues it for
4502  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4503  *      may be dropped during processing for congestion control or by the
4504  *      protocol layers.
4505  *
4506  *      return values:
4507  *      NET_RX_SUCCESS  (no congestion)
4508  *      NET_RX_DROP     (packet was dropped)
4509  *
4510  */
4511
4512 int netif_rx(struct sk_buff *skb)
4513 {
4514         trace_netif_rx_entry(skb);
4515
4516         return netif_rx_internal(skb);
4517 }
4518 EXPORT_SYMBOL(netif_rx);
4519
4520 int netif_rx_ni(struct sk_buff *skb)
4521 {
4522         int err;
4523
4524         trace_netif_rx_ni_entry(skb);
4525
4526         preempt_disable();
4527         err = netif_rx_internal(skb);
4528         if (local_softirq_pending())
4529                 do_softirq();
4530         preempt_enable();
4531
4532         return err;
4533 }
4534 EXPORT_SYMBOL(netif_rx_ni);
4535
4536 static __latent_entropy void net_tx_action(struct softirq_action *h)
4537 {
4538         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4539
4540         if (sd->completion_queue) {
4541                 struct sk_buff *clist;
4542
4543                 local_irq_disable();
4544                 clist = sd->completion_queue;
4545                 sd->completion_queue = NULL;
4546                 local_irq_enable();
4547
4548                 while (clist) {
4549                         struct sk_buff *skb = clist;
4550
4551                         clist = clist->next;
4552
4553                         WARN_ON(refcount_read(&skb->users));
4554                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4555                                 trace_consume_skb(skb);
4556                         else
4557                                 trace_kfree_skb(skb, net_tx_action);
4558
4559                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4560                                 __kfree_skb(skb);
4561                         else
4562                                 __kfree_skb_defer(skb);
4563                 }
4564
4565                 __kfree_skb_flush();
4566         }
4567
4568         if (sd->output_queue) {
4569                 struct Qdisc *head;
4570
4571                 local_irq_disable();
4572                 head = sd->output_queue;
4573                 sd->output_queue = NULL;
4574                 sd->output_queue_tailp = &sd->output_queue;
4575                 local_irq_enable();
4576
4577                 while (head) {
4578                         struct Qdisc *q = head;
4579                         spinlock_t *root_lock = NULL;
4580
4581                         head = head->next_sched;
4582
4583                         if (!(q->flags & TCQ_F_NOLOCK)) {
4584                                 root_lock = qdisc_lock(q);
4585                                 spin_lock(root_lock);
4586                         }
4587                         /* We need to make sure head->next_sched is read
4588                          * before clearing __QDISC_STATE_SCHED
4589                          */
4590                         smp_mb__before_atomic();
4591                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4592                         qdisc_run(q);
4593                         if (root_lock)
4594                                 spin_unlock(root_lock);
4595                 }
4596         }
4597
4598         xfrm_dev_backlog(sd);
4599 }
4600
4601 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4602 /* This hook is defined here for ATM LANE */
4603 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4604                              unsigned char *addr) __read_mostly;
4605 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4606 #endif
4607
4608 static inline struct sk_buff *
4609 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4610                    struct net_device *orig_dev)
4611 {
4612 #ifdef CONFIG_NET_CLS_ACT
4613         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4614         struct tcf_result cl_res;
4615
4616         /* If there's at least one ingress present somewhere (so
4617          * we get here via enabled static key), remaining devices
4618          * that are not configured with an ingress qdisc will bail
4619          * out here.
4620          */
4621         if (!miniq)
4622                 return skb;
4623
4624         if (*pt_prev) {
4625                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4626                 *pt_prev = NULL;
4627         }
4628
4629         qdisc_skb_cb(skb)->pkt_len = skb->len;
4630         skb->tc_at_ingress = 1;
4631         mini_qdisc_bstats_cpu_update(miniq, skb);
4632
4633         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4634         case TC_ACT_OK:
4635         case TC_ACT_RECLASSIFY:
4636                 skb->tc_index = TC_H_MIN(cl_res.classid);
4637                 break;
4638         case TC_ACT_SHOT:
4639                 mini_qdisc_qstats_cpu_drop(miniq);
4640                 kfree_skb(skb);
4641                 return NULL;
4642         case TC_ACT_STOLEN:
4643         case TC_ACT_QUEUED:
4644         case TC_ACT_TRAP:
4645                 consume_skb(skb);
4646                 return NULL;
4647         case TC_ACT_REDIRECT:
4648                 /* skb_mac_header check was done by cls/act_bpf, so
4649                  * we can safely push the L2 header back before
4650                  * redirecting to another netdev
4651                  */
4652                 __skb_push(skb, skb->mac_len);
4653                 skb_do_redirect(skb);
4654                 return NULL;
4655         case TC_ACT_REINSERT:
4656                 /* this does not scrub the packet, and updates stats on error */
4657                 skb_tc_reinsert(skb, &cl_res);
4658                 return NULL;
4659         default:
4660                 break;
4661         }
4662 #endif /* CONFIG_NET_CLS_ACT */
4663         return skb;
4664 }
4665
4666 /**
4667  *      netdev_is_rx_handler_busy - check if receive handler is registered
4668  *      @dev: device to check
4669  *
4670  *      Check if a receive handler is already registered for a given device.
4671  *      Return true if there one.
4672  *
4673  *      The caller must hold the rtnl_mutex.
4674  */
4675 bool netdev_is_rx_handler_busy(struct net_device *dev)
4676 {
4677         ASSERT_RTNL();
4678         return dev && rtnl_dereference(dev->rx_handler);
4679 }
4680 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4681
4682 /**
4683  *      netdev_rx_handler_register - register receive handler
4684  *      @dev: device to register a handler for
4685  *      @rx_handler: receive handler to register
4686  *      @rx_handler_data: data pointer that is used by rx handler
4687  *
4688  *      Register a receive handler for a device. This handler will then be
4689  *      called from __netif_receive_skb. A negative errno code is returned
4690  *      on a failure.
4691  *
4692  *      The caller must hold the rtnl_mutex.
4693  *
4694  *      For a general description of rx_handler, see enum rx_handler_result.
4695  */
4696 int netdev_rx_handler_register(struct net_device *dev,
4697                                rx_handler_func_t *rx_handler,
4698                                void *rx_handler_data)
4699 {
4700         if (netdev_is_rx_handler_busy(dev))
4701                 return -EBUSY;
4702
4703         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4704                 return -EINVAL;
4705
4706         /* Note: rx_handler_data must be set before rx_handler */
4707         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4708         rcu_assign_pointer(dev->rx_handler, rx_handler);
4709
4710         return 0;
4711 }
4712 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4713
4714 /**
4715  *      netdev_rx_handler_unregister - unregister receive handler
4716  *      @dev: device to unregister a handler from
4717  *
4718  *      Unregister a receive handler from a device.
4719  *
4720  *      The caller must hold the rtnl_mutex.
4721  */
4722 void netdev_rx_handler_unregister(struct net_device *dev)
4723 {
4724
4725         ASSERT_RTNL();
4726         RCU_INIT_POINTER(dev->rx_handler, NULL);
4727         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4728          * section has a guarantee to see a non NULL rx_handler_data
4729          * as well.
4730          */
4731         synchronize_net();
4732         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4733 }
4734 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4735
4736 /*
4737  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4738  * the special handling of PFMEMALLOC skbs.
4739  */
4740 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4741 {
4742         switch (skb->protocol) {
4743         case htons(ETH_P_ARP):
4744         case htons(ETH_P_IP):
4745         case htons(ETH_P_IPV6):
4746         case htons(ETH_P_8021Q):
4747         case htons(ETH_P_8021AD):
4748                 return true;
4749         default:
4750                 return false;
4751         }
4752 }
4753
4754 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4755                              int *ret, struct net_device *orig_dev)
4756 {
4757 #ifdef CONFIG_NETFILTER_INGRESS
4758         if (nf_hook_ingress_active(skb)) {
4759                 int ingress_retval;
4760
4761                 if (*pt_prev) {
4762                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4763                         *pt_prev = NULL;
4764                 }
4765
4766                 rcu_read_lock();
4767                 ingress_retval = nf_hook_ingress(skb);
4768                 rcu_read_unlock();
4769                 return ingress_retval;
4770         }
4771 #endif /* CONFIG_NETFILTER_INGRESS */
4772         return 0;
4773 }
4774
4775 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4776                                     struct packet_type **ppt_prev)
4777 {
4778         struct packet_type *ptype, *pt_prev;
4779         rx_handler_func_t *rx_handler;
4780         struct sk_buff *skb = *pskb;
4781         struct net_device *orig_dev;
4782         bool deliver_exact = false;
4783         int ret = NET_RX_DROP;
4784         __be16 type;
4785
4786         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4787
4788         trace_netif_receive_skb(skb);
4789
4790         orig_dev = skb->dev;
4791
4792         skb_reset_network_header(skb);
4793         if (!skb_transport_header_was_set(skb))
4794                 skb_reset_transport_header(skb);
4795         skb_reset_mac_len(skb);
4796
4797         pt_prev = NULL;
4798
4799 another_round:
4800         skb->skb_iif = skb->dev->ifindex;
4801
4802         __this_cpu_inc(softnet_data.processed);
4803
4804         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4805                 int ret2;
4806
4807                 preempt_disable();
4808                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4809                 preempt_enable();
4810
4811                 if (ret2 != XDP_PASS) {
4812                         ret = NET_RX_DROP;
4813                         goto out;
4814                 }
4815                 skb_reset_mac_len(skb);
4816         }
4817
4818         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4819             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4820                 skb = skb_vlan_untag(skb);
4821                 if (unlikely(!skb))
4822                         goto out;
4823         }
4824
4825         if (skb_skip_tc_classify(skb))
4826                 goto skip_classify;
4827
4828         if (pfmemalloc)
4829                 goto skip_taps;
4830
4831         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4832                 if (pt_prev)
4833                         ret = deliver_skb(skb, pt_prev, orig_dev);
4834                 pt_prev = ptype;
4835         }
4836
4837         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4838                 if (pt_prev)
4839                         ret = deliver_skb(skb, pt_prev, orig_dev);
4840                 pt_prev = ptype;
4841         }
4842
4843 skip_taps:
4844 #ifdef CONFIG_NET_INGRESS
4845         if (static_branch_unlikely(&ingress_needed_key)) {
4846                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4847                 if (!skb)
4848                         goto out;
4849
4850                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4851                         goto out;
4852         }
4853 #endif
4854         skb_reset_tc(skb);
4855 skip_classify:
4856         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4857                 goto drop;
4858
4859         if (skb_vlan_tag_present(skb)) {
4860                 if (pt_prev) {
4861                         ret = deliver_skb(skb, pt_prev, orig_dev);
4862                         pt_prev = NULL;
4863                 }
4864                 if (vlan_do_receive(&skb))
4865                         goto another_round;
4866                 else if (unlikely(!skb))
4867                         goto out;
4868         }
4869
4870         rx_handler = rcu_dereference(skb->dev->rx_handler);
4871         if (rx_handler) {
4872                 if (pt_prev) {
4873                         ret = deliver_skb(skb, pt_prev, orig_dev);
4874                         pt_prev = NULL;
4875                 }
4876                 switch (rx_handler(&skb)) {
4877                 case RX_HANDLER_CONSUMED:
4878                         ret = NET_RX_SUCCESS;
4879                         goto out;
4880                 case RX_HANDLER_ANOTHER:
4881                         goto another_round;
4882                 case RX_HANDLER_EXACT:
4883                         deliver_exact = true;
4884                 case RX_HANDLER_PASS:
4885                         break;
4886                 default:
4887                         BUG();
4888                 }
4889         }
4890
4891         if (unlikely(skb_vlan_tag_present(skb))) {
4892                 if (skb_vlan_tag_get_id(skb))
4893                         skb->pkt_type = PACKET_OTHERHOST;
4894                 /* Note: we might in the future use prio bits
4895                  * and set skb->priority like in vlan_do_receive()
4896                  * For the time being, just ignore Priority Code Point
4897                  */
4898                 skb->vlan_tci = 0;
4899         }
4900
4901         type = skb->protocol;
4902
4903         /* deliver only exact match when indicated */
4904         if (likely(!deliver_exact)) {
4905                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4906                                        &ptype_base[ntohs(type) &
4907                                                    PTYPE_HASH_MASK]);
4908         }
4909
4910         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4911                                &orig_dev->ptype_specific);
4912
4913         if (unlikely(skb->dev != orig_dev)) {
4914                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4915                                        &skb->dev->ptype_specific);
4916         }
4917
4918         if (pt_prev) {
4919                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4920                         goto drop;
4921                 *ppt_prev = pt_prev;
4922         } else {
4923 drop:
4924                 if (!deliver_exact)
4925                         atomic_long_inc(&skb->dev->rx_dropped);
4926                 else
4927                         atomic_long_inc(&skb->dev->rx_nohandler);
4928                 kfree_skb(skb);
4929                 /* Jamal, now you will not able to escape explaining
4930                  * me how you were going to use this. :-)
4931                  */
4932                 ret = NET_RX_DROP;
4933         }
4934
4935 out:
4936         /* The invariant here is that if *ppt_prev is not NULL
4937          * then skb should also be non-NULL.
4938          *
4939          * Apparently *ppt_prev assignment above holds this invariant due to
4940          * skb dereferencing near it.
4941          */
4942         *pskb = skb;
4943         return ret;
4944 }
4945
4946 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4947 {
4948         struct net_device *orig_dev = skb->dev;
4949         struct packet_type *pt_prev = NULL;
4950         int ret;
4951
4952         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
4953         if (pt_prev)
4954                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4955         return ret;
4956 }
4957
4958 /**
4959  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4960  *      @skb: buffer to process
4961  *
4962  *      More direct receive version of netif_receive_skb().  It should
4963  *      only be used by callers that have a need to skip RPS and Generic XDP.
4964  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4965  *
4966  *      This function may only be called from softirq context and interrupts
4967  *      should be enabled.
4968  *
4969  *      Return values (usually ignored):
4970  *      NET_RX_SUCCESS: no congestion
4971  *      NET_RX_DROP: packet was dropped
4972  */
4973 int netif_receive_skb_core(struct sk_buff *skb)
4974 {
4975         int ret;
4976
4977         rcu_read_lock();
4978         ret = __netif_receive_skb_one_core(skb, false);
4979         rcu_read_unlock();
4980
4981         return ret;
4982 }
4983 EXPORT_SYMBOL(netif_receive_skb_core);
4984
4985 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4986                                                   struct packet_type *pt_prev,
4987                                                   struct net_device *orig_dev)
4988 {
4989         struct sk_buff *skb, *next;
4990
4991         if (!pt_prev)
4992                 return;
4993         if (list_empty(head))
4994                 return;
4995         if (pt_prev->list_func != NULL)
4996                 pt_prev->list_func(head, pt_prev, orig_dev);
4997         else
4998                 list_for_each_entry_safe(skb, next, head, list) {
4999                         skb_list_del_init(skb);
5000                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5001                 }
5002 }
5003
5004 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5005 {
5006         /* Fast-path assumptions:
5007          * - There is no RX handler.
5008          * - Only one packet_type matches.
5009          * If either of these fails, we will end up doing some per-packet
5010          * processing in-line, then handling the 'last ptype' for the whole
5011          * sublist.  This can't cause out-of-order delivery to any single ptype,
5012          * because the 'last ptype' must be constant across the sublist, and all
5013          * other ptypes are handled per-packet.
5014          */
5015         /* Current (common) ptype of sublist */
5016         struct packet_type *pt_curr = NULL;
5017         /* Current (common) orig_dev of sublist */
5018         struct net_device *od_curr = NULL;
5019         struct list_head sublist;
5020         struct sk_buff *skb, *next;
5021
5022         INIT_LIST_HEAD(&sublist);
5023         list_for_each_entry_safe(skb, next, head, list) {
5024                 struct net_device *orig_dev = skb->dev;
5025                 struct packet_type *pt_prev = NULL;
5026
5027                 skb_list_del_init(skb);
5028                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5029                 if (!pt_prev)
5030                         continue;
5031                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5032                         /* dispatch old sublist */
5033                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5034                         /* start new sublist */
5035                         INIT_LIST_HEAD(&sublist);
5036                         pt_curr = pt_prev;
5037                         od_curr = orig_dev;
5038                 }
5039                 list_add_tail(&skb->list, &sublist);
5040         }
5041
5042         /* dispatch final sublist */
5043         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5044 }
5045
5046 static int __netif_receive_skb(struct sk_buff *skb)
5047 {
5048         int ret;
5049
5050         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5051                 unsigned int noreclaim_flag;
5052
5053                 /*
5054                  * PFMEMALLOC skbs are special, they should
5055                  * - be delivered to SOCK_MEMALLOC sockets only
5056                  * - stay away from userspace
5057                  * - have bounded memory usage
5058                  *
5059                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5060                  * context down to all allocation sites.
5061                  */
5062                 noreclaim_flag = memalloc_noreclaim_save();
5063                 ret = __netif_receive_skb_one_core(skb, true);
5064                 memalloc_noreclaim_restore(noreclaim_flag);
5065         } else
5066                 ret = __netif_receive_skb_one_core(skb, false);
5067
5068         return ret;
5069 }
5070
5071 static void __netif_receive_skb_list(struct list_head *head)
5072 {
5073         unsigned long noreclaim_flag = 0;
5074         struct sk_buff *skb, *next;
5075         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5076
5077         list_for_each_entry_safe(skb, next, head, list) {
5078                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5079                         struct list_head sublist;
5080
5081                         /* Handle the previous sublist */
5082                         list_cut_before(&sublist, head, &skb->list);
5083                         if (!list_empty(&sublist))
5084                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5085                         pfmemalloc = !pfmemalloc;
5086                         /* See comments in __netif_receive_skb */
5087                         if (pfmemalloc)
5088                                 noreclaim_flag = memalloc_noreclaim_save();
5089                         else
5090                                 memalloc_noreclaim_restore(noreclaim_flag);
5091                 }
5092         }
5093         /* Handle the remaining sublist */
5094         if (!list_empty(head))
5095                 __netif_receive_skb_list_core(head, pfmemalloc);
5096         /* Restore pflags */
5097         if (pfmemalloc)
5098                 memalloc_noreclaim_restore(noreclaim_flag);
5099 }
5100
5101 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5102 {
5103         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5104         struct bpf_prog *new = xdp->prog;
5105         int ret = 0;
5106
5107         switch (xdp->command) {
5108         case XDP_SETUP_PROG:
5109                 rcu_assign_pointer(dev->xdp_prog, new);
5110                 if (old)
5111                         bpf_prog_put(old);
5112
5113                 if (old && !new) {
5114                         static_branch_dec(&generic_xdp_needed_key);
5115                 } else if (new && !old) {
5116                         static_branch_inc(&generic_xdp_needed_key);
5117                         dev_disable_lro(dev);
5118                         dev_disable_gro_hw(dev);
5119                 }
5120                 break;
5121
5122         case XDP_QUERY_PROG:
5123                 xdp->prog_id = old ? old->aux->id : 0;
5124                 break;
5125
5126         default:
5127                 ret = -EINVAL;
5128                 break;
5129         }
5130
5131         return ret;
5132 }
5133
5134 static int netif_receive_skb_internal(struct sk_buff *skb)
5135 {
5136         int ret;
5137
5138         net_timestamp_check(netdev_tstamp_prequeue, skb);
5139
5140         if (skb_defer_rx_timestamp(skb))
5141                 return NET_RX_SUCCESS;
5142
5143         rcu_read_lock();
5144 #ifdef CONFIG_RPS
5145         if (static_key_false(&rps_needed)) {
5146                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5147                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5148
5149                 if (cpu >= 0) {
5150                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5151                         rcu_read_unlock();
5152                         return ret;
5153                 }
5154         }
5155 #endif
5156         ret = __netif_receive_skb(skb);
5157         rcu_read_unlock();
5158         return ret;
5159 }
5160
5161 static void netif_receive_skb_list_internal(struct list_head *head)
5162 {
5163         struct sk_buff *skb, *next;
5164         struct list_head sublist;
5165
5166         INIT_LIST_HEAD(&sublist);
5167         list_for_each_entry_safe(skb, next, head, list) {
5168                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5169                 skb_list_del_init(skb);
5170                 if (!skb_defer_rx_timestamp(skb))
5171                         list_add_tail(&skb->list, &sublist);
5172         }
5173         list_splice_init(&sublist, head);
5174
5175         rcu_read_lock();
5176 #ifdef CONFIG_RPS
5177         if (static_key_false(&rps_needed)) {
5178                 list_for_each_entry_safe(skb, next, head, list) {
5179                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5180                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5181
5182                         if (cpu >= 0) {
5183                                 /* Will be handled, remove from list */
5184                                 skb_list_del_init(skb);
5185                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5186                         }
5187                 }
5188         }
5189 #endif
5190         __netif_receive_skb_list(head);
5191         rcu_read_unlock();
5192 }
5193
5194 /**
5195  *      netif_receive_skb - process receive buffer from network
5196  *      @skb: buffer to process
5197  *
5198  *      netif_receive_skb() is the main receive data processing function.
5199  *      It always succeeds. The buffer may be dropped during processing
5200  *      for congestion control or by the protocol layers.
5201  *
5202  *      This function may only be called from softirq context and interrupts
5203  *      should be enabled.
5204  *
5205  *      Return values (usually ignored):
5206  *      NET_RX_SUCCESS: no congestion
5207  *      NET_RX_DROP: packet was dropped
5208  */
5209 int netif_receive_skb(struct sk_buff *skb)
5210 {
5211         trace_netif_receive_skb_entry(skb);
5212
5213         return netif_receive_skb_internal(skb);
5214 }
5215 EXPORT_SYMBOL(netif_receive_skb);
5216
5217 /**
5218  *      netif_receive_skb_list - process many receive buffers from network
5219  *      @head: list of skbs to process.
5220  *
5221  *      Since return value of netif_receive_skb() is normally ignored, and
5222  *      wouldn't be meaningful for a list, this function returns void.
5223  *
5224  *      This function may only be called from softirq context and interrupts
5225  *      should be enabled.
5226  */
5227 void netif_receive_skb_list(struct list_head *head)
5228 {
5229         struct sk_buff *skb;
5230
5231         if (list_empty(head))
5232                 return;
5233         list_for_each_entry(skb, head, list)
5234                 trace_netif_receive_skb_list_entry(skb);
5235         netif_receive_skb_list_internal(head);
5236 }
5237 EXPORT_SYMBOL(netif_receive_skb_list);
5238
5239 DEFINE_PER_CPU(struct work_struct, flush_works);
5240
5241 /* Network device is going away, flush any packets still pending */
5242 static void flush_backlog(struct work_struct *work)
5243 {
5244         struct sk_buff *skb, *tmp;
5245         struct softnet_data *sd;
5246
5247         local_bh_disable();
5248         sd = this_cpu_ptr(&softnet_data);
5249
5250         local_irq_disable();
5251         rps_lock(sd);
5252         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5253                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5254                         __skb_unlink(skb, &sd->input_pkt_queue);
5255                         dev_kfree_skb_irq(skb);
5256                         input_queue_head_incr(sd);
5257                 }
5258         }
5259         rps_unlock(sd);
5260         local_irq_enable();
5261
5262         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5263                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5264                         __skb_unlink(skb, &sd->process_queue);
5265                         kfree_skb(skb);
5266                         input_queue_head_incr(sd);
5267                 }
5268         }
5269         local_bh_enable();
5270 }
5271
5272 static void flush_all_backlogs(void)
5273 {
5274         unsigned int cpu;
5275
5276         get_online_cpus();
5277
5278         for_each_online_cpu(cpu)
5279                 queue_work_on(cpu, system_highpri_wq,
5280                               per_cpu_ptr(&flush_works, cpu));
5281
5282         for_each_online_cpu(cpu)
5283                 flush_work(per_cpu_ptr(&flush_works, cpu));
5284
5285         put_online_cpus();
5286 }
5287
5288 static int napi_gro_complete(struct sk_buff *skb)
5289 {
5290         struct packet_offload *ptype;
5291         __be16 type = skb->protocol;
5292         struct list_head *head = &offload_base;
5293         int err = -ENOENT;
5294
5295         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5296
5297         if (NAPI_GRO_CB(skb)->count == 1) {
5298                 skb_shinfo(skb)->gso_size = 0;
5299                 goto out;
5300         }
5301
5302         rcu_read_lock();
5303         list_for_each_entry_rcu(ptype, head, list) {
5304                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5305                         continue;
5306
5307                 err = ptype->callbacks.gro_complete(skb, 0);
5308                 break;
5309         }
5310         rcu_read_unlock();
5311
5312         if (err) {
5313                 WARN_ON(&ptype->list == head);
5314                 kfree_skb(skb);
5315                 return NET_RX_SUCCESS;
5316         }
5317
5318 out:
5319         return netif_receive_skb_internal(skb);
5320 }
5321
5322 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5323                                    bool flush_old)
5324 {
5325         struct list_head *head = &napi->gro_hash[index].list;
5326         struct sk_buff *skb, *p;
5327
5328         list_for_each_entry_safe_reverse(skb, p, head, list) {
5329                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5330                         return;
5331                 list_del(&skb->list);
5332                 skb->next = NULL;
5333                 napi_gro_complete(skb);
5334                 napi->gro_hash[index].count--;
5335         }
5336
5337         if (!napi->gro_hash[index].count)
5338                 __clear_bit(index, &napi->gro_bitmask);
5339 }
5340
5341 /* napi->gro_hash[].list contains packets ordered by age.
5342  * youngest packets at the head of it.
5343  * Complete skbs in reverse order to reduce latencies.
5344  */
5345 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5346 {
5347         u32 i;
5348
5349         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5350                 if (test_bit(i, &napi->gro_bitmask))
5351                         __napi_gro_flush_chain(napi, i, flush_old);
5352         }
5353 }
5354 EXPORT_SYMBOL(napi_gro_flush);
5355
5356 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5357                                           struct sk_buff *skb)
5358 {
5359         unsigned int maclen = skb->dev->hard_header_len;
5360         u32 hash = skb_get_hash_raw(skb);
5361         struct list_head *head;
5362         struct sk_buff *p;
5363
5364         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5365         list_for_each_entry(p, head, list) {
5366                 unsigned long diffs;
5367
5368                 NAPI_GRO_CB(p)->flush = 0;
5369
5370                 if (hash != skb_get_hash_raw(p)) {
5371                         NAPI_GRO_CB(p)->same_flow = 0;
5372                         continue;
5373                 }
5374
5375                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5376                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5377                 diffs |= skb_metadata_dst_cmp(p, skb);
5378                 diffs |= skb_metadata_differs(p, skb);
5379                 if (maclen == ETH_HLEN)
5380                         diffs |= compare_ether_header(skb_mac_header(p),
5381                                                       skb_mac_header(skb));
5382                 else if (!diffs)
5383                         diffs = memcmp(skb_mac_header(p),
5384                                        skb_mac_header(skb),
5385                                        maclen);
5386                 NAPI_GRO_CB(p)->same_flow = !diffs;
5387         }
5388
5389         return head;
5390 }
5391
5392 static void skb_gro_reset_offset(struct sk_buff *skb)
5393 {
5394         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5395         const skb_frag_t *frag0 = &pinfo->frags[0];
5396
5397         NAPI_GRO_CB(skb)->data_offset = 0;
5398         NAPI_GRO_CB(skb)->frag0 = NULL;
5399         NAPI_GRO_CB(skb)->frag0_len = 0;
5400
5401         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5402             pinfo->nr_frags &&
5403             !PageHighMem(skb_frag_page(frag0)) &&
5404             (!NET_IP_ALIGN || !(skb_frag_off(frag0) & 3))) {
5405                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5406                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5407                                                     skb_frag_size(frag0),
5408                                                     skb->end - skb->tail);
5409         }
5410 }
5411
5412 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5413 {
5414         struct skb_shared_info *pinfo = skb_shinfo(skb);
5415
5416         BUG_ON(skb->end - skb->tail < grow);
5417
5418         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5419
5420         skb->data_len -= grow;
5421         skb->tail += grow;
5422
5423         pinfo->frags[0].page_offset += grow;
5424         skb_frag_size_sub(&pinfo->frags[0], grow);
5425
5426         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5427                 skb_frag_unref(skb, 0);
5428                 memmove(pinfo->frags, pinfo->frags + 1,
5429                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5430         }
5431 }
5432
5433 static void gro_flush_oldest(struct list_head *head)
5434 {
5435         struct sk_buff *oldest;
5436
5437         oldest = list_last_entry(head, struct sk_buff, list);
5438
5439         /* We are called with head length >= MAX_GRO_SKBS, so this is
5440          * impossible.
5441          */
5442         if (WARN_ON_ONCE(!oldest))
5443                 return;
5444
5445         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5446          * SKB to the chain.
5447          */
5448         list_del(&oldest->list);
5449         oldest->next = NULL;
5450         napi_gro_complete(oldest);
5451 }
5452
5453 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5454 {
5455         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5456         struct list_head *head = &offload_base;
5457         struct packet_offload *ptype;
5458         __be16 type = skb->protocol;
5459         struct list_head *gro_head;
5460         struct sk_buff *pp = NULL;
5461         enum gro_result ret;
5462         int same_flow;
5463         int grow;
5464
5465         if (netif_elide_gro(skb->dev))
5466                 goto normal;
5467
5468         gro_head = gro_list_prepare(napi, skb);
5469
5470         rcu_read_lock();
5471         list_for_each_entry_rcu(ptype, head, list) {
5472                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5473                         continue;
5474
5475                 skb_set_network_header(skb, skb_gro_offset(skb));
5476                 skb_reset_mac_len(skb);
5477                 NAPI_GRO_CB(skb)->same_flow = 0;
5478                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5479                 NAPI_GRO_CB(skb)->free = 0;
5480                 NAPI_GRO_CB(skb)->encap_mark = 0;
5481                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5482                 NAPI_GRO_CB(skb)->is_fou = 0;
5483                 NAPI_GRO_CB(skb)->is_atomic = 1;
5484                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5485
5486                 /* Setup for GRO checksum validation */
5487                 switch (skb->ip_summed) {
5488                 case CHECKSUM_COMPLETE:
5489                         NAPI_GRO_CB(skb)->csum = skb->csum;
5490                         NAPI_GRO_CB(skb)->csum_valid = 1;
5491                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5492                         break;
5493                 case CHECKSUM_UNNECESSARY:
5494                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5495                         NAPI_GRO_CB(skb)->csum_valid = 0;
5496                         break;
5497                 default:
5498                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5499                         NAPI_GRO_CB(skb)->csum_valid = 0;
5500                 }
5501
5502                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5503                 break;
5504         }
5505         rcu_read_unlock();
5506
5507         if (&ptype->list == head)
5508                 goto normal;
5509
5510         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5511                 ret = GRO_CONSUMED;
5512                 goto ok;
5513         }
5514
5515         same_flow = NAPI_GRO_CB(skb)->same_flow;
5516         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5517
5518         if (pp) {
5519                 list_del(&pp->list);
5520                 pp->next = NULL;
5521                 napi_gro_complete(pp);
5522                 napi->gro_hash[hash].count--;
5523         }
5524
5525         if (same_flow)
5526                 goto ok;
5527
5528         if (NAPI_GRO_CB(skb)->flush)
5529                 goto normal;
5530
5531         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5532                 gro_flush_oldest(gro_head);
5533         } else {
5534                 napi->gro_hash[hash].count++;
5535         }
5536         NAPI_GRO_CB(skb)->count = 1;
5537         NAPI_GRO_CB(skb)->age = jiffies;
5538         NAPI_GRO_CB(skb)->last = skb;
5539         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5540         list_add(&skb->list, gro_head);
5541         ret = GRO_HELD;
5542
5543 pull:
5544         grow = skb_gro_offset(skb) - skb_headlen(skb);
5545         if (grow > 0)
5546                 gro_pull_from_frag0(skb, grow);
5547 ok:
5548         if (napi->gro_hash[hash].count) {
5549                 if (!test_bit(hash, &napi->gro_bitmask))
5550                         __set_bit(hash, &napi->gro_bitmask);
5551         } else if (test_bit(hash, &napi->gro_bitmask)) {
5552                 __clear_bit(hash, &napi->gro_bitmask);
5553         }
5554
5555         return ret;
5556
5557 normal:
5558         ret = GRO_NORMAL;
5559         goto pull;
5560 }
5561
5562 struct packet_offload *gro_find_receive_by_type(__be16 type)
5563 {
5564         struct list_head *offload_head = &offload_base;
5565         struct packet_offload *ptype;
5566
5567         list_for_each_entry_rcu(ptype, offload_head, list) {
5568                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5569                         continue;
5570                 return ptype;
5571         }
5572         return NULL;
5573 }
5574 EXPORT_SYMBOL(gro_find_receive_by_type);
5575
5576 struct packet_offload *gro_find_complete_by_type(__be16 type)
5577 {
5578         struct list_head *offload_head = &offload_base;
5579         struct packet_offload *ptype;
5580
5581         list_for_each_entry_rcu(ptype, offload_head, list) {
5582                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5583                         continue;
5584                 return ptype;
5585         }
5586         return NULL;
5587 }
5588 EXPORT_SYMBOL(gro_find_complete_by_type);
5589
5590 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5591 {
5592         skb_dst_drop(skb);
5593         secpath_reset(skb);
5594         kmem_cache_free(skbuff_head_cache, skb);
5595 }
5596
5597 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5598 {
5599         switch (ret) {
5600         case GRO_NORMAL:
5601                 if (netif_receive_skb_internal(skb))
5602                         ret = GRO_DROP;
5603                 break;
5604
5605         case GRO_DROP:
5606                 kfree_skb(skb);
5607                 break;
5608
5609         case GRO_MERGED_FREE:
5610                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5611                         napi_skb_free_stolen_head(skb);
5612                 else
5613                         __kfree_skb(skb);
5614                 break;
5615
5616         case GRO_HELD:
5617         case GRO_MERGED:
5618         case GRO_CONSUMED:
5619                 break;
5620         }
5621
5622         return ret;
5623 }
5624
5625 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5626 {
5627         skb_mark_napi_id(skb, napi);
5628         trace_napi_gro_receive_entry(skb);
5629
5630         skb_gro_reset_offset(skb);
5631
5632         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5633 }
5634 EXPORT_SYMBOL(napi_gro_receive);
5635
5636 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5637 {
5638         if (unlikely(skb->pfmemalloc)) {
5639                 consume_skb(skb);
5640                 return;
5641         }
5642         __skb_pull(skb, skb_headlen(skb));
5643         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5644         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5645         skb->vlan_tci = 0;
5646         skb->dev = napi->dev;
5647         skb->skb_iif = 0;
5648
5649         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5650         skb->pkt_type = PACKET_HOST;
5651
5652         skb->encapsulation = 0;
5653         skb_shinfo(skb)->gso_type = 0;
5654         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5655         secpath_reset(skb);
5656
5657         napi->skb = skb;
5658 }
5659
5660 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5661 {
5662         struct sk_buff *skb = napi->skb;
5663
5664         if (!skb) {
5665                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5666                 if (skb) {
5667                         napi->skb = skb;
5668                         skb_mark_napi_id(skb, napi);
5669                 }
5670         }
5671         return skb;
5672 }
5673 EXPORT_SYMBOL(napi_get_frags);
5674
5675 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5676                                       struct sk_buff *skb,
5677                                       gro_result_t ret)
5678 {
5679         switch (ret) {
5680         case GRO_NORMAL:
5681         case GRO_HELD:
5682                 __skb_push(skb, ETH_HLEN);
5683                 skb->protocol = eth_type_trans(skb, skb->dev);
5684                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5685                         ret = GRO_DROP;
5686                 break;
5687
5688         case GRO_DROP:
5689                 napi_reuse_skb(napi, skb);
5690                 break;
5691
5692         case GRO_MERGED_FREE:
5693                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5694                         napi_skb_free_stolen_head(skb);
5695                 else
5696                         napi_reuse_skb(napi, skb);
5697                 break;
5698
5699         case GRO_MERGED:
5700         case GRO_CONSUMED:
5701                 break;
5702         }
5703
5704         return ret;
5705 }
5706
5707 /* Upper GRO stack assumes network header starts at gro_offset=0
5708  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5709  * We copy ethernet header into skb->data to have a common layout.
5710  */
5711 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5712 {
5713         struct sk_buff *skb = napi->skb;
5714         const struct ethhdr *eth;
5715         unsigned int hlen = sizeof(*eth);
5716
5717         napi->skb = NULL;
5718
5719         skb_reset_mac_header(skb);
5720         skb_gro_reset_offset(skb);
5721
5722         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5723                 eth = skb_gro_header_slow(skb, hlen, 0);
5724                 if (unlikely(!eth)) {
5725                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5726                                              __func__, napi->dev->name);
5727                         napi_reuse_skb(napi, skb);
5728                         return NULL;
5729                 }
5730         } else {
5731                 eth = (const struct ethhdr *)skb->data;
5732                 gro_pull_from_frag0(skb, hlen);
5733                 NAPI_GRO_CB(skb)->frag0 += hlen;
5734                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5735         }
5736         __skb_pull(skb, hlen);
5737
5738         /*
5739          * This works because the only protocols we care about don't require
5740          * special handling.
5741          * We'll fix it up properly in napi_frags_finish()
5742          */
5743         skb->protocol = eth->h_proto;
5744
5745         return skb;
5746 }
5747
5748 gro_result_t napi_gro_frags(struct napi_struct *napi)
5749 {
5750         struct sk_buff *skb = napi_frags_skb(napi);
5751
5752         if (!skb)
5753                 return GRO_DROP;
5754
5755         trace_napi_gro_frags_entry(skb);
5756
5757         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5758 }
5759 EXPORT_SYMBOL(napi_gro_frags);
5760
5761 /* Compute the checksum from gro_offset and return the folded value
5762  * after adding in any pseudo checksum.
5763  */
5764 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5765 {
5766         __wsum wsum;
5767         __sum16 sum;
5768
5769         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5770
5771         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5772         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5773         if (likely(!sum)) {
5774                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5775                     !skb->csum_complete_sw)
5776                         netdev_rx_csum_fault(skb->dev);
5777         }
5778
5779         NAPI_GRO_CB(skb)->csum = wsum;
5780         NAPI_GRO_CB(skb)->csum_valid = 1;
5781
5782         return sum;
5783 }
5784 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5785
5786 static void net_rps_send_ipi(struct softnet_data *remsd)
5787 {
5788 #ifdef CONFIG_RPS
5789         while (remsd) {
5790                 struct softnet_data *next = remsd->rps_ipi_next;
5791
5792                 if (cpu_online(remsd->cpu))
5793                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5794                 remsd = next;
5795         }
5796 #endif
5797 }
5798
5799 /*
5800  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5801  * Note: called with local irq disabled, but exits with local irq enabled.
5802  */
5803 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5804 {
5805 #ifdef CONFIG_RPS
5806         struct softnet_data *remsd = sd->rps_ipi_list;
5807
5808         if (remsd) {
5809                 sd->rps_ipi_list = NULL;
5810
5811                 local_irq_enable();
5812
5813                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5814                 net_rps_send_ipi(remsd);
5815         } else
5816 #endif
5817                 local_irq_enable();
5818 }
5819
5820 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5821 {
5822 #ifdef CONFIG_RPS
5823         return sd->rps_ipi_list != NULL;
5824 #else
5825         return false;
5826 #endif
5827 }
5828
5829 static int process_backlog(struct napi_struct *napi, int quota)
5830 {
5831         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5832         bool again = true;
5833         int work = 0;
5834
5835         /* Check if we have pending ipi, its better to send them now,
5836          * not waiting net_rx_action() end.
5837          */
5838         if (sd_has_rps_ipi_waiting(sd)) {
5839                 local_irq_disable();
5840                 net_rps_action_and_irq_enable(sd);
5841         }
5842
5843         napi->weight = dev_rx_weight;
5844         while (again) {
5845                 struct sk_buff *skb;
5846
5847                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5848                         rcu_read_lock();
5849                         __netif_receive_skb(skb);
5850                         rcu_read_unlock();
5851                         input_queue_head_incr(sd);
5852                         if (++work >= quota)
5853                                 return work;
5854
5855                 }
5856
5857                 local_irq_disable();
5858                 rps_lock(sd);
5859                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5860                         /*
5861                          * Inline a custom version of __napi_complete().
5862                          * only current cpu owns and manipulates this napi,
5863                          * and NAPI_STATE_SCHED is the only possible flag set
5864                          * on backlog.
5865                          * We can use a plain write instead of clear_bit(),
5866                          * and we dont need an smp_mb() memory barrier.
5867                          */
5868                         napi->state = 0;
5869                         again = false;
5870                 } else {
5871                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5872                                                    &sd->process_queue);
5873                 }
5874                 rps_unlock(sd);
5875                 local_irq_enable();
5876         }
5877
5878         return work;
5879 }
5880
5881 /**
5882  * __napi_schedule - schedule for receive
5883  * @n: entry to schedule
5884  *
5885  * The entry's receive function will be scheduled to run.
5886  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5887  */
5888 void __napi_schedule(struct napi_struct *n)
5889 {
5890         unsigned long flags;
5891
5892         local_irq_save(flags);
5893         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5894         local_irq_restore(flags);
5895 }
5896 EXPORT_SYMBOL(__napi_schedule);
5897
5898 /**
5899  *      napi_schedule_prep - check if napi can be scheduled
5900  *      @n: napi context
5901  *
5902  * Test if NAPI routine is already running, and if not mark
5903  * it as running.  This is used as a condition variable
5904  * insure only one NAPI poll instance runs.  We also make
5905  * sure there is no pending NAPI disable.
5906  */
5907 bool napi_schedule_prep(struct napi_struct *n)
5908 {
5909         unsigned long val, new;
5910
5911         do {
5912                 val = READ_ONCE(n->state);
5913                 if (unlikely(val & NAPIF_STATE_DISABLE))
5914                         return false;
5915                 new = val | NAPIF_STATE_SCHED;
5916
5917                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5918                  * This was suggested by Alexander Duyck, as compiler
5919                  * emits better code than :
5920                  * if (val & NAPIF_STATE_SCHED)
5921                  *     new |= NAPIF_STATE_MISSED;
5922                  */
5923                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5924                                                    NAPIF_STATE_MISSED;
5925         } while (cmpxchg(&n->state, val, new) != val);
5926
5927         return !(val & NAPIF_STATE_SCHED);
5928 }
5929 EXPORT_SYMBOL(napi_schedule_prep);
5930
5931 /**
5932  * __napi_schedule_irqoff - schedule for receive
5933  * @n: entry to schedule
5934  *
5935  * Variant of __napi_schedule() assuming hard irqs are masked.
5936  *
5937  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5938  * because the interrupt disabled assumption might not be true
5939  * due to force-threaded interrupts and spinlock substitution.
5940  */
5941 void __napi_schedule_irqoff(struct napi_struct *n)
5942 {
5943         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5944                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5945         else
5946                 __napi_schedule(n);
5947 }
5948 EXPORT_SYMBOL(__napi_schedule_irqoff);
5949
5950 bool napi_complete_done(struct napi_struct *n, int work_done)
5951 {
5952         unsigned long flags, val, new;
5953
5954         /*
5955          * 1) Don't let napi dequeue from the cpu poll list
5956          *    just in case its running on a different cpu.
5957          * 2) If we are busy polling, do nothing here, we have
5958          *    the guarantee we will be called later.
5959          */
5960         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5961                                  NAPIF_STATE_IN_BUSY_POLL)))
5962                 return false;
5963
5964         if (n->gro_bitmask) {
5965                 unsigned long timeout = 0;
5966
5967                 if (work_done)
5968                         timeout = n->dev->gro_flush_timeout;
5969
5970                 /* When the NAPI instance uses a timeout and keeps postponing
5971                  * it, we need to bound somehow the time packets are kept in
5972                  * the GRO layer
5973                  */
5974                 napi_gro_flush(n, !!timeout);
5975                 if (timeout)
5976                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5977                                       HRTIMER_MODE_REL_PINNED);
5978         }
5979         if (unlikely(!list_empty(&n->poll_list))) {
5980                 /* If n->poll_list is not empty, we need to mask irqs */
5981                 local_irq_save(flags);
5982                 list_del_init(&n->poll_list);
5983                 local_irq_restore(flags);
5984         }
5985
5986         do {
5987                 val = READ_ONCE(n->state);
5988
5989                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5990
5991                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5992
5993                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5994                  * because we will call napi->poll() one more time.
5995                  * This C code was suggested by Alexander Duyck to help gcc.
5996                  */
5997                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5998                                                     NAPIF_STATE_SCHED;
5999         } while (cmpxchg(&n->state, val, new) != val);
6000
6001         if (unlikely(val & NAPIF_STATE_MISSED)) {
6002                 __napi_schedule(n);
6003                 return false;
6004         }
6005
6006         return true;
6007 }
6008 EXPORT_SYMBOL(napi_complete_done);
6009
6010 /* must be called under rcu_read_lock(), as we dont take a reference */
6011 static struct napi_struct *napi_by_id(unsigned int napi_id)
6012 {
6013         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6014         struct napi_struct *napi;
6015
6016         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6017                 if (napi->napi_id == napi_id)
6018                         return napi;
6019
6020         return NULL;
6021 }
6022
6023 #if defined(CONFIG_NET_RX_BUSY_POLL)
6024
6025 #define BUSY_POLL_BUDGET 8
6026
6027 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6028 {
6029         int rc;
6030
6031         /* Busy polling means there is a high chance device driver hard irq
6032          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6033          * set in napi_schedule_prep().
6034          * Since we are about to call napi->poll() once more, we can safely
6035          * clear NAPI_STATE_MISSED.
6036          *
6037          * Note: x86 could use a single "lock and ..." instruction
6038          * to perform these two clear_bit()
6039          */
6040         clear_bit(NAPI_STATE_MISSED, &napi->state);
6041         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6042
6043         local_bh_disable();
6044
6045         /* All we really want here is to re-enable device interrupts.
6046          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6047          */
6048         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6049         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6050         netpoll_poll_unlock(have_poll_lock);
6051         if (rc == BUSY_POLL_BUDGET)
6052                 __napi_schedule(napi);
6053         local_bh_enable();
6054 }
6055
6056 void napi_busy_loop(unsigned int napi_id,
6057                     bool (*loop_end)(void *, unsigned long),
6058                     void *loop_end_arg)
6059 {
6060         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6061         int (*napi_poll)(struct napi_struct *napi, int budget);
6062         void *have_poll_lock = NULL;
6063         struct napi_struct *napi;
6064
6065 restart:
6066         napi_poll = NULL;
6067
6068         rcu_read_lock();
6069
6070         napi = napi_by_id(napi_id);
6071         if (!napi)
6072                 goto out;
6073
6074         preempt_disable();
6075         for (;;) {
6076                 int work = 0;
6077
6078                 local_bh_disable();
6079                 if (!napi_poll) {
6080                         unsigned long val = READ_ONCE(napi->state);
6081
6082                         /* If multiple threads are competing for this napi,
6083                          * we avoid dirtying napi->state as much as we can.
6084                          */
6085                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6086                                    NAPIF_STATE_IN_BUSY_POLL))
6087                                 goto count;
6088                         if (cmpxchg(&napi->state, val,
6089                                     val | NAPIF_STATE_IN_BUSY_POLL |
6090                                           NAPIF_STATE_SCHED) != val)
6091                                 goto count;
6092                         have_poll_lock = netpoll_poll_lock(napi);
6093                         napi_poll = napi->poll;
6094                 }
6095                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6096                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6097 count:
6098                 if (work > 0)
6099                         __NET_ADD_STATS(dev_net(napi->dev),
6100                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6101                 local_bh_enable();
6102
6103                 if (!loop_end || loop_end(loop_end_arg, start_time))
6104                         break;
6105
6106                 if (unlikely(need_resched())) {
6107                         if (napi_poll)
6108                                 busy_poll_stop(napi, have_poll_lock);
6109                         preempt_enable();
6110                         rcu_read_unlock();
6111                         cond_resched();
6112                         if (loop_end(loop_end_arg, start_time))
6113                                 return;
6114                         goto restart;
6115                 }
6116                 cpu_relax();
6117         }
6118         if (napi_poll)
6119                 busy_poll_stop(napi, have_poll_lock);
6120         preempt_enable();
6121 out:
6122         rcu_read_unlock();
6123 }
6124 EXPORT_SYMBOL(napi_busy_loop);
6125
6126 #endif /* CONFIG_NET_RX_BUSY_POLL */
6127
6128 static void napi_hash_add(struct napi_struct *napi)
6129 {
6130         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6131             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6132                 return;
6133
6134         spin_lock(&napi_hash_lock);
6135
6136         /* 0..NR_CPUS range is reserved for sender_cpu use */
6137         do {
6138                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6139                         napi_gen_id = MIN_NAPI_ID;
6140         } while (napi_by_id(napi_gen_id));
6141         napi->napi_id = napi_gen_id;
6142
6143         hlist_add_head_rcu(&napi->napi_hash_node,
6144                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6145
6146         spin_unlock(&napi_hash_lock);
6147 }
6148
6149 /* Warning : caller is responsible to make sure rcu grace period
6150  * is respected before freeing memory containing @napi
6151  */
6152 bool napi_hash_del(struct napi_struct *napi)
6153 {
6154         bool rcu_sync_needed = false;
6155
6156         spin_lock(&napi_hash_lock);
6157
6158         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6159                 rcu_sync_needed = true;
6160                 hlist_del_rcu(&napi->napi_hash_node);
6161         }
6162         spin_unlock(&napi_hash_lock);
6163         return rcu_sync_needed;
6164 }
6165 EXPORT_SYMBOL_GPL(napi_hash_del);
6166
6167 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6168 {
6169         struct napi_struct *napi;
6170
6171         napi = container_of(timer, struct napi_struct, timer);
6172
6173         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6174          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6175          */
6176         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6177             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6178                 __napi_schedule_irqoff(napi);
6179
6180         return HRTIMER_NORESTART;
6181 }
6182
6183 static void init_gro_hash(struct napi_struct *napi)
6184 {
6185         int i;
6186
6187         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6188                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6189                 napi->gro_hash[i].count = 0;
6190         }
6191         napi->gro_bitmask = 0;
6192 }
6193
6194 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6195                     int (*poll)(struct napi_struct *, int), int weight)
6196 {
6197         INIT_LIST_HEAD(&napi->poll_list);
6198         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6199         napi->timer.function = napi_watchdog;
6200         init_gro_hash(napi);
6201         napi->skb = NULL;
6202         napi->poll = poll;
6203         if (weight > NAPI_POLL_WEIGHT)
6204                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6205                             weight, dev->name);
6206         napi->weight = weight;
6207         napi->dev = dev;
6208 #ifdef CONFIG_NETPOLL
6209         napi->poll_owner = -1;
6210 #endif
6211         set_bit(NAPI_STATE_SCHED, &napi->state);
6212         set_bit(NAPI_STATE_NPSVC, &napi->state);
6213         list_add_rcu(&napi->dev_list, &dev->napi_list);
6214         napi_hash_add(napi);
6215 }
6216 EXPORT_SYMBOL(netif_napi_add);
6217
6218 void napi_disable(struct napi_struct *n)
6219 {
6220         might_sleep();
6221         set_bit(NAPI_STATE_DISABLE, &n->state);
6222
6223         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6224                 msleep(1);
6225         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6226                 msleep(1);
6227
6228         hrtimer_cancel(&n->timer);
6229
6230         clear_bit(NAPI_STATE_DISABLE, &n->state);
6231 }
6232 EXPORT_SYMBOL(napi_disable);
6233
6234 static void flush_gro_hash(struct napi_struct *napi)
6235 {
6236         int i;
6237
6238         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6239                 struct sk_buff *skb, *n;
6240
6241                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6242                         kfree_skb(skb);
6243                 napi->gro_hash[i].count = 0;
6244         }
6245 }
6246
6247 /* Must be called in process context */
6248 void netif_napi_del(struct napi_struct *napi)
6249 {
6250         might_sleep();
6251         if (napi_hash_del(napi))
6252                 synchronize_net();
6253         list_del_init(&napi->dev_list);
6254         napi_free_frags(napi);
6255
6256         flush_gro_hash(napi);
6257         napi->gro_bitmask = 0;
6258 }
6259 EXPORT_SYMBOL(netif_napi_del);
6260
6261 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6262 {
6263         void *have;
6264         int work, weight;
6265
6266         list_del_init(&n->poll_list);
6267
6268         have = netpoll_poll_lock(n);
6269
6270         weight = n->weight;
6271
6272         /* This NAPI_STATE_SCHED test is for avoiding a race
6273          * with netpoll's poll_napi().  Only the entity which
6274          * obtains the lock and sees NAPI_STATE_SCHED set will
6275          * actually make the ->poll() call.  Therefore we avoid
6276          * accidentally calling ->poll() when NAPI is not scheduled.
6277          */
6278         work = 0;
6279         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6280                 work = n->poll(n, weight);
6281                 trace_napi_poll(n, work, weight);
6282         }
6283
6284         WARN_ON_ONCE(work > weight);
6285
6286         if (likely(work < weight))
6287                 goto out_unlock;
6288
6289         /* Drivers must not modify the NAPI state if they
6290          * consume the entire weight.  In such cases this code
6291          * still "owns" the NAPI instance and therefore can
6292          * move the instance around on the list at-will.
6293          */
6294         if (unlikely(napi_disable_pending(n))) {
6295                 napi_complete(n);
6296                 goto out_unlock;
6297         }
6298
6299         if (n->gro_bitmask) {
6300                 /* flush too old packets
6301                  * If HZ < 1000, flush all packets.
6302                  */
6303                 napi_gro_flush(n, HZ >= 1000);
6304         }
6305
6306         /* Some drivers may have called napi_schedule
6307          * prior to exhausting their budget.
6308          */
6309         if (unlikely(!list_empty(&n->poll_list))) {
6310                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6311                              n->dev ? n->dev->name : "backlog");
6312                 goto out_unlock;
6313         }
6314
6315         list_add_tail(&n->poll_list, repoll);
6316
6317 out_unlock:
6318         netpoll_poll_unlock(have);
6319
6320         return work;
6321 }
6322
6323 static __latent_entropy void net_rx_action(struct softirq_action *h)
6324 {
6325         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6326         unsigned long time_limit = jiffies +
6327                 usecs_to_jiffies(netdev_budget_usecs);
6328         int budget = netdev_budget;
6329         LIST_HEAD(list);
6330         LIST_HEAD(repoll);
6331
6332         local_irq_disable();
6333         list_splice_init(&sd->poll_list, &list);
6334         local_irq_enable();
6335
6336         for (;;) {
6337                 struct napi_struct *n;
6338
6339                 if (list_empty(&list)) {
6340                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6341                                 goto out;
6342                         break;
6343                 }
6344
6345                 n = list_first_entry(&list, struct napi_struct, poll_list);
6346                 budget -= napi_poll(n, &repoll);
6347
6348                 /* If softirq window is exhausted then punt.
6349                  * Allow this to run for 2 jiffies since which will allow
6350                  * an average latency of 1.5/HZ.
6351                  */
6352                 if (unlikely(budget <= 0 ||
6353                              time_after_eq(jiffies, time_limit))) {
6354                         sd->time_squeeze++;
6355                         break;
6356                 }
6357         }
6358
6359         local_irq_disable();
6360
6361         list_splice_tail_init(&sd->poll_list, &list);
6362         list_splice_tail(&repoll, &list);
6363         list_splice(&list, &sd->poll_list);
6364         if (!list_empty(&sd->poll_list))
6365                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6366
6367         net_rps_action_and_irq_enable(sd);
6368 out:
6369         __kfree_skb_flush();
6370 }
6371
6372 struct netdev_adjacent {
6373         struct net_device *dev;
6374
6375         /* upper master flag, there can only be one master device per list */
6376         bool master;
6377
6378         /* counter for the number of times this device was added to us */
6379         u16 ref_nr;
6380
6381         /* private field for the users */
6382         void *private;
6383
6384         struct list_head list;
6385         struct rcu_head rcu;
6386 };
6387
6388 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6389                                                  struct list_head *adj_list)
6390 {
6391         struct netdev_adjacent *adj;
6392
6393         list_for_each_entry(adj, adj_list, list) {
6394                 if (adj->dev == adj_dev)
6395                         return adj;
6396         }
6397         return NULL;
6398 }
6399
6400 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6401 {
6402         struct net_device *dev = data;
6403
6404         return upper_dev == dev;
6405 }
6406
6407 /**
6408  * netdev_has_upper_dev - Check if device is linked to an upper device
6409  * @dev: device
6410  * @upper_dev: upper device to check
6411  *
6412  * Find out if a device is linked to specified upper device and return true
6413  * in case it is. Note that this checks only immediate upper device,
6414  * not through a complete stack of devices. The caller must hold the RTNL lock.
6415  */
6416 bool netdev_has_upper_dev(struct net_device *dev,
6417                           struct net_device *upper_dev)
6418 {
6419         ASSERT_RTNL();
6420
6421         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6422                                              upper_dev);
6423 }
6424 EXPORT_SYMBOL(netdev_has_upper_dev);
6425
6426 /**
6427  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6428  * @dev: device
6429  * @upper_dev: upper device to check
6430  *
6431  * Find out if a device is linked to specified upper device and return true
6432  * in case it is. Note that this checks the entire upper device chain.
6433  * The caller must hold rcu lock.
6434  */
6435
6436 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6437                                   struct net_device *upper_dev)
6438 {
6439         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6440                                                upper_dev);
6441 }
6442 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6443
6444 /**
6445  * netdev_has_any_upper_dev - Check if device is linked to some device
6446  * @dev: device
6447  *
6448  * Find out if a device is linked to an upper device and return true in case
6449  * it is. The caller must hold the RTNL lock.
6450  */
6451 bool netdev_has_any_upper_dev(struct net_device *dev)
6452 {
6453         ASSERT_RTNL();
6454
6455         return !list_empty(&dev->adj_list.upper);
6456 }
6457 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6458
6459 /**
6460  * netdev_master_upper_dev_get - Get master upper device
6461  * @dev: device
6462  *
6463  * Find a master upper device and return pointer to it or NULL in case
6464  * it's not there. The caller must hold the RTNL lock.
6465  */
6466 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6467 {
6468         struct netdev_adjacent *upper;
6469
6470         ASSERT_RTNL();
6471
6472         if (list_empty(&dev->adj_list.upper))
6473                 return NULL;
6474
6475         upper = list_first_entry(&dev->adj_list.upper,
6476                                  struct netdev_adjacent, list);
6477         if (likely(upper->master))
6478                 return upper->dev;
6479         return NULL;
6480 }
6481 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6482
6483 /**
6484  * netdev_has_any_lower_dev - Check if device is linked to some device
6485  * @dev: device
6486  *
6487  * Find out if a device is linked to a lower device and return true in case
6488  * it is. The caller must hold the RTNL lock.
6489  */
6490 static bool netdev_has_any_lower_dev(struct net_device *dev)
6491 {
6492         ASSERT_RTNL();
6493
6494         return !list_empty(&dev->adj_list.lower);
6495 }
6496
6497 void *netdev_adjacent_get_private(struct list_head *adj_list)
6498 {
6499         struct netdev_adjacent *adj;
6500
6501         adj = list_entry(adj_list, struct netdev_adjacent, list);
6502
6503         return adj->private;
6504 }
6505 EXPORT_SYMBOL(netdev_adjacent_get_private);
6506
6507 /**
6508  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6509  * @dev: device
6510  * @iter: list_head ** of the current position
6511  *
6512  * Gets the next device from the dev's upper list, starting from iter
6513  * position. The caller must hold RCU read lock.
6514  */
6515 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6516                                                  struct list_head **iter)
6517 {
6518         struct netdev_adjacent *upper;
6519
6520         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6521
6522         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6523
6524         if (&upper->list == &dev->adj_list.upper)
6525                 return NULL;
6526
6527         *iter = &upper->list;
6528
6529         return upper->dev;
6530 }
6531 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6532
6533 static struct net_device *netdev_next_upper_dev(struct net_device *dev,
6534                                                 struct list_head **iter)
6535 {
6536         struct netdev_adjacent *upper;
6537
6538         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6539
6540         if (&upper->list == &dev->adj_list.upper)
6541                 return NULL;
6542
6543         *iter = &upper->list;
6544
6545         return upper->dev;
6546 }
6547
6548 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6549                                                     struct list_head **iter)
6550 {
6551         struct netdev_adjacent *upper;
6552
6553         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6554
6555         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6556
6557         if (&upper->list == &dev->adj_list.upper)
6558                 return NULL;
6559
6560         *iter = &upper->list;
6561
6562         return upper->dev;
6563 }
6564
6565 static int netdev_walk_all_upper_dev(struct net_device *dev,
6566                                      int (*fn)(struct net_device *dev,
6567                                                void *data),
6568                                      void *data)
6569 {
6570         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6571         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6572         int ret, cur = 0;
6573
6574         now = dev;
6575         iter = &dev->adj_list.upper;
6576
6577         while (1) {
6578                 if (now != dev) {
6579                         ret = fn(now, data);
6580                         if (ret)
6581                                 return ret;
6582                 }
6583
6584                 next = NULL;
6585                 while (1) {
6586                         udev = netdev_next_upper_dev(now, &iter);
6587                         if (!udev)
6588                                 break;
6589
6590                         next = udev;
6591                         niter = &udev->adj_list.upper;
6592                         dev_stack[cur] = now;
6593                         iter_stack[cur++] = iter;
6594                         break;
6595                 }
6596
6597                 if (!next) {
6598                         if (!cur)
6599                                 return 0;
6600                         next = dev_stack[--cur];
6601                         niter = iter_stack[cur];
6602                 }
6603
6604                 now = next;
6605                 iter = niter;
6606         }
6607
6608         return 0;
6609 }
6610
6611 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6612                                   int (*fn)(struct net_device *dev,
6613                                             void *data),
6614                                   void *data)
6615 {
6616         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6617         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6618         int ret, cur = 0;
6619
6620         now = dev;
6621         iter = &dev->adj_list.upper;
6622
6623         while (1) {
6624                 if (now != dev) {
6625                         ret = fn(now, data);
6626                         if (ret)
6627                                 return ret;
6628                 }
6629
6630                 next = NULL;
6631                 while (1) {
6632                         udev = netdev_next_upper_dev_rcu(now, &iter);
6633                         if (!udev)
6634                                 break;
6635
6636                         next = udev;
6637                         niter = &udev->adj_list.upper;
6638                         dev_stack[cur] = now;
6639                         iter_stack[cur++] = iter;
6640                         break;
6641                 }
6642
6643                 if (!next) {
6644                         if (!cur)
6645                                 return 0;
6646                         next = dev_stack[--cur];
6647                         niter = iter_stack[cur];
6648                 }
6649
6650                 now = next;
6651                 iter = niter;
6652         }
6653
6654         return 0;
6655 }
6656 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6657
6658 /**
6659  * netdev_lower_get_next_private - Get the next ->private from the
6660  *                                 lower neighbour list
6661  * @dev: device
6662  * @iter: list_head ** of the current position
6663  *
6664  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6665  * list, starting from iter position. The caller must hold either hold the
6666  * RTNL lock or its own locking that guarantees that the neighbour lower
6667  * list will remain unchanged.
6668  */
6669 void *netdev_lower_get_next_private(struct net_device *dev,
6670                                     struct list_head **iter)
6671 {
6672         struct netdev_adjacent *lower;
6673
6674         lower = list_entry(*iter, struct netdev_adjacent, list);
6675
6676         if (&lower->list == &dev->adj_list.lower)
6677                 return NULL;
6678
6679         *iter = lower->list.next;
6680
6681         return lower->private;
6682 }
6683 EXPORT_SYMBOL(netdev_lower_get_next_private);
6684
6685 /**
6686  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6687  *                                     lower neighbour list, RCU
6688  *                                     variant
6689  * @dev: device
6690  * @iter: list_head ** of the current position
6691  *
6692  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6693  * list, starting from iter position. The caller must hold RCU read lock.
6694  */
6695 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6696                                         struct list_head **iter)
6697 {
6698         struct netdev_adjacent *lower;
6699
6700         WARN_ON_ONCE(!rcu_read_lock_held());
6701
6702         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6703
6704         if (&lower->list == &dev->adj_list.lower)
6705                 return NULL;
6706
6707         *iter = &lower->list;
6708
6709         return lower->private;
6710 }
6711 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6712
6713 /**
6714  * netdev_lower_get_next - Get the next device from the lower neighbour
6715  *                         list
6716  * @dev: device
6717  * @iter: list_head ** of the current position
6718  *
6719  * Gets the next netdev_adjacent from the dev's lower neighbour
6720  * list, starting from iter position. The caller must hold RTNL lock or
6721  * its own locking that guarantees that the neighbour lower
6722  * list will remain unchanged.
6723  */
6724 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6725 {
6726         struct netdev_adjacent *lower;
6727
6728         lower = list_entry(*iter, struct netdev_adjacent, list);
6729
6730         if (&lower->list == &dev->adj_list.lower)
6731                 return NULL;
6732
6733         *iter = lower->list.next;
6734
6735         return lower->dev;
6736 }
6737 EXPORT_SYMBOL(netdev_lower_get_next);
6738
6739 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6740                                                 struct list_head **iter)
6741 {
6742         struct netdev_adjacent *lower;
6743
6744         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6745
6746         if (&lower->list == &dev->adj_list.lower)
6747                 return NULL;
6748
6749         *iter = &lower->list;
6750
6751         return lower->dev;
6752 }
6753
6754 int netdev_walk_all_lower_dev(struct net_device *dev,
6755                               int (*fn)(struct net_device *dev,
6756                                         void *data),
6757                               void *data)
6758 {
6759         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6760         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6761         int ret, cur = 0;
6762
6763         now = dev;
6764         iter = &dev->adj_list.lower;
6765
6766         while (1) {
6767                 if (now != dev) {
6768                         ret = fn(now, data);
6769                         if (ret)
6770                                 return ret;
6771                 }
6772
6773                 next = NULL;
6774                 while (1) {
6775                         ldev = netdev_next_lower_dev(now, &iter);
6776                         if (!ldev)
6777                                 break;
6778
6779                         next = ldev;
6780                         niter = &ldev->adj_list.lower;
6781                         dev_stack[cur] = now;
6782                         iter_stack[cur++] = iter;
6783                         break;
6784                 }
6785
6786                 if (!next) {
6787                         if (!cur)
6788                                 return 0;
6789                         next = dev_stack[--cur];
6790                         niter = iter_stack[cur];
6791                 }
6792
6793                 now = next;
6794                 iter = niter;
6795         }
6796
6797         return 0;
6798 }
6799 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6800
6801 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6802                                                     struct list_head **iter)
6803 {
6804         struct netdev_adjacent *lower;
6805
6806         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6807         if (&lower->list == &dev->adj_list.lower)
6808                 return NULL;
6809
6810         *iter = &lower->list;
6811
6812         return lower->dev;
6813 }
6814
6815 static u8 __netdev_upper_depth(struct net_device *dev)
6816 {
6817         struct net_device *udev;
6818         struct list_head *iter;
6819         u8 max_depth = 0;
6820
6821         for (iter = &dev->adj_list.upper,
6822              udev = netdev_next_upper_dev(dev, &iter);
6823              udev;
6824              udev = netdev_next_upper_dev(dev, &iter)) {
6825                 if (max_depth < udev->upper_level)
6826                         max_depth = udev->upper_level;
6827         }
6828
6829         return max_depth;
6830 }
6831
6832 static u8 __netdev_lower_depth(struct net_device *dev)
6833 {
6834         struct net_device *ldev;
6835         struct list_head *iter;
6836         u8 max_depth = 0;
6837
6838         for (iter = &dev->adj_list.lower,
6839              ldev = netdev_next_lower_dev(dev, &iter);
6840              ldev;
6841              ldev = netdev_next_lower_dev(dev, &iter)) {
6842                 if (max_depth < ldev->lower_level)
6843                         max_depth = ldev->lower_level;
6844         }
6845
6846         return max_depth;
6847 }
6848
6849 static int __netdev_update_upper_level(struct net_device *dev, void *data)
6850 {
6851         dev->upper_level = __netdev_upper_depth(dev) + 1;
6852         return 0;
6853 }
6854
6855 static int __netdev_update_lower_level(struct net_device *dev, void *data)
6856 {
6857         dev->lower_level = __netdev_lower_depth(dev) + 1;
6858         return 0;
6859 }
6860
6861 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6862                                   int (*fn)(struct net_device *dev,
6863                                             void *data),
6864                                   void *data)
6865 {
6866         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6867         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6868         int ret, cur = 0;
6869
6870         now = dev;
6871         iter = &dev->adj_list.lower;
6872
6873         while (1) {
6874                 if (now != dev) {
6875                         ret = fn(now, data);
6876                         if (ret)
6877                                 return ret;
6878                 }
6879
6880                 next = NULL;
6881                 while (1) {
6882                         ldev = netdev_next_lower_dev_rcu(now, &iter);
6883                         if (!ldev)
6884                                 break;
6885
6886                         next = ldev;
6887                         niter = &ldev->adj_list.lower;
6888                         dev_stack[cur] = now;
6889                         iter_stack[cur++] = iter;
6890                         break;
6891                 }
6892
6893                 if (!next) {
6894                         if (!cur)
6895                                 return 0;
6896                         next = dev_stack[--cur];
6897                         niter = iter_stack[cur];
6898                 }
6899
6900                 now = next;
6901                 iter = niter;
6902         }
6903
6904         return 0;
6905 }
6906 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6907
6908 /**
6909  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6910  *                                     lower neighbour list, RCU
6911  *                                     variant
6912  * @dev: device
6913  *
6914  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6915  * list. The caller must hold RCU read lock.
6916  */
6917 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6918 {
6919         struct netdev_adjacent *lower;
6920
6921         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6922                         struct netdev_adjacent, list);
6923         if (lower)
6924                 return lower->private;
6925         return NULL;
6926 }
6927 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6928
6929 /**
6930  * netdev_master_upper_dev_get_rcu - Get master upper device
6931  * @dev: device
6932  *
6933  * Find a master upper device and return pointer to it or NULL in case
6934  * it's not there. The caller must hold the RCU read lock.
6935  */
6936 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6937 {
6938         struct netdev_adjacent *upper;
6939
6940         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6941                                        struct netdev_adjacent, list);
6942         if (upper && likely(upper->master))
6943                 return upper->dev;
6944         return NULL;
6945 }
6946 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6947
6948 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6949                               struct net_device *adj_dev,
6950                               struct list_head *dev_list)
6951 {
6952         char linkname[IFNAMSIZ+7];
6953
6954         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6955                 "upper_%s" : "lower_%s", adj_dev->name);
6956         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6957                                  linkname);
6958 }
6959 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6960                                char *name,
6961                                struct list_head *dev_list)
6962 {
6963         char linkname[IFNAMSIZ+7];
6964
6965         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6966                 "upper_%s" : "lower_%s", name);
6967         sysfs_remove_link(&(dev->dev.kobj), linkname);
6968 }
6969
6970 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6971                                                  struct net_device *adj_dev,
6972                                                  struct list_head *dev_list)
6973 {
6974         return (dev_list == &dev->adj_list.upper ||
6975                 dev_list == &dev->adj_list.lower) &&
6976                 net_eq(dev_net(dev), dev_net(adj_dev));
6977 }
6978
6979 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6980                                         struct net_device *adj_dev,
6981                                         struct list_head *dev_list,
6982                                         void *private, bool master)
6983 {
6984         struct netdev_adjacent *adj;
6985         int ret;
6986
6987         adj = __netdev_find_adj(adj_dev, dev_list);
6988
6989         if (adj) {
6990                 adj->ref_nr += 1;
6991                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6992                          dev->name, adj_dev->name, adj->ref_nr);
6993
6994                 return 0;
6995         }
6996
6997         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6998         if (!adj)
6999                 return -ENOMEM;
7000
7001         adj->dev = adj_dev;
7002         adj->master = master;
7003         adj->ref_nr = 1;
7004         adj->private = private;
7005         dev_hold(adj_dev);
7006
7007         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7008                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7009
7010         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7011                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7012                 if (ret)
7013                         goto free_adj;
7014         }
7015
7016         /* Ensure that master link is always the first item in list. */
7017         if (master) {
7018                 ret = sysfs_create_link(&(dev->dev.kobj),
7019                                         &(adj_dev->dev.kobj), "master");
7020                 if (ret)
7021                         goto remove_symlinks;
7022
7023                 list_add_rcu(&adj->list, dev_list);
7024         } else {
7025                 list_add_tail_rcu(&adj->list, dev_list);
7026         }
7027
7028         return 0;
7029
7030 remove_symlinks:
7031         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7032                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7033 free_adj:
7034         kfree(adj);
7035         dev_put(adj_dev);
7036
7037         return ret;
7038 }
7039
7040 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7041                                          struct net_device *adj_dev,
7042                                          u16 ref_nr,
7043                                          struct list_head *dev_list)
7044 {
7045         struct netdev_adjacent *adj;
7046
7047         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7048                  dev->name, adj_dev->name, ref_nr);
7049
7050         adj = __netdev_find_adj(adj_dev, dev_list);
7051
7052         if (!adj) {
7053                 pr_err("Adjacency does not exist for device %s from %s\n",
7054                        dev->name, adj_dev->name);
7055                 WARN_ON(1);
7056                 return;
7057         }
7058
7059         if (adj->ref_nr > ref_nr) {
7060                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7061                          dev->name, adj_dev->name, ref_nr,
7062                          adj->ref_nr - ref_nr);
7063                 adj->ref_nr -= ref_nr;
7064                 return;
7065         }
7066
7067         if (adj->master)
7068                 sysfs_remove_link(&(dev->dev.kobj), "master");
7069
7070         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7071                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7072
7073         list_del_rcu(&adj->list);
7074         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7075                  adj_dev->name, dev->name, adj_dev->name);
7076         dev_put(adj_dev);
7077         kfree_rcu(adj, rcu);
7078 }
7079
7080 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7081                                             struct net_device *upper_dev,
7082                                             struct list_head *up_list,
7083                                             struct list_head *down_list,
7084                                             void *private, bool master)
7085 {
7086         int ret;
7087
7088         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7089                                            private, master);
7090         if (ret)
7091                 return ret;
7092
7093         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7094                                            private, false);
7095         if (ret) {
7096                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7097                 return ret;
7098         }
7099
7100         return 0;
7101 }
7102
7103 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7104                                                struct net_device *upper_dev,
7105                                                u16 ref_nr,
7106                                                struct list_head *up_list,
7107                                                struct list_head *down_list)
7108 {
7109         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7110         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7111 }
7112
7113 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7114                                                 struct net_device *upper_dev,
7115                                                 void *private, bool master)
7116 {
7117         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7118                                                 &dev->adj_list.upper,
7119                                                 &upper_dev->adj_list.lower,
7120                                                 private, master);
7121 }
7122
7123 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7124                                                    struct net_device *upper_dev)
7125 {
7126         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7127                                            &dev->adj_list.upper,
7128                                            &upper_dev->adj_list.lower);
7129 }
7130
7131 static int __netdev_upper_dev_link(struct net_device *dev,
7132                                    struct net_device *upper_dev, bool master,
7133                                    void *upper_priv, void *upper_info,
7134                                    struct netlink_ext_ack *extack)
7135 {
7136         struct netdev_notifier_changeupper_info changeupper_info = {
7137                 .info = {
7138                         .dev = dev,
7139                         .extack = extack,
7140                 },
7141                 .upper_dev = upper_dev,
7142                 .master = master,
7143                 .linking = true,
7144                 .upper_info = upper_info,
7145         };
7146         struct net_device *master_dev;
7147         int ret = 0;
7148
7149         ASSERT_RTNL();
7150
7151         if (dev == upper_dev)
7152                 return -EBUSY;
7153
7154         /* To prevent loops, check if dev is not upper device to upper_dev. */
7155         if (netdev_has_upper_dev(upper_dev, dev))
7156                 return -EBUSY;
7157
7158         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7159                 return -EMLINK;
7160
7161         if (!master) {
7162                 if (netdev_has_upper_dev(dev, upper_dev))
7163                         return -EEXIST;
7164         } else {
7165                 master_dev = netdev_master_upper_dev_get(dev);
7166                 if (master_dev)
7167                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7168         }
7169
7170         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7171                                             &changeupper_info.info);
7172         ret = notifier_to_errno(ret);
7173         if (ret)
7174                 return ret;
7175
7176         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7177                                                    master);
7178         if (ret)
7179                 return ret;
7180
7181         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7182                                             &changeupper_info.info);
7183         ret = notifier_to_errno(ret);
7184         if (ret)
7185                 goto rollback;
7186
7187         __netdev_update_upper_level(dev, NULL);
7188         netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7189
7190         __netdev_update_lower_level(upper_dev, NULL);
7191         netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7192
7193         return 0;
7194
7195 rollback:
7196         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7197
7198         return ret;
7199 }
7200
7201 /**
7202  * netdev_upper_dev_link - Add a link to the upper device
7203  * @dev: device
7204  * @upper_dev: new upper device
7205  * @extack: netlink extended ack
7206  *
7207  * Adds a link to device which is upper to this one. The caller must hold
7208  * the RTNL lock. On a failure a negative errno code is returned.
7209  * On success the reference counts are adjusted and the function
7210  * returns zero.
7211  */
7212 int netdev_upper_dev_link(struct net_device *dev,
7213                           struct net_device *upper_dev,
7214                           struct netlink_ext_ack *extack)
7215 {
7216         return __netdev_upper_dev_link(dev, upper_dev, false,
7217                                        NULL, NULL, extack);
7218 }
7219 EXPORT_SYMBOL(netdev_upper_dev_link);
7220
7221 /**
7222  * netdev_master_upper_dev_link - Add a master link to the upper device
7223  * @dev: device
7224  * @upper_dev: new upper device
7225  * @upper_priv: upper device private
7226  * @upper_info: upper info to be passed down via notifier
7227  * @extack: netlink extended ack
7228  *
7229  * Adds a link to device which is upper to this one. In this case, only
7230  * one master upper device can be linked, although other non-master devices
7231  * might be linked as well. The caller must hold the RTNL lock.
7232  * On a failure a negative errno code is returned. On success the reference
7233  * counts are adjusted and the function returns zero.
7234  */
7235 int netdev_master_upper_dev_link(struct net_device *dev,
7236                                  struct net_device *upper_dev,
7237                                  void *upper_priv, void *upper_info,
7238                                  struct netlink_ext_ack *extack)
7239 {
7240         return __netdev_upper_dev_link(dev, upper_dev, true,
7241                                        upper_priv, upper_info, extack);
7242 }
7243 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7244
7245 /**
7246  * netdev_upper_dev_unlink - Removes a link to upper device
7247  * @dev: device
7248  * @upper_dev: new upper device
7249  *
7250  * Removes a link to device which is upper to this one. The caller must hold
7251  * the RTNL lock.
7252  */
7253 void netdev_upper_dev_unlink(struct net_device *dev,
7254                              struct net_device *upper_dev)
7255 {
7256         struct netdev_notifier_changeupper_info changeupper_info = {
7257                 .info = {
7258                         .dev = dev,
7259                 },
7260                 .upper_dev = upper_dev,
7261                 .linking = false,
7262         };
7263
7264         ASSERT_RTNL();
7265
7266         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7267
7268         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7269                                       &changeupper_info.info);
7270
7271         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7272
7273         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7274                                       &changeupper_info.info);
7275
7276         __netdev_update_upper_level(dev, NULL);
7277         netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7278
7279         __netdev_update_lower_level(upper_dev, NULL);
7280         netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7281 }
7282 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7283
7284 /**
7285  * netdev_bonding_info_change - Dispatch event about slave change
7286  * @dev: device
7287  * @bonding_info: info to dispatch
7288  *
7289  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7290  * The caller must hold the RTNL lock.
7291  */
7292 void netdev_bonding_info_change(struct net_device *dev,
7293                                 struct netdev_bonding_info *bonding_info)
7294 {
7295         struct netdev_notifier_bonding_info info = {
7296                 .info.dev = dev,
7297         };
7298
7299         memcpy(&info.bonding_info, bonding_info,
7300                sizeof(struct netdev_bonding_info));
7301         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7302                                       &info.info);
7303 }
7304 EXPORT_SYMBOL(netdev_bonding_info_change);
7305
7306 static void netdev_adjacent_add_links(struct net_device *dev)
7307 {
7308         struct netdev_adjacent *iter;
7309
7310         struct net *net = dev_net(dev);
7311
7312         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7313                 if (!net_eq(net, dev_net(iter->dev)))
7314                         continue;
7315                 netdev_adjacent_sysfs_add(iter->dev, dev,
7316                                           &iter->dev->adj_list.lower);
7317                 netdev_adjacent_sysfs_add(dev, iter->dev,
7318                                           &dev->adj_list.upper);
7319         }
7320
7321         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7322                 if (!net_eq(net, dev_net(iter->dev)))
7323                         continue;
7324                 netdev_adjacent_sysfs_add(iter->dev, dev,
7325                                           &iter->dev->adj_list.upper);
7326                 netdev_adjacent_sysfs_add(dev, iter->dev,
7327                                           &dev->adj_list.lower);
7328         }
7329 }
7330
7331 static void netdev_adjacent_del_links(struct net_device *dev)
7332 {
7333         struct netdev_adjacent *iter;
7334
7335         struct net *net = dev_net(dev);
7336
7337         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7338                 if (!net_eq(net, dev_net(iter->dev)))
7339                         continue;
7340                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7341                                           &iter->dev->adj_list.lower);
7342                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7343                                           &dev->adj_list.upper);
7344         }
7345
7346         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7347                 if (!net_eq(net, dev_net(iter->dev)))
7348                         continue;
7349                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7350                                           &iter->dev->adj_list.upper);
7351                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7352                                           &dev->adj_list.lower);
7353         }
7354 }
7355
7356 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7357 {
7358         struct netdev_adjacent *iter;
7359
7360         struct net *net = dev_net(dev);
7361
7362         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7363                 if (!net_eq(net, dev_net(iter->dev)))
7364                         continue;
7365                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7366                                           &iter->dev->adj_list.lower);
7367                 netdev_adjacent_sysfs_add(iter->dev, dev,
7368                                           &iter->dev->adj_list.lower);
7369         }
7370
7371         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7372                 if (!net_eq(net, dev_net(iter->dev)))
7373                         continue;
7374                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7375                                           &iter->dev->adj_list.upper);
7376                 netdev_adjacent_sysfs_add(iter->dev, dev,
7377                                           &iter->dev->adj_list.upper);
7378         }
7379 }
7380
7381 void *netdev_lower_dev_get_private(struct net_device *dev,
7382                                    struct net_device *lower_dev)
7383 {
7384         struct netdev_adjacent *lower;
7385
7386         if (!lower_dev)
7387                 return NULL;
7388         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7389         if (!lower)
7390                 return NULL;
7391
7392         return lower->private;
7393 }
7394 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7395
7396
7397 int dev_get_nest_level(struct net_device *dev)
7398 {
7399         struct net_device *lower = NULL;
7400         struct list_head *iter;
7401         int max_nest = -1;
7402         int nest;
7403
7404         ASSERT_RTNL();
7405
7406         netdev_for_each_lower_dev(dev, lower, iter) {
7407                 nest = dev_get_nest_level(lower);
7408                 if (max_nest < nest)
7409                         max_nest = nest;
7410         }
7411
7412         return max_nest + 1;
7413 }
7414 EXPORT_SYMBOL(dev_get_nest_level);
7415
7416 /**
7417  * netdev_lower_change - Dispatch event about lower device state change
7418  * @lower_dev: device
7419  * @lower_state_info: state to dispatch
7420  *
7421  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7422  * The caller must hold the RTNL lock.
7423  */
7424 void netdev_lower_state_changed(struct net_device *lower_dev,
7425                                 void *lower_state_info)
7426 {
7427         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7428                 .info.dev = lower_dev,
7429         };
7430
7431         ASSERT_RTNL();
7432         changelowerstate_info.lower_state_info = lower_state_info;
7433         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7434                                       &changelowerstate_info.info);
7435 }
7436 EXPORT_SYMBOL(netdev_lower_state_changed);
7437
7438 static void dev_change_rx_flags(struct net_device *dev, int flags)
7439 {
7440         const struct net_device_ops *ops = dev->netdev_ops;
7441
7442         if (ops->ndo_change_rx_flags)
7443                 ops->ndo_change_rx_flags(dev, flags);
7444 }
7445
7446 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7447 {
7448         unsigned int old_flags = dev->flags;
7449         kuid_t uid;
7450         kgid_t gid;
7451
7452         ASSERT_RTNL();
7453
7454         dev->flags |= IFF_PROMISC;
7455         dev->promiscuity += inc;
7456         if (dev->promiscuity == 0) {
7457                 /*
7458                  * Avoid overflow.
7459                  * If inc causes overflow, untouch promisc and return error.
7460                  */
7461                 if (inc < 0)
7462                         dev->flags &= ~IFF_PROMISC;
7463                 else {
7464                         dev->promiscuity -= inc;
7465                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7466                                 dev->name);
7467                         return -EOVERFLOW;
7468                 }
7469         }
7470         if (dev->flags != old_flags) {
7471                 pr_info("device %s %s promiscuous mode\n",
7472                         dev->name,
7473                         dev->flags & IFF_PROMISC ? "entered" : "left");
7474                 if (audit_enabled) {
7475                         current_uid_gid(&uid, &gid);
7476                         audit_log(audit_context(), GFP_ATOMIC,
7477                                   AUDIT_ANOM_PROMISCUOUS,
7478                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7479                                   dev->name, (dev->flags & IFF_PROMISC),
7480                                   (old_flags & IFF_PROMISC),
7481                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7482                                   from_kuid(&init_user_ns, uid),
7483                                   from_kgid(&init_user_ns, gid),
7484                                   audit_get_sessionid(current));
7485                 }
7486
7487                 dev_change_rx_flags(dev, IFF_PROMISC);
7488         }
7489         if (notify)
7490                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7491         return 0;
7492 }
7493
7494 /**
7495  *      dev_set_promiscuity     - update promiscuity count on a device
7496  *      @dev: device
7497  *      @inc: modifier
7498  *
7499  *      Add or remove promiscuity from a device. While the count in the device
7500  *      remains above zero the interface remains promiscuous. Once it hits zero
7501  *      the device reverts back to normal filtering operation. A negative inc
7502  *      value is used to drop promiscuity on the device.
7503  *      Return 0 if successful or a negative errno code on error.
7504  */
7505 int dev_set_promiscuity(struct net_device *dev, int inc)
7506 {
7507         unsigned int old_flags = dev->flags;
7508         int err;
7509
7510         err = __dev_set_promiscuity(dev, inc, true);
7511         if (err < 0)
7512                 return err;
7513         if (dev->flags != old_flags)
7514                 dev_set_rx_mode(dev);
7515         return err;
7516 }
7517 EXPORT_SYMBOL(dev_set_promiscuity);
7518
7519 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7520 {
7521         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7522
7523         ASSERT_RTNL();
7524
7525         dev->flags |= IFF_ALLMULTI;
7526         dev->allmulti += inc;
7527         if (dev->allmulti == 0) {
7528                 /*
7529                  * Avoid overflow.
7530                  * If inc causes overflow, untouch allmulti and return error.
7531                  */
7532                 if (inc < 0)
7533                         dev->flags &= ~IFF_ALLMULTI;
7534                 else {
7535                         dev->allmulti -= inc;
7536                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7537                                 dev->name);
7538                         return -EOVERFLOW;
7539                 }
7540         }
7541         if (dev->flags ^ old_flags) {
7542                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7543                 dev_set_rx_mode(dev);
7544                 if (notify)
7545                         __dev_notify_flags(dev, old_flags,
7546                                            dev->gflags ^ old_gflags);
7547         }
7548         return 0;
7549 }
7550
7551 /**
7552  *      dev_set_allmulti        - update allmulti count on a device
7553  *      @dev: device
7554  *      @inc: modifier
7555  *
7556  *      Add or remove reception of all multicast frames to a device. While the
7557  *      count in the device remains above zero the interface remains listening
7558  *      to all interfaces. Once it hits zero the device reverts back to normal
7559  *      filtering operation. A negative @inc value is used to drop the counter
7560  *      when releasing a resource needing all multicasts.
7561  *      Return 0 if successful or a negative errno code on error.
7562  */
7563
7564 int dev_set_allmulti(struct net_device *dev, int inc)
7565 {
7566         return __dev_set_allmulti(dev, inc, true);
7567 }
7568 EXPORT_SYMBOL(dev_set_allmulti);
7569
7570 /*
7571  *      Upload unicast and multicast address lists to device and
7572  *      configure RX filtering. When the device doesn't support unicast
7573  *      filtering it is put in promiscuous mode while unicast addresses
7574  *      are present.
7575  */
7576 void __dev_set_rx_mode(struct net_device *dev)
7577 {
7578         const struct net_device_ops *ops = dev->netdev_ops;
7579
7580         /* dev_open will call this function so the list will stay sane. */
7581         if (!(dev->flags&IFF_UP))
7582                 return;
7583
7584         if (!netif_device_present(dev))
7585                 return;
7586
7587         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7588                 /* Unicast addresses changes may only happen under the rtnl,
7589                  * therefore calling __dev_set_promiscuity here is safe.
7590                  */
7591                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7592                         __dev_set_promiscuity(dev, 1, false);
7593                         dev->uc_promisc = true;
7594                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7595                         __dev_set_promiscuity(dev, -1, false);
7596                         dev->uc_promisc = false;
7597                 }
7598         }
7599
7600         if (ops->ndo_set_rx_mode)
7601                 ops->ndo_set_rx_mode(dev);
7602 }
7603
7604 void dev_set_rx_mode(struct net_device *dev)
7605 {
7606         netif_addr_lock_bh(dev);
7607         __dev_set_rx_mode(dev);
7608         netif_addr_unlock_bh(dev);
7609 }
7610
7611 /**
7612  *      dev_get_flags - get flags reported to userspace
7613  *      @dev: device
7614  *
7615  *      Get the combination of flag bits exported through APIs to userspace.
7616  */
7617 unsigned int dev_get_flags(const struct net_device *dev)
7618 {
7619         unsigned int flags;
7620
7621         flags = (dev->flags & ~(IFF_PROMISC |
7622                                 IFF_ALLMULTI |
7623                                 IFF_RUNNING |
7624                                 IFF_LOWER_UP |
7625                                 IFF_DORMANT)) |
7626                 (dev->gflags & (IFF_PROMISC |
7627                                 IFF_ALLMULTI));
7628
7629         if (netif_running(dev)) {
7630                 if (netif_oper_up(dev))
7631                         flags |= IFF_RUNNING;
7632                 if (netif_carrier_ok(dev))
7633                         flags |= IFF_LOWER_UP;
7634                 if (netif_dormant(dev))
7635                         flags |= IFF_DORMANT;
7636         }
7637
7638         return flags;
7639 }
7640 EXPORT_SYMBOL(dev_get_flags);
7641
7642 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7643 {
7644         unsigned int old_flags = dev->flags;
7645         int ret;
7646
7647         ASSERT_RTNL();
7648
7649         /*
7650          *      Set the flags on our device.
7651          */
7652
7653         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7654                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7655                                IFF_AUTOMEDIA)) |
7656                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7657                                     IFF_ALLMULTI));
7658
7659         /*
7660          *      Load in the correct multicast list now the flags have changed.
7661          */
7662
7663         if ((old_flags ^ flags) & IFF_MULTICAST)
7664                 dev_change_rx_flags(dev, IFF_MULTICAST);
7665
7666         dev_set_rx_mode(dev);
7667
7668         /*
7669          *      Have we downed the interface. We handle IFF_UP ourselves
7670          *      according to user attempts to set it, rather than blindly
7671          *      setting it.
7672          */
7673
7674         ret = 0;
7675         if ((old_flags ^ flags) & IFF_UP) {
7676                 if (old_flags & IFF_UP)
7677                         __dev_close(dev);
7678                 else
7679                         ret = __dev_open(dev);
7680         }
7681
7682         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7683                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7684                 unsigned int old_flags = dev->flags;
7685
7686                 dev->gflags ^= IFF_PROMISC;
7687
7688                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7689                         if (dev->flags != old_flags)
7690                                 dev_set_rx_mode(dev);
7691         }
7692
7693         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7694          * is important. Some (broken) drivers set IFF_PROMISC, when
7695          * IFF_ALLMULTI is requested not asking us and not reporting.
7696          */
7697         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7698                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7699
7700                 dev->gflags ^= IFF_ALLMULTI;
7701                 __dev_set_allmulti(dev, inc, false);
7702         }
7703
7704         return ret;
7705 }
7706
7707 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7708                         unsigned int gchanges)
7709 {
7710         unsigned int changes = dev->flags ^ old_flags;
7711
7712         if (gchanges)
7713                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7714
7715         if (changes & IFF_UP) {
7716                 if (dev->flags & IFF_UP)
7717                         call_netdevice_notifiers(NETDEV_UP, dev);
7718                 else
7719                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7720         }
7721
7722         if (dev->flags & IFF_UP &&
7723             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7724                 struct netdev_notifier_change_info change_info = {
7725                         .info = {
7726                                 .dev = dev,
7727                         },
7728                         .flags_changed = changes,
7729                 };
7730
7731                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7732         }
7733 }
7734
7735 /**
7736  *      dev_change_flags - change device settings
7737  *      @dev: device
7738  *      @flags: device state flags
7739  *
7740  *      Change settings on device based state flags. The flags are
7741  *      in the userspace exported format.
7742  */
7743 int dev_change_flags(struct net_device *dev, unsigned int flags)
7744 {
7745         int ret;
7746         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7747
7748         ret = __dev_change_flags(dev, flags);
7749         if (ret < 0)
7750                 return ret;
7751
7752         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7753         __dev_notify_flags(dev, old_flags, changes);
7754         return ret;
7755 }
7756 EXPORT_SYMBOL(dev_change_flags);
7757
7758 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7759 {
7760         const struct net_device_ops *ops = dev->netdev_ops;
7761
7762         if (ops->ndo_change_mtu)
7763                 return ops->ndo_change_mtu(dev, new_mtu);
7764
7765         /* Pairs with all the lockless reads of dev->mtu in the stack */
7766         WRITE_ONCE(dev->mtu, new_mtu);
7767         return 0;
7768 }
7769 EXPORT_SYMBOL(__dev_set_mtu);
7770
7771 int dev_validate_mtu(struct net_device *dev, int new_mtu,
7772                      struct netlink_ext_ack *extack)
7773 {
7774         /* MTU must be positive, and in range */
7775         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7776                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7777                 return -EINVAL;
7778         }
7779
7780         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7781                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7782                 return -EINVAL;
7783         }
7784         return 0;
7785 }
7786
7787 /**
7788  *      dev_set_mtu_ext - Change maximum transfer unit
7789  *      @dev: device
7790  *      @new_mtu: new transfer unit
7791  *      @extack: netlink extended ack
7792  *
7793  *      Change the maximum transfer size of the network device.
7794  */
7795 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7796                     struct netlink_ext_ack *extack)
7797 {
7798         int err, orig_mtu;
7799
7800         if (new_mtu == dev->mtu)
7801                 return 0;
7802
7803         err = dev_validate_mtu(dev, new_mtu, extack);
7804         if (err)
7805                 return err;
7806
7807         if (!netif_device_present(dev))
7808                 return -ENODEV;
7809
7810         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7811         err = notifier_to_errno(err);
7812         if (err)
7813                 return err;
7814
7815         orig_mtu = dev->mtu;
7816         err = __dev_set_mtu(dev, new_mtu);
7817
7818         if (!err) {
7819                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7820                                                    orig_mtu);
7821                 err = notifier_to_errno(err);
7822                 if (err) {
7823                         /* setting mtu back and notifying everyone again,
7824                          * so that they have a chance to revert changes.
7825                          */
7826                         __dev_set_mtu(dev, orig_mtu);
7827                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7828                                                      new_mtu);
7829                 }
7830         }
7831         return err;
7832 }
7833
7834 int dev_set_mtu(struct net_device *dev, int new_mtu)
7835 {
7836         struct netlink_ext_ack extack;
7837         int err;
7838
7839         memset(&extack, 0, sizeof(extack));
7840         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7841         if (err && extack._msg)
7842                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7843         return err;
7844 }
7845 EXPORT_SYMBOL(dev_set_mtu);
7846
7847 /**
7848  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7849  *      @dev: device
7850  *      @new_len: new tx queue length
7851  */
7852 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7853 {
7854         unsigned int orig_len = dev->tx_queue_len;
7855         int res;
7856
7857         if (new_len != (unsigned int)new_len)
7858                 return -ERANGE;
7859
7860         if (new_len != orig_len) {
7861                 dev->tx_queue_len = new_len;
7862                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7863                 res = notifier_to_errno(res);
7864                 if (res)
7865                         goto err_rollback;
7866                 res = dev_qdisc_change_tx_queue_len(dev);
7867                 if (res)
7868                         goto err_rollback;
7869         }
7870
7871         return 0;
7872
7873 err_rollback:
7874         netdev_err(dev, "refused to change device tx_queue_len\n");
7875         dev->tx_queue_len = orig_len;
7876         return res;
7877 }
7878
7879 /**
7880  *      dev_set_group - Change group this device belongs to
7881  *      @dev: device
7882  *      @new_group: group this device should belong to
7883  */
7884 void dev_set_group(struct net_device *dev, int new_group)
7885 {
7886         dev->group = new_group;
7887 }
7888 EXPORT_SYMBOL(dev_set_group);
7889
7890 /**
7891  *      dev_set_mac_address - Change Media Access Control Address
7892  *      @dev: device
7893  *      @sa: new address
7894  *
7895  *      Change the hardware (MAC) address of the device
7896  */
7897 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7898 {
7899         const struct net_device_ops *ops = dev->netdev_ops;
7900         int err;
7901
7902         if (!ops->ndo_set_mac_address)
7903                 return -EOPNOTSUPP;
7904         if (sa->sa_family != dev->type)
7905                 return -EINVAL;
7906         if (!netif_device_present(dev))
7907                 return -ENODEV;
7908         err = ops->ndo_set_mac_address(dev, sa);
7909         if (err)
7910                 return err;
7911         dev->addr_assign_type = NET_ADDR_SET;
7912         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7913         add_device_randomness(dev->dev_addr, dev->addr_len);
7914         return 0;
7915 }
7916 EXPORT_SYMBOL(dev_set_mac_address);
7917
7918 /**
7919  *      dev_change_carrier - Change device carrier
7920  *      @dev: device
7921  *      @new_carrier: new value
7922  *
7923  *      Change device carrier
7924  */
7925 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7926 {
7927         const struct net_device_ops *ops = dev->netdev_ops;
7928
7929         if (!ops->ndo_change_carrier)
7930                 return -EOPNOTSUPP;
7931         if (!netif_device_present(dev))
7932                 return -ENODEV;
7933         return ops->ndo_change_carrier(dev, new_carrier);
7934 }
7935 EXPORT_SYMBOL(dev_change_carrier);
7936
7937 /**
7938  *      dev_get_phys_port_id - Get device physical port ID
7939  *      @dev: device
7940  *      @ppid: port ID
7941  *
7942  *      Get device physical port ID
7943  */
7944 int dev_get_phys_port_id(struct net_device *dev,
7945                          struct netdev_phys_item_id *ppid)
7946 {
7947         const struct net_device_ops *ops = dev->netdev_ops;
7948
7949         if (!ops->ndo_get_phys_port_id)
7950                 return -EOPNOTSUPP;
7951         return ops->ndo_get_phys_port_id(dev, ppid);
7952 }
7953 EXPORT_SYMBOL(dev_get_phys_port_id);
7954
7955 /**
7956  *      dev_get_phys_port_name - Get device physical port name
7957  *      @dev: device
7958  *      @name: port name
7959  *      @len: limit of bytes to copy to name
7960  *
7961  *      Get device physical port name
7962  */
7963 int dev_get_phys_port_name(struct net_device *dev,
7964                            char *name, size_t len)
7965 {
7966         const struct net_device_ops *ops = dev->netdev_ops;
7967
7968         if (!ops->ndo_get_phys_port_name)
7969                 return -EOPNOTSUPP;
7970         return ops->ndo_get_phys_port_name(dev, name, len);
7971 }
7972 EXPORT_SYMBOL(dev_get_phys_port_name);
7973
7974 /**
7975  *      dev_change_proto_down - update protocol port state information
7976  *      @dev: device
7977  *      @proto_down: new value
7978  *
7979  *      This info can be used by switch drivers to set the phys state of the
7980  *      port.
7981  */
7982 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7983 {
7984         const struct net_device_ops *ops = dev->netdev_ops;
7985
7986         if (!ops->ndo_change_proto_down)
7987                 return -EOPNOTSUPP;
7988         if (!netif_device_present(dev))
7989                 return -ENODEV;
7990         return ops->ndo_change_proto_down(dev, proto_down);
7991 }
7992 EXPORT_SYMBOL(dev_change_proto_down);
7993
7994 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7995                     enum bpf_netdev_command cmd)
7996 {
7997         struct netdev_bpf xdp;
7998
7999         if (!bpf_op)
8000                 return 0;
8001
8002         memset(&xdp, 0, sizeof(xdp));
8003         xdp.command = cmd;
8004
8005         /* Query must always succeed. */
8006         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8007
8008         return xdp.prog_id;
8009 }
8010
8011 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8012                            struct netlink_ext_ack *extack, u32 flags,
8013                            struct bpf_prog *prog)
8014 {
8015         struct netdev_bpf xdp;
8016
8017         memset(&xdp, 0, sizeof(xdp));
8018         if (flags & XDP_FLAGS_HW_MODE)
8019                 xdp.command = XDP_SETUP_PROG_HW;
8020         else
8021                 xdp.command = XDP_SETUP_PROG;
8022         xdp.extack = extack;
8023         xdp.flags = flags;
8024         xdp.prog = prog;
8025
8026         return bpf_op(dev, &xdp);
8027 }
8028
8029 static void dev_xdp_uninstall(struct net_device *dev)
8030 {
8031         struct netdev_bpf xdp;
8032         bpf_op_t ndo_bpf;
8033
8034         /* Remove generic XDP */
8035         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8036
8037         /* Remove from the driver */
8038         ndo_bpf = dev->netdev_ops->ndo_bpf;
8039         if (!ndo_bpf)
8040                 return;
8041
8042         memset(&xdp, 0, sizeof(xdp));
8043         xdp.command = XDP_QUERY_PROG;
8044         WARN_ON(ndo_bpf(dev, &xdp));
8045         if (xdp.prog_id)
8046                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8047                                         NULL));
8048
8049         /* Remove HW offload */
8050         memset(&xdp, 0, sizeof(xdp));
8051         xdp.command = XDP_QUERY_PROG_HW;
8052         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8053                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8054                                         NULL));
8055 }
8056
8057 /**
8058  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8059  *      @dev: device
8060  *      @extack: netlink extended ack
8061  *      @fd: new program fd or negative value to clear
8062  *      @flags: xdp-related flags
8063  *
8064  *      Set or clear a bpf program for a device
8065  */
8066 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8067                       int fd, u32 flags)
8068 {
8069         const struct net_device_ops *ops = dev->netdev_ops;
8070         enum bpf_netdev_command query;
8071         struct bpf_prog *prog = NULL;
8072         bpf_op_t bpf_op, bpf_chk;
8073         int err;
8074
8075         ASSERT_RTNL();
8076
8077         query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8078
8079         bpf_op = bpf_chk = ops->ndo_bpf;
8080         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
8081                 return -EOPNOTSUPP;
8082         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8083                 bpf_op = generic_xdp_install;
8084         if (bpf_op == bpf_chk)
8085                 bpf_chk = generic_xdp_install;
8086
8087         if (fd >= 0) {
8088                 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
8089                     __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
8090                         return -EEXIST;
8091                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8092                     __dev_xdp_query(dev, bpf_op, query))
8093                         return -EBUSY;
8094
8095                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8096                                              bpf_op == ops->ndo_bpf);
8097                 if (IS_ERR(prog))
8098                         return PTR_ERR(prog);
8099
8100                 if (!(flags & XDP_FLAGS_HW_MODE) &&
8101                     bpf_prog_is_dev_bound(prog->aux)) {
8102                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8103                         bpf_prog_put(prog);
8104                         return -EINVAL;
8105                 }
8106         }
8107
8108         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8109         if (err < 0 && prog)
8110                 bpf_prog_put(prog);
8111
8112         return err;
8113 }
8114
8115 /**
8116  *      dev_new_index   -       allocate an ifindex
8117  *      @net: the applicable net namespace
8118  *
8119  *      Returns a suitable unique value for a new device interface
8120  *      number.  The caller must hold the rtnl semaphore or the
8121  *      dev_base_lock to be sure it remains unique.
8122  */
8123 static int dev_new_index(struct net *net)
8124 {
8125         int ifindex = net->ifindex;
8126
8127         for (;;) {
8128                 if (++ifindex <= 0)
8129                         ifindex = 1;
8130                 if (!__dev_get_by_index(net, ifindex))
8131                         return net->ifindex = ifindex;
8132         }
8133 }
8134
8135 /* Delayed registration/unregisteration */
8136 static LIST_HEAD(net_todo_list);
8137 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8138
8139 static void net_set_todo(struct net_device *dev)
8140 {
8141         list_add_tail(&dev->todo_list, &net_todo_list);
8142         dev_net(dev)->dev_unreg_count++;
8143 }
8144
8145 static void rollback_registered_many(struct list_head *head)
8146 {
8147         struct net_device *dev, *tmp;
8148         LIST_HEAD(close_head);
8149
8150         BUG_ON(dev_boot_phase);
8151         ASSERT_RTNL();
8152
8153         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8154                 /* Some devices call without registering
8155                  * for initialization unwind. Remove those
8156                  * devices and proceed with the remaining.
8157                  */
8158                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8159                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8160                                  dev->name, dev);
8161
8162                         WARN_ON(1);
8163                         list_del(&dev->unreg_list);
8164                         continue;
8165                 }
8166                 dev->dismantle = true;
8167                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8168         }
8169
8170         /* If device is running, close it first. */
8171         list_for_each_entry(dev, head, unreg_list)
8172                 list_add_tail(&dev->close_list, &close_head);
8173         dev_close_many(&close_head, true);
8174
8175         list_for_each_entry(dev, head, unreg_list) {
8176                 /* And unlink it from device chain. */
8177                 unlist_netdevice(dev);
8178
8179                 dev->reg_state = NETREG_UNREGISTERING;
8180         }
8181         flush_all_backlogs();
8182
8183         synchronize_net();
8184
8185         list_for_each_entry(dev, head, unreg_list) {
8186                 struct sk_buff *skb = NULL;
8187
8188                 /* Shutdown queueing discipline. */
8189                 dev_shutdown(dev);
8190
8191                 dev_xdp_uninstall(dev);
8192
8193                 /* Notify protocols, that we are about to destroy
8194                  * this device. They should clean all the things.
8195                  */
8196                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8197
8198                 if (!dev->rtnl_link_ops ||
8199                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8200                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8201                                                      GFP_KERNEL, NULL, 0);
8202
8203                 /*
8204                  *      Flush the unicast and multicast chains
8205                  */
8206                 dev_uc_flush(dev);
8207                 dev_mc_flush(dev);
8208
8209                 if (dev->netdev_ops->ndo_uninit)
8210                         dev->netdev_ops->ndo_uninit(dev);
8211
8212                 if (skb)
8213                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8214
8215                 /* Notifier chain MUST detach us all upper devices. */
8216                 WARN_ON(netdev_has_any_upper_dev(dev));
8217                 WARN_ON(netdev_has_any_lower_dev(dev));
8218
8219                 /* Remove entries from kobject tree */
8220                 netdev_unregister_kobject(dev);
8221 #ifdef CONFIG_XPS
8222                 /* Remove XPS queueing entries */
8223                 netif_reset_xps_queues_gt(dev, 0);
8224 #endif
8225         }
8226
8227         synchronize_net();
8228
8229         list_for_each_entry(dev, head, unreg_list)
8230                 dev_put(dev);
8231 }
8232
8233 static void rollback_registered(struct net_device *dev)
8234 {
8235         LIST_HEAD(single);
8236
8237         list_add(&dev->unreg_list, &single);
8238         rollback_registered_many(&single);
8239         list_del(&single);
8240 }
8241
8242 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8243         struct net_device *upper, netdev_features_t features)
8244 {
8245         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8246         netdev_features_t feature;
8247         int feature_bit;
8248
8249         for_each_netdev_feature(upper_disables, feature_bit) {
8250                 feature = __NETIF_F_BIT(feature_bit);
8251                 if (!(upper->wanted_features & feature)
8252                     && (features & feature)) {
8253                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8254                                    &feature, upper->name);
8255                         features &= ~feature;
8256                 }
8257         }
8258
8259         return features;
8260 }
8261
8262 static void netdev_sync_lower_features(struct net_device *upper,
8263         struct net_device *lower, netdev_features_t features)
8264 {
8265         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8266         netdev_features_t feature;
8267         int feature_bit;
8268
8269         for_each_netdev_feature(upper_disables, feature_bit) {
8270                 feature = __NETIF_F_BIT(feature_bit);
8271                 if (!(features & feature) && (lower->features & feature)) {
8272                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8273                                    &feature, lower->name);
8274                         lower->wanted_features &= ~feature;
8275                         __netdev_update_features(lower);
8276
8277                         if (unlikely(lower->features & feature))
8278                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8279                                             &feature, lower->name);
8280                         else
8281                                 netdev_features_change(lower);
8282                 }
8283         }
8284 }
8285
8286 static netdev_features_t netdev_fix_features(struct net_device *dev,
8287         netdev_features_t features)
8288 {
8289         /* Fix illegal checksum combinations */
8290         if ((features & NETIF_F_HW_CSUM) &&
8291             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8292                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8293                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8294         }
8295
8296         /* TSO requires that SG is present as well. */
8297         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8298                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8299                 features &= ~NETIF_F_ALL_TSO;
8300         }
8301
8302         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8303                                         !(features & NETIF_F_IP_CSUM)) {
8304                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8305                 features &= ~NETIF_F_TSO;
8306                 features &= ~NETIF_F_TSO_ECN;
8307         }
8308
8309         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8310                                          !(features & NETIF_F_IPV6_CSUM)) {
8311                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8312                 features &= ~NETIF_F_TSO6;
8313         }
8314
8315         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8316         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8317                 features &= ~NETIF_F_TSO_MANGLEID;
8318
8319         /* TSO ECN requires that TSO is present as well. */
8320         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8321                 features &= ~NETIF_F_TSO_ECN;
8322
8323         /* Software GSO depends on SG. */
8324         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8325                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8326                 features &= ~NETIF_F_GSO;
8327         }
8328
8329         /* GSO partial features require GSO partial be set */
8330         if ((features & dev->gso_partial_features) &&
8331             !(features & NETIF_F_GSO_PARTIAL)) {
8332                 netdev_dbg(dev,
8333                            "Dropping partially supported GSO features since no GSO partial.\n");
8334                 features &= ~dev->gso_partial_features;
8335         }
8336
8337         if (!(features & NETIF_F_RXCSUM)) {
8338                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8339                  * successfully merged by hardware must also have the
8340                  * checksum verified by hardware.  If the user does not
8341                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8342                  */
8343                 if (features & NETIF_F_GRO_HW) {
8344                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8345                         features &= ~NETIF_F_GRO_HW;
8346                 }
8347         }
8348
8349         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8350         if (features & NETIF_F_RXFCS) {
8351                 if (features & NETIF_F_LRO) {
8352                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8353                         features &= ~NETIF_F_LRO;
8354                 }
8355
8356                 if (features & NETIF_F_GRO_HW) {
8357                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8358                         features &= ~NETIF_F_GRO_HW;
8359                 }
8360         }
8361
8362         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
8363                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
8364                 features &= ~NETIF_F_HW_TLS_RX;
8365         }
8366
8367         return features;
8368 }
8369
8370 int __netdev_update_features(struct net_device *dev)
8371 {
8372         struct net_device *upper, *lower;
8373         netdev_features_t features;
8374         struct list_head *iter;
8375         int err = -1;
8376
8377         ASSERT_RTNL();
8378
8379         features = netdev_get_wanted_features(dev);
8380
8381         if (dev->netdev_ops->ndo_fix_features)
8382                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8383
8384         /* driver might be less strict about feature dependencies */
8385         features = netdev_fix_features(dev, features);
8386
8387         /* some features can't be enabled if they're off an an upper device */
8388         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8389                 features = netdev_sync_upper_features(dev, upper, features);
8390
8391         if (dev->features == features)
8392                 goto sync_lower;
8393
8394         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8395                 &dev->features, &features);
8396
8397         if (dev->netdev_ops->ndo_set_features)
8398                 err = dev->netdev_ops->ndo_set_features(dev, features);
8399         else
8400                 err = 0;
8401
8402         if (unlikely(err < 0)) {
8403                 netdev_err(dev,
8404                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8405                         err, &features, &dev->features);
8406                 /* return non-0 since some features might have changed and
8407                  * it's better to fire a spurious notification than miss it
8408                  */
8409                 return -1;
8410         }
8411
8412 sync_lower:
8413         /* some features must be disabled on lower devices when disabled
8414          * on an upper device (think: bonding master or bridge)
8415          */
8416         netdev_for_each_lower_dev(dev, lower, iter)
8417                 netdev_sync_lower_features(dev, lower, features);
8418
8419         if (!err) {
8420                 netdev_features_t diff = features ^ dev->features;
8421
8422                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8423                         /* udp_tunnel_{get,drop}_rx_info both need
8424                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8425                          * device, or they won't do anything.
8426                          * Thus we need to update dev->features
8427                          * *before* calling udp_tunnel_get_rx_info,
8428                          * but *after* calling udp_tunnel_drop_rx_info.
8429                          */
8430                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8431                                 dev->features = features;
8432                                 udp_tunnel_get_rx_info(dev);
8433                         } else {
8434                                 udp_tunnel_drop_rx_info(dev);
8435                         }
8436                 }
8437
8438                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8439                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8440                                 dev->features = features;
8441                                 err |= vlan_get_rx_ctag_filter_info(dev);
8442                         } else {
8443                                 vlan_drop_rx_ctag_filter_info(dev);
8444                         }
8445                 }
8446
8447                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8448                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8449                                 dev->features = features;
8450                                 err |= vlan_get_rx_stag_filter_info(dev);
8451                         } else {
8452                                 vlan_drop_rx_stag_filter_info(dev);
8453                         }
8454                 }
8455
8456                 dev->features = features;
8457         }
8458
8459         return err < 0 ? 0 : 1;
8460 }
8461
8462 /**
8463  *      netdev_update_features - recalculate device features
8464  *      @dev: the device to check
8465  *
8466  *      Recalculate dev->features set and send notifications if it
8467  *      has changed. Should be called after driver or hardware dependent
8468  *      conditions might have changed that influence the features.
8469  */
8470 void netdev_update_features(struct net_device *dev)
8471 {
8472         if (__netdev_update_features(dev))
8473                 netdev_features_change(dev);
8474 }
8475 EXPORT_SYMBOL(netdev_update_features);
8476
8477 /**
8478  *      netdev_change_features - recalculate device features
8479  *      @dev: the device to check
8480  *
8481  *      Recalculate dev->features set and send notifications even
8482  *      if they have not changed. Should be called instead of
8483  *      netdev_update_features() if also dev->vlan_features might
8484  *      have changed to allow the changes to be propagated to stacked
8485  *      VLAN devices.
8486  */
8487 void netdev_change_features(struct net_device *dev)
8488 {
8489         __netdev_update_features(dev);
8490         netdev_features_change(dev);
8491 }
8492 EXPORT_SYMBOL(netdev_change_features);
8493
8494 /**
8495  *      netif_stacked_transfer_operstate -      transfer operstate
8496  *      @rootdev: the root or lower level device to transfer state from
8497  *      @dev: the device to transfer operstate to
8498  *
8499  *      Transfer operational state from root to device. This is normally
8500  *      called when a stacking relationship exists between the root
8501  *      device and the device(a leaf device).
8502  */
8503 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8504                                         struct net_device *dev)
8505 {
8506         if (rootdev->operstate == IF_OPER_DORMANT)
8507                 netif_dormant_on(dev);
8508         else
8509                 netif_dormant_off(dev);
8510
8511         if (netif_carrier_ok(rootdev))
8512                 netif_carrier_on(dev);
8513         else
8514                 netif_carrier_off(dev);
8515 }
8516 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8517
8518 static int netif_alloc_rx_queues(struct net_device *dev)
8519 {
8520         unsigned int i, count = dev->num_rx_queues;
8521         struct netdev_rx_queue *rx;
8522         size_t sz = count * sizeof(*rx);
8523         int err = 0;
8524
8525         BUG_ON(count < 1);
8526
8527         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8528         if (!rx)
8529                 return -ENOMEM;
8530
8531         dev->_rx = rx;
8532
8533         for (i = 0; i < count; i++) {
8534                 rx[i].dev = dev;
8535
8536                 /* XDP RX-queue setup */
8537                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8538                 if (err < 0)
8539                         goto err_rxq_info;
8540         }
8541         return 0;
8542
8543 err_rxq_info:
8544         /* Rollback successful reg's and free other resources */
8545         while (i--)
8546                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8547         kvfree(dev->_rx);
8548         dev->_rx = NULL;
8549         return err;
8550 }
8551
8552 static void netif_free_rx_queues(struct net_device *dev)
8553 {
8554         unsigned int i, count = dev->num_rx_queues;
8555
8556         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8557         if (!dev->_rx)
8558                 return;
8559
8560         for (i = 0; i < count; i++)
8561                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8562
8563         kvfree(dev->_rx);
8564 }
8565
8566 static void netdev_init_one_queue(struct net_device *dev,
8567                                   struct netdev_queue *queue, void *_unused)
8568 {
8569         /* Initialize queue lock */
8570         spin_lock_init(&queue->_xmit_lock);
8571         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8572         queue->xmit_lock_owner = -1;
8573         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8574         queue->dev = dev;
8575 #ifdef CONFIG_BQL
8576         dql_init(&queue->dql, HZ);
8577 #endif
8578 }
8579
8580 static void netif_free_tx_queues(struct net_device *dev)
8581 {
8582         kvfree(dev->_tx);
8583 }
8584
8585 static int netif_alloc_netdev_queues(struct net_device *dev)
8586 {
8587         unsigned int count = dev->num_tx_queues;
8588         struct netdev_queue *tx;
8589         size_t sz = count * sizeof(*tx);
8590
8591         if (count < 1 || count > 0xffff)
8592                 return -EINVAL;
8593
8594         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8595         if (!tx)
8596                 return -ENOMEM;
8597
8598         dev->_tx = tx;
8599
8600         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8601         spin_lock_init(&dev->tx_global_lock);
8602
8603         return 0;
8604 }
8605
8606 void netif_tx_stop_all_queues(struct net_device *dev)
8607 {
8608         unsigned int i;
8609
8610         for (i = 0; i < dev->num_tx_queues; i++) {
8611                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8612
8613                 netif_tx_stop_queue(txq);
8614         }
8615 }
8616 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8617
8618 /**
8619  *      register_netdevice      - register a network device
8620  *      @dev: device to register
8621  *
8622  *      Take a completed network device structure and add it to the kernel
8623  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8624  *      chain. 0 is returned on success. A negative errno code is returned
8625  *      on a failure to set up the device, or if the name is a duplicate.
8626  *
8627  *      Callers must hold the rtnl semaphore. You may want
8628  *      register_netdev() instead of this.
8629  *
8630  *      BUGS:
8631  *      The locking appears insufficient to guarantee two parallel registers
8632  *      will not get the same name.
8633  */
8634
8635 int register_netdevice(struct net_device *dev)
8636 {
8637         int ret;
8638         struct net *net = dev_net(dev);
8639
8640         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8641                      NETDEV_FEATURE_COUNT);
8642         BUG_ON(dev_boot_phase);
8643         ASSERT_RTNL();
8644
8645         might_sleep();
8646
8647         /* When net_device's are persistent, this will be fatal. */
8648         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8649         BUG_ON(!net);
8650
8651         spin_lock_init(&dev->addr_list_lock);
8652         netdev_set_addr_lockdep_class(dev);
8653
8654         ret = dev_get_valid_name(net, dev, dev->name);
8655         if (ret < 0)
8656                 goto out;
8657
8658         /* Init, if this function is available */
8659         if (dev->netdev_ops->ndo_init) {
8660                 ret = dev->netdev_ops->ndo_init(dev);
8661                 if (ret) {
8662                         if (ret > 0)
8663                                 ret = -EIO;
8664                         goto out;
8665                 }
8666         }
8667
8668         if (((dev->hw_features | dev->features) &
8669              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8670             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8671              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8672                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8673                 ret = -EINVAL;
8674                 goto err_uninit;
8675         }
8676
8677         ret = -EBUSY;
8678         if (!dev->ifindex)
8679                 dev->ifindex = dev_new_index(net);
8680         else if (__dev_get_by_index(net, dev->ifindex))
8681                 goto err_uninit;
8682
8683         /* Transfer changeable features to wanted_features and enable
8684          * software offloads (GSO and GRO).
8685          */
8686         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8687         dev->features |= NETIF_F_SOFT_FEATURES;
8688
8689         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8690                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8691                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8692         }
8693
8694         dev->wanted_features = dev->features & dev->hw_features;
8695
8696         if (!(dev->flags & IFF_LOOPBACK))
8697                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8698
8699         /* If IPv4 TCP segmentation offload is supported we should also
8700          * allow the device to enable segmenting the frame with the option
8701          * of ignoring a static IP ID value.  This doesn't enable the
8702          * feature itself but allows the user to enable it later.
8703          */
8704         if (dev->hw_features & NETIF_F_TSO)
8705                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8706         if (dev->vlan_features & NETIF_F_TSO)
8707                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8708         if (dev->mpls_features & NETIF_F_TSO)
8709                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8710         if (dev->hw_enc_features & NETIF_F_TSO)
8711                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8712
8713         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8714          */
8715         dev->vlan_features |= NETIF_F_HIGHDMA;
8716
8717         /* Make NETIF_F_SG inheritable to tunnel devices.
8718          */
8719         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8720
8721         /* Make NETIF_F_SG inheritable to MPLS.
8722          */
8723         dev->mpls_features |= NETIF_F_SG;
8724
8725         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8726         ret = notifier_to_errno(ret);
8727         if (ret)
8728                 goto err_uninit;
8729
8730         ret = netdev_register_kobject(dev);
8731         if (ret) {
8732                 dev->reg_state = NETREG_UNREGISTERED;
8733                 goto err_uninit;
8734         }
8735         dev->reg_state = NETREG_REGISTERED;
8736
8737         __netdev_update_features(dev);
8738
8739         /*
8740          *      Default initial state at registry is that the
8741          *      device is present.
8742          */
8743
8744         set_bit(__LINK_STATE_PRESENT, &dev->state);
8745
8746         linkwatch_init_dev(dev);
8747
8748         dev_init_scheduler(dev);
8749         dev_hold(dev);
8750         list_netdevice(dev);
8751         add_device_randomness(dev->dev_addr, dev->addr_len);
8752
8753         /* If the device has permanent device address, driver should
8754          * set dev_addr and also addr_assign_type should be set to
8755          * NET_ADDR_PERM (default value).
8756          */
8757         if (dev->addr_assign_type == NET_ADDR_PERM)
8758                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8759
8760         /* Notify protocols, that a new device appeared. */
8761         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8762         ret = notifier_to_errno(ret);
8763         if (ret) {
8764                 rollback_registered(dev);
8765                 rcu_barrier();
8766
8767                 dev->reg_state = NETREG_UNREGISTERED;
8768                 /* We should put the kobject that hold in
8769                  * netdev_unregister_kobject(), otherwise
8770                  * the net device cannot be freed when
8771                  * driver calls free_netdev(), because the
8772                  * kobject is being hold.
8773                  */
8774                 kobject_put(&dev->dev.kobj);
8775         }
8776         /*
8777          *      Prevent userspace races by waiting until the network
8778          *      device is fully setup before sending notifications.
8779          */
8780         if (!dev->rtnl_link_ops ||
8781             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8782                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8783
8784 out:
8785         return ret;
8786
8787 err_uninit:
8788         if (dev->netdev_ops->ndo_uninit)
8789                 dev->netdev_ops->ndo_uninit(dev);
8790         if (dev->priv_destructor)
8791                 dev->priv_destructor(dev);
8792         goto out;
8793 }
8794 EXPORT_SYMBOL(register_netdevice);
8795
8796 /**
8797  *      init_dummy_netdev       - init a dummy network device for NAPI
8798  *      @dev: device to init
8799  *
8800  *      This takes a network device structure and initialize the minimum
8801  *      amount of fields so it can be used to schedule NAPI polls without
8802  *      registering a full blown interface. This is to be used by drivers
8803  *      that need to tie several hardware interfaces to a single NAPI
8804  *      poll scheduler due to HW limitations.
8805  */
8806 int init_dummy_netdev(struct net_device *dev)
8807 {
8808         /* Clear everything. Note we don't initialize spinlocks
8809          * are they aren't supposed to be taken by any of the
8810          * NAPI code and this dummy netdev is supposed to be
8811          * only ever used for NAPI polls
8812          */
8813         memset(dev, 0, sizeof(struct net_device));
8814
8815         /* make sure we BUG if trying to hit standard
8816          * register/unregister code path
8817          */
8818         dev->reg_state = NETREG_DUMMY;
8819
8820         /* NAPI wants this */
8821         INIT_LIST_HEAD(&dev->napi_list);
8822
8823         /* a dummy interface is started by default */
8824         set_bit(__LINK_STATE_PRESENT, &dev->state);
8825         set_bit(__LINK_STATE_START, &dev->state);
8826
8827         /* napi_busy_loop stats accounting wants this */
8828         dev_net_set(dev, &init_net);
8829
8830         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8831          * because users of this 'device' dont need to change
8832          * its refcount.
8833          */
8834
8835         return 0;
8836 }
8837 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8838
8839
8840 /**
8841  *      register_netdev - register a network device
8842  *      @dev: device to register
8843  *
8844  *      Take a completed network device structure and add it to the kernel
8845  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8846  *      chain. 0 is returned on success. A negative errno code is returned
8847  *      on a failure to set up the device, or if the name is a duplicate.
8848  *
8849  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8850  *      and expands the device name if you passed a format string to
8851  *      alloc_netdev.
8852  */
8853 int register_netdev(struct net_device *dev)
8854 {
8855         int err;
8856
8857         if (rtnl_lock_killable())
8858                 return -EINTR;
8859         err = register_netdevice(dev);
8860         rtnl_unlock();
8861         return err;
8862 }
8863 EXPORT_SYMBOL(register_netdev);
8864
8865 int netdev_refcnt_read(const struct net_device *dev)
8866 {
8867         int i, refcnt = 0;
8868
8869         for_each_possible_cpu(i)
8870                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8871         return refcnt;
8872 }
8873 EXPORT_SYMBOL(netdev_refcnt_read);
8874
8875 /**
8876  * netdev_wait_allrefs - wait until all references are gone.
8877  * @dev: target net_device
8878  *
8879  * This is called when unregistering network devices.
8880  *
8881  * Any protocol or device that holds a reference should register
8882  * for netdevice notification, and cleanup and put back the
8883  * reference if they receive an UNREGISTER event.
8884  * We can get stuck here if buggy protocols don't correctly
8885  * call dev_put.
8886  */
8887 static void netdev_wait_allrefs(struct net_device *dev)
8888 {
8889         unsigned long rebroadcast_time, warning_time;
8890         int refcnt;
8891
8892         linkwatch_forget_dev(dev);
8893
8894         rebroadcast_time = warning_time = jiffies;
8895         refcnt = netdev_refcnt_read(dev);
8896
8897         while (refcnt != 0) {
8898                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8899                         rtnl_lock();
8900
8901                         /* Rebroadcast unregister notification */
8902                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8903
8904                         __rtnl_unlock();
8905                         rcu_barrier();
8906                         rtnl_lock();
8907
8908                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8909                                      &dev->state)) {
8910                                 /* We must not have linkwatch events
8911                                  * pending on unregister. If this
8912                                  * happens, we simply run the queue
8913                                  * unscheduled, resulting in a noop
8914                                  * for this device.
8915                                  */
8916                                 linkwatch_run_queue();
8917                         }
8918
8919                         __rtnl_unlock();
8920
8921                         rebroadcast_time = jiffies;
8922                 }
8923
8924                 msleep(250);
8925
8926                 refcnt = netdev_refcnt_read(dev);
8927
8928                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8929                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8930                                  dev->name, refcnt);
8931                         warning_time = jiffies;
8932                 }
8933         }
8934 }
8935
8936 /* The sequence is:
8937  *
8938  *      rtnl_lock();
8939  *      ...
8940  *      register_netdevice(x1);
8941  *      register_netdevice(x2);
8942  *      ...
8943  *      unregister_netdevice(y1);
8944  *      unregister_netdevice(y2);
8945  *      ...
8946  *      rtnl_unlock();
8947  *      free_netdev(y1);
8948  *      free_netdev(y2);
8949  *
8950  * We are invoked by rtnl_unlock().
8951  * This allows us to deal with problems:
8952  * 1) We can delete sysfs objects which invoke hotplug
8953  *    without deadlocking with linkwatch via keventd.
8954  * 2) Since we run with the RTNL semaphore not held, we can sleep
8955  *    safely in order to wait for the netdev refcnt to drop to zero.
8956  *
8957  * We must not return until all unregister events added during
8958  * the interval the lock was held have been completed.
8959  */
8960 void netdev_run_todo(void)
8961 {
8962         struct list_head list;
8963
8964         /* Snapshot list, allow later requests */
8965         list_replace_init(&net_todo_list, &list);
8966
8967         __rtnl_unlock();
8968
8969
8970         /* Wait for rcu callbacks to finish before next phase */
8971         if (!list_empty(&list))
8972                 rcu_barrier();
8973
8974         while (!list_empty(&list)) {
8975                 struct net_device *dev
8976                         = list_first_entry(&list, struct net_device, todo_list);
8977                 list_del(&dev->todo_list);
8978
8979                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8980                         pr_err("network todo '%s' but state %d\n",
8981                                dev->name, dev->reg_state);
8982                         dump_stack();
8983                         continue;
8984                 }
8985
8986                 dev->reg_state = NETREG_UNREGISTERED;
8987
8988                 netdev_wait_allrefs(dev);
8989
8990                 /* paranoia */
8991                 BUG_ON(netdev_refcnt_read(dev));
8992                 BUG_ON(!list_empty(&dev->ptype_all));
8993                 BUG_ON(!list_empty(&dev->ptype_specific));
8994                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8995                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8996 #if IS_ENABLED(CONFIG_DECNET)
8997                 WARN_ON(dev->dn_ptr);
8998 #endif
8999                 if (dev->priv_destructor)
9000                         dev->priv_destructor(dev);
9001                 if (dev->needs_free_netdev)
9002                         free_netdev(dev);
9003
9004                 /* Report a network device has been unregistered */
9005                 rtnl_lock();
9006                 dev_net(dev)->dev_unreg_count--;
9007                 __rtnl_unlock();
9008                 wake_up(&netdev_unregistering_wq);
9009
9010                 /* Free network device */
9011                 kobject_put(&dev->dev.kobj);
9012         }
9013 }
9014
9015 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9016  * all the same fields in the same order as net_device_stats, with only
9017  * the type differing, but rtnl_link_stats64 may have additional fields
9018  * at the end for newer counters.
9019  */
9020 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9021                              const struct net_device_stats *netdev_stats)
9022 {
9023 #if BITS_PER_LONG == 64
9024         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9025         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9026         /* zero out counters that only exist in rtnl_link_stats64 */
9027         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9028                sizeof(*stats64) - sizeof(*netdev_stats));
9029 #else
9030         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9031         const unsigned long *src = (const unsigned long *)netdev_stats;
9032         u64 *dst = (u64 *)stats64;
9033
9034         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9035         for (i = 0; i < n; i++)
9036                 dst[i] = src[i];
9037         /* zero out counters that only exist in rtnl_link_stats64 */
9038         memset((char *)stats64 + n * sizeof(u64), 0,
9039                sizeof(*stats64) - n * sizeof(u64));
9040 #endif
9041 }
9042 EXPORT_SYMBOL(netdev_stats_to_stats64);
9043
9044 /**
9045  *      dev_get_stats   - get network device statistics
9046  *      @dev: device to get statistics from
9047  *      @storage: place to store stats
9048  *
9049  *      Get network statistics from device. Return @storage.
9050  *      The device driver may provide its own method by setting
9051  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9052  *      otherwise the internal statistics structure is used.
9053  */
9054 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9055                                         struct rtnl_link_stats64 *storage)
9056 {
9057         const struct net_device_ops *ops = dev->netdev_ops;
9058
9059         if (ops->ndo_get_stats64) {
9060                 memset(storage, 0, sizeof(*storage));
9061                 ops->ndo_get_stats64(dev, storage);
9062         } else if (ops->ndo_get_stats) {
9063                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9064         } else {
9065                 netdev_stats_to_stats64(storage, &dev->stats);
9066         }
9067         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9068         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9069         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9070         return storage;
9071 }
9072 EXPORT_SYMBOL(dev_get_stats);
9073
9074 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9075 {
9076         struct netdev_queue *queue = dev_ingress_queue(dev);
9077
9078 #ifdef CONFIG_NET_CLS_ACT
9079         if (queue)
9080                 return queue;
9081         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9082         if (!queue)
9083                 return NULL;
9084         netdev_init_one_queue(dev, queue, NULL);
9085         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9086         queue->qdisc_sleeping = &noop_qdisc;
9087         rcu_assign_pointer(dev->ingress_queue, queue);
9088 #endif
9089         return queue;
9090 }
9091
9092 static const struct ethtool_ops default_ethtool_ops;
9093
9094 void netdev_set_default_ethtool_ops(struct net_device *dev,
9095                                     const struct ethtool_ops *ops)
9096 {
9097         if (dev->ethtool_ops == &default_ethtool_ops)
9098                 dev->ethtool_ops = ops;
9099 }
9100 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9101
9102 void netdev_freemem(struct net_device *dev)
9103 {
9104         char *addr = (char *)dev - dev->padded;
9105
9106         kvfree(addr);
9107 }
9108
9109 /**
9110  * alloc_netdev_mqs - allocate network device
9111  * @sizeof_priv: size of private data to allocate space for
9112  * @name: device name format string
9113  * @name_assign_type: origin of device name
9114  * @setup: callback to initialize device
9115  * @txqs: the number of TX subqueues to allocate
9116  * @rxqs: the number of RX subqueues to allocate
9117  *
9118  * Allocates a struct net_device with private data area for driver use
9119  * and performs basic initialization.  Also allocates subqueue structs
9120  * for each queue on the device.
9121  */
9122 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9123                 unsigned char name_assign_type,
9124                 void (*setup)(struct net_device *),
9125                 unsigned int txqs, unsigned int rxqs)
9126 {
9127         struct net_device *dev;
9128         unsigned int alloc_size;
9129         struct net_device *p;
9130
9131         BUG_ON(strlen(name) >= sizeof(dev->name));
9132
9133         if (txqs < 1) {
9134                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9135                 return NULL;
9136         }
9137
9138         if (rxqs < 1) {
9139                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9140                 return NULL;
9141         }
9142
9143         alloc_size = sizeof(struct net_device);
9144         if (sizeof_priv) {
9145                 /* ensure 32-byte alignment of private area */
9146                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9147                 alloc_size += sizeof_priv;
9148         }
9149         /* ensure 32-byte alignment of whole construct */
9150         alloc_size += NETDEV_ALIGN - 1;
9151
9152         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9153         if (!p)
9154                 return NULL;
9155
9156         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9157         dev->padded = (char *)dev - (char *)p;
9158
9159         dev->pcpu_refcnt = alloc_percpu(int);
9160         if (!dev->pcpu_refcnt)
9161                 goto free_dev;
9162
9163         if (dev_addr_init(dev))
9164                 goto free_pcpu;
9165
9166         dev_mc_init(dev);
9167         dev_uc_init(dev);
9168
9169         dev_net_set(dev, &init_net);
9170
9171         dev->gso_max_size = GSO_MAX_SIZE;
9172         dev->gso_max_segs = GSO_MAX_SEGS;
9173         dev->upper_level = 1;
9174         dev->lower_level = 1;
9175
9176         INIT_LIST_HEAD(&dev->napi_list);
9177         INIT_LIST_HEAD(&dev->unreg_list);
9178         INIT_LIST_HEAD(&dev->close_list);
9179         INIT_LIST_HEAD(&dev->link_watch_list);
9180         INIT_LIST_HEAD(&dev->adj_list.upper);
9181         INIT_LIST_HEAD(&dev->adj_list.lower);
9182         INIT_LIST_HEAD(&dev->ptype_all);
9183         INIT_LIST_HEAD(&dev->ptype_specific);
9184 #ifdef CONFIG_NET_SCHED
9185         hash_init(dev->qdisc_hash);
9186 #endif
9187         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9188         setup(dev);
9189
9190         if (!dev->tx_queue_len) {
9191                 dev->priv_flags |= IFF_NO_QUEUE;
9192                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9193         }
9194
9195         dev->num_tx_queues = txqs;
9196         dev->real_num_tx_queues = txqs;
9197         if (netif_alloc_netdev_queues(dev))
9198                 goto free_all;
9199
9200         dev->num_rx_queues = rxqs;
9201         dev->real_num_rx_queues = rxqs;
9202         if (netif_alloc_rx_queues(dev))
9203                 goto free_all;
9204
9205         strcpy(dev->name, name);
9206         dev->name_assign_type = name_assign_type;
9207         dev->group = INIT_NETDEV_GROUP;
9208         if (!dev->ethtool_ops)
9209                 dev->ethtool_ops = &default_ethtool_ops;
9210
9211         nf_hook_ingress_init(dev);
9212
9213         return dev;
9214
9215 free_all:
9216         free_netdev(dev);
9217         return NULL;
9218
9219 free_pcpu:
9220         free_percpu(dev->pcpu_refcnt);
9221 free_dev:
9222         netdev_freemem(dev);
9223         return NULL;
9224 }
9225 EXPORT_SYMBOL(alloc_netdev_mqs);
9226
9227 /**
9228  * free_netdev - free network device
9229  * @dev: device
9230  *
9231  * This function does the last stage of destroying an allocated device
9232  * interface. The reference to the device object is released. If this
9233  * is the last reference then it will be freed.Must be called in process
9234  * context.
9235  */
9236 void free_netdev(struct net_device *dev)
9237 {
9238         struct napi_struct *p, *n;
9239
9240         might_sleep();
9241         netif_free_tx_queues(dev);
9242         netif_free_rx_queues(dev);
9243
9244         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9245
9246         /* Flush device addresses */
9247         dev_addr_flush(dev);
9248
9249         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9250                 netif_napi_del(p);
9251
9252         free_percpu(dev->pcpu_refcnt);
9253         dev->pcpu_refcnt = NULL;
9254
9255         /*  Compatibility with error handling in drivers */
9256         if (dev->reg_state == NETREG_UNINITIALIZED) {
9257                 netdev_freemem(dev);
9258                 return;
9259         }
9260
9261         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9262         dev->reg_state = NETREG_RELEASED;
9263
9264         /* will free via device release */
9265         put_device(&dev->dev);
9266 }
9267 EXPORT_SYMBOL(free_netdev);
9268
9269 /**
9270  *      synchronize_net -  Synchronize with packet receive processing
9271  *
9272  *      Wait for packets currently being received to be done.
9273  *      Does not block later packets from starting.
9274  */
9275 void synchronize_net(void)
9276 {
9277         might_sleep();
9278         if (rtnl_is_locked())
9279                 synchronize_rcu_expedited();
9280         else
9281                 synchronize_rcu();
9282 }
9283 EXPORT_SYMBOL(synchronize_net);
9284
9285 /**
9286  *      unregister_netdevice_queue - remove device from the kernel
9287  *      @dev: device
9288  *      @head: list
9289  *
9290  *      This function shuts down a device interface and removes it
9291  *      from the kernel tables.
9292  *      If head not NULL, device is queued to be unregistered later.
9293  *
9294  *      Callers must hold the rtnl semaphore.  You may want
9295  *      unregister_netdev() instead of this.
9296  */
9297
9298 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9299 {
9300         ASSERT_RTNL();
9301
9302         if (head) {
9303                 list_move_tail(&dev->unreg_list, head);
9304         } else {
9305                 rollback_registered(dev);
9306                 /* Finish processing unregister after unlock */
9307                 net_set_todo(dev);
9308         }
9309 }
9310 EXPORT_SYMBOL(unregister_netdevice_queue);
9311
9312 /**
9313  *      unregister_netdevice_many - unregister many devices
9314  *      @head: list of devices
9315  *
9316  *  Note: As most callers use a stack allocated list_head,
9317  *  we force a list_del() to make sure stack wont be corrupted later.
9318  */
9319 void unregister_netdevice_many(struct list_head *head)
9320 {
9321         struct net_device *dev;
9322
9323         if (!list_empty(head)) {
9324                 rollback_registered_many(head);
9325                 list_for_each_entry(dev, head, unreg_list)
9326                         net_set_todo(dev);
9327                 list_del(head);
9328         }
9329 }
9330 EXPORT_SYMBOL(unregister_netdevice_many);
9331
9332 /**
9333  *      unregister_netdev - remove device from the kernel
9334  *      @dev: device
9335  *
9336  *      This function shuts down a device interface and removes it
9337  *      from the kernel tables.
9338  *
9339  *      This is just a wrapper for unregister_netdevice that takes
9340  *      the rtnl semaphore.  In general you want to use this and not
9341  *      unregister_netdevice.
9342  */
9343 void unregister_netdev(struct net_device *dev)
9344 {
9345         rtnl_lock();
9346         unregister_netdevice(dev);
9347         rtnl_unlock();
9348 }
9349 EXPORT_SYMBOL(unregister_netdev);
9350
9351 /**
9352  *      dev_change_net_namespace - move device to different nethost namespace
9353  *      @dev: device
9354  *      @net: network namespace
9355  *      @pat: If not NULL name pattern to try if the current device name
9356  *            is already taken in the destination network namespace.
9357  *
9358  *      This function shuts down a device interface and moves it
9359  *      to a new network namespace. On success 0 is returned, on
9360  *      a failure a netagive errno code is returned.
9361  *
9362  *      Callers must hold the rtnl semaphore.
9363  */
9364
9365 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9366 {
9367         int err, new_nsid, new_ifindex;
9368
9369         ASSERT_RTNL();
9370
9371         /* Don't allow namespace local devices to be moved. */
9372         err = -EINVAL;
9373         if (dev->features & NETIF_F_NETNS_LOCAL)
9374                 goto out;
9375
9376         /* Ensure the device has been registrered */
9377         if (dev->reg_state != NETREG_REGISTERED)
9378                 goto out;
9379
9380         /* Get out if there is nothing todo */
9381         err = 0;
9382         if (net_eq(dev_net(dev), net))
9383                 goto out;
9384
9385         /* Pick the destination device name, and ensure
9386          * we can use it in the destination network namespace.
9387          */
9388         err = -EEXIST;
9389         if (__dev_get_by_name(net, dev->name)) {
9390                 /* We get here if we can't use the current device name */
9391                 if (!pat)
9392                         goto out;
9393                 err = dev_get_valid_name(net, dev, pat);
9394                 if (err < 0)
9395                         goto out;
9396         }
9397
9398         /*
9399          * And now a mini version of register_netdevice unregister_netdevice.
9400          */
9401
9402         /* If device is running close it first. */
9403         dev_close(dev);
9404
9405         /* And unlink it from device chain */
9406         unlist_netdevice(dev);
9407
9408         synchronize_net();
9409
9410         /* Shutdown queueing discipline. */
9411         dev_shutdown(dev);
9412
9413         /* Notify protocols, that we are about to destroy
9414          * this device. They should clean all the things.
9415          *
9416          * Note that dev->reg_state stays at NETREG_REGISTERED.
9417          * This is wanted because this way 8021q and macvlan know
9418          * the device is just moving and can keep their slaves up.
9419          */
9420         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9421         rcu_barrier();
9422
9423         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
9424         /* If there is an ifindex conflict assign a new one */
9425         if (__dev_get_by_index(net, dev->ifindex))
9426                 new_ifindex = dev_new_index(net);
9427         else
9428                 new_ifindex = dev->ifindex;
9429
9430         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9431                             new_ifindex);
9432
9433         /*
9434          *      Flush the unicast and multicast chains
9435          */
9436         dev_uc_flush(dev);
9437         dev_mc_flush(dev);
9438
9439         /* Send a netdev-removed uevent to the old namespace */
9440         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9441         netdev_adjacent_del_links(dev);
9442
9443         /* Actually switch the network namespace */
9444         dev_net_set(dev, net);
9445         dev->ifindex = new_ifindex;
9446
9447         /* Send a netdev-add uevent to the new namespace */
9448         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9449         netdev_adjacent_add_links(dev);
9450
9451         /* Fixup kobjects */
9452         err = device_rename(&dev->dev, dev->name);
9453         WARN_ON(err);
9454
9455         /* Add the device back in the hashes */
9456         list_netdevice(dev);
9457
9458         /* Notify protocols, that a new device appeared. */
9459         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9460
9461         /*
9462          *      Prevent userspace races by waiting until the network
9463          *      device is fully setup before sending notifications.
9464          */
9465         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9466
9467         synchronize_net();
9468         err = 0;
9469 out:
9470         return err;
9471 }
9472 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9473
9474 static int dev_cpu_dead(unsigned int oldcpu)
9475 {
9476         struct sk_buff **list_skb;
9477         struct sk_buff *skb;
9478         unsigned int cpu;
9479         struct softnet_data *sd, *oldsd, *remsd = NULL;
9480
9481         local_irq_disable();
9482         cpu = smp_processor_id();
9483         sd = &per_cpu(softnet_data, cpu);
9484         oldsd = &per_cpu(softnet_data, oldcpu);
9485
9486         /* Find end of our completion_queue. */
9487         list_skb = &sd->completion_queue;
9488         while (*list_skb)
9489                 list_skb = &(*list_skb)->next;
9490         /* Append completion queue from offline CPU. */
9491         *list_skb = oldsd->completion_queue;
9492         oldsd->completion_queue = NULL;
9493
9494         /* Append output queue from offline CPU. */
9495         if (oldsd->output_queue) {
9496                 *sd->output_queue_tailp = oldsd->output_queue;
9497                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9498                 oldsd->output_queue = NULL;
9499                 oldsd->output_queue_tailp = &oldsd->output_queue;
9500         }
9501         /* Append NAPI poll list from offline CPU, with one exception :
9502          * process_backlog() must be called by cpu owning percpu backlog.
9503          * We properly handle process_queue & input_pkt_queue later.
9504          */
9505         while (!list_empty(&oldsd->poll_list)) {
9506                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9507                                                             struct napi_struct,
9508                                                             poll_list);
9509
9510                 list_del_init(&napi->poll_list);
9511                 if (napi->poll == process_backlog)
9512                         napi->state = 0;
9513                 else
9514                         ____napi_schedule(sd, napi);
9515         }
9516
9517         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9518         local_irq_enable();
9519
9520 #ifdef CONFIG_RPS
9521         remsd = oldsd->rps_ipi_list;
9522         oldsd->rps_ipi_list = NULL;
9523 #endif
9524         /* send out pending IPI's on offline CPU */
9525         net_rps_send_ipi(remsd);
9526
9527         /* Process offline CPU's input_pkt_queue */
9528         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9529                 netif_rx_ni(skb);
9530                 input_queue_head_incr(oldsd);
9531         }
9532         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9533                 netif_rx_ni(skb);
9534                 input_queue_head_incr(oldsd);
9535         }
9536
9537         return 0;
9538 }
9539
9540 /**
9541  *      netdev_increment_features - increment feature set by one
9542  *      @all: current feature set
9543  *      @one: new feature set
9544  *      @mask: mask feature set
9545  *
9546  *      Computes a new feature set after adding a device with feature set
9547  *      @one to the master device with current feature set @all.  Will not
9548  *      enable anything that is off in @mask. Returns the new feature set.
9549  */
9550 netdev_features_t netdev_increment_features(netdev_features_t all,
9551         netdev_features_t one, netdev_features_t mask)
9552 {
9553         if (mask & NETIF_F_HW_CSUM)
9554                 mask |= NETIF_F_CSUM_MASK;
9555         mask |= NETIF_F_VLAN_CHALLENGED;
9556
9557         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9558         all &= one | ~NETIF_F_ALL_FOR_ALL;
9559
9560         /* If one device supports hw checksumming, set for all. */
9561         if (all & NETIF_F_HW_CSUM)
9562                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9563
9564         return all;
9565 }
9566 EXPORT_SYMBOL(netdev_increment_features);
9567
9568 static struct hlist_head * __net_init netdev_create_hash(void)
9569 {
9570         int i;
9571         struct hlist_head *hash;
9572
9573         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9574         if (hash != NULL)
9575                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9576                         INIT_HLIST_HEAD(&hash[i]);
9577
9578         return hash;
9579 }
9580
9581 /* Initialize per network namespace state */
9582 static int __net_init netdev_init(struct net *net)
9583 {
9584         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9585                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9586
9587         if (net != &init_net)
9588                 INIT_LIST_HEAD(&net->dev_base_head);
9589
9590         net->dev_name_head = netdev_create_hash();
9591         if (net->dev_name_head == NULL)
9592                 goto err_name;
9593
9594         net->dev_index_head = netdev_create_hash();
9595         if (net->dev_index_head == NULL)
9596                 goto err_idx;
9597
9598         return 0;
9599
9600 err_idx:
9601         kfree(net->dev_name_head);
9602 err_name:
9603         return -ENOMEM;
9604 }
9605
9606 /**
9607  *      netdev_drivername - network driver for the device
9608  *      @dev: network device
9609  *
9610  *      Determine network driver for device.
9611  */
9612 const char *netdev_drivername(const struct net_device *dev)
9613 {
9614         const struct device_driver *driver;
9615         const struct device *parent;
9616         const char *empty = "";
9617
9618         parent = dev->dev.parent;
9619         if (!parent)
9620                 return empty;
9621
9622         driver = parent->driver;
9623         if (driver && driver->name)
9624                 return driver->name;
9625         return empty;
9626 }
9627
9628 static void __netdev_printk(const char *level, const struct net_device *dev,
9629                             struct va_format *vaf)
9630 {
9631         if (dev && dev->dev.parent) {
9632                 dev_printk_emit(level[1] - '0',
9633                                 dev->dev.parent,
9634                                 "%s %s %s%s: %pV",
9635                                 dev_driver_string(dev->dev.parent),
9636                                 dev_name(dev->dev.parent),
9637                                 netdev_name(dev), netdev_reg_state(dev),
9638                                 vaf);
9639         } else if (dev) {
9640                 printk("%s%s%s: %pV",
9641                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9642         } else {
9643                 printk("%s(NULL net_device): %pV", level, vaf);
9644         }
9645 }
9646
9647 void netdev_printk(const char *level, const struct net_device *dev,
9648                    const char *format, ...)
9649 {
9650         struct va_format vaf;
9651         va_list args;
9652
9653         va_start(args, format);
9654
9655         vaf.fmt = format;
9656         vaf.va = &args;
9657
9658         __netdev_printk(level, dev, &vaf);
9659
9660         va_end(args);
9661 }
9662 EXPORT_SYMBOL(netdev_printk);
9663
9664 #define define_netdev_printk_level(func, level)                 \
9665 void func(const struct net_device *dev, const char *fmt, ...)   \
9666 {                                                               \
9667         struct va_format vaf;                                   \
9668         va_list args;                                           \
9669                                                                 \
9670         va_start(args, fmt);                                    \
9671                                                                 \
9672         vaf.fmt = fmt;                                          \
9673         vaf.va = &args;                                         \
9674                                                                 \
9675         __netdev_printk(level, dev, &vaf);                      \
9676                                                                 \
9677         va_end(args);                                           \
9678 }                                                               \
9679 EXPORT_SYMBOL(func);
9680
9681 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9682 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9683 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9684 define_netdev_printk_level(netdev_err, KERN_ERR);
9685 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9686 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9687 define_netdev_printk_level(netdev_info, KERN_INFO);
9688
9689 static void __net_exit netdev_exit(struct net *net)
9690 {
9691         kfree(net->dev_name_head);
9692         kfree(net->dev_index_head);
9693         if (net != &init_net)
9694                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9695 }
9696
9697 static struct pernet_operations __net_initdata netdev_net_ops = {
9698         .init = netdev_init,
9699         .exit = netdev_exit,
9700 };
9701
9702 static void __net_exit default_device_exit(struct net *net)
9703 {
9704         struct net_device *dev, *aux;
9705         /*
9706          * Push all migratable network devices back to the
9707          * initial network namespace
9708          */
9709         rtnl_lock();
9710         for_each_netdev_safe(net, dev, aux) {
9711                 int err;
9712                 char fb_name[IFNAMSIZ];
9713
9714                 /* Ignore unmoveable devices (i.e. loopback) */
9715                 if (dev->features & NETIF_F_NETNS_LOCAL)
9716                         continue;
9717
9718                 /* Leave virtual devices for the generic cleanup */
9719                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
9720                         continue;
9721
9722                 /* Push remaining network devices to init_net */
9723                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9724                 if (__dev_get_by_name(&init_net, fb_name))
9725                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
9726                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9727                 if (err) {
9728                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9729                                  __func__, dev->name, err);
9730                         BUG();
9731                 }
9732         }
9733         rtnl_unlock();
9734 }
9735
9736 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9737 {
9738         /* Return with the rtnl_lock held when there are no network
9739          * devices unregistering in any network namespace in net_list.
9740          */
9741         struct net *net;
9742         bool unregistering;
9743         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9744
9745         add_wait_queue(&netdev_unregistering_wq, &wait);
9746         for (;;) {
9747                 unregistering = false;
9748                 rtnl_lock();
9749                 list_for_each_entry(net, net_list, exit_list) {
9750                         if (net->dev_unreg_count > 0) {
9751                                 unregistering = true;
9752                                 break;
9753                         }
9754                 }
9755                 if (!unregistering)
9756                         break;
9757                 __rtnl_unlock();
9758
9759                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9760         }
9761         remove_wait_queue(&netdev_unregistering_wq, &wait);
9762 }
9763
9764 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9765 {
9766         /* At exit all network devices most be removed from a network
9767          * namespace.  Do this in the reverse order of registration.
9768          * Do this across as many network namespaces as possible to
9769          * improve batching efficiency.
9770          */
9771         struct net_device *dev;
9772         struct net *net;
9773         LIST_HEAD(dev_kill_list);
9774
9775         /* To prevent network device cleanup code from dereferencing
9776          * loopback devices or network devices that have been freed
9777          * wait here for all pending unregistrations to complete,
9778          * before unregistring the loopback device and allowing the
9779          * network namespace be freed.
9780          *
9781          * The netdev todo list containing all network devices
9782          * unregistrations that happen in default_device_exit_batch
9783          * will run in the rtnl_unlock() at the end of
9784          * default_device_exit_batch.
9785          */
9786         rtnl_lock_unregistering(net_list);
9787         list_for_each_entry(net, net_list, exit_list) {
9788                 for_each_netdev_reverse(net, dev) {
9789                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9790                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9791                         else
9792                                 unregister_netdevice_queue(dev, &dev_kill_list);
9793                 }
9794         }
9795         unregister_netdevice_many(&dev_kill_list);
9796         rtnl_unlock();
9797 }
9798
9799 static struct pernet_operations __net_initdata default_device_ops = {
9800         .exit = default_device_exit,
9801         .exit_batch = default_device_exit_batch,
9802 };
9803
9804 /*
9805  *      Initialize the DEV module. At boot time this walks the device list and
9806  *      unhooks any devices that fail to initialise (normally hardware not
9807  *      present) and leaves us with a valid list of present and active devices.
9808  *
9809  */
9810
9811 /*
9812  *       This is called single threaded during boot, so no need
9813  *       to take the rtnl semaphore.
9814  */
9815 static int __init net_dev_init(void)
9816 {
9817         int i, rc = -ENOMEM;
9818
9819         BUG_ON(!dev_boot_phase);
9820
9821         if (dev_proc_init())
9822                 goto out;
9823
9824         if (netdev_kobject_init())
9825                 goto out;
9826
9827         INIT_LIST_HEAD(&ptype_all);
9828         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9829                 INIT_LIST_HEAD(&ptype_base[i]);
9830
9831         INIT_LIST_HEAD(&offload_base);
9832
9833         if (register_pernet_subsys(&netdev_net_ops))
9834                 goto out;
9835
9836         /*
9837          *      Initialise the packet receive queues.
9838          */
9839
9840         for_each_possible_cpu(i) {
9841                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9842                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9843
9844                 INIT_WORK(flush, flush_backlog);
9845
9846                 skb_queue_head_init(&sd->input_pkt_queue);
9847                 skb_queue_head_init(&sd->process_queue);
9848 #ifdef CONFIG_XFRM_OFFLOAD
9849                 skb_queue_head_init(&sd->xfrm_backlog);
9850 #endif
9851                 INIT_LIST_HEAD(&sd->poll_list);
9852                 sd->output_queue_tailp = &sd->output_queue;
9853 #ifdef CONFIG_RPS
9854                 sd->csd.func = rps_trigger_softirq;
9855                 sd->csd.info = sd;
9856                 sd->cpu = i;
9857 #endif
9858
9859                 init_gro_hash(&sd->backlog);
9860                 sd->backlog.poll = process_backlog;
9861                 sd->backlog.weight = weight_p;
9862         }
9863
9864         dev_boot_phase = 0;
9865
9866         /* The loopback device is special if any other network devices
9867          * is present in a network namespace the loopback device must
9868          * be present. Since we now dynamically allocate and free the
9869          * loopback device ensure this invariant is maintained by
9870          * keeping the loopback device as the first device on the
9871          * list of network devices.  Ensuring the loopback devices
9872          * is the first device that appears and the last network device
9873          * that disappears.
9874          */
9875         if (register_pernet_device(&loopback_net_ops))
9876                 goto out;
9877
9878         if (register_pernet_device(&default_device_ops))
9879                 goto out;
9880
9881         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9882         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9883
9884         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9885                                        NULL, dev_cpu_dead);
9886         WARN_ON(rc < 0);
9887         rc = 0;
9888 out:
9889         return rc;
9890 }
9891
9892 subsys_initcall(net_dev_init);