GNU Linux-libre 4.14.328-gnu1
[releases.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/rwsem.h>
87 #include <linux/string.h>
88 #include <linux/mm.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/errno.h>
92 #include <linux/interrupt.h>
93 #include <linux/if_ether.h>
94 #include <linux/netdevice.h>
95 #include <linux/etherdevice.h>
96 #include <linux/ethtool.h>
97 #include <linux/notifier.h>
98 #include <linux/skbuff.h>
99 #include <linux/bpf.h>
100 #include <linux/bpf_trace.h>
101 #include <net/net_namespace.h>
102 #include <net/sock.h>
103 #include <net/busy_poll.h>
104 #include <linux/rtnetlink.h>
105 #include <linux/stat.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <linux/highmem.h>
113 #include <linux/init.h>
114 #include <linux/module.h>
115 #include <linux/netpoll.h>
116 #include <linux/rcupdate.h>
117 #include <linux/delay.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <net/mpls.h>
129 #include <linux/ipv6.h>
130 #include <linux/in.h>
131 #include <linux/jhash.h>
132 #include <linux/random.h>
133 #include <trace/events/napi.h>
134 #include <trace/events/net.h>
135 #include <trace/events/skb.h>
136 #include <linux/pci.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_ingress.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct net_device *dev,
167                                          struct netdev_notifier_info *info);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static DECLARE_RWSEM(devnet_rename_sem);
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235         struct net *net = dev_net(dev);
236
237         ASSERT_RTNL();
238
239         write_lock_bh(&dev_base_lock);
240         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242         hlist_add_head_rcu(&dev->index_hlist,
243                            dev_index_hash(net, dev->ifindex));
244         write_unlock_bh(&dev_base_lock);
245
246         dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254         ASSERT_RTNL();
255
256         /* Unlink dev from the device chain */
257         write_lock_bh(&dev_base_lock);
258         list_del_rcu(&dev->dev_list);
259         hlist_del_rcu(&dev->name_hlist);
260         hlist_del_rcu(&dev->index_hlist);
261         write_unlock_bh(&dev_base_lock);
262
263         dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267  *      Our notifier list
268  */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273  *      Device drivers call our routines to queue packets here. We empty the
274  *      queue in the local softnet handler.
275  */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301
302 static const char *const netdev_lock_name[] = {
303         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324         int i;
325
326         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327                 if (netdev_lock_type[i] == dev_type)
328                         return i;
329         /* the last key is used by default */
330         return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334                                                  unsigned short dev_type)
335 {
336         int i;
337
338         i = netdev_lock_pos(dev_type);
339         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340                                    netdev_lock_name[i]);
341 }
342
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345         int i;
346
347         i = netdev_lock_pos(dev->type);
348         lockdep_set_class_and_name(&dev->addr_list_lock,
349                                    &netdev_addr_lock_key[i],
350                                    netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354                                                  unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361
362 /*******************************************************************************
363  *
364  *              Protocol management and registration routines
365  *
366  *******************************************************************************/
367
368
369 /*
370  *      Add a protocol ID to the list. Now that the input handler is
371  *      smarter we can dispense with all the messy stuff that used to be
372  *      here.
373  *
374  *      BEWARE!!! Protocol handlers, mangling input packets,
375  *      MUST BE last in hash buckets and checking protocol handlers
376  *      MUST start from promiscuous ptype_all chain in net_bh.
377  *      It is true now, do not change it.
378  *      Explanation follows: if protocol handler, mangling packet, will
379  *      be the first on list, it is not able to sense, that packet
380  *      is cloned and should be copied-on-write, so that it will
381  *      change it and subsequent readers will get broken packet.
382  *                                                      --ANK (980803)
383  */
384
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387         if (pt->type == htons(ETH_P_ALL))
388                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389         else
390                 return pt->dev ? &pt->dev->ptype_specific :
391                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393
394 /**
395  *      dev_add_pack - add packet handler
396  *      @pt: packet type declaration
397  *
398  *      Add a protocol handler to the networking stack. The passed &packet_type
399  *      is linked into kernel lists and may not be freed until it has been
400  *      removed from the kernel lists.
401  *
402  *      This call does not sleep therefore it can not
403  *      guarantee all CPU's that are in middle of receiving packets
404  *      will see the new packet type (until the next received packet).
405  */
406
407 void dev_add_pack(struct packet_type *pt)
408 {
409         struct list_head *head = ptype_head(pt);
410
411         spin_lock(&ptype_lock);
412         list_add_rcu(&pt->list, head);
413         spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416
417 /**
418  *      __dev_remove_pack        - remove packet handler
419  *      @pt: packet type declaration
420  *
421  *      Remove a protocol handler that was previously added to the kernel
422  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *      from the kernel lists and can be freed or reused once this function
424  *      returns.
425  *
426  *      The packet type might still be in use by receivers
427  *      and must not be freed until after all the CPU's have gone
428  *      through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432         struct list_head *head = ptype_head(pt);
433         struct packet_type *pt1;
434
435         spin_lock(&ptype_lock);
436
437         list_for_each_entry(pt1, head, list) {
438                 if (pt == pt1) {
439                         list_del_rcu(&pt->list);
440                         goto out;
441                 }
442         }
443
444         pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446         spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449
450 /**
451  *      dev_remove_pack  - remove packet handler
452  *      @pt: packet type declaration
453  *
454  *      Remove a protocol handler that was previously added to the kernel
455  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *      from the kernel lists and can be freed or reused once this function
457  *      returns.
458  *
459  *      This call sleeps to guarantee that no CPU is looking at the packet
460  *      type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464         __dev_remove_pack(pt);
465
466         synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469
470
471 /**
472  *      dev_add_offload - register offload handlers
473  *      @po: protocol offload declaration
474  *
475  *      Add protocol offload handlers to the networking stack. The passed
476  *      &proto_offload is linked into kernel lists and may not be freed until
477  *      it has been removed from the kernel lists.
478  *
479  *      This call does not sleep therefore it can not
480  *      guarantee all CPU's that are in middle of receiving packets
481  *      will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485         struct packet_offload *elem;
486
487         spin_lock(&offload_lock);
488         list_for_each_entry(elem, &offload_base, list) {
489                 if (po->priority < elem->priority)
490                         break;
491         }
492         list_add_rcu(&po->list, elem->list.prev);
493         spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496
497 /**
498  *      __dev_remove_offload     - remove offload handler
499  *      @po: packet offload declaration
500  *
501  *      Remove a protocol offload handler that was previously added to the
502  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *      is removed from the kernel lists and can be freed or reused once this
504  *      function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *      and must not be freed until after all the CPU's have gone
508  *      through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512         struct list_head *head = &offload_base;
513         struct packet_offload *po1;
514
515         spin_lock(&offload_lock);
516
517         list_for_each_entry(po1, head, list) {
518                 if (po == po1) {
519                         list_del_rcu(&po->list);
520                         goto out;
521                 }
522         }
523
524         pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526         spin_unlock(&offload_lock);
527 }
528
529 /**
530  *      dev_remove_offload       - remove packet offload handler
531  *      @po: packet offload declaration
532  *
533  *      Remove a packet offload handler that was previously added to the kernel
534  *      offload handlers by dev_add_offload(). The passed &offload_type is
535  *      removed from the kernel lists and can be freed or reused once this
536  *      function returns.
537  *
538  *      This call sleeps to guarantee that no CPU is looking at the packet
539  *      type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543         __dev_remove_offload(po);
544
545         synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548
549 /******************************************************************************
550  *
551  *                    Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557
558 /**
559  *      netdev_boot_setup_add   - add new setup entry
560  *      @name: name of the device
561  *      @map: configured settings for the device
562  *
563  *      Adds new setup entry to the dev_boot_setup list.  The function
564  *      returns 0 on error and 1 on success.  This is a generic routine to
565  *      all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569         struct netdev_boot_setup *s;
570         int i;
571
572         s = dev_boot_setup;
573         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575                         memset(s[i].name, 0, sizeof(s[i].name));
576                         strlcpy(s[i].name, name, IFNAMSIZ);
577                         memcpy(&s[i].map, map, sizeof(s[i].map));
578                         break;
579                 }
580         }
581
582         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584
585 /**
586  * netdev_boot_setup_check      - check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596         struct netdev_boot_setup *s = dev_boot_setup;
597         int i;
598
599         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601                     !strcmp(dev->name, s[i].name)) {
602                         dev->irq = s[i].map.irq;
603                         dev->base_addr = s[i].map.base_addr;
604                         dev->mem_start = s[i].map.mem_start;
605                         dev->mem_end = s[i].map.mem_end;
606                         return 1;
607                 }
608         }
609         return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612
613
614 /**
615  * netdev_boot_base     - get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626         const struct netdev_boot_setup *s = dev_boot_setup;
627         char name[IFNAMSIZ];
628         int i;
629
630         sprintf(name, "%s%d", prefix, unit);
631
632         /*
633          * If device already registered then return base of 1
634          * to indicate not to probe for this interface
635          */
636         if (__dev_get_by_name(&init_net, name))
637                 return 1;
638
639         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640                 if (!strcmp(name, s[i].name))
641                         return s[i].map.base_addr;
642         return 0;
643 }
644
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650         int ints[5];
651         struct ifmap map;
652
653         str = get_options(str, ARRAY_SIZE(ints), ints);
654         if (!str || !*str)
655                 return 0;
656
657         /* Save settings */
658         memset(&map, 0, sizeof(map));
659         if (ints[0] > 0)
660                 map.irq = ints[1];
661         if (ints[0] > 1)
662                 map.base_addr = ints[2];
663         if (ints[0] > 2)
664                 map.mem_start = ints[3];
665         if (ints[0] > 3)
666                 map.mem_end = ints[4];
667
668         /* Add new entry to the list */
669         return netdev_boot_setup_add(str, &map);
670 }
671
672 __setup("netdev=", netdev_boot_setup);
673
674 /*******************************************************************************
675  *
676  *                          Device Interface Subroutines
677  *
678  *******************************************************************************/
679
680 /**
681  *      dev_get_iflink  - get 'iflink' value of a interface
682  *      @dev: targeted interface
683  *
684  *      Indicates the ifindex the interface is linked to.
685  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687
688 int dev_get_iflink(const struct net_device *dev)
689 {
690         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691                 return dev->netdev_ops->ndo_get_iflink(dev);
692
693         return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696
697 /**
698  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *      @dev: targeted interface
700  *      @skb: The packet.
701  *
702  *      For better visibility of tunnel traffic OVS needs to retrieve
703  *      egress tunnel information for a packet. Following API allows
704  *      user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708         struct ip_tunnel_info *info;
709
710         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711                 return -EINVAL;
712
713         info = skb_tunnel_info_unclone(skb);
714         if (!info)
715                 return -ENOMEM;
716         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717                 return -EINVAL;
718
719         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722
723 /**
724  *      __dev_get_by_name       - find a device by its name
725  *      @net: the applicable net namespace
726  *      @name: name to find
727  *
728  *      Find an interface by name. Must be called under RTNL semaphore
729  *      or @dev_base_lock. If the name is found a pointer to the device
730  *      is returned. If the name is not found then %NULL is returned. The
731  *      reference counters are not incremented so the caller must be
732  *      careful with locks.
733  */
734
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737         struct net_device *dev;
738         struct hlist_head *head = dev_name_hash(net, name);
739
740         hlist_for_each_entry(dev, head, name_hlist)
741                 if (!strncmp(dev->name, name, IFNAMSIZ))
742                         return dev;
743
744         return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747
748 /**
749  * dev_get_by_name_rcu  - find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762         struct net_device *dev;
763         struct hlist_head *head = dev_name_hash(net, name);
764
765         hlist_for_each_entry_rcu(dev, head, name_hlist)
766                 if (!strncmp(dev->name, name, IFNAMSIZ))
767                         return dev;
768
769         return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772
773 /**
774  *      dev_get_by_name         - find a device by its name
775  *      @net: the applicable net namespace
776  *      @name: name to find
777  *
778  *      Find an interface by name. This can be called from any
779  *      context and does its own locking. The returned handle has
780  *      the usage count incremented and the caller must use dev_put() to
781  *      release it when it is no longer needed. %NULL is returned if no
782  *      matching device is found.
783  */
784
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787         struct net_device *dev;
788
789         rcu_read_lock();
790         dev = dev_get_by_name_rcu(net, name);
791         if (dev)
792                 dev_hold(dev);
793         rcu_read_unlock();
794         return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797
798 /**
799  *      __dev_get_by_index - find a device by its ifindex
800  *      @net: the applicable net namespace
801  *      @ifindex: index of device
802  *
803  *      Search for an interface by index. Returns %NULL if the device
804  *      is not found or a pointer to the device. The device has not
805  *      had its reference counter increased so the caller must be careful
806  *      about locking. The caller must hold either the RTNL semaphore
807  *      or @dev_base_lock.
808  */
809
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812         struct net_device *dev;
813         struct hlist_head *head = dev_index_hash(net, ifindex);
814
815         hlist_for_each_entry(dev, head, index_hlist)
816                 if (dev->ifindex == ifindex)
817                         return dev;
818
819         return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822
823 /**
824  *      dev_get_by_index_rcu - find a device by its ifindex
825  *      @net: the applicable net namespace
826  *      @ifindex: index of device
827  *
828  *      Search for an interface by index. Returns %NULL if the device
829  *      is not found or a pointer to the device. The device has not
830  *      had its reference counter increased so the caller must be careful
831  *      about locking. The caller must hold RCU lock.
832  */
833
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836         struct net_device *dev;
837         struct hlist_head *head = dev_index_hash(net, ifindex);
838
839         hlist_for_each_entry_rcu(dev, head, index_hlist)
840                 if (dev->ifindex == ifindex)
841                         return dev;
842
843         return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846
847
848 /**
849  *      dev_get_by_index - find a device by its ifindex
850  *      @net: the applicable net namespace
851  *      @ifindex: index of device
852  *
853  *      Search for an interface by index. Returns NULL if the device
854  *      is not found or a pointer to the device. The device returned has
855  *      had a reference added and the pointer is safe until the user calls
856  *      dev_put to indicate they have finished with it.
857  */
858
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861         struct net_device *dev;
862
863         rcu_read_lock();
864         dev = dev_get_by_index_rcu(net, ifindex);
865         if (dev)
866                 dev_hold(dev);
867         rcu_read_unlock();
868         return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871
872 /**
873  *      dev_get_by_napi_id - find a device by napi_id
874  *      @napi_id: ID of the NAPI struct
875  *
876  *      Search for an interface by NAPI ID. Returns %NULL if the device
877  *      is not found or a pointer to the device. The device has not had
878  *      its reference counter increased so the caller must be careful
879  *      about locking. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884         struct napi_struct *napi;
885
886         WARN_ON_ONCE(!rcu_read_lock_held());
887
888         if (napi_id < MIN_NAPI_ID)
889                 return NULL;
890
891         napi = napi_by_id(napi_id);
892
893         return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896
897 /**
898  *      netdev_get_name - get a netdevice name, knowing its ifindex.
899  *      @net: network namespace
900  *      @name: a pointer to the buffer where the name will be stored.
901  *      @ifindex: the ifindex of the interface to get the name from.
902  */
903 int netdev_get_name(struct net *net, char *name, int ifindex)
904 {
905         struct net_device *dev;
906         int ret;
907
908         down_read(&devnet_rename_sem);
909         rcu_read_lock();
910
911         dev = dev_get_by_index_rcu(net, ifindex);
912         if (!dev) {
913                 ret = -ENODEV;
914                 goto out;
915         }
916
917         strcpy(name, dev->name);
918
919         ret = 0;
920 out:
921         rcu_read_unlock();
922         up_read(&devnet_rename_sem);
923         return ret;
924 }
925
926 /**
927  *      dev_getbyhwaddr_rcu - find a device by its hardware address
928  *      @net: the applicable net namespace
929  *      @type: media type of device
930  *      @ha: hardware address
931  *
932  *      Search for an interface by MAC address. Returns NULL if the device
933  *      is not found or a pointer to the device.
934  *      The caller must hold RCU or RTNL.
935  *      The returned device has not had its ref count increased
936  *      and the caller must therefore be careful about locking
937  *
938  */
939
940 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
941                                        const char *ha)
942 {
943         struct net_device *dev;
944
945         for_each_netdev_rcu(net, dev)
946                 if (dev->type == type &&
947                     !memcmp(dev->dev_addr, ha, dev->addr_len))
948                         return dev;
949
950         return NULL;
951 }
952 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
953
954 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
955 {
956         struct net_device *dev;
957
958         ASSERT_RTNL();
959         for_each_netdev(net, dev)
960                 if (dev->type == type)
961                         return dev;
962
963         return NULL;
964 }
965 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
966
967 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
968 {
969         struct net_device *dev, *ret = NULL;
970
971         rcu_read_lock();
972         for_each_netdev_rcu(net, dev)
973                 if (dev->type == type) {
974                         dev_hold(dev);
975                         ret = dev;
976                         break;
977                 }
978         rcu_read_unlock();
979         return ret;
980 }
981 EXPORT_SYMBOL(dev_getfirstbyhwtype);
982
983 /**
984  *      __dev_get_by_flags - find any device with given flags
985  *      @net: the applicable net namespace
986  *      @if_flags: IFF_* values
987  *      @mask: bitmask of bits in if_flags to check
988  *
989  *      Search for any interface with the given flags. Returns NULL if a device
990  *      is not found or a pointer to the device. Must be called inside
991  *      rtnl_lock(), and result refcount is unchanged.
992  */
993
994 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
995                                       unsigned short mask)
996 {
997         struct net_device *dev, *ret;
998
999         ASSERT_RTNL();
1000
1001         ret = NULL;
1002         for_each_netdev(net, dev) {
1003                 if (((dev->flags ^ if_flags) & mask) == 0) {
1004                         ret = dev;
1005                         break;
1006                 }
1007         }
1008         return ret;
1009 }
1010 EXPORT_SYMBOL(__dev_get_by_flags);
1011
1012 /**
1013  *      dev_valid_name - check if name is okay for network device
1014  *      @name: name string
1015  *
1016  *      Network device names need to be valid file names to
1017  *      to allow sysfs to work.  We also disallow any kind of
1018  *      whitespace.
1019  */
1020 bool dev_valid_name(const char *name)
1021 {
1022         if (*name == '\0')
1023                 return false;
1024         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1025                 return false;
1026         if (!strcmp(name, ".") || !strcmp(name, ".."))
1027                 return false;
1028
1029         while (*name) {
1030                 if (*name == '/' || *name == ':' || isspace(*name))
1031                         return false;
1032                 name++;
1033         }
1034         return true;
1035 }
1036 EXPORT_SYMBOL(dev_valid_name);
1037
1038 /**
1039  *      __dev_alloc_name - allocate a name for a device
1040  *      @net: network namespace to allocate the device name in
1041  *      @name: name format string
1042  *      @buf:  scratch buffer and result name string
1043  *
1044  *      Passed a format string - eg "lt%d" it will try and find a suitable
1045  *      id. It scans list of devices to build up a free map, then chooses
1046  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1047  *      while allocating the name and adding the device in order to avoid
1048  *      duplicates.
1049  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1050  *      Returns the number of the unit assigned or a negative errno code.
1051  */
1052
1053 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1054 {
1055         int i = 0;
1056         const char *p;
1057         const int max_netdevices = 8*PAGE_SIZE;
1058         unsigned long *inuse;
1059         struct net_device *d;
1060
1061         p = strnchr(name, IFNAMSIZ-1, '%');
1062         if (p) {
1063                 /*
1064                  * Verify the string as this thing may have come from
1065                  * the user.  There must be either one "%d" and no other "%"
1066                  * characters.
1067                  */
1068                 if (p[1] != 'd' || strchr(p + 2, '%'))
1069                         return -EINVAL;
1070
1071                 /* Use one page as a bit array of possible slots */
1072                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1073                 if (!inuse)
1074                         return -ENOMEM;
1075
1076                 for_each_netdev(net, d) {
1077                         if (!sscanf(d->name, name, &i))
1078                                 continue;
1079                         if (i < 0 || i >= max_netdevices)
1080                                 continue;
1081
1082                         /*  avoid cases where sscanf is not exact inverse of printf */
1083                         snprintf(buf, IFNAMSIZ, name, i);
1084                         if (!strncmp(buf, d->name, IFNAMSIZ))
1085                                 set_bit(i, inuse);
1086                 }
1087
1088                 i = find_first_zero_bit(inuse, max_netdevices);
1089                 free_page((unsigned long) inuse);
1090         }
1091
1092         if (buf != name)
1093                 snprintf(buf, IFNAMSIZ, name, i);
1094         if (!__dev_get_by_name(net, buf))
1095                 return i;
1096
1097         /* It is possible to run out of possible slots
1098          * when the name is long and there isn't enough space left
1099          * for the digits, or if all bits are used.
1100          */
1101         return -ENFILE;
1102 }
1103
1104 /**
1105  *      dev_alloc_name - allocate a name for a device
1106  *      @dev: device
1107  *      @name: name format string
1108  *
1109  *      Passed a format string - eg "lt%d" it will try and find a suitable
1110  *      id. It scans list of devices to build up a free map, then chooses
1111  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1112  *      while allocating the name and adding the device in order to avoid
1113  *      duplicates.
1114  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1115  *      Returns the number of the unit assigned or a negative errno code.
1116  */
1117
1118 int dev_alloc_name(struct net_device *dev, const char *name)
1119 {
1120         char buf[IFNAMSIZ];
1121         struct net *net;
1122         int ret;
1123
1124         BUG_ON(!dev_net(dev));
1125         net = dev_net(dev);
1126         ret = __dev_alloc_name(net, name, buf);
1127         if (ret >= 0)
1128                 strlcpy(dev->name, buf, IFNAMSIZ);
1129         return ret;
1130 }
1131 EXPORT_SYMBOL(dev_alloc_name);
1132
1133 static int dev_alloc_name_ns(struct net *net,
1134                              struct net_device *dev,
1135                              const char *name)
1136 {
1137         char buf[IFNAMSIZ];
1138         int ret;
1139
1140         ret = __dev_alloc_name(net, name, buf);
1141         if (ret >= 0)
1142                 strlcpy(dev->name, buf, IFNAMSIZ);
1143         return ret;
1144 }
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                        const char *name)
1148 {
1149         BUG_ON(!net);
1150
1151         if (!dev_valid_name(name))
1152                 return -EINVAL;
1153
1154         if (strchr(name, '%'))
1155                 return dev_alloc_name_ns(net, dev, name);
1156         else if (__dev_get_by_name(net, name))
1157                 return -EEXIST;
1158         else if (dev->name != name)
1159                 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161         return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166  *      dev_change_name - change name of a device
1167  *      @dev: device
1168  *      @newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *      Change name of a device, can pass format strings "eth%d".
1171  *      for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175         unsigned char old_assign_type;
1176         char oldname[IFNAMSIZ];
1177         int err = 0;
1178         int ret;
1179         struct net *net;
1180
1181         ASSERT_RTNL();
1182         BUG_ON(!dev_net(dev));
1183
1184         net = dev_net(dev);
1185         if (dev->flags & IFF_UP)
1186                 return -EBUSY;
1187
1188         down_write(&devnet_rename_sem);
1189
1190         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                 up_write(&devnet_rename_sem);
1192                 return 0;
1193         }
1194
1195         memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197         err = dev_get_valid_name(net, dev, newname);
1198         if (err < 0) {
1199                 up_write(&devnet_rename_sem);
1200                 return err;
1201         }
1202
1203         if (oldname[0] && !strchr(oldname, '%'))
1204                 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206         old_assign_type = dev->name_assign_type;
1207         dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210         ret = device_rename(&dev->dev, dev->name);
1211         if (ret) {
1212                 memcpy(dev->name, oldname, IFNAMSIZ);
1213                 dev->name_assign_type = old_assign_type;
1214                 up_write(&devnet_rename_sem);
1215                 return ret;
1216         }
1217
1218         up_write(&devnet_rename_sem);
1219
1220         netdev_adjacent_rename_links(dev, oldname);
1221
1222         write_lock_bh(&dev_base_lock);
1223         hlist_del_rcu(&dev->name_hlist);
1224         write_unlock_bh(&dev_base_lock);
1225
1226         synchronize_rcu();
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230         write_unlock_bh(&dev_base_lock);
1231
1232         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233         ret = notifier_to_errno(ret);
1234
1235         if (ret) {
1236                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                 if (err >= 0) {
1238                         err = ret;
1239                         down_write(&devnet_rename_sem);
1240                         memcpy(dev->name, oldname, IFNAMSIZ);
1241                         memcpy(oldname, newname, IFNAMSIZ);
1242                         dev->name_assign_type = old_assign_type;
1243                         old_assign_type = NET_NAME_RENAMED;
1244                         goto rollback;
1245                 } else {
1246                         pr_err("%s: name change rollback failed: %d\n",
1247                                dev->name, ret);
1248                 }
1249         }
1250
1251         return err;
1252 }
1253
1254 /**
1255  *      dev_set_alias - change ifalias of a device
1256  *      @dev: device
1257  *      @alias: name up to IFALIASZ
1258  *      @len: limit of bytes to copy from info
1259  *
1260  *      Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264         char *new_ifalias;
1265
1266         ASSERT_RTNL();
1267
1268         if (len >= IFALIASZ)
1269                 return -EINVAL;
1270
1271         if (!len) {
1272                 kfree(dev->ifalias);
1273                 dev->ifalias = NULL;
1274                 return 0;
1275         }
1276
1277         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1278         if (!new_ifalias)
1279                 return -ENOMEM;
1280         dev->ifalias = new_ifalias;
1281         memcpy(dev->ifalias, alias, len);
1282         dev->ifalias[len] = 0;
1283
1284         return len;
1285 }
1286
1287
1288 /**
1289  *      netdev_features_change - device changes features
1290  *      @dev: device to cause notification
1291  *
1292  *      Called to indicate a device has changed features.
1293  */
1294 void netdev_features_change(struct net_device *dev)
1295 {
1296         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1297 }
1298 EXPORT_SYMBOL(netdev_features_change);
1299
1300 /**
1301  *      netdev_state_change - device changes state
1302  *      @dev: device to cause notification
1303  *
1304  *      Called to indicate a device has changed state. This function calls
1305  *      the notifier chains for netdev_chain and sends a NEWLINK message
1306  *      to the routing socket.
1307  */
1308 void netdev_state_change(struct net_device *dev)
1309 {
1310         if (dev->flags & IFF_UP) {
1311                 struct netdev_notifier_change_info change_info;
1312
1313                 change_info.flags_changed = 0;
1314                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1315                                               &change_info.info);
1316                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1317         }
1318 }
1319 EXPORT_SYMBOL(netdev_state_change);
1320
1321 /**
1322  * netdev_notify_peers - notify network peers about existence of @dev
1323  * @dev: network device
1324  *
1325  * Generate traffic such that interested network peers are aware of
1326  * @dev, such as by generating a gratuitous ARP. This may be used when
1327  * a device wants to inform the rest of the network about some sort of
1328  * reconfiguration such as a failover event or virtual machine
1329  * migration.
1330  */
1331 void netdev_notify_peers(struct net_device *dev)
1332 {
1333         rtnl_lock();
1334         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1335         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1336         rtnl_unlock();
1337 }
1338 EXPORT_SYMBOL(netdev_notify_peers);
1339
1340 static int __dev_open(struct net_device *dev)
1341 {
1342         const struct net_device_ops *ops = dev->netdev_ops;
1343         int ret;
1344
1345         ASSERT_RTNL();
1346
1347         if (!netif_device_present(dev))
1348                 return -ENODEV;
1349
1350         /* Block netpoll from trying to do any rx path servicing.
1351          * If we don't do this there is a chance ndo_poll_controller
1352          * or ndo_poll may be running while we open the device
1353          */
1354         netpoll_poll_disable(dev);
1355
1356         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1357         ret = notifier_to_errno(ret);
1358         if (ret)
1359                 return ret;
1360
1361         set_bit(__LINK_STATE_START, &dev->state);
1362
1363         if (ops->ndo_validate_addr)
1364                 ret = ops->ndo_validate_addr(dev);
1365
1366         if (!ret && ops->ndo_open)
1367                 ret = ops->ndo_open(dev);
1368
1369         netpoll_poll_enable(dev);
1370
1371         if (ret)
1372                 clear_bit(__LINK_STATE_START, &dev->state);
1373         else {
1374                 dev->flags |= IFF_UP;
1375                 dev_set_rx_mode(dev);
1376                 dev_activate(dev);
1377                 add_device_randomness(dev->dev_addr, dev->addr_len);
1378         }
1379
1380         return ret;
1381 }
1382
1383 /**
1384  *      dev_open        - prepare an interface for use.
1385  *      @dev:   device to open
1386  *
1387  *      Takes a device from down to up state. The device's private open
1388  *      function is invoked and then the multicast lists are loaded. Finally
1389  *      the device is moved into the up state and a %NETDEV_UP message is
1390  *      sent to the netdev notifier chain.
1391  *
1392  *      Calling this function on an active interface is a nop. On a failure
1393  *      a negative errno code is returned.
1394  */
1395 int dev_open(struct net_device *dev)
1396 {
1397         int ret;
1398
1399         if (dev->flags & IFF_UP)
1400                 return 0;
1401
1402         ret = __dev_open(dev);
1403         if (ret < 0)
1404                 return ret;
1405
1406         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1407         call_netdevice_notifiers(NETDEV_UP, dev);
1408
1409         return ret;
1410 }
1411 EXPORT_SYMBOL(dev_open);
1412
1413 static void __dev_close_many(struct list_head *head)
1414 {
1415         struct net_device *dev;
1416
1417         ASSERT_RTNL();
1418         might_sleep();
1419
1420         list_for_each_entry(dev, head, close_list) {
1421                 /* Temporarily disable netpoll until the interface is down */
1422                 netpoll_poll_disable(dev);
1423
1424                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1425
1426                 clear_bit(__LINK_STATE_START, &dev->state);
1427
1428                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1429                  * can be even on different cpu. So just clear netif_running().
1430                  *
1431                  * dev->stop() will invoke napi_disable() on all of it's
1432                  * napi_struct instances on this device.
1433                  */
1434                 smp_mb__after_atomic(); /* Commit netif_running(). */
1435         }
1436
1437         dev_deactivate_many(head);
1438
1439         list_for_each_entry(dev, head, close_list) {
1440                 const struct net_device_ops *ops = dev->netdev_ops;
1441
1442                 /*
1443                  *      Call the device specific close. This cannot fail.
1444                  *      Only if device is UP
1445                  *
1446                  *      We allow it to be called even after a DETACH hot-plug
1447                  *      event.
1448                  */
1449                 if (ops->ndo_stop)
1450                         ops->ndo_stop(dev);
1451
1452                 dev->flags &= ~IFF_UP;
1453                 netpoll_poll_enable(dev);
1454         }
1455 }
1456
1457 static void __dev_close(struct net_device *dev)
1458 {
1459         LIST_HEAD(single);
1460
1461         list_add(&dev->close_list, &single);
1462         __dev_close_many(&single);
1463         list_del(&single);
1464 }
1465
1466 void dev_close_many(struct list_head *head, bool unlink)
1467 {
1468         struct net_device *dev, *tmp;
1469
1470         /* Remove the devices that don't need to be closed */
1471         list_for_each_entry_safe(dev, tmp, head, close_list)
1472                 if (!(dev->flags & IFF_UP))
1473                         list_del_init(&dev->close_list);
1474
1475         __dev_close_many(head);
1476
1477         list_for_each_entry_safe(dev, tmp, head, close_list) {
1478                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1479                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1480                 if (unlink)
1481                         list_del_init(&dev->close_list);
1482         }
1483 }
1484 EXPORT_SYMBOL(dev_close_many);
1485
1486 /**
1487  *      dev_close - shutdown an interface.
1488  *      @dev: device to shutdown
1489  *
1490  *      This function moves an active device into down state. A
1491  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1492  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1493  *      chain.
1494  */
1495 void dev_close(struct net_device *dev)
1496 {
1497         if (dev->flags & IFF_UP) {
1498                 LIST_HEAD(single);
1499
1500                 list_add(&dev->close_list, &single);
1501                 dev_close_many(&single, true);
1502                 list_del(&single);
1503         }
1504 }
1505 EXPORT_SYMBOL(dev_close);
1506
1507
1508 /**
1509  *      dev_disable_lro - disable Large Receive Offload on a device
1510  *      @dev: device
1511  *
1512  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1513  *      called under RTNL.  This is needed if received packets may be
1514  *      forwarded to another interface.
1515  */
1516 void dev_disable_lro(struct net_device *dev)
1517 {
1518         struct net_device *lower_dev;
1519         struct list_head *iter;
1520
1521         dev->wanted_features &= ~NETIF_F_LRO;
1522         netdev_update_features(dev);
1523
1524         if (unlikely(dev->features & NETIF_F_LRO))
1525                 netdev_WARN(dev, "failed to disable LRO!\n");
1526
1527         netdev_for_each_lower_dev(dev, lower_dev, iter)
1528                 dev_disable_lro(lower_dev);
1529 }
1530 EXPORT_SYMBOL(dev_disable_lro);
1531
1532 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1533                                    struct net_device *dev)
1534 {
1535         struct netdev_notifier_info info;
1536
1537         netdev_notifier_info_init(&info, dev);
1538         return nb->notifier_call(nb, val, &info);
1539 }
1540
1541 static int dev_boot_phase = 1;
1542
1543 /**
1544  * register_netdevice_notifier - register a network notifier block
1545  * @nb: notifier
1546  *
1547  * Register a notifier to be called when network device events occur.
1548  * The notifier passed is linked into the kernel structures and must
1549  * not be reused until it has been unregistered. A negative errno code
1550  * is returned on a failure.
1551  *
1552  * When registered all registration and up events are replayed
1553  * to the new notifier to allow device to have a race free
1554  * view of the network device list.
1555  */
1556
1557 int register_netdevice_notifier(struct notifier_block *nb)
1558 {
1559         struct net_device *dev;
1560         struct net_device *last;
1561         struct net *net;
1562         int err;
1563
1564         rtnl_lock();
1565         err = raw_notifier_chain_register(&netdev_chain, nb);
1566         if (err)
1567                 goto unlock;
1568         if (dev_boot_phase)
1569                 goto unlock;
1570         for_each_net(net) {
1571                 for_each_netdev(net, dev) {
1572                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1573                         err = notifier_to_errno(err);
1574                         if (err)
1575                                 goto rollback;
1576
1577                         if (!(dev->flags & IFF_UP))
1578                                 continue;
1579
1580                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1581                 }
1582         }
1583
1584 unlock:
1585         rtnl_unlock();
1586         return err;
1587
1588 rollback:
1589         last = dev;
1590         for_each_net(net) {
1591                 for_each_netdev(net, dev) {
1592                         if (dev == last)
1593                                 goto outroll;
1594
1595                         if (dev->flags & IFF_UP) {
1596                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1597                                                         dev);
1598                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1599                         }
1600                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1601                 }
1602         }
1603
1604 outroll:
1605         raw_notifier_chain_unregister(&netdev_chain, nb);
1606         goto unlock;
1607 }
1608 EXPORT_SYMBOL(register_netdevice_notifier);
1609
1610 /**
1611  * unregister_netdevice_notifier - unregister a network notifier block
1612  * @nb: notifier
1613  *
1614  * Unregister a notifier previously registered by
1615  * register_netdevice_notifier(). The notifier is unlinked into the
1616  * kernel structures and may then be reused. A negative errno code
1617  * is returned on a failure.
1618  *
1619  * After unregistering unregister and down device events are synthesized
1620  * for all devices on the device list to the removed notifier to remove
1621  * the need for special case cleanup code.
1622  */
1623
1624 int unregister_netdevice_notifier(struct notifier_block *nb)
1625 {
1626         struct net_device *dev;
1627         struct net *net;
1628         int err;
1629
1630         rtnl_lock();
1631         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1632         if (err)
1633                 goto unlock;
1634
1635         for_each_net(net) {
1636                 for_each_netdev(net, dev) {
1637                         if (dev->flags & IFF_UP) {
1638                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1639                                                         dev);
1640                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1641                         }
1642                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1643                 }
1644         }
1645 unlock:
1646         rtnl_unlock();
1647         return err;
1648 }
1649 EXPORT_SYMBOL(unregister_netdevice_notifier);
1650
1651 /**
1652  *      call_netdevice_notifiers_info - call all network notifier blocks
1653  *      @val: value passed unmodified to notifier function
1654  *      @dev: net_device pointer passed unmodified to notifier function
1655  *      @info: notifier information data
1656  *
1657  *      Call all network notifier blocks.  Parameters and return value
1658  *      are as for raw_notifier_call_chain().
1659  */
1660
1661 static int call_netdevice_notifiers_info(unsigned long val,
1662                                          struct net_device *dev,
1663                                          struct netdev_notifier_info *info)
1664 {
1665         ASSERT_RTNL();
1666         netdev_notifier_info_init(info, dev);
1667         return raw_notifier_call_chain(&netdev_chain, val, info);
1668 }
1669
1670 /**
1671  *      call_netdevice_notifiers - call all network notifier blocks
1672  *      @val: value passed unmodified to notifier function
1673  *      @dev: net_device pointer passed unmodified to notifier function
1674  *
1675  *      Call all network notifier blocks.  Parameters and return value
1676  *      are as for raw_notifier_call_chain().
1677  */
1678
1679 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1680 {
1681         struct netdev_notifier_info info;
1682
1683         return call_netdevice_notifiers_info(val, dev, &info);
1684 }
1685 EXPORT_SYMBOL(call_netdevice_notifiers);
1686
1687 /**
1688  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1689  *      @val: value passed unmodified to notifier function
1690  *      @dev: net_device pointer passed unmodified to notifier function
1691  *      @arg: additional u32 argument passed to the notifier function
1692  *
1693  *      Call all network notifier blocks.  Parameters and return value
1694  *      are as for raw_notifier_call_chain().
1695  */
1696 static int call_netdevice_notifiers_mtu(unsigned long val,
1697                                         struct net_device *dev, u32 arg)
1698 {
1699         struct netdev_notifier_info_ext info = {
1700                 .info.dev = dev,
1701                 .ext.mtu = arg,
1702         };
1703
1704         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1705
1706         return call_netdevice_notifiers_info(val, dev, &info.info);
1707 }
1708
1709 #ifdef CONFIG_NET_INGRESS
1710 static struct static_key ingress_needed __read_mostly;
1711
1712 void net_inc_ingress_queue(void)
1713 {
1714         static_key_slow_inc(&ingress_needed);
1715 }
1716 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1717
1718 void net_dec_ingress_queue(void)
1719 {
1720         static_key_slow_dec(&ingress_needed);
1721 }
1722 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1723 #endif
1724
1725 #ifdef CONFIG_NET_EGRESS
1726 static struct static_key egress_needed __read_mostly;
1727
1728 void net_inc_egress_queue(void)
1729 {
1730         static_key_slow_inc(&egress_needed);
1731 }
1732 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1733
1734 void net_dec_egress_queue(void)
1735 {
1736         static_key_slow_dec(&egress_needed);
1737 }
1738 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1739 #endif
1740
1741 static struct static_key netstamp_needed __read_mostly;
1742 #ifdef HAVE_JUMP_LABEL
1743 static atomic_t netstamp_needed_deferred;
1744 static atomic_t netstamp_wanted;
1745 static void netstamp_clear(struct work_struct *work)
1746 {
1747         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1748         int wanted;
1749
1750         wanted = atomic_add_return(deferred, &netstamp_wanted);
1751         if (wanted > 0)
1752                 static_key_enable(&netstamp_needed);
1753         else
1754                 static_key_disable(&netstamp_needed);
1755 }
1756 static DECLARE_WORK(netstamp_work, netstamp_clear);
1757 #endif
1758
1759 void net_enable_timestamp(void)
1760 {
1761 #ifdef HAVE_JUMP_LABEL
1762         int wanted;
1763
1764         while (1) {
1765                 wanted = atomic_read(&netstamp_wanted);
1766                 if (wanted <= 0)
1767                         break;
1768                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1769                         return;
1770         }
1771         atomic_inc(&netstamp_needed_deferred);
1772         schedule_work(&netstamp_work);
1773 #else
1774         static_key_slow_inc(&netstamp_needed);
1775 #endif
1776 }
1777 EXPORT_SYMBOL(net_enable_timestamp);
1778
1779 void net_disable_timestamp(void)
1780 {
1781 #ifdef HAVE_JUMP_LABEL
1782         int wanted;
1783
1784         while (1) {
1785                 wanted = atomic_read(&netstamp_wanted);
1786                 if (wanted <= 1)
1787                         break;
1788                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1789                         return;
1790         }
1791         atomic_dec(&netstamp_needed_deferred);
1792         schedule_work(&netstamp_work);
1793 #else
1794         static_key_slow_dec(&netstamp_needed);
1795 #endif
1796 }
1797 EXPORT_SYMBOL(net_disable_timestamp);
1798
1799 static inline void net_timestamp_set(struct sk_buff *skb)
1800 {
1801         skb->tstamp = 0;
1802         if (static_key_false(&netstamp_needed))
1803                 __net_timestamp(skb);
1804 }
1805
1806 #define net_timestamp_check(COND, SKB)                  \
1807         if (static_key_false(&netstamp_needed)) {               \
1808                 if ((COND) && !(SKB)->tstamp)   \
1809                         __net_timestamp(SKB);           \
1810         }                                               \
1811
1812 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1813 {
1814         unsigned int len;
1815
1816         if (!(dev->flags & IFF_UP))
1817                 return false;
1818
1819         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1820         if (skb->len <= len)
1821                 return true;
1822
1823         /* if TSO is enabled, we don't care about the length as the packet
1824          * could be forwarded without being segmented before
1825          */
1826         if (skb_is_gso(skb))
1827                 return true;
1828
1829         return false;
1830 }
1831 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1832
1833 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1834 {
1835         int ret = ____dev_forward_skb(dev, skb);
1836
1837         if (likely(!ret)) {
1838                 skb->protocol = eth_type_trans(skb, dev);
1839                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1840         }
1841
1842         return ret;
1843 }
1844 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1845
1846 /**
1847  * dev_forward_skb - loopback an skb to another netif
1848  *
1849  * @dev: destination network device
1850  * @skb: buffer to forward
1851  *
1852  * return values:
1853  *      NET_RX_SUCCESS  (no congestion)
1854  *      NET_RX_DROP     (packet was dropped, but freed)
1855  *
1856  * dev_forward_skb can be used for injecting an skb from the
1857  * start_xmit function of one device into the receive queue
1858  * of another device.
1859  *
1860  * The receiving device may be in another namespace, so
1861  * we have to clear all information in the skb that could
1862  * impact namespace isolation.
1863  */
1864 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1865 {
1866         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1867 }
1868 EXPORT_SYMBOL_GPL(dev_forward_skb);
1869
1870 static inline int deliver_skb(struct sk_buff *skb,
1871                               struct packet_type *pt_prev,
1872                               struct net_device *orig_dev)
1873 {
1874         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1875                 return -ENOMEM;
1876         refcount_inc(&skb->users);
1877         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1878 }
1879
1880 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1881                                           struct packet_type **pt,
1882                                           struct net_device *orig_dev,
1883                                           __be16 type,
1884                                           struct list_head *ptype_list)
1885 {
1886         struct packet_type *ptype, *pt_prev = *pt;
1887
1888         list_for_each_entry_rcu(ptype, ptype_list, list) {
1889                 if (ptype->type != type)
1890                         continue;
1891                 if (pt_prev)
1892                         deliver_skb(skb, pt_prev, orig_dev);
1893                 pt_prev = ptype;
1894         }
1895         *pt = pt_prev;
1896 }
1897
1898 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1899 {
1900         if (!ptype->af_packet_priv || !skb->sk)
1901                 return false;
1902
1903         if (ptype->id_match)
1904                 return ptype->id_match(ptype, skb->sk);
1905         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1906                 return true;
1907
1908         return false;
1909 }
1910
1911 /*
1912  *      Support routine. Sends outgoing frames to any network
1913  *      taps currently in use.
1914  */
1915
1916 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1917 {
1918         struct packet_type *ptype;
1919         struct sk_buff *skb2 = NULL;
1920         struct packet_type *pt_prev = NULL;
1921         struct list_head *ptype_list = &ptype_all;
1922
1923         rcu_read_lock();
1924 again:
1925         list_for_each_entry_rcu(ptype, ptype_list, list) {
1926                 /* Never send packets back to the socket
1927                  * they originated from - MvS (miquels@drinkel.ow.org)
1928                  */
1929                 if (skb_loop_sk(ptype, skb))
1930                         continue;
1931
1932                 if (pt_prev) {
1933                         deliver_skb(skb2, pt_prev, skb->dev);
1934                         pt_prev = ptype;
1935                         continue;
1936                 }
1937
1938                 /* need to clone skb, done only once */
1939                 skb2 = skb_clone(skb, GFP_ATOMIC);
1940                 if (!skb2)
1941                         goto out_unlock;
1942
1943                 net_timestamp_set(skb2);
1944
1945                 /* skb->nh should be correctly
1946                  * set by sender, so that the second statement is
1947                  * just protection against buggy protocols.
1948                  */
1949                 skb_reset_mac_header(skb2);
1950
1951                 if (skb_network_header(skb2) < skb2->data ||
1952                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1953                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1954                                              ntohs(skb2->protocol),
1955                                              dev->name);
1956                         skb_reset_network_header(skb2);
1957                 }
1958
1959                 skb2->transport_header = skb2->network_header;
1960                 skb2->pkt_type = PACKET_OUTGOING;
1961                 pt_prev = ptype;
1962         }
1963
1964         if (ptype_list == &ptype_all) {
1965                 ptype_list = &dev->ptype_all;
1966                 goto again;
1967         }
1968 out_unlock:
1969         if (pt_prev) {
1970                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1971                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1972                 else
1973                         kfree_skb(skb2);
1974         }
1975         rcu_read_unlock();
1976 }
1977 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1978
1979 /**
1980  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1981  * @dev: Network device
1982  * @txq: number of queues available
1983  *
1984  * If real_num_tx_queues is changed the tc mappings may no longer be
1985  * valid. To resolve this verify the tc mapping remains valid and if
1986  * not NULL the mapping. With no priorities mapping to this
1987  * offset/count pair it will no longer be used. In the worst case TC0
1988  * is invalid nothing can be done so disable priority mappings. If is
1989  * expected that drivers will fix this mapping if they can before
1990  * calling netif_set_real_num_tx_queues.
1991  */
1992 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1993 {
1994         int i;
1995         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1996
1997         /* If TC0 is invalidated disable TC mapping */
1998         if (tc->offset + tc->count > txq) {
1999                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2000                 dev->num_tc = 0;
2001                 return;
2002         }
2003
2004         /* Invalidated prio to tc mappings set to TC0 */
2005         for (i = 1; i < TC_BITMASK + 1; i++) {
2006                 int q = netdev_get_prio_tc_map(dev, i);
2007
2008                 tc = &dev->tc_to_txq[q];
2009                 if (tc->offset + tc->count > txq) {
2010                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2011                                 i, q);
2012                         netdev_set_prio_tc_map(dev, i, 0);
2013                 }
2014         }
2015 }
2016
2017 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2018 {
2019         if (dev->num_tc) {
2020                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2021                 int i;
2022
2023                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2024                         if ((txq - tc->offset) < tc->count)
2025                                 return i;
2026                 }
2027
2028                 return -1;
2029         }
2030
2031         return 0;
2032 }
2033
2034 #ifdef CONFIG_XPS
2035 static DEFINE_MUTEX(xps_map_mutex);
2036 #define xmap_dereference(P)             \
2037         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2038
2039 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2040                              int tci, u16 index)
2041 {
2042         struct xps_map *map = NULL;
2043         int pos;
2044
2045         if (dev_maps)
2046                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2047         if (!map)
2048                 return false;
2049
2050         for (pos = map->len; pos--;) {
2051                 if (map->queues[pos] != index)
2052                         continue;
2053
2054                 if (map->len > 1) {
2055                         map->queues[pos] = map->queues[--map->len];
2056                         break;
2057                 }
2058
2059                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2060                 kfree_rcu(map, rcu);
2061                 return false;
2062         }
2063
2064         return true;
2065 }
2066
2067 static bool remove_xps_queue_cpu(struct net_device *dev,
2068                                  struct xps_dev_maps *dev_maps,
2069                                  int cpu, u16 offset, u16 count)
2070 {
2071         int num_tc = dev->num_tc ? : 1;
2072         bool active = false;
2073         int tci;
2074
2075         for (tci = cpu * num_tc; num_tc--; tci++) {
2076                 int i, j;
2077
2078                 for (i = count, j = offset; i--; j++) {
2079                         if (!remove_xps_queue(dev_maps, tci, j))
2080                                 break;
2081                 }
2082
2083                 active |= i < 0;
2084         }
2085
2086         return active;
2087 }
2088
2089 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2090                                    u16 count)
2091 {
2092         struct xps_dev_maps *dev_maps;
2093         int cpu, i;
2094         bool active = false;
2095
2096         mutex_lock(&xps_map_mutex);
2097         dev_maps = xmap_dereference(dev->xps_maps);
2098
2099         if (!dev_maps)
2100                 goto out_no_maps;
2101
2102         for_each_possible_cpu(cpu)
2103                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2104                                                offset, count);
2105
2106         if (!active) {
2107                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2108                 kfree_rcu(dev_maps, rcu);
2109         }
2110
2111         for (i = offset + (count - 1); count--; i--)
2112                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2113                                              NUMA_NO_NODE);
2114
2115 out_no_maps:
2116         mutex_unlock(&xps_map_mutex);
2117 }
2118
2119 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2120 {
2121         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2122 }
2123
2124 static struct xps_map *expand_xps_map(struct xps_map *map,
2125                                       int cpu, u16 index)
2126 {
2127         struct xps_map *new_map;
2128         int alloc_len = XPS_MIN_MAP_ALLOC;
2129         int i, pos;
2130
2131         for (pos = 0; map && pos < map->len; pos++) {
2132                 if (map->queues[pos] != index)
2133                         continue;
2134                 return map;
2135         }
2136
2137         /* Need to add queue to this CPU's existing map */
2138         if (map) {
2139                 if (pos < map->alloc_len)
2140                         return map;
2141
2142                 alloc_len = map->alloc_len * 2;
2143         }
2144
2145         /* Need to allocate new map to store queue on this CPU's map */
2146         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2147                                cpu_to_node(cpu));
2148         if (!new_map)
2149                 return NULL;
2150
2151         for (i = 0; i < pos; i++)
2152                 new_map->queues[i] = map->queues[i];
2153         new_map->alloc_len = alloc_len;
2154         new_map->len = pos;
2155
2156         return new_map;
2157 }
2158
2159 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2160                         u16 index)
2161 {
2162         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2163         int i, cpu, tci, numa_node_id = -2;
2164         int maps_sz, num_tc = 1, tc = 0;
2165         struct xps_map *map, *new_map;
2166         bool active = false;
2167
2168         WARN_ON_ONCE(index >= dev->num_tx_queues);
2169
2170         if (dev->num_tc) {
2171                 num_tc = dev->num_tc;
2172                 tc = netdev_txq_to_tc(dev, index);
2173                 if (tc < 0)
2174                         return -EINVAL;
2175         }
2176
2177         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2178         if (maps_sz < L1_CACHE_BYTES)
2179                 maps_sz = L1_CACHE_BYTES;
2180
2181         mutex_lock(&xps_map_mutex);
2182
2183         dev_maps = xmap_dereference(dev->xps_maps);
2184
2185         /* allocate memory for queue storage */
2186         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2187                 if (!new_dev_maps)
2188                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2189                 if (!new_dev_maps) {
2190                         mutex_unlock(&xps_map_mutex);
2191                         return -ENOMEM;
2192                 }
2193
2194                 tci = cpu * num_tc + tc;
2195                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2196                                  NULL;
2197
2198                 map = expand_xps_map(map, cpu, index);
2199                 if (!map)
2200                         goto error;
2201
2202                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2203         }
2204
2205         if (!new_dev_maps)
2206                 goto out_no_new_maps;
2207
2208         for_each_possible_cpu(cpu) {
2209                 /* copy maps belonging to foreign traffic classes */
2210                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2211                         /* fill in the new device map from the old device map */
2212                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2213                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2214                 }
2215
2216                 /* We need to explicitly update tci as prevous loop
2217                  * could break out early if dev_maps is NULL.
2218                  */
2219                 tci = cpu * num_tc + tc;
2220
2221                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2222                         /* add queue to CPU maps */
2223                         int pos = 0;
2224
2225                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2226                         while ((pos < map->len) && (map->queues[pos] != index))
2227                                 pos++;
2228
2229                         if (pos == map->len)
2230                                 map->queues[map->len++] = index;
2231 #ifdef CONFIG_NUMA
2232                         if (numa_node_id == -2)
2233                                 numa_node_id = cpu_to_node(cpu);
2234                         else if (numa_node_id != cpu_to_node(cpu))
2235                                 numa_node_id = -1;
2236 #endif
2237                 } else if (dev_maps) {
2238                         /* fill in the new device map from the old device map */
2239                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2240                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2241                 }
2242
2243                 /* copy maps belonging to foreign traffic classes */
2244                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2245                         /* fill in the new device map from the old device map */
2246                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2247                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2248                 }
2249         }
2250
2251         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2252
2253         /* Cleanup old maps */
2254         if (!dev_maps)
2255                 goto out_no_old_maps;
2256
2257         for_each_possible_cpu(cpu) {
2258                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2259                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2260                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2261                         if (map && map != new_map)
2262                                 kfree_rcu(map, rcu);
2263                 }
2264         }
2265
2266         kfree_rcu(dev_maps, rcu);
2267
2268 out_no_old_maps:
2269         dev_maps = new_dev_maps;
2270         active = true;
2271
2272 out_no_new_maps:
2273         /* update Tx queue numa node */
2274         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2275                                      (numa_node_id >= 0) ? numa_node_id :
2276                                      NUMA_NO_NODE);
2277
2278         if (!dev_maps)
2279                 goto out_no_maps;
2280
2281         /* removes queue from unused CPUs */
2282         for_each_possible_cpu(cpu) {
2283                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2284                         active |= remove_xps_queue(dev_maps, tci, index);
2285                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2286                         active |= remove_xps_queue(dev_maps, tci, index);
2287                 for (i = num_tc - tc, tci++; --i; tci++)
2288                         active |= remove_xps_queue(dev_maps, tci, index);
2289         }
2290
2291         /* free map if not active */
2292         if (!active) {
2293                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2294                 kfree_rcu(dev_maps, rcu);
2295         }
2296
2297 out_no_maps:
2298         mutex_unlock(&xps_map_mutex);
2299
2300         return 0;
2301 error:
2302         /* remove any maps that we added */
2303         for_each_possible_cpu(cpu) {
2304                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2305                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2306                         map = dev_maps ?
2307                               xmap_dereference(dev_maps->cpu_map[tci]) :
2308                               NULL;
2309                         if (new_map && new_map != map)
2310                                 kfree(new_map);
2311                 }
2312         }
2313
2314         mutex_unlock(&xps_map_mutex);
2315
2316         kfree(new_dev_maps);
2317         return -ENOMEM;
2318 }
2319 EXPORT_SYMBOL(netif_set_xps_queue);
2320
2321 #endif
2322 void netdev_reset_tc(struct net_device *dev)
2323 {
2324 #ifdef CONFIG_XPS
2325         netif_reset_xps_queues_gt(dev, 0);
2326 #endif
2327         dev->num_tc = 0;
2328         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2329         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2330 }
2331 EXPORT_SYMBOL(netdev_reset_tc);
2332
2333 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2334 {
2335         if (tc >= dev->num_tc)
2336                 return -EINVAL;
2337
2338 #ifdef CONFIG_XPS
2339         netif_reset_xps_queues(dev, offset, count);
2340 #endif
2341         dev->tc_to_txq[tc].count = count;
2342         dev->tc_to_txq[tc].offset = offset;
2343         return 0;
2344 }
2345 EXPORT_SYMBOL(netdev_set_tc_queue);
2346
2347 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2348 {
2349         if (num_tc > TC_MAX_QUEUE)
2350                 return -EINVAL;
2351
2352 #ifdef CONFIG_XPS
2353         netif_reset_xps_queues_gt(dev, 0);
2354 #endif
2355         dev->num_tc = num_tc;
2356         return 0;
2357 }
2358 EXPORT_SYMBOL(netdev_set_num_tc);
2359
2360 /*
2361  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2362  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2363  */
2364 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2365 {
2366         bool disabling;
2367         int rc;
2368
2369         disabling = txq < dev->real_num_tx_queues;
2370
2371         if (txq < 1 || txq > dev->num_tx_queues)
2372                 return -EINVAL;
2373
2374         if (dev->reg_state == NETREG_REGISTERED ||
2375             dev->reg_state == NETREG_UNREGISTERING) {
2376                 ASSERT_RTNL();
2377
2378                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2379                                                   txq);
2380                 if (rc)
2381                         return rc;
2382
2383                 if (dev->num_tc)
2384                         netif_setup_tc(dev, txq);
2385
2386                 dev->real_num_tx_queues = txq;
2387
2388                 if (disabling) {
2389                         synchronize_net();
2390                         qdisc_reset_all_tx_gt(dev, txq);
2391 #ifdef CONFIG_XPS
2392                         netif_reset_xps_queues_gt(dev, txq);
2393 #endif
2394                 }
2395         } else {
2396                 dev->real_num_tx_queues = txq;
2397         }
2398
2399         return 0;
2400 }
2401 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2402
2403 #ifdef CONFIG_SYSFS
2404 /**
2405  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2406  *      @dev: Network device
2407  *      @rxq: Actual number of RX queues
2408  *
2409  *      This must be called either with the rtnl_lock held or before
2410  *      registration of the net device.  Returns 0 on success, or a
2411  *      negative error code.  If called before registration, it always
2412  *      succeeds.
2413  */
2414 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2415 {
2416         int rc;
2417
2418         if (rxq < 1 || rxq > dev->num_rx_queues)
2419                 return -EINVAL;
2420
2421         if (dev->reg_state == NETREG_REGISTERED) {
2422                 ASSERT_RTNL();
2423
2424                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2425                                                   rxq);
2426                 if (rc)
2427                         return rc;
2428         }
2429
2430         dev->real_num_rx_queues = rxq;
2431         return 0;
2432 }
2433 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2434 #endif
2435
2436 /**
2437  * netif_get_num_default_rss_queues - default number of RSS queues
2438  *
2439  * This routine should set an upper limit on the number of RSS queues
2440  * used by default by multiqueue devices.
2441  */
2442 int netif_get_num_default_rss_queues(void)
2443 {
2444         return is_kdump_kernel() ?
2445                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2446 }
2447 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2448
2449 static void __netif_reschedule(struct Qdisc *q)
2450 {
2451         struct softnet_data *sd;
2452         unsigned long flags;
2453
2454         local_irq_save(flags);
2455         sd = this_cpu_ptr(&softnet_data);
2456         q->next_sched = NULL;
2457         *sd->output_queue_tailp = q;
2458         sd->output_queue_tailp = &q->next_sched;
2459         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2460         local_irq_restore(flags);
2461 }
2462
2463 void __netif_schedule(struct Qdisc *q)
2464 {
2465         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2466                 __netif_reschedule(q);
2467 }
2468 EXPORT_SYMBOL(__netif_schedule);
2469
2470 struct dev_kfree_skb_cb {
2471         enum skb_free_reason reason;
2472 };
2473
2474 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2475 {
2476         return (struct dev_kfree_skb_cb *)skb->cb;
2477 }
2478
2479 void netif_schedule_queue(struct netdev_queue *txq)
2480 {
2481         rcu_read_lock();
2482         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2483                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2484
2485                 __netif_schedule(q);
2486         }
2487         rcu_read_unlock();
2488 }
2489 EXPORT_SYMBOL(netif_schedule_queue);
2490
2491 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2492 {
2493         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2494                 struct Qdisc *q;
2495
2496                 rcu_read_lock();
2497                 q = rcu_dereference(dev_queue->qdisc);
2498                 __netif_schedule(q);
2499                 rcu_read_unlock();
2500         }
2501 }
2502 EXPORT_SYMBOL(netif_tx_wake_queue);
2503
2504 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2505 {
2506         unsigned long flags;
2507
2508         if (unlikely(!skb))
2509                 return;
2510
2511         if (likely(refcount_read(&skb->users) == 1)) {
2512                 smp_rmb();
2513                 refcount_set(&skb->users, 0);
2514         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2515                 return;
2516         }
2517         get_kfree_skb_cb(skb)->reason = reason;
2518         local_irq_save(flags);
2519         skb->next = __this_cpu_read(softnet_data.completion_queue);
2520         __this_cpu_write(softnet_data.completion_queue, skb);
2521         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2522         local_irq_restore(flags);
2523 }
2524 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2525
2526 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2527 {
2528         if (in_irq() || irqs_disabled())
2529                 __dev_kfree_skb_irq(skb, reason);
2530         else if (unlikely(reason == SKB_REASON_DROPPED))
2531                 kfree_skb(skb);
2532         else
2533                 consume_skb(skb);
2534 }
2535 EXPORT_SYMBOL(__dev_kfree_skb_any);
2536
2537
2538 /**
2539  * netif_device_detach - mark device as removed
2540  * @dev: network device
2541  *
2542  * Mark device as removed from system and therefore no longer available.
2543  */
2544 void netif_device_detach(struct net_device *dev)
2545 {
2546         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2547             netif_running(dev)) {
2548                 netif_tx_stop_all_queues(dev);
2549         }
2550 }
2551 EXPORT_SYMBOL(netif_device_detach);
2552
2553 /**
2554  * netif_device_attach - mark device as attached
2555  * @dev: network device
2556  *
2557  * Mark device as attached from system and restart if needed.
2558  */
2559 void netif_device_attach(struct net_device *dev)
2560 {
2561         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2562             netif_running(dev)) {
2563                 netif_tx_wake_all_queues(dev);
2564                 __netdev_watchdog_up(dev);
2565         }
2566 }
2567 EXPORT_SYMBOL(netif_device_attach);
2568
2569 /*
2570  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2571  * to be used as a distribution range.
2572  */
2573 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2574                   unsigned int num_tx_queues)
2575 {
2576         u32 hash;
2577         u16 qoffset = 0;
2578         u16 qcount = num_tx_queues;
2579
2580         if (skb_rx_queue_recorded(skb)) {
2581                 hash = skb_get_rx_queue(skb);
2582                 while (unlikely(hash >= num_tx_queues))
2583                         hash -= num_tx_queues;
2584                 return hash;
2585         }
2586
2587         if (dev->num_tc) {
2588                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2589
2590                 qoffset = dev->tc_to_txq[tc].offset;
2591                 qcount = dev->tc_to_txq[tc].count;
2592         }
2593
2594         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2595 }
2596 EXPORT_SYMBOL(__skb_tx_hash);
2597
2598 static void skb_warn_bad_offload(const struct sk_buff *skb)
2599 {
2600         static const netdev_features_t null_features;
2601         struct net_device *dev = skb->dev;
2602         const char *name = "";
2603
2604         if (!net_ratelimit())
2605                 return;
2606
2607         if (dev) {
2608                 if (dev->dev.parent)
2609                         name = dev_driver_string(dev->dev.parent);
2610                 else
2611                         name = netdev_name(dev);
2612         }
2613         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2614              "gso_type=%d ip_summed=%d\n",
2615              name, dev ? &dev->features : &null_features,
2616              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2617              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2618              skb_shinfo(skb)->gso_type, skb->ip_summed);
2619 }
2620
2621 /*
2622  * Invalidate hardware checksum when packet is to be mangled, and
2623  * complete checksum manually on outgoing path.
2624  */
2625 int skb_checksum_help(struct sk_buff *skb)
2626 {
2627         __wsum csum;
2628         int ret = 0, offset;
2629
2630         if (skb->ip_summed == CHECKSUM_COMPLETE)
2631                 goto out_set_summed;
2632
2633         if (unlikely(skb_shinfo(skb)->gso_size)) {
2634                 skb_warn_bad_offload(skb);
2635                 return -EINVAL;
2636         }
2637
2638         /* Before computing a checksum, we should make sure no frag could
2639          * be modified by an external entity : checksum could be wrong.
2640          */
2641         if (skb_has_shared_frag(skb)) {
2642                 ret = __skb_linearize(skb);
2643                 if (ret)
2644                         goto out;
2645         }
2646
2647         offset = skb_checksum_start_offset(skb);
2648         BUG_ON(offset >= skb_headlen(skb));
2649         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2650
2651         offset += skb->csum_offset;
2652         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2653
2654         if (skb_cloned(skb) &&
2655             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2656                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657                 if (ret)
2658                         goto out;
2659         }
2660
2661         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2662 out_set_summed:
2663         skb->ip_summed = CHECKSUM_NONE;
2664 out:
2665         return ret;
2666 }
2667 EXPORT_SYMBOL(skb_checksum_help);
2668
2669 int skb_crc32c_csum_help(struct sk_buff *skb)
2670 {
2671         __le32 crc32c_csum;
2672         int ret = 0, offset, start;
2673
2674         if (skb->ip_summed != CHECKSUM_PARTIAL)
2675                 goto out;
2676
2677         if (unlikely(skb_is_gso(skb)))
2678                 goto out;
2679
2680         /* Before computing a checksum, we should make sure no frag could
2681          * be modified by an external entity : checksum could be wrong.
2682          */
2683         if (unlikely(skb_has_shared_frag(skb))) {
2684                 ret = __skb_linearize(skb);
2685                 if (ret)
2686                         goto out;
2687         }
2688         start = skb_checksum_start_offset(skb);
2689         offset = start + offsetof(struct sctphdr, checksum);
2690         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2691                 ret = -EINVAL;
2692                 goto out;
2693         }
2694         if (skb_cloned(skb) &&
2695             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2696                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2697                 if (ret)
2698                         goto out;
2699         }
2700         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2701                                                   skb->len - start, ~(__u32)0,
2702                                                   crc32c_csum_stub));
2703         *(__le32 *)(skb->data + offset) = crc32c_csum;
2704         skb->ip_summed = CHECKSUM_NONE;
2705         skb->csum_not_inet = 0;
2706 out:
2707         return ret;
2708 }
2709
2710 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2711 {
2712         __be16 type = skb->protocol;
2713
2714         /* Tunnel gso handlers can set protocol to ethernet. */
2715         if (type == htons(ETH_P_TEB)) {
2716                 struct ethhdr *eth;
2717
2718                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2719                         return 0;
2720
2721                 eth = (struct ethhdr *)skb->data;
2722                 type = eth->h_proto;
2723         }
2724
2725         return __vlan_get_protocol(skb, type, depth);
2726 }
2727
2728 /**
2729  *      skb_mac_gso_segment - mac layer segmentation handler.
2730  *      @skb: buffer to segment
2731  *      @features: features for the output path (see dev->features)
2732  */
2733 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2734                                     netdev_features_t features)
2735 {
2736         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2737         struct packet_offload *ptype;
2738         int vlan_depth = skb->mac_len;
2739         __be16 type = skb_network_protocol(skb, &vlan_depth);
2740
2741         if (unlikely(!type))
2742                 return ERR_PTR(-EINVAL);
2743
2744         __skb_pull(skb, vlan_depth);
2745
2746         rcu_read_lock();
2747         list_for_each_entry_rcu(ptype, &offload_base, list) {
2748                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2749                         segs = ptype->callbacks.gso_segment(skb, features);
2750                         break;
2751                 }
2752         }
2753         rcu_read_unlock();
2754
2755         __skb_push(skb, skb->data - skb_mac_header(skb));
2756
2757         return segs;
2758 }
2759 EXPORT_SYMBOL(skb_mac_gso_segment);
2760
2761
2762 /* openvswitch calls this on rx path, so we need a different check.
2763  */
2764 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2765 {
2766         if (tx_path)
2767                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2768                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2769
2770         return skb->ip_summed == CHECKSUM_NONE;
2771 }
2772
2773 /**
2774  *      __skb_gso_segment - Perform segmentation on skb.
2775  *      @skb: buffer to segment
2776  *      @features: features for the output path (see dev->features)
2777  *      @tx_path: whether it is called in TX path
2778  *
2779  *      This function segments the given skb and returns a list of segments.
2780  *
2781  *      It may return NULL if the skb requires no segmentation.  This is
2782  *      only possible when GSO is used for verifying header integrity.
2783  *
2784  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2785  */
2786 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2787                                   netdev_features_t features, bool tx_path)
2788 {
2789         struct sk_buff *segs;
2790
2791         if (unlikely(skb_needs_check(skb, tx_path))) {
2792                 int err;
2793
2794                 /* We're going to init ->check field in TCP or UDP header */
2795                 err = skb_cow_head(skb, 0);
2796                 if (err < 0)
2797                         return ERR_PTR(err);
2798         }
2799
2800         /* Only report GSO partial support if it will enable us to
2801          * support segmentation on this frame without needing additional
2802          * work.
2803          */
2804         if (features & NETIF_F_GSO_PARTIAL) {
2805                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2806                 struct net_device *dev = skb->dev;
2807
2808                 partial_features |= dev->features & dev->gso_partial_features;
2809                 if (!skb_gso_ok(skb, features | partial_features))
2810                         features &= ~NETIF_F_GSO_PARTIAL;
2811         }
2812
2813         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2814                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2815
2816         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2817         SKB_GSO_CB(skb)->encap_level = 0;
2818
2819         skb_reset_mac_header(skb);
2820         skb_reset_mac_len(skb);
2821
2822         segs = skb_mac_gso_segment(skb, features);
2823
2824         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2825                 skb_warn_bad_offload(skb);
2826
2827         return segs;
2828 }
2829 EXPORT_SYMBOL(__skb_gso_segment);
2830
2831 /* Take action when hardware reception checksum errors are detected. */
2832 #ifdef CONFIG_BUG
2833 void netdev_rx_csum_fault(struct net_device *dev)
2834 {
2835         if (net_ratelimit()) {
2836                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2837                 dump_stack();
2838         }
2839 }
2840 EXPORT_SYMBOL(netdev_rx_csum_fault);
2841 #endif
2842
2843 /* Actually, we should eliminate this check as soon as we know, that:
2844  * 1. IOMMU is present and allows to map all the memory.
2845  * 2. No high memory really exists on this machine.
2846  */
2847
2848 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2849 {
2850 #ifdef CONFIG_HIGHMEM
2851         int i;
2852
2853         if (!(dev->features & NETIF_F_HIGHDMA)) {
2854                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2855                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2856
2857                         if (PageHighMem(skb_frag_page(frag)))
2858                                 return 1;
2859                 }
2860         }
2861
2862         if (PCI_DMA_BUS_IS_PHYS) {
2863                 struct device *pdev = dev->dev.parent;
2864
2865                 if (!pdev)
2866                         return 0;
2867                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2868                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2869                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2870
2871                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2872                                 return 1;
2873                 }
2874         }
2875 #endif
2876         return 0;
2877 }
2878
2879 /* If MPLS offload request, verify we are testing hardware MPLS features
2880  * instead of standard features for the netdev.
2881  */
2882 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2883 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2884                                            netdev_features_t features,
2885                                            __be16 type)
2886 {
2887         if (eth_p_mpls(type))
2888                 features &= skb->dev->mpls_features;
2889
2890         return features;
2891 }
2892 #else
2893 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2894                                            netdev_features_t features,
2895                                            __be16 type)
2896 {
2897         return features;
2898 }
2899 #endif
2900
2901 static netdev_features_t harmonize_features(struct sk_buff *skb,
2902         netdev_features_t features)
2903 {
2904         int tmp;
2905         __be16 type;
2906
2907         type = skb_network_protocol(skb, &tmp);
2908         features = net_mpls_features(skb, features, type);
2909
2910         if (skb->ip_summed != CHECKSUM_NONE &&
2911             !can_checksum_protocol(features, type)) {
2912                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2913         }
2914         if (illegal_highdma(skb->dev, skb))
2915                 features &= ~NETIF_F_SG;
2916
2917         return features;
2918 }
2919
2920 netdev_features_t passthru_features_check(struct sk_buff *skb,
2921                                           struct net_device *dev,
2922                                           netdev_features_t features)
2923 {
2924         return features;
2925 }
2926 EXPORT_SYMBOL(passthru_features_check);
2927
2928 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2929                                              struct net_device *dev,
2930                                              netdev_features_t features)
2931 {
2932         return vlan_features_check(skb, features);
2933 }
2934
2935 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2936                                             struct net_device *dev,
2937                                             netdev_features_t features)
2938 {
2939         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2940
2941         if (gso_segs > dev->gso_max_segs)
2942                 return features & ~NETIF_F_GSO_MASK;
2943
2944         /* Support for GSO partial features requires software
2945          * intervention before we can actually process the packets
2946          * so we need to strip support for any partial features now
2947          * and we can pull them back in after we have partially
2948          * segmented the frame.
2949          */
2950         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2951                 features &= ~dev->gso_partial_features;
2952
2953         /* Make sure to clear the IPv4 ID mangling feature if the
2954          * IPv4 header has the potential to be fragmented.
2955          */
2956         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2957                 struct iphdr *iph = skb->encapsulation ?
2958                                     inner_ip_hdr(skb) : ip_hdr(skb);
2959
2960                 if (!(iph->frag_off & htons(IP_DF)))
2961                         features &= ~NETIF_F_TSO_MANGLEID;
2962         }
2963
2964         return features;
2965 }
2966
2967 netdev_features_t netif_skb_features(struct sk_buff *skb)
2968 {
2969         struct net_device *dev = skb->dev;
2970         netdev_features_t features = dev->features;
2971
2972         if (skb_is_gso(skb))
2973                 features = gso_features_check(skb, dev, features);
2974
2975         /* If encapsulation offload request, verify we are testing
2976          * hardware encapsulation features instead of standard
2977          * features for the netdev
2978          */
2979         if (skb->encapsulation)
2980                 features &= dev->hw_enc_features;
2981
2982         if (skb_vlan_tagged(skb))
2983                 features = netdev_intersect_features(features,
2984                                                      dev->vlan_features |
2985                                                      NETIF_F_HW_VLAN_CTAG_TX |
2986                                                      NETIF_F_HW_VLAN_STAG_TX);
2987
2988         if (dev->netdev_ops->ndo_features_check)
2989                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2990                                                                 features);
2991         else
2992                 features &= dflt_features_check(skb, dev, features);
2993
2994         return harmonize_features(skb, features);
2995 }
2996 EXPORT_SYMBOL(netif_skb_features);
2997
2998 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2999                     struct netdev_queue *txq, bool more)
3000 {
3001         unsigned int len;
3002         int rc;
3003
3004         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3005                 dev_queue_xmit_nit(skb, dev);
3006
3007         len = skb->len;
3008         trace_net_dev_start_xmit(skb, dev);
3009         rc = netdev_start_xmit(skb, dev, txq, more);
3010         trace_net_dev_xmit(skb, rc, dev, len);
3011
3012         return rc;
3013 }
3014
3015 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3016                                     struct netdev_queue *txq, int *ret)
3017 {
3018         struct sk_buff *skb = first;
3019         int rc = NETDEV_TX_OK;
3020
3021         while (skb) {
3022                 struct sk_buff *next = skb->next;
3023
3024                 skb->next = NULL;
3025                 rc = xmit_one(skb, dev, txq, next != NULL);
3026                 if (unlikely(!dev_xmit_complete(rc))) {
3027                         skb->next = next;
3028                         goto out;
3029                 }
3030
3031                 skb = next;
3032                 if (netif_tx_queue_stopped(txq) && skb) {
3033                         rc = NETDEV_TX_BUSY;
3034                         break;
3035                 }
3036         }
3037
3038 out:
3039         *ret = rc;
3040         return skb;
3041 }
3042
3043 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3044                                           netdev_features_t features)
3045 {
3046         if (skb_vlan_tag_present(skb) &&
3047             !vlan_hw_offload_capable(features, skb->vlan_proto))
3048                 skb = __vlan_hwaccel_push_inside(skb);
3049         return skb;
3050 }
3051
3052 int skb_csum_hwoffload_help(struct sk_buff *skb,
3053                             const netdev_features_t features)
3054 {
3055         if (unlikely(skb->csum_not_inet))
3056                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3057                         skb_crc32c_csum_help(skb);
3058
3059         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3060 }
3061 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3062
3063 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3064 {
3065         netdev_features_t features;
3066
3067         features = netif_skb_features(skb);
3068         skb = validate_xmit_vlan(skb, features);
3069         if (unlikely(!skb))
3070                 goto out_null;
3071
3072         if (netif_needs_gso(skb, features)) {
3073                 struct sk_buff *segs;
3074
3075                 segs = skb_gso_segment(skb, features);
3076                 if (IS_ERR(segs)) {
3077                         goto out_kfree_skb;
3078                 } else if (segs) {
3079                         consume_skb(skb);
3080                         skb = segs;
3081                 }
3082         } else {
3083                 if (skb_needs_linearize(skb, features) &&
3084                     __skb_linearize(skb))
3085                         goto out_kfree_skb;
3086
3087                 if (validate_xmit_xfrm(skb, features))
3088                         goto out_kfree_skb;
3089
3090                 /* If packet is not checksummed and device does not
3091                  * support checksumming for this protocol, complete
3092                  * checksumming here.
3093                  */
3094                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3095                         if (skb->encapsulation)
3096                                 skb_set_inner_transport_header(skb,
3097                                                                skb_checksum_start_offset(skb));
3098                         else
3099                                 skb_set_transport_header(skb,
3100                                                          skb_checksum_start_offset(skb));
3101                         if (skb_csum_hwoffload_help(skb, features))
3102                                 goto out_kfree_skb;
3103                 }
3104         }
3105
3106         return skb;
3107
3108 out_kfree_skb:
3109         kfree_skb(skb);
3110 out_null:
3111         atomic_long_inc(&dev->tx_dropped);
3112         return NULL;
3113 }
3114
3115 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3116 {
3117         struct sk_buff *next, *head = NULL, *tail;
3118
3119         for (; skb != NULL; skb = next) {
3120                 next = skb->next;
3121                 skb->next = NULL;
3122
3123                 /* in case skb wont be segmented, point to itself */
3124                 skb->prev = skb;
3125
3126                 skb = validate_xmit_skb(skb, dev);
3127                 if (!skb)
3128                         continue;
3129
3130                 if (!head)
3131                         head = skb;
3132                 else
3133                         tail->next = skb;
3134                 /* If skb was segmented, skb->prev points to
3135                  * the last segment. If not, it still contains skb.
3136                  */
3137                 tail = skb->prev;
3138         }
3139         return head;
3140 }
3141 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3142
3143 static void qdisc_pkt_len_init(struct sk_buff *skb)
3144 {
3145         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3146
3147         qdisc_skb_cb(skb)->pkt_len = skb->len;
3148
3149         /* To get more precise estimation of bytes sent on wire,
3150          * we add to pkt_len the headers size of all segments
3151          */
3152         if (shinfo->gso_size)  {
3153                 unsigned int hdr_len;
3154                 u16 gso_segs = shinfo->gso_segs;
3155
3156                 /* mac layer + network layer */
3157                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3158
3159                 /* + transport layer */
3160                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3161                         const struct tcphdr *th;
3162                         struct tcphdr _tcphdr;
3163
3164                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3165                                                 sizeof(_tcphdr), &_tcphdr);
3166                         if (likely(th))
3167                                 hdr_len += __tcp_hdrlen(th);
3168                 } else {
3169                         struct udphdr _udphdr;
3170
3171                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3172                                                sizeof(_udphdr), &_udphdr))
3173                                 hdr_len += sizeof(struct udphdr);
3174                 }
3175
3176                 if (shinfo->gso_type & SKB_GSO_DODGY)
3177                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3178                                                 shinfo->gso_size);
3179
3180                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3181         }
3182 }
3183
3184 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3185                                  struct net_device *dev,
3186                                  struct netdev_queue *txq)
3187 {
3188         spinlock_t *root_lock = qdisc_lock(q);
3189         struct sk_buff *to_free = NULL;
3190         bool contended;
3191         int rc;
3192
3193         qdisc_calculate_pkt_len(skb, q);
3194         /*
3195          * Heuristic to force contended enqueues to serialize on a
3196          * separate lock before trying to get qdisc main lock.
3197          * This permits qdisc->running owner to get the lock more
3198          * often and dequeue packets faster.
3199          */
3200         contended = qdisc_is_running(q);
3201         if (unlikely(contended))
3202                 spin_lock(&q->busylock);
3203
3204         spin_lock(root_lock);
3205         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3206                 __qdisc_drop(skb, &to_free);
3207                 rc = NET_XMIT_DROP;
3208         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3209                    qdisc_run_begin(q)) {
3210                 /*
3211                  * This is a work-conserving queue; there are no old skbs
3212                  * waiting to be sent out; and the qdisc is not running -
3213                  * xmit the skb directly.
3214                  */
3215
3216                 qdisc_bstats_update(q, skb);
3217
3218                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3219                         if (unlikely(contended)) {
3220                                 spin_unlock(&q->busylock);
3221                                 contended = false;
3222                         }
3223                         __qdisc_run(q);
3224                 } else
3225                         qdisc_run_end(q);
3226
3227                 rc = NET_XMIT_SUCCESS;
3228         } else {
3229                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3230                 if (qdisc_run_begin(q)) {
3231                         if (unlikely(contended)) {
3232                                 spin_unlock(&q->busylock);
3233                                 contended = false;
3234                         }
3235                         __qdisc_run(q);
3236                 }
3237         }
3238         spin_unlock(root_lock);
3239         if (unlikely(to_free))
3240                 kfree_skb_list(to_free);
3241         if (unlikely(contended))
3242                 spin_unlock(&q->busylock);
3243         return rc;
3244 }
3245
3246 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3247 static void skb_update_prio(struct sk_buff *skb)
3248 {
3249         const struct netprio_map *map;
3250         const struct sock *sk;
3251         unsigned int prioidx;
3252
3253         if (skb->priority)
3254                 return;
3255         map = rcu_dereference_bh(skb->dev->priomap);
3256         if (!map)
3257                 return;
3258         sk = skb_to_full_sk(skb);
3259         if (!sk)
3260                 return;
3261
3262         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3263
3264         if (prioidx < map->priomap_len)
3265                 skb->priority = map->priomap[prioidx];
3266 }
3267 #else
3268 #define skb_update_prio(skb)
3269 #endif
3270
3271 DEFINE_PER_CPU(int, xmit_recursion);
3272 EXPORT_SYMBOL(xmit_recursion);
3273
3274 /**
3275  *      dev_loopback_xmit - loop back @skb
3276  *      @net: network namespace this loopback is happening in
3277  *      @sk:  sk needed to be a netfilter okfn
3278  *      @skb: buffer to transmit
3279  */
3280 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3281 {
3282         skb_reset_mac_header(skb);
3283         __skb_pull(skb, skb_network_offset(skb));
3284         skb->pkt_type = PACKET_LOOPBACK;
3285         skb->ip_summed = CHECKSUM_UNNECESSARY;
3286         WARN_ON(!skb_dst(skb));
3287         skb_dst_force(skb);
3288         netif_rx_ni(skb);
3289         return 0;
3290 }
3291 EXPORT_SYMBOL(dev_loopback_xmit);
3292
3293 #ifdef CONFIG_NET_EGRESS
3294 static struct sk_buff *
3295 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3296 {
3297         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3298         struct tcf_result cl_res;
3299
3300         if (!cl)
3301                 return skb;
3302
3303         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3304         qdisc_bstats_cpu_update(cl->q, skb);
3305
3306         switch (tcf_classify(skb, cl, &cl_res, false)) {
3307         case TC_ACT_OK:
3308         case TC_ACT_RECLASSIFY:
3309                 skb->tc_index = TC_H_MIN(cl_res.classid);
3310                 break;
3311         case TC_ACT_SHOT:
3312                 qdisc_qstats_cpu_drop(cl->q);
3313                 *ret = NET_XMIT_DROP;
3314                 kfree_skb(skb);
3315                 return NULL;
3316         case TC_ACT_STOLEN:
3317         case TC_ACT_QUEUED:
3318         case TC_ACT_TRAP:
3319                 *ret = NET_XMIT_SUCCESS;
3320                 consume_skb(skb);
3321                 return NULL;
3322         case TC_ACT_REDIRECT:
3323                 /* No need to push/pop skb's mac_header here on egress! */
3324                 skb_do_redirect(skb);
3325                 *ret = NET_XMIT_SUCCESS;
3326                 return NULL;
3327         default:
3328                 break;
3329         }
3330
3331         return skb;
3332 }
3333 #endif /* CONFIG_NET_EGRESS */
3334
3335 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3336 {
3337 #ifdef CONFIG_XPS
3338         struct xps_dev_maps *dev_maps;
3339         struct xps_map *map;
3340         int queue_index = -1;
3341
3342         rcu_read_lock();
3343         dev_maps = rcu_dereference(dev->xps_maps);
3344         if (dev_maps) {
3345                 unsigned int tci = skb->sender_cpu - 1;
3346
3347                 if (dev->num_tc) {
3348                         tci *= dev->num_tc;
3349                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3350                 }
3351
3352                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3353                 if (map) {
3354                         if (map->len == 1)
3355                                 queue_index = map->queues[0];
3356                         else
3357                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3358                                                                            map->len)];
3359                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3360                                 queue_index = -1;
3361                 }
3362         }
3363         rcu_read_unlock();
3364
3365         return queue_index;
3366 #else
3367         return -1;
3368 #endif
3369 }
3370
3371 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3372 {
3373         struct sock *sk = skb->sk;
3374         int queue_index = sk_tx_queue_get(sk);
3375
3376         if (queue_index < 0 || skb->ooo_okay ||
3377             queue_index >= dev->real_num_tx_queues) {
3378                 int new_index = get_xps_queue(dev, skb);
3379
3380                 if (new_index < 0)
3381                         new_index = skb_tx_hash(dev, skb);
3382
3383                 if (queue_index != new_index && sk &&
3384                     sk_fullsock(sk) &&
3385                     rcu_access_pointer(sk->sk_dst_cache))
3386                         sk_tx_queue_set(sk, new_index);
3387
3388                 queue_index = new_index;
3389         }
3390
3391         return queue_index;
3392 }
3393
3394 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3395                                     struct sk_buff *skb,
3396                                     void *accel_priv)
3397 {
3398         int queue_index = 0;
3399
3400 #ifdef CONFIG_XPS
3401         u32 sender_cpu = skb->sender_cpu - 1;
3402
3403         if (sender_cpu >= (u32)NR_CPUS)
3404                 skb->sender_cpu = raw_smp_processor_id() + 1;
3405 #endif
3406
3407         if (dev->real_num_tx_queues != 1) {
3408                 const struct net_device_ops *ops = dev->netdev_ops;
3409
3410                 if (ops->ndo_select_queue)
3411                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3412                                                             __netdev_pick_tx);
3413                 else
3414                         queue_index = __netdev_pick_tx(dev, skb);
3415
3416                 if (!accel_priv)
3417                         queue_index = netdev_cap_txqueue(dev, queue_index);
3418         }
3419
3420         skb_set_queue_mapping(skb, queue_index);
3421         return netdev_get_tx_queue(dev, queue_index);
3422 }
3423
3424 /**
3425  *      __dev_queue_xmit - transmit a buffer
3426  *      @skb: buffer to transmit
3427  *      @accel_priv: private data used for L2 forwarding offload
3428  *
3429  *      Queue a buffer for transmission to a network device. The caller must
3430  *      have set the device and priority and built the buffer before calling
3431  *      this function. The function can be called from an interrupt.
3432  *
3433  *      A negative errno code is returned on a failure. A success does not
3434  *      guarantee the frame will be transmitted as it may be dropped due
3435  *      to congestion or traffic shaping.
3436  *
3437  * -----------------------------------------------------------------------------------
3438  *      I notice this method can also return errors from the queue disciplines,
3439  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3440  *      be positive.
3441  *
3442  *      Regardless of the return value, the skb is consumed, so it is currently
3443  *      difficult to retry a send to this method.  (You can bump the ref count
3444  *      before sending to hold a reference for retry if you are careful.)
3445  *
3446  *      When calling this method, interrupts MUST be enabled.  This is because
3447  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3448  *          --BLG
3449  */
3450 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3451 {
3452         struct net_device *dev = skb->dev;
3453         struct netdev_queue *txq;
3454         struct Qdisc *q;
3455         int rc = -ENOMEM;
3456
3457         skb_reset_mac_header(skb);
3458
3459         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3460                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3461
3462         /* Disable soft irqs for various locks below. Also
3463          * stops preemption for RCU.
3464          */
3465         rcu_read_lock_bh();
3466
3467         skb_update_prio(skb);
3468
3469         qdisc_pkt_len_init(skb);
3470 #ifdef CONFIG_NET_CLS_ACT
3471         skb->tc_at_ingress = 0;
3472 # ifdef CONFIG_NET_EGRESS
3473         if (static_key_false(&egress_needed)) {
3474                 skb = sch_handle_egress(skb, &rc, dev);
3475                 if (!skb)
3476                         goto out;
3477         }
3478 # endif
3479 #endif
3480         /* If device/qdisc don't need skb->dst, release it right now while
3481          * its hot in this cpu cache.
3482          */
3483         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3484                 skb_dst_drop(skb);
3485         else
3486                 skb_dst_force(skb);
3487
3488         txq = netdev_pick_tx(dev, skb, accel_priv);
3489         q = rcu_dereference_bh(txq->qdisc);
3490
3491         trace_net_dev_queue(skb);
3492         if (q->enqueue) {
3493                 rc = __dev_xmit_skb(skb, q, dev, txq);
3494                 goto out;
3495         }
3496
3497         /* The device has no queue. Common case for software devices:
3498          * loopback, all the sorts of tunnels...
3499
3500          * Really, it is unlikely that netif_tx_lock protection is necessary
3501          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3502          * counters.)
3503          * However, it is possible, that they rely on protection
3504          * made by us here.
3505
3506          * Check this and shot the lock. It is not prone from deadlocks.
3507          *Either shot noqueue qdisc, it is even simpler 8)
3508          */
3509         if (dev->flags & IFF_UP) {
3510                 int cpu = smp_processor_id(); /* ok because BHs are off */
3511
3512                 if (txq->xmit_lock_owner != cpu) {
3513                         if (unlikely(__this_cpu_read(xmit_recursion) >
3514                                      XMIT_RECURSION_LIMIT))
3515                                 goto recursion_alert;
3516
3517                         skb = validate_xmit_skb(skb, dev);
3518                         if (!skb)
3519                                 goto out;
3520
3521                         HARD_TX_LOCK(dev, txq, cpu);
3522
3523                         if (!netif_xmit_stopped(txq)) {
3524                                 __this_cpu_inc(xmit_recursion);
3525                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3526                                 __this_cpu_dec(xmit_recursion);
3527                                 if (dev_xmit_complete(rc)) {
3528                                         HARD_TX_UNLOCK(dev, txq);
3529                                         goto out;
3530                                 }
3531                         }
3532                         HARD_TX_UNLOCK(dev, txq);
3533                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3534                                              dev->name);
3535                 } else {
3536                         /* Recursion is detected! It is possible,
3537                          * unfortunately
3538                          */
3539 recursion_alert:
3540                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3541                                              dev->name);
3542                 }
3543         }
3544
3545         rc = -ENETDOWN;
3546         rcu_read_unlock_bh();
3547
3548         atomic_long_inc(&dev->tx_dropped);
3549         kfree_skb_list(skb);
3550         return rc;
3551 out:
3552         rcu_read_unlock_bh();
3553         return rc;
3554 }
3555
3556 int dev_queue_xmit(struct sk_buff *skb)
3557 {
3558         return __dev_queue_xmit(skb, NULL);
3559 }
3560 EXPORT_SYMBOL(dev_queue_xmit);
3561
3562 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3563 {
3564         return __dev_queue_xmit(skb, accel_priv);
3565 }
3566 EXPORT_SYMBOL(dev_queue_xmit_accel);
3567
3568
3569 /*************************************************************************
3570  *                      Receiver routines
3571  *************************************************************************/
3572
3573 int netdev_max_backlog __read_mostly = 1000;
3574 EXPORT_SYMBOL(netdev_max_backlog);
3575
3576 int netdev_tstamp_prequeue __read_mostly = 1;
3577 int netdev_budget __read_mostly = 300;
3578 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3579 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3580 int weight_p __read_mostly = 64;           /* old backlog weight */
3581 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3582 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3583 int dev_rx_weight __read_mostly = 64;
3584 int dev_tx_weight __read_mostly = 64;
3585
3586 /* Called with irq disabled */
3587 static inline void ____napi_schedule(struct softnet_data *sd,
3588                                      struct napi_struct *napi)
3589 {
3590         list_add_tail(&napi->poll_list, &sd->poll_list);
3591         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3592 }
3593
3594 #ifdef CONFIG_RPS
3595
3596 /* One global table that all flow-based protocols share. */
3597 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3598 EXPORT_SYMBOL(rps_sock_flow_table);
3599 u32 rps_cpu_mask __read_mostly;
3600 EXPORT_SYMBOL(rps_cpu_mask);
3601
3602 struct static_key rps_needed __read_mostly;
3603 EXPORT_SYMBOL(rps_needed);
3604 struct static_key rfs_needed __read_mostly;
3605 EXPORT_SYMBOL(rfs_needed);
3606
3607 static struct rps_dev_flow *
3608 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3609             struct rps_dev_flow *rflow, u16 next_cpu)
3610 {
3611         if (next_cpu < nr_cpu_ids) {
3612 #ifdef CONFIG_RFS_ACCEL
3613                 struct netdev_rx_queue *rxqueue;
3614                 struct rps_dev_flow_table *flow_table;
3615                 struct rps_dev_flow *old_rflow;
3616                 u32 flow_id;
3617                 u16 rxq_index;
3618                 int rc;
3619
3620                 /* Should we steer this flow to a different hardware queue? */
3621                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3622                     !(dev->features & NETIF_F_NTUPLE))
3623                         goto out;
3624                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3625                 if (rxq_index == skb_get_rx_queue(skb))
3626                         goto out;
3627
3628                 rxqueue = dev->_rx + rxq_index;
3629                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3630                 if (!flow_table)
3631                         goto out;
3632                 flow_id = skb_get_hash(skb) & flow_table->mask;
3633                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3634                                                         rxq_index, flow_id);
3635                 if (rc < 0)
3636                         goto out;
3637                 old_rflow = rflow;
3638                 rflow = &flow_table->flows[flow_id];
3639                 rflow->filter = rc;
3640                 if (old_rflow->filter == rflow->filter)
3641                         old_rflow->filter = RPS_NO_FILTER;
3642         out:
3643 #endif
3644                 rflow->last_qtail =
3645                         per_cpu(softnet_data, next_cpu).input_queue_head;
3646         }
3647
3648         rflow->cpu = next_cpu;
3649         return rflow;
3650 }
3651
3652 /*
3653  * get_rps_cpu is called from netif_receive_skb and returns the target
3654  * CPU from the RPS map of the receiving queue for a given skb.
3655  * rcu_read_lock must be held on entry.
3656  */
3657 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3658                        struct rps_dev_flow **rflowp)
3659 {
3660         const struct rps_sock_flow_table *sock_flow_table;
3661         struct netdev_rx_queue *rxqueue = dev->_rx;
3662         struct rps_dev_flow_table *flow_table;
3663         struct rps_map *map;
3664         int cpu = -1;
3665         u32 tcpu;
3666         u32 hash;
3667
3668         if (skb_rx_queue_recorded(skb)) {
3669                 u16 index = skb_get_rx_queue(skb);
3670
3671                 if (unlikely(index >= dev->real_num_rx_queues)) {
3672                         WARN_ONCE(dev->real_num_rx_queues > 1,
3673                                   "%s received packet on queue %u, but number "
3674                                   "of RX queues is %u\n",
3675                                   dev->name, index, dev->real_num_rx_queues);
3676                         goto done;
3677                 }
3678                 rxqueue += index;
3679         }
3680
3681         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3682
3683         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3684         map = rcu_dereference(rxqueue->rps_map);
3685         if (!flow_table && !map)
3686                 goto done;
3687
3688         skb_reset_network_header(skb);
3689         hash = skb_get_hash(skb);
3690         if (!hash)
3691                 goto done;
3692
3693         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3694         if (flow_table && sock_flow_table) {
3695                 struct rps_dev_flow *rflow;
3696                 u32 next_cpu;
3697                 u32 ident;
3698
3699                 /* First check into global flow table if there is a match.
3700                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
3701                  */
3702                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
3703                 if ((ident ^ hash) & ~rps_cpu_mask)
3704                         goto try_rps;
3705
3706                 next_cpu = ident & rps_cpu_mask;
3707
3708                 /* OK, now we know there is a match,
3709                  * we can look at the local (per receive queue) flow table
3710                  */
3711                 rflow = &flow_table->flows[hash & flow_table->mask];
3712                 tcpu = rflow->cpu;
3713
3714                 /*
3715                  * If the desired CPU (where last recvmsg was done) is
3716                  * different from current CPU (one in the rx-queue flow
3717                  * table entry), switch if one of the following holds:
3718                  *   - Current CPU is unset (>= nr_cpu_ids).
3719                  *   - Current CPU is offline.
3720                  *   - The current CPU's queue tail has advanced beyond the
3721                  *     last packet that was enqueued using this table entry.
3722                  *     This guarantees that all previous packets for the flow
3723                  *     have been dequeued, thus preserving in order delivery.
3724                  */
3725                 if (unlikely(tcpu != next_cpu) &&
3726                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3727                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3728                       rflow->last_qtail)) >= 0)) {
3729                         tcpu = next_cpu;
3730                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3731                 }
3732
3733                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3734                         *rflowp = rflow;
3735                         cpu = tcpu;
3736                         goto done;
3737                 }
3738         }
3739
3740 try_rps:
3741
3742         if (map) {
3743                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3744                 if (cpu_online(tcpu)) {
3745                         cpu = tcpu;
3746                         goto done;
3747                 }
3748         }
3749
3750 done:
3751         return cpu;
3752 }
3753
3754 #ifdef CONFIG_RFS_ACCEL
3755
3756 /**
3757  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3758  * @dev: Device on which the filter was set
3759  * @rxq_index: RX queue index
3760  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3761  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3762  *
3763  * Drivers that implement ndo_rx_flow_steer() should periodically call
3764  * this function for each installed filter and remove the filters for
3765  * which it returns %true.
3766  */
3767 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3768                          u32 flow_id, u16 filter_id)
3769 {
3770         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3771         struct rps_dev_flow_table *flow_table;
3772         struct rps_dev_flow *rflow;
3773         bool expire = true;
3774         unsigned int cpu;
3775
3776         rcu_read_lock();
3777         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3778         if (flow_table && flow_id <= flow_table->mask) {
3779                 rflow = &flow_table->flows[flow_id];
3780                 cpu = ACCESS_ONCE(rflow->cpu);
3781                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3782                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3783                            rflow->last_qtail) <
3784                      (int)(10 * flow_table->mask)))
3785                         expire = false;
3786         }
3787         rcu_read_unlock();
3788         return expire;
3789 }
3790 EXPORT_SYMBOL(rps_may_expire_flow);
3791
3792 #endif /* CONFIG_RFS_ACCEL */
3793
3794 /* Called from hardirq (IPI) context */
3795 static void rps_trigger_softirq(void *data)
3796 {
3797         struct softnet_data *sd = data;
3798
3799         ____napi_schedule(sd, &sd->backlog);
3800         sd->received_rps++;
3801 }
3802
3803 #endif /* CONFIG_RPS */
3804
3805 /*
3806  * Check if this softnet_data structure is another cpu one
3807  * If yes, queue it to our IPI list and return 1
3808  * If no, return 0
3809  */
3810 static int rps_ipi_queued(struct softnet_data *sd)
3811 {
3812 #ifdef CONFIG_RPS
3813         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3814
3815         if (sd != mysd) {
3816                 sd->rps_ipi_next = mysd->rps_ipi_list;
3817                 mysd->rps_ipi_list = sd;
3818
3819                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3820                 return 1;
3821         }
3822 #endif /* CONFIG_RPS */
3823         return 0;
3824 }
3825
3826 #ifdef CONFIG_NET_FLOW_LIMIT
3827 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3828 #endif
3829
3830 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3831 {
3832 #ifdef CONFIG_NET_FLOW_LIMIT
3833         struct sd_flow_limit *fl;
3834         struct softnet_data *sd;
3835         unsigned int old_flow, new_flow;
3836
3837         if (qlen < (netdev_max_backlog >> 1))
3838                 return false;
3839
3840         sd = this_cpu_ptr(&softnet_data);
3841
3842         rcu_read_lock();
3843         fl = rcu_dereference(sd->flow_limit);
3844         if (fl) {
3845                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3846                 old_flow = fl->history[fl->history_head];
3847                 fl->history[fl->history_head] = new_flow;
3848
3849                 fl->history_head++;
3850                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3851
3852                 if (likely(fl->buckets[old_flow]))
3853                         fl->buckets[old_flow]--;
3854
3855                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3856                         fl->count++;
3857                         rcu_read_unlock();
3858                         return true;
3859                 }
3860         }
3861         rcu_read_unlock();
3862 #endif
3863         return false;
3864 }
3865
3866 /*
3867  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3868  * queue (may be a remote CPU queue).
3869  */
3870 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3871                               unsigned int *qtail)
3872 {
3873         struct softnet_data *sd;
3874         unsigned long flags;
3875         unsigned int qlen;
3876
3877         sd = &per_cpu(softnet_data, cpu);
3878
3879         local_irq_save(flags);
3880
3881         rps_lock(sd);
3882         if (!netif_running(skb->dev))
3883                 goto drop;
3884         qlen = skb_queue_len(&sd->input_pkt_queue);
3885         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3886                 if (qlen) {
3887 enqueue:
3888                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3889                         input_queue_tail_incr_save(sd, qtail);
3890                         rps_unlock(sd);
3891                         local_irq_restore(flags);
3892                         return NET_RX_SUCCESS;
3893                 }
3894
3895                 /* Schedule NAPI for backlog device
3896                  * We can use non atomic operation since we own the queue lock
3897                  */
3898                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3899                         if (!rps_ipi_queued(sd))
3900                                 ____napi_schedule(sd, &sd->backlog);
3901                 }
3902                 goto enqueue;
3903         }
3904
3905 drop:
3906         sd->dropped++;
3907         rps_unlock(sd);
3908
3909         local_irq_restore(flags);
3910
3911         atomic_long_inc(&skb->dev->rx_dropped);
3912         kfree_skb(skb);
3913         return NET_RX_DROP;
3914 }
3915
3916 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3917                                      struct bpf_prog *xdp_prog)
3918 {
3919         struct xdp_buff xdp;
3920         u32 act = XDP_DROP;
3921         void *orig_data;
3922         int hlen, off;
3923         u32 mac_len;
3924
3925         /* Reinjected packets coming from act_mirred or similar should
3926          * not get XDP generic processing.
3927          */
3928         if (skb_cloned(skb))
3929                 return XDP_PASS;
3930
3931         if (skb_linearize(skb))
3932                 goto do_drop;
3933
3934         /* The XDP program wants to see the packet starting at the MAC
3935          * header.
3936          */
3937         mac_len = skb->data - skb_mac_header(skb);
3938         hlen = skb_headlen(skb) + mac_len;
3939         xdp.data = skb->data - mac_len;
3940         xdp.data_end = xdp.data + hlen;
3941         xdp.data_hard_start = skb->data - skb_headroom(skb);
3942         orig_data = xdp.data;
3943
3944         act = bpf_prog_run_xdp(xdp_prog, &xdp);
3945
3946         off = xdp.data - orig_data;
3947         if (off > 0)
3948                 __skb_pull(skb, off);
3949         else if (off < 0)
3950                 __skb_push(skb, -off);
3951         skb->mac_header += off;
3952
3953         switch (act) {
3954         case XDP_REDIRECT:
3955         case XDP_TX:
3956                 __skb_push(skb, mac_len);
3957                 /* fall through */
3958         case XDP_PASS:
3959                 break;
3960
3961         default:
3962                 bpf_warn_invalid_xdp_action(act);
3963                 /* fall through */
3964         case XDP_ABORTED:
3965                 trace_xdp_exception(skb->dev, xdp_prog, act);
3966                 /* fall through */
3967         case XDP_DROP:
3968         do_drop:
3969                 kfree_skb(skb);
3970                 break;
3971         }
3972
3973         return act;
3974 }
3975
3976 /* When doing generic XDP we have to bypass the qdisc layer and the
3977  * network taps in order to match in-driver-XDP behavior.
3978  */
3979 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3980 {
3981         struct net_device *dev = skb->dev;
3982         struct netdev_queue *txq;
3983         bool free_skb = true;
3984         int cpu, rc;
3985
3986         txq = netdev_pick_tx(dev, skb, NULL);
3987         cpu = smp_processor_id();
3988         HARD_TX_LOCK(dev, txq, cpu);
3989         if (!netif_xmit_stopped(txq)) {
3990                 rc = netdev_start_xmit(skb, dev, txq, 0);
3991                 if (dev_xmit_complete(rc))
3992                         free_skb = false;
3993         }
3994         HARD_TX_UNLOCK(dev, txq);
3995         if (free_skb) {
3996                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3997                 kfree_skb(skb);
3998         }
3999 }
4000 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4001
4002 static struct static_key generic_xdp_needed __read_mostly;
4003
4004 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4005 {
4006         if (xdp_prog) {
4007                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4008                 int err;
4009
4010                 if (act != XDP_PASS) {
4011                         switch (act) {
4012                         case XDP_REDIRECT:
4013                                 err = xdp_do_generic_redirect(skb->dev, skb,
4014                                                               xdp_prog);
4015                                 if (err)
4016                                         goto out_redir;
4017                         /* fallthru to submit skb */
4018                         case XDP_TX:
4019                                 generic_xdp_tx(skb, xdp_prog);
4020                                 break;
4021                         }
4022                         return XDP_DROP;
4023                 }
4024         }
4025         return XDP_PASS;
4026 out_redir:
4027         kfree_skb(skb);
4028         return XDP_DROP;
4029 }
4030 EXPORT_SYMBOL_GPL(do_xdp_generic);
4031
4032 static int netif_rx_internal(struct sk_buff *skb)
4033 {
4034         int ret;
4035
4036         net_timestamp_check(netdev_tstamp_prequeue, skb);
4037
4038         trace_netif_rx(skb);
4039
4040         if (static_key_false(&generic_xdp_needed)) {
4041                 int ret;
4042
4043                 preempt_disable();
4044                 rcu_read_lock();
4045                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4046                 rcu_read_unlock();
4047                 preempt_enable();
4048
4049                 /* Consider XDP consuming the packet a success from
4050                  * the netdev point of view we do not want to count
4051                  * this as an error.
4052                  */
4053                 if (ret != XDP_PASS)
4054                         return NET_RX_SUCCESS;
4055         }
4056
4057 #ifdef CONFIG_RPS
4058         if (static_key_false(&rps_needed)) {
4059                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4060                 int cpu;
4061
4062                 preempt_disable();
4063                 rcu_read_lock();
4064
4065                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4066                 if (cpu < 0)
4067                         cpu = smp_processor_id();
4068
4069                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4070
4071                 rcu_read_unlock();
4072                 preempt_enable();
4073         } else
4074 #endif
4075         {
4076                 unsigned int qtail;
4077
4078                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4079                 put_cpu();
4080         }
4081         return ret;
4082 }
4083
4084 /**
4085  *      netif_rx        -       post buffer to the network code
4086  *      @skb: buffer to post
4087  *
4088  *      This function receives a packet from a device driver and queues it for
4089  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4090  *      may be dropped during processing for congestion control or by the
4091  *      protocol layers.
4092  *
4093  *      return values:
4094  *      NET_RX_SUCCESS  (no congestion)
4095  *      NET_RX_DROP     (packet was dropped)
4096  *
4097  */
4098
4099 int netif_rx(struct sk_buff *skb)
4100 {
4101         trace_netif_rx_entry(skb);
4102
4103         return netif_rx_internal(skb);
4104 }
4105 EXPORT_SYMBOL(netif_rx);
4106
4107 int netif_rx_ni(struct sk_buff *skb)
4108 {
4109         int err;
4110
4111         trace_netif_rx_ni_entry(skb);
4112
4113         preempt_disable();
4114         err = netif_rx_internal(skb);
4115         if (local_softirq_pending())
4116                 do_softirq();
4117         preempt_enable();
4118
4119         return err;
4120 }
4121 EXPORT_SYMBOL(netif_rx_ni);
4122
4123 static __latent_entropy void net_tx_action(struct softirq_action *h)
4124 {
4125         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4126
4127         if (sd->completion_queue) {
4128                 struct sk_buff *clist;
4129
4130                 local_irq_disable();
4131                 clist = sd->completion_queue;
4132                 sd->completion_queue = NULL;
4133                 local_irq_enable();
4134
4135                 while (clist) {
4136                         struct sk_buff *skb = clist;
4137
4138                         clist = clist->next;
4139
4140                         WARN_ON(refcount_read(&skb->users));
4141                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4142                                 trace_consume_skb(skb);
4143                         else
4144                                 trace_kfree_skb(skb, net_tx_action);
4145
4146                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4147                                 __kfree_skb(skb);
4148                         else
4149                                 __kfree_skb_defer(skb);
4150                 }
4151
4152                 __kfree_skb_flush();
4153         }
4154
4155         if (sd->output_queue) {
4156                 struct Qdisc *head;
4157
4158                 local_irq_disable();
4159                 head = sd->output_queue;
4160                 sd->output_queue = NULL;
4161                 sd->output_queue_tailp = &sd->output_queue;
4162                 local_irq_enable();
4163
4164                 while (head) {
4165                         struct Qdisc *q = head;
4166                         spinlock_t *root_lock;
4167
4168                         head = head->next_sched;
4169
4170                         root_lock = qdisc_lock(q);
4171                         spin_lock(root_lock);
4172                         /* We need to make sure head->next_sched is read
4173                          * before clearing __QDISC_STATE_SCHED
4174                          */
4175                         smp_mb__before_atomic();
4176                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4177                         qdisc_run(q);
4178                         spin_unlock(root_lock);
4179                 }
4180         }
4181 }
4182
4183 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4184 /* This hook is defined here for ATM LANE */
4185 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4186                              unsigned char *addr) __read_mostly;
4187 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4188 #endif
4189
4190 static inline struct sk_buff *
4191 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4192                    struct net_device *orig_dev)
4193 {
4194 #ifdef CONFIG_NET_CLS_ACT
4195         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4196         struct tcf_result cl_res;
4197
4198         /* If there's at least one ingress present somewhere (so
4199          * we get here via enabled static key), remaining devices
4200          * that are not configured with an ingress qdisc will bail
4201          * out here.
4202          */
4203         if (!cl)
4204                 return skb;
4205         if (*pt_prev) {
4206                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4207                 *pt_prev = NULL;
4208         }
4209
4210         qdisc_skb_cb(skb)->pkt_len = skb->len;
4211         skb->tc_at_ingress = 1;
4212         qdisc_bstats_cpu_update(cl->q, skb);
4213
4214         switch (tcf_classify(skb, cl, &cl_res, false)) {
4215         case TC_ACT_OK:
4216         case TC_ACT_RECLASSIFY:
4217                 skb->tc_index = TC_H_MIN(cl_res.classid);
4218                 break;
4219         case TC_ACT_SHOT:
4220                 qdisc_qstats_cpu_drop(cl->q);
4221                 kfree_skb(skb);
4222                 return NULL;
4223         case TC_ACT_STOLEN:
4224         case TC_ACT_QUEUED:
4225         case TC_ACT_TRAP:
4226                 consume_skb(skb);
4227                 return NULL;
4228         case TC_ACT_REDIRECT:
4229                 /* skb_mac_header check was done by cls/act_bpf, so
4230                  * we can safely push the L2 header back before
4231                  * redirecting to another netdev
4232                  */
4233                 __skb_push(skb, skb->mac_len);
4234                 skb_do_redirect(skb);
4235                 return NULL;
4236         default:
4237                 break;
4238         }
4239 #endif /* CONFIG_NET_CLS_ACT */
4240         return skb;
4241 }
4242
4243 /**
4244  *      netdev_is_rx_handler_busy - check if receive handler is registered
4245  *      @dev: device to check
4246  *
4247  *      Check if a receive handler is already registered for a given device.
4248  *      Return true if there one.
4249  *
4250  *      The caller must hold the rtnl_mutex.
4251  */
4252 bool netdev_is_rx_handler_busy(struct net_device *dev)
4253 {
4254         ASSERT_RTNL();
4255         return dev && rtnl_dereference(dev->rx_handler);
4256 }
4257 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4258
4259 /**
4260  *      netdev_rx_handler_register - register receive handler
4261  *      @dev: device to register a handler for
4262  *      @rx_handler: receive handler to register
4263  *      @rx_handler_data: data pointer that is used by rx handler
4264  *
4265  *      Register a receive handler for a device. This handler will then be
4266  *      called from __netif_receive_skb. A negative errno code is returned
4267  *      on a failure.
4268  *
4269  *      The caller must hold the rtnl_mutex.
4270  *
4271  *      For a general description of rx_handler, see enum rx_handler_result.
4272  */
4273 int netdev_rx_handler_register(struct net_device *dev,
4274                                rx_handler_func_t *rx_handler,
4275                                void *rx_handler_data)
4276 {
4277         if (netdev_is_rx_handler_busy(dev))
4278                 return -EBUSY;
4279
4280         /* Note: rx_handler_data must be set before rx_handler */
4281         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4282         rcu_assign_pointer(dev->rx_handler, rx_handler);
4283
4284         return 0;
4285 }
4286 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4287
4288 /**
4289  *      netdev_rx_handler_unregister - unregister receive handler
4290  *      @dev: device to unregister a handler from
4291  *
4292  *      Unregister a receive handler from a device.
4293  *
4294  *      The caller must hold the rtnl_mutex.
4295  */
4296 void netdev_rx_handler_unregister(struct net_device *dev)
4297 {
4298
4299         ASSERT_RTNL();
4300         RCU_INIT_POINTER(dev->rx_handler, NULL);
4301         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4302          * section has a guarantee to see a non NULL rx_handler_data
4303          * as well.
4304          */
4305         synchronize_net();
4306         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4307 }
4308 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4309
4310 /*
4311  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4312  * the special handling of PFMEMALLOC skbs.
4313  */
4314 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4315 {
4316         switch (skb->protocol) {
4317         case htons(ETH_P_ARP):
4318         case htons(ETH_P_IP):
4319         case htons(ETH_P_IPV6):
4320         case htons(ETH_P_8021Q):
4321         case htons(ETH_P_8021AD):
4322                 return true;
4323         default:
4324                 return false;
4325         }
4326 }
4327
4328 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4329                              int *ret, struct net_device *orig_dev)
4330 {
4331 #ifdef CONFIG_NETFILTER_INGRESS
4332         if (nf_hook_ingress_active(skb)) {
4333                 int ingress_retval;
4334
4335                 if (*pt_prev) {
4336                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4337                         *pt_prev = NULL;
4338                 }
4339
4340                 rcu_read_lock();
4341                 ingress_retval = nf_hook_ingress(skb);
4342                 rcu_read_unlock();
4343                 return ingress_retval;
4344         }
4345 #endif /* CONFIG_NETFILTER_INGRESS */
4346         return 0;
4347 }
4348
4349 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4350 {
4351         struct packet_type *ptype, *pt_prev;
4352         rx_handler_func_t *rx_handler;
4353         struct net_device *orig_dev;
4354         bool deliver_exact = false;
4355         int ret = NET_RX_DROP;
4356         __be16 type;
4357
4358         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4359
4360         trace_netif_receive_skb(skb);
4361
4362         orig_dev = skb->dev;
4363
4364         skb_reset_network_header(skb);
4365         if (!skb_transport_header_was_set(skb))
4366                 skb_reset_transport_header(skb);
4367         skb_reset_mac_len(skb);
4368
4369         pt_prev = NULL;
4370
4371 another_round:
4372         skb->skb_iif = skb->dev->ifindex;
4373
4374         __this_cpu_inc(softnet_data.processed);
4375
4376         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4377             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4378                 skb = skb_vlan_untag(skb);
4379                 if (unlikely(!skb))
4380                         goto out;
4381         }
4382
4383         if (skb_skip_tc_classify(skb))
4384                 goto skip_classify;
4385
4386         if (pfmemalloc)
4387                 goto skip_taps;
4388
4389         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4390                 if (pt_prev)
4391                         ret = deliver_skb(skb, pt_prev, orig_dev);
4392                 pt_prev = ptype;
4393         }
4394
4395         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4396                 if (pt_prev)
4397                         ret = deliver_skb(skb, pt_prev, orig_dev);
4398                 pt_prev = ptype;
4399         }
4400
4401 skip_taps:
4402 #ifdef CONFIG_NET_INGRESS
4403         if (static_key_false(&ingress_needed)) {
4404                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4405                 if (!skb)
4406                         goto out;
4407
4408                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4409                         goto out;
4410         }
4411 #endif
4412         skb_reset_tc(skb);
4413 skip_classify:
4414         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4415                 goto drop;
4416
4417         if (skb_vlan_tag_present(skb)) {
4418                 if (pt_prev) {
4419                         ret = deliver_skb(skb, pt_prev, orig_dev);
4420                         pt_prev = NULL;
4421                 }
4422                 if (vlan_do_receive(&skb))
4423                         goto another_round;
4424                 else if (unlikely(!skb))
4425                         goto out;
4426         }
4427
4428         rx_handler = rcu_dereference(skb->dev->rx_handler);
4429         if (rx_handler) {
4430                 if (pt_prev) {
4431                         ret = deliver_skb(skb, pt_prev, orig_dev);
4432                         pt_prev = NULL;
4433                 }
4434                 switch (rx_handler(&skb)) {
4435                 case RX_HANDLER_CONSUMED:
4436                         ret = NET_RX_SUCCESS;
4437                         goto out;
4438                 case RX_HANDLER_ANOTHER:
4439                         goto another_round;
4440                 case RX_HANDLER_EXACT:
4441                         deliver_exact = true;
4442                 case RX_HANDLER_PASS:
4443                         break;
4444                 default:
4445                         BUG();
4446                 }
4447         }
4448
4449         if (unlikely(skb_vlan_tag_present(skb))) {
4450                 if (skb_vlan_tag_get_id(skb))
4451                         skb->pkt_type = PACKET_OTHERHOST;
4452                 /* Note: we might in the future use prio bits
4453                  * and set skb->priority like in vlan_do_receive()
4454                  * For the time being, just ignore Priority Code Point
4455                  */
4456                 skb->vlan_tci = 0;
4457         }
4458
4459         type = skb->protocol;
4460
4461         /* deliver only exact match when indicated */
4462         if (likely(!deliver_exact)) {
4463                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4464                                        &ptype_base[ntohs(type) &
4465                                                    PTYPE_HASH_MASK]);
4466         }
4467
4468         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4469                                &orig_dev->ptype_specific);
4470
4471         if (unlikely(skb->dev != orig_dev)) {
4472                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4473                                        &skb->dev->ptype_specific);
4474         }
4475
4476         if (pt_prev) {
4477                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4478                         goto drop;
4479                 else
4480                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4481         } else {
4482 drop:
4483                 if (!deliver_exact)
4484                         atomic_long_inc(&skb->dev->rx_dropped);
4485                 else
4486                         atomic_long_inc(&skb->dev->rx_nohandler);
4487                 kfree_skb(skb);
4488                 /* Jamal, now you will not able to escape explaining
4489                  * me how you were going to use this. :-)
4490                  */
4491                 ret = NET_RX_DROP;
4492         }
4493
4494 out:
4495         return ret;
4496 }
4497
4498 static int __netif_receive_skb(struct sk_buff *skb)
4499 {
4500         int ret;
4501
4502         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4503                 unsigned int noreclaim_flag;
4504
4505                 /*
4506                  * PFMEMALLOC skbs are special, they should
4507                  * - be delivered to SOCK_MEMALLOC sockets only
4508                  * - stay away from userspace
4509                  * - have bounded memory usage
4510                  *
4511                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4512                  * context down to all allocation sites.
4513                  */
4514                 noreclaim_flag = memalloc_noreclaim_save();
4515                 ret = __netif_receive_skb_core(skb, true);
4516                 memalloc_noreclaim_restore(noreclaim_flag);
4517         } else
4518                 ret = __netif_receive_skb_core(skb, false);
4519
4520         return ret;
4521 }
4522
4523 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4524 {
4525         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4526         struct bpf_prog *new = xdp->prog;
4527         int ret = 0;
4528
4529         switch (xdp->command) {
4530         case XDP_SETUP_PROG:
4531                 rcu_assign_pointer(dev->xdp_prog, new);
4532                 if (old)
4533                         bpf_prog_put(old);
4534
4535                 if (old && !new) {
4536                         static_key_slow_dec(&generic_xdp_needed);
4537                 } else if (new && !old) {
4538                         static_key_slow_inc(&generic_xdp_needed);
4539                         dev_disable_lro(dev);
4540                 }
4541                 break;
4542
4543         case XDP_QUERY_PROG:
4544                 xdp->prog_attached = !!old;
4545                 xdp->prog_id = old ? old->aux->id : 0;
4546                 break;
4547
4548         default:
4549                 ret = -EINVAL;
4550                 break;
4551         }
4552
4553         return ret;
4554 }
4555
4556 static int netif_receive_skb_internal(struct sk_buff *skb)
4557 {
4558         int ret;
4559
4560         net_timestamp_check(netdev_tstamp_prequeue, skb);
4561
4562         if (skb_defer_rx_timestamp(skb))
4563                 return NET_RX_SUCCESS;
4564
4565         if (static_key_false(&generic_xdp_needed)) {
4566                 int ret;
4567
4568                 preempt_disable();
4569                 rcu_read_lock();
4570                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4571                 rcu_read_unlock();
4572                 preempt_enable();
4573
4574                 if (ret != XDP_PASS)
4575                         return NET_RX_DROP;
4576         }
4577
4578         rcu_read_lock();
4579 #ifdef CONFIG_RPS
4580         if (static_key_false(&rps_needed)) {
4581                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4582                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4583
4584                 if (cpu >= 0) {
4585                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4586                         rcu_read_unlock();
4587                         return ret;
4588                 }
4589         }
4590 #endif
4591         ret = __netif_receive_skb(skb);
4592         rcu_read_unlock();
4593         return ret;
4594 }
4595
4596 /**
4597  *      netif_receive_skb - process receive buffer from network
4598  *      @skb: buffer to process
4599  *
4600  *      netif_receive_skb() is the main receive data processing function.
4601  *      It always succeeds. The buffer may be dropped during processing
4602  *      for congestion control or by the protocol layers.
4603  *
4604  *      This function may only be called from softirq context and interrupts
4605  *      should be enabled.
4606  *
4607  *      Return values (usually ignored):
4608  *      NET_RX_SUCCESS: no congestion
4609  *      NET_RX_DROP: packet was dropped
4610  */
4611 int netif_receive_skb(struct sk_buff *skb)
4612 {
4613         trace_netif_receive_skb_entry(skb);
4614
4615         return netif_receive_skb_internal(skb);
4616 }
4617 EXPORT_SYMBOL(netif_receive_skb);
4618
4619 DEFINE_PER_CPU(struct work_struct, flush_works);
4620
4621 /* Network device is going away, flush any packets still pending */
4622 static void flush_backlog(struct work_struct *work)
4623 {
4624         struct sk_buff *skb, *tmp;
4625         struct softnet_data *sd;
4626
4627         local_bh_disable();
4628         sd = this_cpu_ptr(&softnet_data);
4629
4630         local_irq_disable();
4631         rps_lock(sd);
4632         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4633                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4634                         __skb_unlink(skb, &sd->input_pkt_queue);
4635                         dev_kfree_skb_irq(skb);
4636                         input_queue_head_incr(sd);
4637                 }
4638         }
4639         rps_unlock(sd);
4640         local_irq_enable();
4641
4642         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4643                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4644                         __skb_unlink(skb, &sd->process_queue);
4645                         kfree_skb(skb);
4646                         input_queue_head_incr(sd);
4647                 }
4648         }
4649         local_bh_enable();
4650 }
4651
4652 static void flush_all_backlogs(void)
4653 {
4654         unsigned int cpu;
4655
4656         get_online_cpus();
4657
4658         for_each_online_cpu(cpu)
4659                 queue_work_on(cpu, system_highpri_wq,
4660                               per_cpu_ptr(&flush_works, cpu));
4661
4662         for_each_online_cpu(cpu)
4663                 flush_work(per_cpu_ptr(&flush_works, cpu));
4664
4665         put_online_cpus();
4666 }
4667
4668 static int napi_gro_complete(struct sk_buff *skb)
4669 {
4670         struct packet_offload *ptype;
4671         __be16 type = skb->protocol;
4672         struct list_head *head = &offload_base;
4673         int err = -ENOENT;
4674
4675         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4676
4677         if (NAPI_GRO_CB(skb)->count == 1) {
4678                 skb_shinfo(skb)->gso_size = 0;
4679                 goto out;
4680         }
4681
4682         rcu_read_lock();
4683         list_for_each_entry_rcu(ptype, head, list) {
4684                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4685                         continue;
4686
4687                 err = ptype->callbacks.gro_complete(skb, 0);
4688                 break;
4689         }
4690         rcu_read_unlock();
4691
4692         if (err) {
4693                 WARN_ON(&ptype->list == head);
4694                 kfree_skb(skb);
4695                 return NET_RX_SUCCESS;
4696         }
4697
4698 out:
4699         return netif_receive_skb_internal(skb);
4700 }
4701
4702 /* napi->gro_list contains packets ordered by age.
4703  * youngest packets at the head of it.
4704  * Complete skbs in reverse order to reduce latencies.
4705  */
4706 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4707 {
4708         struct sk_buff *skb, *prev = NULL;
4709
4710         /* scan list and build reverse chain */
4711         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4712                 skb->prev = prev;
4713                 prev = skb;
4714         }
4715
4716         for (skb = prev; skb; skb = prev) {
4717                 skb->next = NULL;
4718
4719                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4720                         return;
4721
4722                 prev = skb->prev;
4723                 napi_gro_complete(skb);
4724                 napi->gro_count--;
4725         }
4726
4727         napi->gro_list = NULL;
4728 }
4729 EXPORT_SYMBOL(napi_gro_flush);
4730
4731 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4732 {
4733         struct sk_buff *p;
4734         unsigned int maclen = skb->dev->hard_header_len;
4735         u32 hash = skb_get_hash_raw(skb);
4736
4737         for (p = napi->gro_list; p; p = p->next) {
4738                 unsigned long diffs;
4739
4740                 NAPI_GRO_CB(p)->flush = 0;
4741
4742                 if (hash != skb_get_hash_raw(p)) {
4743                         NAPI_GRO_CB(p)->same_flow = 0;
4744                         continue;
4745                 }
4746
4747                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4748                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4749                 diffs |= skb_metadata_dst_cmp(p, skb);
4750                 if (maclen == ETH_HLEN)
4751                         diffs |= compare_ether_header(skb_mac_header(p),
4752                                                       skb_mac_header(skb));
4753                 else if (!diffs)
4754                         diffs = memcmp(skb_mac_header(p),
4755                                        skb_mac_header(skb),
4756                                        maclen);
4757                 NAPI_GRO_CB(p)->same_flow = !diffs;
4758         }
4759 }
4760
4761 static void skb_gro_reset_offset(struct sk_buff *skb)
4762 {
4763         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4764         const skb_frag_t *frag0 = &pinfo->frags[0];
4765
4766         NAPI_GRO_CB(skb)->data_offset = 0;
4767         NAPI_GRO_CB(skb)->frag0 = NULL;
4768         NAPI_GRO_CB(skb)->frag0_len = 0;
4769
4770         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4771             pinfo->nr_frags &&
4772             !PageHighMem(skb_frag_page(frag0)) &&
4773             (!NET_IP_ALIGN || !(skb_frag_off(frag0) & 3))) {
4774                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4775                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4776                                                     skb_frag_size(frag0),
4777                                                     skb->end - skb->tail);
4778         }
4779 }
4780
4781 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4782 {
4783         struct skb_shared_info *pinfo = skb_shinfo(skb);
4784
4785         BUG_ON(skb->end - skb->tail < grow);
4786
4787         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4788
4789         skb->data_len -= grow;
4790         skb->tail += grow;
4791
4792         pinfo->frags[0].page_offset += grow;
4793         skb_frag_size_sub(&pinfo->frags[0], grow);
4794
4795         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4796                 skb_frag_unref(skb, 0);
4797                 memmove(pinfo->frags, pinfo->frags + 1,
4798                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4799         }
4800 }
4801
4802 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4803 {
4804         struct sk_buff **pp = NULL;
4805         struct packet_offload *ptype;
4806         __be16 type = skb->protocol;
4807         struct list_head *head = &offload_base;
4808         int same_flow;
4809         enum gro_result ret;
4810         int grow;
4811
4812         if (netif_elide_gro(skb->dev))
4813                 goto normal;
4814
4815         gro_list_prepare(napi, skb);
4816
4817         rcu_read_lock();
4818         list_for_each_entry_rcu(ptype, head, list) {
4819                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4820                         continue;
4821
4822                 skb_set_network_header(skb, skb_gro_offset(skb));
4823                 skb_reset_mac_len(skb);
4824                 NAPI_GRO_CB(skb)->same_flow = 0;
4825                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4826                 NAPI_GRO_CB(skb)->free = 0;
4827                 NAPI_GRO_CB(skb)->encap_mark = 0;
4828                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4829                 NAPI_GRO_CB(skb)->is_fou = 0;
4830                 NAPI_GRO_CB(skb)->is_atomic = 1;
4831                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4832
4833                 /* Setup for GRO checksum validation */
4834                 switch (skb->ip_summed) {
4835                 case CHECKSUM_COMPLETE:
4836                         NAPI_GRO_CB(skb)->csum = skb->csum;
4837                         NAPI_GRO_CB(skb)->csum_valid = 1;
4838                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4839                         break;
4840                 case CHECKSUM_UNNECESSARY:
4841                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4842                         NAPI_GRO_CB(skb)->csum_valid = 0;
4843                         break;
4844                 default:
4845                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4846                         NAPI_GRO_CB(skb)->csum_valid = 0;
4847                 }
4848
4849                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4850                 break;
4851         }
4852         rcu_read_unlock();
4853
4854         if (&ptype->list == head)
4855                 goto normal;
4856
4857         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4858                 ret = GRO_CONSUMED;
4859                 goto ok;
4860         }
4861
4862         same_flow = NAPI_GRO_CB(skb)->same_flow;
4863         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4864
4865         if (pp) {
4866                 struct sk_buff *nskb = *pp;
4867
4868                 *pp = nskb->next;
4869                 nskb->next = NULL;
4870                 napi_gro_complete(nskb);
4871                 napi->gro_count--;
4872         }
4873
4874         if (same_flow)
4875                 goto ok;
4876
4877         if (NAPI_GRO_CB(skb)->flush)
4878                 goto normal;
4879
4880         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4881                 struct sk_buff *nskb = napi->gro_list;
4882
4883                 /* locate the end of the list to select the 'oldest' flow */
4884                 while (nskb->next) {
4885                         pp = &nskb->next;
4886                         nskb = *pp;
4887                 }
4888                 *pp = NULL;
4889                 nskb->next = NULL;
4890                 napi_gro_complete(nskb);
4891         } else {
4892                 napi->gro_count++;
4893         }
4894         NAPI_GRO_CB(skb)->count = 1;
4895         NAPI_GRO_CB(skb)->age = jiffies;
4896         NAPI_GRO_CB(skb)->last = skb;
4897         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4898         skb->next = napi->gro_list;
4899         napi->gro_list = skb;
4900         ret = GRO_HELD;
4901
4902 pull:
4903         grow = skb_gro_offset(skb) - skb_headlen(skb);
4904         if (grow > 0)
4905                 gro_pull_from_frag0(skb, grow);
4906 ok:
4907         return ret;
4908
4909 normal:
4910         ret = GRO_NORMAL;
4911         goto pull;
4912 }
4913
4914 struct packet_offload *gro_find_receive_by_type(__be16 type)
4915 {
4916         struct list_head *offload_head = &offload_base;
4917         struct packet_offload *ptype;
4918
4919         list_for_each_entry_rcu(ptype, offload_head, list) {
4920                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4921                         continue;
4922                 return ptype;
4923         }
4924         return NULL;
4925 }
4926 EXPORT_SYMBOL(gro_find_receive_by_type);
4927
4928 struct packet_offload *gro_find_complete_by_type(__be16 type)
4929 {
4930         struct list_head *offload_head = &offload_base;
4931         struct packet_offload *ptype;
4932
4933         list_for_each_entry_rcu(ptype, offload_head, list) {
4934                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4935                         continue;
4936                 return ptype;
4937         }
4938         return NULL;
4939 }
4940 EXPORT_SYMBOL(gro_find_complete_by_type);
4941
4942 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4943 {
4944         skb_dst_drop(skb);
4945         secpath_reset(skb);
4946         kmem_cache_free(skbuff_head_cache, skb);
4947 }
4948
4949 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4950 {
4951         switch (ret) {
4952         case GRO_NORMAL:
4953                 if (netif_receive_skb_internal(skb))
4954                         ret = GRO_DROP;
4955                 break;
4956
4957         case GRO_DROP:
4958                 kfree_skb(skb);
4959                 break;
4960
4961         case GRO_MERGED_FREE:
4962                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4963                         napi_skb_free_stolen_head(skb);
4964                 else
4965                         __kfree_skb(skb);
4966                 break;
4967
4968         case GRO_HELD:
4969         case GRO_MERGED:
4970         case GRO_CONSUMED:
4971                 break;
4972         }
4973
4974         return ret;
4975 }
4976
4977 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4978 {
4979         skb_mark_napi_id(skb, napi);
4980         trace_napi_gro_receive_entry(skb);
4981
4982         skb_gro_reset_offset(skb);
4983
4984         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4985 }
4986 EXPORT_SYMBOL(napi_gro_receive);
4987
4988 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4989 {
4990         if (unlikely(skb->pfmemalloc)) {
4991                 consume_skb(skb);
4992                 return;
4993         }
4994         __skb_pull(skb, skb_headlen(skb));
4995         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4996         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4997         skb->vlan_tci = 0;
4998         skb->dev = napi->dev;
4999         skb->skb_iif = 0;
5000
5001         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5002         skb->pkt_type = PACKET_HOST;
5003
5004         skb->encapsulation = 0;
5005         skb_shinfo(skb)->gso_type = 0;
5006         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5007         secpath_reset(skb);
5008
5009         napi->skb = skb;
5010 }
5011
5012 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5013 {
5014         struct sk_buff *skb = napi->skb;
5015
5016         if (!skb) {
5017                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5018                 if (skb) {
5019                         napi->skb = skb;
5020                         skb_mark_napi_id(skb, napi);
5021                 }
5022         }
5023         return skb;
5024 }
5025 EXPORT_SYMBOL(napi_get_frags);
5026
5027 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5028                                       struct sk_buff *skb,
5029                                       gro_result_t ret)
5030 {
5031         switch (ret) {
5032         case GRO_NORMAL:
5033         case GRO_HELD:
5034                 __skb_push(skb, ETH_HLEN);
5035                 skb->protocol = eth_type_trans(skb, skb->dev);
5036                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5037                         ret = GRO_DROP;
5038                 break;
5039
5040         case GRO_DROP:
5041                 napi_reuse_skb(napi, skb);
5042                 break;
5043
5044         case GRO_MERGED_FREE:
5045                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5046                         napi_skb_free_stolen_head(skb);
5047                 else
5048                         napi_reuse_skb(napi, skb);
5049                 break;
5050
5051         case GRO_MERGED:
5052         case GRO_CONSUMED:
5053                 break;
5054         }
5055
5056         return ret;
5057 }
5058
5059 /* Upper GRO stack assumes network header starts at gro_offset=0
5060  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5061  * We copy ethernet header into skb->data to have a common layout.
5062  */
5063 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5064 {
5065         struct sk_buff *skb = napi->skb;
5066         const struct ethhdr *eth;
5067         unsigned int hlen = sizeof(*eth);
5068
5069         napi->skb = NULL;
5070
5071         skb_reset_mac_header(skb);
5072         skb_gro_reset_offset(skb);
5073
5074         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5075                 eth = skb_gro_header_slow(skb, hlen, 0);
5076                 if (unlikely(!eth)) {
5077                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5078                                              __func__, napi->dev->name);
5079                         napi_reuse_skb(napi, skb);
5080                         return NULL;
5081                 }
5082         } else {
5083                 eth = (const struct ethhdr *)skb->data;
5084                 gro_pull_from_frag0(skb, hlen);
5085                 NAPI_GRO_CB(skb)->frag0 += hlen;
5086                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5087         }
5088         __skb_pull(skb, hlen);
5089
5090         /*
5091          * This works because the only protocols we care about don't require
5092          * special handling.
5093          * We'll fix it up properly in napi_frags_finish()
5094          */
5095         skb->protocol = eth->h_proto;
5096
5097         return skb;
5098 }
5099
5100 gro_result_t napi_gro_frags(struct napi_struct *napi)
5101 {
5102         struct sk_buff *skb = napi_frags_skb(napi);
5103
5104         if (!skb)
5105                 return GRO_DROP;
5106
5107         trace_napi_gro_frags_entry(skb);
5108
5109         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5110 }
5111 EXPORT_SYMBOL(napi_gro_frags);
5112
5113 /* Compute the checksum from gro_offset and return the folded value
5114  * after adding in any pseudo checksum.
5115  */
5116 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5117 {
5118         __wsum wsum;
5119         __sum16 sum;
5120
5121         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5122
5123         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5124         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5125         if (likely(!sum)) {
5126                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5127                     !skb->csum_complete_sw)
5128                         netdev_rx_csum_fault(skb->dev);
5129         }
5130
5131         NAPI_GRO_CB(skb)->csum = wsum;
5132         NAPI_GRO_CB(skb)->csum_valid = 1;
5133
5134         return sum;
5135 }
5136 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5137
5138 static void net_rps_send_ipi(struct softnet_data *remsd)
5139 {
5140 #ifdef CONFIG_RPS
5141         while (remsd) {
5142                 struct softnet_data *next = remsd->rps_ipi_next;
5143
5144                 if (cpu_online(remsd->cpu))
5145                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5146                 remsd = next;
5147         }
5148 #endif
5149 }
5150
5151 /*
5152  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5153  * Note: called with local irq disabled, but exits with local irq enabled.
5154  */
5155 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5156 {
5157 #ifdef CONFIG_RPS
5158         struct softnet_data *remsd = sd->rps_ipi_list;
5159
5160         if (remsd) {
5161                 sd->rps_ipi_list = NULL;
5162
5163                 local_irq_enable();
5164
5165                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5166                 net_rps_send_ipi(remsd);
5167         } else
5168 #endif
5169                 local_irq_enable();
5170 }
5171
5172 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5173 {
5174 #ifdef CONFIG_RPS
5175         return sd->rps_ipi_list != NULL;
5176 #else
5177         return false;
5178 #endif
5179 }
5180
5181 static int process_backlog(struct napi_struct *napi, int quota)
5182 {
5183         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5184         bool again = true;
5185         int work = 0;
5186
5187         /* Check if we have pending ipi, its better to send them now,
5188          * not waiting net_rx_action() end.
5189          */
5190         if (sd_has_rps_ipi_waiting(sd)) {
5191                 local_irq_disable();
5192                 net_rps_action_and_irq_enable(sd);
5193         }
5194
5195         napi->weight = READ_ONCE(dev_rx_weight);
5196         while (again) {
5197                 struct sk_buff *skb;
5198
5199                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5200                         rcu_read_lock();
5201                         __netif_receive_skb(skb);
5202                         rcu_read_unlock();
5203                         input_queue_head_incr(sd);
5204                         if (++work >= quota)
5205                                 return work;
5206
5207                 }
5208
5209                 local_irq_disable();
5210                 rps_lock(sd);
5211                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5212                         /*
5213                          * Inline a custom version of __napi_complete().
5214                          * only current cpu owns and manipulates this napi,
5215                          * and NAPI_STATE_SCHED is the only possible flag set
5216                          * on backlog.
5217                          * We can use a plain write instead of clear_bit(),
5218                          * and we dont need an smp_mb() memory barrier.
5219                          */
5220                         napi->state = 0;
5221                         again = false;
5222                 } else {
5223                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5224                                                    &sd->process_queue);
5225                 }
5226                 rps_unlock(sd);
5227                 local_irq_enable();
5228         }
5229
5230         return work;
5231 }
5232
5233 /**
5234  * __napi_schedule - schedule for receive
5235  * @n: entry to schedule
5236  *
5237  * The entry's receive function will be scheduled to run.
5238  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5239  */
5240 void __napi_schedule(struct napi_struct *n)
5241 {
5242         unsigned long flags;
5243
5244         local_irq_save(flags);
5245         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5246         local_irq_restore(flags);
5247 }
5248 EXPORT_SYMBOL(__napi_schedule);
5249
5250 /**
5251  *      napi_schedule_prep - check if napi can be scheduled
5252  *      @n: napi context
5253  *
5254  * Test if NAPI routine is already running, and if not mark
5255  * it as running.  This is used as a condition variable
5256  * insure only one NAPI poll instance runs.  We also make
5257  * sure there is no pending NAPI disable.
5258  */
5259 bool napi_schedule_prep(struct napi_struct *n)
5260 {
5261         unsigned long val, new;
5262
5263         do {
5264                 val = READ_ONCE(n->state);
5265                 if (unlikely(val & NAPIF_STATE_DISABLE))
5266                         return false;
5267                 new = val | NAPIF_STATE_SCHED;
5268
5269                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5270                  * This was suggested by Alexander Duyck, as compiler
5271                  * emits better code than :
5272                  * if (val & NAPIF_STATE_SCHED)
5273                  *     new |= NAPIF_STATE_MISSED;
5274                  */
5275                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5276                                                    NAPIF_STATE_MISSED;
5277         } while (cmpxchg(&n->state, val, new) != val);
5278
5279         return !(val & NAPIF_STATE_SCHED);
5280 }
5281 EXPORT_SYMBOL(napi_schedule_prep);
5282
5283 /**
5284  * __napi_schedule_irqoff - schedule for receive
5285  * @n: entry to schedule
5286  *
5287  * Variant of __napi_schedule() assuming hard irqs are masked.
5288  *
5289  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5290  * because the interrupt disabled assumption might not be true
5291  * due to force-threaded interrupts and spinlock substitution.
5292  */
5293 void __napi_schedule_irqoff(struct napi_struct *n)
5294 {
5295         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5296                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5297         else
5298                 __napi_schedule(n);
5299 }
5300 EXPORT_SYMBOL(__napi_schedule_irqoff);
5301
5302 bool napi_complete_done(struct napi_struct *n, int work_done)
5303 {
5304         unsigned long flags, val, new;
5305
5306         /*
5307          * 1) Don't let napi dequeue from the cpu poll list
5308          *    just in case its running on a different cpu.
5309          * 2) If we are busy polling, do nothing here, we have
5310          *    the guarantee we will be called later.
5311          */
5312         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5313                                  NAPIF_STATE_IN_BUSY_POLL)))
5314                 return false;
5315
5316         if (n->gro_list) {
5317                 unsigned long timeout = 0;
5318
5319                 if (work_done)
5320                         timeout = n->dev->gro_flush_timeout;
5321
5322                 /* When the NAPI instance uses a timeout and keeps postponing
5323                  * it, we need to bound somehow the time packets are kept in
5324                  * the GRO layer
5325                  */
5326                 napi_gro_flush(n, !!timeout);
5327                 if (timeout)
5328                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5329                                       HRTIMER_MODE_REL_PINNED);
5330         }
5331         if (unlikely(!list_empty(&n->poll_list))) {
5332                 /* If n->poll_list is not empty, we need to mask irqs */
5333                 local_irq_save(flags);
5334                 list_del_init(&n->poll_list);
5335                 local_irq_restore(flags);
5336         }
5337
5338         do {
5339                 val = READ_ONCE(n->state);
5340
5341                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5342
5343                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5344
5345                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5346                  * because we will call napi->poll() one more time.
5347                  * This C code was suggested by Alexander Duyck to help gcc.
5348                  */
5349                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5350                                                     NAPIF_STATE_SCHED;
5351         } while (cmpxchg(&n->state, val, new) != val);
5352
5353         if (unlikely(val & NAPIF_STATE_MISSED)) {
5354                 __napi_schedule(n);
5355                 return false;
5356         }
5357
5358         return true;
5359 }
5360 EXPORT_SYMBOL(napi_complete_done);
5361
5362 /* must be called under rcu_read_lock(), as we dont take a reference */
5363 static struct napi_struct *napi_by_id(unsigned int napi_id)
5364 {
5365         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5366         struct napi_struct *napi;
5367
5368         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5369                 if (napi->napi_id == napi_id)
5370                         return napi;
5371
5372         return NULL;
5373 }
5374
5375 #if defined(CONFIG_NET_RX_BUSY_POLL)
5376
5377 #define BUSY_POLL_BUDGET 8
5378
5379 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5380 {
5381         int rc;
5382
5383         /* Busy polling means there is a high chance device driver hard irq
5384          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5385          * set in napi_schedule_prep().
5386          * Since we are about to call napi->poll() once more, we can safely
5387          * clear NAPI_STATE_MISSED.
5388          *
5389          * Note: x86 could use a single "lock and ..." instruction
5390          * to perform these two clear_bit()
5391          */
5392         clear_bit(NAPI_STATE_MISSED, &napi->state);
5393         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5394
5395         local_bh_disable();
5396
5397         /* All we really want here is to re-enable device interrupts.
5398          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5399          */
5400         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5401         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5402         netpoll_poll_unlock(have_poll_lock);
5403         if (rc == BUSY_POLL_BUDGET)
5404                 __napi_schedule(napi);
5405         local_bh_enable();
5406 }
5407
5408 void napi_busy_loop(unsigned int napi_id,
5409                     bool (*loop_end)(void *, unsigned long),
5410                     void *loop_end_arg)
5411 {
5412         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5413         int (*napi_poll)(struct napi_struct *napi, int budget);
5414         void *have_poll_lock = NULL;
5415         struct napi_struct *napi;
5416
5417 restart:
5418         napi_poll = NULL;
5419
5420         rcu_read_lock();
5421
5422         napi = napi_by_id(napi_id);
5423         if (!napi)
5424                 goto out;
5425
5426         preempt_disable();
5427         for (;;) {
5428                 int work = 0;
5429
5430                 local_bh_disable();
5431                 if (!napi_poll) {
5432                         unsigned long val = READ_ONCE(napi->state);
5433
5434                         /* If multiple threads are competing for this napi,
5435                          * we avoid dirtying napi->state as much as we can.
5436                          */
5437                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5438                                    NAPIF_STATE_IN_BUSY_POLL))
5439                                 goto count;
5440                         if (cmpxchg(&napi->state, val,
5441                                     val | NAPIF_STATE_IN_BUSY_POLL |
5442                                           NAPIF_STATE_SCHED) != val)
5443                                 goto count;
5444                         have_poll_lock = netpoll_poll_lock(napi);
5445                         napi_poll = napi->poll;
5446                 }
5447                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5448                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5449 count:
5450                 if (work > 0)
5451                         __NET_ADD_STATS(dev_net(napi->dev),
5452                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5453                 local_bh_enable();
5454
5455                 if (!loop_end || loop_end(loop_end_arg, start_time))
5456                         break;
5457
5458                 if (unlikely(need_resched())) {
5459                         if (napi_poll)
5460                                 busy_poll_stop(napi, have_poll_lock);
5461                         preempt_enable();
5462                         rcu_read_unlock();
5463                         cond_resched();
5464                         if (loop_end(loop_end_arg, start_time))
5465                                 return;
5466                         goto restart;
5467                 }
5468                 cpu_relax();
5469         }
5470         if (napi_poll)
5471                 busy_poll_stop(napi, have_poll_lock);
5472         preempt_enable();
5473 out:
5474         rcu_read_unlock();
5475 }
5476 EXPORT_SYMBOL(napi_busy_loop);
5477
5478 #endif /* CONFIG_NET_RX_BUSY_POLL */
5479
5480 static void napi_hash_add(struct napi_struct *napi)
5481 {
5482         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5483             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5484                 return;
5485
5486         spin_lock(&napi_hash_lock);
5487
5488         /* 0..NR_CPUS range is reserved for sender_cpu use */
5489         do {
5490                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5491                         napi_gen_id = MIN_NAPI_ID;
5492         } while (napi_by_id(napi_gen_id));
5493         napi->napi_id = napi_gen_id;
5494
5495         hlist_add_head_rcu(&napi->napi_hash_node,
5496                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5497
5498         spin_unlock(&napi_hash_lock);
5499 }
5500
5501 /* Warning : caller is responsible to make sure rcu grace period
5502  * is respected before freeing memory containing @napi
5503  */
5504 bool napi_hash_del(struct napi_struct *napi)
5505 {
5506         bool rcu_sync_needed = false;
5507
5508         spin_lock(&napi_hash_lock);
5509
5510         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5511                 rcu_sync_needed = true;
5512                 hlist_del_rcu(&napi->napi_hash_node);
5513         }
5514         spin_unlock(&napi_hash_lock);
5515         return rcu_sync_needed;
5516 }
5517 EXPORT_SYMBOL_GPL(napi_hash_del);
5518
5519 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5520 {
5521         struct napi_struct *napi;
5522
5523         napi = container_of(timer, struct napi_struct, timer);
5524
5525         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5526          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5527          */
5528         if (napi->gro_list && !napi_disable_pending(napi) &&
5529             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5530                 __napi_schedule_irqoff(napi);
5531
5532         return HRTIMER_NORESTART;
5533 }
5534
5535 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5536                     int (*poll)(struct napi_struct *, int), int weight)
5537 {
5538         INIT_LIST_HEAD(&napi->poll_list);
5539         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5540         napi->timer.function = napi_watchdog;
5541         napi->gro_count = 0;
5542         napi->gro_list = NULL;
5543         napi->skb = NULL;
5544         napi->poll = poll;
5545         if (weight > NAPI_POLL_WEIGHT)
5546                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5547                             weight, dev->name);
5548         napi->weight = weight;
5549         napi->dev = dev;
5550 #ifdef CONFIG_NETPOLL
5551         napi->poll_owner = -1;
5552 #endif
5553         set_bit(NAPI_STATE_SCHED, &napi->state);
5554         set_bit(NAPI_STATE_NPSVC, &napi->state);
5555         list_add_rcu(&napi->dev_list, &dev->napi_list);
5556         napi_hash_add(napi);
5557 }
5558 EXPORT_SYMBOL(netif_napi_add);
5559
5560 void napi_disable(struct napi_struct *n)
5561 {
5562         might_sleep();
5563         set_bit(NAPI_STATE_DISABLE, &n->state);
5564
5565         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5566                 msleep(1);
5567         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5568                 msleep(1);
5569
5570         hrtimer_cancel(&n->timer);
5571
5572         clear_bit(NAPI_STATE_DISABLE, &n->state);
5573 }
5574 EXPORT_SYMBOL(napi_disable);
5575
5576 /* Must be called in process context */
5577 void netif_napi_del(struct napi_struct *napi)
5578 {
5579         might_sleep();
5580         if (napi_hash_del(napi))
5581                 synchronize_net();
5582         list_del_init(&napi->dev_list);
5583         napi_free_frags(napi);
5584
5585         kfree_skb_list(napi->gro_list);
5586         napi->gro_list = NULL;
5587         napi->gro_count = 0;
5588 }
5589 EXPORT_SYMBOL(netif_napi_del);
5590
5591 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5592 {
5593         void *have;
5594         int work, weight;
5595
5596         list_del_init(&n->poll_list);
5597
5598         have = netpoll_poll_lock(n);
5599
5600         weight = n->weight;
5601
5602         /* This NAPI_STATE_SCHED test is for avoiding a race
5603          * with netpoll's poll_napi().  Only the entity which
5604          * obtains the lock and sees NAPI_STATE_SCHED set will
5605          * actually make the ->poll() call.  Therefore we avoid
5606          * accidentally calling ->poll() when NAPI is not scheduled.
5607          */
5608         work = 0;
5609         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5610                 work = n->poll(n, weight);
5611                 trace_napi_poll(n, work, weight);
5612         }
5613
5614         WARN_ON_ONCE(work > weight);
5615
5616         if (likely(work < weight))
5617                 goto out_unlock;
5618
5619         /* Drivers must not modify the NAPI state if they
5620          * consume the entire weight.  In such cases this code
5621          * still "owns" the NAPI instance and therefore can
5622          * move the instance around on the list at-will.
5623          */
5624         if (unlikely(napi_disable_pending(n))) {
5625                 napi_complete(n);
5626                 goto out_unlock;
5627         }
5628
5629         if (n->gro_list) {
5630                 /* flush too old packets
5631                  * If HZ < 1000, flush all packets.
5632                  */
5633                 napi_gro_flush(n, HZ >= 1000);
5634         }
5635
5636         /* Some drivers may have called napi_schedule
5637          * prior to exhausting their budget.
5638          */
5639         if (unlikely(!list_empty(&n->poll_list))) {
5640                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5641                              n->dev ? n->dev->name : "backlog");
5642                 goto out_unlock;
5643         }
5644
5645         list_add_tail(&n->poll_list, repoll);
5646
5647 out_unlock:
5648         netpoll_poll_unlock(have);
5649
5650         return work;
5651 }
5652
5653 static __latent_entropy void net_rx_action(struct softirq_action *h)
5654 {
5655         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5656         unsigned long time_limit = jiffies +
5657                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
5658         int budget = READ_ONCE(netdev_budget);
5659         LIST_HEAD(list);
5660         LIST_HEAD(repoll);
5661
5662         local_irq_disable();
5663         list_splice_init(&sd->poll_list, &list);
5664         local_irq_enable();
5665
5666         for (;;) {
5667                 struct napi_struct *n;
5668
5669                 if (list_empty(&list)) {
5670                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5671                                 goto out;
5672                         break;
5673                 }
5674
5675                 n = list_first_entry(&list, struct napi_struct, poll_list);
5676                 budget -= napi_poll(n, &repoll);
5677
5678                 /* If softirq window is exhausted then punt.
5679                  * Allow this to run for 2 jiffies since which will allow
5680                  * an average latency of 1.5/HZ.
5681                  */
5682                 if (unlikely(budget <= 0 ||
5683                              time_after_eq(jiffies, time_limit))) {
5684                         sd->time_squeeze++;
5685                         break;
5686                 }
5687         }
5688
5689         local_irq_disable();
5690
5691         list_splice_tail_init(&sd->poll_list, &list);
5692         list_splice_tail(&repoll, &list);
5693         list_splice(&list, &sd->poll_list);
5694         if (!list_empty(&sd->poll_list))
5695                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5696
5697         net_rps_action_and_irq_enable(sd);
5698 out:
5699         __kfree_skb_flush();
5700 }
5701
5702 struct netdev_adjacent {
5703         struct net_device *dev;
5704
5705         /* upper master flag, there can only be one master device per list */
5706         bool master;
5707
5708         /* counter for the number of times this device was added to us */
5709         u16 ref_nr;
5710
5711         /* private field for the users */
5712         void *private;
5713
5714         struct list_head list;
5715         struct rcu_head rcu;
5716 };
5717
5718 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5719                                                  struct list_head *adj_list)
5720 {
5721         struct netdev_adjacent *adj;
5722
5723         list_for_each_entry(adj, adj_list, list) {
5724                 if (adj->dev == adj_dev)
5725                         return adj;
5726         }
5727         return NULL;
5728 }
5729
5730 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5731 {
5732         struct net_device *dev = data;
5733
5734         return upper_dev == dev;
5735 }
5736
5737 /**
5738  * netdev_has_upper_dev - Check if device is linked to an upper device
5739  * @dev: device
5740  * @upper_dev: upper device to check
5741  *
5742  * Find out if a device is linked to specified upper device and return true
5743  * in case it is. Note that this checks only immediate upper device,
5744  * not through a complete stack of devices. The caller must hold the RTNL lock.
5745  */
5746 bool netdev_has_upper_dev(struct net_device *dev,
5747                           struct net_device *upper_dev)
5748 {
5749         ASSERT_RTNL();
5750
5751         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5752                                              upper_dev);
5753 }
5754 EXPORT_SYMBOL(netdev_has_upper_dev);
5755
5756 /**
5757  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5758  * @dev: device
5759  * @upper_dev: upper device to check
5760  *
5761  * Find out if a device is linked to specified upper device and return true
5762  * in case it is. Note that this checks the entire upper device chain.
5763  * The caller must hold rcu lock.
5764  */
5765
5766 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5767                                   struct net_device *upper_dev)
5768 {
5769         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5770                                                upper_dev);
5771 }
5772 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5773
5774 /**
5775  * netdev_has_any_upper_dev - Check if device is linked to some device
5776  * @dev: device
5777  *
5778  * Find out if a device is linked to an upper device and return true in case
5779  * it is. The caller must hold the RTNL lock.
5780  */
5781 bool netdev_has_any_upper_dev(struct net_device *dev)
5782 {
5783         ASSERT_RTNL();
5784
5785         return !list_empty(&dev->adj_list.upper);
5786 }
5787 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5788
5789 /**
5790  * netdev_master_upper_dev_get - Get master upper device
5791  * @dev: device
5792  *
5793  * Find a master upper device and return pointer to it or NULL in case
5794  * it's not there. The caller must hold the RTNL lock.
5795  */
5796 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5797 {
5798         struct netdev_adjacent *upper;
5799
5800         ASSERT_RTNL();
5801
5802         if (list_empty(&dev->adj_list.upper))
5803                 return NULL;
5804
5805         upper = list_first_entry(&dev->adj_list.upper,
5806                                  struct netdev_adjacent, list);
5807         if (likely(upper->master))
5808                 return upper->dev;
5809         return NULL;
5810 }
5811 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5812
5813 /**
5814  * netdev_has_any_lower_dev - Check if device is linked to some device
5815  * @dev: device
5816  *
5817  * Find out if a device is linked to a lower device and return true in case
5818  * it is. The caller must hold the RTNL lock.
5819  */
5820 static bool netdev_has_any_lower_dev(struct net_device *dev)
5821 {
5822         ASSERT_RTNL();
5823
5824         return !list_empty(&dev->adj_list.lower);
5825 }
5826
5827 void *netdev_adjacent_get_private(struct list_head *adj_list)
5828 {
5829         struct netdev_adjacent *adj;
5830
5831         adj = list_entry(adj_list, struct netdev_adjacent, list);
5832
5833         return adj->private;
5834 }
5835 EXPORT_SYMBOL(netdev_adjacent_get_private);
5836
5837 /**
5838  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5839  * @dev: device
5840  * @iter: list_head ** of the current position
5841  *
5842  * Gets the next device from the dev's upper list, starting from iter
5843  * position. The caller must hold RCU read lock.
5844  */
5845 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5846                                                  struct list_head **iter)
5847 {
5848         struct netdev_adjacent *upper;
5849
5850         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5851
5852         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5853
5854         if (&upper->list == &dev->adj_list.upper)
5855                 return NULL;
5856
5857         *iter = &upper->list;
5858
5859         return upper->dev;
5860 }
5861 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5862
5863 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5864                                                     struct list_head **iter)
5865 {
5866         struct netdev_adjacent *upper;
5867
5868         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5869
5870         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5871
5872         if (&upper->list == &dev->adj_list.upper)
5873                 return NULL;
5874
5875         *iter = &upper->list;
5876
5877         return upper->dev;
5878 }
5879
5880 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5881                                   int (*fn)(struct net_device *dev,
5882                                             void *data),
5883                                   void *data)
5884 {
5885         struct net_device *udev;
5886         struct list_head *iter;
5887         int ret;
5888
5889         for (iter = &dev->adj_list.upper,
5890              udev = netdev_next_upper_dev_rcu(dev, &iter);
5891              udev;
5892              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5893                 /* first is the upper device itself */
5894                 ret = fn(udev, data);
5895                 if (ret)
5896                         return ret;
5897
5898                 /* then look at all of its upper devices */
5899                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5900                 if (ret)
5901                         return ret;
5902         }
5903
5904         return 0;
5905 }
5906 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5907
5908 /**
5909  * netdev_lower_get_next_private - Get the next ->private from the
5910  *                                 lower neighbour list
5911  * @dev: device
5912  * @iter: list_head ** of the current position
5913  *
5914  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5915  * list, starting from iter position. The caller must hold either hold the
5916  * RTNL lock or its own locking that guarantees that the neighbour lower
5917  * list will remain unchanged.
5918  */
5919 void *netdev_lower_get_next_private(struct net_device *dev,
5920                                     struct list_head **iter)
5921 {
5922         struct netdev_adjacent *lower;
5923
5924         lower = list_entry(*iter, struct netdev_adjacent, list);
5925
5926         if (&lower->list == &dev->adj_list.lower)
5927                 return NULL;
5928
5929         *iter = lower->list.next;
5930
5931         return lower->private;
5932 }
5933 EXPORT_SYMBOL(netdev_lower_get_next_private);
5934
5935 /**
5936  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5937  *                                     lower neighbour list, RCU
5938  *                                     variant
5939  * @dev: device
5940  * @iter: list_head ** of the current position
5941  *
5942  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5943  * list, starting from iter position. The caller must hold RCU read lock.
5944  */
5945 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5946                                         struct list_head **iter)
5947 {
5948         struct netdev_adjacent *lower;
5949
5950         WARN_ON_ONCE(!rcu_read_lock_held());
5951
5952         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5953
5954         if (&lower->list == &dev->adj_list.lower)
5955                 return NULL;
5956
5957         *iter = &lower->list;
5958
5959         return lower->private;
5960 }
5961 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5962
5963 /**
5964  * netdev_lower_get_next - Get the next device from the lower neighbour
5965  *                         list
5966  * @dev: device
5967  * @iter: list_head ** of the current position
5968  *
5969  * Gets the next netdev_adjacent from the dev's lower neighbour
5970  * list, starting from iter position. The caller must hold RTNL lock or
5971  * its own locking that guarantees that the neighbour lower
5972  * list will remain unchanged.
5973  */
5974 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5975 {
5976         struct netdev_adjacent *lower;
5977
5978         lower = list_entry(*iter, struct netdev_adjacent, list);
5979
5980         if (&lower->list == &dev->adj_list.lower)
5981                 return NULL;
5982
5983         *iter = lower->list.next;
5984
5985         return lower->dev;
5986 }
5987 EXPORT_SYMBOL(netdev_lower_get_next);
5988
5989 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5990                                                 struct list_head **iter)
5991 {
5992         struct netdev_adjacent *lower;
5993
5994         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5995
5996         if (&lower->list == &dev->adj_list.lower)
5997                 return NULL;
5998
5999         *iter = &lower->list;
6000
6001         return lower->dev;
6002 }
6003
6004 int netdev_walk_all_lower_dev(struct net_device *dev,
6005                               int (*fn)(struct net_device *dev,
6006                                         void *data),
6007                               void *data)
6008 {
6009         struct net_device *ldev;
6010         struct list_head *iter;
6011         int ret;
6012
6013         for (iter = &dev->adj_list.lower,
6014              ldev = netdev_next_lower_dev(dev, &iter);
6015              ldev;
6016              ldev = netdev_next_lower_dev(dev, &iter)) {
6017                 /* first is the lower device itself */
6018                 ret = fn(ldev, data);
6019                 if (ret)
6020                         return ret;
6021
6022                 /* then look at all of its lower devices */
6023                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6024                 if (ret)
6025                         return ret;
6026         }
6027
6028         return 0;
6029 }
6030 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6031
6032 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6033                                                     struct list_head **iter)
6034 {
6035         struct netdev_adjacent *lower;
6036
6037         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6038         if (&lower->list == &dev->adj_list.lower)
6039                 return NULL;
6040
6041         *iter = &lower->list;
6042
6043         return lower->dev;
6044 }
6045
6046 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6047                                   int (*fn)(struct net_device *dev,
6048                                             void *data),
6049                                   void *data)
6050 {
6051         struct net_device *ldev;
6052         struct list_head *iter;
6053         int ret;
6054
6055         for (iter = &dev->adj_list.lower,
6056              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6057              ldev;
6058              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6059                 /* first is the lower device itself */
6060                 ret = fn(ldev, data);
6061                 if (ret)
6062                         return ret;
6063
6064                 /* then look at all of its lower devices */
6065                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6066                 if (ret)
6067                         return ret;
6068         }
6069
6070         return 0;
6071 }
6072 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6073
6074 /**
6075  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6076  *                                     lower neighbour list, RCU
6077  *                                     variant
6078  * @dev: device
6079  *
6080  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6081  * list. The caller must hold RCU read lock.
6082  */
6083 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6084 {
6085         struct netdev_adjacent *lower;
6086
6087         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6088                         struct netdev_adjacent, list);
6089         if (lower)
6090                 return lower->private;
6091         return NULL;
6092 }
6093 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6094
6095 /**
6096  * netdev_master_upper_dev_get_rcu - Get master upper device
6097  * @dev: device
6098  *
6099  * Find a master upper device and return pointer to it or NULL in case
6100  * it's not there. The caller must hold the RCU read lock.
6101  */
6102 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6103 {
6104         struct netdev_adjacent *upper;
6105
6106         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6107                                        struct netdev_adjacent, list);
6108         if (upper && likely(upper->master))
6109                 return upper->dev;
6110         return NULL;
6111 }
6112 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6113
6114 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6115                               struct net_device *adj_dev,
6116                               struct list_head *dev_list)
6117 {
6118         char linkname[IFNAMSIZ+7];
6119
6120         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6121                 "upper_%s" : "lower_%s", adj_dev->name);
6122         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6123                                  linkname);
6124 }
6125 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6126                                char *name,
6127                                struct list_head *dev_list)
6128 {
6129         char linkname[IFNAMSIZ+7];
6130
6131         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6132                 "upper_%s" : "lower_%s", name);
6133         sysfs_remove_link(&(dev->dev.kobj), linkname);
6134 }
6135
6136 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6137                                                  struct net_device *adj_dev,
6138                                                  struct list_head *dev_list)
6139 {
6140         return (dev_list == &dev->adj_list.upper ||
6141                 dev_list == &dev->adj_list.lower) &&
6142                 net_eq(dev_net(dev), dev_net(adj_dev));
6143 }
6144
6145 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6146                                         struct net_device *adj_dev,
6147                                         struct list_head *dev_list,
6148                                         void *private, bool master)
6149 {
6150         struct netdev_adjacent *adj;
6151         int ret;
6152
6153         adj = __netdev_find_adj(adj_dev, dev_list);
6154
6155         if (adj) {
6156                 adj->ref_nr += 1;
6157                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6158                          dev->name, adj_dev->name, adj->ref_nr);
6159
6160                 return 0;
6161         }
6162
6163         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6164         if (!adj)
6165                 return -ENOMEM;
6166
6167         adj->dev = adj_dev;
6168         adj->master = master;
6169         adj->ref_nr = 1;
6170         adj->private = private;
6171         dev_hold(adj_dev);
6172
6173         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6174                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6175
6176         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6177                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6178                 if (ret)
6179                         goto free_adj;
6180         }
6181
6182         /* Ensure that master link is always the first item in list. */
6183         if (master) {
6184                 ret = sysfs_create_link(&(dev->dev.kobj),
6185                                         &(adj_dev->dev.kobj), "master");
6186                 if (ret)
6187                         goto remove_symlinks;
6188
6189                 list_add_rcu(&adj->list, dev_list);
6190         } else {
6191                 list_add_tail_rcu(&adj->list, dev_list);
6192         }
6193
6194         return 0;
6195
6196 remove_symlinks:
6197         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6198                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6199 free_adj:
6200         kfree(adj);
6201         dev_put(adj_dev);
6202
6203         return ret;
6204 }
6205
6206 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6207                                          struct net_device *adj_dev,
6208                                          u16 ref_nr,
6209                                          struct list_head *dev_list)
6210 {
6211         struct netdev_adjacent *adj;
6212
6213         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6214                  dev->name, adj_dev->name, ref_nr);
6215
6216         adj = __netdev_find_adj(adj_dev, dev_list);
6217
6218         if (!adj) {
6219                 pr_err("Adjacency does not exist for device %s from %s\n",
6220                        dev->name, adj_dev->name);
6221                 WARN_ON(1);
6222                 return;
6223         }
6224
6225         if (adj->ref_nr > ref_nr) {
6226                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6227                          dev->name, adj_dev->name, ref_nr,
6228                          adj->ref_nr - ref_nr);
6229                 adj->ref_nr -= ref_nr;
6230                 return;
6231         }
6232
6233         if (adj->master)
6234                 sysfs_remove_link(&(dev->dev.kobj), "master");
6235
6236         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6237                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6238
6239         list_del_rcu(&adj->list);
6240         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6241                  adj_dev->name, dev->name, adj_dev->name);
6242         dev_put(adj_dev);
6243         kfree_rcu(adj, rcu);
6244 }
6245
6246 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6247                                             struct net_device *upper_dev,
6248                                             struct list_head *up_list,
6249                                             struct list_head *down_list,
6250                                             void *private, bool master)
6251 {
6252         int ret;
6253
6254         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6255                                            private, master);
6256         if (ret)
6257                 return ret;
6258
6259         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6260                                            private, false);
6261         if (ret) {
6262                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6263                 return ret;
6264         }
6265
6266         return 0;
6267 }
6268
6269 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6270                                                struct net_device *upper_dev,
6271                                                u16 ref_nr,
6272                                                struct list_head *up_list,
6273                                                struct list_head *down_list)
6274 {
6275         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6276         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6277 }
6278
6279 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6280                                                 struct net_device *upper_dev,
6281                                                 void *private, bool master)
6282 {
6283         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6284                                                 &dev->adj_list.upper,
6285                                                 &upper_dev->adj_list.lower,
6286                                                 private, master);
6287 }
6288
6289 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6290                                                    struct net_device *upper_dev)
6291 {
6292         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6293                                            &dev->adj_list.upper,
6294                                            &upper_dev->adj_list.lower);
6295 }
6296
6297 static int __netdev_upper_dev_link(struct net_device *dev,
6298                                    struct net_device *upper_dev, bool master,
6299                                    void *upper_priv, void *upper_info)
6300 {
6301         struct netdev_notifier_changeupper_info changeupper_info;
6302         int ret = 0;
6303
6304         ASSERT_RTNL();
6305
6306         if (dev == upper_dev)
6307                 return -EBUSY;
6308
6309         /* To prevent loops, check if dev is not upper device to upper_dev. */
6310         if (netdev_has_upper_dev(upper_dev, dev))
6311                 return -EBUSY;
6312
6313         if (netdev_has_upper_dev(dev, upper_dev))
6314                 return -EEXIST;
6315
6316         if (master && netdev_master_upper_dev_get(dev))
6317                 return -EBUSY;
6318
6319         changeupper_info.upper_dev = upper_dev;
6320         changeupper_info.master = master;
6321         changeupper_info.linking = true;
6322         changeupper_info.upper_info = upper_info;
6323
6324         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6325                                             &changeupper_info.info);
6326         ret = notifier_to_errno(ret);
6327         if (ret)
6328                 return ret;
6329
6330         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6331                                                    master);
6332         if (ret)
6333                 return ret;
6334
6335         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6336                                             &changeupper_info.info);
6337         ret = notifier_to_errno(ret);
6338         if (ret)
6339                 goto rollback;
6340
6341         return 0;
6342
6343 rollback:
6344         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6345
6346         return ret;
6347 }
6348
6349 /**
6350  * netdev_upper_dev_link - Add a link to the upper device
6351  * @dev: device
6352  * @upper_dev: new upper device
6353  *
6354  * Adds a link to device which is upper to this one. The caller must hold
6355  * the RTNL lock. On a failure a negative errno code is returned.
6356  * On success the reference counts are adjusted and the function
6357  * returns zero.
6358  */
6359 int netdev_upper_dev_link(struct net_device *dev,
6360                           struct net_device *upper_dev)
6361 {
6362         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6363 }
6364 EXPORT_SYMBOL(netdev_upper_dev_link);
6365
6366 /**
6367  * netdev_master_upper_dev_link - Add a master link to the upper device
6368  * @dev: device
6369  * @upper_dev: new upper device
6370  * @upper_priv: upper device private
6371  * @upper_info: upper info to be passed down via notifier
6372  *
6373  * Adds a link to device which is upper to this one. In this case, only
6374  * one master upper device can be linked, although other non-master devices
6375  * might be linked as well. The caller must hold the RTNL lock.
6376  * On a failure a negative errno code is returned. On success the reference
6377  * counts are adjusted and the function returns zero.
6378  */
6379 int netdev_master_upper_dev_link(struct net_device *dev,
6380                                  struct net_device *upper_dev,
6381                                  void *upper_priv, void *upper_info)
6382 {
6383         return __netdev_upper_dev_link(dev, upper_dev, true,
6384                                        upper_priv, upper_info);
6385 }
6386 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6387
6388 /**
6389  * netdev_upper_dev_unlink - Removes a link to upper device
6390  * @dev: device
6391  * @upper_dev: new upper device
6392  *
6393  * Removes a link to device which is upper to this one. The caller must hold
6394  * the RTNL lock.
6395  */
6396 void netdev_upper_dev_unlink(struct net_device *dev,
6397                              struct net_device *upper_dev)
6398 {
6399         struct netdev_notifier_changeupper_info changeupper_info;
6400
6401         ASSERT_RTNL();
6402
6403         changeupper_info.upper_dev = upper_dev;
6404         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6405         changeupper_info.linking = false;
6406
6407         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6408                                       &changeupper_info.info);
6409
6410         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6411
6412         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6413                                       &changeupper_info.info);
6414 }
6415 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6416
6417 /**
6418  * netdev_bonding_info_change - Dispatch event about slave change
6419  * @dev: device
6420  * @bonding_info: info to dispatch
6421  *
6422  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6423  * The caller must hold the RTNL lock.
6424  */
6425 void netdev_bonding_info_change(struct net_device *dev,
6426                                 struct netdev_bonding_info *bonding_info)
6427 {
6428         struct netdev_notifier_bonding_info     info;
6429
6430         memcpy(&info.bonding_info, bonding_info,
6431                sizeof(struct netdev_bonding_info));
6432         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6433                                       &info.info);
6434 }
6435 EXPORT_SYMBOL(netdev_bonding_info_change);
6436
6437 static void netdev_adjacent_add_links(struct net_device *dev)
6438 {
6439         struct netdev_adjacent *iter;
6440
6441         struct net *net = dev_net(dev);
6442
6443         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6444                 if (!net_eq(net, dev_net(iter->dev)))
6445                         continue;
6446                 netdev_adjacent_sysfs_add(iter->dev, dev,
6447                                           &iter->dev->adj_list.lower);
6448                 netdev_adjacent_sysfs_add(dev, iter->dev,
6449                                           &dev->adj_list.upper);
6450         }
6451
6452         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6453                 if (!net_eq(net, dev_net(iter->dev)))
6454                         continue;
6455                 netdev_adjacent_sysfs_add(iter->dev, dev,
6456                                           &iter->dev->adj_list.upper);
6457                 netdev_adjacent_sysfs_add(dev, iter->dev,
6458                                           &dev->adj_list.lower);
6459         }
6460 }
6461
6462 static void netdev_adjacent_del_links(struct net_device *dev)
6463 {
6464         struct netdev_adjacent *iter;
6465
6466         struct net *net = dev_net(dev);
6467
6468         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6469                 if (!net_eq(net, dev_net(iter->dev)))
6470                         continue;
6471                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6472                                           &iter->dev->adj_list.lower);
6473                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6474                                           &dev->adj_list.upper);
6475         }
6476
6477         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6478                 if (!net_eq(net, dev_net(iter->dev)))
6479                         continue;
6480                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6481                                           &iter->dev->adj_list.upper);
6482                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6483                                           &dev->adj_list.lower);
6484         }
6485 }
6486
6487 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6488 {
6489         struct netdev_adjacent *iter;
6490
6491         struct net *net = dev_net(dev);
6492
6493         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6494                 if (!net_eq(net, dev_net(iter->dev)))
6495                         continue;
6496                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6497                                           &iter->dev->adj_list.lower);
6498                 netdev_adjacent_sysfs_add(iter->dev, dev,
6499                                           &iter->dev->adj_list.lower);
6500         }
6501
6502         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6503                 if (!net_eq(net, dev_net(iter->dev)))
6504                         continue;
6505                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6506                                           &iter->dev->adj_list.upper);
6507                 netdev_adjacent_sysfs_add(iter->dev, dev,
6508                                           &iter->dev->adj_list.upper);
6509         }
6510 }
6511
6512 void *netdev_lower_dev_get_private(struct net_device *dev,
6513                                    struct net_device *lower_dev)
6514 {
6515         struct netdev_adjacent *lower;
6516
6517         if (!lower_dev)
6518                 return NULL;
6519         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6520         if (!lower)
6521                 return NULL;
6522
6523         return lower->private;
6524 }
6525 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6526
6527
6528 int dev_get_nest_level(struct net_device *dev)
6529 {
6530         struct net_device *lower = NULL;
6531         struct list_head *iter;
6532         int max_nest = -1;
6533         int nest;
6534
6535         ASSERT_RTNL();
6536
6537         netdev_for_each_lower_dev(dev, lower, iter) {
6538                 nest = dev_get_nest_level(lower);
6539                 if (max_nest < nest)
6540                         max_nest = nest;
6541         }
6542
6543         return max_nest + 1;
6544 }
6545 EXPORT_SYMBOL(dev_get_nest_level);
6546
6547 /**
6548  * netdev_lower_change - Dispatch event about lower device state change
6549  * @lower_dev: device
6550  * @lower_state_info: state to dispatch
6551  *
6552  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6553  * The caller must hold the RTNL lock.
6554  */
6555 void netdev_lower_state_changed(struct net_device *lower_dev,
6556                                 void *lower_state_info)
6557 {
6558         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6559
6560         ASSERT_RTNL();
6561         changelowerstate_info.lower_state_info = lower_state_info;
6562         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6563                                       &changelowerstate_info.info);
6564 }
6565 EXPORT_SYMBOL(netdev_lower_state_changed);
6566
6567 static void dev_change_rx_flags(struct net_device *dev, int flags)
6568 {
6569         const struct net_device_ops *ops = dev->netdev_ops;
6570
6571         if (ops->ndo_change_rx_flags)
6572                 ops->ndo_change_rx_flags(dev, flags);
6573 }
6574
6575 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6576 {
6577         unsigned int old_flags = dev->flags;
6578         kuid_t uid;
6579         kgid_t gid;
6580
6581         ASSERT_RTNL();
6582
6583         dev->flags |= IFF_PROMISC;
6584         dev->promiscuity += inc;
6585         if (dev->promiscuity == 0) {
6586                 /*
6587                  * Avoid overflow.
6588                  * If inc causes overflow, untouch promisc and return error.
6589                  */
6590                 if (inc < 0)
6591                         dev->flags &= ~IFF_PROMISC;
6592                 else {
6593                         dev->promiscuity -= inc;
6594                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6595                                 dev->name);
6596                         return -EOVERFLOW;
6597                 }
6598         }
6599         if (dev->flags != old_flags) {
6600                 pr_info("device %s %s promiscuous mode\n",
6601                         dev->name,
6602                         dev->flags & IFF_PROMISC ? "entered" : "left");
6603                 if (audit_enabled) {
6604                         current_uid_gid(&uid, &gid);
6605                         audit_log(current->audit_context, GFP_ATOMIC,
6606                                 AUDIT_ANOM_PROMISCUOUS,
6607                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6608                                 dev->name, (dev->flags & IFF_PROMISC),
6609                                 (old_flags & IFF_PROMISC),
6610                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6611                                 from_kuid(&init_user_ns, uid),
6612                                 from_kgid(&init_user_ns, gid),
6613                                 audit_get_sessionid(current));
6614                 }
6615
6616                 dev_change_rx_flags(dev, IFF_PROMISC);
6617         }
6618         if (notify)
6619                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6620         return 0;
6621 }
6622
6623 /**
6624  *      dev_set_promiscuity     - update promiscuity count on a device
6625  *      @dev: device
6626  *      @inc: modifier
6627  *
6628  *      Add or remove promiscuity from a device. While the count in the device
6629  *      remains above zero the interface remains promiscuous. Once it hits zero
6630  *      the device reverts back to normal filtering operation. A negative inc
6631  *      value is used to drop promiscuity on the device.
6632  *      Return 0 if successful or a negative errno code on error.
6633  */
6634 int dev_set_promiscuity(struct net_device *dev, int inc)
6635 {
6636         unsigned int old_flags = dev->flags;
6637         int err;
6638
6639         err = __dev_set_promiscuity(dev, inc, true);
6640         if (err < 0)
6641                 return err;
6642         if (dev->flags != old_flags)
6643                 dev_set_rx_mode(dev);
6644         return err;
6645 }
6646 EXPORT_SYMBOL(dev_set_promiscuity);
6647
6648 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6649 {
6650         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6651
6652         ASSERT_RTNL();
6653
6654         dev->flags |= IFF_ALLMULTI;
6655         dev->allmulti += inc;
6656         if (dev->allmulti == 0) {
6657                 /*
6658                  * Avoid overflow.
6659                  * If inc causes overflow, untouch allmulti and return error.
6660                  */
6661                 if (inc < 0)
6662                         dev->flags &= ~IFF_ALLMULTI;
6663                 else {
6664                         dev->allmulti -= inc;
6665                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6666                                 dev->name);
6667                         return -EOVERFLOW;
6668                 }
6669         }
6670         if (dev->flags ^ old_flags) {
6671                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6672                 dev_set_rx_mode(dev);
6673                 if (notify)
6674                         __dev_notify_flags(dev, old_flags,
6675                                            dev->gflags ^ old_gflags);
6676         }
6677         return 0;
6678 }
6679
6680 /**
6681  *      dev_set_allmulti        - update allmulti count on a device
6682  *      @dev: device
6683  *      @inc: modifier
6684  *
6685  *      Add or remove reception of all multicast frames to a device. While the
6686  *      count in the device remains above zero the interface remains listening
6687  *      to all interfaces. Once it hits zero the device reverts back to normal
6688  *      filtering operation. A negative @inc value is used to drop the counter
6689  *      when releasing a resource needing all multicasts.
6690  *      Return 0 if successful or a negative errno code on error.
6691  */
6692
6693 int dev_set_allmulti(struct net_device *dev, int inc)
6694 {
6695         return __dev_set_allmulti(dev, inc, true);
6696 }
6697 EXPORT_SYMBOL(dev_set_allmulti);
6698
6699 /*
6700  *      Upload unicast and multicast address lists to device and
6701  *      configure RX filtering. When the device doesn't support unicast
6702  *      filtering it is put in promiscuous mode while unicast addresses
6703  *      are present.
6704  */
6705 void __dev_set_rx_mode(struct net_device *dev)
6706 {
6707         const struct net_device_ops *ops = dev->netdev_ops;
6708
6709         /* dev_open will call this function so the list will stay sane. */
6710         if (!(dev->flags&IFF_UP))
6711                 return;
6712
6713         if (!netif_device_present(dev))
6714                 return;
6715
6716         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6717                 /* Unicast addresses changes may only happen under the rtnl,
6718                  * therefore calling __dev_set_promiscuity here is safe.
6719                  */
6720                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6721                         __dev_set_promiscuity(dev, 1, false);
6722                         dev->uc_promisc = true;
6723                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6724                         __dev_set_promiscuity(dev, -1, false);
6725                         dev->uc_promisc = false;
6726                 }
6727         }
6728
6729         if (ops->ndo_set_rx_mode)
6730                 ops->ndo_set_rx_mode(dev);
6731 }
6732
6733 void dev_set_rx_mode(struct net_device *dev)
6734 {
6735         netif_addr_lock_bh(dev);
6736         __dev_set_rx_mode(dev);
6737         netif_addr_unlock_bh(dev);
6738 }
6739
6740 /**
6741  *      dev_get_flags - get flags reported to userspace
6742  *      @dev: device
6743  *
6744  *      Get the combination of flag bits exported through APIs to userspace.
6745  */
6746 unsigned int dev_get_flags(const struct net_device *dev)
6747 {
6748         unsigned int flags;
6749
6750         flags = (dev->flags & ~(IFF_PROMISC |
6751                                 IFF_ALLMULTI |
6752                                 IFF_RUNNING |
6753                                 IFF_LOWER_UP |
6754                                 IFF_DORMANT)) |
6755                 (dev->gflags & (IFF_PROMISC |
6756                                 IFF_ALLMULTI));
6757
6758         if (netif_running(dev)) {
6759                 if (netif_oper_up(dev))
6760                         flags |= IFF_RUNNING;
6761                 if (netif_carrier_ok(dev))
6762                         flags |= IFF_LOWER_UP;
6763                 if (netif_dormant(dev))
6764                         flags |= IFF_DORMANT;
6765         }
6766
6767         return flags;
6768 }
6769 EXPORT_SYMBOL(dev_get_flags);
6770
6771 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6772 {
6773         unsigned int old_flags = dev->flags;
6774         int ret;
6775
6776         ASSERT_RTNL();
6777
6778         /*
6779          *      Set the flags on our device.
6780          */
6781
6782         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6783                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6784                                IFF_AUTOMEDIA)) |
6785                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6786                                     IFF_ALLMULTI));
6787
6788         /*
6789          *      Load in the correct multicast list now the flags have changed.
6790          */
6791
6792         if ((old_flags ^ flags) & IFF_MULTICAST)
6793                 dev_change_rx_flags(dev, IFF_MULTICAST);
6794
6795         dev_set_rx_mode(dev);
6796
6797         /*
6798          *      Have we downed the interface. We handle IFF_UP ourselves
6799          *      according to user attempts to set it, rather than blindly
6800          *      setting it.
6801          */
6802
6803         ret = 0;
6804         if ((old_flags ^ flags) & IFF_UP) {
6805                 if (old_flags & IFF_UP)
6806                         __dev_close(dev);
6807                 else
6808                         ret = __dev_open(dev);
6809         }
6810
6811         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6812                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6813                 unsigned int old_flags = dev->flags;
6814
6815                 dev->gflags ^= IFF_PROMISC;
6816
6817                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6818                         if (dev->flags != old_flags)
6819                                 dev_set_rx_mode(dev);
6820         }
6821
6822         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6823          * is important. Some (broken) drivers set IFF_PROMISC, when
6824          * IFF_ALLMULTI is requested not asking us and not reporting.
6825          */
6826         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6827                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6828
6829                 dev->gflags ^= IFF_ALLMULTI;
6830                 __dev_set_allmulti(dev, inc, false);
6831         }
6832
6833         return ret;
6834 }
6835
6836 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6837                         unsigned int gchanges)
6838 {
6839         unsigned int changes = dev->flags ^ old_flags;
6840
6841         if (gchanges)
6842                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6843
6844         if (changes & IFF_UP) {
6845                 if (dev->flags & IFF_UP)
6846                         call_netdevice_notifiers(NETDEV_UP, dev);
6847                 else
6848                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6849         }
6850
6851         if (dev->flags & IFF_UP &&
6852             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6853                 struct netdev_notifier_change_info change_info;
6854
6855                 change_info.flags_changed = changes;
6856                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6857                                               &change_info.info);
6858         }
6859 }
6860
6861 /**
6862  *      dev_change_flags - change device settings
6863  *      @dev: device
6864  *      @flags: device state flags
6865  *
6866  *      Change settings on device based state flags. The flags are
6867  *      in the userspace exported format.
6868  */
6869 int dev_change_flags(struct net_device *dev, unsigned int flags)
6870 {
6871         int ret;
6872         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6873
6874         ret = __dev_change_flags(dev, flags);
6875         if (ret < 0)
6876                 return ret;
6877
6878         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6879         __dev_notify_flags(dev, old_flags, changes);
6880         return ret;
6881 }
6882 EXPORT_SYMBOL(dev_change_flags);
6883
6884 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6885 {
6886         const struct net_device_ops *ops = dev->netdev_ops;
6887
6888         if (ops->ndo_change_mtu)
6889                 return ops->ndo_change_mtu(dev, new_mtu);
6890
6891         /* Pairs with all the lockless reads of dev->mtu in the stack */
6892         WRITE_ONCE(dev->mtu, new_mtu);
6893         return 0;
6894 }
6895 EXPORT_SYMBOL(__dev_set_mtu);
6896
6897 /**
6898  *      dev_set_mtu - Change maximum transfer unit
6899  *      @dev: device
6900  *      @new_mtu: new transfer unit
6901  *
6902  *      Change the maximum transfer size of the network device.
6903  */
6904 int dev_set_mtu(struct net_device *dev, int new_mtu)
6905 {
6906         int err, orig_mtu;
6907
6908         if (new_mtu == dev->mtu)
6909                 return 0;
6910
6911         err = dev_validate_mtu(dev, new_mtu);
6912         if (err)
6913                 return err;
6914
6915         if (!netif_device_present(dev))
6916                 return -ENODEV;
6917
6918         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6919         err = notifier_to_errno(err);
6920         if (err)
6921                 return err;
6922
6923         orig_mtu = dev->mtu;
6924         err = __dev_set_mtu(dev, new_mtu);
6925
6926         if (!err) {
6927                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
6928                                                    orig_mtu);
6929                 err = notifier_to_errno(err);
6930                 if (err) {
6931                         /* setting mtu back and notifying everyone again,
6932                          * so that they have a chance to revert changes.
6933                          */
6934                         __dev_set_mtu(dev, orig_mtu);
6935                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
6936                                                      new_mtu);
6937                 }
6938         }
6939         return err;
6940 }
6941 EXPORT_SYMBOL(dev_set_mtu);
6942
6943 /**
6944  *      dev_set_group - Change group this device belongs to
6945  *      @dev: device
6946  *      @new_group: group this device should belong to
6947  */
6948 void dev_set_group(struct net_device *dev, int new_group)
6949 {
6950         dev->group = new_group;
6951 }
6952 EXPORT_SYMBOL(dev_set_group);
6953
6954 /**
6955  *      dev_set_mac_address - Change Media Access Control Address
6956  *      @dev: device
6957  *      @sa: new address
6958  *
6959  *      Change the hardware (MAC) address of the device
6960  */
6961 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6962 {
6963         const struct net_device_ops *ops = dev->netdev_ops;
6964         int err;
6965
6966         if (!ops->ndo_set_mac_address)
6967                 return -EOPNOTSUPP;
6968         if (sa->sa_family != dev->type)
6969                 return -EINVAL;
6970         if (!netif_device_present(dev))
6971                 return -ENODEV;
6972         err = ops->ndo_set_mac_address(dev, sa);
6973         if (err)
6974                 return err;
6975         dev->addr_assign_type = NET_ADDR_SET;
6976         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6977         add_device_randomness(dev->dev_addr, dev->addr_len);
6978         return 0;
6979 }
6980 EXPORT_SYMBOL(dev_set_mac_address);
6981
6982 /**
6983  *      dev_change_carrier - Change device carrier
6984  *      @dev: device
6985  *      @new_carrier: new value
6986  *
6987  *      Change device carrier
6988  */
6989 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6990 {
6991         const struct net_device_ops *ops = dev->netdev_ops;
6992
6993         if (!ops->ndo_change_carrier)
6994                 return -EOPNOTSUPP;
6995         if (!netif_device_present(dev))
6996                 return -ENODEV;
6997         return ops->ndo_change_carrier(dev, new_carrier);
6998 }
6999 EXPORT_SYMBOL(dev_change_carrier);
7000
7001 /**
7002  *      dev_get_phys_port_id - Get device physical port ID
7003  *      @dev: device
7004  *      @ppid: port ID
7005  *
7006  *      Get device physical port ID
7007  */
7008 int dev_get_phys_port_id(struct net_device *dev,
7009                          struct netdev_phys_item_id *ppid)
7010 {
7011         const struct net_device_ops *ops = dev->netdev_ops;
7012
7013         if (!ops->ndo_get_phys_port_id)
7014                 return -EOPNOTSUPP;
7015         return ops->ndo_get_phys_port_id(dev, ppid);
7016 }
7017 EXPORT_SYMBOL(dev_get_phys_port_id);
7018
7019 /**
7020  *      dev_get_phys_port_name - Get device physical port name
7021  *      @dev: device
7022  *      @name: port name
7023  *      @len: limit of bytes to copy to name
7024  *
7025  *      Get device physical port name
7026  */
7027 int dev_get_phys_port_name(struct net_device *dev,
7028                            char *name, size_t len)
7029 {
7030         const struct net_device_ops *ops = dev->netdev_ops;
7031
7032         if (!ops->ndo_get_phys_port_name)
7033                 return -EOPNOTSUPP;
7034         return ops->ndo_get_phys_port_name(dev, name, len);
7035 }
7036 EXPORT_SYMBOL(dev_get_phys_port_name);
7037
7038 /**
7039  *      dev_change_proto_down - update protocol port state information
7040  *      @dev: device
7041  *      @proto_down: new value
7042  *
7043  *      This info can be used by switch drivers to set the phys state of the
7044  *      port.
7045  */
7046 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7047 {
7048         const struct net_device_ops *ops = dev->netdev_ops;
7049
7050         if (!ops->ndo_change_proto_down)
7051                 return -EOPNOTSUPP;
7052         if (!netif_device_present(dev))
7053                 return -ENODEV;
7054         return ops->ndo_change_proto_down(dev, proto_down);
7055 }
7056 EXPORT_SYMBOL(dev_change_proto_down);
7057
7058 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
7059 {
7060         struct netdev_xdp xdp;
7061
7062         memset(&xdp, 0, sizeof(xdp));
7063         xdp.command = XDP_QUERY_PROG;
7064
7065         /* Query must always succeed. */
7066         WARN_ON(xdp_op(dev, &xdp) < 0);
7067         if (prog_id)
7068                 *prog_id = xdp.prog_id;
7069
7070         return xdp.prog_attached;
7071 }
7072
7073 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7074                            struct netlink_ext_ack *extack, u32 flags,
7075                            struct bpf_prog *prog)
7076 {
7077         struct netdev_xdp xdp;
7078
7079         memset(&xdp, 0, sizeof(xdp));
7080         if (flags & XDP_FLAGS_HW_MODE)
7081                 xdp.command = XDP_SETUP_PROG_HW;
7082         else
7083                 xdp.command = XDP_SETUP_PROG;
7084         xdp.extack = extack;
7085         xdp.flags = flags;
7086         xdp.prog = prog;
7087
7088         return xdp_op(dev, &xdp);
7089 }
7090
7091 /**
7092  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7093  *      @dev: device
7094  *      @extack: netlink extended ack
7095  *      @fd: new program fd or negative value to clear
7096  *      @flags: xdp-related flags
7097  *
7098  *      Set or clear a bpf program for a device
7099  */
7100 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7101                       int fd, u32 flags)
7102 {
7103         const struct net_device_ops *ops = dev->netdev_ops;
7104         struct bpf_prog *prog = NULL;
7105         xdp_op_t xdp_op, xdp_chk;
7106         int err;
7107
7108         ASSERT_RTNL();
7109
7110         xdp_op = xdp_chk = ops->ndo_xdp;
7111         if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7112                 return -EOPNOTSUPP;
7113         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7114                 xdp_op = generic_xdp_install;
7115         if (xdp_op == xdp_chk)
7116                 xdp_chk = generic_xdp_install;
7117
7118         if (fd >= 0) {
7119                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7120                         return -EEXIST;
7121                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7122                     __dev_xdp_attached(dev, xdp_op, NULL))
7123                         return -EBUSY;
7124
7125                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7126                 if (IS_ERR(prog))
7127                         return PTR_ERR(prog);
7128         }
7129
7130         err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7131         if (err < 0 && prog)
7132                 bpf_prog_put(prog);
7133
7134         return err;
7135 }
7136
7137 /**
7138  *      dev_new_index   -       allocate an ifindex
7139  *      @net: the applicable net namespace
7140  *
7141  *      Returns a suitable unique value for a new device interface
7142  *      number.  The caller must hold the rtnl semaphore or the
7143  *      dev_base_lock to be sure it remains unique.
7144  */
7145 static int dev_new_index(struct net *net)
7146 {
7147         int ifindex = net->ifindex;
7148
7149         for (;;) {
7150                 if (++ifindex <= 0)
7151                         ifindex = 1;
7152                 if (!__dev_get_by_index(net, ifindex))
7153                         return net->ifindex = ifindex;
7154         }
7155 }
7156
7157 /* Delayed registration/unregisteration */
7158 static LIST_HEAD(net_todo_list);
7159 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7160
7161 static void net_set_todo(struct net_device *dev)
7162 {
7163         list_add_tail(&dev->todo_list, &net_todo_list);
7164         dev_net(dev)->dev_unreg_count++;
7165 }
7166
7167 static void rollback_registered_many(struct list_head *head)
7168 {
7169         struct net_device *dev, *tmp;
7170         LIST_HEAD(close_head);
7171
7172         BUG_ON(dev_boot_phase);
7173         ASSERT_RTNL();
7174
7175         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7176                 /* Some devices call without registering
7177                  * for initialization unwind. Remove those
7178                  * devices and proceed with the remaining.
7179                  */
7180                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7181                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7182                                  dev->name, dev);
7183
7184                         WARN_ON(1);
7185                         list_del(&dev->unreg_list);
7186                         continue;
7187                 }
7188                 dev->dismantle = true;
7189                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7190         }
7191
7192         /* If device is running, close it first. */
7193         list_for_each_entry(dev, head, unreg_list)
7194                 list_add_tail(&dev->close_list, &close_head);
7195         dev_close_many(&close_head, true);
7196
7197         list_for_each_entry(dev, head, unreg_list) {
7198                 /* And unlink it from device chain. */
7199                 unlist_netdevice(dev);
7200
7201                 dev->reg_state = NETREG_UNREGISTERING;
7202         }
7203         flush_all_backlogs();
7204
7205         synchronize_net();
7206
7207         list_for_each_entry(dev, head, unreg_list) {
7208                 struct sk_buff *skb = NULL;
7209
7210                 /* Shutdown queueing discipline. */
7211                 dev_shutdown(dev);
7212
7213
7214                 /* Notify protocols, that we are about to destroy
7215                  * this device. They should clean all the things.
7216                  */
7217                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7218
7219                 if (!dev->rtnl_link_ops ||
7220                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7221                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7222                                                      GFP_KERNEL);
7223
7224                 /*
7225                  *      Flush the unicast and multicast chains
7226                  */
7227                 dev_uc_flush(dev);
7228                 dev_mc_flush(dev);
7229
7230                 if (dev->netdev_ops->ndo_uninit)
7231                         dev->netdev_ops->ndo_uninit(dev);
7232
7233                 if (skb)
7234                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7235
7236                 /* Notifier chain MUST detach us all upper devices. */
7237                 WARN_ON(netdev_has_any_upper_dev(dev));
7238                 WARN_ON(netdev_has_any_lower_dev(dev));
7239
7240                 /* Remove entries from kobject tree */
7241                 netdev_unregister_kobject(dev);
7242 #ifdef CONFIG_XPS
7243                 /* Remove XPS queueing entries */
7244                 netif_reset_xps_queues_gt(dev, 0);
7245 #endif
7246         }
7247
7248         synchronize_net();
7249
7250         list_for_each_entry(dev, head, unreg_list)
7251                 dev_put(dev);
7252 }
7253
7254 static void rollback_registered(struct net_device *dev)
7255 {
7256         LIST_HEAD(single);
7257
7258         list_add(&dev->unreg_list, &single);
7259         rollback_registered_many(&single);
7260         list_del(&single);
7261 }
7262
7263 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7264         struct net_device *upper, netdev_features_t features)
7265 {
7266         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7267         netdev_features_t feature;
7268         int feature_bit;
7269
7270         for_each_netdev_feature(upper_disables, feature_bit) {
7271                 feature = __NETIF_F_BIT(feature_bit);
7272                 if (!(upper->wanted_features & feature)
7273                     && (features & feature)) {
7274                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7275                                    &feature, upper->name);
7276                         features &= ~feature;
7277                 }
7278         }
7279
7280         return features;
7281 }
7282
7283 static void netdev_sync_lower_features(struct net_device *upper,
7284         struct net_device *lower, netdev_features_t features)
7285 {
7286         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7287         netdev_features_t feature;
7288         int feature_bit;
7289
7290         for_each_netdev_feature(upper_disables, feature_bit) {
7291                 feature = __NETIF_F_BIT(feature_bit);
7292                 if (!(features & feature) && (lower->features & feature)) {
7293                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7294                                    &feature, lower->name);
7295                         lower->wanted_features &= ~feature;
7296                         __netdev_update_features(lower);
7297
7298                         if (unlikely(lower->features & feature))
7299                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7300                                             &feature, lower->name);
7301                         else
7302                                 netdev_features_change(lower);
7303                 }
7304         }
7305 }
7306
7307 static netdev_features_t netdev_fix_features(struct net_device *dev,
7308         netdev_features_t features)
7309 {
7310         /* Fix illegal checksum combinations */
7311         if ((features & NETIF_F_HW_CSUM) &&
7312             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7313                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7314                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7315         }
7316
7317         /* TSO requires that SG is present as well. */
7318         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7319                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7320                 features &= ~NETIF_F_ALL_TSO;
7321         }
7322
7323         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7324                                         !(features & NETIF_F_IP_CSUM)) {
7325                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7326                 features &= ~NETIF_F_TSO;
7327                 features &= ~NETIF_F_TSO_ECN;
7328         }
7329
7330         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7331                                          !(features & NETIF_F_IPV6_CSUM)) {
7332                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7333                 features &= ~NETIF_F_TSO6;
7334         }
7335
7336         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7337         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7338                 features &= ~NETIF_F_TSO_MANGLEID;
7339
7340         /* TSO ECN requires that TSO is present as well. */
7341         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7342                 features &= ~NETIF_F_TSO_ECN;
7343
7344         /* Software GSO depends on SG. */
7345         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7346                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7347                 features &= ~NETIF_F_GSO;
7348         }
7349
7350         /* GSO partial features require GSO partial be set */
7351         if ((features & dev->gso_partial_features) &&
7352             !(features & NETIF_F_GSO_PARTIAL)) {
7353                 netdev_dbg(dev,
7354                            "Dropping partially supported GSO features since no GSO partial.\n");
7355                 features &= ~dev->gso_partial_features;
7356         }
7357
7358         return features;
7359 }
7360
7361 int __netdev_update_features(struct net_device *dev)
7362 {
7363         struct net_device *upper, *lower;
7364         netdev_features_t features;
7365         struct list_head *iter;
7366         int err = -1;
7367
7368         ASSERT_RTNL();
7369
7370         features = netdev_get_wanted_features(dev);
7371
7372         if (dev->netdev_ops->ndo_fix_features)
7373                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7374
7375         /* driver might be less strict about feature dependencies */
7376         features = netdev_fix_features(dev, features);
7377
7378         /* some features can't be enabled if they're off an an upper device */
7379         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7380                 features = netdev_sync_upper_features(dev, upper, features);
7381
7382         if (dev->features == features)
7383                 goto sync_lower;
7384
7385         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7386                 &dev->features, &features);
7387
7388         if (dev->netdev_ops->ndo_set_features)
7389                 err = dev->netdev_ops->ndo_set_features(dev, features);
7390         else
7391                 err = 0;
7392
7393         if (unlikely(err < 0)) {
7394                 netdev_err(dev,
7395                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7396                         err, &features, &dev->features);
7397                 /* return non-0 since some features might have changed and
7398                  * it's better to fire a spurious notification than miss it
7399                  */
7400                 return -1;
7401         }
7402
7403 sync_lower:
7404         /* some features must be disabled on lower devices when disabled
7405          * on an upper device (think: bonding master or bridge)
7406          */
7407         netdev_for_each_lower_dev(dev, lower, iter)
7408                 netdev_sync_lower_features(dev, lower, features);
7409
7410         if (!err) {
7411                 netdev_features_t diff = features ^ dev->features;
7412
7413                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7414                         /* udp_tunnel_{get,drop}_rx_info both need
7415                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7416                          * device, or they won't do anything.
7417                          * Thus we need to update dev->features
7418                          * *before* calling udp_tunnel_get_rx_info,
7419                          * but *after* calling udp_tunnel_drop_rx_info.
7420                          */
7421                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7422                                 dev->features = features;
7423                                 udp_tunnel_get_rx_info(dev);
7424                         } else {
7425                                 udp_tunnel_drop_rx_info(dev);
7426                         }
7427                 }
7428
7429                 dev->features = features;
7430         }
7431
7432         return err < 0 ? 0 : 1;
7433 }
7434
7435 /**
7436  *      netdev_update_features - recalculate device features
7437  *      @dev: the device to check
7438  *
7439  *      Recalculate dev->features set and send notifications if it
7440  *      has changed. Should be called after driver or hardware dependent
7441  *      conditions might have changed that influence the features.
7442  */
7443 void netdev_update_features(struct net_device *dev)
7444 {
7445         if (__netdev_update_features(dev))
7446                 netdev_features_change(dev);
7447 }
7448 EXPORT_SYMBOL(netdev_update_features);
7449
7450 /**
7451  *      netdev_change_features - recalculate device features
7452  *      @dev: the device to check
7453  *
7454  *      Recalculate dev->features set and send notifications even
7455  *      if they have not changed. Should be called instead of
7456  *      netdev_update_features() if also dev->vlan_features might
7457  *      have changed to allow the changes to be propagated to stacked
7458  *      VLAN devices.
7459  */
7460 void netdev_change_features(struct net_device *dev)
7461 {
7462         __netdev_update_features(dev);
7463         netdev_features_change(dev);
7464 }
7465 EXPORT_SYMBOL(netdev_change_features);
7466
7467 /**
7468  *      netif_stacked_transfer_operstate -      transfer operstate
7469  *      @rootdev: the root or lower level device to transfer state from
7470  *      @dev: the device to transfer operstate to
7471  *
7472  *      Transfer operational state from root to device. This is normally
7473  *      called when a stacking relationship exists between the root
7474  *      device and the device(a leaf device).
7475  */
7476 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7477                                         struct net_device *dev)
7478 {
7479         if (rootdev->operstate == IF_OPER_DORMANT)
7480                 netif_dormant_on(dev);
7481         else
7482                 netif_dormant_off(dev);
7483
7484         if (netif_carrier_ok(rootdev))
7485                 netif_carrier_on(dev);
7486         else
7487                 netif_carrier_off(dev);
7488 }
7489 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7490
7491 #ifdef CONFIG_SYSFS
7492 static int netif_alloc_rx_queues(struct net_device *dev)
7493 {
7494         unsigned int i, count = dev->num_rx_queues;
7495         struct netdev_rx_queue *rx;
7496         size_t sz = count * sizeof(*rx);
7497
7498         BUG_ON(count < 1);
7499
7500         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7501         if (!rx)
7502                 return -ENOMEM;
7503
7504         dev->_rx = rx;
7505
7506         for (i = 0; i < count; i++)
7507                 rx[i].dev = dev;
7508         return 0;
7509 }
7510 #endif
7511
7512 static void netdev_init_one_queue(struct net_device *dev,
7513                                   struct netdev_queue *queue, void *_unused)
7514 {
7515         /* Initialize queue lock */
7516         spin_lock_init(&queue->_xmit_lock);
7517         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7518         queue->xmit_lock_owner = -1;
7519         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7520         queue->dev = dev;
7521 #ifdef CONFIG_BQL
7522         dql_init(&queue->dql, HZ);
7523 #endif
7524 }
7525
7526 static void netif_free_tx_queues(struct net_device *dev)
7527 {
7528         kvfree(dev->_tx);
7529 }
7530
7531 static int netif_alloc_netdev_queues(struct net_device *dev)
7532 {
7533         unsigned int count = dev->num_tx_queues;
7534         struct netdev_queue *tx;
7535         size_t sz = count * sizeof(*tx);
7536
7537         if (count < 1 || count > 0xffff)
7538                 return -EINVAL;
7539
7540         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7541         if (!tx)
7542                 return -ENOMEM;
7543
7544         dev->_tx = tx;
7545
7546         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7547         spin_lock_init(&dev->tx_global_lock);
7548
7549         return 0;
7550 }
7551
7552 void netif_tx_stop_all_queues(struct net_device *dev)
7553 {
7554         unsigned int i;
7555
7556         for (i = 0; i < dev->num_tx_queues; i++) {
7557                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7558
7559                 netif_tx_stop_queue(txq);
7560         }
7561 }
7562 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7563
7564 /**
7565  *      register_netdevice      - register a network device
7566  *      @dev: device to register
7567  *
7568  *      Take a completed network device structure and add it to the kernel
7569  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7570  *      chain. 0 is returned on success. A negative errno code is returned
7571  *      on a failure to set up the device, or if the name is a duplicate.
7572  *
7573  *      Callers must hold the rtnl semaphore. You may want
7574  *      register_netdev() instead of this.
7575  *
7576  *      BUGS:
7577  *      The locking appears insufficient to guarantee two parallel registers
7578  *      will not get the same name.
7579  */
7580
7581 int register_netdevice(struct net_device *dev)
7582 {
7583         int ret;
7584         struct net *net = dev_net(dev);
7585
7586         BUG_ON(dev_boot_phase);
7587         ASSERT_RTNL();
7588
7589         might_sleep();
7590
7591         /* When net_device's are persistent, this will be fatal. */
7592         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7593         BUG_ON(!net);
7594
7595         spin_lock_init(&dev->addr_list_lock);
7596         netdev_set_addr_lockdep_class(dev);
7597
7598         ret = dev_get_valid_name(net, dev, dev->name);
7599         if (ret < 0)
7600                 goto out;
7601
7602         /* Init, if this function is available */
7603         if (dev->netdev_ops->ndo_init) {
7604                 ret = dev->netdev_ops->ndo_init(dev);
7605                 if (ret) {
7606                         if (ret > 0)
7607                                 ret = -EIO;
7608                         goto out;
7609                 }
7610         }
7611
7612         if (((dev->hw_features | dev->features) &
7613              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7614             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7615              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7616                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7617                 ret = -EINVAL;
7618                 goto err_uninit;
7619         }
7620
7621         ret = -EBUSY;
7622         if (!dev->ifindex)
7623                 dev->ifindex = dev_new_index(net);
7624         else if (__dev_get_by_index(net, dev->ifindex))
7625                 goto err_uninit;
7626
7627         /* Transfer changeable features to wanted_features and enable
7628          * software offloads (GSO and GRO).
7629          */
7630         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7631         dev->features |= NETIF_F_SOFT_FEATURES;
7632
7633         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7634                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7635                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7636         }
7637
7638         dev->wanted_features = dev->features & dev->hw_features;
7639
7640         if (!(dev->flags & IFF_LOOPBACK))
7641                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7642
7643         /* If IPv4 TCP segmentation offload is supported we should also
7644          * allow the device to enable segmenting the frame with the option
7645          * of ignoring a static IP ID value.  This doesn't enable the
7646          * feature itself but allows the user to enable it later.
7647          */
7648         if (dev->hw_features & NETIF_F_TSO)
7649                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7650         if (dev->vlan_features & NETIF_F_TSO)
7651                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7652         if (dev->mpls_features & NETIF_F_TSO)
7653                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7654         if (dev->hw_enc_features & NETIF_F_TSO)
7655                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7656
7657         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7658          */
7659         dev->vlan_features |= NETIF_F_HIGHDMA;
7660
7661         /* Make NETIF_F_SG inheritable to tunnel devices.
7662          */
7663         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7664
7665         /* Make NETIF_F_SG inheritable to MPLS.
7666          */
7667         dev->mpls_features |= NETIF_F_SG;
7668
7669         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7670         ret = notifier_to_errno(ret);
7671         if (ret)
7672                 goto err_uninit;
7673
7674         ret = netdev_register_kobject(dev);
7675         if (ret) {
7676                 dev->reg_state = NETREG_UNREGISTERED;
7677                 goto err_uninit;
7678         }
7679         dev->reg_state = NETREG_REGISTERED;
7680
7681         __netdev_update_features(dev);
7682
7683         /*
7684          *      Default initial state at registry is that the
7685          *      device is present.
7686          */
7687
7688         set_bit(__LINK_STATE_PRESENT, &dev->state);
7689
7690         linkwatch_init_dev(dev);
7691
7692         dev_init_scheduler(dev);
7693         dev_hold(dev);
7694         list_netdevice(dev);
7695         add_device_randomness(dev->dev_addr, dev->addr_len);
7696
7697         /* If the device has permanent device address, driver should
7698          * set dev_addr and also addr_assign_type should be set to
7699          * NET_ADDR_PERM (default value).
7700          */
7701         if (dev->addr_assign_type == NET_ADDR_PERM)
7702                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7703
7704         /* Notify protocols, that a new device appeared. */
7705         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7706         ret = notifier_to_errno(ret);
7707         if (ret) {
7708                 rollback_registered(dev);
7709                 rcu_barrier();
7710
7711                 dev->reg_state = NETREG_UNREGISTERED;
7712                 /* We should put the kobject that hold in
7713                  * netdev_unregister_kobject(), otherwise
7714                  * the net device cannot be freed when
7715                  * driver calls free_netdev(), because the
7716                  * kobject is being hold.
7717                  */
7718                 kobject_put(&dev->dev.kobj);
7719         }
7720         /*
7721          *      Prevent userspace races by waiting until the network
7722          *      device is fully setup before sending notifications.
7723          */
7724         if (!dev->rtnl_link_ops ||
7725             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7726                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7727
7728 out:
7729         return ret;
7730
7731 err_uninit:
7732         if (dev->netdev_ops->ndo_uninit)
7733                 dev->netdev_ops->ndo_uninit(dev);
7734         if (dev->priv_destructor)
7735                 dev->priv_destructor(dev);
7736         goto out;
7737 }
7738 EXPORT_SYMBOL(register_netdevice);
7739
7740 /**
7741  *      init_dummy_netdev       - init a dummy network device for NAPI
7742  *      @dev: device to init
7743  *
7744  *      This takes a network device structure and initialize the minimum
7745  *      amount of fields so it can be used to schedule NAPI polls without
7746  *      registering a full blown interface. This is to be used by drivers
7747  *      that need to tie several hardware interfaces to a single NAPI
7748  *      poll scheduler due to HW limitations.
7749  */
7750 int init_dummy_netdev(struct net_device *dev)
7751 {
7752         /* Clear everything. Note we don't initialize spinlocks
7753          * are they aren't supposed to be taken by any of the
7754          * NAPI code and this dummy netdev is supposed to be
7755          * only ever used for NAPI polls
7756          */
7757         memset(dev, 0, sizeof(struct net_device));
7758
7759         /* make sure we BUG if trying to hit standard
7760          * register/unregister code path
7761          */
7762         dev->reg_state = NETREG_DUMMY;
7763
7764         /* NAPI wants this */
7765         INIT_LIST_HEAD(&dev->napi_list);
7766
7767         /* a dummy interface is started by default */
7768         set_bit(__LINK_STATE_PRESENT, &dev->state);
7769         set_bit(__LINK_STATE_START, &dev->state);
7770
7771         /* napi_busy_loop stats accounting wants this */
7772         dev_net_set(dev, &init_net);
7773
7774         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7775          * because users of this 'device' dont need to change
7776          * its refcount.
7777          */
7778
7779         return 0;
7780 }
7781 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7782
7783
7784 int dev_validate_mtu(struct net_device *dev, int new_mtu)
7785 {
7786         /* MTU must be positive, and in range */
7787         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7788                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7789                                     dev->name, new_mtu, dev->min_mtu);
7790                 return -EINVAL;
7791         }
7792
7793         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7794                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7795                                     dev->name, new_mtu, dev->max_mtu);
7796                 return -EINVAL;
7797         }
7798         return 0;
7799 }
7800
7801 /**
7802  *      register_netdev - register a network device
7803  *      @dev: device to register
7804  *
7805  *      Take a completed network device structure and add it to the kernel
7806  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7807  *      chain. 0 is returned on success. A negative errno code is returned
7808  *      on a failure to set up the device, or if the name is a duplicate.
7809  *
7810  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7811  *      and expands the device name if you passed a format string to
7812  *      alloc_netdev.
7813  */
7814 int register_netdev(struct net_device *dev)
7815 {
7816         int err;
7817
7818         rtnl_lock();
7819         err = register_netdevice(dev);
7820         rtnl_unlock();
7821         return err;
7822 }
7823 EXPORT_SYMBOL(register_netdev);
7824
7825 int netdev_refcnt_read(const struct net_device *dev)
7826 {
7827         int i, refcnt = 0;
7828
7829         for_each_possible_cpu(i)
7830                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7831         return refcnt;
7832 }
7833 EXPORT_SYMBOL(netdev_refcnt_read);
7834
7835 /**
7836  * netdev_wait_allrefs - wait until all references are gone.
7837  * @dev: target net_device
7838  *
7839  * This is called when unregistering network devices.
7840  *
7841  * Any protocol or device that holds a reference should register
7842  * for netdevice notification, and cleanup and put back the
7843  * reference if they receive an UNREGISTER event.
7844  * We can get stuck here if buggy protocols don't correctly
7845  * call dev_put.
7846  */
7847 static void netdev_wait_allrefs(struct net_device *dev)
7848 {
7849         unsigned long rebroadcast_time, warning_time;
7850         int refcnt;
7851
7852         linkwatch_forget_dev(dev);
7853
7854         rebroadcast_time = warning_time = jiffies;
7855         refcnt = netdev_refcnt_read(dev);
7856
7857         while (refcnt != 0) {
7858                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7859                         rtnl_lock();
7860
7861                         /* Rebroadcast unregister notification */
7862                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7863
7864                         __rtnl_unlock();
7865                         rcu_barrier();
7866                         rtnl_lock();
7867
7868                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7869                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7870                                      &dev->state)) {
7871                                 /* We must not have linkwatch events
7872                                  * pending on unregister. If this
7873                                  * happens, we simply run the queue
7874                                  * unscheduled, resulting in a noop
7875                                  * for this device.
7876                                  */
7877                                 linkwatch_run_queue();
7878                         }
7879
7880                         __rtnl_unlock();
7881
7882                         rebroadcast_time = jiffies;
7883                 }
7884
7885                 msleep(250);
7886
7887                 refcnt = netdev_refcnt_read(dev);
7888
7889                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7890                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7891                                  dev->name, refcnt);
7892                         warning_time = jiffies;
7893                 }
7894         }
7895 }
7896
7897 /* The sequence is:
7898  *
7899  *      rtnl_lock();
7900  *      ...
7901  *      register_netdevice(x1);
7902  *      register_netdevice(x2);
7903  *      ...
7904  *      unregister_netdevice(y1);
7905  *      unregister_netdevice(y2);
7906  *      ...
7907  *      rtnl_unlock();
7908  *      free_netdev(y1);
7909  *      free_netdev(y2);
7910  *
7911  * We are invoked by rtnl_unlock().
7912  * This allows us to deal with problems:
7913  * 1) We can delete sysfs objects which invoke hotplug
7914  *    without deadlocking with linkwatch via keventd.
7915  * 2) Since we run with the RTNL semaphore not held, we can sleep
7916  *    safely in order to wait for the netdev refcnt to drop to zero.
7917  *
7918  * We must not return until all unregister events added during
7919  * the interval the lock was held have been completed.
7920  */
7921 void netdev_run_todo(void)
7922 {
7923         struct list_head list;
7924
7925         /* Snapshot list, allow later requests */
7926         list_replace_init(&net_todo_list, &list);
7927
7928         __rtnl_unlock();
7929
7930
7931         /* Wait for rcu callbacks to finish before next phase */
7932         if (!list_empty(&list))
7933                 rcu_barrier();
7934
7935         while (!list_empty(&list)) {
7936                 struct net_device *dev
7937                         = list_first_entry(&list, struct net_device, todo_list);
7938                 list_del(&dev->todo_list);
7939
7940                 rtnl_lock();
7941                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7942                 __rtnl_unlock();
7943
7944                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7945                         pr_err("network todo '%s' but state %d\n",
7946                                dev->name, dev->reg_state);
7947                         dump_stack();
7948                         continue;
7949                 }
7950
7951                 dev->reg_state = NETREG_UNREGISTERED;
7952
7953                 netdev_wait_allrefs(dev);
7954
7955                 /* paranoia */
7956                 BUG_ON(netdev_refcnt_read(dev));
7957                 BUG_ON(!list_empty(&dev->ptype_all));
7958                 BUG_ON(!list_empty(&dev->ptype_specific));
7959                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7960                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7961
7962                 if (dev->priv_destructor)
7963                         dev->priv_destructor(dev);
7964                 if (dev->needs_free_netdev)
7965                         free_netdev(dev);
7966
7967                 /* Report a network device has been unregistered */
7968                 rtnl_lock();
7969                 dev_net(dev)->dev_unreg_count--;
7970                 __rtnl_unlock();
7971                 wake_up(&netdev_unregistering_wq);
7972
7973                 /* Free network device */
7974                 kobject_put(&dev->dev.kobj);
7975         }
7976 }
7977
7978 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7979  * all the same fields in the same order as net_device_stats, with only
7980  * the type differing, but rtnl_link_stats64 may have additional fields
7981  * at the end for newer counters.
7982  */
7983 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7984                              const struct net_device_stats *netdev_stats)
7985 {
7986 #if BITS_PER_LONG == 64
7987         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7988         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7989         /* zero out counters that only exist in rtnl_link_stats64 */
7990         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7991                sizeof(*stats64) - sizeof(*netdev_stats));
7992 #else
7993         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7994         const unsigned long *src = (const unsigned long *)netdev_stats;
7995         u64 *dst = (u64 *)stats64;
7996
7997         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7998         for (i = 0; i < n; i++)
7999                 dst[i] = src[i];
8000         /* zero out counters that only exist in rtnl_link_stats64 */
8001         memset((char *)stats64 + n * sizeof(u64), 0,
8002                sizeof(*stats64) - n * sizeof(u64));
8003 #endif
8004 }
8005 EXPORT_SYMBOL(netdev_stats_to_stats64);
8006
8007 /**
8008  *      dev_get_stats   - get network device statistics
8009  *      @dev: device to get statistics from
8010  *      @storage: place to store stats
8011  *
8012  *      Get network statistics from device. Return @storage.
8013  *      The device driver may provide its own method by setting
8014  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8015  *      otherwise the internal statistics structure is used.
8016  */
8017 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8018                                         struct rtnl_link_stats64 *storage)
8019 {
8020         const struct net_device_ops *ops = dev->netdev_ops;
8021
8022         if (ops->ndo_get_stats64) {
8023                 memset(storage, 0, sizeof(*storage));
8024                 ops->ndo_get_stats64(dev, storage);
8025         } else if (ops->ndo_get_stats) {
8026                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8027         } else {
8028                 netdev_stats_to_stats64(storage, &dev->stats);
8029         }
8030         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8031         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8032         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8033         return storage;
8034 }
8035 EXPORT_SYMBOL(dev_get_stats);
8036
8037 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8038 {
8039         struct netdev_queue *queue = dev_ingress_queue(dev);
8040
8041 #ifdef CONFIG_NET_CLS_ACT
8042         if (queue)
8043                 return queue;
8044         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8045         if (!queue)
8046                 return NULL;
8047         netdev_init_one_queue(dev, queue, NULL);
8048         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8049         queue->qdisc_sleeping = &noop_qdisc;
8050         rcu_assign_pointer(dev->ingress_queue, queue);
8051 #endif
8052         return queue;
8053 }
8054
8055 static const struct ethtool_ops default_ethtool_ops;
8056
8057 void netdev_set_default_ethtool_ops(struct net_device *dev,
8058                                     const struct ethtool_ops *ops)
8059 {
8060         if (dev->ethtool_ops == &default_ethtool_ops)
8061                 dev->ethtool_ops = ops;
8062 }
8063 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8064
8065 void netdev_freemem(struct net_device *dev)
8066 {
8067         char *addr = (char *)dev - dev->padded;
8068
8069         kvfree(addr);
8070 }
8071
8072 /**
8073  * alloc_netdev_mqs - allocate network device
8074  * @sizeof_priv: size of private data to allocate space for
8075  * @name: device name format string
8076  * @name_assign_type: origin of device name
8077  * @setup: callback to initialize device
8078  * @txqs: the number of TX subqueues to allocate
8079  * @rxqs: the number of RX subqueues to allocate
8080  *
8081  * Allocates a struct net_device with private data area for driver use
8082  * and performs basic initialization.  Also allocates subqueue structs
8083  * for each queue on the device.
8084  */
8085 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8086                 unsigned char name_assign_type,
8087                 void (*setup)(struct net_device *),
8088                 unsigned int txqs, unsigned int rxqs)
8089 {
8090         struct net_device *dev;
8091         size_t alloc_size;
8092         struct net_device *p;
8093
8094         BUG_ON(strlen(name) >= sizeof(dev->name));
8095
8096         if (txqs < 1) {
8097                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8098                 return NULL;
8099         }
8100
8101 #ifdef CONFIG_SYSFS
8102         if (rxqs < 1) {
8103                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8104                 return NULL;
8105         }
8106 #endif
8107
8108         alloc_size = sizeof(struct net_device);
8109         if (sizeof_priv) {
8110                 /* ensure 32-byte alignment of private area */
8111                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8112                 alloc_size += sizeof_priv;
8113         }
8114         /* ensure 32-byte alignment of whole construct */
8115         alloc_size += NETDEV_ALIGN - 1;
8116
8117         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8118         if (!p)
8119                 return NULL;
8120
8121         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8122         dev->padded = (char *)dev - (char *)p;
8123
8124         dev->pcpu_refcnt = alloc_percpu(int);
8125         if (!dev->pcpu_refcnt)
8126                 goto free_dev;
8127
8128         if (dev_addr_init(dev))
8129                 goto free_pcpu;
8130
8131         dev_mc_init(dev);
8132         dev_uc_init(dev);
8133
8134         dev_net_set(dev, &init_net);
8135
8136         dev->gso_max_size = GSO_MAX_SIZE;
8137         dev->gso_max_segs = GSO_MAX_SEGS;
8138
8139         INIT_LIST_HEAD(&dev->napi_list);
8140         INIT_LIST_HEAD(&dev->unreg_list);
8141         INIT_LIST_HEAD(&dev->close_list);
8142         INIT_LIST_HEAD(&dev->link_watch_list);
8143         INIT_LIST_HEAD(&dev->adj_list.upper);
8144         INIT_LIST_HEAD(&dev->adj_list.lower);
8145         INIT_LIST_HEAD(&dev->ptype_all);
8146         INIT_LIST_HEAD(&dev->ptype_specific);
8147 #ifdef CONFIG_NET_SCHED
8148         hash_init(dev->qdisc_hash);
8149 #endif
8150         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8151         setup(dev);
8152
8153         if (!dev->tx_queue_len) {
8154                 dev->priv_flags |= IFF_NO_QUEUE;
8155                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8156         }
8157
8158         dev->num_tx_queues = txqs;
8159         dev->real_num_tx_queues = txqs;
8160         if (netif_alloc_netdev_queues(dev))
8161                 goto free_all;
8162
8163 #ifdef CONFIG_SYSFS
8164         dev->num_rx_queues = rxqs;
8165         dev->real_num_rx_queues = rxqs;
8166         if (netif_alloc_rx_queues(dev))
8167                 goto free_all;
8168 #endif
8169
8170         strcpy(dev->name, name);
8171         dev->name_assign_type = name_assign_type;
8172         dev->group = INIT_NETDEV_GROUP;
8173         if (!dev->ethtool_ops)
8174                 dev->ethtool_ops = &default_ethtool_ops;
8175
8176         nf_hook_ingress_init(dev);
8177
8178         return dev;
8179
8180 free_all:
8181         free_netdev(dev);
8182         return NULL;
8183
8184 free_pcpu:
8185         free_percpu(dev->pcpu_refcnt);
8186 free_dev:
8187         netdev_freemem(dev);
8188         return NULL;
8189 }
8190 EXPORT_SYMBOL(alloc_netdev_mqs);
8191
8192 /**
8193  * free_netdev - free network device
8194  * @dev: device
8195  *
8196  * This function does the last stage of destroying an allocated device
8197  * interface. The reference to the device object is released. If this
8198  * is the last reference then it will be freed.Must be called in process
8199  * context.
8200  */
8201 void free_netdev(struct net_device *dev)
8202 {
8203         struct napi_struct *p, *n;
8204         struct bpf_prog *prog;
8205
8206         might_sleep();
8207         netif_free_tx_queues(dev);
8208 #ifdef CONFIG_SYSFS
8209         kvfree(dev->_rx);
8210 #endif
8211
8212         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8213
8214         /* Flush device addresses */
8215         dev_addr_flush(dev);
8216
8217         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8218                 netif_napi_del(p);
8219
8220         free_percpu(dev->pcpu_refcnt);
8221         dev->pcpu_refcnt = NULL;
8222
8223         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8224         if (prog) {
8225                 bpf_prog_put(prog);
8226                 static_key_slow_dec(&generic_xdp_needed);
8227         }
8228
8229         /*  Compatibility with error handling in drivers */
8230         if (dev->reg_state == NETREG_UNINITIALIZED) {
8231                 netdev_freemem(dev);
8232                 return;
8233         }
8234
8235         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8236         dev->reg_state = NETREG_RELEASED;
8237
8238         /* will free via device release */
8239         put_device(&dev->dev);
8240 }
8241 EXPORT_SYMBOL(free_netdev);
8242
8243 /**
8244  *      synchronize_net -  Synchronize with packet receive processing
8245  *
8246  *      Wait for packets currently being received to be done.
8247  *      Does not block later packets from starting.
8248  */
8249 void synchronize_net(void)
8250 {
8251         might_sleep();
8252         if (rtnl_is_locked())
8253                 synchronize_rcu_expedited();
8254         else
8255                 synchronize_rcu();
8256 }
8257 EXPORT_SYMBOL(synchronize_net);
8258
8259 /**
8260  *      unregister_netdevice_queue - remove device from the kernel
8261  *      @dev: device
8262  *      @head: list
8263  *
8264  *      This function shuts down a device interface and removes it
8265  *      from the kernel tables.
8266  *      If head not NULL, device is queued to be unregistered later.
8267  *
8268  *      Callers must hold the rtnl semaphore.  You may want
8269  *      unregister_netdev() instead of this.
8270  */
8271
8272 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8273 {
8274         ASSERT_RTNL();
8275
8276         if (head) {
8277                 list_move_tail(&dev->unreg_list, head);
8278         } else {
8279                 rollback_registered(dev);
8280                 /* Finish processing unregister after unlock */
8281                 net_set_todo(dev);
8282         }
8283 }
8284 EXPORT_SYMBOL(unregister_netdevice_queue);
8285
8286 /**
8287  *      unregister_netdevice_many - unregister many devices
8288  *      @head: list of devices
8289  *
8290  *  Note: As most callers use a stack allocated list_head,
8291  *  we force a list_del() to make sure stack wont be corrupted later.
8292  */
8293 void unregister_netdevice_many(struct list_head *head)
8294 {
8295         struct net_device *dev;
8296
8297         if (!list_empty(head)) {
8298                 rollback_registered_many(head);
8299                 list_for_each_entry(dev, head, unreg_list)
8300                         net_set_todo(dev);
8301                 list_del(head);
8302         }
8303 }
8304 EXPORT_SYMBOL(unregister_netdevice_many);
8305
8306 /**
8307  *      unregister_netdev - remove device from the kernel
8308  *      @dev: device
8309  *
8310  *      This function shuts down a device interface and removes it
8311  *      from the kernel tables.
8312  *
8313  *      This is just a wrapper for unregister_netdevice that takes
8314  *      the rtnl semaphore.  In general you want to use this and not
8315  *      unregister_netdevice.
8316  */
8317 void unregister_netdev(struct net_device *dev)
8318 {
8319         rtnl_lock();
8320         unregister_netdevice(dev);
8321         rtnl_unlock();
8322 }
8323 EXPORT_SYMBOL(unregister_netdev);
8324
8325 /**
8326  *      dev_change_net_namespace - move device to different nethost namespace
8327  *      @dev: device
8328  *      @net: network namespace
8329  *      @pat: If not NULL name pattern to try if the current device name
8330  *            is already taken in the destination network namespace.
8331  *
8332  *      This function shuts down a device interface and moves it
8333  *      to a new network namespace. On success 0 is returned, on
8334  *      a failure a netagive errno code is returned.
8335  *
8336  *      Callers must hold the rtnl semaphore.
8337  */
8338
8339 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8340 {
8341         int err;
8342
8343         ASSERT_RTNL();
8344
8345         /* Don't allow namespace local devices to be moved. */
8346         err = -EINVAL;
8347         if (dev->features & NETIF_F_NETNS_LOCAL)
8348                 goto out;
8349
8350         /* Ensure the device has been registrered */
8351         if (dev->reg_state != NETREG_REGISTERED)
8352                 goto out;
8353
8354         /* Get out if there is nothing todo */
8355         err = 0;
8356         if (net_eq(dev_net(dev), net))
8357                 goto out;
8358
8359         /* Pick the destination device name, and ensure
8360          * we can use it in the destination network namespace.
8361          */
8362         err = -EEXIST;
8363         if (__dev_get_by_name(net, dev->name)) {
8364                 /* We get here if we can't use the current device name */
8365                 if (!pat)
8366                         goto out;
8367                 err = dev_get_valid_name(net, dev, pat);
8368                 if (err < 0)
8369                         goto out;
8370         }
8371
8372         /*
8373          * And now a mini version of register_netdevice unregister_netdevice.
8374          */
8375
8376         /* If device is running close it first. */
8377         dev_close(dev);
8378
8379         /* And unlink it from device chain */
8380         unlist_netdevice(dev);
8381
8382         synchronize_net();
8383
8384         /* Shutdown queueing discipline. */
8385         dev_shutdown(dev);
8386
8387         /* Notify protocols, that we are about to destroy
8388          * this device. They should clean all the things.
8389          *
8390          * Note that dev->reg_state stays at NETREG_REGISTERED.
8391          * This is wanted because this way 8021q and macvlan know
8392          * the device is just moving and can keep their slaves up.
8393          */
8394         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8395         rcu_barrier();
8396         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8397         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8398
8399         /*
8400          *      Flush the unicast and multicast chains
8401          */
8402         dev_uc_flush(dev);
8403         dev_mc_flush(dev);
8404
8405         /* Send a netdev-removed uevent to the old namespace */
8406         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8407         netdev_adjacent_del_links(dev);
8408
8409         /* Actually switch the network namespace */
8410         dev_net_set(dev, net);
8411
8412         /* If there is an ifindex conflict assign a new one */
8413         if (__dev_get_by_index(net, dev->ifindex))
8414                 dev->ifindex = dev_new_index(net);
8415
8416         /* Send a netdev-add uevent to the new namespace */
8417         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8418         netdev_adjacent_add_links(dev);
8419
8420         /* Fixup kobjects */
8421         err = device_rename(&dev->dev, dev->name);
8422         WARN_ON(err);
8423
8424         /* Add the device back in the hashes */
8425         list_netdevice(dev);
8426
8427         /* Notify protocols, that a new device appeared. */
8428         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8429
8430         /*
8431          *      Prevent userspace races by waiting until the network
8432          *      device is fully setup before sending notifications.
8433          */
8434         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8435
8436         synchronize_net();
8437         err = 0;
8438 out:
8439         return err;
8440 }
8441 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8442
8443 static int dev_cpu_dead(unsigned int oldcpu)
8444 {
8445         struct sk_buff **list_skb;
8446         struct sk_buff *skb;
8447         unsigned int cpu;
8448         struct softnet_data *sd, *oldsd, *remsd = NULL;
8449
8450         local_irq_disable();
8451         cpu = smp_processor_id();
8452         sd = &per_cpu(softnet_data, cpu);
8453         oldsd = &per_cpu(softnet_data, oldcpu);
8454
8455         /* Find end of our completion_queue. */
8456         list_skb = &sd->completion_queue;
8457         while (*list_skb)
8458                 list_skb = &(*list_skb)->next;
8459         /* Append completion queue from offline CPU. */
8460         *list_skb = oldsd->completion_queue;
8461         oldsd->completion_queue = NULL;
8462
8463         /* Append output queue from offline CPU. */
8464         if (oldsd->output_queue) {
8465                 *sd->output_queue_tailp = oldsd->output_queue;
8466                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8467                 oldsd->output_queue = NULL;
8468                 oldsd->output_queue_tailp = &oldsd->output_queue;
8469         }
8470         /* Append NAPI poll list from offline CPU, with one exception :
8471          * process_backlog() must be called by cpu owning percpu backlog.
8472          * We properly handle process_queue & input_pkt_queue later.
8473          */
8474         while (!list_empty(&oldsd->poll_list)) {
8475                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8476                                                             struct napi_struct,
8477                                                             poll_list);
8478
8479                 list_del_init(&napi->poll_list);
8480                 if (napi->poll == process_backlog)
8481                         napi->state = 0;
8482                 else
8483                         ____napi_schedule(sd, napi);
8484         }
8485
8486         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8487         local_irq_enable();
8488
8489 #ifdef CONFIG_RPS
8490         remsd = oldsd->rps_ipi_list;
8491         oldsd->rps_ipi_list = NULL;
8492 #endif
8493         /* send out pending IPI's on offline CPU */
8494         net_rps_send_ipi(remsd);
8495
8496         /* Process offline CPU's input_pkt_queue */
8497         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8498                 netif_rx_ni(skb);
8499                 input_queue_head_incr(oldsd);
8500         }
8501         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8502                 netif_rx_ni(skb);
8503                 input_queue_head_incr(oldsd);
8504         }
8505
8506         return 0;
8507 }
8508
8509 /**
8510  *      netdev_increment_features - increment feature set by one
8511  *      @all: current feature set
8512  *      @one: new feature set
8513  *      @mask: mask feature set
8514  *
8515  *      Computes a new feature set after adding a device with feature set
8516  *      @one to the master device with current feature set @all.  Will not
8517  *      enable anything that is off in @mask. Returns the new feature set.
8518  */
8519 netdev_features_t netdev_increment_features(netdev_features_t all,
8520         netdev_features_t one, netdev_features_t mask)
8521 {
8522         if (mask & NETIF_F_HW_CSUM)
8523                 mask |= NETIF_F_CSUM_MASK;
8524         mask |= NETIF_F_VLAN_CHALLENGED;
8525
8526         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8527         all &= one | ~NETIF_F_ALL_FOR_ALL;
8528
8529         /* If one device supports hw checksumming, set for all. */
8530         if (all & NETIF_F_HW_CSUM)
8531                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8532
8533         return all;
8534 }
8535 EXPORT_SYMBOL(netdev_increment_features);
8536
8537 static struct hlist_head * __net_init netdev_create_hash(void)
8538 {
8539         int i;
8540         struct hlist_head *hash;
8541
8542         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8543         if (hash != NULL)
8544                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8545                         INIT_HLIST_HEAD(&hash[i]);
8546
8547         return hash;
8548 }
8549
8550 /* Initialize per network namespace state */
8551 static int __net_init netdev_init(struct net *net)
8552 {
8553         if (net != &init_net)
8554                 INIT_LIST_HEAD(&net->dev_base_head);
8555
8556         net->dev_name_head = netdev_create_hash();
8557         if (net->dev_name_head == NULL)
8558                 goto err_name;
8559
8560         net->dev_index_head = netdev_create_hash();
8561         if (net->dev_index_head == NULL)
8562                 goto err_idx;
8563
8564         return 0;
8565
8566 err_idx:
8567         kfree(net->dev_name_head);
8568 err_name:
8569         return -ENOMEM;
8570 }
8571
8572 /**
8573  *      netdev_drivername - network driver for the device
8574  *      @dev: network device
8575  *
8576  *      Determine network driver for device.
8577  */
8578 const char *netdev_drivername(const struct net_device *dev)
8579 {
8580         const struct device_driver *driver;
8581         const struct device *parent;
8582         const char *empty = "";
8583
8584         parent = dev->dev.parent;
8585         if (!parent)
8586                 return empty;
8587
8588         driver = parent->driver;
8589         if (driver && driver->name)
8590                 return driver->name;
8591         return empty;
8592 }
8593
8594 static void __netdev_printk(const char *level, const struct net_device *dev,
8595                             struct va_format *vaf)
8596 {
8597         if (dev && dev->dev.parent) {
8598                 dev_printk_emit(level[1] - '0',
8599                                 dev->dev.parent,
8600                                 "%s %s %s%s: %pV",
8601                                 dev_driver_string(dev->dev.parent),
8602                                 dev_name(dev->dev.parent),
8603                                 netdev_name(dev), netdev_reg_state(dev),
8604                                 vaf);
8605         } else if (dev) {
8606                 printk("%s%s%s: %pV",
8607                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8608         } else {
8609                 printk("%s(NULL net_device): %pV", level, vaf);
8610         }
8611 }
8612
8613 void netdev_printk(const char *level, const struct net_device *dev,
8614                    const char *format, ...)
8615 {
8616         struct va_format vaf;
8617         va_list args;
8618
8619         va_start(args, format);
8620
8621         vaf.fmt = format;
8622         vaf.va = &args;
8623
8624         __netdev_printk(level, dev, &vaf);
8625
8626         va_end(args);
8627 }
8628 EXPORT_SYMBOL(netdev_printk);
8629
8630 #define define_netdev_printk_level(func, level)                 \
8631 void func(const struct net_device *dev, const char *fmt, ...)   \
8632 {                                                               \
8633         struct va_format vaf;                                   \
8634         va_list args;                                           \
8635                                                                 \
8636         va_start(args, fmt);                                    \
8637                                                                 \
8638         vaf.fmt = fmt;                                          \
8639         vaf.va = &args;                                         \
8640                                                                 \
8641         __netdev_printk(level, dev, &vaf);                      \
8642                                                                 \
8643         va_end(args);                                           \
8644 }                                                               \
8645 EXPORT_SYMBOL(func);
8646
8647 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8648 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8649 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8650 define_netdev_printk_level(netdev_err, KERN_ERR);
8651 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8652 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8653 define_netdev_printk_level(netdev_info, KERN_INFO);
8654
8655 static void __net_exit netdev_exit(struct net *net)
8656 {
8657         kfree(net->dev_name_head);
8658         kfree(net->dev_index_head);
8659 }
8660
8661 static struct pernet_operations __net_initdata netdev_net_ops = {
8662         .init = netdev_init,
8663         .exit = netdev_exit,
8664 };
8665
8666 static void __net_exit default_device_exit(struct net *net)
8667 {
8668         struct net_device *dev, *aux;
8669         /*
8670          * Push all migratable network devices back to the
8671          * initial network namespace
8672          */
8673         rtnl_lock();
8674         for_each_netdev_safe(net, dev, aux) {
8675                 int err;
8676                 char fb_name[IFNAMSIZ];
8677
8678                 /* Ignore unmoveable devices (i.e. loopback) */
8679                 if (dev->features & NETIF_F_NETNS_LOCAL)
8680                         continue;
8681
8682                 /* Leave virtual devices for the generic cleanup */
8683                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
8684                         continue;
8685
8686                 /* Push remaining network devices to init_net */
8687                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8688                 if (__dev_get_by_name(&init_net, fb_name))
8689                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
8690                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8691                 if (err) {
8692                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8693                                  __func__, dev->name, err);
8694                         BUG();
8695                 }
8696         }
8697         rtnl_unlock();
8698 }
8699
8700 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8701 {
8702         /* Return with the rtnl_lock held when there are no network
8703          * devices unregistering in any network namespace in net_list.
8704          */
8705         struct net *net;
8706         bool unregistering;
8707         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8708
8709         add_wait_queue(&netdev_unregistering_wq, &wait);
8710         for (;;) {
8711                 unregistering = false;
8712                 rtnl_lock();
8713                 list_for_each_entry(net, net_list, exit_list) {
8714                         if (net->dev_unreg_count > 0) {
8715                                 unregistering = true;
8716                                 break;
8717                         }
8718                 }
8719                 if (!unregistering)
8720                         break;
8721                 __rtnl_unlock();
8722
8723                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8724         }
8725         remove_wait_queue(&netdev_unregistering_wq, &wait);
8726 }
8727
8728 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8729 {
8730         /* At exit all network devices most be removed from a network
8731          * namespace.  Do this in the reverse order of registration.
8732          * Do this across as many network namespaces as possible to
8733          * improve batching efficiency.
8734          */
8735         struct net_device *dev;
8736         struct net *net;
8737         LIST_HEAD(dev_kill_list);
8738
8739         /* To prevent network device cleanup code from dereferencing
8740          * loopback devices or network devices that have been freed
8741          * wait here for all pending unregistrations to complete,
8742          * before unregistring the loopback device and allowing the
8743          * network namespace be freed.
8744          *
8745          * The netdev todo list containing all network devices
8746          * unregistrations that happen in default_device_exit_batch
8747          * will run in the rtnl_unlock() at the end of
8748          * default_device_exit_batch.
8749          */
8750         rtnl_lock_unregistering(net_list);
8751         list_for_each_entry(net, net_list, exit_list) {
8752                 for_each_netdev_reverse(net, dev) {
8753                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8754                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8755                         else
8756                                 unregister_netdevice_queue(dev, &dev_kill_list);
8757                 }
8758         }
8759         unregister_netdevice_many(&dev_kill_list);
8760         rtnl_unlock();
8761 }
8762
8763 static struct pernet_operations __net_initdata default_device_ops = {
8764         .exit = default_device_exit,
8765         .exit_batch = default_device_exit_batch,
8766 };
8767
8768 /*
8769  *      Initialize the DEV module. At boot time this walks the device list and
8770  *      unhooks any devices that fail to initialise (normally hardware not
8771  *      present) and leaves us with a valid list of present and active devices.
8772  *
8773  */
8774
8775 /*
8776  *       This is called single threaded during boot, so no need
8777  *       to take the rtnl semaphore.
8778  */
8779 static int __init net_dev_init(void)
8780 {
8781         int i, rc = -ENOMEM;
8782
8783         BUG_ON(!dev_boot_phase);
8784
8785         if (dev_proc_init())
8786                 goto out;
8787
8788         if (netdev_kobject_init())
8789                 goto out;
8790
8791         INIT_LIST_HEAD(&ptype_all);
8792         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8793                 INIT_LIST_HEAD(&ptype_base[i]);
8794
8795         INIT_LIST_HEAD(&offload_base);
8796
8797         if (register_pernet_subsys(&netdev_net_ops))
8798                 goto out;
8799
8800         /*
8801          *      Initialise the packet receive queues.
8802          */
8803
8804         for_each_possible_cpu(i) {
8805                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8806                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8807
8808                 INIT_WORK(flush, flush_backlog);
8809
8810                 skb_queue_head_init(&sd->input_pkt_queue);
8811                 skb_queue_head_init(&sd->process_queue);
8812                 INIT_LIST_HEAD(&sd->poll_list);
8813                 sd->output_queue_tailp = &sd->output_queue;
8814 #ifdef CONFIG_RPS
8815                 sd->csd.func = rps_trigger_softirq;
8816                 sd->csd.info = sd;
8817                 sd->cpu = i;
8818 #endif
8819
8820                 sd->backlog.poll = process_backlog;
8821                 sd->backlog.weight = weight_p;
8822         }
8823
8824         dev_boot_phase = 0;
8825
8826         /* The loopback device is special if any other network devices
8827          * is present in a network namespace the loopback device must
8828          * be present. Since we now dynamically allocate and free the
8829          * loopback device ensure this invariant is maintained by
8830          * keeping the loopback device as the first device on the
8831          * list of network devices.  Ensuring the loopback devices
8832          * is the first device that appears and the last network device
8833          * that disappears.
8834          */
8835         if (register_pernet_device(&loopback_net_ops))
8836                 goto out;
8837
8838         if (register_pernet_device(&default_device_ops))
8839                 goto out;
8840
8841         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8842         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8843
8844         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8845                                        NULL, dev_cpu_dead);
8846         WARN_ON(rc < 0);
8847         rc = 0;
8848 out:
8849         return rc;
8850 }
8851
8852 subsys_initcall(net_dev_init);