GNU Linux-libre 5.4.207-gnu1
[releases.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146
147 #include "net-sysfs.h"
148
149 #define MAX_GRO_SKBS 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164                                            struct net_device *dev,
165                                            struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static DECLARE_RWSEM(devnet_rename_sem);
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235         struct net *net = dev_net(dev);
236
237         ASSERT_RTNL();
238
239         write_lock_bh(&dev_base_lock);
240         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242         hlist_add_head_rcu(&dev->index_hlist,
243                            dev_index_hash(net, dev->ifindex));
244         write_unlock_bh(&dev_base_lock);
245
246         dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254         ASSERT_RTNL();
255
256         /* Unlink dev from the device chain */
257         write_lock_bh(&dev_base_lock);
258         list_del_rcu(&dev->dev_list);
259         hlist_del_rcu(&dev->name_hlist);
260         hlist_del_rcu(&dev->index_hlist);
261         write_unlock_bh(&dev_base_lock);
262
263         dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267  *      Our notifier list
268  */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273  *      Device drivers call our routines to queue packets here. We empty the
274  *      queue in the local softnet handler.
275  */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 /*******************************************************************************
281  *
282  *              Protocol management and registration routines
283  *
284  *******************************************************************************/
285
286
287 /*
288  *      Add a protocol ID to the list. Now that the input handler is
289  *      smarter we can dispense with all the messy stuff that used to be
290  *      here.
291  *
292  *      BEWARE!!! Protocol handlers, mangling input packets,
293  *      MUST BE last in hash buckets and checking protocol handlers
294  *      MUST start from promiscuous ptype_all chain in net_bh.
295  *      It is true now, do not change it.
296  *      Explanation follows: if protocol handler, mangling packet, will
297  *      be the first on list, it is not able to sense, that packet
298  *      is cloned and should be copied-on-write, so that it will
299  *      change it and subsequent readers will get broken packet.
300  *                                                      --ANK (980803)
301  */
302
303 static inline struct list_head *ptype_head(const struct packet_type *pt)
304 {
305         if (pt->type == htons(ETH_P_ALL))
306                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
307         else
308                 return pt->dev ? &pt->dev->ptype_specific :
309                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
310 }
311
312 /**
313  *      dev_add_pack - add packet handler
314  *      @pt: packet type declaration
315  *
316  *      Add a protocol handler to the networking stack. The passed &packet_type
317  *      is linked into kernel lists and may not be freed until it has been
318  *      removed from the kernel lists.
319  *
320  *      This call does not sleep therefore it can not
321  *      guarantee all CPU's that are in middle of receiving packets
322  *      will see the new packet type (until the next received packet).
323  */
324
325 void dev_add_pack(struct packet_type *pt)
326 {
327         struct list_head *head = ptype_head(pt);
328
329         spin_lock(&ptype_lock);
330         list_add_rcu(&pt->list, head);
331         spin_unlock(&ptype_lock);
332 }
333 EXPORT_SYMBOL(dev_add_pack);
334
335 /**
336  *      __dev_remove_pack        - remove packet handler
337  *      @pt: packet type declaration
338  *
339  *      Remove a protocol handler that was previously added to the kernel
340  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
341  *      from the kernel lists and can be freed or reused once this function
342  *      returns.
343  *
344  *      The packet type might still be in use by receivers
345  *      and must not be freed until after all the CPU's have gone
346  *      through a quiescent state.
347  */
348 void __dev_remove_pack(struct packet_type *pt)
349 {
350         struct list_head *head = ptype_head(pt);
351         struct packet_type *pt1;
352
353         spin_lock(&ptype_lock);
354
355         list_for_each_entry(pt1, head, list) {
356                 if (pt == pt1) {
357                         list_del_rcu(&pt->list);
358                         goto out;
359                 }
360         }
361
362         pr_warn("dev_remove_pack: %p not found\n", pt);
363 out:
364         spin_unlock(&ptype_lock);
365 }
366 EXPORT_SYMBOL(__dev_remove_pack);
367
368 /**
369  *      dev_remove_pack  - remove packet handler
370  *      @pt: packet type declaration
371  *
372  *      Remove a protocol handler that was previously added to the kernel
373  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
374  *      from the kernel lists and can be freed or reused once this function
375  *      returns.
376  *
377  *      This call sleeps to guarantee that no CPU is looking at the packet
378  *      type after return.
379  */
380 void dev_remove_pack(struct packet_type *pt)
381 {
382         __dev_remove_pack(pt);
383
384         synchronize_net();
385 }
386 EXPORT_SYMBOL(dev_remove_pack);
387
388
389 /**
390  *      dev_add_offload - register offload handlers
391  *      @po: protocol offload declaration
392  *
393  *      Add protocol offload handlers to the networking stack. The passed
394  *      &proto_offload is linked into kernel lists and may not be freed until
395  *      it has been removed from the kernel lists.
396  *
397  *      This call does not sleep therefore it can not
398  *      guarantee all CPU's that are in middle of receiving packets
399  *      will see the new offload handlers (until the next received packet).
400  */
401 void dev_add_offload(struct packet_offload *po)
402 {
403         struct packet_offload *elem;
404
405         spin_lock(&offload_lock);
406         list_for_each_entry(elem, &offload_base, list) {
407                 if (po->priority < elem->priority)
408                         break;
409         }
410         list_add_rcu(&po->list, elem->list.prev);
411         spin_unlock(&offload_lock);
412 }
413 EXPORT_SYMBOL(dev_add_offload);
414
415 /**
416  *      __dev_remove_offload     - remove offload handler
417  *      @po: packet offload declaration
418  *
419  *      Remove a protocol offload handler that was previously added to the
420  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
421  *      is removed from the kernel lists and can be freed or reused once this
422  *      function returns.
423  *
424  *      The packet type might still be in use by receivers
425  *      and must not be freed until after all the CPU's have gone
426  *      through a quiescent state.
427  */
428 static void __dev_remove_offload(struct packet_offload *po)
429 {
430         struct list_head *head = &offload_base;
431         struct packet_offload *po1;
432
433         spin_lock(&offload_lock);
434
435         list_for_each_entry(po1, head, list) {
436                 if (po == po1) {
437                         list_del_rcu(&po->list);
438                         goto out;
439                 }
440         }
441
442         pr_warn("dev_remove_offload: %p not found\n", po);
443 out:
444         spin_unlock(&offload_lock);
445 }
446
447 /**
448  *      dev_remove_offload       - remove packet offload handler
449  *      @po: packet offload declaration
450  *
451  *      Remove a packet offload handler that was previously added to the kernel
452  *      offload handlers by dev_add_offload(). The passed &offload_type is
453  *      removed from the kernel lists and can be freed or reused once this
454  *      function returns.
455  *
456  *      This call sleeps to guarantee that no CPU is looking at the packet
457  *      type after return.
458  */
459 void dev_remove_offload(struct packet_offload *po)
460 {
461         __dev_remove_offload(po);
462
463         synchronize_net();
464 }
465 EXPORT_SYMBOL(dev_remove_offload);
466
467 /******************************************************************************
468  *
469  *                    Device Boot-time Settings Routines
470  *
471  ******************************************************************************/
472
473 /* Boot time configuration table */
474 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
475
476 /**
477  *      netdev_boot_setup_add   - add new setup entry
478  *      @name: name of the device
479  *      @map: configured settings for the device
480  *
481  *      Adds new setup entry to the dev_boot_setup list.  The function
482  *      returns 0 on error and 1 on success.  This is a generic routine to
483  *      all netdevices.
484  */
485 static int netdev_boot_setup_add(char *name, struct ifmap *map)
486 {
487         struct netdev_boot_setup *s;
488         int i;
489
490         s = dev_boot_setup;
491         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
492                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
493                         memset(s[i].name, 0, sizeof(s[i].name));
494                         strlcpy(s[i].name, name, IFNAMSIZ);
495                         memcpy(&s[i].map, map, sizeof(s[i].map));
496                         break;
497                 }
498         }
499
500         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
501 }
502
503 /**
504  * netdev_boot_setup_check      - check boot time settings
505  * @dev: the netdevice
506  *
507  * Check boot time settings for the device.
508  * The found settings are set for the device to be used
509  * later in the device probing.
510  * Returns 0 if no settings found, 1 if they are.
511  */
512 int netdev_boot_setup_check(struct net_device *dev)
513 {
514         struct netdev_boot_setup *s = dev_boot_setup;
515         int i;
516
517         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
518                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
519                     !strcmp(dev->name, s[i].name)) {
520                         dev->irq = s[i].map.irq;
521                         dev->base_addr = s[i].map.base_addr;
522                         dev->mem_start = s[i].map.mem_start;
523                         dev->mem_end = s[i].map.mem_end;
524                         return 1;
525                 }
526         }
527         return 0;
528 }
529 EXPORT_SYMBOL(netdev_boot_setup_check);
530
531
532 /**
533  * netdev_boot_base     - get address from boot time settings
534  * @prefix: prefix for network device
535  * @unit: id for network device
536  *
537  * Check boot time settings for the base address of device.
538  * The found settings are set for the device to be used
539  * later in the device probing.
540  * Returns 0 if no settings found.
541  */
542 unsigned long netdev_boot_base(const char *prefix, int unit)
543 {
544         const struct netdev_boot_setup *s = dev_boot_setup;
545         char name[IFNAMSIZ];
546         int i;
547
548         sprintf(name, "%s%d", prefix, unit);
549
550         /*
551          * If device already registered then return base of 1
552          * to indicate not to probe for this interface
553          */
554         if (__dev_get_by_name(&init_net, name))
555                 return 1;
556
557         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
558                 if (!strcmp(name, s[i].name))
559                         return s[i].map.base_addr;
560         return 0;
561 }
562
563 /*
564  * Saves at boot time configured settings for any netdevice.
565  */
566 int __init netdev_boot_setup(char *str)
567 {
568         int ints[5];
569         struct ifmap map;
570
571         str = get_options(str, ARRAY_SIZE(ints), ints);
572         if (!str || !*str)
573                 return 0;
574
575         /* Save settings */
576         memset(&map, 0, sizeof(map));
577         if (ints[0] > 0)
578                 map.irq = ints[1];
579         if (ints[0] > 1)
580                 map.base_addr = ints[2];
581         if (ints[0] > 2)
582                 map.mem_start = ints[3];
583         if (ints[0] > 3)
584                 map.mem_end = ints[4];
585
586         /* Add new entry to the list */
587         return netdev_boot_setup_add(str, &map);
588 }
589
590 __setup("netdev=", netdev_boot_setup);
591
592 /*******************************************************************************
593  *
594  *                          Device Interface Subroutines
595  *
596  *******************************************************************************/
597
598 /**
599  *      dev_get_iflink  - get 'iflink' value of a interface
600  *      @dev: targeted interface
601  *
602  *      Indicates the ifindex the interface is linked to.
603  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
604  */
605
606 int dev_get_iflink(const struct net_device *dev)
607 {
608         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
609                 return dev->netdev_ops->ndo_get_iflink(dev);
610
611         return dev->ifindex;
612 }
613 EXPORT_SYMBOL(dev_get_iflink);
614
615 /**
616  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
617  *      @dev: targeted interface
618  *      @skb: The packet.
619  *
620  *      For better visibility of tunnel traffic OVS needs to retrieve
621  *      egress tunnel information for a packet. Following API allows
622  *      user to get this info.
623  */
624 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
625 {
626         struct ip_tunnel_info *info;
627
628         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
629                 return -EINVAL;
630
631         info = skb_tunnel_info_unclone(skb);
632         if (!info)
633                 return -ENOMEM;
634         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
635                 return -EINVAL;
636
637         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
638 }
639 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
640
641 /**
642  *      __dev_get_by_name       - find a device by its name
643  *      @net: the applicable net namespace
644  *      @name: name to find
645  *
646  *      Find an interface by name. Must be called under RTNL semaphore
647  *      or @dev_base_lock. If the name is found a pointer to the device
648  *      is returned. If the name is not found then %NULL is returned. The
649  *      reference counters are not incremented so the caller must be
650  *      careful with locks.
651  */
652
653 struct net_device *__dev_get_by_name(struct net *net, const char *name)
654 {
655         struct net_device *dev;
656         struct hlist_head *head = dev_name_hash(net, name);
657
658         hlist_for_each_entry(dev, head, name_hlist)
659                 if (!strncmp(dev->name, name, IFNAMSIZ))
660                         return dev;
661
662         return NULL;
663 }
664 EXPORT_SYMBOL(__dev_get_by_name);
665
666 /**
667  * dev_get_by_name_rcu  - find a device by its name
668  * @net: the applicable net namespace
669  * @name: name to find
670  *
671  * Find an interface by name.
672  * If the name is found a pointer to the device is returned.
673  * If the name is not found then %NULL is returned.
674  * The reference counters are not incremented so the caller must be
675  * careful with locks. The caller must hold RCU lock.
676  */
677
678 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
679 {
680         struct net_device *dev;
681         struct hlist_head *head = dev_name_hash(net, name);
682
683         hlist_for_each_entry_rcu(dev, head, name_hlist)
684                 if (!strncmp(dev->name, name, IFNAMSIZ))
685                         return dev;
686
687         return NULL;
688 }
689 EXPORT_SYMBOL(dev_get_by_name_rcu);
690
691 /**
692  *      dev_get_by_name         - find a device by its name
693  *      @net: the applicable net namespace
694  *      @name: name to find
695  *
696  *      Find an interface by name. This can be called from any
697  *      context and does its own locking. The returned handle has
698  *      the usage count incremented and the caller must use dev_put() to
699  *      release it when it is no longer needed. %NULL is returned if no
700  *      matching device is found.
701  */
702
703 struct net_device *dev_get_by_name(struct net *net, const char *name)
704 {
705         struct net_device *dev;
706
707         rcu_read_lock();
708         dev = dev_get_by_name_rcu(net, name);
709         if (dev)
710                 dev_hold(dev);
711         rcu_read_unlock();
712         return dev;
713 }
714 EXPORT_SYMBOL(dev_get_by_name);
715
716 /**
717  *      __dev_get_by_index - find a device by its ifindex
718  *      @net: the applicable net namespace
719  *      @ifindex: index of device
720  *
721  *      Search for an interface by index. Returns %NULL if the device
722  *      is not found or a pointer to the device. The device has not
723  *      had its reference counter increased so the caller must be careful
724  *      about locking. The caller must hold either the RTNL semaphore
725  *      or @dev_base_lock.
726  */
727
728 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
729 {
730         struct net_device *dev;
731         struct hlist_head *head = dev_index_hash(net, ifindex);
732
733         hlist_for_each_entry(dev, head, index_hlist)
734                 if (dev->ifindex == ifindex)
735                         return dev;
736
737         return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_index);
740
741 /**
742  *      dev_get_by_index_rcu - find a device by its ifindex
743  *      @net: the applicable net namespace
744  *      @ifindex: index of device
745  *
746  *      Search for an interface by index. Returns %NULL if the device
747  *      is not found or a pointer to the device. The device has not
748  *      had its reference counter increased so the caller must be careful
749  *      about locking. The caller must hold RCU lock.
750  */
751
752 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
753 {
754         struct net_device *dev;
755         struct hlist_head *head = dev_index_hash(net, ifindex);
756
757         hlist_for_each_entry_rcu(dev, head, index_hlist)
758                 if (dev->ifindex == ifindex)
759                         return dev;
760
761         return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_index_rcu);
764
765
766 /**
767  *      dev_get_by_index - find a device by its ifindex
768  *      @net: the applicable net namespace
769  *      @ifindex: index of device
770  *
771  *      Search for an interface by index. Returns NULL if the device
772  *      is not found or a pointer to the device. The device returned has
773  *      had a reference added and the pointer is safe until the user calls
774  *      dev_put to indicate they have finished with it.
775  */
776
777 struct net_device *dev_get_by_index(struct net *net, int ifindex)
778 {
779         struct net_device *dev;
780
781         rcu_read_lock();
782         dev = dev_get_by_index_rcu(net, ifindex);
783         if (dev)
784                 dev_hold(dev);
785         rcu_read_unlock();
786         return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_index);
789
790 /**
791  *      dev_get_by_napi_id - find a device by napi_id
792  *      @napi_id: ID of the NAPI struct
793  *
794  *      Search for an interface by NAPI ID. Returns %NULL if the device
795  *      is not found or a pointer to the device. The device has not had
796  *      its reference counter increased so the caller must be careful
797  *      about locking. The caller must hold RCU lock.
798  */
799
800 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
801 {
802         struct napi_struct *napi;
803
804         WARN_ON_ONCE(!rcu_read_lock_held());
805
806         if (napi_id < MIN_NAPI_ID)
807                 return NULL;
808
809         napi = napi_by_id(napi_id);
810
811         return napi ? napi->dev : NULL;
812 }
813 EXPORT_SYMBOL(dev_get_by_napi_id);
814
815 /**
816  *      netdev_get_name - get a netdevice name, knowing its ifindex.
817  *      @net: network namespace
818  *      @name: a pointer to the buffer where the name will be stored.
819  *      @ifindex: the ifindex of the interface to get the name from.
820  */
821 int netdev_get_name(struct net *net, char *name, int ifindex)
822 {
823         struct net_device *dev;
824         int ret;
825
826         down_read(&devnet_rename_sem);
827         rcu_read_lock();
828
829         dev = dev_get_by_index_rcu(net, ifindex);
830         if (!dev) {
831                 ret = -ENODEV;
832                 goto out;
833         }
834
835         strcpy(name, dev->name);
836
837         ret = 0;
838 out:
839         rcu_read_unlock();
840         up_read(&devnet_rename_sem);
841         return ret;
842 }
843
844 /**
845  *      dev_getbyhwaddr_rcu - find a device by its hardware address
846  *      @net: the applicable net namespace
847  *      @type: media type of device
848  *      @ha: hardware address
849  *
850  *      Search for an interface by MAC address. Returns NULL if the device
851  *      is not found or a pointer to the device.
852  *      The caller must hold RCU or RTNL.
853  *      The returned device has not had its ref count increased
854  *      and the caller must therefore be careful about locking
855  *
856  */
857
858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
859                                        const char *ha)
860 {
861         struct net_device *dev;
862
863         for_each_netdev_rcu(net, dev)
864                 if (dev->type == type &&
865                     !memcmp(dev->dev_addr, ha, dev->addr_len))
866                         return dev;
867
868         return NULL;
869 }
870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
871
872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
873 {
874         struct net_device *dev;
875
876         ASSERT_RTNL();
877         for_each_netdev(net, dev)
878                 if (dev->type == type)
879                         return dev;
880
881         return NULL;
882 }
883 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
884
885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
886 {
887         struct net_device *dev, *ret = NULL;
888
889         rcu_read_lock();
890         for_each_netdev_rcu(net, dev)
891                 if (dev->type == type) {
892                         dev_hold(dev);
893                         ret = dev;
894                         break;
895                 }
896         rcu_read_unlock();
897         return ret;
898 }
899 EXPORT_SYMBOL(dev_getfirstbyhwtype);
900
901 /**
902  *      __dev_get_by_flags - find any device with given flags
903  *      @net: the applicable net namespace
904  *      @if_flags: IFF_* values
905  *      @mask: bitmask of bits in if_flags to check
906  *
907  *      Search for any interface with the given flags. Returns NULL if a device
908  *      is not found or a pointer to the device. Must be called inside
909  *      rtnl_lock(), and result refcount is unchanged.
910  */
911
912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
913                                       unsigned short mask)
914 {
915         struct net_device *dev, *ret;
916
917         ASSERT_RTNL();
918
919         ret = NULL;
920         for_each_netdev(net, dev) {
921                 if (((dev->flags ^ if_flags) & mask) == 0) {
922                         ret = dev;
923                         break;
924                 }
925         }
926         return ret;
927 }
928 EXPORT_SYMBOL(__dev_get_by_flags);
929
930 /**
931  *      dev_valid_name - check if name is okay for network device
932  *      @name: name string
933  *
934  *      Network device names need to be valid file names to
935  *      to allow sysfs to work.  We also disallow any kind of
936  *      whitespace.
937  */
938 bool dev_valid_name(const char *name)
939 {
940         if (*name == '\0')
941                 return false;
942         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
943                 return false;
944         if (!strcmp(name, ".") || !strcmp(name, ".."))
945                 return false;
946
947         while (*name) {
948                 if (*name == '/' || *name == ':' || isspace(*name))
949                         return false;
950                 name++;
951         }
952         return true;
953 }
954 EXPORT_SYMBOL(dev_valid_name);
955
956 /**
957  *      __dev_alloc_name - allocate a name for a device
958  *      @net: network namespace to allocate the device name in
959  *      @name: name format string
960  *      @buf:  scratch buffer and result name string
961  *
962  *      Passed a format string - eg "lt%d" it will try and find a suitable
963  *      id. It scans list of devices to build up a free map, then chooses
964  *      the first empty slot. The caller must hold the dev_base or rtnl lock
965  *      while allocating the name and adding the device in order to avoid
966  *      duplicates.
967  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
968  *      Returns the number of the unit assigned or a negative errno code.
969  */
970
971 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
972 {
973         int i = 0;
974         const char *p;
975         const int max_netdevices = 8*PAGE_SIZE;
976         unsigned long *inuse;
977         struct net_device *d;
978
979         if (!dev_valid_name(name))
980                 return -EINVAL;
981
982         p = strchr(name, '%');
983         if (p) {
984                 /*
985                  * Verify the string as this thing may have come from
986                  * the user.  There must be either one "%d" and no other "%"
987                  * characters.
988                  */
989                 if (p[1] != 'd' || strchr(p + 2, '%'))
990                         return -EINVAL;
991
992                 /* Use one page as a bit array of possible slots */
993                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
994                 if (!inuse)
995                         return -ENOMEM;
996
997                 for_each_netdev(net, d) {
998                         if (!sscanf(d->name, name, &i))
999                                 continue;
1000                         if (i < 0 || i >= max_netdevices)
1001                                 continue;
1002
1003                         /*  avoid cases where sscanf is not exact inverse of printf */
1004                         snprintf(buf, IFNAMSIZ, name, i);
1005                         if (!strncmp(buf, d->name, IFNAMSIZ))
1006                                 set_bit(i, inuse);
1007                 }
1008
1009                 i = find_first_zero_bit(inuse, max_netdevices);
1010                 free_page((unsigned long) inuse);
1011         }
1012
1013         snprintf(buf, IFNAMSIZ, name, i);
1014         if (!__dev_get_by_name(net, buf))
1015                 return i;
1016
1017         /* It is possible to run out of possible slots
1018          * when the name is long and there isn't enough space left
1019          * for the digits, or if all bits are used.
1020          */
1021         return -ENFILE;
1022 }
1023
1024 static int dev_alloc_name_ns(struct net *net,
1025                              struct net_device *dev,
1026                              const char *name)
1027 {
1028         char buf[IFNAMSIZ];
1029         int ret;
1030
1031         BUG_ON(!net);
1032         ret = __dev_alloc_name(net, name, buf);
1033         if (ret >= 0)
1034                 strlcpy(dev->name, buf, IFNAMSIZ);
1035         return ret;
1036 }
1037
1038 /**
1039  *      dev_alloc_name - allocate a name for a device
1040  *      @dev: device
1041  *      @name: name format string
1042  *
1043  *      Passed a format string - eg "lt%d" it will try and find a suitable
1044  *      id. It scans list of devices to build up a free map, then chooses
1045  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1046  *      while allocating the name and adding the device in order to avoid
1047  *      duplicates.
1048  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1049  *      Returns the number of the unit assigned or a negative errno code.
1050  */
1051
1052 int dev_alloc_name(struct net_device *dev, const char *name)
1053 {
1054         return dev_alloc_name_ns(dev_net(dev), dev, name);
1055 }
1056 EXPORT_SYMBOL(dev_alloc_name);
1057
1058 int dev_get_valid_name(struct net *net, struct net_device *dev,
1059                        const char *name)
1060 {
1061         BUG_ON(!net);
1062
1063         if (!dev_valid_name(name))
1064                 return -EINVAL;
1065
1066         if (strchr(name, '%'))
1067                 return dev_alloc_name_ns(net, dev, name);
1068         else if (__dev_get_by_name(net, name))
1069                 return -EEXIST;
1070         else if (dev->name != name)
1071                 strlcpy(dev->name, name, IFNAMSIZ);
1072
1073         return 0;
1074 }
1075 EXPORT_SYMBOL(dev_get_valid_name);
1076
1077 /**
1078  *      dev_change_name - change name of a device
1079  *      @dev: device
1080  *      @newname: name (or format string) must be at least IFNAMSIZ
1081  *
1082  *      Change name of a device, can pass format strings "eth%d".
1083  *      for wildcarding.
1084  */
1085 int dev_change_name(struct net_device *dev, const char *newname)
1086 {
1087         unsigned char old_assign_type;
1088         char oldname[IFNAMSIZ];
1089         int err = 0;
1090         int ret;
1091         struct net *net;
1092
1093         ASSERT_RTNL();
1094         BUG_ON(!dev_net(dev));
1095
1096         net = dev_net(dev);
1097
1098         /* Some auto-enslaved devices e.g. failover slaves are
1099          * special, as userspace might rename the device after
1100          * the interface had been brought up and running since
1101          * the point kernel initiated auto-enslavement. Allow
1102          * live name change even when these slave devices are
1103          * up and running.
1104          *
1105          * Typically, users of these auto-enslaving devices
1106          * don't actually care about slave name change, as
1107          * they are supposed to operate on master interface
1108          * directly.
1109          */
1110         if (dev->flags & IFF_UP &&
1111             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1112                 return -EBUSY;
1113
1114         down_write(&devnet_rename_sem);
1115
1116         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1117                 up_write(&devnet_rename_sem);
1118                 return 0;
1119         }
1120
1121         memcpy(oldname, dev->name, IFNAMSIZ);
1122
1123         err = dev_get_valid_name(net, dev, newname);
1124         if (err < 0) {
1125                 up_write(&devnet_rename_sem);
1126                 return err;
1127         }
1128
1129         if (oldname[0] && !strchr(oldname, '%'))
1130                 netdev_info(dev, "renamed from %s\n", oldname);
1131
1132         old_assign_type = dev->name_assign_type;
1133         dev->name_assign_type = NET_NAME_RENAMED;
1134
1135 rollback:
1136         ret = device_rename(&dev->dev, dev->name);
1137         if (ret) {
1138                 memcpy(dev->name, oldname, IFNAMSIZ);
1139                 dev->name_assign_type = old_assign_type;
1140                 up_write(&devnet_rename_sem);
1141                 return ret;
1142         }
1143
1144         up_write(&devnet_rename_sem);
1145
1146         netdev_adjacent_rename_links(dev, oldname);
1147
1148         write_lock_bh(&dev_base_lock);
1149         hlist_del_rcu(&dev->name_hlist);
1150         write_unlock_bh(&dev_base_lock);
1151
1152         synchronize_rcu();
1153
1154         write_lock_bh(&dev_base_lock);
1155         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1156         write_unlock_bh(&dev_base_lock);
1157
1158         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1159         ret = notifier_to_errno(ret);
1160
1161         if (ret) {
1162                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1163                 if (err >= 0) {
1164                         err = ret;
1165                         down_write(&devnet_rename_sem);
1166                         memcpy(dev->name, oldname, IFNAMSIZ);
1167                         memcpy(oldname, newname, IFNAMSIZ);
1168                         dev->name_assign_type = old_assign_type;
1169                         old_assign_type = NET_NAME_RENAMED;
1170                         goto rollback;
1171                 } else {
1172                         pr_err("%s: name change rollback failed: %d\n",
1173                                dev->name, ret);
1174                 }
1175         }
1176
1177         return err;
1178 }
1179
1180 /**
1181  *      dev_set_alias - change ifalias of a device
1182  *      @dev: device
1183  *      @alias: name up to IFALIASZ
1184  *      @len: limit of bytes to copy from info
1185  *
1186  *      Set ifalias for a device,
1187  */
1188 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1189 {
1190         struct dev_ifalias *new_alias = NULL;
1191
1192         if (len >= IFALIASZ)
1193                 return -EINVAL;
1194
1195         if (len) {
1196                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1197                 if (!new_alias)
1198                         return -ENOMEM;
1199
1200                 memcpy(new_alias->ifalias, alias, len);
1201                 new_alias->ifalias[len] = 0;
1202         }
1203
1204         mutex_lock(&ifalias_mutex);
1205         rcu_swap_protected(dev->ifalias, new_alias,
1206                            mutex_is_locked(&ifalias_mutex));
1207         mutex_unlock(&ifalias_mutex);
1208
1209         if (new_alias)
1210                 kfree_rcu(new_alias, rcuhead);
1211
1212         return len;
1213 }
1214 EXPORT_SYMBOL(dev_set_alias);
1215
1216 /**
1217  *      dev_get_alias - get ifalias of a device
1218  *      @dev: device
1219  *      @name: buffer to store name of ifalias
1220  *      @len: size of buffer
1221  *
1222  *      get ifalias for a device.  Caller must make sure dev cannot go
1223  *      away,  e.g. rcu read lock or own a reference count to device.
1224  */
1225 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1226 {
1227         const struct dev_ifalias *alias;
1228         int ret = 0;
1229
1230         rcu_read_lock();
1231         alias = rcu_dereference(dev->ifalias);
1232         if (alias)
1233                 ret = snprintf(name, len, "%s", alias->ifalias);
1234         rcu_read_unlock();
1235
1236         return ret;
1237 }
1238
1239 /**
1240  *      netdev_features_change - device changes features
1241  *      @dev: device to cause notification
1242  *
1243  *      Called to indicate a device has changed features.
1244  */
1245 void netdev_features_change(struct net_device *dev)
1246 {
1247         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1248 }
1249 EXPORT_SYMBOL(netdev_features_change);
1250
1251 /**
1252  *      netdev_state_change - device changes state
1253  *      @dev: device to cause notification
1254  *
1255  *      Called to indicate a device has changed state. This function calls
1256  *      the notifier chains for netdev_chain and sends a NEWLINK message
1257  *      to the routing socket.
1258  */
1259 void netdev_state_change(struct net_device *dev)
1260 {
1261         if (dev->flags & IFF_UP) {
1262                 struct netdev_notifier_change_info change_info = {
1263                         .info.dev = dev,
1264                 };
1265
1266                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1267                                               &change_info.info);
1268                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1269         }
1270 }
1271 EXPORT_SYMBOL(netdev_state_change);
1272
1273 /**
1274  * netdev_notify_peers - notify network peers about existence of @dev
1275  * @dev: network device
1276  *
1277  * Generate traffic such that interested network peers are aware of
1278  * @dev, such as by generating a gratuitous ARP. This may be used when
1279  * a device wants to inform the rest of the network about some sort of
1280  * reconfiguration such as a failover event or virtual machine
1281  * migration.
1282  */
1283 void netdev_notify_peers(struct net_device *dev)
1284 {
1285         rtnl_lock();
1286         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1287         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1288         rtnl_unlock();
1289 }
1290 EXPORT_SYMBOL(netdev_notify_peers);
1291
1292 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1293 {
1294         const struct net_device_ops *ops = dev->netdev_ops;
1295         int ret;
1296
1297         ASSERT_RTNL();
1298
1299         if (!netif_device_present(dev))
1300                 return -ENODEV;
1301
1302         /* Block netpoll from trying to do any rx path servicing.
1303          * If we don't do this there is a chance ndo_poll_controller
1304          * or ndo_poll may be running while we open the device
1305          */
1306         netpoll_poll_disable(dev);
1307
1308         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1309         ret = notifier_to_errno(ret);
1310         if (ret)
1311                 return ret;
1312
1313         set_bit(__LINK_STATE_START, &dev->state);
1314
1315         if (ops->ndo_validate_addr)
1316                 ret = ops->ndo_validate_addr(dev);
1317
1318         if (!ret && ops->ndo_open)
1319                 ret = ops->ndo_open(dev);
1320
1321         netpoll_poll_enable(dev);
1322
1323         if (ret)
1324                 clear_bit(__LINK_STATE_START, &dev->state);
1325         else {
1326                 dev->flags |= IFF_UP;
1327                 dev_set_rx_mode(dev);
1328                 dev_activate(dev);
1329                 add_device_randomness(dev->dev_addr, dev->addr_len);
1330         }
1331
1332         return ret;
1333 }
1334
1335 /**
1336  *      dev_open        - prepare an interface for use.
1337  *      @dev: device to open
1338  *      @extack: netlink extended ack
1339  *
1340  *      Takes a device from down to up state. The device's private open
1341  *      function is invoked and then the multicast lists are loaded. Finally
1342  *      the device is moved into the up state and a %NETDEV_UP message is
1343  *      sent to the netdev notifier chain.
1344  *
1345  *      Calling this function on an active interface is a nop. On a failure
1346  *      a negative errno code is returned.
1347  */
1348 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1349 {
1350         int ret;
1351
1352         if (dev->flags & IFF_UP)
1353                 return 0;
1354
1355         ret = __dev_open(dev, extack);
1356         if (ret < 0)
1357                 return ret;
1358
1359         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1360         call_netdevice_notifiers(NETDEV_UP, dev);
1361
1362         return ret;
1363 }
1364 EXPORT_SYMBOL(dev_open);
1365
1366 static void __dev_close_many(struct list_head *head)
1367 {
1368         struct net_device *dev;
1369
1370         ASSERT_RTNL();
1371         might_sleep();
1372
1373         list_for_each_entry(dev, head, close_list) {
1374                 /* Temporarily disable netpoll until the interface is down */
1375                 netpoll_poll_disable(dev);
1376
1377                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1378
1379                 clear_bit(__LINK_STATE_START, &dev->state);
1380
1381                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1382                  * can be even on different cpu. So just clear netif_running().
1383                  *
1384                  * dev->stop() will invoke napi_disable() on all of it's
1385                  * napi_struct instances on this device.
1386                  */
1387                 smp_mb__after_atomic(); /* Commit netif_running(). */
1388         }
1389
1390         dev_deactivate_many(head);
1391
1392         list_for_each_entry(dev, head, close_list) {
1393                 const struct net_device_ops *ops = dev->netdev_ops;
1394
1395                 /*
1396                  *      Call the device specific close. This cannot fail.
1397                  *      Only if device is UP
1398                  *
1399                  *      We allow it to be called even after a DETACH hot-plug
1400                  *      event.
1401                  */
1402                 if (ops->ndo_stop)
1403                         ops->ndo_stop(dev);
1404
1405                 dev->flags &= ~IFF_UP;
1406                 netpoll_poll_enable(dev);
1407         }
1408 }
1409
1410 static void __dev_close(struct net_device *dev)
1411 {
1412         LIST_HEAD(single);
1413
1414         list_add(&dev->close_list, &single);
1415         __dev_close_many(&single);
1416         list_del(&single);
1417 }
1418
1419 void dev_close_many(struct list_head *head, bool unlink)
1420 {
1421         struct net_device *dev, *tmp;
1422
1423         /* Remove the devices that don't need to be closed */
1424         list_for_each_entry_safe(dev, tmp, head, close_list)
1425                 if (!(dev->flags & IFF_UP))
1426                         list_del_init(&dev->close_list);
1427
1428         __dev_close_many(head);
1429
1430         list_for_each_entry_safe(dev, tmp, head, close_list) {
1431                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1433                 if (unlink)
1434                         list_del_init(&dev->close_list);
1435         }
1436 }
1437 EXPORT_SYMBOL(dev_close_many);
1438
1439 /**
1440  *      dev_close - shutdown an interface.
1441  *      @dev: device to shutdown
1442  *
1443  *      This function moves an active device into down state. A
1444  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1445  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1446  *      chain.
1447  */
1448 void dev_close(struct net_device *dev)
1449 {
1450         if (dev->flags & IFF_UP) {
1451                 LIST_HEAD(single);
1452
1453                 list_add(&dev->close_list, &single);
1454                 dev_close_many(&single, true);
1455                 list_del(&single);
1456         }
1457 }
1458 EXPORT_SYMBOL(dev_close);
1459
1460
1461 /**
1462  *      dev_disable_lro - disable Large Receive Offload on a device
1463  *      @dev: device
1464  *
1465  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1466  *      called under RTNL.  This is needed if received packets may be
1467  *      forwarded to another interface.
1468  */
1469 void dev_disable_lro(struct net_device *dev)
1470 {
1471         struct net_device *lower_dev;
1472         struct list_head *iter;
1473
1474         dev->wanted_features &= ~NETIF_F_LRO;
1475         netdev_update_features(dev);
1476
1477         if (unlikely(dev->features & NETIF_F_LRO))
1478                 netdev_WARN(dev, "failed to disable LRO!\n");
1479
1480         netdev_for_each_lower_dev(dev, lower_dev, iter)
1481                 dev_disable_lro(lower_dev);
1482 }
1483 EXPORT_SYMBOL(dev_disable_lro);
1484
1485 /**
1486  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1487  *      @dev: device
1488  *
1489  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1490  *      called under RTNL.  This is needed if Generic XDP is installed on
1491  *      the device.
1492  */
1493 static void dev_disable_gro_hw(struct net_device *dev)
1494 {
1495         dev->wanted_features &= ~NETIF_F_GRO_HW;
1496         netdev_update_features(dev);
1497
1498         if (unlikely(dev->features & NETIF_F_GRO_HW))
1499                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1500 }
1501
1502 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1503 {
1504 #define N(val)                                          \
1505         case NETDEV_##val:                              \
1506                 return "NETDEV_" __stringify(val);
1507         switch (cmd) {
1508         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1509         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1510         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1511         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1512         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1513         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1514         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1515         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1516         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1517         N(PRE_CHANGEADDR)
1518         }
1519 #undef N
1520         return "UNKNOWN_NETDEV_EVENT";
1521 }
1522 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1523
1524 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1525                                    struct net_device *dev)
1526 {
1527         struct netdev_notifier_info info = {
1528                 .dev = dev,
1529         };
1530
1531         return nb->notifier_call(nb, val, &info);
1532 }
1533
1534 static int dev_boot_phase = 1;
1535
1536 /**
1537  * register_netdevice_notifier - register a network notifier block
1538  * @nb: notifier
1539  *
1540  * Register a notifier to be called when network device events occur.
1541  * The notifier passed is linked into the kernel structures and must
1542  * not be reused until it has been unregistered. A negative errno code
1543  * is returned on a failure.
1544  *
1545  * When registered all registration and up events are replayed
1546  * to the new notifier to allow device to have a race free
1547  * view of the network device list.
1548  */
1549
1550 int register_netdevice_notifier(struct notifier_block *nb)
1551 {
1552         struct net_device *dev;
1553         struct net_device *last;
1554         struct net *net;
1555         int err;
1556
1557         /* Close race with setup_net() and cleanup_net() */
1558         down_write(&pernet_ops_rwsem);
1559         rtnl_lock();
1560         err = raw_notifier_chain_register(&netdev_chain, nb);
1561         if (err)
1562                 goto unlock;
1563         if (dev_boot_phase)
1564                 goto unlock;
1565         for_each_net(net) {
1566                 for_each_netdev(net, dev) {
1567                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1568                         err = notifier_to_errno(err);
1569                         if (err)
1570                                 goto rollback;
1571
1572                         if (!(dev->flags & IFF_UP))
1573                                 continue;
1574
1575                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1576                 }
1577         }
1578
1579 unlock:
1580         rtnl_unlock();
1581         up_write(&pernet_ops_rwsem);
1582         return err;
1583
1584 rollback:
1585         last = dev;
1586         for_each_net(net) {
1587                 for_each_netdev(net, dev) {
1588                         if (dev == last)
1589                                 goto outroll;
1590
1591                         if (dev->flags & IFF_UP) {
1592                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1593                                                         dev);
1594                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1595                         }
1596                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1597                 }
1598         }
1599
1600 outroll:
1601         raw_notifier_chain_unregister(&netdev_chain, nb);
1602         goto unlock;
1603 }
1604 EXPORT_SYMBOL(register_netdevice_notifier);
1605
1606 /**
1607  * unregister_netdevice_notifier - unregister a network notifier block
1608  * @nb: notifier
1609  *
1610  * Unregister a notifier previously registered by
1611  * register_netdevice_notifier(). The notifier is unlinked into the
1612  * kernel structures and may then be reused. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * After unregistering unregister and down device events are synthesized
1616  * for all devices on the device list to the removed notifier to remove
1617  * the need for special case cleanup code.
1618  */
1619
1620 int unregister_netdevice_notifier(struct notifier_block *nb)
1621 {
1622         struct net_device *dev;
1623         struct net *net;
1624         int err;
1625
1626         /* Close race with setup_net() and cleanup_net() */
1627         down_write(&pernet_ops_rwsem);
1628         rtnl_lock();
1629         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1630         if (err)
1631                 goto unlock;
1632
1633         for_each_net(net) {
1634                 for_each_netdev(net, dev) {
1635                         if (dev->flags & IFF_UP) {
1636                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1637                                                         dev);
1638                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1639                         }
1640                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1641                 }
1642         }
1643 unlock:
1644         rtnl_unlock();
1645         up_write(&pernet_ops_rwsem);
1646         return err;
1647 }
1648 EXPORT_SYMBOL(unregister_netdevice_notifier);
1649
1650 /**
1651  *      call_netdevice_notifiers_info - call all network notifier blocks
1652  *      @val: value passed unmodified to notifier function
1653  *      @info: notifier information data
1654  *
1655  *      Call all network notifier blocks.  Parameters and return value
1656  *      are as for raw_notifier_call_chain().
1657  */
1658
1659 static int call_netdevice_notifiers_info(unsigned long val,
1660                                          struct netdev_notifier_info *info)
1661 {
1662         ASSERT_RTNL();
1663         return raw_notifier_call_chain(&netdev_chain, val, info);
1664 }
1665
1666 static int call_netdevice_notifiers_extack(unsigned long val,
1667                                            struct net_device *dev,
1668                                            struct netlink_ext_ack *extack)
1669 {
1670         struct netdev_notifier_info info = {
1671                 .dev = dev,
1672                 .extack = extack,
1673         };
1674
1675         return call_netdevice_notifiers_info(val, &info);
1676 }
1677
1678 /**
1679  *      call_netdevice_notifiers - call all network notifier blocks
1680  *      @val: value passed unmodified to notifier function
1681  *      @dev: net_device pointer passed unmodified to notifier function
1682  *
1683  *      Call all network notifier blocks.  Parameters and return value
1684  *      are as for raw_notifier_call_chain().
1685  */
1686
1687 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1688 {
1689         return call_netdevice_notifiers_extack(val, dev, NULL);
1690 }
1691 EXPORT_SYMBOL(call_netdevice_notifiers);
1692
1693 /**
1694  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1695  *      @val: value passed unmodified to notifier function
1696  *      @dev: net_device pointer passed unmodified to notifier function
1697  *      @arg: additional u32 argument passed to the notifier function
1698  *
1699  *      Call all network notifier blocks.  Parameters and return value
1700  *      are as for raw_notifier_call_chain().
1701  */
1702 static int call_netdevice_notifiers_mtu(unsigned long val,
1703                                         struct net_device *dev, u32 arg)
1704 {
1705         struct netdev_notifier_info_ext info = {
1706                 .info.dev = dev,
1707                 .ext.mtu = arg,
1708         };
1709
1710         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1711
1712         return call_netdevice_notifiers_info(val, &info.info);
1713 }
1714
1715 #ifdef CONFIG_NET_INGRESS
1716 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1717
1718 void net_inc_ingress_queue(void)
1719 {
1720         static_branch_inc(&ingress_needed_key);
1721 }
1722 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1723
1724 void net_dec_ingress_queue(void)
1725 {
1726         static_branch_dec(&ingress_needed_key);
1727 }
1728 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1729 #endif
1730
1731 #ifdef CONFIG_NET_EGRESS
1732 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1733
1734 void net_inc_egress_queue(void)
1735 {
1736         static_branch_inc(&egress_needed_key);
1737 }
1738 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1739
1740 void net_dec_egress_queue(void)
1741 {
1742         static_branch_dec(&egress_needed_key);
1743 }
1744 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1745 #endif
1746
1747 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1748 #ifdef CONFIG_JUMP_LABEL
1749 static atomic_t netstamp_needed_deferred;
1750 static atomic_t netstamp_wanted;
1751 static void netstamp_clear(struct work_struct *work)
1752 {
1753         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1754         int wanted;
1755
1756         wanted = atomic_add_return(deferred, &netstamp_wanted);
1757         if (wanted > 0)
1758                 static_branch_enable(&netstamp_needed_key);
1759         else
1760                 static_branch_disable(&netstamp_needed_key);
1761 }
1762 static DECLARE_WORK(netstamp_work, netstamp_clear);
1763 #endif
1764
1765 void net_enable_timestamp(void)
1766 {
1767 #ifdef CONFIG_JUMP_LABEL
1768         int wanted;
1769
1770         while (1) {
1771                 wanted = atomic_read(&netstamp_wanted);
1772                 if (wanted <= 0)
1773                         break;
1774                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1775                         return;
1776         }
1777         atomic_inc(&netstamp_needed_deferred);
1778         schedule_work(&netstamp_work);
1779 #else
1780         static_branch_inc(&netstamp_needed_key);
1781 #endif
1782 }
1783 EXPORT_SYMBOL(net_enable_timestamp);
1784
1785 void net_disable_timestamp(void)
1786 {
1787 #ifdef CONFIG_JUMP_LABEL
1788         int wanted;
1789
1790         while (1) {
1791                 wanted = atomic_read(&netstamp_wanted);
1792                 if (wanted <= 1)
1793                         break;
1794                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1795                         return;
1796         }
1797         atomic_dec(&netstamp_needed_deferred);
1798         schedule_work(&netstamp_work);
1799 #else
1800         static_branch_dec(&netstamp_needed_key);
1801 #endif
1802 }
1803 EXPORT_SYMBOL(net_disable_timestamp);
1804
1805 static inline void net_timestamp_set(struct sk_buff *skb)
1806 {
1807         skb->tstamp = 0;
1808         if (static_branch_unlikely(&netstamp_needed_key))
1809                 __net_timestamp(skb);
1810 }
1811
1812 #define net_timestamp_check(COND, SKB)                          \
1813         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1814                 if ((COND) && !(SKB)->tstamp)                   \
1815                         __net_timestamp(SKB);                   \
1816         }                                                       \
1817
1818 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1819 {
1820         unsigned int len;
1821
1822         if (!(dev->flags & IFF_UP))
1823                 return false;
1824
1825         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1826         if (skb->len <= len)
1827                 return true;
1828
1829         /* if TSO is enabled, we don't care about the length as the packet
1830          * could be forwarded without being segmented before
1831          */
1832         if (skb_is_gso(skb))
1833                 return true;
1834
1835         return false;
1836 }
1837 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1838
1839 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1840 {
1841         int ret = ____dev_forward_skb(dev, skb);
1842
1843         if (likely(!ret)) {
1844                 skb->protocol = eth_type_trans(skb, dev);
1845                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1846         }
1847
1848         return ret;
1849 }
1850 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1851
1852 /**
1853  * dev_forward_skb - loopback an skb to another netif
1854  *
1855  * @dev: destination network device
1856  * @skb: buffer to forward
1857  *
1858  * return values:
1859  *      NET_RX_SUCCESS  (no congestion)
1860  *      NET_RX_DROP     (packet was dropped, but freed)
1861  *
1862  * dev_forward_skb can be used for injecting an skb from the
1863  * start_xmit function of one device into the receive queue
1864  * of another device.
1865  *
1866  * The receiving device may be in another namespace, so
1867  * we have to clear all information in the skb that could
1868  * impact namespace isolation.
1869  */
1870 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1871 {
1872         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1873 }
1874 EXPORT_SYMBOL_GPL(dev_forward_skb);
1875
1876 static inline int deliver_skb(struct sk_buff *skb,
1877                               struct packet_type *pt_prev,
1878                               struct net_device *orig_dev)
1879 {
1880         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1881                 return -ENOMEM;
1882         refcount_inc(&skb->users);
1883         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1884 }
1885
1886 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1887                                           struct packet_type **pt,
1888                                           struct net_device *orig_dev,
1889                                           __be16 type,
1890                                           struct list_head *ptype_list)
1891 {
1892         struct packet_type *ptype, *pt_prev = *pt;
1893
1894         list_for_each_entry_rcu(ptype, ptype_list, list) {
1895                 if (ptype->type != type)
1896                         continue;
1897                 if (pt_prev)
1898                         deliver_skb(skb, pt_prev, orig_dev);
1899                 pt_prev = ptype;
1900         }
1901         *pt = pt_prev;
1902 }
1903
1904 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1905 {
1906         if (!ptype->af_packet_priv || !skb->sk)
1907                 return false;
1908
1909         if (ptype->id_match)
1910                 return ptype->id_match(ptype, skb->sk);
1911         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1912                 return true;
1913
1914         return false;
1915 }
1916
1917 /**
1918  * dev_nit_active - return true if any network interface taps are in use
1919  *
1920  * @dev: network device to check for the presence of taps
1921  */
1922 bool dev_nit_active(struct net_device *dev)
1923 {
1924         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1925 }
1926 EXPORT_SYMBOL_GPL(dev_nit_active);
1927
1928 /*
1929  *      Support routine. Sends outgoing frames to any network
1930  *      taps currently in use.
1931  */
1932
1933 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1934 {
1935         struct packet_type *ptype;
1936         struct sk_buff *skb2 = NULL;
1937         struct packet_type *pt_prev = NULL;
1938         struct list_head *ptype_list = &ptype_all;
1939
1940         rcu_read_lock();
1941 again:
1942         list_for_each_entry_rcu(ptype, ptype_list, list) {
1943                 if (ptype->ignore_outgoing)
1944                         continue;
1945
1946                 /* Never send packets back to the socket
1947                  * they originated from - MvS (miquels@drinkel.ow.org)
1948                  */
1949                 if (skb_loop_sk(ptype, skb))
1950                         continue;
1951
1952                 if (pt_prev) {
1953                         deliver_skb(skb2, pt_prev, skb->dev);
1954                         pt_prev = ptype;
1955                         continue;
1956                 }
1957
1958                 /* need to clone skb, done only once */
1959                 skb2 = skb_clone(skb, GFP_ATOMIC);
1960                 if (!skb2)
1961                         goto out_unlock;
1962
1963                 net_timestamp_set(skb2);
1964
1965                 /* skb->nh should be correctly
1966                  * set by sender, so that the second statement is
1967                  * just protection against buggy protocols.
1968                  */
1969                 skb_reset_mac_header(skb2);
1970
1971                 if (skb_network_header(skb2) < skb2->data ||
1972                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974                                              ntohs(skb2->protocol),
1975                                              dev->name);
1976                         skb_reset_network_header(skb2);
1977                 }
1978
1979                 skb2->transport_header = skb2->network_header;
1980                 skb2->pkt_type = PACKET_OUTGOING;
1981                 pt_prev = ptype;
1982         }
1983
1984         if (ptype_list == &ptype_all) {
1985                 ptype_list = &dev->ptype_all;
1986                 goto again;
1987         }
1988 out_unlock:
1989         if (pt_prev) {
1990                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992                 else
1993                         kfree_skb(skb2);
1994         }
1995         rcu_read_unlock();
1996 }
1997 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1998
1999 /**
2000  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2001  * @dev: Network device
2002  * @txq: number of queues available
2003  *
2004  * If real_num_tx_queues is changed the tc mappings may no longer be
2005  * valid. To resolve this verify the tc mapping remains valid and if
2006  * not NULL the mapping. With no priorities mapping to this
2007  * offset/count pair it will no longer be used. In the worst case TC0
2008  * is invalid nothing can be done so disable priority mappings. If is
2009  * expected that drivers will fix this mapping if they can before
2010  * calling netif_set_real_num_tx_queues.
2011  */
2012 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2013 {
2014         int i;
2015         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016
2017         /* If TC0 is invalidated disable TC mapping */
2018         if (tc->offset + tc->count > txq) {
2019                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2020                 dev->num_tc = 0;
2021                 return;
2022         }
2023
2024         /* Invalidated prio to tc mappings set to TC0 */
2025         for (i = 1; i < TC_BITMASK + 1; i++) {
2026                 int q = netdev_get_prio_tc_map(dev, i);
2027
2028                 tc = &dev->tc_to_txq[q];
2029                 if (tc->offset + tc->count > txq) {
2030                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031                                 i, q);
2032                         netdev_set_prio_tc_map(dev, i, 0);
2033                 }
2034         }
2035 }
2036
2037 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038 {
2039         if (dev->num_tc) {
2040                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041                 int i;
2042
2043                 /* walk through the TCs and see if it falls into any of them */
2044                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2045                         if ((txq - tc->offset) < tc->count)
2046                                 return i;
2047                 }
2048
2049                 /* didn't find it, just return -1 to indicate no match */
2050                 return -1;
2051         }
2052
2053         return 0;
2054 }
2055 EXPORT_SYMBOL(netdev_txq_to_tc);
2056
2057 #ifdef CONFIG_XPS
2058 struct static_key xps_needed __read_mostly;
2059 EXPORT_SYMBOL(xps_needed);
2060 struct static_key xps_rxqs_needed __read_mostly;
2061 EXPORT_SYMBOL(xps_rxqs_needed);
2062 static DEFINE_MUTEX(xps_map_mutex);
2063 #define xmap_dereference(P)             \
2064         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2065
2066 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2067                              int tci, u16 index)
2068 {
2069         struct xps_map *map = NULL;
2070         int pos;
2071
2072         if (dev_maps)
2073                 map = xmap_dereference(dev_maps->attr_map[tci]);
2074         if (!map)
2075                 return false;
2076
2077         for (pos = map->len; pos--;) {
2078                 if (map->queues[pos] != index)
2079                         continue;
2080
2081                 if (map->len > 1) {
2082                         map->queues[pos] = map->queues[--map->len];
2083                         break;
2084                 }
2085
2086                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2087                 kfree_rcu(map, rcu);
2088                 return false;
2089         }
2090
2091         return true;
2092 }
2093
2094 static bool remove_xps_queue_cpu(struct net_device *dev,
2095                                  struct xps_dev_maps *dev_maps,
2096                                  int cpu, u16 offset, u16 count)
2097 {
2098         int num_tc = dev->num_tc ? : 1;
2099         bool active = false;
2100         int tci;
2101
2102         for (tci = cpu * num_tc; num_tc--; tci++) {
2103                 int i, j;
2104
2105                 for (i = count, j = offset; i--; j++) {
2106                         if (!remove_xps_queue(dev_maps, tci, j))
2107                                 break;
2108                 }
2109
2110                 active |= i < 0;
2111         }
2112
2113         return active;
2114 }
2115
2116 static void reset_xps_maps(struct net_device *dev,
2117                            struct xps_dev_maps *dev_maps,
2118                            bool is_rxqs_map)
2119 {
2120         if (is_rxqs_map) {
2121                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2122                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2123         } else {
2124                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2125         }
2126         static_key_slow_dec_cpuslocked(&xps_needed);
2127         kfree_rcu(dev_maps, rcu);
2128 }
2129
2130 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2131                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2132                            u16 offset, u16 count, bool is_rxqs_map)
2133 {
2134         bool active = false;
2135         int i, j;
2136
2137         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2138              j < nr_ids;)
2139                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2140                                                count);
2141         if (!active)
2142                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2143
2144         if (!is_rxqs_map) {
2145                 for (i = offset + (count - 1); count--; i--) {
2146                         netdev_queue_numa_node_write(
2147                                 netdev_get_tx_queue(dev, i),
2148                                 NUMA_NO_NODE);
2149                 }
2150         }
2151 }
2152
2153 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2154                                    u16 count)
2155 {
2156         const unsigned long *possible_mask = NULL;
2157         struct xps_dev_maps *dev_maps;
2158         unsigned int nr_ids;
2159
2160         if (!static_key_false(&xps_needed))
2161                 return;
2162
2163         cpus_read_lock();
2164         mutex_lock(&xps_map_mutex);
2165
2166         if (static_key_false(&xps_rxqs_needed)) {
2167                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2168                 if (dev_maps) {
2169                         nr_ids = dev->num_rx_queues;
2170                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2171                                        offset, count, true);
2172                 }
2173         }
2174
2175         dev_maps = xmap_dereference(dev->xps_cpus_map);
2176         if (!dev_maps)
2177                 goto out_no_maps;
2178
2179         if (num_possible_cpus() > 1)
2180                 possible_mask = cpumask_bits(cpu_possible_mask);
2181         nr_ids = nr_cpu_ids;
2182         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2183                        false);
2184
2185 out_no_maps:
2186         mutex_unlock(&xps_map_mutex);
2187         cpus_read_unlock();
2188 }
2189
2190 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2191 {
2192         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2193 }
2194
2195 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2196                                       u16 index, bool is_rxqs_map)
2197 {
2198         struct xps_map *new_map;
2199         int alloc_len = XPS_MIN_MAP_ALLOC;
2200         int i, pos;
2201
2202         for (pos = 0; map && pos < map->len; pos++) {
2203                 if (map->queues[pos] != index)
2204                         continue;
2205                 return map;
2206         }
2207
2208         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2209         if (map) {
2210                 if (pos < map->alloc_len)
2211                         return map;
2212
2213                 alloc_len = map->alloc_len * 2;
2214         }
2215
2216         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2217          *  map
2218          */
2219         if (is_rxqs_map)
2220                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2221         else
2222                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2223                                        cpu_to_node(attr_index));
2224         if (!new_map)
2225                 return NULL;
2226
2227         for (i = 0; i < pos; i++)
2228                 new_map->queues[i] = map->queues[i];
2229         new_map->alloc_len = alloc_len;
2230         new_map->len = pos;
2231
2232         return new_map;
2233 }
2234
2235 /* Must be called under cpus_read_lock */
2236 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2237                           u16 index, bool is_rxqs_map)
2238 {
2239         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2240         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2241         int i, j, tci, numa_node_id = -2;
2242         int maps_sz, num_tc = 1, tc = 0;
2243         struct xps_map *map, *new_map;
2244         bool active = false;
2245         unsigned int nr_ids;
2246
2247         if (dev->num_tc) {
2248                 /* Do not allow XPS on subordinate device directly */
2249                 num_tc = dev->num_tc;
2250                 if (num_tc < 0)
2251                         return -EINVAL;
2252
2253                 /* If queue belongs to subordinate dev use its map */
2254                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2255
2256                 tc = netdev_txq_to_tc(dev, index);
2257                 if (tc < 0)
2258                         return -EINVAL;
2259         }
2260
2261         mutex_lock(&xps_map_mutex);
2262         if (is_rxqs_map) {
2263                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2264                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2265                 nr_ids = dev->num_rx_queues;
2266         } else {
2267                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2268                 if (num_possible_cpus() > 1) {
2269                         online_mask = cpumask_bits(cpu_online_mask);
2270                         possible_mask = cpumask_bits(cpu_possible_mask);
2271                 }
2272                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2273                 nr_ids = nr_cpu_ids;
2274         }
2275
2276         if (maps_sz < L1_CACHE_BYTES)
2277                 maps_sz = L1_CACHE_BYTES;
2278
2279         /* allocate memory for queue storage */
2280         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2281              j < nr_ids;) {
2282                 if (!new_dev_maps)
2283                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2284                 if (!new_dev_maps) {
2285                         mutex_unlock(&xps_map_mutex);
2286                         return -ENOMEM;
2287                 }
2288
2289                 tci = j * num_tc + tc;
2290                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2291                                  NULL;
2292
2293                 map = expand_xps_map(map, j, index, is_rxqs_map);
2294                 if (!map)
2295                         goto error;
2296
2297                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2298         }
2299
2300         if (!new_dev_maps)
2301                 goto out_no_new_maps;
2302
2303         if (!dev_maps) {
2304                 /* Increment static keys at most once per type */
2305                 static_key_slow_inc_cpuslocked(&xps_needed);
2306                 if (is_rxqs_map)
2307                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2308         }
2309
2310         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2311              j < nr_ids;) {
2312                 /* copy maps belonging to foreign traffic classes */
2313                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2314                         /* fill in the new device map from the old device map */
2315                         map = xmap_dereference(dev_maps->attr_map[tci]);
2316                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2317                 }
2318
2319                 /* We need to explicitly update tci as prevous loop
2320                  * could break out early if dev_maps is NULL.
2321                  */
2322                 tci = j * num_tc + tc;
2323
2324                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2325                     netif_attr_test_online(j, online_mask, nr_ids)) {
2326                         /* add tx-queue to CPU/rx-queue maps */
2327                         int pos = 0;
2328
2329                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2330                         while ((pos < map->len) && (map->queues[pos] != index))
2331                                 pos++;
2332
2333                         if (pos == map->len)
2334                                 map->queues[map->len++] = index;
2335 #ifdef CONFIG_NUMA
2336                         if (!is_rxqs_map) {
2337                                 if (numa_node_id == -2)
2338                                         numa_node_id = cpu_to_node(j);
2339                                 else if (numa_node_id != cpu_to_node(j))
2340                                         numa_node_id = -1;
2341                         }
2342 #endif
2343                 } else if (dev_maps) {
2344                         /* fill in the new device map from the old device map */
2345                         map = xmap_dereference(dev_maps->attr_map[tci]);
2346                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2347                 }
2348
2349                 /* copy maps belonging to foreign traffic classes */
2350                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2351                         /* fill in the new device map from the old device map */
2352                         map = xmap_dereference(dev_maps->attr_map[tci]);
2353                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2354                 }
2355         }
2356
2357         if (is_rxqs_map)
2358                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2359         else
2360                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2361
2362         /* Cleanup old maps */
2363         if (!dev_maps)
2364                 goto out_no_old_maps;
2365
2366         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2367              j < nr_ids;) {
2368                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2369                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2370                         map = xmap_dereference(dev_maps->attr_map[tci]);
2371                         if (map && map != new_map)
2372                                 kfree_rcu(map, rcu);
2373                 }
2374         }
2375
2376         kfree_rcu(dev_maps, rcu);
2377
2378 out_no_old_maps:
2379         dev_maps = new_dev_maps;
2380         active = true;
2381
2382 out_no_new_maps:
2383         if (!is_rxqs_map) {
2384                 /* update Tx queue numa node */
2385                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2386                                              (numa_node_id >= 0) ?
2387                                              numa_node_id : NUMA_NO_NODE);
2388         }
2389
2390         if (!dev_maps)
2391                 goto out_no_maps;
2392
2393         /* removes tx-queue from unused CPUs/rx-queues */
2394         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2395              j < nr_ids;) {
2396                 for (i = tc, tci = j * num_tc; i--; tci++)
2397                         active |= remove_xps_queue(dev_maps, tci, index);
2398                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2399                     !netif_attr_test_online(j, online_mask, nr_ids))
2400                         active |= remove_xps_queue(dev_maps, tci, index);
2401                 for (i = num_tc - tc, tci++; --i; tci++)
2402                         active |= remove_xps_queue(dev_maps, tci, index);
2403         }
2404
2405         /* free map if not active */
2406         if (!active)
2407                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2408
2409 out_no_maps:
2410         mutex_unlock(&xps_map_mutex);
2411
2412         return 0;
2413 error:
2414         /* remove any maps that we added */
2415         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2416              j < nr_ids;) {
2417                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2418                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2419                         map = dev_maps ?
2420                               xmap_dereference(dev_maps->attr_map[tci]) :
2421                               NULL;
2422                         if (new_map && new_map != map)
2423                                 kfree(new_map);
2424                 }
2425         }
2426
2427         mutex_unlock(&xps_map_mutex);
2428
2429         kfree(new_dev_maps);
2430         return -ENOMEM;
2431 }
2432 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2433
2434 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2435                         u16 index)
2436 {
2437         int ret;
2438
2439         cpus_read_lock();
2440         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2441         cpus_read_unlock();
2442
2443         return ret;
2444 }
2445 EXPORT_SYMBOL(netif_set_xps_queue);
2446
2447 #endif
2448 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2449 {
2450         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2451
2452         /* Unbind any subordinate channels */
2453         while (txq-- != &dev->_tx[0]) {
2454                 if (txq->sb_dev)
2455                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2456         }
2457 }
2458
2459 void netdev_reset_tc(struct net_device *dev)
2460 {
2461 #ifdef CONFIG_XPS
2462         netif_reset_xps_queues_gt(dev, 0);
2463 #endif
2464         netdev_unbind_all_sb_channels(dev);
2465
2466         /* Reset TC configuration of device */
2467         dev->num_tc = 0;
2468         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2469         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2470 }
2471 EXPORT_SYMBOL(netdev_reset_tc);
2472
2473 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2474 {
2475         if (tc >= dev->num_tc)
2476                 return -EINVAL;
2477
2478 #ifdef CONFIG_XPS
2479         netif_reset_xps_queues(dev, offset, count);
2480 #endif
2481         dev->tc_to_txq[tc].count = count;
2482         dev->tc_to_txq[tc].offset = offset;
2483         return 0;
2484 }
2485 EXPORT_SYMBOL(netdev_set_tc_queue);
2486
2487 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2488 {
2489         if (num_tc > TC_MAX_QUEUE)
2490                 return -EINVAL;
2491
2492 #ifdef CONFIG_XPS
2493         netif_reset_xps_queues_gt(dev, 0);
2494 #endif
2495         netdev_unbind_all_sb_channels(dev);
2496
2497         dev->num_tc = num_tc;
2498         return 0;
2499 }
2500 EXPORT_SYMBOL(netdev_set_num_tc);
2501
2502 void netdev_unbind_sb_channel(struct net_device *dev,
2503                               struct net_device *sb_dev)
2504 {
2505         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2506
2507 #ifdef CONFIG_XPS
2508         netif_reset_xps_queues_gt(sb_dev, 0);
2509 #endif
2510         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2511         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2512
2513         while (txq-- != &dev->_tx[0]) {
2514                 if (txq->sb_dev == sb_dev)
2515                         txq->sb_dev = NULL;
2516         }
2517 }
2518 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2519
2520 int netdev_bind_sb_channel_queue(struct net_device *dev,
2521                                  struct net_device *sb_dev,
2522                                  u8 tc, u16 count, u16 offset)
2523 {
2524         /* Make certain the sb_dev and dev are already configured */
2525         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2526                 return -EINVAL;
2527
2528         /* We cannot hand out queues we don't have */
2529         if ((offset + count) > dev->real_num_tx_queues)
2530                 return -EINVAL;
2531
2532         /* Record the mapping */
2533         sb_dev->tc_to_txq[tc].count = count;
2534         sb_dev->tc_to_txq[tc].offset = offset;
2535
2536         /* Provide a way for Tx queue to find the tc_to_txq map or
2537          * XPS map for itself.
2538          */
2539         while (count--)
2540                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2541
2542         return 0;
2543 }
2544 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2545
2546 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2547 {
2548         /* Do not use a multiqueue device to represent a subordinate channel */
2549         if (netif_is_multiqueue(dev))
2550                 return -ENODEV;
2551
2552         /* We allow channels 1 - 32767 to be used for subordinate channels.
2553          * Channel 0 is meant to be "native" mode and used only to represent
2554          * the main root device. We allow writing 0 to reset the device back
2555          * to normal mode after being used as a subordinate channel.
2556          */
2557         if (channel > S16_MAX)
2558                 return -EINVAL;
2559
2560         dev->num_tc = -channel;
2561
2562         return 0;
2563 }
2564 EXPORT_SYMBOL(netdev_set_sb_channel);
2565
2566 /*
2567  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2568  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2569  */
2570 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2571 {
2572         bool disabling;
2573         int rc;
2574
2575         disabling = txq < dev->real_num_tx_queues;
2576
2577         if (txq < 1 || txq > dev->num_tx_queues)
2578                 return -EINVAL;
2579
2580         if (dev->reg_state == NETREG_REGISTERED ||
2581             dev->reg_state == NETREG_UNREGISTERING) {
2582                 ASSERT_RTNL();
2583
2584                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2585                                                   txq);
2586                 if (rc)
2587                         return rc;
2588
2589                 if (dev->num_tc)
2590                         netif_setup_tc(dev, txq);
2591
2592                 dev_qdisc_change_real_num_tx(dev, txq);
2593
2594                 dev->real_num_tx_queues = txq;
2595
2596                 if (disabling) {
2597                         synchronize_net();
2598                         qdisc_reset_all_tx_gt(dev, txq);
2599 #ifdef CONFIG_XPS
2600                         netif_reset_xps_queues_gt(dev, txq);
2601 #endif
2602                 }
2603         } else {
2604                 dev->real_num_tx_queues = txq;
2605         }
2606
2607         return 0;
2608 }
2609 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2610
2611 #ifdef CONFIG_SYSFS
2612 /**
2613  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2614  *      @dev: Network device
2615  *      @rxq: Actual number of RX queues
2616  *
2617  *      This must be called either with the rtnl_lock held or before
2618  *      registration of the net device.  Returns 0 on success, or a
2619  *      negative error code.  If called before registration, it always
2620  *      succeeds.
2621  */
2622 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2623 {
2624         int rc;
2625
2626         if (rxq < 1 || rxq > dev->num_rx_queues)
2627                 return -EINVAL;
2628
2629         if (dev->reg_state == NETREG_REGISTERED) {
2630                 ASSERT_RTNL();
2631
2632                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2633                                                   rxq);
2634                 if (rc)
2635                         return rc;
2636         }
2637
2638         dev->real_num_rx_queues = rxq;
2639         return 0;
2640 }
2641 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2642 #endif
2643
2644 /**
2645  * netif_get_num_default_rss_queues - default number of RSS queues
2646  *
2647  * This routine should set an upper limit on the number of RSS queues
2648  * used by default by multiqueue devices.
2649  */
2650 int netif_get_num_default_rss_queues(void)
2651 {
2652         return is_kdump_kernel() ?
2653                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2654 }
2655 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2656
2657 static void __netif_reschedule(struct Qdisc *q)
2658 {
2659         struct softnet_data *sd;
2660         unsigned long flags;
2661
2662         local_irq_save(flags);
2663         sd = this_cpu_ptr(&softnet_data);
2664         q->next_sched = NULL;
2665         *sd->output_queue_tailp = q;
2666         sd->output_queue_tailp = &q->next_sched;
2667         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2668         local_irq_restore(flags);
2669 }
2670
2671 void __netif_schedule(struct Qdisc *q)
2672 {
2673         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2674                 __netif_reschedule(q);
2675 }
2676 EXPORT_SYMBOL(__netif_schedule);
2677
2678 struct dev_kfree_skb_cb {
2679         enum skb_free_reason reason;
2680 };
2681
2682 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2683 {
2684         return (struct dev_kfree_skb_cb *)skb->cb;
2685 }
2686
2687 void netif_schedule_queue(struct netdev_queue *txq)
2688 {
2689         rcu_read_lock();
2690         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2691                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2692
2693                 __netif_schedule(q);
2694         }
2695         rcu_read_unlock();
2696 }
2697 EXPORT_SYMBOL(netif_schedule_queue);
2698
2699 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2700 {
2701         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2702                 struct Qdisc *q;
2703
2704                 rcu_read_lock();
2705                 q = rcu_dereference(dev_queue->qdisc);
2706                 __netif_schedule(q);
2707                 rcu_read_unlock();
2708         }
2709 }
2710 EXPORT_SYMBOL(netif_tx_wake_queue);
2711
2712 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2713 {
2714         unsigned long flags;
2715
2716         if (unlikely(!skb))
2717                 return;
2718
2719         if (likely(refcount_read(&skb->users) == 1)) {
2720                 smp_rmb();
2721                 refcount_set(&skb->users, 0);
2722         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2723                 return;
2724         }
2725         get_kfree_skb_cb(skb)->reason = reason;
2726         local_irq_save(flags);
2727         skb->next = __this_cpu_read(softnet_data.completion_queue);
2728         __this_cpu_write(softnet_data.completion_queue, skb);
2729         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2730         local_irq_restore(flags);
2731 }
2732 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2733
2734 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2735 {
2736         if (in_irq() || irqs_disabled())
2737                 __dev_kfree_skb_irq(skb, reason);
2738         else
2739                 dev_kfree_skb(skb);
2740 }
2741 EXPORT_SYMBOL(__dev_kfree_skb_any);
2742
2743
2744 /**
2745  * netif_device_detach - mark device as removed
2746  * @dev: network device
2747  *
2748  * Mark device as removed from system and therefore no longer available.
2749  */
2750 void netif_device_detach(struct net_device *dev)
2751 {
2752         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2753             netif_running(dev)) {
2754                 netif_tx_stop_all_queues(dev);
2755         }
2756 }
2757 EXPORT_SYMBOL(netif_device_detach);
2758
2759 /**
2760  * netif_device_attach - mark device as attached
2761  * @dev: network device
2762  *
2763  * Mark device as attached from system and restart if needed.
2764  */
2765 void netif_device_attach(struct net_device *dev)
2766 {
2767         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2768             netif_running(dev)) {
2769                 netif_tx_wake_all_queues(dev);
2770                 __netdev_watchdog_up(dev);
2771         }
2772 }
2773 EXPORT_SYMBOL(netif_device_attach);
2774
2775 /*
2776  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2777  * to be used as a distribution range.
2778  */
2779 static u16 skb_tx_hash(const struct net_device *dev,
2780                        const struct net_device *sb_dev,
2781                        struct sk_buff *skb)
2782 {
2783         u32 hash;
2784         u16 qoffset = 0;
2785         u16 qcount = dev->real_num_tx_queues;
2786
2787         if (dev->num_tc) {
2788                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2789
2790                 qoffset = sb_dev->tc_to_txq[tc].offset;
2791                 qcount = sb_dev->tc_to_txq[tc].count;
2792                 if (unlikely(!qcount)) {
2793                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
2794                                              sb_dev->name, qoffset, tc);
2795                         qoffset = 0;
2796                         qcount = dev->real_num_tx_queues;
2797                 }
2798         }
2799
2800         if (skb_rx_queue_recorded(skb)) {
2801                 hash = skb_get_rx_queue(skb);
2802                 if (hash >= qoffset)
2803                         hash -= qoffset;
2804                 while (unlikely(hash >= qcount))
2805                         hash -= qcount;
2806                 return hash + qoffset;
2807         }
2808
2809         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2810 }
2811
2812 static void skb_warn_bad_offload(const struct sk_buff *skb)
2813 {
2814         static const netdev_features_t null_features;
2815         struct net_device *dev = skb->dev;
2816         const char *name = "";
2817
2818         if (!net_ratelimit())
2819                 return;
2820
2821         if (dev) {
2822                 if (dev->dev.parent)
2823                         name = dev_driver_string(dev->dev.parent);
2824                 else
2825                         name = netdev_name(dev);
2826         }
2827         skb_dump(KERN_WARNING, skb, false);
2828         WARN(1, "%s: caps=(%pNF, %pNF)\n",
2829              name, dev ? &dev->features : &null_features,
2830              skb->sk ? &skb->sk->sk_route_caps : &null_features);
2831 }
2832
2833 /*
2834  * Invalidate hardware checksum when packet is to be mangled, and
2835  * complete checksum manually on outgoing path.
2836  */
2837 int skb_checksum_help(struct sk_buff *skb)
2838 {
2839         __wsum csum;
2840         int ret = 0, offset;
2841
2842         if (skb->ip_summed == CHECKSUM_COMPLETE)
2843                 goto out_set_summed;
2844
2845         if (unlikely(skb_shinfo(skb)->gso_size)) {
2846                 skb_warn_bad_offload(skb);
2847                 return -EINVAL;
2848         }
2849
2850         /* Before computing a checksum, we should make sure no frag could
2851          * be modified by an external entity : checksum could be wrong.
2852          */
2853         if (skb_has_shared_frag(skb)) {
2854                 ret = __skb_linearize(skb);
2855                 if (ret)
2856                         goto out;
2857         }
2858
2859         offset = skb_checksum_start_offset(skb);
2860         BUG_ON(offset >= skb_headlen(skb));
2861         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2862
2863         offset += skb->csum_offset;
2864         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2865
2866         if (skb_cloned(skb) &&
2867             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2868                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2869                 if (ret)
2870                         goto out;
2871         }
2872
2873         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2874 out_set_summed:
2875         skb->ip_summed = CHECKSUM_NONE;
2876 out:
2877         return ret;
2878 }
2879 EXPORT_SYMBOL(skb_checksum_help);
2880
2881 int skb_crc32c_csum_help(struct sk_buff *skb)
2882 {
2883         __le32 crc32c_csum;
2884         int ret = 0, offset, start;
2885
2886         if (skb->ip_summed != CHECKSUM_PARTIAL)
2887                 goto out;
2888
2889         if (unlikely(skb_is_gso(skb)))
2890                 goto out;
2891
2892         /* Before computing a checksum, we should make sure no frag could
2893          * be modified by an external entity : checksum could be wrong.
2894          */
2895         if (unlikely(skb_has_shared_frag(skb))) {
2896                 ret = __skb_linearize(skb);
2897                 if (ret)
2898                         goto out;
2899         }
2900         start = skb_checksum_start_offset(skb);
2901         offset = start + offsetof(struct sctphdr, checksum);
2902         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2903                 ret = -EINVAL;
2904                 goto out;
2905         }
2906         if (skb_cloned(skb) &&
2907             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2908                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2909                 if (ret)
2910                         goto out;
2911         }
2912         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2913                                                   skb->len - start, ~(__u32)0,
2914                                                   crc32c_csum_stub));
2915         *(__le32 *)(skb->data + offset) = crc32c_csum;
2916         skb->ip_summed = CHECKSUM_NONE;
2917         skb->csum_not_inet = 0;
2918 out:
2919         return ret;
2920 }
2921
2922 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2923 {
2924         __be16 type = skb->protocol;
2925
2926         /* Tunnel gso handlers can set protocol to ethernet. */
2927         if (type == htons(ETH_P_TEB)) {
2928                 struct ethhdr *eth;
2929
2930                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2931                         return 0;
2932
2933                 eth = (struct ethhdr *)skb->data;
2934                 type = eth->h_proto;
2935         }
2936
2937         return __vlan_get_protocol(skb, type, depth);
2938 }
2939
2940 /**
2941  *      skb_mac_gso_segment - mac layer segmentation handler.
2942  *      @skb: buffer to segment
2943  *      @features: features for the output path (see dev->features)
2944  */
2945 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2946                                     netdev_features_t features)
2947 {
2948         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2949         struct packet_offload *ptype;
2950         int vlan_depth = skb->mac_len;
2951         __be16 type = skb_network_protocol(skb, &vlan_depth);
2952
2953         if (unlikely(!type))
2954                 return ERR_PTR(-EINVAL);
2955
2956         __skb_pull(skb, vlan_depth);
2957
2958         rcu_read_lock();
2959         list_for_each_entry_rcu(ptype, &offload_base, list) {
2960                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2961                         segs = ptype->callbacks.gso_segment(skb, features);
2962                         break;
2963                 }
2964         }
2965         rcu_read_unlock();
2966
2967         __skb_push(skb, skb->data - skb_mac_header(skb));
2968
2969         return segs;
2970 }
2971 EXPORT_SYMBOL(skb_mac_gso_segment);
2972
2973
2974 /* openvswitch calls this on rx path, so we need a different check.
2975  */
2976 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2977 {
2978         if (tx_path)
2979                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2980                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2981
2982         return skb->ip_summed == CHECKSUM_NONE;
2983 }
2984
2985 /**
2986  *      __skb_gso_segment - Perform segmentation on skb.
2987  *      @skb: buffer to segment
2988  *      @features: features for the output path (see dev->features)
2989  *      @tx_path: whether it is called in TX path
2990  *
2991  *      This function segments the given skb and returns a list of segments.
2992  *
2993  *      It may return NULL if the skb requires no segmentation.  This is
2994  *      only possible when GSO is used for verifying header integrity.
2995  *
2996  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2997  */
2998 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2999                                   netdev_features_t features, bool tx_path)
3000 {
3001         struct sk_buff *segs;
3002
3003         if (unlikely(skb_needs_check(skb, tx_path))) {
3004                 int err;
3005
3006                 /* We're going to init ->check field in TCP or UDP header */
3007                 err = skb_cow_head(skb, 0);
3008                 if (err < 0)
3009                         return ERR_PTR(err);
3010         }
3011
3012         /* Only report GSO partial support if it will enable us to
3013          * support segmentation on this frame without needing additional
3014          * work.
3015          */
3016         if (features & NETIF_F_GSO_PARTIAL) {
3017                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3018                 struct net_device *dev = skb->dev;
3019
3020                 partial_features |= dev->features & dev->gso_partial_features;
3021                 if (!skb_gso_ok(skb, features | partial_features))
3022                         features &= ~NETIF_F_GSO_PARTIAL;
3023         }
3024
3025         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3026                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3027
3028         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3029         SKB_GSO_CB(skb)->encap_level = 0;
3030
3031         skb_reset_mac_header(skb);
3032         skb_reset_mac_len(skb);
3033
3034         segs = skb_mac_gso_segment(skb, features);
3035
3036         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3037                 skb_warn_bad_offload(skb);
3038
3039         return segs;
3040 }
3041 EXPORT_SYMBOL(__skb_gso_segment);
3042
3043 /* Take action when hardware reception checksum errors are detected. */
3044 #ifdef CONFIG_BUG
3045 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3046 {
3047         if (net_ratelimit()) {
3048                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3049                 skb_dump(KERN_ERR, skb, true);
3050                 dump_stack();
3051         }
3052 }
3053 EXPORT_SYMBOL(netdev_rx_csum_fault);
3054 #endif
3055
3056 /* XXX: check that highmem exists at all on the given machine. */
3057 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3058 {
3059 #ifdef CONFIG_HIGHMEM
3060         int i;
3061
3062         if (!(dev->features & NETIF_F_HIGHDMA)) {
3063                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3064                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3065
3066                         if (PageHighMem(skb_frag_page(frag)))
3067                                 return 1;
3068                 }
3069         }
3070 #endif
3071         return 0;
3072 }
3073
3074 /* If MPLS offload request, verify we are testing hardware MPLS features
3075  * instead of standard features for the netdev.
3076  */
3077 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3078 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3079                                            netdev_features_t features,
3080                                            __be16 type)
3081 {
3082         if (eth_p_mpls(type))
3083                 features &= skb->dev->mpls_features;
3084
3085         return features;
3086 }
3087 #else
3088 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3089                                            netdev_features_t features,
3090                                            __be16 type)
3091 {
3092         return features;
3093 }
3094 #endif
3095
3096 static netdev_features_t harmonize_features(struct sk_buff *skb,
3097         netdev_features_t features)
3098 {
3099         int tmp;
3100         __be16 type;
3101
3102         type = skb_network_protocol(skb, &tmp);
3103         features = net_mpls_features(skb, features, type);
3104
3105         if (skb->ip_summed != CHECKSUM_NONE &&
3106             !can_checksum_protocol(features, type)) {
3107                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3108         }
3109         if (illegal_highdma(skb->dev, skb))
3110                 features &= ~NETIF_F_SG;
3111
3112         return features;
3113 }
3114
3115 netdev_features_t passthru_features_check(struct sk_buff *skb,
3116                                           struct net_device *dev,
3117                                           netdev_features_t features)
3118 {
3119         return features;
3120 }
3121 EXPORT_SYMBOL(passthru_features_check);
3122
3123 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3124                                              struct net_device *dev,
3125                                              netdev_features_t features)
3126 {
3127         return vlan_features_check(skb, features);
3128 }
3129
3130 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3131                                             struct net_device *dev,
3132                                             netdev_features_t features)
3133 {
3134         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3135
3136         if (gso_segs > dev->gso_max_segs)
3137                 return features & ~NETIF_F_GSO_MASK;
3138
3139         /* Support for GSO partial features requires software
3140          * intervention before we can actually process the packets
3141          * so we need to strip support for any partial features now
3142          * and we can pull them back in after we have partially
3143          * segmented the frame.
3144          */
3145         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3146                 features &= ~dev->gso_partial_features;
3147
3148         /* Make sure to clear the IPv4 ID mangling feature if the
3149          * IPv4 header has the potential to be fragmented.
3150          */
3151         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3152                 struct iphdr *iph = skb->encapsulation ?
3153                                     inner_ip_hdr(skb) : ip_hdr(skb);
3154
3155                 if (!(iph->frag_off & htons(IP_DF)))
3156                         features &= ~NETIF_F_TSO_MANGLEID;
3157         }
3158
3159         return features;
3160 }
3161
3162 netdev_features_t netif_skb_features(struct sk_buff *skb)
3163 {
3164         struct net_device *dev = skb->dev;
3165         netdev_features_t features = dev->features;
3166
3167         if (skb_is_gso(skb))
3168                 features = gso_features_check(skb, dev, features);
3169
3170         /* If encapsulation offload request, verify we are testing
3171          * hardware encapsulation features instead of standard
3172          * features for the netdev
3173          */
3174         if (skb->encapsulation)
3175                 features &= dev->hw_enc_features;
3176
3177         if (skb_vlan_tagged(skb))
3178                 features = netdev_intersect_features(features,
3179                                                      dev->vlan_features |
3180                                                      NETIF_F_HW_VLAN_CTAG_TX |
3181                                                      NETIF_F_HW_VLAN_STAG_TX);
3182
3183         if (dev->netdev_ops->ndo_features_check)
3184                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3185                                                                 features);
3186         else
3187                 features &= dflt_features_check(skb, dev, features);
3188
3189         return harmonize_features(skb, features);
3190 }
3191 EXPORT_SYMBOL(netif_skb_features);
3192
3193 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3194                     struct netdev_queue *txq, bool more)
3195 {
3196         unsigned int len;
3197         int rc;
3198
3199         if (dev_nit_active(dev))
3200                 dev_queue_xmit_nit(skb, dev);
3201
3202         len = skb->len;
3203         trace_net_dev_start_xmit(skb, dev);
3204         rc = netdev_start_xmit(skb, dev, txq, more);
3205         trace_net_dev_xmit(skb, rc, dev, len);
3206
3207         return rc;
3208 }
3209
3210 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3211                                     struct netdev_queue *txq, int *ret)
3212 {
3213         struct sk_buff *skb = first;
3214         int rc = NETDEV_TX_OK;
3215
3216         while (skb) {
3217                 struct sk_buff *next = skb->next;
3218
3219                 skb_mark_not_on_list(skb);
3220                 rc = xmit_one(skb, dev, txq, next != NULL);
3221                 if (unlikely(!dev_xmit_complete(rc))) {
3222                         skb->next = next;
3223                         goto out;
3224                 }
3225
3226                 skb = next;
3227                 if (netif_tx_queue_stopped(txq) && skb) {
3228                         rc = NETDEV_TX_BUSY;
3229                         break;
3230                 }
3231         }
3232
3233 out:
3234         *ret = rc;
3235         return skb;
3236 }
3237
3238 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3239                                           netdev_features_t features)
3240 {
3241         if (skb_vlan_tag_present(skb) &&
3242             !vlan_hw_offload_capable(features, skb->vlan_proto))
3243                 skb = __vlan_hwaccel_push_inside(skb);
3244         return skb;
3245 }
3246
3247 int skb_csum_hwoffload_help(struct sk_buff *skb,
3248                             const netdev_features_t features)
3249 {
3250         if (unlikely(skb->csum_not_inet))
3251                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3252                         skb_crc32c_csum_help(skb);
3253
3254         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3255 }
3256 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3257
3258 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3259 {
3260         netdev_features_t features;
3261
3262         features = netif_skb_features(skb);
3263         skb = validate_xmit_vlan(skb, features);
3264         if (unlikely(!skb))
3265                 goto out_null;
3266
3267         skb = sk_validate_xmit_skb(skb, dev);
3268         if (unlikely(!skb))
3269                 goto out_null;
3270
3271         if (netif_needs_gso(skb, features)) {
3272                 struct sk_buff *segs;
3273
3274                 segs = skb_gso_segment(skb, features);
3275                 if (IS_ERR(segs)) {
3276                         goto out_kfree_skb;
3277                 } else if (segs) {
3278                         consume_skb(skb);
3279                         skb = segs;
3280                 }
3281         } else {
3282                 if (skb_needs_linearize(skb, features) &&
3283                     __skb_linearize(skb))
3284                         goto out_kfree_skb;
3285
3286                 /* If packet is not checksummed and device does not
3287                  * support checksumming for this protocol, complete
3288                  * checksumming here.
3289                  */
3290                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3291                         if (skb->encapsulation)
3292                                 skb_set_inner_transport_header(skb,
3293                                                                skb_checksum_start_offset(skb));
3294                         else
3295                                 skb_set_transport_header(skb,
3296                                                          skb_checksum_start_offset(skb));
3297                         if (skb_csum_hwoffload_help(skb, features))
3298                                 goto out_kfree_skb;
3299                 }
3300         }
3301
3302         skb = validate_xmit_xfrm(skb, features, again);
3303
3304         return skb;
3305
3306 out_kfree_skb:
3307         kfree_skb(skb);
3308 out_null:
3309         atomic_long_inc(&dev->tx_dropped);
3310         return NULL;
3311 }
3312
3313 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3314 {
3315         struct sk_buff *next, *head = NULL, *tail;
3316
3317         for (; skb != NULL; skb = next) {
3318                 next = skb->next;
3319                 skb_mark_not_on_list(skb);
3320
3321                 /* in case skb wont be segmented, point to itself */
3322                 skb->prev = skb;
3323
3324                 skb = validate_xmit_skb(skb, dev, again);
3325                 if (!skb)
3326                         continue;
3327
3328                 if (!head)
3329                         head = skb;
3330                 else
3331                         tail->next = skb;
3332                 /* If skb was segmented, skb->prev points to
3333                  * the last segment. If not, it still contains skb.
3334                  */
3335                 tail = skb->prev;
3336         }
3337         return head;
3338 }
3339 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3340
3341 static void qdisc_pkt_len_init(struct sk_buff *skb)
3342 {
3343         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3344
3345         qdisc_skb_cb(skb)->pkt_len = skb->len;
3346
3347         /* To get more precise estimation of bytes sent on wire,
3348          * we add to pkt_len the headers size of all segments
3349          */
3350         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3351                 unsigned int hdr_len;
3352                 u16 gso_segs = shinfo->gso_segs;
3353
3354                 /* mac layer + network layer */
3355                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3356
3357                 /* + transport layer */
3358                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3359                         const struct tcphdr *th;
3360                         struct tcphdr _tcphdr;
3361
3362                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3363                                                 sizeof(_tcphdr), &_tcphdr);
3364                         if (likely(th))
3365                                 hdr_len += __tcp_hdrlen(th);
3366                 } else {
3367                         struct udphdr _udphdr;
3368
3369                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3370                                                sizeof(_udphdr), &_udphdr))
3371                                 hdr_len += sizeof(struct udphdr);
3372                 }
3373
3374                 if (shinfo->gso_type & SKB_GSO_DODGY)
3375                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3376                                                 shinfo->gso_size);
3377
3378                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3379         }
3380 }
3381
3382 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3383                                  struct net_device *dev,
3384                                  struct netdev_queue *txq)
3385 {
3386         spinlock_t *root_lock = qdisc_lock(q);
3387         struct sk_buff *to_free = NULL;
3388         bool contended;
3389         int rc;
3390
3391         qdisc_calculate_pkt_len(skb, q);
3392
3393         if (q->flags & TCQ_F_NOLOCK) {
3394                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3395                 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3396                         qdisc_run(q);
3397
3398                 if (unlikely(to_free))
3399                         kfree_skb_list(to_free);
3400                 return rc;
3401         }
3402
3403         /*
3404          * Heuristic to force contended enqueues to serialize on a
3405          * separate lock before trying to get qdisc main lock.
3406          * This permits qdisc->running owner to get the lock more
3407          * often and dequeue packets faster.
3408          */
3409         contended = qdisc_is_running(q);
3410         if (unlikely(contended))
3411                 spin_lock(&q->busylock);
3412
3413         spin_lock(root_lock);
3414         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3415                 __qdisc_drop(skb, &to_free);
3416                 rc = NET_XMIT_DROP;
3417         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3418                    qdisc_run_begin(q)) {
3419                 /*
3420                  * This is a work-conserving queue; there are no old skbs
3421                  * waiting to be sent out; and the qdisc is not running -
3422                  * xmit the skb directly.
3423                  */
3424
3425                 qdisc_bstats_update(q, skb);
3426
3427                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3428                         if (unlikely(contended)) {
3429                                 spin_unlock(&q->busylock);
3430                                 contended = false;
3431                         }
3432                         __qdisc_run(q);
3433                 }
3434
3435                 qdisc_run_end(q);
3436                 rc = NET_XMIT_SUCCESS;
3437         } else {
3438                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3439                 if (qdisc_run_begin(q)) {
3440                         if (unlikely(contended)) {
3441                                 spin_unlock(&q->busylock);
3442                                 contended = false;
3443                         }
3444                         __qdisc_run(q);
3445                         qdisc_run_end(q);
3446                 }
3447         }
3448         spin_unlock(root_lock);
3449         if (unlikely(to_free))
3450                 kfree_skb_list(to_free);
3451         if (unlikely(contended))
3452                 spin_unlock(&q->busylock);
3453         return rc;
3454 }
3455
3456 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3457 static void skb_update_prio(struct sk_buff *skb)
3458 {
3459         const struct netprio_map *map;
3460         const struct sock *sk;
3461         unsigned int prioidx;
3462
3463         if (skb->priority)
3464                 return;
3465         map = rcu_dereference_bh(skb->dev->priomap);
3466         if (!map)
3467                 return;
3468         sk = skb_to_full_sk(skb);
3469         if (!sk)
3470                 return;
3471
3472         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3473
3474         if (prioidx < map->priomap_len)
3475                 skb->priority = map->priomap[prioidx];
3476 }
3477 #else
3478 #define skb_update_prio(skb)
3479 #endif
3480
3481 /**
3482  *      dev_loopback_xmit - loop back @skb
3483  *      @net: network namespace this loopback is happening in
3484  *      @sk:  sk needed to be a netfilter okfn
3485  *      @skb: buffer to transmit
3486  */
3487 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3488 {
3489         skb_reset_mac_header(skb);
3490         __skb_pull(skb, skb_network_offset(skb));
3491         skb->pkt_type = PACKET_LOOPBACK;
3492         if (skb->ip_summed == CHECKSUM_NONE)
3493                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3494         WARN_ON(!skb_dst(skb));
3495         skb_dst_force(skb);
3496         netif_rx_ni(skb);
3497         return 0;
3498 }
3499 EXPORT_SYMBOL(dev_loopback_xmit);
3500
3501 #ifdef CONFIG_NET_EGRESS
3502 static struct sk_buff *
3503 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3504 {
3505         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3506         struct tcf_result cl_res;
3507
3508         if (!miniq)
3509                 return skb;
3510
3511         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3512         mini_qdisc_bstats_cpu_update(miniq, skb);
3513
3514         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3515         case TC_ACT_OK:
3516         case TC_ACT_RECLASSIFY:
3517                 skb->tc_index = TC_H_MIN(cl_res.classid);
3518                 break;
3519         case TC_ACT_SHOT:
3520                 mini_qdisc_qstats_cpu_drop(miniq);
3521                 *ret = NET_XMIT_DROP;
3522                 kfree_skb(skb);
3523                 return NULL;
3524         case TC_ACT_STOLEN:
3525         case TC_ACT_QUEUED:
3526         case TC_ACT_TRAP:
3527                 *ret = NET_XMIT_SUCCESS;
3528                 consume_skb(skb);
3529                 return NULL;
3530         case TC_ACT_REDIRECT:
3531                 /* No need to push/pop skb's mac_header here on egress! */
3532                 skb_do_redirect(skb);
3533                 *ret = NET_XMIT_SUCCESS;
3534                 return NULL;
3535         default:
3536                 break;
3537         }
3538
3539         return skb;
3540 }
3541 #endif /* CONFIG_NET_EGRESS */
3542
3543 #ifdef CONFIG_XPS
3544 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3545                                struct xps_dev_maps *dev_maps, unsigned int tci)
3546 {
3547         struct xps_map *map;
3548         int queue_index = -1;
3549
3550         if (dev->num_tc) {
3551                 tci *= dev->num_tc;
3552                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3553         }
3554
3555         map = rcu_dereference(dev_maps->attr_map[tci]);
3556         if (map) {
3557                 if (map->len == 1)
3558                         queue_index = map->queues[0];
3559                 else
3560                         queue_index = map->queues[reciprocal_scale(
3561                                                 skb_get_hash(skb), map->len)];
3562                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3563                         queue_index = -1;
3564         }
3565         return queue_index;
3566 }
3567 #endif
3568
3569 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3570                          struct sk_buff *skb)
3571 {
3572 #ifdef CONFIG_XPS
3573         struct xps_dev_maps *dev_maps;
3574         struct sock *sk = skb->sk;
3575         int queue_index = -1;
3576
3577         if (!static_key_false(&xps_needed))
3578                 return -1;
3579
3580         rcu_read_lock();
3581         if (!static_key_false(&xps_rxqs_needed))
3582                 goto get_cpus_map;
3583
3584         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3585         if (dev_maps) {
3586                 int tci = sk_rx_queue_get(sk);
3587
3588                 if (tci >= 0 && tci < dev->num_rx_queues)
3589                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3590                                                           tci);
3591         }
3592
3593 get_cpus_map:
3594         if (queue_index < 0) {
3595                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3596                 if (dev_maps) {
3597                         unsigned int tci = skb->sender_cpu - 1;
3598
3599                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3600                                                           tci);
3601                 }
3602         }
3603         rcu_read_unlock();
3604
3605         return queue_index;
3606 #else
3607         return -1;
3608 #endif
3609 }
3610
3611 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3612                      struct net_device *sb_dev)
3613 {
3614         return 0;
3615 }
3616 EXPORT_SYMBOL(dev_pick_tx_zero);
3617
3618 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3619                        struct net_device *sb_dev)
3620 {
3621         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3622 }
3623 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3624
3625 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3626                      struct net_device *sb_dev)
3627 {
3628         struct sock *sk = skb->sk;
3629         int queue_index = sk_tx_queue_get(sk);
3630
3631         sb_dev = sb_dev ? : dev;
3632
3633         if (queue_index < 0 || skb->ooo_okay ||
3634             queue_index >= dev->real_num_tx_queues) {
3635                 int new_index = get_xps_queue(dev, sb_dev, skb);
3636
3637                 if (new_index < 0)
3638                         new_index = skb_tx_hash(dev, sb_dev, skb);
3639
3640                 if (queue_index != new_index && sk &&
3641                     sk_fullsock(sk) &&
3642                     rcu_access_pointer(sk->sk_dst_cache))
3643                         sk_tx_queue_set(sk, new_index);
3644
3645                 queue_index = new_index;
3646         }
3647
3648         return queue_index;
3649 }
3650 EXPORT_SYMBOL(netdev_pick_tx);
3651
3652 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3653                                          struct sk_buff *skb,
3654                                          struct net_device *sb_dev)
3655 {
3656         int queue_index = 0;
3657
3658 #ifdef CONFIG_XPS
3659         u32 sender_cpu = skb->sender_cpu - 1;
3660
3661         if (sender_cpu >= (u32)NR_CPUS)
3662                 skb->sender_cpu = raw_smp_processor_id() + 1;
3663 #endif
3664
3665         if (dev->real_num_tx_queues != 1) {
3666                 const struct net_device_ops *ops = dev->netdev_ops;
3667
3668                 if (ops->ndo_select_queue)
3669                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3670                 else
3671                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3672
3673                 queue_index = netdev_cap_txqueue(dev, queue_index);
3674         }
3675
3676         skb_set_queue_mapping(skb, queue_index);
3677         return netdev_get_tx_queue(dev, queue_index);
3678 }
3679
3680 /**
3681  *      __dev_queue_xmit - transmit a buffer
3682  *      @skb: buffer to transmit
3683  *      @sb_dev: suboordinate device used for L2 forwarding offload
3684  *
3685  *      Queue a buffer for transmission to a network device. The caller must
3686  *      have set the device and priority and built the buffer before calling
3687  *      this function. The function can be called from an interrupt.
3688  *
3689  *      A negative errno code is returned on a failure. A success does not
3690  *      guarantee the frame will be transmitted as it may be dropped due
3691  *      to congestion or traffic shaping.
3692  *
3693  * -----------------------------------------------------------------------------------
3694  *      I notice this method can also return errors from the queue disciplines,
3695  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3696  *      be positive.
3697  *
3698  *      Regardless of the return value, the skb is consumed, so it is currently
3699  *      difficult to retry a send to this method.  (You can bump the ref count
3700  *      before sending to hold a reference for retry if you are careful.)
3701  *
3702  *      When calling this method, interrupts MUST be enabled.  This is because
3703  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3704  *          --BLG
3705  */
3706 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3707 {
3708         struct net_device *dev = skb->dev;
3709         struct netdev_queue *txq;
3710         struct Qdisc *q;
3711         int rc = -ENOMEM;
3712         bool again = false;
3713
3714         skb_reset_mac_header(skb);
3715
3716         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3717                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3718
3719         /* Disable soft irqs for various locks below. Also
3720          * stops preemption for RCU.
3721          */
3722         rcu_read_lock_bh();
3723
3724         skb_update_prio(skb);
3725
3726         qdisc_pkt_len_init(skb);
3727 #ifdef CONFIG_NET_CLS_ACT
3728         skb->tc_at_ingress = 0;
3729 # ifdef CONFIG_NET_EGRESS
3730         if (static_branch_unlikely(&egress_needed_key)) {
3731                 skb = sch_handle_egress(skb, &rc, dev);
3732                 if (!skb)
3733                         goto out;
3734         }
3735 # endif
3736 #endif
3737         /* If device/qdisc don't need skb->dst, release it right now while
3738          * its hot in this cpu cache.
3739          */
3740         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3741                 skb_dst_drop(skb);
3742         else
3743                 skb_dst_force(skb);
3744
3745         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3746         q = rcu_dereference_bh(txq->qdisc);
3747
3748         trace_net_dev_queue(skb);
3749         if (q->enqueue) {
3750                 rc = __dev_xmit_skb(skb, q, dev, txq);
3751                 goto out;
3752         }
3753
3754         /* The device has no queue. Common case for software devices:
3755          * loopback, all the sorts of tunnels...
3756
3757          * Really, it is unlikely that netif_tx_lock protection is necessary
3758          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3759          * counters.)
3760          * However, it is possible, that they rely on protection
3761          * made by us here.
3762
3763          * Check this and shot the lock. It is not prone from deadlocks.
3764          *Either shot noqueue qdisc, it is even simpler 8)
3765          */
3766         if (dev->flags & IFF_UP) {
3767                 int cpu = smp_processor_id(); /* ok because BHs are off */
3768
3769                 /* Other cpus might concurrently change txq->xmit_lock_owner
3770                  * to -1 or to their cpu id, but not to our id.
3771                  */
3772                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
3773                         if (dev_xmit_recursion())
3774                                 goto recursion_alert;
3775
3776                         skb = validate_xmit_skb(skb, dev, &again);
3777                         if (!skb)
3778                                 goto out;
3779
3780                         HARD_TX_LOCK(dev, txq, cpu);
3781
3782                         if (!netif_xmit_stopped(txq)) {
3783                                 dev_xmit_recursion_inc();
3784                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3785                                 dev_xmit_recursion_dec();
3786                                 if (dev_xmit_complete(rc)) {
3787                                         HARD_TX_UNLOCK(dev, txq);
3788                                         goto out;
3789                                 }
3790                         }
3791                         HARD_TX_UNLOCK(dev, txq);
3792                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3793                                              dev->name);
3794                 } else {
3795                         /* Recursion is detected! It is possible,
3796                          * unfortunately
3797                          */
3798 recursion_alert:
3799                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3800                                              dev->name);
3801                 }
3802         }
3803
3804         rc = -ENETDOWN;
3805         rcu_read_unlock_bh();
3806
3807         atomic_long_inc(&dev->tx_dropped);
3808         kfree_skb_list(skb);
3809         return rc;
3810 out:
3811         rcu_read_unlock_bh();
3812         return rc;
3813 }
3814
3815 int dev_queue_xmit(struct sk_buff *skb)
3816 {
3817         return __dev_queue_xmit(skb, NULL);
3818 }
3819 EXPORT_SYMBOL(dev_queue_xmit);
3820
3821 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3822 {
3823         return __dev_queue_xmit(skb, sb_dev);
3824 }
3825 EXPORT_SYMBOL(dev_queue_xmit_accel);
3826
3827 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3828 {
3829         struct net_device *dev = skb->dev;
3830         struct sk_buff *orig_skb = skb;
3831         struct netdev_queue *txq;
3832         int ret = NETDEV_TX_BUSY;
3833         bool again = false;
3834
3835         if (unlikely(!netif_running(dev) ||
3836                      !netif_carrier_ok(dev)))
3837                 goto drop;
3838
3839         skb = validate_xmit_skb_list(skb, dev, &again);
3840         if (skb != orig_skb)
3841                 goto drop;
3842
3843         skb_set_queue_mapping(skb, queue_id);
3844         txq = skb_get_tx_queue(dev, skb);
3845
3846         local_bh_disable();
3847
3848         dev_xmit_recursion_inc();
3849         HARD_TX_LOCK(dev, txq, smp_processor_id());
3850         if (!netif_xmit_frozen_or_drv_stopped(txq))
3851                 ret = netdev_start_xmit(skb, dev, txq, false);
3852         HARD_TX_UNLOCK(dev, txq);
3853         dev_xmit_recursion_dec();
3854
3855         local_bh_enable();
3856
3857         if (!dev_xmit_complete(ret))
3858                 kfree_skb(skb);
3859
3860         return ret;
3861 drop:
3862         atomic_long_inc(&dev->tx_dropped);
3863         kfree_skb_list(skb);
3864         return NET_XMIT_DROP;
3865 }
3866 EXPORT_SYMBOL(dev_direct_xmit);
3867
3868 /*************************************************************************
3869  *                      Receiver routines
3870  *************************************************************************/
3871
3872 int netdev_max_backlog __read_mostly = 1000;
3873 EXPORT_SYMBOL(netdev_max_backlog);
3874
3875 int netdev_tstamp_prequeue __read_mostly = 1;
3876 int netdev_budget __read_mostly = 300;
3877 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3878 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3879 int weight_p __read_mostly = 64;           /* old backlog weight */
3880 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3881 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3882 int dev_rx_weight __read_mostly = 64;
3883 int dev_tx_weight __read_mostly = 64;
3884 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3885 int gro_normal_batch __read_mostly = 8;
3886
3887 /* Called with irq disabled */
3888 static inline void ____napi_schedule(struct softnet_data *sd,
3889                                      struct napi_struct *napi)
3890 {
3891         list_add_tail(&napi->poll_list, &sd->poll_list);
3892         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3893 }
3894
3895 #ifdef CONFIG_RPS
3896
3897 /* One global table that all flow-based protocols share. */
3898 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3899 EXPORT_SYMBOL(rps_sock_flow_table);
3900 u32 rps_cpu_mask __read_mostly;
3901 EXPORT_SYMBOL(rps_cpu_mask);
3902
3903 struct static_key_false rps_needed __read_mostly;
3904 EXPORT_SYMBOL(rps_needed);
3905 struct static_key_false rfs_needed __read_mostly;
3906 EXPORT_SYMBOL(rfs_needed);
3907
3908 static struct rps_dev_flow *
3909 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3910             struct rps_dev_flow *rflow, u16 next_cpu)
3911 {
3912         if (next_cpu < nr_cpu_ids) {
3913 #ifdef CONFIG_RFS_ACCEL
3914                 struct netdev_rx_queue *rxqueue;
3915                 struct rps_dev_flow_table *flow_table;
3916                 struct rps_dev_flow *old_rflow;
3917                 u32 flow_id;
3918                 u16 rxq_index;
3919                 int rc;
3920
3921                 /* Should we steer this flow to a different hardware queue? */
3922                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3923                     !(dev->features & NETIF_F_NTUPLE))
3924                         goto out;
3925                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3926                 if (rxq_index == skb_get_rx_queue(skb))
3927                         goto out;
3928
3929                 rxqueue = dev->_rx + rxq_index;
3930                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3931                 if (!flow_table)
3932                         goto out;
3933                 flow_id = skb_get_hash(skb) & flow_table->mask;
3934                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3935                                                         rxq_index, flow_id);
3936                 if (rc < 0)
3937                         goto out;
3938                 old_rflow = rflow;
3939                 rflow = &flow_table->flows[flow_id];
3940                 rflow->filter = rc;
3941                 if (old_rflow->filter == rflow->filter)
3942                         old_rflow->filter = RPS_NO_FILTER;
3943         out:
3944 #endif
3945                 rflow->last_qtail =
3946                         per_cpu(softnet_data, next_cpu).input_queue_head;
3947         }
3948
3949         rflow->cpu = next_cpu;
3950         return rflow;
3951 }
3952
3953 /*
3954  * get_rps_cpu is called from netif_receive_skb and returns the target
3955  * CPU from the RPS map of the receiving queue for a given skb.
3956  * rcu_read_lock must be held on entry.
3957  */
3958 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3959                        struct rps_dev_flow **rflowp)
3960 {
3961         const struct rps_sock_flow_table *sock_flow_table;
3962         struct netdev_rx_queue *rxqueue = dev->_rx;
3963         struct rps_dev_flow_table *flow_table;
3964         struct rps_map *map;
3965         int cpu = -1;
3966         u32 tcpu;
3967         u32 hash;
3968
3969         if (skb_rx_queue_recorded(skb)) {
3970                 u16 index = skb_get_rx_queue(skb);
3971
3972                 if (unlikely(index >= dev->real_num_rx_queues)) {
3973                         WARN_ONCE(dev->real_num_rx_queues > 1,
3974                                   "%s received packet on queue %u, but number "
3975                                   "of RX queues is %u\n",
3976                                   dev->name, index, dev->real_num_rx_queues);
3977                         goto done;
3978                 }
3979                 rxqueue += index;
3980         }
3981
3982         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3983
3984         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3985         map = rcu_dereference(rxqueue->rps_map);
3986         if (!flow_table && !map)
3987                 goto done;
3988
3989         skb_reset_network_header(skb);
3990         hash = skb_get_hash(skb);
3991         if (!hash)
3992                 goto done;
3993
3994         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3995         if (flow_table && sock_flow_table) {
3996                 struct rps_dev_flow *rflow;
3997                 u32 next_cpu;
3998                 u32 ident;
3999
4000                 /* First check into global flow table if there is a match */
4001                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4002                 if ((ident ^ hash) & ~rps_cpu_mask)
4003                         goto try_rps;
4004
4005                 next_cpu = ident & rps_cpu_mask;
4006
4007                 /* OK, now we know there is a match,
4008                  * we can look at the local (per receive queue) flow table
4009                  */
4010                 rflow = &flow_table->flows[hash & flow_table->mask];
4011                 tcpu = rflow->cpu;
4012
4013                 /*
4014                  * If the desired CPU (where last recvmsg was done) is
4015                  * different from current CPU (one in the rx-queue flow
4016                  * table entry), switch if one of the following holds:
4017                  *   - Current CPU is unset (>= nr_cpu_ids).
4018                  *   - Current CPU is offline.
4019                  *   - The current CPU's queue tail has advanced beyond the
4020                  *     last packet that was enqueued using this table entry.
4021                  *     This guarantees that all previous packets for the flow
4022                  *     have been dequeued, thus preserving in order delivery.
4023                  */
4024                 if (unlikely(tcpu != next_cpu) &&
4025                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4026                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4027                       rflow->last_qtail)) >= 0)) {
4028                         tcpu = next_cpu;
4029                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4030                 }
4031
4032                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4033                         *rflowp = rflow;
4034                         cpu = tcpu;
4035                         goto done;
4036                 }
4037         }
4038
4039 try_rps:
4040
4041         if (map) {
4042                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4043                 if (cpu_online(tcpu)) {
4044                         cpu = tcpu;
4045                         goto done;
4046                 }
4047         }
4048
4049 done:
4050         return cpu;
4051 }
4052
4053 #ifdef CONFIG_RFS_ACCEL
4054
4055 /**
4056  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4057  * @dev: Device on which the filter was set
4058  * @rxq_index: RX queue index
4059  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4060  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4061  *
4062  * Drivers that implement ndo_rx_flow_steer() should periodically call
4063  * this function for each installed filter and remove the filters for
4064  * which it returns %true.
4065  */
4066 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4067                          u32 flow_id, u16 filter_id)
4068 {
4069         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4070         struct rps_dev_flow_table *flow_table;
4071         struct rps_dev_flow *rflow;
4072         bool expire = true;
4073         unsigned int cpu;
4074
4075         rcu_read_lock();
4076         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4077         if (flow_table && flow_id <= flow_table->mask) {
4078                 rflow = &flow_table->flows[flow_id];
4079                 cpu = READ_ONCE(rflow->cpu);
4080                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4081                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4082                            rflow->last_qtail) <
4083                      (int)(10 * flow_table->mask)))
4084                         expire = false;
4085         }
4086         rcu_read_unlock();
4087         return expire;
4088 }
4089 EXPORT_SYMBOL(rps_may_expire_flow);
4090
4091 #endif /* CONFIG_RFS_ACCEL */
4092
4093 /* Called from hardirq (IPI) context */
4094 static void rps_trigger_softirq(void *data)
4095 {
4096         struct softnet_data *sd = data;
4097
4098         ____napi_schedule(sd, &sd->backlog);
4099         sd->received_rps++;
4100 }
4101
4102 #endif /* CONFIG_RPS */
4103
4104 /*
4105  * Check if this softnet_data structure is another cpu one
4106  * If yes, queue it to our IPI list and return 1
4107  * If no, return 0
4108  */
4109 static int rps_ipi_queued(struct softnet_data *sd)
4110 {
4111 #ifdef CONFIG_RPS
4112         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4113
4114         if (sd != mysd) {
4115                 sd->rps_ipi_next = mysd->rps_ipi_list;
4116                 mysd->rps_ipi_list = sd;
4117
4118                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4119                 return 1;
4120         }
4121 #endif /* CONFIG_RPS */
4122         return 0;
4123 }
4124
4125 #ifdef CONFIG_NET_FLOW_LIMIT
4126 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4127 #endif
4128
4129 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4130 {
4131 #ifdef CONFIG_NET_FLOW_LIMIT
4132         struct sd_flow_limit *fl;
4133         struct softnet_data *sd;
4134         unsigned int old_flow, new_flow;
4135
4136         if (qlen < (netdev_max_backlog >> 1))
4137                 return false;
4138
4139         sd = this_cpu_ptr(&softnet_data);
4140
4141         rcu_read_lock();
4142         fl = rcu_dereference(sd->flow_limit);
4143         if (fl) {
4144                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4145                 old_flow = fl->history[fl->history_head];
4146                 fl->history[fl->history_head] = new_flow;
4147
4148                 fl->history_head++;
4149                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4150
4151                 if (likely(fl->buckets[old_flow]))
4152                         fl->buckets[old_flow]--;
4153
4154                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4155                         fl->count++;
4156                         rcu_read_unlock();
4157                         return true;
4158                 }
4159         }
4160         rcu_read_unlock();
4161 #endif
4162         return false;
4163 }
4164
4165 /*
4166  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4167  * queue (may be a remote CPU queue).
4168  */
4169 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4170                               unsigned int *qtail)
4171 {
4172         struct softnet_data *sd;
4173         unsigned long flags;
4174         unsigned int qlen;
4175
4176         sd = &per_cpu(softnet_data, cpu);
4177
4178         local_irq_save(flags);
4179
4180         rps_lock(sd);
4181         if (!netif_running(skb->dev))
4182                 goto drop;
4183         qlen = skb_queue_len(&sd->input_pkt_queue);
4184         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4185                 if (qlen) {
4186 enqueue:
4187                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4188                         input_queue_tail_incr_save(sd, qtail);
4189                         rps_unlock(sd);
4190                         local_irq_restore(flags);
4191                         return NET_RX_SUCCESS;
4192                 }
4193
4194                 /* Schedule NAPI for backlog device
4195                  * We can use non atomic operation since we own the queue lock
4196                  */
4197                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4198                         if (!rps_ipi_queued(sd))
4199                                 ____napi_schedule(sd, &sd->backlog);
4200                 }
4201                 goto enqueue;
4202         }
4203
4204 drop:
4205         sd->dropped++;
4206         rps_unlock(sd);
4207
4208         local_irq_restore(flags);
4209
4210         atomic_long_inc(&skb->dev->rx_dropped);
4211         kfree_skb(skb);
4212         return NET_RX_DROP;
4213 }
4214
4215 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4216 {
4217         struct net_device *dev = skb->dev;
4218         struct netdev_rx_queue *rxqueue;
4219
4220         rxqueue = dev->_rx;
4221
4222         if (skb_rx_queue_recorded(skb)) {
4223                 u16 index = skb_get_rx_queue(skb);
4224
4225                 if (unlikely(index >= dev->real_num_rx_queues)) {
4226                         WARN_ONCE(dev->real_num_rx_queues > 1,
4227                                   "%s received packet on queue %u, but number "
4228                                   "of RX queues is %u\n",
4229                                   dev->name, index, dev->real_num_rx_queues);
4230
4231                         return rxqueue; /* Return first rxqueue */
4232                 }
4233                 rxqueue += index;
4234         }
4235         return rxqueue;
4236 }
4237
4238 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4239                                      struct xdp_buff *xdp,
4240                                      struct bpf_prog *xdp_prog)
4241 {
4242         struct netdev_rx_queue *rxqueue;
4243         void *orig_data, *orig_data_end;
4244         u32 metalen, act = XDP_DROP;
4245         __be16 orig_eth_type;
4246         struct ethhdr *eth;
4247         bool orig_bcast;
4248         int hlen, off;
4249         u32 mac_len;
4250
4251         /* Reinjected packets coming from act_mirred or similar should
4252          * not get XDP generic processing.
4253          */
4254         if (skb_is_redirected(skb))
4255                 return XDP_PASS;
4256
4257         /* XDP packets must be linear and must have sufficient headroom
4258          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4259          * native XDP provides, thus we need to do it here as well.
4260          */
4261         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4262             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4263                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4264                 int troom = skb->tail + skb->data_len - skb->end;
4265
4266                 /* In case we have to go down the path and also linearize,
4267                  * then lets do the pskb_expand_head() work just once here.
4268                  */
4269                 if (pskb_expand_head(skb,
4270                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4271                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4272                         goto do_drop;
4273                 if (skb_linearize(skb))
4274                         goto do_drop;
4275         }
4276
4277         /* The XDP program wants to see the packet starting at the MAC
4278          * header.
4279          */
4280         mac_len = skb->data - skb_mac_header(skb);
4281         hlen = skb_headlen(skb) + mac_len;
4282         xdp->data = skb->data - mac_len;
4283         xdp->data_meta = xdp->data;
4284         xdp->data_end = xdp->data + hlen;
4285         xdp->data_hard_start = skb->data - skb_headroom(skb);
4286         orig_data_end = xdp->data_end;
4287         orig_data = xdp->data;
4288         eth = (struct ethhdr *)xdp->data;
4289         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4290         orig_eth_type = eth->h_proto;
4291
4292         rxqueue = netif_get_rxqueue(skb);
4293         xdp->rxq = &rxqueue->xdp_rxq;
4294
4295         act = bpf_prog_run_xdp(xdp_prog, xdp);
4296
4297         /* check if bpf_xdp_adjust_head was used */
4298         off = xdp->data - orig_data;
4299         if (off) {
4300                 if (off > 0)
4301                         __skb_pull(skb, off);
4302                 else if (off < 0)
4303                         __skb_push(skb, -off);
4304
4305                 skb->mac_header += off;
4306                 skb_reset_network_header(skb);
4307         }
4308
4309         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4310          * pckt.
4311          */
4312         off = orig_data_end - xdp->data_end;
4313         if (off != 0) {
4314                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4315                 skb->len -= off;
4316
4317         }
4318
4319         /* check if XDP changed eth hdr such SKB needs update */
4320         eth = (struct ethhdr *)xdp->data;
4321         if ((orig_eth_type != eth->h_proto) ||
4322             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4323                 __skb_push(skb, ETH_HLEN);
4324                 skb->protocol = eth_type_trans(skb, skb->dev);
4325         }
4326
4327         switch (act) {
4328         case XDP_REDIRECT:
4329         case XDP_TX:
4330                 __skb_push(skb, mac_len);
4331                 break;
4332         case XDP_PASS:
4333                 metalen = xdp->data - xdp->data_meta;
4334                 if (metalen)
4335                         skb_metadata_set(skb, metalen);
4336                 break;
4337         default:
4338                 bpf_warn_invalid_xdp_action(act);
4339                 /* fall through */
4340         case XDP_ABORTED:
4341                 trace_xdp_exception(skb->dev, xdp_prog, act);
4342                 /* fall through */
4343         case XDP_DROP:
4344         do_drop:
4345                 kfree_skb(skb);
4346                 break;
4347         }
4348
4349         return act;
4350 }
4351
4352 /* When doing generic XDP we have to bypass the qdisc layer and the
4353  * network taps in order to match in-driver-XDP behavior.
4354  */
4355 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4356 {
4357         struct net_device *dev = skb->dev;
4358         struct netdev_queue *txq;
4359         bool free_skb = true;
4360         int cpu, rc;
4361
4362         txq = netdev_core_pick_tx(dev, skb, NULL);
4363         cpu = smp_processor_id();
4364         HARD_TX_LOCK(dev, txq, cpu);
4365         if (!netif_xmit_stopped(txq)) {
4366                 rc = netdev_start_xmit(skb, dev, txq, 0);
4367                 if (dev_xmit_complete(rc))
4368                         free_skb = false;
4369         }
4370         HARD_TX_UNLOCK(dev, txq);
4371         if (free_skb) {
4372                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4373                 kfree_skb(skb);
4374         }
4375 }
4376 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4377
4378 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4379
4380 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4381 {
4382         if (xdp_prog) {
4383                 struct xdp_buff xdp;
4384                 u32 act;
4385                 int err;
4386
4387                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4388                 if (act != XDP_PASS) {
4389                         switch (act) {
4390                         case XDP_REDIRECT:
4391                                 err = xdp_do_generic_redirect(skb->dev, skb,
4392                                                               &xdp, xdp_prog);
4393                                 if (err)
4394                                         goto out_redir;
4395                                 break;
4396                         case XDP_TX:
4397                                 generic_xdp_tx(skb, xdp_prog);
4398                                 break;
4399                         }
4400                         return XDP_DROP;
4401                 }
4402         }
4403         return XDP_PASS;
4404 out_redir:
4405         kfree_skb(skb);
4406         return XDP_DROP;
4407 }
4408 EXPORT_SYMBOL_GPL(do_xdp_generic);
4409
4410 static int netif_rx_internal(struct sk_buff *skb)
4411 {
4412         int ret;
4413
4414         net_timestamp_check(netdev_tstamp_prequeue, skb);
4415
4416         trace_netif_rx(skb);
4417
4418 #ifdef CONFIG_RPS
4419         if (static_branch_unlikely(&rps_needed)) {
4420                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4421                 int cpu;
4422
4423                 preempt_disable();
4424                 rcu_read_lock();
4425
4426                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4427                 if (cpu < 0)
4428                         cpu = smp_processor_id();
4429
4430                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4431
4432                 rcu_read_unlock();
4433                 preempt_enable();
4434         } else
4435 #endif
4436         {
4437                 unsigned int qtail;
4438
4439                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4440                 put_cpu();
4441         }
4442         return ret;
4443 }
4444
4445 /**
4446  *      netif_rx        -       post buffer to the network code
4447  *      @skb: buffer to post
4448  *
4449  *      This function receives a packet from a device driver and queues it for
4450  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4451  *      may be dropped during processing for congestion control or by the
4452  *      protocol layers.
4453  *
4454  *      return values:
4455  *      NET_RX_SUCCESS  (no congestion)
4456  *      NET_RX_DROP     (packet was dropped)
4457  *
4458  */
4459
4460 int netif_rx(struct sk_buff *skb)
4461 {
4462         int ret;
4463
4464         trace_netif_rx_entry(skb);
4465
4466         ret = netif_rx_internal(skb);
4467         trace_netif_rx_exit(ret);
4468
4469         return ret;
4470 }
4471 EXPORT_SYMBOL(netif_rx);
4472
4473 int netif_rx_ni(struct sk_buff *skb)
4474 {
4475         int err;
4476
4477         trace_netif_rx_ni_entry(skb);
4478
4479         preempt_disable();
4480         err = netif_rx_internal(skb);
4481         if (local_softirq_pending())
4482                 do_softirq();
4483         preempt_enable();
4484         trace_netif_rx_ni_exit(err);
4485
4486         return err;
4487 }
4488 EXPORT_SYMBOL(netif_rx_ni);
4489
4490 static __latent_entropy void net_tx_action(struct softirq_action *h)
4491 {
4492         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4493
4494         if (sd->completion_queue) {
4495                 struct sk_buff *clist;
4496
4497                 local_irq_disable();
4498                 clist = sd->completion_queue;
4499                 sd->completion_queue = NULL;
4500                 local_irq_enable();
4501
4502                 while (clist) {
4503                         struct sk_buff *skb = clist;
4504
4505                         clist = clist->next;
4506
4507                         WARN_ON(refcount_read(&skb->users));
4508                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4509                                 trace_consume_skb(skb);
4510                         else
4511                                 trace_kfree_skb(skb, net_tx_action);
4512
4513                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4514                                 __kfree_skb(skb);
4515                         else
4516                                 __kfree_skb_defer(skb);
4517                 }
4518
4519                 __kfree_skb_flush();
4520         }
4521
4522         if (sd->output_queue) {
4523                 struct Qdisc *head;
4524
4525                 local_irq_disable();
4526                 head = sd->output_queue;
4527                 sd->output_queue = NULL;
4528                 sd->output_queue_tailp = &sd->output_queue;
4529                 local_irq_enable();
4530
4531                 rcu_read_lock();
4532
4533                 while (head) {
4534                         struct Qdisc *q = head;
4535                         spinlock_t *root_lock = NULL;
4536
4537                         head = head->next_sched;
4538
4539                         /* We need to make sure head->next_sched is read
4540                          * before clearing __QDISC_STATE_SCHED
4541                          */
4542                         smp_mb__before_atomic();
4543
4544                         if (!(q->flags & TCQ_F_NOLOCK)) {
4545                                 root_lock = qdisc_lock(q);
4546                                 spin_lock(root_lock);
4547                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4548                                                      &q->state))) {
4549                                 /* There is a synchronize_net() between
4550                                  * STATE_DEACTIVATED flag being set and
4551                                  * qdisc_reset()/some_qdisc_is_busy() in
4552                                  * dev_deactivate(), so we can safely bail out
4553                                  * early here to avoid data race between
4554                                  * qdisc_deactivate() and some_qdisc_is_busy()
4555                                  * for lockless qdisc.
4556                                  */
4557                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
4558                                 continue;
4559                         }
4560
4561                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4562                         qdisc_run(q);
4563                         if (root_lock)
4564                                 spin_unlock(root_lock);
4565                 }
4566
4567                 rcu_read_unlock();
4568         }
4569
4570         xfrm_dev_backlog(sd);
4571 }
4572
4573 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4574 /* This hook is defined here for ATM LANE */
4575 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4576                              unsigned char *addr) __read_mostly;
4577 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4578 #endif
4579
4580 static inline struct sk_buff *
4581 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4582                    struct net_device *orig_dev)
4583 {
4584 #ifdef CONFIG_NET_CLS_ACT
4585         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4586         struct tcf_result cl_res;
4587
4588         /* If there's at least one ingress present somewhere (so
4589          * we get here via enabled static key), remaining devices
4590          * that are not configured with an ingress qdisc will bail
4591          * out here.
4592          */
4593         if (!miniq)
4594                 return skb;
4595
4596         if (*pt_prev) {
4597                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4598                 *pt_prev = NULL;
4599         }
4600
4601         qdisc_skb_cb(skb)->pkt_len = skb->len;
4602         skb->tc_at_ingress = 1;
4603         mini_qdisc_bstats_cpu_update(miniq, skb);
4604
4605         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4606         case TC_ACT_OK:
4607         case TC_ACT_RECLASSIFY:
4608                 skb->tc_index = TC_H_MIN(cl_res.classid);
4609                 break;
4610         case TC_ACT_SHOT:
4611                 mini_qdisc_qstats_cpu_drop(miniq);
4612                 kfree_skb(skb);
4613                 return NULL;
4614         case TC_ACT_STOLEN:
4615         case TC_ACT_QUEUED:
4616         case TC_ACT_TRAP:
4617                 consume_skb(skb);
4618                 return NULL;
4619         case TC_ACT_REDIRECT:
4620                 /* skb_mac_header check was done by cls/act_bpf, so
4621                  * we can safely push the L2 header back before
4622                  * redirecting to another netdev
4623                  */
4624                 __skb_push(skb, skb->mac_len);
4625                 skb_do_redirect(skb);
4626                 return NULL;
4627         case TC_ACT_CONSUMED:
4628                 return NULL;
4629         default:
4630                 break;
4631         }
4632 #endif /* CONFIG_NET_CLS_ACT */
4633         return skb;
4634 }
4635
4636 /**
4637  *      netdev_is_rx_handler_busy - check if receive handler is registered
4638  *      @dev: device to check
4639  *
4640  *      Check if a receive handler is already registered for a given device.
4641  *      Return true if there one.
4642  *
4643  *      The caller must hold the rtnl_mutex.
4644  */
4645 bool netdev_is_rx_handler_busy(struct net_device *dev)
4646 {
4647         ASSERT_RTNL();
4648         return dev && rtnl_dereference(dev->rx_handler);
4649 }
4650 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4651
4652 /**
4653  *      netdev_rx_handler_register - register receive handler
4654  *      @dev: device to register a handler for
4655  *      @rx_handler: receive handler to register
4656  *      @rx_handler_data: data pointer that is used by rx handler
4657  *
4658  *      Register a receive handler for a device. This handler will then be
4659  *      called from __netif_receive_skb. A negative errno code is returned
4660  *      on a failure.
4661  *
4662  *      The caller must hold the rtnl_mutex.
4663  *
4664  *      For a general description of rx_handler, see enum rx_handler_result.
4665  */
4666 int netdev_rx_handler_register(struct net_device *dev,
4667                                rx_handler_func_t *rx_handler,
4668                                void *rx_handler_data)
4669 {
4670         if (netdev_is_rx_handler_busy(dev))
4671                 return -EBUSY;
4672
4673         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4674                 return -EINVAL;
4675
4676         /* Note: rx_handler_data must be set before rx_handler */
4677         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4678         rcu_assign_pointer(dev->rx_handler, rx_handler);
4679
4680         return 0;
4681 }
4682 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4683
4684 /**
4685  *      netdev_rx_handler_unregister - unregister receive handler
4686  *      @dev: device to unregister a handler from
4687  *
4688  *      Unregister a receive handler from a device.
4689  *
4690  *      The caller must hold the rtnl_mutex.
4691  */
4692 void netdev_rx_handler_unregister(struct net_device *dev)
4693 {
4694
4695         ASSERT_RTNL();
4696         RCU_INIT_POINTER(dev->rx_handler, NULL);
4697         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4698          * section has a guarantee to see a non NULL rx_handler_data
4699          * as well.
4700          */
4701         synchronize_net();
4702         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4703 }
4704 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4705
4706 /*
4707  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4708  * the special handling of PFMEMALLOC skbs.
4709  */
4710 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4711 {
4712         switch (skb->protocol) {
4713         case htons(ETH_P_ARP):
4714         case htons(ETH_P_IP):
4715         case htons(ETH_P_IPV6):
4716         case htons(ETH_P_8021Q):
4717         case htons(ETH_P_8021AD):
4718                 return true;
4719         default:
4720                 return false;
4721         }
4722 }
4723
4724 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4725                              int *ret, struct net_device *orig_dev)
4726 {
4727 #ifdef CONFIG_NETFILTER_INGRESS
4728         if (nf_hook_ingress_active(skb)) {
4729                 int ingress_retval;
4730
4731                 if (*pt_prev) {
4732                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4733                         *pt_prev = NULL;
4734                 }
4735
4736                 rcu_read_lock();
4737                 ingress_retval = nf_hook_ingress(skb);
4738                 rcu_read_unlock();
4739                 return ingress_retval;
4740         }
4741 #endif /* CONFIG_NETFILTER_INGRESS */
4742         return 0;
4743 }
4744
4745 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4746                                     struct packet_type **ppt_prev)
4747 {
4748         struct packet_type *ptype, *pt_prev;
4749         rx_handler_func_t *rx_handler;
4750         struct sk_buff *skb = *pskb;
4751         struct net_device *orig_dev;
4752         bool deliver_exact = false;
4753         int ret = NET_RX_DROP;
4754         __be16 type;
4755
4756         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4757
4758         trace_netif_receive_skb(skb);
4759
4760         orig_dev = skb->dev;
4761
4762         skb_reset_network_header(skb);
4763         if (!skb_transport_header_was_set(skb))
4764                 skb_reset_transport_header(skb);
4765         skb_reset_mac_len(skb);
4766
4767         pt_prev = NULL;
4768
4769 another_round:
4770         skb->skb_iif = skb->dev->ifindex;
4771
4772         __this_cpu_inc(softnet_data.processed);
4773
4774         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4775                 int ret2;
4776
4777                 preempt_disable();
4778                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4779                 preempt_enable();
4780
4781                 if (ret2 != XDP_PASS) {
4782                         ret = NET_RX_DROP;
4783                         goto out;
4784                 }
4785                 skb_reset_mac_len(skb);
4786         }
4787
4788         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4789             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4790                 skb = skb_vlan_untag(skb);
4791                 if (unlikely(!skb))
4792                         goto out;
4793         }
4794
4795         if (skb_skip_tc_classify(skb))
4796                 goto skip_classify;
4797
4798         if (pfmemalloc)
4799                 goto skip_taps;
4800
4801         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4802                 if (pt_prev)
4803                         ret = deliver_skb(skb, pt_prev, orig_dev);
4804                 pt_prev = ptype;
4805         }
4806
4807         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4808                 if (pt_prev)
4809                         ret = deliver_skb(skb, pt_prev, orig_dev);
4810                 pt_prev = ptype;
4811         }
4812
4813 skip_taps:
4814 #ifdef CONFIG_NET_INGRESS
4815         if (static_branch_unlikely(&ingress_needed_key)) {
4816                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4817                 if (!skb)
4818                         goto out;
4819
4820                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4821                         goto out;
4822         }
4823 #endif
4824         skb_reset_redirect(skb);
4825 skip_classify:
4826         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4827                 goto drop;
4828
4829         if (skb_vlan_tag_present(skb)) {
4830                 if (pt_prev) {
4831                         ret = deliver_skb(skb, pt_prev, orig_dev);
4832                         pt_prev = NULL;
4833                 }
4834                 if (vlan_do_receive(&skb))
4835                         goto another_round;
4836                 else if (unlikely(!skb))
4837                         goto out;
4838         }
4839
4840         rx_handler = rcu_dereference(skb->dev->rx_handler);
4841         if (rx_handler) {
4842                 if (pt_prev) {
4843                         ret = deliver_skb(skb, pt_prev, orig_dev);
4844                         pt_prev = NULL;
4845                 }
4846                 switch (rx_handler(&skb)) {
4847                 case RX_HANDLER_CONSUMED:
4848                         ret = NET_RX_SUCCESS;
4849                         goto out;
4850                 case RX_HANDLER_ANOTHER:
4851                         goto another_round;
4852                 case RX_HANDLER_EXACT:
4853                         deliver_exact = true;
4854                 case RX_HANDLER_PASS:
4855                         break;
4856                 default:
4857                         BUG();
4858                 }
4859         }
4860
4861         if (unlikely(skb_vlan_tag_present(skb))) {
4862 check_vlan_id:
4863                 if (skb_vlan_tag_get_id(skb)) {
4864                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
4865                          * find vlan device.
4866                          */
4867                         skb->pkt_type = PACKET_OTHERHOST;
4868                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4869                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4870                         /* Outer header is 802.1P with vlan 0, inner header is
4871                          * 802.1Q or 802.1AD and vlan_do_receive() above could
4872                          * not find vlan dev for vlan id 0.
4873                          */
4874                         __vlan_hwaccel_clear_tag(skb);
4875                         skb = skb_vlan_untag(skb);
4876                         if (unlikely(!skb))
4877                                 goto out;
4878                         if (vlan_do_receive(&skb))
4879                                 /* After stripping off 802.1P header with vlan 0
4880                                  * vlan dev is found for inner header.
4881                                  */
4882                                 goto another_round;
4883                         else if (unlikely(!skb))
4884                                 goto out;
4885                         else
4886                                 /* We have stripped outer 802.1P vlan 0 header.
4887                                  * But could not find vlan dev.
4888                                  * check again for vlan id to set OTHERHOST.
4889                                  */
4890                                 goto check_vlan_id;
4891                 }
4892                 /* Note: we might in the future use prio bits
4893                  * and set skb->priority like in vlan_do_receive()
4894                  * For the time being, just ignore Priority Code Point
4895                  */
4896                 __vlan_hwaccel_clear_tag(skb);
4897         }
4898
4899         type = skb->protocol;
4900
4901         /* deliver only exact match when indicated */
4902         if (likely(!deliver_exact)) {
4903                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4904                                        &ptype_base[ntohs(type) &
4905                                                    PTYPE_HASH_MASK]);
4906         }
4907
4908         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4909                                &orig_dev->ptype_specific);
4910
4911         if (unlikely(skb->dev != orig_dev)) {
4912                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4913                                        &skb->dev->ptype_specific);
4914         }
4915
4916         if (pt_prev) {
4917                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4918                         goto drop;
4919                 *ppt_prev = pt_prev;
4920         } else {
4921 drop:
4922                 if (!deliver_exact)
4923                         atomic_long_inc(&skb->dev->rx_dropped);
4924                 else
4925                         atomic_long_inc(&skb->dev->rx_nohandler);
4926                 kfree_skb(skb);
4927                 /* Jamal, now you will not able to escape explaining
4928                  * me how you were going to use this. :-)
4929                  */
4930                 ret = NET_RX_DROP;
4931         }
4932
4933 out:
4934         /* The invariant here is that if *ppt_prev is not NULL
4935          * then skb should also be non-NULL.
4936          *
4937          * Apparently *ppt_prev assignment above holds this invariant due to
4938          * skb dereferencing near it.
4939          */
4940         *pskb = skb;
4941         return ret;
4942 }
4943
4944 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4945 {
4946         struct net_device *orig_dev = skb->dev;
4947         struct packet_type *pt_prev = NULL;
4948         int ret;
4949
4950         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
4951         if (pt_prev)
4952                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4953                                          skb->dev, pt_prev, orig_dev);
4954         return ret;
4955 }
4956
4957 /**
4958  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4959  *      @skb: buffer to process
4960  *
4961  *      More direct receive version of netif_receive_skb().  It should
4962  *      only be used by callers that have a need to skip RPS and Generic XDP.
4963  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4964  *
4965  *      This function may only be called from softirq context and interrupts
4966  *      should be enabled.
4967  *
4968  *      Return values (usually ignored):
4969  *      NET_RX_SUCCESS: no congestion
4970  *      NET_RX_DROP: packet was dropped
4971  */
4972 int netif_receive_skb_core(struct sk_buff *skb)
4973 {
4974         int ret;
4975
4976         rcu_read_lock();
4977         ret = __netif_receive_skb_one_core(skb, false);
4978         rcu_read_unlock();
4979
4980         return ret;
4981 }
4982 EXPORT_SYMBOL(netif_receive_skb_core);
4983
4984 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4985                                                   struct packet_type *pt_prev,
4986                                                   struct net_device *orig_dev)
4987 {
4988         struct sk_buff *skb, *next;
4989
4990         if (!pt_prev)
4991                 return;
4992         if (list_empty(head))
4993                 return;
4994         if (pt_prev->list_func != NULL)
4995                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
4996                                    ip_list_rcv, head, pt_prev, orig_dev);
4997         else
4998                 list_for_each_entry_safe(skb, next, head, list) {
4999                         skb_list_del_init(skb);
5000                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5001                 }
5002 }
5003
5004 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5005 {
5006         /* Fast-path assumptions:
5007          * - There is no RX handler.
5008          * - Only one packet_type matches.
5009          * If either of these fails, we will end up doing some per-packet
5010          * processing in-line, then handling the 'last ptype' for the whole
5011          * sublist.  This can't cause out-of-order delivery to any single ptype,
5012          * because the 'last ptype' must be constant across the sublist, and all
5013          * other ptypes are handled per-packet.
5014          */
5015         /* Current (common) ptype of sublist */
5016         struct packet_type *pt_curr = NULL;
5017         /* Current (common) orig_dev of sublist */
5018         struct net_device *od_curr = NULL;
5019         struct list_head sublist;
5020         struct sk_buff *skb, *next;
5021
5022         INIT_LIST_HEAD(&sublist);
5023         list_for_each_entry_safe(skb, next, head, list) {
5024                 struct net_device *orig_dev = skb->dev;
5025                 struct packet_type *pt_prev = NULL;
5026
5027                 skb_list_del_init(skb);
5028                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5029                 if (!pt_prev)
5030                         continue;
5031                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5032                         /* dispatch old sublist */
5033                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5034                         /* start new sublist */
5035                         INIT_LIST_HEAD(&sublist);
5036                         pt_curr = pt_prev;
5037                         od_curr = orig_dev;
5038                 }
5039                 list_add_tail(&skb->list, &sublist);
5040         }
5041
5042         /* dispatch final sublist */
5043         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5044 }
5045
5046 static int __netif_receive_skb(struct sk_buff *skb)
5047 {
5048         int ret;
5049
5050         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5051                 unsigned int noreclaim_flag;
5052
5053                 /*
5054                  * PFMEMALLOC skbs are special, they should
5055                  * - be delivered to SOCK_MEMALLOC sockets only
5056                  * - stay away from userspace
5057                  * - have bounded memory usage
5058                  *
5059                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5060                  * context down to all allocation sites.
5061                  */
5062                 noreclaim_flag = memalloc_noreclaim_save();
5063                 ret = __netif_receive_skb_one_core(skb, true);
5064                 memalloc_noreclaim_restore(noreclaim_flag);
5065         } else
5066                 ret = __netif_receive_skb_one_core(skb, false);
5067
5068         return ret;
5069 }
5070
5071 static void __netif_receive_skb_list(struct list_head *head)
5072 {
5073         unsigned long noreclaim_flag = 0;
5074         struct sk_buff *skb, *next;
5075         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5076
5077         list_for_each_entry_safe(skb, next, head, list) {
5078                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5079                         struct list_head sublist;
5080
5081                         /* Handle the previous sublist */
5082                         list_cut_before(&sublist, head, &skb->list);
5083                         if (!list_empty(&sublist))
5084                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5085                         pfmemalloc = !pfmemalloc;
5086                         /* See comments in __netif_receive_skb */
5087                         if (pfmemalloc)
5088                                 noreclaim_flag = memalloc_noreclaim_save();
5089                         else
5090                                 memalloc_noreclaim_restore(noreclaim_flag);
5091                 }
5092         }
5093         /* Handle the remaining sublist */
5094         if (!list_empty(head))
5095                 __netif_receive_skb_list_core(head, pfmemalloc);
5096         /* Restore pflags */
5097         if (pfmemalloc)
5098                 memalloc_noreclaim_restore(noreclaim_flag);
5099 }
5100
5101 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5102 {
5103         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5104         struct bpf_prog *new = xdp->prog;
5105         int ret = 0;
5106
5107         switch (xdp->command) {
5108         case XDP_SETUP_PROG:
5109                 rcu_assign_pointer(dev->xdp_prog, new);
5110                 if (old)
5111                         bpf_prog_put(old);
5112
5113                 if (old && !new) {
5114                         static_branch_dec(&generic_xdp_needed_key);
5115                 } else if (new && !old) {
5116                         static_branch_inc(&generic_xdp_needed_key);
5117                         dev_disable_lro(dev);
5118                         dev_disable_gro_hw(dev);
5119                 }
5120                 break;
5121
5122         case XDP_QUERY_PROG:
5123                 xdp->prog_id = old ? old->aux->id : 0;
5124                 break;
5125
5126         default:
5127                 ret = -EINVAL;
5128                 break;
5129         }
5130
5131         return ret;
5132 }
5133
5134 static int netif_receive_skb_internal(struct sk_buff *skb)
5135 {
5136         int ret;
5137
5138         net_timestamp_check(netdev_tstamp_prequeue, skb);
5139
5140         if (skb_defer_rx_timestamp(skb))
5141                 return NET_RX_SUCCESS;
5142
5143         rcu_read_lock();
5144 #ifdef CONFIG_RPS
5145         if (static_branch_unlikely(&rps_needed)) {
5146                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5147                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5148
5149                 if (cpu >= 0) {
5150                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5151                         rcu_read_unlock();
5152                         return ret;
5153                 }
5154         }
5155 #endif
5156         ret = __netif_receive_skb(skb);
5157         rcu_read_unlock();
5158         return ret;
5159 }
5160
5161 static void netif_receive_skb_list_internal(struct list_head *head)
5162 {
5163         struct sk_buff *skb, *next;
5164         struct list_head sublist;
5165
5166         INIT_LIST_HEAD(&sublist);
5167         list_for_each_entry_safe(skb, next, head, list) {
5168                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5169                 skb_list_del_init(skb);
5170                 if (!skb_defer_rx_timestamp(skb))
5171                         list_add_tail(&skb->list, &sublist);
5172         }
5173         list_splice_init(&sublist, head);
5174
5175         rcu_read_lock();
5176 #ifdef CONFIG_RPS
5177         if (static_branch_unlikely(&rps_needed)) {
5178                 list_for_each_entry_safe(skb, next, head, list) {
5179                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5180                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5181
5182                         if (cpu >= 0) {
5183                                 /* Will be handled, remove from list */
5184                                 skb_list_del_init(skb);
5185                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5186                         }
5187                 }
5188         }
5189 #endif
5190         __netif_receive_skb_list(head);
5191         rcu_read_unlock();
5192 }
5193
5194 /**
5195  *      netif_receive_skb - process receive buffer from network
5196  *      @skb: buffer to process
5197  *
5198  *      netif_receive_skb() is the main receive data processing function.
5199  *      It always succeeds. The buffer may be dropped during processing
5200  *      for congestion control or by the protocol layers.
5201  *
5202  *      This function may only be called from softirq context and interrupts
5203  *      should be enabled.
5204  *
5205  *      Return values (usually ignored):
5206  *      NET_RX_SUCCESS: no congestion
5207  *      NET_RX_DROP: packet was dropped
5208  */
5209 int netif_receive_skb(struct sk_buff *skb)
5210 {
5211         int ret;
5212
5213         trace_netif_receive_skb_entry(skb);
5214
5215         ret = netif_receive_skb_internal(skb);
5216         trace_netif_receive_skb_exit(ret);
5217
5218         return ret;
5219 }
5220 EXPORT_SYMBOL(netif_receive_skb);
5221
5222 /**
5223  *      netif_receive_skb_list - process many receive buffers from network
5224  *      @head: list of skbs to process.
5225  *
5226  *      Since return value of netif_receive_skb() is normally ignored, and
5227  *      wouldn't be meaningful for a list, this function returns void.
5228  *
5229  *      This function may only be called from softirq context and interrupts
5230  *      should be enabled.
5231  */
5232 void netif_receive_skb_list(struct list_head *head)
5233 {
5234         struct sk_buff *skb;
5235
5236         if (list_empty(head))
5237                 return;
5238         if (trace_netif_receive_skb_list_entry_enabled()) {
5239                 list_for_each_entry(skb, head, list)
5240                         trace_netif_receive_skb_list_entry(skb);
5241         }
5242         netif_receive_skb_list_internal(head);
5243         trace_netif_receive_skb_list_exit(0);
5244 }
5245 EXPORT_SYMBOL(netif_receive_skb_list);
5246
5247 DEFINE_PER_CPU(struct work_struct, flush_works);
5248
5249 /* Network device is going away, flush any packets still pending */
5250 static void flush_backlog(struct work_struct *work)
5251 {
5252         struct sk_buff *skb, *tmp;
5253         struct softnet_data *sd;
5254
5255         local_bh_disable();
5256         sd = this_cpu_ptr(&softnet_data);
5257
5258         local_irq_disable();
5259         rps_lock(sd);
5260         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5261                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5262                         __skb_unlink(skb, &sd->input_pkt_queue);
5263                         dev_kfree_skb_irq(skb);
5264                         input_queue_head_incr(sd);
5265                 }
5266         }
5267         rps_unlock(sd);
5268         local_irq_enable();
5269
5270         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5271                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5272                         __skb_unlink(skb, &sd->process_queue);
5273                         kfree_skb(skb);
5274                         input_queue_head_incr(sd);
5275                 }
5276         }
5277         local_bh_enable();
5278 }
5279
5280 static void flush_all_backlogs(void)
5281 {
5282         unsigned int cpu;
5283
5284         get_online_cpus();
5285
5286         for_each_online_cpu(cpu)
5287                 queue_work_on(cpu, system_highpri_wq,
5288                               per_cpu_ptr(&flush_works, cpu));
5289
5290         for_each_online_cpu(cpu)
5291                 flush_work(per_cpu_ptr(&flush_works, cpu));
5292
5293         put_online_cpus();
5294 }
5295
5296 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5297 static void gro_normal_list(struct napi_struct *napi)
5298 {
5299         if (!napi->rx_count)
5300                 return;
5301         netif_receive_skb_list_internal(&napi->rx_list);
5302         INIT_LIST_HEAD(&napi->rx_list);
5303         napi->rx_count = 0;
5304 }
5305
5306 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5307  * pass the whole batch up to the stack.
5308  */
5309 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5310 {
5311         list_add_tail(&skb->list, &napi->rx_list);
5312         napi->rx_count += segs;
5313         if (napi->rx_count >= gro_normal_batch)
5314                 gro_normal_list(napi);
5315 }
5316
5317 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5318 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5319 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5320 {
5321         struct packet_offload *ptype;
5322         __be16 type = skb->protocol;
5323         struct list_head *head = &offload_base;
5324         int err = -ENOENT;
5325
5326         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5327
5328         if (NAPI_GRO_CB(skb)->count == 1) {
5329                 skb_shinfo(skb)->gso_size = 0;
5330                 goto out;
5331         }
5332
5333         rcu_read_lock();
5334         list_for_each_entry_rcu(ptype, head, list) {
5335                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5336                         continue;
5337
5338                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5339                                          ipv6_gro_complete, inet_gro_complete,
5340                                          skb, 0);
5341                 break;
5342         }
5343         rcu_read_unlock();
5344
5345         if (err) {
5346                 WARN_ON(&ptype->list == head);
5347                 kfree_skb(skb);
5348                 return NET_RX_SUCCESS;
5349         }
5350
5351 out:
5352         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5353         return NET_RX_SUCCESS;
5354 }
5355
5356 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5357                                    bool flush_old)
5358 {
5359         struct list_head *head = &napi->gro_hash[index].list;
5360         struct sk_buff *skb, *p;
5361
5362         list_for_each_entry_safe_reverse(skb, p, head, list) {
5363                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5364                         return;
5365                 skb_list_del_init(skb);
5366                 napi_gro_complete(napi, skb);
5367                 napi->gro_hash[index].count--;
5368         }
5369
5370         if (!napi->gro_hash[index].count)
5371                 __clear_bit(index, &napi->gro_bitmask);
5372 }
5373
5374 /* napi->gro_hash[].list contains packets ordered by age.
5375  * youngest packets at the head of it.
5376  * Complete skbs in reverse order to reduce latencies.
5377  */
5378 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5379 {
5380         unsigned long bitmask = napi->gro_bitmask;
5381         unsigned int i, base = ~0U;
5382
5383         while ((i = ffs(bitmask)) != 0) {
5384                 bitmask >>= i;
5385                 base += i;
5386                 __napi_gro_flush_chain(napi, base, flush_old);
5387         }
5388 }
5389 EXPORT_SYMBOL(napi_gro_flush);
5390
5391 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5392                                           struct sk_buff *skb)
5393 {
5394         unsigned int maclen = skb->dev->hard_header_len;
5395         u32 hash = skb_get_hash_raw(skb);
5396         struct list_head *head;
5397         struct sk_buff *p;
5398
5399         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5400         list_for_each_entry(p, head, list) {
5401                 unsigned long diffs;
5402
5403                 NAPI_GRO_CB(p)->flush = 0;
5404
5405                 if (hash != skb_get_hash_raw(p)) {
5406                         NAPI_GRO_CB(p)->same_flow = 0;
5407                         continue;
5408                 }
5409
5410                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5411                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5412                 if (skb_vlan_tag_present(p))
5413                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5414                 diffs |= skb_metadata_dst_cmp(p, skb);
5415                 diffs |= skb_metadata_differs(p, skb);
5416                 if (maclen == ETH_HLEN)
5417                         diffs |= compare_ether_header(skb_mac_header(p),
5418                                                       skb_mac_header(skb));
5419                 else if (!diffs)
5420                         diffs = memcmp(skb_mac_header(p),
5421                                        skb_mac_header(skb),
5422                                        maclen);
5423                 NAPI_GRO_CB(p)->same_flow = !diffs;
5424         }
5425
5426         return head;
5427 }
5428
5429 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5430 {
5431         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5432         const skb_frag_t *frag0 = &pinfo->frags[0];
5433
5434         NAPI_GRO_CB(skb)->data_offset = 0;
5435         NAPI_GRO_CB(skb)->frag0 = NULL;
5436         NAPI_GRO_CB(skb)->frag0_len = 0;
5437
5438         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5439             pinfo->nr_frags &&
5440             !PageHighMem(skb_frag_page(frag0)) &&
5441             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5442                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5443                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5444                                                     skb_frag_size(frag0),
5445                                                     skb->end - skb->tail);
5446         }
5447 }
5448
5449 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5450 {
5451         struct skb_shared_info *pinfo = skb_shinfo(skb);
5452
5453         BUG_ON(skb->end - skb->tail < grow);
5454
5455         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5456
5457         skb->data_len -= grow;
5458         skb->tail += grow;
5459
5460         skb_frag_off_add(&pinfo->frags[0], grow);
5461         skb_frag_size_sub(&pinfo->frags[0], grow);
5462
5463         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5464                 skb_frag_unref(skb, 0);
5465                 memmove(pinfo->frags, pinfo->frags + 1,
5466                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5467         }
5468 }
5469
5470 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5471 {
5472         struct sk_buff *oldest;
5473
5474         oldest = list_last_entry(head, struct sk_buff, list);
5475
5476         /* We are called with head length >= MAX_GRO_SKBS, so this is
5477          * impossible.
5478          */
5479         if (WARN_ON_ONCE(!oldest))
5480                 return;
5481
5482         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5483          * SKB to the chain.
5484          */
5485         skb_list_del_init(oldest);
5486         napi_gro_complete(napi, oldest);
5487 }
5488
5489 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5490                                                            struct sk_buff *));
5491 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5492                                                            struct sk_buff *));
5493 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5494 {
5495         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5496         struct list_head *head = &offload_base;
5497         struct packet_offload *ptype;
5498         __be16 type = skb->protocol;
5499         struct list_head *gro_head;
5500         struct sk_buff *pp = NULL;
5501         enum gro_result ret;
5502         int same_flow;
5503         int grow;
5504
5505         if (netif_elide_gro(skb->dev))
5506                 goto normal;
5507
5508         gro_head = gro_list_prepare(napi, skb);
5509
5510         rcu_read_lock();
5511         list_for_each_entry_rcu(ptype, head, list) {
5512                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5513                         continue;
5514
5515                 skb_set_network_header(skb, skb_gro_offset(skb));
5516                 skb_reset_mac_len(skb);
5517                 NAPI_GRO_CB(skb)->same_flow = 0;
5518                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5519                 NAPI_GRO_CB(skb)->free = 0;
5520                 NAPI_GRO_CB(skb)->encap_mark = 0;
5521                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5522                 NAPI_GRO_CB(skb)->is_fou = 0;
5523                 NAPI_GRO_CB(skb)->is_atomic = 1;
5524                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5525
5526                 /* Setup for GRO checksum validation */
5527                 switch (skb->ip_summed) {
5528                 case CHECKSUM_COMPLETE:
5529                         NAPI_GRO_CB(skb)->csum = skb->csum;
5530                         NAPI_GRO_CB(skb)->csum_valid = 1;
5531                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5532                         break;
5533                 case CHECKSUM_UNNECESSARY:
5534                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5535                         NAPI_GRO_CB(skb)->csum_valid = 0;
5536                         break;
5537                 default:
5538                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5539                         NAPI_GRO_CB(skb)->csum_valid = 0;
5540                 }
5541
5542                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5543                                         ipv6_gro_receive, inet_gro_receive,
5544                                         gro_head, skb);
5545                 break;
5546         }
5547         rcu_read_unlock();
5548
5549         if (&ptype->list == head)
5550                 goto normal;
5551
5552         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5553                 ret = GRO_CONSUMED;
5554                 goto ok;
5555         }
5556
5557         same_flow = NAPI_GRO_CB(skb)->same_flow;
5558         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5559
5560         if (pp) {
5561                 skb_list_del_init(pp);
5562                 napi_gro_complete(napi, pp);
5563                 napi->gro_hash[hash].count--;
5564         }
5565
5566         if (same_flow)
5567                 goto ok;
5568
5569         if (NAPI_GRO_CB(skb)->flush)
5570                 goto normal;
5571
5572         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5573                 gro_flush_oldest(napi, gro_head);
5574         } else {
5575                 napi->gro_hash[hash].count++;
5576         }
5577         NAPI_GRO_CB(skb)->count = 1;
5578         NAPI_GRO_CB(skb)->age = jiffies;
5579         NAPI_GRO_CB(skb)->last = skb;
5580         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5581         list_add(&skb->list, gro_head);
5582         ret = GRO_HELD;
5583
5584 pull:
5585         grow = skb_gro_offset(skb) - skb_headlen(skb);
5586         if (grow > 0)
5587                 gro_pull_from_frag0(skb, grow);
5588 ok:
5589         if (napi->gro_hash[hash].count) {
5590                 if (!test_bit(hash, &napi->gro_bitmask))
5591                         __set_bit(hash, &napi->gro_bitmask);
5592         } else if (test_bit(hash, &napi->gro_bitmask)) {
5593                 __clear_bit(hash, &napi->gro_bitmask);
5594         }
5595
5596         return ret;
5597
5598 normal:
5599         ret = GRO_NORMAL;
5600         goto pull;
5601 }
5602
5603 struct packet_offload *gro_find_receive_by_type(__be16 type)
5604 {
5605         struct list_head *offload_head = &offload_base;
5606         struct packet_offload *ptype;
5607
5608         list_for_each_entry_rcu(ptype, offload_head, list) {
5609                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5610                         continue;
5611                 return ptype;
5612         }
5613         return NULL;
5614 }
5615 EXPORT_SYMBOL(gro_find_receive_by_type);
5616
5617 struct packet_offload *gro_find_complete_by_type(__be16 type)
5618 {
5619         struct list_head *offload_head = &offload_base;
5620         struct packet_offload *ptype;
5621
5622         list_for_each_entry_rcu(ptype, offload_head, list) {
5623                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5624                         continue;
5625                 return ptype;
5626         }
5627         return NULL;
5628 }
5629 EXPORT_SYMBOL(gro_find_complete_by_type);
5630
5631 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5632 {
5633         skb_dst_drop(skb);
5634         skb_ext_put(skb);
5635         kmem_cache_free(skbuff_head_cache, skb);
5636 }
5637
5638 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5639                                     struct sk_buff *skb,
5640                                     gro_result_t ret)
5641 {
5642         switch (ret) {
5643         case GRO_NORMAL:
5644                 gro_normal_one(napi, skb, 1);
5645                 break;
5646
5647         case GRO_DROP:
5648                 kfree_skb(skb);
5649                 break;
5650
5651         case GRO_MERGED_FREE:
5652                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5653                         napi_skb_free_stolen_head(skb);
5654                 else
5655                         __kfree_skb(skb);
5656                 break;
5657
5658         case GRO_HELD:
5659         case GRO_MERGED:
5660         case GRO_CONSUMED:
5661                 break;
5662         }
5663
5664         return ret;
5665 }
5666
5667 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5668 {
5669         gro_result_t ret;
5670
5671         skb_mark_napi_id(skb, napi);
5672         trace_napi_gro_receive_entry(skb);
5673
5674         skb_gro_reset_offset(skb, 0);
5675
5676         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5677         trace_napi_gro_receive_exit(ret);
5678
5679         return ret;
5680 }
5681 EXPORT_SYMBOL(napi_gro_receive);
5682
5683 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5684 {
5685         if (unlikely(skb->pfmemalloc)) {
5686                 consume_skb(skb);
5687                 return;
5688         }
5689         __skb_pull(skb, skb_headlen(skb));
5690         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5691         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5692         __vlan_hwaccel_clear_tag(skb);
5693         skb->dev = napi->dev;
5694         skb->skb_iif = 0;
5695
5696         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5697         skb->pkt_type = PACKET_HOST;
5698
5699         skb->encapsulation = 0;
5700         skb_shinfo(skb)->gso_type = 0;
5701         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5702         skb_ext_reset(skb);
5703
5704         napi->skb = skb;
5705 }
5706
5707 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5708 {
5709         struct sk_buff *skb = napi->skb;
5710
5711         if (!skb) {
5712                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5713                 if (skb) {
5714                         napi->skb = skb;
5715                         skb_mark_napi_id(skb, napi);
5716                 }
5717         }
5718         return skb;
5719 }
5720 EXPORT_SYMBOL(napi_get_frags);
5721
5722 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5723                                       struct sk_buff *skb,
5724                                       gro_result_t ret)
5725 {
5726         switch (ret) {
5727         case GRO_NORMAL:
5728         case GRO_HELD:
5729                 __skb_push(skb, ETH_HLEN);
5730                 skb->protocol = eth_type_trans(skb, skb->dev);
5731                 if (ret == GRO_NORMAL)
5732                         gro_normal_one(napi, skb, 1);
5733                 break;
5734
5735         case GRO_DROP:
5736                 napi_reuse_skb(napi, skb);
5737                 break;
5738
5739         case GRO_MERGED_FREE:
5740                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5741                         napi_skb_free_stolen_head(skb);
5742                 else
5743                         napi_reuse_skb(napi, skb);
5744                 break;
5745
5746         case GRO_MERGED:
5747         case GRO_CONSUMED:
5748                 break;
5749         }
5750
5751         return ret;
5752 }
5753
5754 /* Upper GRO stack assumes network header starts at gro_offset=0
5755  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5756  * We copy ethernet header into skb->data to have a common layout.
5757  */
5758 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5759 {
5760         struct sk_buff *skb = napi->skb;
5761         const struct ethhdr *eth;
5762         unsigned int hlen = sizeof(*eth);
5763
5764         napi->skb = NULL;
5765
5766         skb_reset_mac_header(skb);
5767         skb_gro_reset_offset(skb, hlen);
5768
5769         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5770                 eth = skb_gro_header_slow(skb, hlen, 0);
5771                 if (unlikely(!eth)) {
5772                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5773                                              __func__, napi->dev->name);
5774                         napi_reuse_skb(napi, skb);
5775                         return NULL;
5776                 }
5777         } else {
5778                 eth = (const struct ethhdr *)skb->data;
5779                 gro_pull_from_frag0(skb, hlen);
5780                 NAPI_GRO_CB(skb)->frag0 += hlen;
5781                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5782         }
5783         __skb_pull(skb, hlen);
5784
5785         /*
5786          * This works because the only protocols we care about don't require
5787          * special handling.
5788          * We'll fix it up properly in napi_frags_finish()
5789          */
5790         skb->protocol = eth->h_proto;
5791
5792         return skb;
5793 }
5794
5795 gro_result_t napi_gro_frags(struct napi_struct *napi)
5796 {
5797         gro_result_t ret;
5798         struct sk_buff *skb = napi_frags_skb(napi);
5799
5800         if (!skb)
5801                 return GRO_DROP;
5802
5803         trace_napi_gro_frags_entry(skb);
5804
5805         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5806         trace_napi_gro_frags_exit(ret);
5807
5808         return ret;
5809 }
5810 EXPORT_SYMBOL(napi_gro_frags);
5811
5812 /* Compute the checksum from gro_offset and return the folded value
5813  * after adding in any pseudo checksum.
5814  */
5815 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5816 {
5817         __wsum wsum;
5818         __sum16 sum;
5819
5820         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5821
5822         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5823         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5824         /* See comments in __skb_checksum_complete(). */
5825         if (likely(!sum)) {
5826                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5827                     !skb->csum_complete_sw)
5828                         netdev_rx_csum_fault(skb->dev, skb);
5829         }
5830
5831         NAPI_GRO_CB(skb)->csum = wsum;
5832         NAPI_GRO_CB(skb)->csum_valid = 1;
5833
5834         return sum;
5835 }
5836 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5837
5838 static void net_rps_send_ipi(struct softnet_data *remsd)
5839 {
5840 #ifdef CONFIG_RPS
5841         while (remsd) {
5842                 struct softnet_data *next = remsd->rps_ipi_next;
5843
5844                 if (cpu_online(remsd->cpu))
5845                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5846                 remsd = next;
5847         }
5848 #endif
5849 }
5850
5851 /*
5852  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5853  * Note: called with local irq disabled, but exits with local irq enabled.
5854  */
5855 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5856 {
5857 #ifdef CONFIG_RPS
5858         struct softnet_data *remsd = sd->rps_ipi_list;
5859
5860         if (remsd) {
5861                 sd->rps_ipi_list = NULL;
5862
5863                 local_irq_enable();
5864
5865                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5866                 net_rps_send_ipi(remsd);
5867         } else
5868 #endif
5869                 local_irq_enable();
5870 }
5871
5872 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5873 {
5874 #ifdef CONFIG_RPS
5875         return sd->rps_ipi_list != NULL;
5876 #else
5877         return false;
5878 #endif
5879 }
5880
5881 static int process_backlog(struct napi_struct *napi, int quota)
5882 {
5883         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5884         bool again = true;
5885         int work = 0;
5886
5887         /* Check if we have pending ipi, its better to send them now,
5888          * not waiting net_rx_action() end.
5889          */
5890         if (sd_has_rps_ipi_waiting(sd)) {
5891                 local_irq_disable();
5892                 net_rps_action_and_irq_enable(sd);
5893         }
5894
5895         napi->weight = dev_rx_weight;
5896         while (again) {
5897                 struct sk_buff *skb;
5898
5899                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5900                         rcu_read_lock();
5901                         __netif_receive_skb(skb);
5902                         rcu_read_unlock();
5903                         input_queue_head_incr(sd);
5904                         if (++work >= quota)
5905                                 return work;
5906
5907                 }
5908
5909                 local_irq_disable();
5910                 rps_lock(sd);
5911                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5912                         /*
5913                          * Inline a custom version of __napi_complete().
5914                          * only current cpu owns and manipulates this napi,
5915                          * and NAPI_STATE_SCHED is the only possible flag set
5916                          * on backlog.
5917                          * We can use a plain write instead of clear_bit(),
5918                          * and we dont need an smp_mb() memory barrier.
5919                          */
5920                         napi->state = 0;
5921                         again = false;
5922                 } else {
5923                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5924                                                    &sd->process_queue);
5925                 }
5926                 rps_unlock(sd);
5927                 local_irq_enable();
5928         }
5929
5930         return work;
5931 }
5932
5933 /**
5934  * __napi_schedule - schedule for receive
5935  * @n: entry to schedule
5936  *
5937  * The entry's receive function will be scheduled to run.
5938  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5939  */
5940 void __napi_schedule(struct napi_struct *n)
5941 {
5942         unsigned long flags;
5943
5944         local_irq_save(flags);
5945         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5946         local_irq_restore(flags);
5947 }
5948 EXPORT_SYMBOL(__napi_schedule);
5949
5950 /**
5951  *      napi_schedule_prep - check if napi can be scheduled
5952  *      @n: napi context
5953  *
5954  * Test if NAPI routine is already running, and if not mark
5955  * it as running.  This is used as a condition variable
5956  * insure only one NAPI poll instance runs.  We also make
5957  * sure there is no pending NAPI disable.
5958  */
5959 bool napi_schedule_prep(struct napi_struct *n)
5960 {
5961         unsigned long val, new;
5962
5963         do {
5964                 val = READ_ONCE(n->state);
5965                 if (unlikely(val & NAPIF_STATE_DISABLE))
5966                         return false;
5967                 new = val | NAPIF_STATE_SCHED;
5968
5969                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5970                  * This was suggested by Alexander Duyck, as compiler
5971                  * emits better code than :
5972                  * if (val & NAPIF_STATE_SCHED)
5973                  *     new |= NAPIF_STATE_MISSED;
5974                  */
5975                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5976                                                    NAPIF_STATE_MISSED;
5977         } while (cmpxchg(&n->state, val, new) != val);
5978
5979         return !(val & NAPIF_STATE_SCHED);
5980 }
5981 EXPORT_SYMBOL(napi_schedule_prep);
5982
5983 /**
5984  * __napi_schedule_irqoff - schedule for receive
5985  * @n: entry to schedule
5986  *
5987  * Variant of __napi_schedule() assuming hard irqs are masked.
5988  *
5989  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5990  * because the interrupt disabled assumption might not be true
5991  * due to force-threaded interrupts and spinlock substitution.
5992  */
5993 void __napi_schedule_irqoff(struct napi_struct *n)
5994 {
5995         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5996                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5997         else
5998                 __napi_schedule(n);
5999 }
6000 EXPORT_SYMBOL(__napi_schedule_irqoff);
6001
6002 bool napi_complete_done(struct napi_struct *n, int work_done)
6003 {
6004         unsigned long flags, val, new;
6005
6006         /*
6007          * 1) Don't let napi dequeue from the cpu poll list
6008          *    just in case its running on a different cpu.
6009          * 2) If we are busy polling, do nothing here, we have
6010          *    the guarantee we will be called later.
6011          */
6012         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6013                                  NAPIF_STATE_IN_BUSY_POLL)))
6014                 return false;
6015
6016         if (n->gro_bitmask) {
6017                 unsigned long timeout = 0;
6018
6019                 if (work_done)
6020                         timeout = n->dev->gro_flush_timeout;
6021
6022                 /* When the NAPI instance uses a timeout and keeps postponing
6023                  * it, we need to bound somehow the time packets are kept in
6024                  * the GRO layer
6025                  */
6026                 napi_gro_flush(n, !!timeout);
6027                 if (timeout)
6028                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6029                                       HRTIMER_MODE_REL_PINNED);
6030         }
6031
6032         gro_normal_list(n);
6033
6034         if (unlikely(!list_empty(&n->poll_list))) {
6035                 /* If n->poll_list is not empty, we need to mask irqs */
6036                 local_irq_save(flags);
6037                 list_del_init(&n->poll_list);
6038                 local_irq_restore(flags);
6039         }
6040
6041         do {
6042                 val = READ_ONCE(n->state);
6043
6044                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6045
6046                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6047
6048                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6049                  * because we will call napi->poll() one more time.
6050                  * This C code was suggested by Alexander Duyck to help gcc.
6051                  */
6052                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6053                                                     NAPIF_STATE_SCHED;
6054         } while (cmpxchg(&n->state, val, new) != val);
6055
6056         if (unlikely(val & NAPIF_STATE_MISSED)) {
6057                 __napi_schedule(n);
6058                 return false;
6059         }
6060
6061         return true;
6062 }
6063 EXPORT_SYMBOL(napi_complete_done);
6064
6065 /* must be called under rcu_read_lock(), as we dont take a reference */
6066 static struct napi_struct *napi_by_id(unsigned int napi_id)
6067 {
6068         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6069         struct napi_struct *napi;
6070
6071         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6072                 if (napi->napi_id == napi_id)
6073                         return napi;
6074
6075         return NULL;
6076 }
6077
6078 #if defined(CONFIG_NET_RX_BUSY_POLL)
6079
6080 #define BUSY_POLL_BUDGET 8
6081
6082 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6083 {
6084         int rc;
6085
6086         /* Busy polling means there is a high chance device driver hard irq
6087          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6088          * set in napi_schedule_prep().
6089          * Since we are about to call napi->poll() once more, we can safely
6090          * clear NAPI_STATE_MISSED.
6091          *
6092          * Note: x86 could use a single "lock and ..." instruction
6093          * to perform these two clear_bit()
6094          */
6095         clear_bit(NAPI_STATE_MISSED, &napi->state);
6096         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6097
6098         local_bh_disable();
6099
6100         /* All we really want here is to re-enable device interrupts.
6101          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6102          */
6103         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6104         /* We can't gro_normal_list() here, because napi->poll() might have
6105          * rearmed the napi (napi_complete_done()) in which case it could
6106          * already be running on another CPU.
6107          */
6108         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6109         netpoll_poll_unlock(have_poll_lock);
6110         if (rc == BUSY_POLL_BUDGET) {
6111                 /* As the whole budget was spent, we still own the napi so can
6112                  * safely handle the rx_list.
6113                  */
6114                 gro_normal_list(napi);
6115                 __napi_schedule(napi);
6116         }
6117         local_bh_enable();
6118 }
6119
6120 void napi_busy_loop(unsigned int napi_id,
6121                     bool (*loop_end)(void *, unsigned long),
6122                     void *loop_end_arg)
6123 {
6124         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6125         int (*napi_poll)(struct napi_struct *napi, int budget);
6126         void *have_poll_lock = NULL;
6127         struct napi_struct *napi;
6128
6129 restart:
6130         napi_poll = NULL;
6131
6132         rcu_read_lock();
6133
6134         napi = napi_by_id(napi_id);
6135         if (!napi)
6136                 goto out;
6137
6138         preempt_disable();
6139         for (;;) {
6140                 int work = 0;
6141
6142                 local_bh_disable();
6143                 if (!napi_poll) {
6144                         unsigned long val = READ_ONCE(napi->state);
6145
6146                         /* If multiple threads are competing for this napi,
6147                          * we avoid dirtying napi->state as much as we can.
6148                          */
6149                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6150                                    NAPIF_STATE_IN_BUSY_POLL))
6151                                 goto count;
6152                         if (cmpxchg(&napi->state, val,
6153                                     val | NAPIF_STATE_IN_BUSY_POLL |
6154                                           NAPIF_STATE_SCHED) != val)
6155                                 goto count;
6156                         have_poll_lock = netpoll_poll_lock(napi);
6157                         napi_poll = napi->poll;
6158                 }
6159                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6160                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6161                 gro_normal_list(napi);
6162 count:
6163                 if (work > 0)
6164                         __NET_ADD_STATS(dev_net(napi->dev),
6165                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6166                 local_bh_enable();
6167
6168                 if (!loop_end || loop_end(loop_end_arg, start_time))
6169                         break;
6170
6171                 if (unlikely(need_resched())) {
6172                         if (napi_poll)
6173                                 busy_poll_stop(napi, have_poll_lock);
6174                         preempt_enable();
6175                         rcu_read_unlock();
6176                         cond_resched();
6177                         if (loop_end(loop_end_arg, start_time))
6178                                 return;
6179                         goto restart;
6180                 }
6181                 cpu_relax();
6182         }
6183         if (napi_poll)
6184                 busy_poll_stop(napi, have_poll_lock);
6185         preempt_enable();
6186 out:
6187         rcu_read_unlock();
6188 }
6189 EXPORT_SYMBOL(napi_busy_loop);
6190
6191 #endif /* CONFIG_NET_RX_BUSY_POLL */
6192
6193 static void napi_hash_add(struct napi_struct *napi)
6194 {
6195         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6196             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6197                 return;
6198
6199         spin_lock(&napi_hash_lock);
6200
6201         /* 0..NR_CPUS range is reserved for sender_cpu use */
6202         do {
6203                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6204                         napi_gen_id = MIN_NAPI_ID;
6205         } while (napi_by_id(napi_gen_id));
6206         napi->napi_id = napi_gen_id;
6207
6208         hlist_add_head_rcu(&napi->napi_hash_node,
6209                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6210
6211         spin_unlock(&napi_hash_lock);
6212 }
6213
6214 /* Warning : caller is responsible to make sure rcu grace period
6215  * is respected before freeing memory containing @napi
6216  */
6217 bool napi_hash_del(struct napi_struct *napi)
6218 {
6219         bool rcu_sync_needed = false;
6220
6221         spin_lock(&napi_hash_lock);
6222
6223         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6224                 rcu_sync_needed = true;
6225                 hlist_del_rcu(&napi->napi_hash_node);
6226         }
6227         spin_unlock(&napi_hash_lock);
6228         return rcu_sync_needed;
6229 }
6230 EXPORT_SYMBOL_GPL(napi_hash_del);
6231
6232 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6233 {
6234         struct napi_struct *napi;
6235
6236         napi = container_of(timer, struct napi_struct, timer);
6237
6238         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6239          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6240          */
6241         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6242             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6243                 __napi_schedule_irqoff(napi);
6244
6245         return HRTIMER_NORESTART;
6246 }
6247
6248 static void init_gro_hash(struct napi_struct *napi)
6249 {
6250         int i;
6251
6252         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6253                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6254                 napi->gro_hash[i].count = 0;
6255         }
6256         napi->gro_bitmask = 0;
6257 }
6258
6259 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6260                     int (*poll)(struct napi_struct *, int), int weight)
6261 {
6262         INIT_LIST_HEAD(&napi->poll_list);
6263         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6264         napi->timer.function = napi_watchdog;
6265         init_gro_hash(napi);
6266         napi->skb = NULL;
6267         INIT_LIST_HEAD(&napi->rx_list);
6268         napi->rx_count = 0;
6269         napi->poll = poll;
6270         if (weight > NAPI_POLL_WEIGHT)
6271                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6272                                 weight);
6273         napi->weight = weight;
6274         napi->dev = dev;
6275 #ifdef CONFIG_NETPOLL
6276         napi->poll_owner = -1;
6277 #endif
6278         set_bit(NAPI_STATE_SCHED, &napi->state);
6279         set_bit(NAPI_STATE_NPSVC, &napi->state);
6280         list_add_rcu(&napi->dev_list, &dev->napi_list);
6281         napi_hash_add(napi);
6282 }
6283 EXPORT_SYMBOL(netif_napi_add);
6284
6285 void napi_disable(struct napi_struct *n)
6286 {
6287         might_sleep();
6288         set_bit(NAPI_STATE_DISABLE, &n->state);
6289
6290         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6291                 msleep(1);
6292         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6293                 msleep(1);
6294
6295         hrtimer_cancel(&n->timer);
6296
6297         clear_bit(NAPI_STATE_DISABLE, &n->state);
6298 }
6299 EXPORT_SYMBOL(napi_disable);
6300
6301 static void flush_gro_hash(struct napi_struct *napi)
6302 {
6303         int i;
6304
6305         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6306                 struct sk_buff *skb, *n;
6307
6308                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6309                         kfree_skb(skb);
6310                 napi->gro_hash[i].count = 0;
6311         }
6312 }
6313
6314 /* Must be called in process context */
6315 void netif_napi_del(struct napi_struct *napi)
6316 {
6317         might_sleep();
6318         if (napi_hash_del(napi))
6319                 synchronize_net();
6320         list_del_init(&napi->dev_list);
6321         napi_free_frags(napi);
6322
6323         flush_gro_hash(napi);
6324         napi->gro_bitmask = 0;
6325 }
6326 EXPORT_SYMBOL(netif_napi_del);
6327
6328 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6329 {
6330         void *have;
6331         int work, weight;
6332
6333         list_del_init(&n->poll_list);
6334
6335         have = netpoll_poll_lock(n);
6336
6337         weight = n->weight;
6338
6339         /* This NAPI_STATE_SCHED test is for avoiding a race
6340          * with netpoll's poll_napi().  Only the entity which
6341          * obtains the lock and sees NAPI_STATE_SCHED set will
6342          * actually make the ->poll() call.  Therefore we avoid
6343          * accidentally calling ->poll() when NAPI is not scheduled.
6344          */
6345         work = 0;
6346         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6347                 work = n->poll(n, weight);
6348                 trace_napi_poll(n, work, weight);
6349         }
6350
6351         WARN_ON_ONCE(work > weight);
6352
6353         if (likely(work < weight))
6354                 goto out_unlock;
6355
6356         /* Drivers must not modify the NAPI state if they
6357          * consume the entire weight.  In such cases this code
6358          * still "owns" the NAPI instance and therefore can
6359          * move the instance around on the list at-will.
6360          */
6361         if (unlikely(napi_disable_pending(n))) {
6362                 napi_complete(n);
6363                 goto out_unlock;
6364         }
6365
6366         if (n->gro_bitmask) {
6367                 /* flush too old packets
6368                  * If HZ < 1000, flush all packets.
6369                  */
6370                 napi_gro_flush(n, HZ >= 1000);
6371         }
6372
6373         gro_normal_list(n);
6374
6375         /* Some drivers may have called napi_schedule
6376          * prior to exhausting their budget.
6377          */
6378         if (unlikely(!list_empty(&n->poll_list))) {
6379                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6380                              n->dev ? n->dev->name : "backlog");
6381                 goto out_unlock;
6382         }
6383
6384         list_add_tail(&n->poll_list, repoll);
6385
6386 out_unlock:
6387         netpoll_poll_unlock(have);
6388
6389         return work;
6390 }
6391
6392 static __latent_entropy void net_rx_action(struct softirq_action *h)
6393 {
6394         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6395         unsigned long time_limit = jiffies +
6396                 usecs_to_jiffies(netdev_budget_usecs);
6397         int budget = netdev_budget;
6398         LIST_HEAD(list);
6399         LIST_HEAD(repoll);
6400
6401         local_irq_disable();
6402         list_splice_init(&sd->poll_list, &list);
6403         local_irq_enable();
6404
6405         for (;;) {
6406                 struct napi_struct *n;
6407
6408                 if (list_empty(&list)) {
6409                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6410                                 goto out;
6411                         break;
6412                 }
6413
6414                 n = list_first_entry(&list, struct napi_struct, poll_list);
6415                 budget -= napi_poll(n, &repoll);
6416
6417                 /* If softirq window is exhausted then punt.
6418                  * Allow this to run for 2 jiffies since which will allow
6419                  * an average latency of 1.5/HZ.
6420                  */
6421                 if (unlikely(budget <= 0 ||
6422                              time_after_eq(jiffies, time_limit))) {
6423                         sd->time_squeeze++;
6424                         break;
6425                 }
6426         }
6427
6428         local_irq_disable();
6429
6430         list_splice_tail_init(&sd->poll_list, &list);
6431         list_splice_tail(&repoll, &list);
6432         list_splice(&list, &sd->poll_list);
6433         if (!list_empty(&sd->poll_list))
6434                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6435
6436         net_rps_action_and_irq_enable(sd);
6437 out:
6438         __kfree_skb_flush();
6439 }
6440
6441 struct netdev_adjacent {
6442         struct net_device *dev;
6443
6444         /* upper master flag, there can only be one master device per list */
6445         bool master;
6446
6447         /* lookup ignore flag */
6448         bool ignore;
6449
6450         /* counter for the number of times this device was added to us */
6451         u16 ref_nr;
6452
6453         /* private field for the users */
6454         void *private;
6455
6456         struct list_head list;
6457         struct rcu_head rcu;
6458 };
6459
6460 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6461                                                  struct list_head *adj_list)
6462 {
6463         struct netdev_adjacent *adj;
6464
6465         list_for_each_entry(adj, adj_list, list) {
6466                 if (adj->dev == adj_dev)
6467                         return adj;
6468         }
6469         return NULL;
6470 }
6471
6472 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6473 {
6474         struct net_device *dev = data;
6475
6476         return upper_dev == dev;
6477 }
6478
6479 /**
6480  * netdev_has_upper_dev - Check if device is linked to an upper device
6481  * @dev: device
6482  * @upper_dev: upper device to check
6483  *
6484  * Find out if a device is linked to specified upper device and return true
6485  * in case it is. Note that this checks only immediate upper device,
6486  * not through a complete stack of devices. The caller must hold the RTNL lock.
6487  */
6488 bool netdev_has_upper_dev(struct net_device *dev,
6489                           struct net_device *upper_dev)
6490 {
6491         ASSERT_RTNL();
6492
6493         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6494                                              upper_dev);
6495 }
6496 EXPORT_SYMBOL(netdev_has_upper_dev);
6497
6498 /**
6499  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6500  * @dev: device
6501  * @upper_dev: upper device to check
6502  *
6503  * Find out if a device is linked to specified upper device and return true
6504  * in case it is. Note that this checks the entire upper device chain.
6505  * The caller must hold rcu lock.
6506  */
6507
6508 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6509                                   struct net_device *upper_dev)
6510 {
6511         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6512                                                upper_dev);
6513 }
6514 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6515
6516 /**
6517  * netdev_has_any_upper_dev - Check if device is linked to some device
6518  * @dev: device
6519  *
6520  * Find out if a device is linked to an upper device and return true in case
6521  * it is. The caller must hold the RTNL lock.
6522  */
6523 bool netdev_has_any_upper_dev(struct net_device *dev)
6524 {
6525         ASSERT_RTNL();
6526
6527         return !list_empty(&dev->adj_list.upper);
6528 }
6529 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6530
6531 /**
6532  * netdev_master_upper_dev_get - Get master upper device
6533  * @dev: device
6534  *
6535  * Find a master upper device and return pointer to it or NULL in case
6536  * it's not there. The caller must hold the RTNL lock.
6537  */
6538 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6539 {
6540         struct netdev_adjacent *upper;
6541
6542         ASSERT_RTNL();
6543
6544         if (list_empty(&dev->adj_list.upper))
6545                 return NULL;
6546
6547         upper = list_first_entry(&dev->adj_list.upper,
6548                                  struct netdev_adjacent, list);
6549         if (likely(upper->master))
6550                 return upper->dev;
6551         return NULL;
6552 }
6553 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6554
6555 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6556 {
6557         struct netdev_adjacent *upper;
6558
6559         ASSERT_RTNL();
6560
6561         if (list_empty(&dev->adj_list.upper))
6562                 return NULL;
6563
6564         upper = list_first_entry(&dev->adj_list.upper,
6565                                  struct netdev_adjacent, list);
6566         if (likely(upper->master) && !upper->ignore)
6567                 return upper->dev;
6568         return NULL;
6569 }
6570
6571 /**
6572  * netdev_has_any_lower_dev - Check if device is linked to some device
6573  * @dev: device
6574  *
6575  * Find out if a device is linked to a lower device and return true in case
6576  * it is. The caller must hold the RTNL lock.
6577  */
6578 static bool netdev_has_any_lower_dev(struct net_device *dev)
6579 {
6580         ASSERT_RTNL();
6581
6582         return !list_empty(&dev->adj_list.lower);
6583 }
6584
6585 void *netdev_adjacent_get_private(struct list_head *adj_list)
6586 {
6587         struct netdev_adjacent *adj;
6588
6589         adj = list_entry(adj_list, struct netdev_adjacent, list);
6590
6591         return adj->private;
6592 }
6593 EXPORT_SYMBOL(netdev_adjacent_get_private);
6594
6595 /**
6596  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6597  * @dev: device
6598  * @iter: list_head ** of the current position
6599  *
6600  * Gets the next device from the dev's upper list, starting from iter
6601  * position. The caller must hold RCU read lock.
6602  */
6603 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6604                                                  struct list_head **iter)
6605 {
6606         struct netdev_adjacent *upper;
6607
6608         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6609
6610         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6611
6612         if (&upper->list == &dev->adj_list.upper)
6613                 return NULL;
6614
6615         *iter = &upper->list;
6616
6617         return upper->dev;
6618 }
6619 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6620
6621 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6622                                                   struct list_head **iter,
6623                                                   bool *ignore)
6624 {
6625         struct netdev_adjacent *upper;
6626
6627         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6628
6629         if (&upper->list == &dev->adj_list.upper)
6630                 return NULL;
6631
6632         *iter = &upper->list;
6633         *ignore = upper->ignore;
6634
6635         return upper->dev;
6636 }
6637
6638 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6639                                                     struct list_head **iter)
6640 {
6641         struct netdev_adjacent *upper;
6642
6643         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6644
6645         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6646
6647         if (&upper->list == &dev->adj_list.upper)
6648                 return NULL;
6649
6650         *iter = &upper->list;
6651
6652         return upper->dev;
6653 }
6654
6655 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6656                                        int (*fn)(struct net_device *dev,
6657                                                  void *data),
6658                                        void *data)
6659 {
6660         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6661         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6662         int ret, cur = 0;
6663         bool ignore;
6664
6665         now = dev;
6666         iter = &dev->adj_list.upper;
6667
6668         while (1) {
6669                 if (now != dev) {
6670                         ret = fn(now, data);
6671                         if (ret)
6672                                 return ret;
6673                 }
6674
6675                 next = NULL;
6676                 while (1) {
6677                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6678                         if (!udev)
6679                                 break;
6680                         if (ignore)
6681                                 continue;
6682
6683                         next = udev;
6684                         niter = &udev->adj_list.upper;
6685                         dev_stack[cur] = now;
6686                         iter_stack[cur++] = iter;
6687                         break;
6688                 }
6689
6690                 if (!next) {
6691                         if (!cur)
6692                                 return 0;
6693                         next = dev_stack[--cur];
6694                         niter = iter_stack[cur];
6695                 }
6696
6697                 now = next;
6698                 iter = niter;
6699         }
6700
6701         return 0;
6702 }
6703
6704 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6705                                   int (*fn)(struct net_device *dev,
6706                                             void *data),
6707                                   void *data)
6708 {
6709         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6710         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6711         int ret, cur = 0;
6712
6713         now = dev;
6714         iter = &dev->adj_list.upper;
6715
6716         while (1) {
6717                 if (now != dev) {
6718                         ret = fn(now, data);
6719                         if (ret)
6720                                 return ret;
6721                 }
6722
6723                 next = NULL;
6724                 while (1) {
6725                         udev = netdev_next_upper_dev_rcu(now, &iter);
6726                         if (!udev)
6727                                 break;
6728
6729                         next = udev;
6730                         niter = &udev->adj_list.upper;
6731                         dev_stack[cur] = now;
6732                         iter_stack[cur++] = iter;
6733                         break;
6734                 }
6735
6736                 if (!next) {
6737                         if (!cur)
6738                                 return 0;
6739                         next = dev_stack[--cur];
6740                         niter = iter_stack[cur];
6741                 }
6742
6743                 now = next;
6744                 iter = niter;
6745         }
6746
6747         return 0;
6748 }
6749 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6750
6751 static bool __netdev_has_upper_dev(struct net_device *dev,
6752                                    struct net_device *upper_dev)
6753 {
6754         ASSERT_RTNL();
6755
6756         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6757                                            upper_dev);
6758 }
6759
6760 /**
6761  * netdev_lower_get_next_private - Get the next ->private from the
6762  *                                 lower neighbour list
6763  * @dev: device
6764  * @iter: list_head ** of the current position
6765  *
6766  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6767  * list, starting from iter position. The caller must hold either hold the
6768  * RTNL lock or its own locking that guarantees that the neighbour lower
6769  * list will remain unchanged.
6770  */
6771 void *netdev_lower_get_next_private(struct net_device *dev,
6772                                     struct list_head **iter)
6773 {
6774         struct netdev_adjacent *lower;
6775
6776         lower = list_entry(*iter, struct netdev_adjacent, list);
6777
6778         if (&lower->list == &dev->adj_list.lower)
6779                 return NULL;
6780
6781         *iter = lower->list.next;
6782
6783         return lower->private;
6784 }
6785 EXPORT_SYMBOL(netdev_lower_get_next_private);
6786
6787 /**
6788  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6789  *                                     lower neighbour list, RCU
6790  *                                     variant
6791  * @dev: device
6792  * @iter: list_head ** of the current position
6793  *
6794  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6795  * list, starting from iter position. The caller must hold RCU read lock.
6796  */
6797 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6798                                         struct list_head **iter)
6799 {
6800         struct netdev_adjacent *lower;
6801
6802         WARN_ON_ONCE(!rcu_read_lock_held());
6803
6804         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6805
6806         if (&lower->list == &dev->adj_list.lower)
6807                 return NULL;
6808
6809         *iter = &lower->list;
6810
6811         return lower->private;
6812 }
6813 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6814
6815 /**
6816  * netdev_lower_get_next - Get the next device from the lower neighbour
6817  *                         list
6818  * @dev: device
6819  * @iter: list_head ** of the current position
6820  *
6821  * Gets the next netdev_adjacent from the dev's lower neighbour
6822  * list, starting from iter position. The caller must hold RTNL lock or
6823  * its own locking that guarantees that the neighbour lower
6824  * list will remain unchanged.
6825  */
6826 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6827 {
6828         struct netdev_adjacent *lower;
6829
6830         lower = list_entry(*iter, struct netdev_adjacent, list);
6831
6832         if (&lower->list == &dev->adj_list.lower)
6833                 return NULL;
6834
6835         *iter = lower->list.next;
6836
6837         return lower->dev;
6838 }
6839 EXPORT_SYMBOL(netdev_lower_get_next);
6840
6841 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6842                                                 struct list_head **iter)
6843 {
6844         struct netdev_adjacent *lower;
6845
6846         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6847
6848         if (&lower->list == &dev->adj_list.lower)
6849                 return NULL;
6850
6851         *iter = &lower->list;
6852
6853         return lower->dev;
6854 }
6855
6856 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6857                                                   struct list_head **iter,
6858                                                   bool *ignore)
6859 {
6860         struct netdev_adjacent *lower;
6861
6862         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6863
6864         if (&lower->list == &dev->adj_list.lower)
6865                 return NULL;
6866
6867         *iter = &lower->list;
6868         *ignore = lower->ignore;
6869
6870         return lower->dev;
6871 }
6872
6873 int netdev_walk_all_lower_dev(struct net_device *dev,
6874                               int (*fn)(struct net_device *dev,
6875                                         void *data),
6876                               void *data)
6877 {
6878         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6879         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6880         int ret, cur = 0;
6881
6882         now = dev;
6883         iter = &dev->adj_list.lower;
6884
6885         while (1) {
6886                 if (now != dev) {
6887                         ret = fn(now, data);
6888                         if (ret)
6889                                 return ret;
6890                 }
6891
6892                 next = NULL;
6893                 while (1) {
6894                         ldev = netdev_next_lower_dev(now, &iter);
6895                         if (!ldev)
6896                                 break;
6897
6898                         next = ldev;
6899                         niter = &ldev->adj_list.lower;
6900                         dev_stack[cur] = now;
6901                         iter_stack[cur++] = iter;
6902                         break;
6903                 }
6904
6905                 if (!next) {
6906                         if (!cur)
6907                                 return 0;
6908                         next = dev_stack[--cur];
6909                         niter = iter_stack[cur];
6910                 }
6911
6912                 now = next;
6913                 iter = niter;
6914         }
6915
6916         return 0;
6917 }
6918 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6919
6920 static int __netdev_walk_all_lower_dev(struct net_device *dev,
6921                                        int (*fn)(struct net_device *dev,
6922                                                  void *data),
6923                                        void *data)
6924 {
6925         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6926         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6927         int ret, cur = 0;
6928         bool ignore;
6929
6930         now = dev;
6931         iter = &dev->adj_list.lower;
6932
6933         while (1) {
6934                 if (now != dev) {
6935                         ret = fn(now, data);
6936                         if (ret)
6937                                 return ret;
6938                 }
6939
6940                 next = NULL;
6941                 while (1) {
6942                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
6943                         if (!ldev)
6944                                 break;
6945                         if (ignore)
6946                                 continue;
6947
6948                         next = ldev;
6949                         niter = &ldev->adj_list.lower;
6950                         dev_stack[cur] = now;
6951                         iter_stack[cur++] = iter;
6952                         break;
6953                 }
6954
6955                 if (!next) {
6956                         if (!cur)
6957                                 return 0;
6958                         next = dev_stack[--cur];
6959                         niter = iter_stack[cur];
6960                 }
6961
6962                 now = next;
6963                 iter = niter;
6964         }
6965
6966         return 0;
6967 }
6968
6969 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6970                                              struct list_head **iter)
6971 {
6972         struct netdev_adjacent *lower;
6973
6974         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6975         if (&lower->list == &dev->adj_list.lower)
6976                 return NULL;
6977
6978         *iter = &lower->list;
6979
6980         return lower->dev;
6981 }
6982 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
6983
6984 static u8 __netdev_upper_depth(struct net_device *dev)
6985 {
6986         struct net_device *udev;
6987         struct list_head *iter;
6988         u8 max_depth = 0;
6989         bool ignore;
6990
6991         for (iter = &dev->adj_list.upper,
6992              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
6993              udev;
6994              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
6995                 if (ignore)
6996                         continue;
6997                 if (max_depth < udev->upper_level)
6998                         max_depth = udev->upper_level;
6999         }
7000
7001         return max_depth;
7002 }
7003
7004 static u8 __netdev_lower_depth(struct net_device *dev)
7005 {
7006         struct net_device *ldev;
7007         struct list_head *iter;
7008         u8 max_depth = 0;
7009         bool ignore;
7010
7011         for (iter = &dev->adj_list.lower,
7012              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7013              ldev;
7014              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7015                 if (ignore)
7016                         continue;
7017                 if (max_depth < ldev->lower_level)
7018                         max_depth = ldev->lower_level;
7019         }
7020
7021         return max_depth;
7022 }
7023
7024 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7025 {
7026         dev->upper_level = __netdev_upper_depth(dev) + 1;
7027         return 0;
7028 }
7029
7030 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7031 {
7032         dev->lower_level = __netdev_lower_depth(dev) + 1;
7033         return 0;
7034 }
7035
7036 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7037                                   int (*fn)(struct net_device *dev,
7038                                             void *data),
7039                                   void *data)
7040 {
7041         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7042         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7043         int ret, cur = 0;
7044
7045         now = dev;
7046         iter = &dev->adj_list.lower;
7047
7048         while (1) {
7049                 if (now != dev) {
7050                         ret = fn(now, data);
7051                         if (ret)
7052                                 return ret;
7053                 }
7054
7055                 next = NULL;
7056                 while (1) {
7057                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7058                         if (!ldev)
7059                                 break;
7060
7061                         next = ldev;
7062                         niter = &ldev->adj_list.lower;
7063                         dev_stack[cur] = now;
7064                         iter_stack[cur++] = iter;
7065                         break;
7066                 }
7067
7068                 if (!next) {
7069                         if (!cur)
7070                                 return 0;
7071                         next = dev_stack[--cur];
7072                         niter = iter_stack[cur];
7073                 }
7074
7075                 now = next;
7076                 iter = niter;
7077         }
7078
7079         return 0;
7080 }
7081 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7082
7083 /**
7084  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7085  *                                     lower neighbour list, RCU
7086  *                                     variant
7087  * @dev: device
7088  *
7089  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7090  * list. The caller must hold RCU read lock.
7091  */
7092 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7093 {
7094         struct netdev_adjacent *lower;
7095
7096         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7097                         struct netdev_adjacent, list);
7098         if (lower)
7099                 return lower->private;
7100         return NULL;
7101 }
7102 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7103
7104 /**
7105  * netdev_master_upper_dev_get_rcu - Get master upper device
7106  * @dev: device
7107  *
7108  * Find a master upper device and return pointer to it or NULL in case
7109  * it's not there. The caller must hold the RCU read lock.
7110  */
7111 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7112 {
7113         struct netdev_adjacent *upper;
7114
7115         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7116                                        struct netdev_adjacent, list);
7117         if (upper && likely(upper->master))
7118                 return upper->dev;
7119         return NULL;
7120 }
7121 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7122
7123 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7124                               struct net_device *adj_dev,
7125                               struct list_head *dev_list)
7126 {
7127         char linkname[IFNAMSIZ+7];
7128
7129         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7130                 "upper_%s" : "lower_%s", adj_dev->name);
7131         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7132                                  linkname);
7133 }
7134 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7135                                char *name,
7136                                struct list_head *dev_list)
7137 {
7138         char linkname[IFNAMSIZ+7];
7139
7140         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7141                 "upper_%s" : "lower_%s", name);
7142         sysfs_remove_link(&(dev->dev.kobj), linkname);
7143 }
7144
7145 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7146                                                  struct net_device *adj_dev,
7147                                                  struct list_head *dev_list)
7148 {
7149         return (dev_list == &dev->adj_list.upper ||
7150                 dev_list == &dev->adj_list.lower) &&
7151                 net_eq(dev_net(dev), dev_net(adj_dev));
7152 }
7153
7154 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7155                                         struct net_device *adj_dev,
7156                                         struct list_head *dev_list,
7157                                         void *private, bool master)
7158 {
7159         struct netdev_adjacent *adj;
7160         int ret;
7161
7162         adj = __netdev_find_adj(adj_dev, dev_list);
7163
7164         if (adj) {
7165                 adj->ref_nr += 1;
7166                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7167                          dev->name, adj_dev->name, adj->ref_nr);
7168
7169                 return 0;
7170         }
7171
7172         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7173         if (!adj)
7174                 return -ENOMEM;
7175
7176         adj->dev = adj_dev;
7177         adj->master = master;
7178         adj->ref_nr = 1;
7179         adj->private = private;
7180         adj->ignore = false;
7181         dev_hold(adj_dev);
7182
7183         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7184                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7185
7186         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7187                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7188                 if (ret)
7189                         goto free_adj;
7190         }
7191
7192         /* Ensure that master link is always the first item in list. */
7193         if (master) {
7194                 ret = sysfs_create_link(&(dev->dev.kobj),
7195                                         &(adj_dev->dev.kobj), "master");
7196                 if (ret)
7197                         goto remove_symlinks;
7198
7199                 list_add_rcu(&adj->list, dev_list);
7200         } else {
7201                 list_add_tail_rcu(&adj->list, dev_list);
7202         }
7203
7204         return 0;
7205
7206 remove_symlinks:
7207         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7208                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7209 free_adj:
7210         kfree(adj);
7211         dev_put(adj_dev);
7212
7213         return ret;
7214 }
7215
7216 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7217                                          struct net_device *adj_dev,
7218                                          u16 ref_nr,
7219                                          struct list_head *dev_list)
7220 {
7221         struct netdev_adjacent *adj;
7222
7223         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7224                  dev->name, adj_dev->name, ref_nr);
7225
7226         adj = __netdev_find_adj(adj_dev, dev_list);
7227
7228         if (!adj) {
7229                 pr_err("Adjacency does not exist for device %s from %s\n",
7230                        dev->name, adj_dev->name);
7231                 WARN_ON(1);
7232                 return;
7233         }
7234
7235         if (adj->ref_nr > ref_nr) {
7236                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7237                          dev->name, adj_dev->name, ref_nr,
7238                          adj->ref_nr - ref_nr);
7239                 adj->ref_nr -= ref_nr;
7240                 return;
7241         }
7242
7243         if (adj->master)
7244                 sysfs_remove_link(&(dev->dev.kobj), "master");
7245
7246         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7247                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7248
7249         list_del_rcu(&adj->list);
7250         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7251                  adj_dev->name, dev->name, adj_dev->name);
7252         dev_put(adj_dev);
7253         kfree_rcu(adj, rcu);
7254 }
7255
7256 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7257                                             struct net_device *upper_dev,
7258                                             struct list_head *up_list,
7259                                             struct list_head *down_list,
7260                                             void *private, bool master)
7261 {
7262         int ret;
7263
7264         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7265                                            private, master);
7266         if (ret)
7267                 return ret;
7268
7269         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7270                                            private, false);
7271         if (ret) {
7272                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7273                 return ret;
7274         }
7275
7276         return 0;
7277 }
7278
7279 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7280                                                struct net_device *upper_dev,
7281                                                u16 ref_nr,
7282                                                struct list_head *up_list,
7283                                                struct list_head *down_list)
7284 {
7285         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7286         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7287 }
7288
7289 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7290                                                 struct net_device *upper_dev,
7291                                                 void *private, bool master)
7292 {
7293         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7294                                                 &dev->adj_list.upper,
7295                                                 &upper_dev->adj_list.lower,
7296                                                 private, master);
7297 }
7298
7299 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7300                                                    struct net_device *upper_dev)
7301 {
7302         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7303                                            &dev->adj_list.upper,
7304                                            &upper_dev->adj_list.lower);
7305 }
7306
7307 static int __netdev_upper_dev_link(struct net_device *dev,
7308                                    struct net_device *upper_dev, bool master,
7309                                    void *upper_priv, void *upper_info,
7310                                    struct netlink_ext_ack *extack)
7311 {
7312         struct netdev_notifier_changeupper_info changeupper_info = {
7313                 .info = {
7314                         .dev = dev,
7315                         .extack = extack,
7316                 },
7317                 .upper_dev = upper_dev,
7318                 .master = master,
7319                 .linking = true,
7320                 .upper_info = upper_info,
7321         };
7322         struct net_device *master_dev;
7323         int ret = 0;
7324
7325         ASSERT_RTNL();
7326
7327         if (dev == upper_dev)
7328                 return -EBUSY;
7329
7330         /* To prevent loops, check if dev is not upper device to upper_dev. */
7331         if (__netdev_has_upper_dev(upper_dev, dev))
7332                 return -EBUSY;
7333
7334         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7335                 return -EMLINK;
7336
7337         if (!master) {
7338                 if (__netdev_has_upper_dev(dev, upper_dev))
7339                         return -EEXIST;
7340         } else {
7341                 master_dev = __netdev_master_upper_dev_get(dev);
7342                 if (master_dev)
7343                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7344         }
7345
7346         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7347                                             &changeupper_info.info);
7348         ret = notifier_to_errno(ret);
7349         if (ret)
7350                 return ret;
7351
7352         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7353                                                    master);
7354         if (ret)
7355                 return ret;
7356
7357         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7358                                             &changeupper_info.info);
7359         ret = notifier_to_errno(ret);
7360         if (ret)
7361                 goto rollback;
7362
7363         __netdev_update_upper_level(dev, NULL);
7364         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7365
7366         __netdev_update_lower_level(upper_dev, NULL);
7367         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7368                                     NULL);
7369
7370         return 0;
7371
7372 rollback:
7373         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7374
7375         return ret;
7376 }
7377
7378 /**
7379  * netdev_upper_dev_link - Add a link to the upper device
7380  * @dev: device
7381  * @upper_dev: new upper device
7382  * @extack: netlink extended ack
7383  *
7384  * Adds a link to device which is upper to this one. The caller must hold
7385  * the RTNL lock. On a failure a negative errno code is returned.
7386  * On success the reference counts are adjusted and the function
7387  * returns zero.
7388  */
7389 int netdev_upper_dev_link(struct net_device *dev,
7390                           struct net_device *upper_dev,
7391                           struct netlink_ext_ack *extack)
7392 {
7393         return __netdev_upper_dev_link(dev, upper_dev, false,
7394                                        NULL, NULL, extack);
7395 }
7396 EXPORT_SYMBOL(netdev_upper_dev_link);
7397
7398 /**
7399  * netdev_master_upper_dev_link - Add a master link to the upper device
7400  * @dev: device
7401  * @upper_dev: new upper device
7402  * @upper_priv: upper device private
7403  * @upper_info: upper info to be passed down via notifier
7404  * @extack: netlink extended ack
7405  *
7406  * Adds a link to device which is upper to this one. In this case, only
7407  * one master upper device can be linked, although other non-master devices
7408  * might be linked as well. The caller must hold the RTNL lock.
7409  * On a failure a negative errno code is returned. On success the reference
7410  * counts are adjusted and the function returns zero.
7411  */
7412 int netdev_master_upper_dev_link(struct net_device *dev,
7413                                  struct net_device *upper_dev,
7414                                  void *upper_priv, void *upper_info,
7415                                  struct netlink_ext_ack *extack)
7416 {
7417         return __netdev_upper_dev_link(dev, upper_dev, true,
7418                                        upper_priv, upper_info, extack);
7419 }
7420 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7421
7422 /**
7423  * netdev_upper_dev_unlink - Removes a link to upper device
7424  * @dev: device
7425  * @upper_dev: new upper device
7426  *
7427  * Removes a link to device which is upper to this one. The caller must hold
7428  * the RTNL lock.
7429  */
7430 void netdev_upper_dev_unlink(struct net_device *dev,
7431                              struct net_device *upper_dev)
7432 {
7433         struct netdev_notifier_changeupper_info changeupper_info = {
7434                 .info = {
7435                         .dev = dev,
7436                 },
7437                 .upper_dev = upper_dev,
7438                 .linking = false,
7439         };
7440
7441         ASSERT_RTNL();
7442
7443         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7444
7445         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7446                                       &changeupper_info.info);
7447
7448         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7449
7450         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7451                                       &changeupper_info.info);
7452
7453         __netdev_update_upper_level(dev, NULL);
7454         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7455
7456         __netdev_update_lower_level(upper_dev, NULL);
7457         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7458                                     NULL);
7459 }
7460 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7461
7462 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7463                                       struct net_device *lower_dev,
7464                                       bool val)
7465 {
7466         struct netdev_adjacent *adj;
7467
7468         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7469         if (adj)
7470                 adj->ignore = val;
7471
7472         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7473         if (adj)
7474                 adj->ignore = val;
7475 }
7476
7477 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7478                                         struct net_device *lower_dev)
7479 {
7480         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7481 }
7482
7483 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7484                                        struct net_device *lower_dev)
7485 {
7486         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7487 }
7488
7489 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7490                                    struct net_device *new_dev,
7491                                    struct net_device *dev,
7492                                    struct netlink_ext_ack *extack)
7493 {
7494         int err;
7495
7496         if (!new_dev)
7497                 return 0;
7498
7499         if (old_dev && new_dev != old_dev)
7500                 netdev_adjacent_dev_disable(dev, old_dev);
7501
7502         err = netdev_upper_dev_link(new_dev, dev, extack);
7503         if (err) {
7504                 if (old_dev && new_dev != old_dev)
7505                         netdev_adjacent_dev_enable(dev, old_dev);
7506                 return err;
7507         }
7508
7509         return 0;
7510 }
7511 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7512
7513 void netdev_adjacent_change_commit(struct net_device *old_dev,
7514                                    struct net_device *new_dev,
7515                                    struct net_device *dev)
7516 {
7517         if (!new_dev || !old_dev)
7518                 return;
7519
7520         if (new_dev == old_dev)
7521                 return;
7522
7523         netdev_adjacent_dev_enable(dev, old_dev);
7524         netdev_upper_dev_unlink(old_dev, dev);
7525 }
7526 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7527
7528 void netdev_adjacent_change_abort(struct net_device *old_dev,
7529                                   struct net_device *new_dev,
7530                                   struct net_device *dev)
7531 {
7532         if (!new_dev)
7533                 return;
7534
7535         if (old_dev && new_dev != old_dev)
7536                 netdev_adjacent_dev_enable(dev, old_dev);
7537
7538         netdev_upper_dev_unlink(new_dev, dev);
7539 }
7540 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7541
7542 /**
7543  * netdev_bonding_info_change - Dispatch event about slave change
7544  * @dev: device
7545  * @bonding_info: info to dispatch
7546  *
7547  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7548  * The caller must hold the RTNL lock.
7549  */
7550 void netdev_bonding_info_change(struct net_device *dev,
7551                                 struct netdev_bonding_info *bonding_info)
7552 {
7553         struct netdev_notifier_bonding_info info = {
7554                 .info.dev = dev,
7555         };
7556
7557         memcpy(&info.bonding_info, bonding_info,
7558                sizeof(struct netdev_bonding_info));
7559         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7560                                       &info.info);
7561 }
7562 EXPORT_SYMBOL(netdev_bonding_info_change);
7563
7564 static void netdev_adjacent_add_links(struct net_device *dev)
7565 {
7566         struct netdev_adjacent *iter;
7567
7568         struct net *net = dev_net(dev);
7569
7570         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7571                 if (!net_eq(net, dev_net(iter->dev)))
7572                         continue;
7573                 netdev_adjacent_sysfs_add(iter->dev, dev,
7574                                           &iter->dev->adj_list.lower);
7575                 netdev_adjacent_sysfs_add(dev, iter->dev,
7576                                           &dev->adj_list.upper);
7577         }
7578
7579         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7580                 if (!net_eq(net, dev_net(iter->dev)))
7581                         continue;
7582                 netdev_adjacent_sysfs_add(iter->dev, dev,
7583                                           &iter->dev->adj_list.upper);
7584                 netdev_adjacent_sysfs_add(dev, iter->dev,
7585                                           &dev->adj_list.lower);
7586         }
7587 }
7588
7589 static void netdev_adjacent_del_links(struct net_device *dev)
7590 {
7591         struct netdev_adjacent *iter;
7592
7593         struct net *net = dev_net(dev);
7594
7595         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7596                 if (!net_eq(net, dev_net(iter->dev)))
7597                         continue;
7598                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7599                                           &iter->dev->adj_list.lower);
7600                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7601                                           &dev->adj_list.upper);
7602         }
7603
7604         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7605                 if (!net_eq(net, dev_net(iter->dev)))
7606                         continue;
7607                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7608                                           &iter->dev->adj_list.upper);
7609                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7610                                           &dev->adj_list.lower);
7611         }
7612 }
7613
7614 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7615 {
7616         struct netdev_adjacent *iter;
7617
7618         struct net *net = dev_net(dev);
7619
7620         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7621                 if (!net_eq(net, dev_net(iter->dev)))
7622                         continue;
7623                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7624                                           &iter->dev->adj_list.lower);
7625                 netdev_adjacent_sysfs_add(iter->dev, dev,
7626                                           &iter->dev->adj_list.lower);
7627         }
7628
7629         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7630                 if (!net_eq(net, dev_net(iter->dev)))
7631                         continue;
7632                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7633                                           &iter->dev->adj_list.upper);
7634                 netdev_adjacent_sysfs_add(iter->dev, dev,
7635                                           &iter->dev->adj_list.upper);
7636         }
7637 }
7638
7639 void *netdev_lower_dev_get_private(struct net_device *dev,
7640                                    struct net_device *lower_dev)
7641 {
7642         struct netdev_adjacent *lower;
7643
7644         if (!lower_dev)
7645                 return NULL;
7646         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7647         if (!lower)
7648                 return NULL;
7649
7650         return lower->private;
7651 }
7652 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7653
7654
7655 /**
7656  * netdev_lower_change - Dispatch event about lower device state change
7657  * @lower_dev: device
7658  * @lower_state_info: state to dispatch
7659  *
7660  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7661  * The caller must hold the RTNL lock.
7662  */
7663 void netdev_lower_state_changed(struct net_device *lower_dev,
7664                                 void *lower_state_info)
7665 {
7666         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7667                 .info.dev = lower_dev,
7668         };
7669
7670         ASSERT_RTNL();
7671         changelowerstate_info.lower_state_info = lower_state_info;
7672         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7673                                       &changelowerstate_info.info);
7674 }
7675 EXPORT_SYMBOL(netdev_lower_state_changed);
7676
7677 static void dev_change_rx_flags(struct net_device *dev, int flags)
7678 {
7679         const struct net_device_ops *ops = dev->netdev_ops;
7680
7681         if (ops->ndo_change_rx_flags)
7682                 ops->ndo_change_rx_flags(dev, flags);
7683 }
7684
7685 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7686 {
7687         unsigned int old_flags = dev->flags;
7688         kuid_t uid;
7689         kgid_t gid;
7690
7691         ASSERT_RTNL();
7692
7693         dev->flags |= IFF_PROMISC;
7694         dev->promiscuity += inc;
7695         if (dev->promiscuity == 0) {
7696                 /*
7697                  * Avoid overflow.
7698                  * If inc causes overflow, untouch promisc and return error.
7699                  */
7700                 if (inc < 0)
7701                         dev->flags &= ~IFF_PROMISC;
7702                 else {
7703                         dev->promiscuity -= inc;
7704                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7705                                 dev->name);
7706                         return -EOVERFLOW;
7707                 }
7708         }
7709         if (dev->flags != old_flags) {
7710                 pr_info("device %s %s promiscuous mode\n",
7711                         dev->name,
7712                         dev->flags & IFF_PROMISC ? "entered" : "left");
7713                 if (audit_enabled) {
7714                         current_uid_gid(&uid, &gid);
7715                         audit_log(audit_context(), GFP_ATOMIC,
7716                                   AUDIT_ANOM_PROMISCUOUS,
7717                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7718                                   dev->name, (dev->flags & IFF_PROMISC),
7719                                   (old_flags & IFF_PROMISC),
7720                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7721                                   from_kuid(&init_user_ns, uid),
7722                                   from_kgid(&init_user_ns, gid),
7723                                   audit_get_sessionid(current));
7724                 }
7725
7726                 dev_change_rx_flags(dev, IFF_PROMISC);
7727         }
7728         if (notify)
7729                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7730         return 0;
7731 }
7732
7733 /**
7734  *      dev_set_promiscuity     - update promiscuity count on a device
7735  *      @dev: device
7736  *      @inc: modifier
7737  *
7738  *      Add or remove promiscuity from a device. While the count in the device
7739  *      remains above zero the interface remains promiscuous. Once it hits zero
7740  *      the device reverts back to normal filtering operation. A negative inc
7741  *      value is used to drop promiscuity on the device.
7742  *      Return 0 if successful or a negative errno code on error.
7743  */
7744 int dev_set_promiscuity(struct net_device *dev, int inc)
7745 {
7746         unsigned int old_flags = dev->flags;
7747         int err;
7748
7749         err = __dev_set_promiscuity(dev, inc, true);
7750         if (err < 0)
7751                 return err;
7752         if (dev->flags != old_flags)
7753                 dev_set_rx_mode(dev);
7754         return err;
7755 }
7756 EXPORT_SYMBOL(dev_set_promiscuity);
7757
7758 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7759 {
7760         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7761
7762         ASSERT_RTNL();
7763
7764         dev->flags |= IFF_ALLMULTI;
7765         dev->allmulti += inc;
7766         if (dev->allmulti == 0) {
7767                 /*
7768                  * Avoid overflow.
7769                  * If inc causes overflow, untouch allmulti and return error.
7770                  */
7771                 if (inc < 0)
7772                         dev->flags &= ~IFF_ALLMULTI;
7773                 else {
7774                         dev->allmulti -= inc;
7775                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7776                                 dev->name);
7777                         return -EOVERFLOW;
7778                 }
7779         }
7780         if (dev->flags ^ old_flags) {
7781                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7782                 dev_set_rx_mode(dev);
7783                 if (notify)
7784                         __dev_notify_flags(dev, old_flags,
7785                                            dev->gflags ^ old_gflags);
7786         }
7787         return 0;
7788 }
7789
7790 /**
7791  *      dev_set_allmulti        - update allmulti count on a device
7792  *      @dev: device
7793  *      @inc: modifier
7794  *
7795  *      Add or remove reception of all multicast frames to a device. While the
7796  *      count in the device remains above zero the interface remains listening
7797  *      to all interfaces. Once it hits zero the device reverts back to normal
7798  *      filtering operation. A negative @inc value is used to drop the counter
7799  *      when releasing a resource needing all multicasts.
7800  *      Return 0 if successful or a negative errno code on error.
7801  */
7802
7803 int dev_set_allmulti(struct net_device *dev, int inc)
7804 {
7805         return __dev_set_allmulti(dev, inc, true);
7806 }
7807 EXPORT_SYMBOL(dev_set_allmulti);
7808
7809 /*
7810  *      Upload unicast and multicast address lists to device and
7811  *      configure RX filtering. When the device doesn't support unicast
7812  *      filtering it is put in promiscuous mode while unicast addresses
7813  *      are present.
7814  */
7815 void __dev_set_rx_mode(struct net_device *dev)
7816 {
7817         const struct net_device_ops *ops = dev->netdev_ops;
7818
7819         /* dev_open will call this function so the list will stay sane. */
7820         if (!(dev->flags&IFF_UP))
7821                 return;
7822
7823         if (!netif_device_present(dev))
7824                 return;
7825
7826         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7827                 /* Unicast addresses changes may only happen under the rtnl,
7828                  * therefore calling __dev_set_promiscuity here is safe.
7829                  */
7830                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7831                         __dev_set_promiscuity(dev, 1, false);
7832                         dev->uc_promisc = true;
7833                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7834                         __dev_set_promiscuity(dev, -1, false);
7835                         dev->uc_promisc = false;
7836                 }
7837         }
7838
7839         if (ops->ndo_set_rx_mode)
7840                 ops->ndo_set_rx_mode(dev);
7841 }
7842
7843 void dev_set_rx_mode(struct net_device *dev)
7844 {
7845         netif_addr_lock_bh(dev);
7846         __dev_set_rx_mode(dev);
7847         netif_addr_unlock_bh(dev);
7848 }
7849
7850 /**
7851  *      dev_get_flags - get flags reported to userspace
7852  *      @dev: device
7853  *
7854  *      Get the combination of flag bits exported through APIs to userspace.
7855  */
7856 unsigned int dev_get_flags(const struct net_device *dev)
7857 {
7858         unsigned int flags;
7859
7860         flags = (dev->flags & ~(IFF_PROMISC |
7861                                 IFF_ALLMULTI |
7862                                 IFF_RUNNING |
7863                                 IFF_LOWER_UP |
7864                                 IFF_DORMANT)) |
7865                 (dev->gflags & (IFF_PROMISC |
7866                                 IFF_ALLMULTI));
7867
7868         if (netif_running(dev)) {
7869                 if (netif_oper_up(dev))
7870                         flags |= IFF_RUNNING;
7871                 if (netif_carrier_ok(dev))
7872                         flags |= IFF_LOWER_UP;
7873                 if (netif_dormant(dev))
7874                         flags |= IFF_DORMANT;
7875         }
7876
7877         return flags;
7878 }
7879 EXPORT_SYMBOL(dev_get_flags);
7880
7881 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7882                        struct netlink_ext_ack *extack)
7883 {
7884         unsigned int old_flags = dev->flags;
7885         int ret;
7886
7887         ASSERT_RTNL();
7888
7889         /*
7890          *      Set the flags on our device.
7891          */
7892
7893         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7894                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7895                                IFF_AUTOMEDIA)) |
7896                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7897                                     IFF_ALLMULTI));
7898
7899         /*
7900          *      Load in the correct multicast list now the flags have changed.
7901          */
7902
7903         if ((old_flags ^ flags) & IFF_MULTICAST)
7904                 dev_change_rx_flags(dev, IFF_MULTICAST);
7905
7906         dev_set_rx_mode(dev);
7907
7908         /*
7909          *      Have we downed the interface. We handle IFF_UP ourselves
7910          *      according to user attempts to set it, rather than blindly
7911          *      setting it.
7912          */
7913
7914         ret = 0;
7915         if ((old_flags ^ flags) & IFF_UP) {
7916                 if (old_flags & IFF_UP)
7917                         __dev_close(dev);
7918                 else
7919                         ret = __dev_open(dev, extack);
7920         }
7921
7922         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7923                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7924                 unsigned int old_flags = dev->flags;
7925
7926                 dev->gflags ^= IFF_PROMISC;
7927
7928                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7929                         if (dev->flags != old_flags)
7930                                 dev_set_rx_mode(dev);
7931         }
7932
7933         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7934          * is important. Some (broken) drivers set IFF_PROMISC, when
7935          * IFF_ALLMULTI is requested not asking us and not reporting.
7936          */
7937         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7938                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7939
7940                 dev->gflags ^= IFF_ALLMULTI;
7941                 __dev_set_allmulti(dev, inc, false);
7942         }
7943
7944         return ret;
7945 }
7946
7947 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7948                         unsigned int gchanges)
7949 {
7950         unsigned int changes = dev->flags ^ old_flags;
7951
7952         if (gchanges)
7953                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7954
7955         if (changes & IFF_UP) {
7956                 if (dev->flags & IFF_UP)
7957                         call_netdevice_notifiers(NETDEV_UP, dev);
7958                 else
7959                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7960         }
7961
7962         if (dev->flags & IFF_UP &&
7963             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7964                 struct netdev_notifier_change_info change_info = {
7965                         .info = {
7966                                 .dev = dev,
7967                         },
7968                         .flags_changed = changes,
7969                 };
7970
7971                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7972         }
7973 }
7974
7975 /**
7976  *      dev_change_flags - change device settings
7977  *      @dev: device
7978  *      @flags: device state flags
7979  *      @extack: netlink extended ack
7980  *
7981  *      Change settings on device based state flags. The flags are
7982  *      in the userspace exported format.
7983  */
7984 int dev_change_flags(struct net_device *dev, unsigned int flags,
7985                      struct netlink_ext_ack *extack)
7986 {
7987         int ret;
7988         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7989
7990         ret = __dev_change_flags(dev, flags, extack);
7991         if (ret < 0)
7992                 return ret;
7993
7994         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7995         __dev_notify_flags(dev, old_flags, changes);
7996         return ret;
7997 }
7998 EXPORT_SYMBOL(dev_change_flags);
7999
8000 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8001 {
8002         const struct net_device_ops *ops = dev->netdev_ops;
8003
8004         if (ops->ndo_change_mtu)
8005                 return ops->ndo_change_mtu(dev, new_mtu);
8006
8007         /* Pairs with all the lockless reads of dev->mtu in the stack */
8008         WRITE_ONCE(dev->mtu, new_mtu);
8009         return 0;
8010 }
8011 EXPORT_SYMBOL(__dev_set_mtu);
8012
8013 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8014                      struct netlink_ext_ack *extack)
8015 {
8016         /* MTU must be positive, and in range */
8017         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8018                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8019                 return -EINVAL;
8020         }
8021
8022         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8023                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8024                 return -EINVAL;
8025         }
8026         return 0;
8027 }
8028
8029 /**
8030  *      dev_set_mtu_ext - Change maximum transfer unit
8031  *      @dev: device
8032  *      @new_mtu: new transfer unit
8033  *      @extack: netlink extended ack
8034  *
8035  *      Change the maximum transfer size of the network device.
8036  */
8037 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8038                     struct netlink_ext_ack *extack)
8039 {
8040         int err, orig_mtu;
8041
8042         if (new_mtu == dev->mtu)
8043                 return 0;
8044
8045         err = dev_validate_mtu(dev, new_mtu, extack);
8046         if (err)
8047                 return err;
8048
8049         if (!netif_device_present(dev))
8050                 return -ENODEV;
8051
8052         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8053         err = notifier_to_errno(err);
8054         if (err)
8055                 return err;
8056
8057         orig_mtu = dev->mtu;
8058         err = __dev_set_mtu(dev, new_mtu);
8059
8060         if (!err) {
8061                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8062                                                    orig_mtu);
8063                 err = notifier_to_errno(err);
8064                 if (err) {
8065                         /* setting mtu back and notifying everyone again,
8066                          * so that they have a chance to revert changes.
8067                          */
8068                         __dev_set_mtu(dev, orig_mtu);
8069                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8070                                                      new_mtu);
8071                 }
8072         }
8073         return err;
8074 }
8075
8076 int dev_set_mtu(struct net_device *dev, int new_mtu)
8077 {
8078         struct netlink_ext_ack extack;
8079         int err;
8080
8081         memset(&extack, 0, sizeof(extack));
8082         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8083         if (err && extack._msg)
8084                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8085         return err;
8086 }
8087 EXPORT_SYMBOL(dev_set_mtu);
8088
8089 /**
8090  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8091  *      @dev: device
8092  *      @new_len: new tx queue length
8093  */
8094 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8095 {
8096         unsigned int orig_len = dev->tx_queue_len;
8097         int res;
8098
8099         if (new_len != (unsigned int)new_len)
8100                 return -ERANGE;
8101
8102         if (new_len != orig_len) {
8103                 dev->tx_queue_len = new_len;
8104                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8105                 res = notifier_to_errno(res);
8106                 if (res)
8107                         goto err_rollback;
8108                 res = dev_qdisc_change_tx_queue_len(dev);
8109                 if (res)
8110                         goto err_rollback;
8111         }
8112
8113         return 0;
8114
8115 err_rollback:
8116         netdev_err(dev, "refused to change device tx_queue_len\n");
8117         dev->tx_queue_len = orig_len;
8118         return res;
8119 }
8120
8121 /**
8122  *      dev_set_group - Change group this device belongs to
8123  *      @dev: device
8124  *      @new_group: group this device should belong to
8125  */
8126 void dev_set_group(struct net_device *dev, int new_group)
8127 {
8128         dev->group = new_group;
8129 }
8130 EXPORT_SYMBOL(dev_set_group);
8131
8132 /**
8133  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8134  *      @dev: device
8135  *      @addr: new address
8136  *      @extack: netlink extended ack
8137  */
8138 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8139                               struct netlink_ext_ack *extack)
8140 {
8141         struct netdev_notifier_pre_changeaddr_info info = {
8142                 .info.dev = dev,
8143                 .info.extack = extack,
8144                 .dev_addr = addr,
8145         };
8146         int rc;
8147
8148         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8149         return notifier_to_errno(rc);
8150 }
8151 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8152
8153 /**
8154  *      dev_set_mac_address - Change Media Access Control Address
8155  *      @dev: device
8156  *      @sa: new address
8157  *      @extack: netlink extended ack
8158  *
8159  *      Change the hardware (MAC) address of the device
8160  */
8161 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8162                         struct netlink_ext_ack *extack)
8163 {
8164         const struct net_device_ops *ops = dev->netdev_ops;
8165         int err;
8166
8167         if (!ops->ndo_set_mac_address)
8168                 return -EOPNOTSUPP;
8169         if (sa->sa_family != dev->type)
8170                 return -EINVAL;
8171         if (!netif_device_present(dev))
8172                 return -ENODEV;
8173         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8174         if (err)
8175                 return err;
8176         err = ops->ndo_set_mac_address(dev, sa);
8177         if (err)
8178                 return err;
8179         dev->addr_assign_type = NET_ADDR_SET;
8180         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8181         add_device_randomness(dev->dev_addr, dev->addr_len);
8182         return 0;
8183 }
8184 EXPORT_SYMBOL(dev_set_mac_address);
8185
8186 static DECLARE_RWSEM(dev_addr_sem);
8187
8188 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8189                              struct netlink_ext_ack *extack)
8190 {
8191         int ret;
8192
8193         down_write(&dev_addr_sem);
8194         ret = dev_set_mac_address(dev, sa, extack);
8195         up_write(&dev_addr_sem);
8196         return ret;
8197 }
8198 EXPORT_SYMBOL(dev_set_mac_address_user);
8199
8200 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8201 {
8202         size_t size = sizeof(sa->sa_data);
8203         struct net_device *dev;
8204         int ret = 0;
8205
8206         down_read(&dev_addr_sem);
8207         rcu_read_lock();
8208
8209         dev = dev_get_by_name_rcu(net, dev_name);
8210         if (!dev) {
8211                 ret = -ENODEV;
8212                 goto unlock;
8213         }
8214         if (!dev->addr_len)
8215                 memset(sa->sa_data, 0, size);
8216         else
8217                 memcpy(sa->sa_data, dev->dev_addr,
8218                        min_t(size_t, size, dev->addr_len));
8219         sa->sa_family = dev->type;
8220
8221 unlock:
8222         rcu_read_unlock();
8223         up_read(&dev_addr_sem);
8224         return ret;
8225 }
8226 EXPORT_SYMBOL(dev_get_mac_address);
8227
8228 /**
8229  *      dev_change_carrier - Change device carrier
8230  *      @dev: device
8231  *      @new_carrier: new value
8232  *
8233  *      Change device carrier
8234  */
8235 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8236 {
8237         const struct net_device_ops *ops = dev->netdev_ops;
8238
8239         if (!ops->ndo_change_carrier)
8240                 return -EOPNOTSUPP;
8241         if (!netif_device_present(dev))
8242                 return -ENODEV;
8243         return ops->ndo_change_carrier(dev, new_carrier);
8244 }
8245 EXPORT_SYMBOL(dev_change_carrier);
8246
8247 /**
8248  *      dev_get_phys_port_id - Get device physical port ID
8249  *      @dev: device
8250  *      @ppid: port ID
8251  *
8252  *      Get device physical port ID
8253  */
8254 int dev_get_phys_port_id(struct net_device *dev,
8255                          struct netdev_phys_item_id *ppid)
8256 {
8257         const struct net_device_ops *ops = dev->netdev_ops;
8258
8259         if (!ops->ndo_get_phys_port_id)
8260                 return -EOPNOTSUPP;
8261         return ops->ndo_get_phys_port_id(dev, ppid);
8262 }
8263 EXPORT_SYMBOL(dev_get_phys_port_id);
8264
8265 /**
8266  *      dev_get_phys_port_name - Get device physical port name
8267  *      @dev: device
8268  *      @name: port name
8269  *      @len: limit of bytes to copy to name
8270  *
8271  *      Get device physical port name
8272  */
8273 int dev_get_phys_port_name(struct net_device *dev,
8274                            char *name, size_t len)
8275 {
8276         const struct net_device_ops *ops = dev->netdev_ops;
8277         int err;
8278
8279         if (ops->ndo_get_phys_port_name) {
8280                 err = ops->ndo_get_phys_port_name(dev, name, len);
8281                 if (err != -EOPNOTSUPP)
8282                         return err;
8283         }
8284         return devlink_compat_phys_port_name_get(dev, name, len);
8285 }
8286 EXPORT_SYMBOL(dev_get_phys_port_name);
8287
8288 /**
8289  *      dev_get_port_parent_id - Get the device's port parent identifier
8290  *      @dev: network device
8291  *      @ppid: pointer to a storage for the port's parent identifier
8292  *      @recurse: allow/disallow recursion to lower devices
8293  *
8294  *      Get the devices's port parent identifier
8295  */
8296 int dev_get_port_parent_id(struct net_device *dev,
8297                            struct netdev_phys_item_id *ppid,
8298                            bool recurse)
8299 {
8300         const struct net_device_ops *ops = dev->netdev_ops;
8301         struct netdev_phys_item_id first = { };
8302         struct net_device *lower_dev;
8303         struct list_head *iter;
8304         int err;
8305
8306         if (ops->ndo_get_port_parent_id) {
8307                 err = ops->ndo_get_port_parent_id(dev, ppid);
8308                 if (err != -EOPNOTSUPP)
8309                         return err;
8310         }
8311
8312         err = devlink_compat_switch_id_get(dev, ppid);
8313         if (!err || err != -EOPNOTSUPP)
8314                 return err;
8315
8316         if (!recurse)
8317                 return -EOPNOTSUPP;
8318
8319         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8320                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8321                 if (err)
8322                         break;
8323                 if (!first.id_len)
8324                         first = *ppid;
8325                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8326                         return -EOPNOTSUPP;
8327         }
8328
8329         return err;
8330 }
8331 EXPORT_SYMBOL(dev_get_port_parent_id);
8332
8333 /**
8334  *      netdev_port_same_parent_id - Indicate if two network devices have
8335  *      the same port parent identifier
8336  *      @a: first network device
8337  *      @b: second network device
8338  */
8339 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8340 {
8341         struct netdev_phys_item_id a_id = { };
8342         struct netdev_phys_item_id b_id = { };
8343
8344         if (dev_get_port_parent_id(a, &a_id, true) ||
8345             dev_get_port_parent_id(b, &b_id, true))
8346                 return false;
8347
8348         return netdev_phys_item_id_same(&a_id, &b_id);
8349 }
8350 EXPORT_SYMBOL(netdev_port_same_parent_id);
8351
8352 /**
8353  *      dev_change_proto_down - update protocol port state information
8354  *      @dev: device
8355  *      @proto_down: new value
8356  *
8357  *      This info can be used by switch drivers to set the phys state of the
8358  *      port.
8359  */
8360 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8361 {
8362         const struct net_device_ops *ops = dev->netdev_ops;
8363
8364         if (!ops->ndo_change_proto_down)
8365                 return -EOPNOTSUPP;
8366         if (!netif_device_present(dev))
8367                 return -ENODEV;
8368         return ops->ndo_change_proto_down(dev, proto_down);
8369 }
8370 EXPORT_SYMBOL(dev_change_proto_down);
8371
8372 /**
8373  *      dev_change_proto_down_generic - generic implementation for
8374  *      ndo_change_proto_down that sets carrier according to
8375  *      proto_down.
8376  *
8377  *      @dev: device
8378  *      @proto_down: new value
8379  */
8380 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8381 {
8382         if (proto_down)
8383                 netif_carrier_off(dev);
8384         else
8385                 netif_carrier_on(dev);
8386         dev->proto_down = proto_down;
8387         return 0;
8388 }
8389 EXPORT_SYMBOL(dev_change_proto_down_generic);
8390
8391 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8392                     enum bpf_netdev_command cmd)
8393 {
8394         struct netdev_bpf xdp;
8395
8396         if (!bpf_op)
8397                 return 0;
8398
8399         memset(&xdp, 0, sizeof(xdp));
8400         xdp.command = cmd;
8401
8402         /* Query must always succeed. */
8403         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8404
8405         return xdp.prog_id;
8406 }
8407
8408 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8409                            struct netlink_ext_ack *extack, u32 flags,
8410                            struct bpf_prog *prog)
8411 {
8412         struct netdev_bpf xdp;
8413
8414         memset(&xdp, 0, sizeof(xdp));
8415         if (flags & XDP_FLAGS_HW_MODE)
8416                 xdp.command = XDP_SETUP_PROG_HW;
8417         else
8418                 xdp.command = XDP_SETUP_PROG;
8419         xdp.extack = extack;
8420         xdp.flags = flags;
8421         xdp.prog = prog;
8422
8423         return bpf_op(dev, &xdp);
8424 }
8425
8426 static void dev_xdp_uninstall(struct net_device *dev)
8427 {
8428         struct netdev_bpf xdp;
8429         bpf_op_t ndo_bpf;
8430
8431         /* Remove generic XDP */
8432         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8433
8434         /* Remove from the driver */
8435         ndo_bpf = dev->netdev_ops->ndo_bpf;
8436         if (!ndo_bpf)
8437                 return;
8438
8439         memset(&xdp, 0, sizeof(xdp));
8440         xdp.command = XDP_QUERY_PROG;
8441         WARN_ON(ndo_bpf(dev, &xdp));
8442         if (xdp.prog_id)
8443                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8444                                         NULL));
8445
8446         /* Remove HW offload */
8447         memset(&xdp, 0, sizeof(xdp));
8448         xdp.command = XDP_QUERY_PROG_HW;
8449         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8450                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8451                                         NULL));
8452 }
8453
8454 /**
8455  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8456  *      @dev: device
8457  *      @extack: netlink extended ack
8458  *      @fd: new program fd or negative value to clear
8459  *      @flags: xdp-related flags
8460  *
8461  *      Set or clear a bpf program for a device
8462  */
8463 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8464                       int fd, u32 flags)
8465 {
8466         const struct net_device_ops *ops = dev->netdev_ops;
8467         enum bpf_netdev_command query;
8468         struct bpf_prog *prog = NULL;
8469         bpf_op_t bpf_op, bpf_chk;
8470         bool offload;
8471         int err;
8472
8473         ASSERT_RTNL();
8474
8475         offload = flags & XDP_FLAGS_HW_MODE;
8476         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8477
8478         bpf_op = bpf_chk = ops->ndo_bpf;
8479         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8480                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8481                 return -EOPNOTSUPP;
8482         }
8483         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8484                 bpf_op = generic_xdp_install;
8485         if (bpf_op == bpf_chk)
8486                 bpf_chk = generic_xdp_install;
8487
8488         if (fd >= 0) {
8489                 u32 prog_id;
8490
8491                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8492                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8493                         return -EEXIST;
8494                 }
8495
8496                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8497                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8498                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8499                         return -EBUSY;
8500                 }
8501
8502                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8503                                              bpf_op == ops->ndo_bpf);
8504                 if (IS_ERR(prog))
8505                         return PTR_ERR(prog);
8506
8507                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8508                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8509                         bpf_prog_put(prog);
8510                         return -EINVAL;
8511                 }
8512
8513                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8514                 if (prog->aux->id && prog->aux->id == prog_id) {
8515                         bpf_prog_put(prog);
8516                         return 0;
8517                 }
8518         } else {
8519                 if (!__dev_xdp_query(dev, bpf_op, query))
8520                         return 0;
8521         }
8522
8523         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8524         if (err < 0 && prog)
8525                 bpf_prog_put(prog);
8526
8527         return err;
8528 }
8529
8530 /**
8531  *      dev_new_index   -       allocate an ifindex
8532  *      @net: the applicable net namespace
8533  *
8534  *      Returns a suitable unique value for a new device interface
8535  *      number.  The caller must hold the rtnl semaphore or the
8536  *      dev_base_lock to be sure it remains unique.
8537  */
8538 static int dev_new_index(struct net *net)
8539 {
8540         int ifindex = net->ifindex;
8541
8542         for (;;) {
8543                 if (++ifindex <= 0)
8544                         ifindex = 1;
8545                 if (!__dev_get_by_index(net, ifindex))
8546                         return net->ifindex = ifindex;
8547         }
8548 }
8549
8550 /* Delayed registration/unregisteration */
8551 static LIST_HEAD(net_todo_list);
8552 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8553
8554 static void net_set_todo(struct net_device *dev)
8555 {
8556         list_add_tail(&dev->todo_list, &net_todo_list);
8557         dev_net(dev)->dev_unreg_count++;
8558 }
8559
8560 static void rollback_registered_many(struct list_head *head)
8561 {
8562         struct net_device *dev, *tmp;
8563         LIST_HEAD(close_head);
8564
8565         BUG_ON(dev_boot_phase);
8566         ASSERT_RTNL();
8567
8568         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8569                 /* Some devices call without registering
8570                  * for initialization unwind. Remove those
8571                  * devices and proceed with the remaining.
8572                  */
8573                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8574                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8575                                  dev->name, dev);
8576
8577                         WARN_ON(1);
8578                         list_del(&dev->unreg_list);
8579                         continue;
8580                 }
8581                 dev->dismantle = true;
8582                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8583         }
8584
8585         /* If device is running, close it first. */
8586         list_for_each_entry(dev, head, unreg_list)
8587                 list_add_tail(&dev->close_list, &close_head);
8588         dev_close_many(&close_head, true);
8589
8590         list_for_each_entry(dev, head, unreg_list) {
8591                 /* And unlink it from device chain. */
8592                 unlist_netdevice(dev);
8593
8594                 dev->reg_state = NETREG_UNREGISTERING;
8595         }
8596         flush_all_backlogs();
8597
8598         synchronize_net();
8599
8600         list_for_each_entry(dev, head, unreg_list) {
8601                 struct sk_buff *skb = NULL;
8602
8603                 /* Shutdown queueing discipline. */
8604                 dev_shutdown(dev);
8605
8606                 dev_xdp_uninstall(dev);
8607
8608                 /* Notify protocols, that we are about to destroy
8609                  * this device. They should clean all the things.
8610                  */
8611                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8612
8613                 if (!dev->rtnl_link_ops ||
8614                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8615                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8616                                                      GFP_KERNEL, NULL, 0);
8617
8618                 /*
8619                  *      Flush the unicast and multicast chains
8620                  */
8621                 dev_uc_flush(dev);
8622                 dev_mc_flush(dev);
8623
8624                 if (dev->netdev_ops->ndo_uninit)
8625                         dev->netdev_ops->ndo_uninit(dev);
8626
8627                 if (skb)
8628                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8629
8630                 /* Notifier chain MUST detach us all upper devices. */
8631                 WARN_ON(netdev_has_any_upper_dev(dev));
8632                 WARN_ON(netdev_has_any_lower_dev(dev));
8633
8634                 /* Remove entries from kobject tree */
8635                 netdev_unregister_kobject(dev);
8636 #ifdef CONFIG_XPS
8637                 /* Remove XPS queueing entries */
8638                 netif_reset_xps_queues_gt(dev, 0);
8639 #endif
8640         }
8641
8642         synchronize_net();
8643
8644         list_for_each_entry(dev, head, unreg_list)
8645                 dev_put(dev);
8646 }
8647
8648 static void rollback_registered(struct net_device *dev)
8649 {
8650         LIST_HEAD(single);
8651
8652         list_add(&dev->unreg_list, &single);
8653         rollback_registered_many(&single);
8654         list_del(&single);
8655 }
8656
8657 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8658         struct net_device *upper, netdev_features_t features)
8659 {
8660         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8661         netdev_features_t feature;
8662         int feature_bit;
8663
8664         for_each_netdev_feature(upper_disables, feature_bit) {
8665                 feature = __NETIF_F_BIT(feature_bit);
8666                 if (!(upper->wanted_features & feature)
8667                     && (features & feature)) {
8668                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8669                                    &feature, upper->name);
8670                         features &= ~feature;
8671                 }
8672         }
8673
8674         return features;
8675 }
8676
8677 static void netdev_sync_lower_features(struct net_device *upper,
8678         struct net_device *lower, netdev_features_t features)
8679 {
8680         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8681         netdev_features_t feature;
8682         int feature_bit;
8683
8684         for_each_netdev_feature(upper_disables, feature_bit) {
8685                 feature = __NETIF_F_BIT(feature_bit);
8686                 if (!(features & feature) && (lower->features & feature)) {
8687                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8688                                    &feature, lower->name);
8689                         lower->wanted_features &= ~feature;
8690                         __netdev_update_features(lower);
8691
8692                         if (unlikely(lower->features & feature))
8693                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8694                                             &feature, lower->name);
8695                         else
8696                                 netdev_features_change(lower);
8697                 }
8698         }
8699 }
8700
8701 static netdev_features_t netdev_fix_features(struct net_device *dev,
8702         netdev_features_t features)
8703 {
8704         /* Fix illegal checksum combinations */
8705         if ((features & NETIF_F_HW_CSUM) &&
8706             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8707                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8708                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8709         }
8710
8711         /* TSO requires that SG is present as well. */
8712         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8713                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8714                 features &= ~NETIF_F_ALL_TSO;
8715         }
8716
8717         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8718                                         !(features & NETIF_F_IP_CSUM)) {
8719                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8720                 features &= ~NETIF_F_TSO;
8721                 features &= ~NETIF_F_TSO_ECN;
8722         }
8723
8724         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8725                                          !(features & NETIF_F_IPV6_CSUM)) {
8726                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8727                 features &= ~NETIF_F_TSO6;
8728         }
8729
8730         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8731         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8732                 features &= ~NETIF_F_TSO_MANGLEID;
8733
8734         /* TSO ECN requires that TSO is present as well. */
8735         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8736                 features &= ~NETIF_F_TSO_ECN;
8737
8738         /* Software GSO depends on SG. */
8739         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8740                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8741                 features &= ~NETIF_F_GSO;
8742         }
8743
8744         /* GSO partial features require GSO partial be set */
8745         if ((features & dev->gso_partial_features) &&
8746             !(features & NETIF_F_GSO_PARTIAL)) {
8747                 netdev_dbg(dev,
8748                            "Dropping partially supported GSO features since no GSO partial.\n");
8749                 features &= ~dev->gso_partial_features;
8750         }
8751
8752         if (!(features & NETIF_F_RXCSUM)) {
8753                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8754                  * successfully merged by hardware must also have the
8755                  * checksum verified by hardware.  If the user does not
8756                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8757                  */
8758                 if (features & NETIF_F_GRO_HW) {
8759                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8760                         features &= ~NETIF_F_GRO_HW;
8761                 }
8762         }
8763
8764         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8765         if (features & NETIF_F_RXFCS) {
8766                 if (features & NETIF_F_LRO) {
8767                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8768                         features &= ~NETIF_F_LRO;
8769                 }
8770
8771                 if (features & NETIF_F_GRO_HW) {
8772                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8773                         features &= ~NETIF_F_GRO_HW;
8774                 }
8775         }
8776
8777         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
8778                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
8779                 features &= ~NETIF_F_HW_TLS_RX;
8780         }
8781
8782         return features;
8783 }
8784
8785 int __netdev_update_features(struct net_device *dev)
8786 {
8787         struct net_device *upper, *lower;
8788         netdev_features_t features;
8789         struct list_head *iter;
8790         int err = -1;
8791
8792         ASSERT_RTNL();
8793
8794         features = netdev_get_wanted_features(dev);
8795
8796         if (dev->netdev_ops->ndo_fix_features)
8797                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8798
8799         /* driver might be less strict about feature dependencies */
8800         features = netdev_fix_features(dev, features);
8801
8802         /* some features can't be enabled if they're off an an upper device */
8803         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8804                 features = netdev_sync_upper_features(dev, upper, features);
8805
8806         if (dev->features == features)
8807                 goto sync_lower;
8808
8809         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8810                 &dev->features, &features);
8811
8812         if (dev->netdev_ops->ndo_set_features)
8813                 err = dev->netdev_ops->ndo_set_features(dev, features);
8814         else
8815                 err = 0;
8816
8817         if (unlikely(err < 0)) {
8818                 netdev_err(dev,
8819                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8820                         err, &features, &dev->features);
8821                 /* return non-0 since some features might have changed and
8822                  * it's better to fire a spurious notification than miss it
8823                  */
8824                 return -1;
8825         }
8826
8827 sync_lower:
8828         /* some features must be disabled on lower devices when disabled
8829          * on an upper device (think: bonding master or bridge)
8830          */
8831         netdev_for_each_lower_dev(dev, lower, iter)
8832                 netdev_sync_lower_features(dev, lower, features);
8833
8834         if (!err) {
8835                 netdev_features_t diff = features ^ dev->features;
8836
8837                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8838                         /* udp_tunnel_{get,drop}_rx_info both need
8839                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8840                          * device, or they won't do anything.
8841                          * Thus we need to update dev->features
8842                          * *before* calling udp_tunnel_get_rx_info,
8843                          * but *after* calling udp_tunnel_drop_rx_info.
8844                          */
8845                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8846                                 dev->features = features;
8847                                 udp_tunnel_get_rx_info(dev);
8848                         } else {
8849                                 udp_tunnel_drop_rx_info(dev);
8850                         }
8851                 }
8852
8853                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8854                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8855                                 dev->features = features;
8856                                 err |= vlan_get_rx_ctag_filter_info(dev);
8857                         } else {
8858                                 vlan_drop_rx_ctag_filter_info(dev);
8859                         }
8860                 }
8861
8862                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8863                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8864                                 dev->features = features;
8865                                 err |= vlan_get_rx_stag_filter_info(dev);
8866                         } else {
8867                                 vlan_drop_rx_stag_filter_info(dev);
8868                         }
8869                 }
8870
8871                 dev->features = features;
8872         }
8873
8874         return err < 0 ? 0 : 1;
8875 }
8876
8877 /**
8878  *      netdev_update_features - recalculate device features
8879  *      @dev: the device to check
8880  *
8881  *      Recalculate dev->features set and send notifications if it
8882  *      has changed. Should be called after driver or hardware dependent
8883  *      conditions might have changed that influence the features.
8884  */
8885 void netdev_update_features(struct net_device *dev)
8886 {
8887         if (__netdev_update_features(dev))
8888                 netdev_features_change(dev);
8889 }
8890 EXPORT_SYMBOL(netdev_update_features);
8891
8892 /**
8893  *      netdev_change_features - recalculate device features
8894  *      @dev: the device to check
8895  *
8896  *      Recalculate dev->features set and send notifications even
8897  *      if they have not changed. Should be called instead of
8898  *      netdev_update_features() if also dev->vlan_features might
8899  *      have changed to allow the changes to be propagated to stacked
8900  *      VLAN devices.
8901  */
8902 void netdev_change_features(struct net_device *dev)
8903 {
8904         __netdev_update_features(dev);
8905         netdev_features_change(dev);
8906 }
8907 EXPORT_SYMBOL(netdev_change_features);
8908
8909 /**
8910  *      netif_stacked_transfer_operstate -      transfer operstate
8911  *      @rootdev: the root or lower level device to transfer state from
8912  *      @dev: the device to transfer operstate to
8913  *
8914  *      Transfer operational state from root to device. This is normally
8915  *      called when a stacking relationship exists between the root
8916  *      device and the device(a leaf device).
8917  */
8918 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8919                                         struct net_device *dev)
8920 {
8921         if (rootdev->operstate == IF_OPER_DORMANT)
8922                 netif_dormant_on(dev);
8923         else
8924                 netif_dormant_off(dev);
8925
8926         if (netif_carrier_ok(rootdev))
8927                 netif_carrier_on(dev);
8928         else
8929                 netif_carrier_off(dev);
8930 }
8931 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8932
8933 static int netif_alloc_rx_queues(struct net_device *dev)
8934 {
8935         unsigned int i, count = dev->num_rx_queues;
8936         struct netdev_rx_queue *rx;
8937         size_t sz = count * sizeof(*rx);
8938         int err = 0;
8939
8940         BUG_ON(count < 1);
8941
8942         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8943         if (!rx)
8944                 return -ENOMEM;
8945
8946         dev->_rx = rx;
8947
8948         for (i = 0; i < count; i++) {
8949                 rx[i].dev = dev;
8950
8951                 /* XDP RX-queue setup */
8952                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8953                 if (err < 0)
8954                         goto err_rxq_info;
8955         }
8956         return 0;
8957
8958 err_rxq_info:
8959         /* Rollback successful reg's and free other resources */
8960         while (i--)
8961                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8962         kvfree(dev->_rx);
8963         dev->_rx = NULL;
8964         return err;
8965 }
8966
8967 static void netif_free_rx_queues(struct net_device *dev)
8968 {
8969         unsigned int i, count = dev->num_rx_queues;
8970
8971         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8972         if (!dev->_rx)
8973                 return;
8974
8975         for (i = 0; i < count; i++)
8976                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8977
8978         kvfree(dev->_rx);
8979 }
8980
8981 static void netdev_init_one_queue(struct net_device *dev,
8982                                   struct netdev_queue *queue, void *_unused)
8983 {
8984         /* Initialize queue lock */
8985         spin_lock_init(&queue->_xmit_lock);
8986         lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
8987         queue->xmit_lock_owner = -1;
8988         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8989         queue->dev = dev;
8990 #ifdef CONFIG_BQL
8991         dql_init(&queue->dql, HZ);
8992 #endif
8993 }
8994
8995 static void netif_free_tx_queues(struct net_device *dev)
8996 {
8997         kvfree(dev->_tx);
8998 }
8999
9000 static int netif_alloc_netdev_queues(struct net_device *dev)
9001 {
9002         unsigned int count = dev->num_tx_queues;
9003         struct netdev_queue *tx;
9004         size_t sz = count * sizeof(*tx);
9005
9006         if (count < 1 || count > 0xffff)
9007                 return -EINVAL;
9008
9009         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9010         if (!tx)
9011                 return -ENOMEM;
9012
9013         dev->_tx = tx;
9014
9015         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9016         spin_lock_init(&dev->tx_global_lock);
9017
9018         return 0;
9019 }
9020
9021 void netif_tx_stop_all_queues(struct net_device *dev)
9022 {
9023         unsigned int i;
9024
9025         for (i = 0; i < dev->num_tx_queues; i++) {
9026                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9027
9028                 netif_tx_stop_queue(txq);
9029         }
9030 }
9031 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9032
9033 static void netdev_register_lockdep_key(struct net_device *dev)
9034 {
9035         lockdep_register_key(&dev->qdisc_tx_busylock_key);
9036         lockdep_register_key(&dev->qdisc_running_key);
9037         lockdep_register_key(&dev->qdisc_xmit_lock_key);
9038         lockdep_register_key(&dev->addr_list_lock_key);
9039 }
9040
9041 static void netdev_unregister_lockdep_key(struct net_device *dev)
9042 {
9043         lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9044         lockdep_unregister_key(&dev->qdisc_running_key);
9045         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9046         lockdep_unregister_key(&dev->addr_list_lock_key);
9047 }
9048
9049 void netdev_update_lockdep_key(struct net_device *dev)
9050 {
9051         lockdep_unregister_key(&dev->addr_list_lock_key);
9052         lockdep_register_key(&dev->addr_list_lock_key);
9053
9054         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9055 }
9056 EXPORT_SYMBOL(netdev_update_lockdep_key);
9057
9058 /**
9059  *      register_netdevice      - register a network device
9060  *      @dev: device to register
9061  *
9062  *      Take a completed network device structure and add it to the kernel
9063  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9064  *      chain. 0 is returned on success. A negative errno code is returned
9065  *      on a failure to set up the device, or if the name is a duplicate.
9066  *
9067  *      Callers must hold the rtnl semaphore. You may want
9068  *      register_netdev() instead of this.
9069  *
9070  *      BUGS:
9071  *      The locking appears insufficient to guarantee two parallel registers
9072  *      will not get the same name.
9073  */
9074
9075 int register_netdevice(struct net_device *dev)
9076 {
9077         int ret;
9078         struct net *net = dev_net(dev);
9079
9080         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9081                      NETDEV_FEATURE_COUNT);
9082         BUG_ON(dev_boot_phase);
9083         ASSERT_RTNL();
9084
9085         might_sleep();
9086
9087         /* When net_device's are persistent, this will be fatal. */
9088         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9089         BUG_ON(!net);
9090
9091         spin_lock_init(&dev->addr_list_lock);
9092         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9093
9094         ret = dev_get_valid_name(net, dev, dev->name);
9095         if (ret < 0)
9096                 goto out;
9097
9098         /* Init, if this function is available */
9099         if (dev->netdev_ops->ndo_init) {
9100                 ret = dev->netdev_ops->ndo_init(dev);
9101                 if (ret) {
9102                         if (ret > 0)
9103                                 ret = -EIO;
9104                         goto out;
9105                 }
9106         }
9107
9108         if (((dev->hw_features | dev->features) &
9109              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9110             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9111              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9112                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9113                 ret = -EINVAL;
9114                 goto err_uninit;
9115         }
9116
9117         ret = -EBUSY;
9118         if (!dev->ifindex)
9119                 dev->ifindex = dev_new_index(net);
9120         else if (__dev_get_by_index(net, dev->ifindex))
9121                 goto err_uninit;
9122
9123         /* Transfer changeable features to wanted_features and enable
9124          * software offloads (GSO and GRO).
9125          */
9126         dev->hw_features |= NETIF_F_SOFT_FEATURES;
9127         dev->features |= NETIF_F_SOFT_FEATURES;
9128
9129         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9130                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9131                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9132         }
9133
9134         dev->wanted_features = dev->features & dev->hw_features;
9135
9136         if (!(dev->flags & IFF_LOOPBACK))
9137                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9138
9139         /* If IPv4 TCP segmentation offload is supported we should also
9140          * allow the device to enable segmenting the frame with the option
9141          * of ignoring a static IP ID value.  This doesn't enable the
9142          * feature itself but allows the user to enable it later.
9143          */
9144         if (dev->hw_features & NETIF_F_TSO)
9145                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9146         if (dev->vlan_features & NETIF_F_TSO)
9147                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9148         if (dev->mpls_features & NETIF_F_TSO)
9149                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9150         if (dev->hw_enc_features & NETIF_F_TSO)
9151                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9152
9153         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9154          */
9155         dev->vlan_features |= NETIF_F_HIGHDMA;
9156
9157         /* Make NETIF_F_SG inheritable to tunnel devices.
9158          */
9159         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9160
9161         /* Make NETIF_F_SG inheritable to MPLS.
9162          */
9163         dev->mpls_features |= NETIF_F_SG;
9164
9165         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9166         ret = notifier_to_errno(ret);
9167         if (ret)
9168                 goto err_uninit;
9169
9170         ret = netdev_register_kobject(dev);
9171         if (ret) {
9172                 dev->reg_state = NETREG_UNREGISTERED;
9173                 goto err_uninit;
9174         }
9175         dev->reg_state = NETREG_REGISTERED;
9176
9177         __netdev_update_features(dev);
9178
9179         /*
9180          *      Default initial state at registry is that the
9181          *      device is present.
9182          */
9183
9184         set_bit(__LINK_STATE_PRESENT, &dev->state);
9185
9186         linkwatch_init_dev(dev);
9187
9188         dev_init_scheduler(dev);
9189         dev_hold(dev);
9190         list_netdevice(dev);
9191         add_device_randomness(dev->dev_addr, dev->addr_len);
9192
9193         /* If the device has permanent device address, driver should
9194          * set dev_addr and also addr_assign_type should be set to
9195          * NET_ADDR_PERM (default value).
9196          */
9197         if (dev->addr_assign_type == NET_ADDR_PERM)
9198                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9199
9200         /* Notify protocols, that a new device appeared. */
9201         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9202         ret = notifier_to_errno(ret);
9203         if (ret) {
9204                 rollback_registered(dev);
9205                 rcu_barrier();
9206
9207                 dev->reg_state = NETREG_UNREGISTERED;
9208                 /* We should put the kobject that hold in
9209                  * netdev_unregister_kobject(), otherwise
9210                  * the net device cannot be freed when
9211                  * driver calls free_netdev(), because the
9212                  * kobject is being hold.
9213                  */
9214                 kobject_put(&dev->dev.kobj);
9215         }
9216         /*
9217          *      Prevent userspace races by waiting until the network
9218          *      device is fully setup before sending notifications.
9219          */
9220         if (!dev->rtnl_link_ops ||
9221             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9222                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9223
9224 out:
9225         return ret;
9226
9227 err_uninit:
9228         if (dev->netdev_ops->ndo_uninit)
9229                 dev->netdev_ops->ndo_uninit(dev);
9230         if (dev->priv_destructor)
9231                 dev->priv_destructor(dev);
9232         goto out;
9233 }
9234 EXPORT_SYMBOL(register_netdevice);
9235
9236 /**
9237  *      init_dummy_netdev       - init a dummy network device for NAPI
9238  *      @dev: device to init
9239  *
9240  *      This takes a network device structure and initialize the minimum
9241  *      amount of fields so it can be used to schedule NAPI polls without
9242  *      registering a full blown interface. This is to be used by drivers
9243  *      that need to tie several hardware interfaces to a single NAPI
9244  *      poll scheduler due to HW limitations.
9245  */
9246 int init_dummy_netdev(struct net_device *dev)
9247 {
9248         /* Clear everything. Note we don't initialize spinlocks
9249          * are they aren't supposed to be taken by any of the
9250          * NAPI code and this dummy netdev is supposed to be
9251          * only ever used for NAPI polls
9252          */
9253         memset(dev, 0, sizeof(struct net_device));
9254
9255         /* make sure we BUG if trying to hit standard
9256          * register/unregister code path
9257          */
9258         dev->reg_state = NETREG_DUMMY;
9259
9260         /* NAPI wants this */
9261         INIT_LIST_HEAD(&dev->napi_list);
9262
9263         /* a dummy interface is started by default */
9264         set_bit(__LINK_STATE_PRESENT, &dev->state);
9265         set_bit(__LINK_STATE_START, &dev->state);
9266
9267         /* napi_busy_loop stats accounting wants this */
9268         dev_net_set(dev, &init_net);
9269
9270         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9271          * because users of this 'device' dont need to change
9272          * its refcount.
9273          */
9274
9275         return 0;
9276 }
9277 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9278
9279
9280 /**
9281  *      register_netdev - register a network device
9282  *      @dev: device to register
9283  *
9284  *      Take a completed network device structure and add it to the kernel
9285  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9286  *      chain. 0 is returned on success. A negative errno code is returned
9287  *      on a failure to set up the device, or if the name is a duplicate.
9288  *
9289  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9290  *      and expands the device name if you passed a format string to
9291  *      alloc_netdev.
9292  */
9293 int register_netdev(struct net_device *dev)
9294 {
9295         int err;
9296
9297         if (rtnl_lock_killable())
9298                 return -EINTR;
9299         err = register_netdevice(dev);
9300         rtnl_unlock();
9301         return err;
9302 }
9303 EXPORT_SYMBOL(register_netdev);
9304
9305 int netdev_refcnt_read(const struct net_device *dev)
9306 {
9307         int i, refcnt = 0;
9308
9309         for_each_possible_cpu(i)
9310                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9311         return refcnt;
9312 }
9313 EXPORT_SYMBOL(netdev_refcnt_read);
9314
9315 /**
9316  * netdev_wait_allrefs - wait until all references are gone.
9317  * @dev: target net_device
9318  *
9319  * This is called when unregistering network devices.
9320  *
9321  * Any protocol or device that holds a reference should register
9322  * for netdevice notification, and cleanup and put back the
9323  * reference if they receive an UNREGISTER event.
9324  * We can get stuck here if buggy protocols don't correctly
9325  * call dev_put.
9326  */
9327 static void netdev_wait_allrefs(struct net_device *dev)
9328 {
9329         unsigned long rebroadcast_time, warning_time;
9330         int refcnt;
9331
9332         linkwatch_forget_dev(dev);
9333
9334         rebroadcast_time = warning_time = jiffies;
9335         refcnt = netdev_refcnt_read(dev);
9336
9337         while (refcnt != 0) {
9338                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9339                         rtnl_lock();
9340
9341                         /* Rebroadcast unregister notification */
9342                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9343
9344                         __rtnl_unlock();
9345                         rcu_barrier();
9346                         rtnl_lock();
9347
9348                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9349                                      &dev->state)) {
9350                                 /* We must not have linkwatch events
9351                                  * pending on unregister. If this
9352                                  * happens, we simply run the queue
9353                                  * unscheduled, resulting in a noop
9354                                  * for this device.
9355                                  */
9356                                 linkwatch_run_queue();
9357                         }
9358
9359                         __rtnl_unlock();
9360
9361                         rebroadcast_time = jiffies;
9362                 }
9363
9364                 msleep(250);
9365
9366                 refcnt = netdev_refcnt_read(dev);
9367
9368                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9369                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9370                                  dev->name, refcnt);
9371                         warning_time = jiffies;
9372                 }
9373         }
9374 }
9375
9376 /* The sequence is:
9377  *
9378  *      rtnl_lock();
9379  *      ...
9380  *      register_netdevice(x1);
9381  *      register_netdevice(x2);
9382  *      ...
9383  *      unregister_netdevice(y1);
9384  *      unregister_netdevice(y2);
9385  *      ...
9386  *      rtnl_unlock();
9387  *      free_netdev(y1);
9388  *      free_netdev(y2);
9389  *
9390  * We are invoked by rtnl_unlock().
9391  * This allows us to deal with problems:
9392  * 1) We can delete sysfs objects which invoke hotplug
9393  *    without deadlocking with linkwatch via keventd.
9394  * 2) Since we run with the RTNL semaphore not held, we can sleep
9395  *    safely in order to wait for the netdev refcnt to drop to zero.
9396  *
9397  * We must not return until all unregister events added during
9398  * the interval the lock was held have been completed.
9399  */
9400 void netdev_run_todo(void)
9401 {
9402         struct list_head list;
9403
9404         /* Snapshot list, allow later requests */
9405         list_replace_init(&net_todo_list, &list);
9406
9407         __rtnl_unlock();
9408
9409
9410         /* Wait for rcu callbacks to finish before next phase */
9411         if (!list_empty(&list))
9412                 rcu_barrier();
9413
9414         while (!list_empty(&list)) {
9415                 struct net_device *dev
9416                         = list_first_entry(&list, struct net_device, todo_list);
9417                 list_del(&dev->todo_list);
9418
9419                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9420                         pr_err("network todo '%s' but state %d\n",
9421                                dev->name, dev->reg_state);
9422                         dump_stack();
9423                         continue;
9424                 }
9425
9426                 dev->reg_state = NETREG_UNREGISTERED;
9427
9428                 netdev_wait_allrefs(dev);
9429
9430                 /* paranoia */
9431                 BUG_ON(netdev_refcnt_read(dev));
9432                 BUG_ON(!list_empty(&dev->ptype_all));
9433                 BUG_ON(!list_empty(&dev->ptype_specific));
9434                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9435                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9436 #if IS_ENABLED(CONFIG_DECNET)
9437                 WARN_ON(dev->dn_ptr);
9438 #endif
9439                 if (dev->priv_destructor)
9440                         dev->priv_destructor(dev);
9441                 if (dev->needs_free_netdev)
9442                         free_netdev(dev);
9443
9444                 /* Report a network device has been unregistered */
9445                 rtnl_lock();
9446                 dev_net(dev)->dev_unreg_count--;
9447                 __rtnl_unlock();
9448                 wake_up(&netdev_unregistering_wq);
9449
9450                 /* Free network device */
9451                 kobject_put(&dev->dev.kobj);
9452         }
9453 }
9454
9455 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9456  * all the same fields in the same order as net_device_stats, with only
9457  * the type differing, but rtnl_link_stats64 may have additional fields
9458  * at the end for newer counters.
9459  */
9460 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9461                              const struct net_device_stats *netdev_stats)
9462 {
9463 #if BITS_PER_LONG == 64
9464         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9465         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9466         /* zero out counters that only exist in rtnl_link_stats64 */
9467         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9468                sizeof(*stats64) - sizeof(*netdev_stats));
9469 #else
9470         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9471         const unsigned long *src = (const unsigned long *)netdev_stats;
9472         u64 *dst = (u64 *)stats64;
9473
9474         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9475         for (i = 0; i < n; i++)
9476                 dst[i] = src[i];
9477         /* zero out counters that only exist in rtnl_link_stats64 */
9478         memset((char *)stats64 + n * sizeof(u64), 0,
9479                sizeof(*stats64) - n * sizeof(u64));
9480 #endif
9481 }
9482 EXPORT_SYMBOL(netdev_stats_to_stats64);
9483
9484 /**
9485  *      dev_get_stats   - get network device statistics
9486  *      @dev: device to get statistics from
9487  *      @storage: place to store stats
9488  *
9489  *      Get network statistics from device. Return @storage.
9490  *      The device driver may provide its own method by setting
9491  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9492  *      otherwise the internal statistics structure is used.
9493  */
9494 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9495                                         struct rtnl_link_stats64 *storage)
9496 {
9497         const struct net_device_ops *ops = dev->netdev_ops;
9498
9499         if (ops->ndo_get_stats64) {
9500                 memset(storage, 0, sizeof(*storage));
9501                 ops->ndo_get_stats64(dev, storage);
9502         } else if (ops->ndo_get_stats) {
9503                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9504         } else {
9505                 netdev_stats_to_stats64(storage, &dev->stats);
9506         }
9507         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9508         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9509         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9510         return storage;
9511 }
9512 EXPORT_SYMBOL(dev_get_stats);
9513
9514 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9515 {
9516         struct netdev_queue *queue = dev_ingress_queue(dev);
9517
9518 #ifdef CONFIG_NET_CLS_ACT
9519         if (queue)
9520                 return queue;
9521         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9522         if (!queue)
9523                 return NULL;
9524         netdev_init_one_queue(dev, queue, NULL);
9525         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9526         queue->qdisc_sleeping = &noop_qdisc;
9527         rcu_assign_pointer(dev->ingress_queue, queue);
9528 #endif
9529         return queue;
9530 }
9531
9532 static const struct ethtool_ops default_ethtool_ops;
9533
9534 void netdev_set_default_ethtool_ops(struct net_device *dev,
9535                                     const struct ethtool_ops *ops)
9536 {
9537         if (dev->ethtool_ops == &default_ethtool_ops)
9538                 dev->ethtool_ops = ops;
9539 }
9540 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9541
9542 void netdev_freemem(struct net_device *dev)
9543 {
9544         char *addr = (char *)dev - dev->padded;
9545
9546         kvfree(addr);
9547 }
9548
9549 /**
9550  * alloc_netdev_mqs - allocate network device
9551  * @sizeof_priv: size of private data to allocate space for
9552  * @name: device name format string
9553  * @name_assign_type: origin of device name
9554  * @setup: callback to initialize device
9555  * @txqs: the number of TX subqueues to allocate
9556  * @rxqs: the number of RX subqueues to allocate
9557  *
9558  * Allocates a struct net_device with private data area for driver use
9559  * and performs basic initialization.  Also allocates subqueue structs
9560  * for each queue on the device.
9561  */
9562 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9563                 unsigned char name_assign_type,
9564                 void (*setup)(struct net_device *),
9565                 unsigned int txqs, unsigned int rxqs)
9566 {
9567         struct net_device *dev;
9568         unsigned int alloc_size;
9569         struct net_device *p;
9570
9571         BUG_ON(strlen(name) >= sizeof(dev->name));
9572
9573         if (txqs < 1) {
9574                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9575                 return NULL;
9576         }
9577
9578         if (rxqs < 1) {
9579                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9580                 return NULL;
9581         }
9582
9583         alloc_size = sizeof(struct net_device);
9584         if (sizeof_priv) {
9585                 /* ensure 32-byte alignment of private area */
9586                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9587                 alloc_size += sizeof_priv;
9588         }
9589         /* ensure 32-byte alignment of whole construct */
9590         alloc_size += NETDEV_ALIGN - 1;
9591
9592         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9593         if (!p)
9594                 return NULL;
9595
9596         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9597         dev->padded = (char *)dev - (char *)p;
9598
9599         dev->pcpu_refcnt = alloc_percpu(int);
9600         if (!dev->pcpu_refcnt)
9601                 goto free_dev;
9602
9603         if (dev_addr_init(dev))
9604                 goto free_pcpu;
9605
9606         dev_mc_init(dev);
9607         dev_uc_init(dev);
9608
9609         dev_net_set(dev, &init_net);
9610
9611         netdev_register_lockdep_key(dev);
9612
9613         dev->gso_max_size = GSO_MAX_SIZE;
9614         dev->gso_max_segs = GSO_MAX_SEGS;
9615         dev->upper_level = 1;
9616         dev->lower_level = 1;
9617
9618         INIT_LIST_HEAD(&dev->napi_list);
9619         INIT_LIST_HEAD(&dev->unreg_list);
9620         INIT_LIST_HEAD(&dev->close_list);
9621         INIT_LIST_HEAD(&dev->link_watch_list);
9622         INIT_LIST_HEAD(&dev->adj_list.upper);
9623         INIT_LIST_HEAD(&dev->adj_list.lower);
9624         INIT_LIST_HEAD(&dev->ptype_all);
9625         INIT_LIST_HEAD(&dev->ptype_specific);
9626 #ifdef CONFIG_NET_SCHED
9627         hash_init(dev->qdisc_hash);
9628 #endif
9629         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9630         setup(dev);
9631
9632         if (!dev->tx_queue_len) {
9633                 dev->priv_flags |= IFF_NO_QUEUE;
9634                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9635         }
9636
9637         dev->num_tx_queues = txqs;
9638         dev->real_num_tx_queues = txqs;
9639         if (netif_alloc_netdev_queues(dev))
9640                 goto free_all;
9641
9642         dev->num_rx_queues = rxqs;
9643         dev->real_num_rx_queues = rxqs;
9644         if (netif_alloc_rx_queues(dev))
9645                 goto free_all;
9646
9647         strcpy(dev->name, name);
9648         dev->name_assign_type = name_assign_type;
9649         dev->group = INIT_NETDEV_GROUP;
9650         if (!dev->ethtool_ops)
9651                 dev->ethtool_ops = &default_ethtool_ops;
9652
9653         nf_hook_ingress_init(dev);
9654
9655         return dev;
9656
9657 free_all:
9658         free_netdev(dev);
9659         return NULL;
9660
9661 free_pcpu:
9662         free_percpu(dev->pcpu_refcnt);
9663 free_dev:
9664         netdev_freemem(dev);
9665         return NULL;
9666 }
9667 EXPORT_SYMBOL(alloc_netdev_mqs);
9668
9669 /**
9670  * free_netdev - free network device
9671  * @dev: device
9672  *
9673  * This function does the last stage of destroying an allocated device
9674  * interface. The reference to the device object is released. If this
9675  * is the last reference then it will be freed.Must be called in process
9676  * context.
9677  */
9678 void free_netdev(struct net_device *dev)
9679 {
9680         struct napi_struct *p, *n;
9681
9682         might_sleep();
9683         netif_free_tx_queues(dev);
9684         netif_free_rx_queues(dev);
9685
9686         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9687
9688         /* Flush device addresses */
9689         dev_addr_flush(dev);
9690
9691         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9692                 netif_napi_del(p);
9693
9694         free_percpu(dev->pcpu_refcnt);
9695         dev->pcpu_refcnt = NULL;
9696
9697         netdev_unregister_lockdep_key(dev);
9698
9699         /*  Compatibility with error handling in drivers */
9700         if (dev->reg_state == NETREG_UNINITIALIZED) {
9701                 netdev_freemem(dev);
9702                 return;
9703         }
9704
9705         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9706         dev->reg_state = NETREG_RELEASED;
9707
9708         /* will free via device release */
9709         put_device(&dev->dev);
9710 }
9711 EXPORT_SYMBOL(free_netdev);
9712
9713 /**
9714  *      synchronize_net -  Synchronize with packet receive processing
9715  *
9716  *      Wait for packets currently being received to be done.
9717  *      Does not block later packets from starting.
9718  */
9719 void synchronize_net(void)
9720 {
9721         might_sleep();
9722         if (rtnl_is_locked())
9723                 synchronize_rcu_expedited();
9724         else
9725                 synchronize_rcu();
9726 }
9727 EXPORT_SYMBOL(synchronize_net);
9728
9729 /**
9730  *      unregister_netdevice_queue - remove device from the kernel
9731  *      @dev: device
9732  *      @head: list
9733  *
9734  *      This function shuts down a device interface and removes it
9735  *      from the kernel tables.
9736  *      If head not NULL, device is queued to be unregistered later.
9737  *
9738  *      Callers must hold the rtnl semaphore.  You may want
9739  *      unregister_netdev() instead of this.
9740  */
9741
9742 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9743 {
9744         ASSERT_RTNL();
9745
9746         if (head) {
9747                 list_move_tail(&dev->unreg_list, head);
9748         } else {
9749                 rollback_registered(dev);
9750                 /* Finish processing unregister after unlock */
9751                 net_set_todo(dev);
9752         }
9753 }
9754 EXPORT_SYMBOL(unregister_netdevice_queue);
9755
9756 /**
9757  *      unregister_netdevice_many - unregister many devices
9758  *      @head: list of devices
9759  *
9760  *  Note: As most callers use a stack allocated list_head,
9761  *  we force a list_del() to make sure stack wont be corrupted later.
9762  */
9763 void unregister_netdevice_many(struct list_head *head)
9764 {
9765         struct net_device *dev;
9766
9767         if (!list_empty(head)) {
9768                 rollback_registered_many(head);
9769                 list_for_each_entry(dev, head, unreg_list)
9770                         net_set_todo(dev);
9771                 list_del(head);
9772         }
9773 }
9774 EXPORT_SYMBOL(unregister_netdevice_many);
9775
9776 /**
9777  *      unregister_netdev - remove device from the kernel
9778  *      @dev: device
9779  *
9780  *      This function shuts down a device interface and removes it
9781  *      from the kernel tables.
9782  *
9783  *      This is just a wrapper for unregister_netdevice that takes
9784  *      the rtnl semaphore.  In general you want to use this and not
9785  *      unregister_netdevice.
9786  */
9787 void unregister_netdev(struct net_device *dev)
9788 {
9789         rtnl_lock();
9790         unregister_netdevice(dev);
9791         rtnl_unlock();
9792 }
9793 EXPORT_SYMBOL(unregister_netdev);
9794
9795 /**
9796  *      dev_change_net_namespace - move device to different nethost namespace
9797  *      @dev: device
9798  *      @net: network namespace
9799  *      @pat: If not NULL name pattern to try if the current device name
9800  *            is already taken in the destination network namespace.
9801  *
9802  *      This function shuts down a device interface and moves it
9803  *      to a new network namespace. On success 0 is returned, on
9804  *      a failure a netagive errno code is returned.
9805  *
9806  *      Callers must hold the rtnl semaphore.
9807  */
9808
9809 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9810 {
9811         int err, new_nsid, new_ifindex;
9812
9813         ASSERT_RTNL();
9814
9815         /* Don't allow namespace local devices to be moved. */
9816         err = -EINVAL;
9817         if (dev->features & NETIF_F_NETNS_LOCAL)
9818                 goto out;
9819
9820         /* Ensure the device has been registrered */
9821         if (dev->reg_state != NETREG_REGISTERED)
9822                 goto out;
9823
9824         /* Get out if there is nothing todo */
9825         err = 0;
9826         if (net_eq(dev_net(dev), net))
9827                 goto out;
9828
9829         /* Pick the destination device name, and ensure
9830          * we can use it in the destination network namespace.
9831          */
9832         err = -EEXIST;
9833         if (__dev_get_by_name(net, dev->name)) {
9834                 /* We get here if we can't use the current device name */
9835                 if (!pat)
9836                         goto out;
9837                 err = dev_get_valid_name(net, dev, pat);
9838                 if (err < 0)
9839                         goto out;
9840         }
9841
9842         /*
9843          * And now a mini version of register_netdevice unregister_netdevice.
9844          */
9845
9846         /* If device is running close it first. */
9847         dev_close(dev);
9848
9849         /* And unlink it from device chain */
9850         unlist_netdevice(dev);
9851
9852         synchronize_net();
9853
9854         /* Shutdown queueing discipline. */
9855         dev_shutdown(dev);
9856
9857         /* Notify protocols, that we are about to destroy
9858          * this device. They should clean all the things.
9859          *
9860          * Note that dev->reg_state stays at NETREG_REGISTERED.
9861          * This is wanted because this way 8021q and macvlan know
9862          * the device is just moving and can keep their slaves up.
9863          */
9864         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9865         rcu_barrier();
9866
9867         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
9868         /* If there is an ifindex conflict assign a new one */
9869         if (__dev_get_by_index(net, dev->ifindex))
9870                 new_ifindex = dev_new_index(net);
9871         else
9872                 new_ifindex = dev->ifindex;
9873
9874         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9875                             new_ifindex);
9876
9877         /*
9878          *      Flush the unicast and multicast chains
9879          */
9880         dev_uc_flush(dev);
9881         dev_mc_flush(dev);
9882
9883         /* Send a netdev-removed uevent to the old namespace */
9884         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9885         netdev_adjacent_del_links(dev);
9886
9887         /* Actually switch the network namespace */
9888         dev_net_set(dev, net);
9889         dev->ifindex = new_ifindex;
9890
9891         /* Send a netdev-add uevent to the new namespace */
9892         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9893         netdev_adjacent_add_links(dev);
9894
9895         /* Fixup kobjects */
9896         err = device_rename(&dev->dev, dev->name);
9897         WARN_ON(err);
9898
9899         /* Add the device back in the hashes */
9900         list_netdevice(dev);
9901
9902         /* Notify protocols, that a new device appeared. */
9903         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9904
9905         /*
9906          *      Prevent userspace races by waiting until the network
9907          *      device is fully setup before sending notifications.
9908          */
9909         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9910
9911         synchronize_net();
9912         err = 0;
9913 out:
9914         return err;
9915 }
9916 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9917
9918 static int dev_cpu_dead(unsigned int oldcpu)
9919 {
9920         struct sk_buff **list_skb;
9921         struct sk_buff *skb;
9922         unsigned int cpu;
9923         struct softnet_data *sd, *oldsd, *remsd = NULL;
9924
9925         local_irq_disable();
9926         cpu = smp_processor_id();
9927         sd = &per_cpu(softnet_data, cpu);
9928         oldsd = &per_cpu(softnet_data, oldcpu);
9929
9930         /* Find end of our completion_queue. */
9931         list_skb = &sd->completion_queue;
9932         while (*list_skb)
9933                 list_skb = &(*list_skb)->next;
9934         /* Append completion queue from offline CPU. */
9935         *list_skb = oldsd->completion_queue;
9936         oldsd->completion_queue = NULL;
9937
9938         /* Append output queue from offline CPU. */
9939         if (oldsd->output_queue) {
9940                 *sd->output_queue_tailp = oldsd->output_queue;
9941                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9942                 oldsd->output_queue = NULL;
9943                 oldsd->output_queue_tailp = &oldsd->output_queue;
9944         }
9945         /* Append NAPI poll list from offline CPU, with one exception :
9946          * process_backlog() must be called by cpu owning percpu backlog.
9947          * We properly handle process_queue & input_pkt_queue later.
9948          */
9949         while (!list_empty(&oldsd->poll_list)) {
9950                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9951                                                             struct napi_struct,
9952                                                             poll_list);
9953
9954                 list_del_init(&napi->poll_list);
9955                 if (napi->poll == process_backlog)
9956                         napi->state = 0;
9957                 else
9958                         ____napi_schedule(sd, napi);
9959         }
9960
9961         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9962         local_irq_enable();
9963
9964 #ifdef CONFIG_RPS
9965         remsd = oldsd->rps_ipi_list;
9966         oldsd->rps_ipi_list = NULL;
9967 #endif
9968         /* send out pending IPI's on offline CPU */
9969         net_rps_send_ipi(remsd);
9970
9971         /* Process offline CPU's input_pkt_queue */
9972         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9973                 netif_rx_ni(skb);
9974                 input_queue_head_incr(oldsd);
9975         }
9976         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9977                 netif_rx_ni(skb);
9978                 input_queue_head_incr(oldsd);
9979         }
9980
9981         return 0;
9982 }
9983
9984 /**
9985  *      netdev_increment_features - increment feature set by one
9986  *      @all: current feature set
9987  *      @one: new feature set
9988  *      @mask: mask feature set
9989  *
9990  *      Computes a new feature set after adding a device with feature set
9991  *      @one to the master device with current feature set @all.  Will not
9992  *      enable anything that is off in @mask. Returns the new feature set.
9993  */
9994 netdev_features_t netdev_increment_features(netdev_features_t all,
9995         netdev_features_t one, netdev_features_t mask)
9996 {
9997         if (mask & NETIF_F_HW_CSUM)
9998                 mask |= NETIF_F_CSUM_MASK;
9999         mask |= NETIF_F_VLAN_CHALLENGED;
10000
10001         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10002         all &= one | ~NETIF_F_ALL_FOR_ALL;
10003
10004         /* If one device supports hw checksumming, set for all. */
10005         if (all & NETIF_F_HW_CSUM)
10006                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10007
10008         return all;
10009 }
10010 EXPORT_SYMBOL(netdev_increment_features);
10011
10012 static struct hlist_head * __net_init netdev_create_hash(void)
10013 {
10014         int i;
10015         struct hlist_head *hash;
10016
10017         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10018         if (hash != NULL)
10019                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10020                         INIT_HLIST_HEAD(&hash[i]);
10021
10022         return hash;
10023 }
10024
10025 /* Initialize per network namespace state */
10026 static int __net_init netdev_init(struct net *net)
10027 {
10028         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10029                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
10030
10031         if (net != &init_net)
10032                 INIT_LIST_HEAD(&net->dev_base_head);
10033
10034         net->dev_name_head = netdev_create_hash();
10035         if (net->dev_name_head == NULL)
10036                 goto err_name;
10037
10038         net->dev_index_head = netdev_create_hash();
10039         if (net->dev_index_head == NULL)
10040                 goto err_idx;
10041
10042         return 0;
10043
10044 err_idx:
10045         kfree(net->dev_name_head);
10046 err_name:
10047         return -ENOMEM;
10048 }
10049
10050 /**
10051  *      netdev_drivername - network driver for the device
10052  *      @dev: network device
10053  *
10054  *      Determine network driver for device.
10055  */
10056 const char *netdev_drivername(const struct net_device *dev)
10057 {
10058         const struct device_driver *driver;
10059         const struct device *parent;
10060         const char *empty = "";
10061
10062         parent = dev->dev.parent;
10063         if (!parent)
10064                 return empty;
10065
10066         driver = parent->driver;
10067         if (driver && driver->name)
10068                 return driver->name;
10069         return empty;
10070 }
10071
10072 static void __netdev_printk(const char *level, const struct net_device *dev,
10073                             struct va_format *vaf)
10074 {
10075         if (dev && dev->dev.parent) {
10076                 dev_printk_emit(level[1] - '0',
10077                                 dev->dev.parent,
10078                                 "%s %s %s%s: %pV",
10079                                 dev_driver_string(dev->dev.parent),
10080                                 dev_name(dev->dev.parent),
10081                                 netdev_name(dev), netdev_reg_state(dev),
10082                                 vaf);
10083         } else if (dev) {
10084                 printk("%s%s%s: %pV",
10085                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10086         } else {
10087                 printk("%s(NULL net_device): %pV", level, vaf);
10088         }
10089 }
10090
10091 void netdev_printk(const char *level, const struct net_device *dev,
10092                    const char *format, ...)
10093 {
10094         struct va_format vaf;
10095         va_list args;
10096
10097         va_start(args, format);
10098
10099         vaf.fmt = format;
10100         vaf.va = &args;
10101
10102         __netdev_printk(level, dev, &vaf);
10103
10104         va_end(args);
10105 }
10106 EXPORT_SYMBOL(netdev_printk);
10107
10108 #define define_netdev_printk_level(func, level)                 \
10109 void func(const struct net_device *dev, const char *fmt, ...)   \
10110 {                                                               \
10111         struct va_format vaf;                                   \
10112         va_list args;                                           \
10113                                                                 \
10114         va_start(args, fmt);                                    \
10115                                                                 \
10116         vaf.fmt = fmt;                                          \
10117         vaf.va = &args;                                         \
10118                                                                 \
10119         __netdev_printk(level, dev, &vaf);                      \
10120                                                                 \
10121         va_end(args);                                           \
10122 }                                                               \
10123 EXPORT_SYMBOL(func);
10124
10125 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10126 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10127 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10128 define_netdev_printk_level(netdev_err, KERN_ERR);
10129 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10130 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10131 define_netdev_printk_level(netdev_info, KERN_INFO);
10132
10133 static void __net_exit netdev_exit(struct net *net)
10134 {
10135         kfree(net->dev_name_head);
10136         kfree(net->dev_index_head);
10137         if (net != &init_net)
10138                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10139 }
10140
10141 static struct pernet_operations __net_initdata netdev_net_ops = {
10142         .init = netdev_init,
10143         .exit = netdev_exit,
10144 };
10145
10146 static void __net_exit default_device_exit(struct net *net)
10147 {
10148         struct net_device *dev, *aux;
10149         /*
10150          * Push all migratable network devices back to the
10151          * initial network namespace
10152          */
10153         rtnl_lock();
10154         for_each_netdev_safe(net, dev, aux) {
10155                 int err;
10156                 char fb_name[IFNAMSIZ];
10157
10158                 /* Ignore unmoveable devices (i.e. loopback) */
10159                 if (dev->features & NETIF_F_NETNS_LOCAL)
10160                         continue;
10161
10162                 /* Leave virtual devices for the generic cleanup */
10163                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
10164                         continue;
10165
10166                 /* Push remaining network devices to init_net */
10167                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10168                 if (__dev_get_by_name(&init_net, fb_name))
10169                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10170                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10171                 if (err) {
10172                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10173                                  __func__, dev->name, err);
10174                         BUG();
10175                 }
10176         }
10177         rtnl_unlock();
10178 }
10179
10180 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10181 {
10182         /* Return with the rtnl_lock held when there are no network
10183          * devices unregistering in any network namespace in net_list.
10184          */
10185         struct net *net;
10186         bool unregistering;
10187         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10188
10189         add_wait_queue(&netdev_unregistering_wq, &wait);
10190         for (;;) {
10191                 unregistering = false;
10192                 rtnl_lock();
10193                 list_for_each_entry(net, net_list, exit_list) {
10194                         if (net->dev_unreg_count > 0) {
10195                                 unregistering = true;
10196                                 break;
10197                         }
10198                 }
10199                 if (!unregistering)
10200                         break;
10201                 __rtnl_unlock();
10202
10203                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10204         }
10205         remove_wait_queue(&netdev_unregistering_wq, &wait);
10206 }
10207
10208 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10209 {
10210         /* At exit all network devices most be removed from a network
10211          * namespace.  Do this in the reverse order of registration.
10212          * Do this across as many network namespaces as possible to
10213          * improve batching efficiency.
10214          */
10215         struct net_device *dev;
10216         struct net *net;
10217         LIST_HEAD(dev_kill_list);
10218
10219         /* To prevent network device cleanup code from dereferencing
10220          * loopback devices or network devices that have been freed
10221          * wait here for all pending unregistrations to complete,
10222          * before unregistring the loopback device and allowing the
10223          * network namespace be freed.
10224          *
10225          * The netdev todo list containing all network devices
10226          * unregistrations that happen in default_device_exit_batch
10227          * will run in the rtnl_unlock() at the end of
10228          * default_device_exit_batch.
10229          */
10230         rtnl_lock_unregistering(net_list);
10231         list_for_each_entry(net, net_list, exit_list) {
10232                 for_each_netdev_reverse(net, dev) {
10233                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10234                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10235                         else
10236                                 unregister_netdevice_queue(dev, &dev_kill_list);
10237                 }
10238         }
10239         unregister_netdevice_many(&dev_kill_list);
10240         rtnl_unlock();
10241 }
10242
10243 static struct pernet_operations __net_initdata default_device_ops = {
10244         .exit = default_device_exit,
10245         .exit_batch = default_device_exit_batch,
10246 };
10247
10248 /*
10249  *      Initialize the DEV module. At boot time this walks the device list and
10250  *      unhooks any devices that fail to initialise (normally hardware not
10251  *      present) and leaves us with a valid list of present and active devices.
10252  *
10253  */
10254
10255 /*
10256  *       This is called single threaded during boot, so no need
10257  *       to take the rtnl semaphore.
10258  */
10259 static int __init net_dev_init(void)
10260 {
10261         int i, rc = -ENOMEM;
10262
10263         BUG_ON(!dev_boot_phase);
10264
10265         if (dev_proc_init())
10266                 goto out;
10267
10268         if (netdev_kobject_init())
10269                 goto out;
10270
10271         INIT_LIST_HEAD(&ptype_all);
10272         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10273                 INIT_LIST_HEAD(&ptype_base[i]);
10274
10275         INIT_LIST_HEAD(&offload_base);
10276
10277         if (register_pernet_subsys(&netdev_net_ops))
10278                 goto out;
10279
10280         /*
10281          *      Initialise the packet receive queues.
10282          */
10283
10284         for_each_possible_cpu(i) {
10285                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10286                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10287
10288                 INIT_WORK(flush, flush_backlog);
10289
10290                 skb_queue_head_init(&sd->input_pkt_queue);
10291                 skb_queue_head_init(&sd->process_queue);
10292 #ifdef CONFIG_XFRM_OFFLOAD
10293                 skb_queue_head_init(&sd->xfrm_backlog);
10294 #endif
10295                 INIT_LIST_HEAD(&sd->poll_list);
10296                 sd->output_queue_tailp = &sd->output_queue;
10297 #ifdef CONFIG_RPS
10298                 sd->csd.func = rps_trigger_softirq;
10299                 sd->csd.info = sd;
10300                 sd->cpu = i;
10301 #endif
10302
10303                 init_gro_hash(&sd->backlog);
10304                 sd->backlog.poll = process_backlog;
10305                 sd->backlog.weight = weight_p;
10306         }
10307
10308         dev_boot_phase = 0;
10309
10310         /* The loopback device is special if any other network devices
10311          * is present in a network namespace the loopback device must
10312          * be present. Since we now dynamically allocate and free the
10313          * loopback device ensure this invariant is maintained by
10314          * keeping the loopback device as the first device on the
10315          * list of network devices.  Ensuring the loopback devices
10316          * is the first device that appears and the last network device
10317          * that disappears.
10318          */
10319         if (register_pernet_device(&loopback_net_ops))
10320                 goto out;
10321
10322         if (register_pernet_device(&default_device_ops))
10323                 goto out;
10324
10325         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10326         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10327
10328         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10329                                        NULL, dev_cpu_dead);
10330         WARN_ON(rc < 0);
10331         rc = 0;
10332 out:
10333         return rc;
10334 }
10335
10336 subsys_initcall(net_dev_init);