GNU Linux-libre 5.15.137-gnu
[releases.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 bool netdev_name_in_use(struct net *net, const char *name)
307 {
308         return netdev_name_node_lookup(net, name);
309 }
310 EXPORT_SYMBOL(netdev_name_in_use);
311
312 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
313 {
314         struct netdev_name_node *name_node;
315         struct net *net = dev_net(dev);
316
317         name_node = netdev_name_node_lookup(net, name);
318         if (name_node)
319                 return -EEXIST;
320         name_node = netdev_name_node_alloc(dev, name);
321         if (!name_node)
322                 return -ENOMEM;
323         netdev_name_node_add(net, name_node);
324         /* The node that holds dev->name acts as a head of per-device list. */
325         list_add_tail(&name_node->list, &dev->name_node->list);
326
327         return 0;
328 }
329 EXPORT_SYMBOL(netdev_name_node_alt_create);
330
331 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
332 {
333         list_del(&name_node->list);
334         netdev_name_node_del(name_node);
335         kfree(name_node->name);
336         netdev_name_node_free(name_node);
337 }
338
339 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
340 {
341         struct netdev_name_node *name_node;
342         struct net *net = dev_net(dev);
343
344         name_node = netdev_name_node_lookup(net, name);
345         if (!name_node)
346                 return -ENOENT;
347         /* lookup might have found our primary name or a name belonging
348          * to another device.
349          */
350         if (name_node == dev->name_node || name_node->dev != dev)
351                 return -EINVAL;
352
353         __netdev_name_node_alt_destroy(name_node);
354
355         return 0;
356 }
357 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
358
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361         struct netdev_name_node *name_node, *tmp;
362
363         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
364                 __netdev_name_node_alt_destroy(name_node);
365 }
366
367 /* Device list insertion */
368 static void list_netdevice(struct net_device *dev)
369 {
370         struct net *net = dev_net(dev);
371
372         ASSERT_RTNL();
373
374         write_lock(&dev_base_lock);
375         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
376         netdev_name_node_add(net, dev->name_node);
377         hlist_add_head_rcu(&dev->index_hlist,
378                            dev_index_hash(net, dev->ifindex));
379         write_unlock(&dev_base_lock);
380
381         dev_base_seq_inc(net);
382 }
383
384 /* Device list removal
385  * caller must respect a RCU grace period before freeing/reusing dev
386  */
387 static void unlist_netdevice(struct net_device *dev, bool lock)
388 {
389         ASSERT_RTNL();
390
391         /* Unlink dev from the device chain */
392         if (lock)
393                 write_lock(&dev_base_lock);
394         list_del_rcu(&dev->dev_list);
395         netdev_name_node_del(dev->name_node);
396         hlist_del_rcu(&dev->index_hlist);
397         if (lock)
398                 write_unlock(&dev_base_lock);
399
400         dev_base_seq_inc(dev_net(dev));
401 }
402
403 /*
404  *      Our notifier list
405  */
406
407 static RAW_NOTIFIER_HEAD(netdev_chain);
408
409 /*
410  *      Device drivers call our routines to queue packets here. We empty the
411  *      queue in the local softnet handler.
412  */
413
414 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
415 EXPORT_PER_CPU_SYMBOL(softnet_data);
416
417 #ifdef CONFIG_LOCKDEP
418 /*
419  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
420  * according to dev->type
421  */
422 static const unsigned short netdev_lock_type[] = {
423          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
424          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
425          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
426          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
427          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
428          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
429          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
430          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
431          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
432          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
433          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
434          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
435          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
436          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
437          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
438
439 static const char *const netdev_lock_name[] = {
440         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
441         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
442         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
443         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
444         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
445         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
446         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
447         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
448         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
449         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
450         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
451         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
452         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
453         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
454         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
455
456 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
457 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
458
459 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
460 {
461         int i;
462
463         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
464                 if (netdev_lock_type[i] == dev_type)
465                         return i;
466         /* the last key is used by default */
467         return ARRAY_SIZE(netdev_lock_type) - 1;
468 }
469
470 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
471                                                  unsigned short dev_type)
472 {
473         int i;
474
475         i = netdev_lock_pos(dev_type);
476         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
477                                    netdev_lock_name[i]);
478 }
479
480 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
481 {
482         int i;
483
484         i = netdev_lock_pos(dev->type);
485         lockdep_set_class_and_name(&dev->addr_list_lock,
486                                    &netdev_addr_lock_key[i],
487                                    netdev_lock_name[i]);
488 }
489 #else
490 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
491                                                  unsigned short dev_type)
492 {
493 }
494
495 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
496 {
497 }
498 #endif
499
500 /*******************************************************************************
501  *
502  *              Protocol management and registration routines
503  *
504  *******************************************************************************/
505
506
507 /*
508  *      Add a protocol ID to the list. Now that the input handler is
509  *      smarter we can dispense with all the messy stuff that used to be
510  *      here.
511  *
512  *      BEWARE!!! Protocol handlers, mangling input packets,
513  *      MUST BE last in hash buckets and checking protocol handlers
514  *      MUST start from promiscuous ptype_all chain in net_bh.
515  *      It is true now, do not change it.
516  *      Explanation follows: if protocol handler, mangling packet, will
517  *      be the first on list, it is not able to sense, that packet
518  *      is cloned and should be copied-on-write, so that it will
519  *      change it and subsequent readers will get broken packet.
520  *                                                      --ANK (980803)
521  */
522
523 static inline struct list_head *ptype_head(const struct packet_type *pt)
524 {
525         if (pt->type == htons(ETH_P_ALL))
526                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
527         else
528                 return pt->dev ? &pt->dev->ptype_specific :
529                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
530 }
531
532 /**
533  *      dev_add_pack - add packet handler
534  *      @pt: packet type declaration
535  *
536  *      Add a protocol handler to the networking stack. The passed &packet_type
537  *      is linked into kernel lists and may not be freed until it has been
538  *      removed from the kernel lists.
539  *
540  *      This call does not sleep therefore it can not
541  *      guarantee all CPU's that are in middle of receiving packets
542  *      will see the new packet type (until the next received packet).
543  */
544
545 void dev_add_pack(struct packet_type *pt)
546 {
547         struct list_head *head = ptype_head(pt);
548
549         spin_lock(&ptype_lock);
550         list_add_rcu(&pt->list, head);
551         spin_unlock(&ptype_lock);
552 }
553 EXPORT_SYMBOL(dev_add_pack);
554
555 /**
556  *      __dev_remove_pack        - remove packet handler
557  *      @pt: packet type declaration
558  *
559  *      Remove a protocol handler that was previously added to the kernel
560  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
561  *      from the kernel lists and can be freed or reused once this function
562  *      returns.
563  *
564  *      The packet type might still be in use by receivers
565  *      and must not be freed until after all the CPU's have gone
566  *      through a quiescent state.
567  */
568 void __dev_remove_pack(struct packet_type *pt)
569 {
570         struct list_head *head = ptype_head(pt);
571         struct packet_type *pt1;
572
573         spin_lock(&ptype_lock);
574
575         list_for_each_entry(pt1, head, list) {
576                 if (pt == pt1) {
577                         list_del_rcu(&pt->list);
578                         goto out;
579                 }
580         }
581
582         pr_warn("dev_remove_pack: %p not found\n", pt);
583 out:
584         spin_unlock(&ptype_lock);
585 }
586 EXPORT_SYMBOL(__dev_remove_pack);
587
588 /**
589  *      dev_remove_pack  - remove packet handler
590  *      @pt: packet type declaration
591  *
592  *      Remove a protocol handler that was previously added to the kernel
593  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
594  *      from the kernel lists and can be freed or reused once this function
595  *      returns.
596  *
597  *      This call sleeps to guarantee that no CPU is looking at the packet
598  *      type after return.
599  */
600 void dev_remove_pack(struct packet_type *pt)
601 {
602         __dev_remove_pack(pt);
603
604         synchronize_net();
605 }
606 EXPORT_SYMBOL(dev_remove_pack);
607
608
609 /**
610  *      dev_add_offload - register offload handlers
611  *      @po: protocol offload declaration
612  *
613  *      Add protocol offload handlers to the networking stack. The passed
614  *      &proto_offload is linked into kernel lists and may not be freed until
615  *      it has been removed from the kernel lists.
616  *
617  *      This call does not sleep therefore it can not
618  *      guarantee all CPU's that are in middle of receiving packets
619  *      will see the new offload handlers (until the next received packet).
620  */
621 void dev_add_offload(struct packet_offload *po)
622 {
623         struct packet_offload *elem;
624
625         spin_lock(&offload_lock);
626         list_for_each_entry(elem, &offload_base, list) {
627                 if (po->priority < elem->priority)
628                         break;
629         }
630         list_add_rcu(&po->list, elem->list.prev);
631         spin_unlock(&offload_lock);
632 }
633 EXPORT_SYMBOL(dev_add_offload);
634
635 /**
636  *      __dev_remove_offload     - remove offload handler
637  *      @po: packet offload declaration
638  *
639  *      Remove a protocol offload handler that was previously added to the
640  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
641  *      is removed from the kernel lists and can be freed or reused once this
642  *      function returns.
643  *
644  *      The packet type might still be in use by receivers
645  *      and must not be freed until after all the CPU's have gone
646  *      through a quiescent state.
647  */
648 static void __dev_remove_offload(struct packet_offload *po)
649 {
650         struct list_head *head = &offload_base;
651         struct packet_offload *po1;
652
653         spin_lock(&offload_lock);
654
655         list_for_each_entry(po1, head, list) {
656                 if (po == po1) {
657                         list_del_rcu(&po->list);
658                         goto out;
659                 }
660         }
661
662         pr_warn("dev_remove_offload: %p not found\n", po);
663 out:
664         spin_unlock(&offload_lock);
665 }
666
667 /**
668  *      dev_remove_offload       - remove packet offload handler
669  *      @po: packet offload declaration
670  *
671  *      Remove a packet offload handler that was previously added to the kernel
672  *      offload handlers by dev_add_offload(). The passed &offload_type is
673  *      removed from the kernel lists and can be freed or reused once this
674  *      function returns.
675  *
676  *      This call sleeps to guarantee that no CPU is looking at the packet
677  *      type after return.
678  */
679 void dev_remove_offload(struct packet_offload *po)
680 {
681         __dev_remove_offload(po);
682
683         synchronize_net();
684 }
685 EXPORT_SYMBOL(dev_remove_offload);
686
687 /*******************************************************************************
688  *
689  *                          Device Interface Subroutines
690  *
691  *******************************************************************************/
692
693 /**
694  *      dev_get_iflink  - get 'iflink' value of a interface
695  *      @dev: targeted interface
696  *
697  *      Indicates the ifindex the interface is linked to.
698  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
699  */
700
701 int dev_get_iflink(const struct net_device *dev)
702 {
703         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
704                 return dev->netdev_ops->ndo_get_iflink(dev);
705
706         return dev->ifindex;
707 }
708 EXPORT_SYMBOL(dev_get_iflink);
709
710 /**
711  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
712  *      @dev: targeted interface
713  *      @skb: The packet.
714  *
715  *      For better visibility of tunnel traffic OVS needs to retrieve
716  *      egress tunnel information for a packet. Following API allows
717  *      user to get this info.
718  */
719 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
720 {
721         struct ip_tunnel_info *info;
722
723         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
724                 return -EINVAL;
725
726         info = skb_tunnel_info_unclone(skb);
727         if (!info)
728                 return -ENOMEM;
729         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
730                 return -EINVAL;
731
732         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
733 }
734 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
735
736 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
737 {
738         int k = stack->num_paths++;
739
740         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
741                 return NULL;
742
743         return &stack->path[k];
744 }
745
746 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
747                           struct net_device_path_stack *stack)
748 {
749         const struct net_device *last_dev;
750         struct net_device_path_ctx ctx = {
751                 .dev    = dev,
752         };
753         struct net_device_path *path;
754         int ret = 0;
755
756         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
757         stack->num_paths = 0;
758         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
759                 last_dev = ctx.dev;
760                 path = dev_fwd_path(stack);
761                 if (!path)
762                         return -1;
763
764                 memset(path, 0, sizeof(struct net_device_path));
765                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
766                 if (ret < 0)
767                         return -1;
768
769                 if (WARN_ON_ONCE(last_dev == ctx.dev))
770                         return -1;
771         }
772         path = dev_fwd_path(stack);
773         if (!path)
774                 return -1;
775         path->type = DEV_PATH_ETHERNET;
776         path->dev = ctx.dev;
777
778         return ret;
779 }
780 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
781
782 /**
783  *      __dev_get_by_name       - find a device by its name
784  *      @net: the applicable net namespace
785  *      @name: name to find
786  *
787  *      Find an interface by name. Must be called under RTNL semaphore
788  *      or @dev_base_lock. If the name is found a pointer to the device
789  *      is returned. If the name is not found then %NULL is returned. The
790  *      reference counters are not incremented so the caller must be
791  *      careful with locks.
792  */
793
794 struct net_device *__dev_get_by_name(struct net *net, const char *name)
795 {
796         struct netdev_name_node *node_name;
797
798         node_name = netdev_name_node_lookup(net, name);
799         return node_name ? node_name->dev : NULL;
800 }
801 EXPORT_SYMBOL(__dev_get_by_name);
802
803 /**
804  * dev_get_by_name_rcu  - find a device by its name
805  * @net: the applicable net namespace
806  * @name: name to find
807  *
808  * Find an interface by name.
809  * If the name is found a pointer to the device is returned.
810  * If the name is not found then %NULL is returned.
811  * The reference counters are not incremented so the caller must be
812  * careful with locks. The caller must hold RCU lock.
813  */
814
815 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
816 {
817         struct netdev_name_node *node_name;
818
819         node_name = netdev_name_node_lookup_rcu(net, name);
820         return node_name ? node_name->dev : NULL;
821 }
822 EXPORT_SYMBOL(dev_get_by_name_rcu);
823
824 /**
825  *      dev_get_by_name         - find a device by its name
826  *      @net: the applicable net namespace
827  *      @name: name to find
828  *
829  *      Find an interface by name. This can be called from any
830  *      context and does its own locking. The returned handle has
831  *      the usage count incremented and the caller must use dev_put() to
832  *      release it when it is no longer needed. %NULL is returned if no
833  *      matching device is found.
834  */
835
836 struct net_device *dev_get_by_name(struct net *net, const char *name)
837 {
838         struct net_device *dev;
839
840         rcu_read_lock();
841         dev = dev_get_by_name_rcu(net, name);
842         dev_hold(dev);
843         rcu_read_unlock();
844         return dev;
845 }
846 EXPORT_SYMBOL(dev_get_by_name);
847
848 /**
849  *      __dev_get_by_index - find a device by its ifindex
850  *      @net: the applicable net namespace
851  *      @ifindex: index of device
852  *
853  *      Search for an interface by index. Returns %NULL if the device
854  *      is not found or a pointer to the device. The device has not
855  *      had its reference counter increased so the caller must be careful
856  *      about locking. The caller must hold either the RTNL semaphore
857  *      or @dev_base_lock.
858  */
859
860 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863         struct hlist_head *head = dev_index_hash(net, ifindex);
864
865         hlist_for_each_entry(dev, head, index_hlist)
866                 if (dev->ifindex == ifindex)
867                         return dev;
868
869         return NULL;
870 }
871 EXPORT_SYMBOL(__dev_get_by_index);
872
873 /**
874  *      dev_get_by_index_rcu - find a device by its ifindex
875  *      @net: the applicable net namespace
876  *      @ifindex: index of device
877  *
878  *      Search for an interface by index. Returns %NULL if the device
879  *      is not found or a pointer to the device. The device has not
880  *      had its reference counter increased so the caller must be careful
881  *      about locking. The caller must hold RCU lock.
882  */
883
884 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
885 {
886         struct net_device *dev;
887         struct hlist_head *head = dev_index_hash(net, ifindex);
888
889         hlist_for_each_entry_rcu(dev, head, index_hlist)
890                 if (dev->ifindex == ifindex)
891                         return dev;
892
893         return NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_index_rcu);
896
897
898 /**
899  *      dev_get_by_index - find a device by its ifindex
900  *      @net: the applicable net namespace
901  *      @ifindex: index of device
902  *
903  *      Search for an interface by index. Returns NULL if the device
904  *      is not found or a pointer to the device. The device returned has
905  *      had a reference added and the pointer is safe until the user calls
906  *      dev_put to indicate they have finished with it.
907  */
908
909 struct net_device *dev_get_by_index(struct net *net, int ifindex)
910 {
911         struct net_device *dev;
912
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         dev_hold(dev);
916         rcu_read_unlock();
917         return dev;
918 }
919 EXPORT_SYMBOL(dev_get_by_index);
920
921 /**
922  *      dev_get_by_napi_id - find a device by napi_id
923  *      @napi_id: ID of the NAPI struct
924  *
925  *      Search for an interface by NAPI ID. Returns %NULL if the device
926  *      is not found or a pointer to the device. The device has not had
927  *      its reference counter increased so the caller must be careful
928  *      about locking. The caller must hold RCU lock.
929  */
930
931 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932 {
933         struct napi_struct *napi;
934
935         WARN_ON_ONCE(!rcu_read_lock_held());
936
937         if (napi_id < MIN_NAPI_ID)
938                 return NULL;
939
940         napi = napi_by_id(napi_id);
941
942         return napi ? napi->dev : NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_napi_id);
945
946 /**
947  *      netdev_get_name - get a netdevice name, knowing its ifindex.
948  *      @net: network namespace
949  *      @name: a pointer to the buffer where the name will be stored.
950  *      @ifindex: the ifindex of the interface to get the name from.
951  */
952 int netdev_get_name(struct net *net, char *name, int ifindex)
953 {
954         struct net_device *dev;
955         int ret;
956
957         down_read(&devnet_rename_sem);
958         rcu_read_lock();
959
960         dev = dev_get_by_index_rcu(net, ifindex);
961         if (!dev) {
962                 ret = -ENODEV;
963                 goto out;
964         }
965
966         strcpy(name, dev->name);
967
968         ret = 0;
969 out:
970         rcu_read_unlock();
971         up_read(&devnet_rename_sem);
972         return ret;
973 }
974
975 /**
976  *      dev_getbyhwaddr_rcu - find a device by its hardware address
977  *      @net: the applicable net namespace
978  *      @type: media type of device
979  *      @ha: hardware address
980  *
981  *      Search for an interface by MAC address. Returns NULL if the device
982  *      is not found or a pointer to the device.
983  *      The caller must hold RCU or RTNL.
984  *      The returned device has not had its ref count increased
985  *      and the caller must therefore be careful about locking
986  *
987  */
988
989 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
990                                        const char *ha)
991 {
992         struct net_device *dev;
993
994         for_each_netdev_rcu(net, dev)
995                 if (dev->type == type &&
996                     !memcmp(dev->dev_addr, ha, dev->addr_len))
997                         return dev;
998
999         return NULL;
1000 }
1001 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1002
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004 {
1005         struct net_device *dev, *ret = NULL;
1006
1007         rcu_read_lock();
1008         for_each_netdev_rcu(net, dev)
1009                 if (dev->type == type) {
1010                         dev_hold(dev);
1011                         ret = dev;
1012                         break;
1013                 }
1014         rcu_read_unlock();
1015         return ret;
1016 }
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018
1019 /**
1020  *      __dev_get_by_flags - find any device with given flags
1021  *      @net: the applicable net namespace
1022  *      @if_flags: IFF_* values
1023  *      @mask: bitmask of bits in if_flags to check
1024  *
1025  *      Search for any interface with the given flags. Returns NULL if a device
1026  *      is not found or a pointer to the device. Must be called inside
1027  *      rtnl_lock(), and result refcount is unchanged.
1028  */
1029
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031                                       unsigned short mask)
1032 {
1033         struct net_device *dev, *ret;
1034
1035         ASSERT_RTNL();
1036
1037         ret = NULL;
1038         for_each_netdev(net, dev) {
1039                 if (((dev->flags ^ if_flags) & mask) == 0) {
1040                         ret = dev;
1041                         break;
1042                 }
1043         }
1044         return ret;
1045 }
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1047
1048 /**
1049  *      dev_valid_name - check if name is okay for network device
1050  *      @name: name string
1051  *
1052  *      Network device names need to be valid file names to
1053  *      allow sysfs to work.  We also disallow any kind of
1054  *      whitespace.
1055  */
1056 bool dev_valid_name(const char *name)
1057 {
1058         if (*name == '\0')
1059                 return false;
1060         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061                 return false;
1062         if (!strcmp(name, ".") || !strcmp(name, ".."))
1063                 return false;
1064
1065         while (*name) {
1066                 if (*name == '/' || *name == ':' || isspace(*name))
1067                         return false;
1068                 name++;
1069         }
1070         return true;
1071 }
1072 EXPORT_SYMBOL(dev_valid_name);
1073
1074 /**
1075  *      __dev_alloc_name - allocate a name for a device
1076  *      @net: network namespace to allocate the device name in
1077  *      @name: name format string
1078  *      @buf:  scratch buffer and result name string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090 {
1091         int i = 0;
1092         const char *p;
1093         const int max_netdevices = 8*PAGE_SIZE;
1094         unsigned long *inuse;
1095         struct net_device *d;
1096
1097         if (!dev_valid_name(name))
1098                 return -EINVAL;
1099
1100         p = strchr(name, '%');
1101         if (p) {
1102                 /*
1103                  * Verify the string as this thing may have come from
1104                  * the user.  There must be either one "%d" and no other "%"
1105                  * characters.
1106                  */
1107                 if (p[1] != 'd' || strchr(p + 2, '%'))
1108                         return -EINVAL;
1109
1110                 /* Use one page as a bit array of possible slots */
1111                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112                 if (!inuse)
1113                         return -ENOMEM;
1114
1115                 for_each_netdev(net, d) {
1116                         struct netdev_name_node *name_node;
1117                         list_for_each_entry(name_node, &d->name_node->list, list) {
1118                                 if (!sscanf(name_node->name, name, &i))
1119                                         continue;
1120                                 if (i < 0 || i >= max_netdevices)
1121                                         continue;
1122
1123                                 /*  avoid cases where sscanf is not exact inverse of printf */
1124                                 snprintf(buf, IFNAMSIZ, name, i);
1125                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1126                                         set_bit(i, inuse);
1127                         }
1128                         if (!sscanf(d->name, name, &i))
1129                                 continue;
1130                         if (i < 0 || i >= max_netdevices)
1131                                 continue;
1132
1133                         /*  avoid cases where sscanf is not exact inverse of printf */
1134                         snprintf(buf, IFNAMSIZ, name, i);
1135                         if (!strncmp(buf, d->name, IFNAMSIZ))
1136                                 set_bit(i, inuse);
1137                 }
1138
1139                 i = find_first_zero_bit(inuse, max_netdevices);
1140                 free_page((unsigned long) inuse);
1141         }
1142
1143         snprintf(buf, IFNAMSIZ, name, i);
1144         if (!netdev_name_in_use(net, buf))
1145                 return i;
1146
1147         /* It is possible to run out of possible slots
1148          * when the name is long and there isn't enough space left
1149          * for the digits, or if all bits are used.
1150          */
1151         return -ENFILE;
1152 }
1153
1154 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1155                                const char *want_name, char *out_name)
1156 {
1157         int ret;
1158
1159         if (!dev_valid_name(want_name))
1160                 return -EINVAL;
1161
1162         if (strchr(want_name, '%')) {
1163                 ret = __dev_alloc_name(net, want_name, out_name);
1164                 return ret < 0 ? ret : 0;
1165         } else if (netdev_name_in_use(net, want_name)) {
1166                 return -EEXIST;
1167         } else if (out_name != want_name) {
1168                 strscpy(out_name, want_name, IFNAMSIZ);
1169         }
1170
1171         return 0;
1172 }
1173
1174 static int dev_alloc_name_ns(struct net *net,
1175                              struct net_device *dev,
1176                              const char *name)
1177 {
1178         char buf[IFNAMSIZ];
1179         int ret;
1180
1181         BUG_ON(!net);
1182         ret = __dev_alloc_name(net, name, buf);
1183         if (ret >= 0)
1184                 strscpy(dev->name, buf, IFNAMSIZ);
1185         return ret;
1186 }
1187
1188 /**
1189  *      dev_alloc_name - allocate a name for a device
1190  *      @dev: device
1191  *      @name: name format string
1192  *
1193  *      Passed a format string - eg "lt%d" it will try and find a suitable
1194  *      id. It scans list of devices to build up a free map, then chooses
1195  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1196  *      while allocating the name and adding the device in order to avoid
1197  *      duplicates.
1198  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1199  *      Returns the number of the unit assigned or a negative errno code.
1200  */
1201
1202 int dev_alloc_name(struct net_device *dev, const char *name)
1203 {
1204         return dev_alloc_name_ns(dev_net(dev), dev, name);
1205 }
1206 EXPORT_SYMBOL(dev_alloc_name);
1207
1208 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1209                               const char *name)
1210 {
1211         char buf[IFNAMSIZ];
1212         int ret;
1213
1214         ret = dev_prep_valid_name(net, dev, name, buf);
1215         if (ret >= 0)
1216                 strscpy(dev->name, buf, IFNAMSIZ);
1217         return ret;
1218 }
1219
1220 /**
1221  *      dev_change_name - change name of a device
1222  *      @dev: device
1223  *      @newname: name (or format string) must be at least IFNAMSIZ
1224  *
1225  *      Change name of a device, can pass format strings "eth%d".
1226  *      for wildcarding.
1227  */
1228 int dev_change_name(struct net_device *dev, const char *newname)
1229 {
1230         unsigned char old_assign_type;
1231         char oldname[IFNAMSIZ];
1232         int err = 0;
1233         int ret;
1234         struct net *net;
1235
1236         ASSERT_RTNL();
1237         BUG_ON(!dev_net(dev));
1238
1239         net = dev_net(dev);
1240
1241         /* Some auto-enslaved devices e.g. failover slaves are
1242          * special, as userspace might rename the device after
1243          * the interface had been brought up and running since
1244          * the point kernel initiated auto-enslavement. Allow
1245          * live name change even when these slave devices are
1246          * up and running.
1247          *
1248          * Typically, users of these auto-enslaving devices
1249          * don't actually care about slave name change, as
1250          * they are supposed to operate on master interface
1251          * directly.
1252          */
1253         if (dev->flags & IFF_UP &&
1254             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1255                 return -EBUSY;
1256
1257         down_write(&devnet_rename_sem);
1258
1259         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1260                 up_write(&devnet_rename_sem);
1261                 return 0;
1262         }
1263
1264         memcpy(oldname, dev->name, IFNAMSIZ);
1265
1266         err = dev_get_valid_name(net, dev, newname);
1267         if (err < 0) {
1268                 up_write(&devnet_rename_sem);
1269                 return err;
1270         }
1271
1272         if (oldname[0] && !strchr(oldname, '%'))
1273                 netdev_info(dev, "renamed from %s\n", oldname);
1274
1275         old_assign_type = dev->name_assign_type;
1276         dev->name_assign_type = NET_NAME_RENAMED;
1277
1278 rollback:
1279         ret = device_rename(&dev->dev, dev->name);
1280         if (ret) {
1281                 memcpy(dev->name, oldname, IFNAMSIZ);
1282                 dev->name_assign_type = old_assign_type;
1283                 up_write(&devnet_rename_sem);
1284                 return ret;
1285         }
1286
1287         up_write(&devnet_rename_sem);
1288
1289         netdev_adjacent_rename_links(dev, oldname);
1290
1291         write_lock(&dev_base_lock);
1292         netdev_name_node_del(dev->name_node);
1293         write_unlock(&dev_base_lock);
1294
1295         synchronize_rcu();
1296
1297         write_lock(&dev_base_lock);
1298         netdev_name_node_add(net, dev->name_node);
1299         write_unlock(&dev_base_lock);
1300
1301         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1302         ret = notifier_to_errno(ret);
1303
1304         if (ret) {
1305                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1306                 if (err >= 0) {
1307                         err = ret;
1308                         down_write(&devnet_rename_sem);
1309                         memcpy(dev->name, oldname, IFNAMSIZ);
1310                         memcpy(oldname, newname, IFNAMSIZ);
1311                         dev->name_assign_type = old_assign_type;
1312                         old_assign_type = NET_NAME_RENAMED;
1313                         goto rollback;
1314                 } else {
1315                         pr_err("%s: name change rollback failed: %d\n",
1316                                dev->name, ret);
1317                 }
1318         }
1319
1320         return err;
1321 }
1322
1323 /**
1324  *      dev_set_alias - change ifalias of a device
1325  *      @dev: device
1326  *      @alias: name up to IFALIASZ
1327  *      @len: limit of bytes to copy from info
1328  *
1329  *      Set ifalias for a device,
1330  */
1331 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1332 {
1333         struct dev_ifalias *new_alias = NULL;
1334
1335         if (len >= IFALIASZ)
1336                 return -EINVAL;
1337
1338         if (len) {
1339                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1340                 if (!new_alias)
1341                         return -ENOMEM;
1342
1343                 memcpy(new_alias->ifalias, alias, len);
1344                 new_alias->ifalias[len] = 0;
1345         }
1346
1347         mutex_lock(&ifalias_mutex);
1348         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1349                                         mutex_is_locked(&ifalias_mutex));
1350         mutex_unlock(&ifalias_mutex);
1351
1352         if (new_alias)
1353                 kfree_rcu(new_alias, rcuhead);
1354
1355         return len;
1356 }
1357 EXPORT_SYMBOL(dev_set_alias);
1358
1359 /**
1360  *      dev_get_alias - get ifalias of a device
1361  *      @dev: device
1362  *      @name: buffer to store name of ifalias
1363  *      @len: size of buffer
1364  *
1365  *      get ifalias for a device.  Caller must make sure dev cannot go
1366  *      away,  e.g. rcu read lock or own a reference count to device.
1367  */
1368 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1369 {
1370         const struct dev_ifalias *alias;
1371         int ret = 0;
1372
1373         rcu_read_lock();
1374         alias = rcu_dereference(dev->ifalias);
1375         if (alias)
1376                 ret = snprintf(name, len, "%s", alias->ifalias);
1377         rcu_read_unlock();
1378
1379         return ret;
1380 }
1381
1382 /**
1383  *      netdev_features_change - device changes features
1384  *      @dev: device to cause notification
1385  *
1386  *      Called to indicate a device has changed features.
1387  */
1388 void netdev_features_change(struct net_device *dev)
1389 {
1390         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1391 }
1392 EXPORT_SYMBOL(netdev_features_change);
1393
1394 /**
1395  *      netdev_state_change - device changes state
1396  *      @dev: device to cause notification
1397  *
1398  *      Called to indicate a device has changed state. This function calls
1399  *      the notifier chains for netdev_chain and sends a NEWLINK message
1400  *      to the routing socket.
1401  */
1402 void netdev_state_change(struct net_device *dev)
1403 {
1404         if (dev->flags & IFF_UP) {
1405                 struct netdev_notifier_change_info change_info = {
1406                         .info.dev = dev,
1407                 };
1408
1409                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1410                                               &change_info.info);
1411                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1412         }
1413 }
1414 EXPORT_SYMBOL(netdev_state_change);
1415
1416 /**
1417  * __netdev_notify_peers - notify network peers about existence of @dev,
1418  * to be called when rtnl lock is already held.
1419  * @dev: network device
1420  *
1421  * Generate traffic such that interested network peers are aware of
1422  * @dev, such as by generating a gratuitous ARP. This may be used when
1423  * a device wants to inform the rest of the network about some sort of
1424  * reconfiguration such as a failover event or virtual machine
1425  * migration.
1426  */
1427 void __netdev_notify_peers(struct net_device *dev)
1428 {
1429         ASSERT_RTNL();
1430         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1431         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1432 }
1433 EXPORT_SYMBOL(__netdev_notify_peers);
1434
1435 /**
1436  * netdev_notify_peers - notify network peers about existence of @dev
1437  * @dev: network device
1438  *
1439  * Generate traffic such that interested network peers are aware of
1440  * @dev, such as by generating a gratuitous ARP. This may be used when
1441  * a device wants to inform the rest of the network about some sort of
1442  * reconfiguration such as a failover event or virtual machine
1443  * migration.
1444  */
1445 void netdev_notify_peers(struct net_device *dev)
1446 {
1447         rtnl_lock();
1448         __netdev_notify_peers(dev);
1449         rtnl_unlock();
1450 }
1451 EXPORT_SYMBOL(netdev_notify_peers);
1452
1453 static int napi_threaded_poll(void *data);
1454
1455 static int napi_kthread_create(struct napi_struct *n)
1456 {
1457         int err = 0;
1458
1459         /* Create and wake up the kthread once to put it in
1460          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1461          * warning and work with loadavg.
1462          */
1463         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1464                                 n->dev->name, n->napi_id);
1465         if (IS_ERR(n->thread)) {
1466                 err = PTR_ERR(n->thread);
1467                 pr_err("kthread_run failed with err %d\n", err);
1468                 n->thread = NULL;
1469         }
1470
1471         return err;
1472 }
1473
1474 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1475 {
1476         const struct net_device_ops *ops = dev->netdev_ops;
1477         int ret;
1478
1479         ASSERT_RTNL();
1480
1481         if (!netif_device_present(dev)) {
1482                 /* may be detached because parent is runtime-suspended */
1483                 if (dev->dev.parent)
1484                         pm_runtime_resume(dev->dev.parent);
1485                 if (!netif_device_present(dev))
1486                         return -ENODEV;
1487         }
1488
1489         /* Block netpoll from trying to do any rx path servicing.
1490          * If we don't do this there is a chance ndo_poll_controller
1491          * or ndo_poll may be running while we open the device
1492          */
1493         netpoll_poll_disable(dev);
1494
1495         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1496         ret = notifier_to_errno(ret);
1497         if (ret)
1498                 return ret;
1499
1500         set_bit(__LINK_STATE_START, &dev->state);
1501
1502         if (ops->ndo_validate_addr)
1503                 ret = ops->ndo_validate_addr(dev);
1504
1505         if (!ret && ops->ndo_open)
1506                 ret = ops->ndo_open(dev);
1507
1508         netpoll_poll_enable(dev);
1509
1510         if (ret)
1511                 clear_bit(__LINK_STATE_START, &dev->state);
1512         else {
1513                 dev->flags |= IFF_UP;
1514                 dev_set_rx_mode(dev);
1515                 dev_activate(dev);
1516                 add_device_randomness(dev->dev_addr, dev->addr_len);
1517         }
1518
1519         return ret;
1520 }
1521
1522 /**
1523  *      dev_open        - prepare an interface for use.
1524  *      @dev: device to open
1525  *      @extack: netlink extended ack
1526  *
1527  *      Takes a device from down to up state. The device's private open
1528  *      function is invoked and then the multicast lists are loaded. Finally
1529  *      the device is moved into the up state and a %NETDEV_UP message is
1530  *      sent to the netdev notifier chain.
1531  *
1532  *      Calling this function on an active interface is a nop. On a failure
1533  *      a negative errno code is returned.
1534  */
1535 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1536 {
1537         int ret;
1538
1539         if (dev->flags & IFF_UP)
1540                 return 0;
1541
1542         ret = __dev_open(dev, extack);
1543         if (ret < 0)
1544                 return ret;
1545
1546         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1547         call_netdevice_notifiers(NETDEV_UP, dev);
1548
1549         return ret;
1550 }
1551 EXPORT_SYMBOL(dev_open);
1552
1553 static void __dev_close_many(struct list_head *head)
1554 {
1555         struct net_device *dev;
1556
1557         ASSERT_RTNL();
1558         might_sleep();
1559
1560         list_for_each_entry(dev, head, close_list) {
1561                 /* Temporarily disable netpoll until the interface is down */
1562                 netpoll_poll_disable(dev);
1563
1564                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1565
1566                 clear_bit(__LINK_STATE_START, &dev->state);
1567
1568                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1569                  * can be even on different cpu. So just clear netif_running().
1570                  *
1571                  * dev->stop() will invoke napi_disable() on all of it's
1572                  * napi_struct instances on this device.
1573                  */
1574                 smp_mb__after_atomic(); /* Commit netif_running(). */
1575         }
1576
1577         dev_deactivate_many(head);
1578
1579         list_for_each_entry(dev, head, close_list) {
1580                 const struct net_device_ops *ops = dev->netdev_ops;
1581
1582                 /*
1583                  *      Call the device specific close. This cannot fail.
1584                  *      Only if device is UP
1585                  *
1586                  *      We allow it to be called even after a DETACH hot-plug
1587                  *      event.
1588                  */
1589                 if (ops->ndo_stop)
1590                         ops->ndo_stop(dev);
1591
1592                 dev->flags &= ~IFF_UP;
1593                 netpoll_poll_enable(dev);
1594         }
1595 }
1596
1597 static void __dev_close(struct net_device *dev)
1598 {
1599         LIST_HEAD(single);
1600
1601         list_add(&dev->close_list, &single);
1602         __dev_close_many(&single);
1603         list_del(&single);
1604 }
1605
1606 void dev_close_many(struct list_head *head, bool unlink)
1607 {
1608         struct net_device *dev, *tmp;
1609
1610         /* Remove the devices that don't need to be closed */
1611         list_for_each_entry_safe(dev, tmp, head, close_list)
1612                 if (!(dev->flags & IFF_UP))
1613                         list_del_init(&dev->close_list);
1614
1615         __dev_close_many(head);
1616
1617         list_for_each_entry_safe(dev, tmp, head, close_list) {
1618                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1619                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1620                 if (unlink)
1621                         list_del_init(&dev->close_list);
1622         }
1623 }
1624 EXPORT_SYMBOL(dev_close_many);
1625
1626 /**
1627  *      dev_close - shutdown an interface.
1628  *      @dev: device to shutdown
1629  *
1630  *      This function moves an active device into down state. A
1631  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1632  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1633  *      chain.
1634  */
1635 void dev_close(struct net_device *dev)
1636 {
1637         if (dev->flags & IFF_UP) {
1638                 LIST_HEAD(single);
1639
1640                 list_add(&dev->close_list, &single);
1641                 dev_close_many(&single, true);
1642                 list_del(&single);
1643         }
1644 }
1645 EXPORT_SYMBOL(dev_close);
1646
1647
1648 /**
1649  *      dev_disable_lro - disable Large Receive Offload on a device
1650  *      @dev: device
1651  *
1652  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1653  *      called under RTNL.  This is needed if received packets may be
1654  *      forwarded to another interface.
1655  */
1656 void dev_disable_lro(struct net_device *dev)
1657 {
1658         struct net_device *lower_dev;
1659         struct list_head *iter;
1660
1661         dev->wanted_features &= ~NETIF_F_LRO;
1662         netdev_update_features(dev);
1663
1664         if (unlikely(dev->features & NETIF_F_LRO))
1665                 netdev_WARN(dev, "failed to disable LRO!\n");
1666
1667         netdev_for_each_lower_dev(dev, lower_dev, iter)
1668                 dev_disable_lro(lower_dev);
1669 }
1670 EXPORT_SYMBOL(dev_disable_lro);
1671
1672 /**
1673  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1674  *      @dev: device
1675  *
1676  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1677  *      called under RTNL.  This is needed if Generic XDP is installed on
1678  *      the device.
1679  */
1680 static void dev_disable_gro_hw(struct net_device *dev)
1681 {
1682         dev->wanted_features &= ~NETIF_F_GRO_HW;
1683         netdev_update_features(dev);
1684
1685         if (unlikely(dev->features & NETIF_F_GRO_HW))
1686                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1687 }
1688
1689 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1690 {
1691 #define N(val)                                          \
1692         case NETDEV_##val:                              \
1693                 return "NETDEV_" __stringify(val);
1694         switch (cmd) {
1695         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1696         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1697         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1698         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1699         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1700         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1701         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1702         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1703         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1704         N(PRE_CHANGEADDR)
1705         }
1706 #undef N
1707         return "UNKNOWN_NETDEV_EVENT";
1708 }
1709 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1710
1711 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1712                                    struct net_device *dev)
1713 {
1714         struct netdev_notifier_info info = {
1715                 .dev = dev,
1716         };
1717
1718         return nb->notifier_call(nb, val, &info);
1719 }
1720
1721 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1722                                              struct net_device *dev)
1723 {
1724         int err;
1725
1726         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1727         err = notifier_to_errno(err);
1728         if (err)
1729                 return err;
1730
1731         if (!(dev->flags & IFF_UP))
1732                 return 0;
1733
1734         call_netdevice_notifier(nb, NETDEV_UP, dev);
1735         return 0;
1736 }
1737
1738 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1739                                                 struct net_device *dev)
1740 {
1741         if (dev->flags & IFF_UP) {
1742                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1743                                         dev);
1744                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1745         }
1746         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1747 }
1748
1749 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1750                                                  struct net *net)
1751 {
1752         struct net_device *dev;
1753         int err;
1754
1755         for_each_netdev(net, dev) {
1756                 err = call_netdevice_register_notifiers(nb, dev);
1757                 if (err)
1758                         goto rollback;
1759         }
1760         return 0;
1761
1762 rollback:
1763         for_each_netdev_continue_reverse(net, dev)
1764                 call_netdevice_unregister_notifiers(nb, dev);
1765         return err;
1766 }
1767
1768 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1769                                                     struct net *net)
1770 {
1771         struct net_device *dev;
1772
1773         for_each_netdev(net, dev)
1774                 call_netdevice_unregister_notifiers(nb, dev);
1775 }
1776
1777 static int dev_boot_phase = 1;
1778
1779 /**
1780  * register_netdevice_notifier - register a network notifier block
1781  * @nb: notifier
1782  *
1783  * Register a notifier to be called when network device events occur.
1784  * The notifier passed is linked into the kernel structures and must
1785  * not be reused until it has been unregistered. A negative errno code
1786  * is returned on a failure.
1787  *
1788  * When registered all registration and up events are replayed
1789  * to the new notifier to allow device to have a race free
1790  * view of the network device list.
1791  */
1792
1793 int register_netdevice_notifier(struct notifier_block *nb)
1794 {
1795         struct net *net;
1796         int err;
1797
1798         /* Close race with setup_net() and cleanup_net() */
1799         down_write(&pernet_ops_rwsem);
1800         rtnl_lock();
1801         err = raw_notifier_chain_register(&netdev_chain, nb);
1802         if (err)
1803                 goto unlock;
1804         if (dev_boot_phase)
1805                 goto unlock;
1806         for_each_net(net) {
1807                 err = call_netdevice_register_net_notifiers(nb, net);
1808                 if (err)
1809                         goto rollback;
1810         }
1811
1812 unlock:
1813         rtnl_unlock();
1814         up_write(&pernet_ops_rwsem);
1815         return err;
1816
1817 rollback:
1818         for_each_net_continue_reverse(net)
1819                 call_netdevice_unregister_net_notifiers(nb, net);
1820
1821         raw_notifier_chain_unregister(&netdev_chain, nb);
1822         goto unlock;
1823 }
1824 EXPORT_SYMBOL(register_netdevice_notifier);
1825
1826 /**
1827  * unregister_netdevice_notifier - unregister a network notifier block
1828  * @nb: notifier
1829  *
1830  * Unregister a notifier previously registered by
1831  * register_netdevice_notifier(). The notifier is unlinked into the
1832  * kernel structures and may then be reused. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * After unregistering unregister and down device events are synthesized
1836  * for all devices on the device list to the removed notifier to remove
1837  * the need for special case cleanup code.
1838  */
1839
1840 int unregister_netdevice_notifier(struct notifier_block *nb)
1841 {
1842         struct net *net;
1843         int err;
1844
1845         /* Close race with setup_net() and cleanup_net() */
1846         down_write(&pernet_ops_rwsem);
1847         rtnl_lock();
1848         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1849         if (err)
1850                 goto unlock;
1851
1852         for_each_net(net)
1853                 call_netdevice_unregister_net_notifiers(nb, net);
1854
1855 unlock:
1856         rtnl_unlock();
1857         up_write(&pernet_ops_rwsem);
1858         return err;
1859 }
1860 EXPORT_SYMBOL(unregister_netdevice_notifier);
1861
1862 static int __register_netdevice_notifier_net(struct net *net,
1863                                              struct notifier_block *nb,
1864                                              bool ignore_call_fail)
1865 {
1866         int err;
1867
1868         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1869         if (err)
1870                 return err;
1871         if (dev_boot_phase)
1872                 return 0;
1873
1874         err = call_netdevice_register_net_notifiers(nb, net);
1875         if (err && !ignore_call_fail)
1876                 goto chain_unregister;
1877
1878         return 0;
1879
1880 chain_unregister:
1881         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1882         return err;
1883 }
1884
1885 static int __unregister_netdevice_notifier_net(struct net *net,
1886                                                struct notifier_block *nb)
1887 {
1888         int err;
1889
1890         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1891         if (err)
1892                 return err;
1893
1894         call_netdevice_unregister_net_notifiers(nb, net);
1895         return 0;
1896 }
1897
1898 /**
1899  * register_netdevice_notifier_net - register a per-netns network notifier block
1900  * @net: network namespace
1901  * @nb: notifier
1902  *
1903  * Register a notifier to be called when network device events occur.
1904  * The notifier passed is linked into the kernel structures and must
1905  * not be reused until it has been unregistered. A negative errno code
1906  * is returned on a failure.
1907  *
1908  * When registered all registration and up events are replayed
1909  * to the new notifier to allow device to have a race free
1910  * view of the network device list.
1911  */
1912
1913 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1914 {
1915         int err;
1916
1917         rtnl_lock();
1918         err = __register_netdevice_notifier_net(net, nb, false);
1919         rtnl_unlock();
1920         return err;
1921 }
1922 EXPORT_SYMBOL(register_netdevice_notifier_net);
1923
1924 /**
1925  * unregister_netdevice_notifier_net - unregister a per-netns
1926  *                                     network notifier block
1927  * @net: network namespace
1928  * @nb: notifier
1929  *
1930  * Unregister a notifier previously registered by
1931  * register_netdevice_notifier(). The notifier is unlinked into the
1932  * kernel structures and may then be reused. A negative errno code
1933  * is returned on a failure.
1934  *
1935  * After unregistering unregister and down device events are synthesized
1936  * for all devices on the device list to the removed notifier to remove
1937  * the need for special case cleanup code.
1938  */
1939
1940 int unregister_netdevice_notifier_net(struct net *net,
1941                                       struct notifier_block *nb)
1942 {
1943         int err;
1944
1945         rtnl_lock();
1946         err = __unregister_netdevice_notifier_net(net, nb);
1947         rtnl_unlock();
1948         return err;
1949 }
1950 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1951
1952 int register_netdevice_notifier_dev_net(struct net_device *dev,
1953                                         struct notifier_block *nb,
1954                                         struct netdev_net_notifier *nn)
1955 {
1956         int err;
1957
1958         rtnl_lock();
1959         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1960         if (!err) {
1961                 nn->nb = nb;
1962                 list_add(&nn->list, &dev->net_notifier_list);
1963         }
1964         rtnl_unlock();
1965         return err;
1966 }
1967 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1968
1969 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1970                                           struct notifier_block *nb,
1971                                           struct netdev_net_notifier *nn)
1972 {
1973         int err;
1974
1975         rtnl_lock();
1976         list_del(&nn->list);
1977         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1978         rtnl_unlock();
1979         return err;
1980 }
1981 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1982
1983 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1984                                              struct net *net)
1985 {
1986         struct netdev_net_notifier *nn;
1987
1988         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1989                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1990                 __register_netdevice_notifier_net(net, nn->nb, true);
1991         }
1992 }
1993
1994 /**
1995  *      call_netdevice_notifiers_info - call all network notifier blocks
1996  *      @val: value passed unmodified to notifier function
1997  *      @info: notifier information data
1998  *
1999  *      Call all network notifier blocks.  Parameters and return value
2000  *      are as for raw_notifier_call_chain().
2001  */
2002
2003 static int call_netdevice_notifiers_info(unsigned long val,
2004                                          struct netdev_notifier_info *info)
2005 {
2006         struct net *net = dev_net(info->dev);
2007         int ret;
2008
2009         ASSERT_RTNL();
2010
2011         /* Run per-netns notifier block chain first, then run the global one.
2012          * Hopefully, one day, the global one is going to be removed after
2013          * all notifier block registrators get converted to be per-netns.
2014          */
2015         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2016         if (ret & NOTIFY_STOP_MASK)
2017                 return ret;
2018         return raw_notifier_call_chain(&netdev_chain, val, info);
2019 }
2020
2021 static int call_netdevice_notifiers_extack(unsigned long val,
2022                                            struct net_device *dev,
2023                                            struct netlink_ext_ack *extack)
2024 {
2025         struct netdev_notifier_info info = {
2026                 .dev = dev,
2027                 .extack = extack,
2028         };
2029
2030         return call_netdevice_notifiers_info(val, &info);
2031 }
2032
2033 /**
2034  *      call_netdevice_notifiers - call all network notifier blocks
2035  *      @val: value passed unmodified to notifier function
2036  *      @dev: net_device pointer passed unmodified to notifier function
2037  *
2038  *      Call all network notifier blocks.  Parameters and return value
2039  *      are as for raw_notifier_call_chain().
2040  */
2041
2042 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2043 {
2044         return call_netdevice_notifiers_extack(val, dev, NULL);
2045 }
2046 EXPORT_SYMBOL(call_netdevice_notifiers);
2047
2048 /**
2049  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2050  *      @val: value passed unmodified to notifier function
2051  *      @dev: net_device pointer passed unmodified to notifier function
2052  *      @arg: additional u32 argument passed to the notifier function
2053  *
2054  *      Call all network notifier blocks.  Parameters and return value
2055  *      are as for raw_notifier_call_chain().
2056  */
2057 static int call_netdevice_notifiers_mtu(unsigned long val,
2058                                         struct net_device *dev, u32 arg)
2059 {
2060         struct netdev_notifier_info_ext info = {
2061                 .info.dev = dev,
2062                 .ext.mtu = arg,
2063         };
2064
2065         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2066
2067         return call_netdevice_notifiers_info(val, &info.info);
2068 }
2069
2070 #ifdef CONFIG_NET_INGRESS
2071 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2072
2073 void net_inc_ingress_queue(void)
2074 {
2075         static_branch_inc(&ingress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2078
2079 void net_dec_ingress_queue(void)
2080 {
2081         static_branch_dec(&ingress_needed_key);
2082 }
2083 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2084 #endif
2085
2086 #ifdef CONFIG_NET_EGRESS
2087 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2088
2089 void net_inc_egress_queue(void)
2090 {
2091         static_branch_inc(&egress_needed_key);
2092 }
2093 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2094
2095 void net_dec_egress_queue(void)
2096 {
2097         static_branch_dec(&egress_needed_key);
2098 }
2099 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2100 #endif
2101
2102 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2103 #ifdef CONFIG_JUMP_LABEL
2104 static atomic_t netstamp_needed_deferred;
2105 static atomic_t netstamp_wanted;
2106 static void netstamp_clear(struct work_struct *work)
2107 {
2108         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2109         int wanted;
2110
2111         wanted = atomic_add_return(deferred, &netstamp_wanted);
2112         if (wanted > 0)
2113                 static_branch_enable(&netstamp_needed_key);
2114         else
2115                 static_branch_disable(&netstamp_needed_key);
2116 }
2117 static DECLARE_WORK(netstamp_work, netstamp_clear);
2118 #endif
2119
2120 void net_enable_timestamp(void)
2121 {
2122 #ifdef CONFIG_JUMP_LABEL
2123         int wanted;
2124
2125         while (1) {
2126                 wanted = atomic_read(&netstamp_wanted);
2127                 if (wanted <= 0)
2128                         break;
2129                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2130                         return;
2131         }
2132         atomic_inc(&netstamp_needed_deferred);
2133         schedule_work(&netstamp_work);
2134 #else
2135         static_branch_inc(&netstamp_needed_key);
2136 #endif
2137 }
2138 EXPORT_SYMBOL(net_enable_timestamp);
2139
2140 void net_disable_timestamp(void)
2141 {
2142 #ifdef CONFIG_JUMP_LABEL
2143         int wanted;
2144
2145         while (1) {
2146                 wanted = atomic_read(&netstamp_wanted);
2147                 if (wanted <= 1)
2148                         break;
2149                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2150                         return;
2151         }
2152         atomic_dec(&netstamp_needed_deferred);
2153         schedule_work(&netstamp_work);
2154 #else
2155         static_branch_dec(&netstamp_needed_key);
2156 #endif
2157 }
2158 EXPORT_SYMBOL(net_disable_timestamp);
2159
2160 static inline void net_timestamp_set(struct sk_buff *skb)
2161 {
2162         skb->tstamp = 0;
2163         if (static_branch_unlikely(&netstamp_needed_key))
2164                 __net_timestamp(skb);
2165 }
2166
2167 #define net_timestamp_check(COND, SKB)                          \
2168         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2169                 if ((COND) && !(SKB)->tstamp)                   \
2170                         __net_timestamp(SKB);                   \
2171         }                                                       \
2172
2173 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2174 {
2175         return __is_skb_forwardable(dev, skb, true);
2176 }
2177 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2178
2179 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2180                               bool check_mtu)
2181 {
2182         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2183
2184         if (likely(!ret)) {
2185                 skb->protocol = eth_type_trans(skb, dev);
2186                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2187         }
2188
2189         return ret;
2190 }
2191
2192 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2193 {
2194         return __dev_forward_skb2(dev, skb, true);
2195 }
2196 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2197
2198 /**
2199  * dev_forward_skb - loopback an skb to another netif
2200  *
2201  * @dev: destination network device
2202  * @skb: buffer to forward
2203  *
2204  * return values:
2205  *      NET_RX_SUCCESS  (no congestion)
2206  *      NET_RX_DROP     (packet was dropped, but freed)
2207  *
2208  * dev_forward_skb can be used for injecting an skb from the
2209  * start_xmit function of one device into the receive queue
2210  * of another device.
2211  *
2212  * The receiving device may be in another namespace, so
2213  * we have to clear all information in the skb that could
2214  * impact namespace isolation.
2215  */
2216 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2217 {
2218         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2219 }
2220 EXPORT_SYMBOL_GPL(dev_forward_skb);
2221
2222 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2223 {
2224         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2225 }
2226
2227 static inline int deliver_skb(struct sk_buff *skb,
2228                               struct packet_type *pt_prev,
2229                               struct net_device *orig_dev)
2230 {
2231         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2232                 return -ENOMEM;
2233         refcount_inc(&skb->users);
2234         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2235 }
2236
2237 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2238                                           struct packet_type **pt,
2239                                           struct net_device *orig_dev,
2240                                           __be16 type,
2241                                           struct list_head *ptype_list)
2242 {
2243         struct packet_type *ptype, *pt_prev = *pt;
2244
2245         list_for_each_entry_rcu(ptype, ptype_list, list) {
2246                 if (ptype->type != type)
2247                         continue;
2248                 if (pt_prev)
2249                         deliver_skb(skb, pt_prev, orig_dev);
2250                 pt_prev = ptype;
2251         }
2252         *pt = pt_prev;
2253 }
2254
2255 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2256 {
2257         if (!ptype->af_packet_priv || !skb->sk)
2258                 return false;
2259
2260         if (ptype->id_match)
2261                 return ptype->id_match(ptype, skb->sk);
2262         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2263                 return true;
2264
2265         return false;
2266 }
2267
2268 /**
2269  * dev_nit_active - return true if any network interface taps are in use
2270  *
2271  * @dev: network device to check for the presence of taps
2272  */
2273 bool dev_nit_active(struct net_device *dev)
2274 {
2275         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2276 }
2277 EXPORT_SYMBOL_GPL(dev_nit_active);
2278
2279 /*
2280  *      Support routine. Sends outgoing frames to any network
2281  *      taps currently in use.
2282  */
2283
2284 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2285 {
2286         struct packet_type *ptype;
2287         struct sk_buff *skb2 = NULL;
2288         struct packet_type *pt_prev = NULL;
2289         struct list_head *ptype_list = &ptype_all;
2290
2291         rcu_read_lock();
2292 again:
2293         list_for_each_entry_rcu(ptype, ptype_list, list) {
2294                 if (ptype->ignore_outgoing)
2295                         continue;
2296
2297                 /* Never send packets back to the socket
2298                  * they originated from - MvS (miquels@drinkel.ow.org)
2299                  */
2300                 if (skb_loop_sk(ptype, skb))
2301                         continue;
2302
2303                 if (pt_prev) {
2304                         deliver_skb(skb2, pt_prev, skb->dev);
2305                         pt_prev = ptype;
2306                         continue;
2307                 }
2308
2309                 /* need to clone skb, done only once */
2310                 skb2 = skb_clone(skb, GFP_ATOMIC);
2311                 if (!skb2)
2312                         goto out_unlock;
2313
2314                 net_timestamp_set(skb2);
2315
2316                 /* skb->nh should be correctly
2317                  * set by sender, so that the second statement is
2318                  * just protection against buggy protocols.
2319                  */
2320                 skb_reset_mac_header(skb2);
2321
2322                 if (skb_network_header(skb2) < skb2->data ||
2323                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2324                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2325                                              ntohs(skb2->protocol),
2326                                              dev->name);
2327                         skb_reset_network_header(skb2);
2328                 }
2329
2330                 skb2->transport_header = skb2->network_header;
2331                 skb2->pkt_type = PACKET_OUTGOING;
2332                 pt_prev = ptype;
2333         }
2334
2335         if (ptype_list == &ptype_all) {
2336                 ptype_list = &dev->ptype_all;
2337                 goto again;
2338         }
2339 out_unlock:
2340         if (pt_prev) {
2341                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2342                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2343                 else
2344                         kfree_skb(skb2);
2345         }
2346         rcu_read_unlock();
2347 }
2348 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2349
2350 /**
2351  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2352  * @dev: Network device
2353  * @txq: number of queues available
2354  *
2355  * If real_num_tx_queues is changed the tc mappings may no longer be
2356  * valid. To resolve this verify the tc mapping remains valid and if
2357  * not NULL the mapping. With no priorities mapping to this
2358  * offset/count pair it will no longer be used. In the worst case TC0
2359  * is invalid nothing can be done so disable priority mappings. If is
2360  * expected that drivers will fix this mapping if they can before
2361  * calling netif_set_real_num_tx_queues.
2362  */
2363 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2364 {
2365         int i;
2366         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2367
2368         /* If TC0 is invalidated disable TC mapping */
2369         if (tc->offset + tc->count > txq) {
2370                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2371                 dev->num_tc = 0;
2372                 return;
2373         }
2374
2375         /* Invalidated prio to tc mappings set to TC0 */
2376         for (i = 1; i < TC_BITMASK + 1; i++) {
2377                 int q = netdev_get_prio_tc_map(dev, i);
2378
2379                 tc = &dev->tc_to_txq[q];
2380                 if (tc->offset + tc->count > txq) {
2381                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2382                                 i, q);
2383                         netdev_set_prio_tc_map(dev, i, 0);
2384                 }
2385         }
2386 }
2387
2388 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2389 {
2390         if (dev->num_tc) {
2391                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2392                 int i;
2393
2394                 /* walk through the TCs and see if it falls into any of them */
2395                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2396                         if ((txq - tc->offset) < tc->count)
2397                                 return i;
2398                 }
2399
2400                 /* didn't find it, just return -1 to indicate no match */
2401                 return -1;
2402         }
2403
2404         return 0;
2405 }
2406 EXPORT_SYMBOL(netdev_txq_to_tc);
2407
2408 #ifdef CONFIG_XPS
2409 static struct static_key xps_needed __read_mostly;
2410 static struct static_key xps_rxqs_needed __read_mostly;
2411 static DEFINE_MUTEX(xps_map_mutex);
2412 #define xmap_dereference(P)             \
2413         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2414
2415 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2416                              struct xps_dev_maps *old_maps, int tci, u16 index)
2417 {
2418         struct xps_map *map = NULL;
2419         int pos;
2420
2421         if (dev_maps)
2422                 map = xmap_dereference(dev_maps->attr_map[tci]);
2423         if (!map)
2424                 return false;
2425
2426         for (pos = map->len; pos--;) {
2427                 if (map->queues[pos] != index)
2428                         continue;
2429
2430                 if (map->len > 1) {
2431                         map->queues[pos] = map->queues[--map->len];
2432                         break;
2433                 }
2434
2435                 if (old_maps)
2436                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2437                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2438                 kfree_rcu(map, rcu);
2439                 return false;
2440         }
2441
2442         return true;
2443 }
2444
2445 static bool remove_xps_queue_cpu(struct net_device *dev,
2446                                  struct xps_dev_maps *dev_maps,
2447                                  int cpu, u16 offset, u16 count)
2448 {
2449         int num_tc = dev_maps->num_tc;
2450         bool active = false;
2451         int tci;
2452
2453         for (tci = cpu * num_tc; num_tc--; tci++) {
2454                 int i, j;
2455
2456                 for (i = count, j = offset; i--; j++) {
2457                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2458                                 break;
2459                 }
2460
2461                 active |= i < 0;
2462         }
2463
2464         return active;
2465 }
2466
2467 static void reset_xps_maps(struct net_device *dev,
2468                            struct xps_dev_maps *dev_maps,
2469                            enum xps_map_type type)
2470 {
2471         static_key_slow_dec_cpuslocked(&xps_needed);
2472         if (type == XPS_RXQS)
2473                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2474
2475         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2476
2477         kfree_rcu(dev_maps, rcu);
2478 }
2479
2480 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2481                            u16 offset, u16 count)
2482 {
2483         struct xps_dev_maps *dev_maps;
2484         bool active = false;
2485         int i, j;
2486
2487         dev_maps = xmap_dereference(dev->xps_maps[type]);
2488         if (!dev_maps)
2489                 return;
2490
2491         for (j = 0; j < dev_maps->nr_ids; j++)
2492                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2493         if (!active)
2494                 reset_xps_maps(dev, dev_maps, type);
2495
2496         if (type == XPS_CPUS) {
2497                 for (i = offset + (count - 1); count--; i--)
2498                         netdev_queue_numa_node_write(
2499                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2500         }
2501 }
2502
2503 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2504                                    u16 count)
2505 {
2506         if (!static_key_false(&xps_needed))
2507                 return;
2508
2509         cpus_read_lock();
2510         mutex_lock(&xps_map_mutex);
2511
2512         if (static_key_false(&xps_rxqs_needed))
2513                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2514
2515         clean_xps_maps(dev, XPS_CPUS, offset, count);
2516
2517         mutex_unlock(&xps_map_mutex);
2518         cpus_read_unlock();
2519 }
2520
2521 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2522 {
2523         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2524 }
2525
2526 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2527                                       u16 index, bool is_rxqs_map)
2528 {
2529         struct xps_map *new_map;
2530         int alloc_len = XPS_MIN_MAP_ALLOC;
2531         int i, pos;
2532
2533         for (pos = 0; map && pos < map->len; pos++) {
2534                 if (map->queues[pos] != index)
2535                         continue;
2536                 return map;
2537         }
2538
2539         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2540         if (map) {
2541                 if (pos < map->alloc_len)
2542                         return map;
2543
2544                 alloc_len = map->alloc_len * 2;
2545         }
2546
2547         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2548          *  map
2549          */
2550         if (is_rxqs_map)
2551                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2552         else
2553                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2554                                        cpu_to_node(attr_index));
2555         if (!new_map)
2556                 return NULL;
2557
2558         for (i = 0; i < pos; i++)
2559                 new_map->queues[i] = map->queues[i];
2560         new_map->alloc_len = alloc_len;
2561         new_map->len = pos;
2562
2563         return new_map;
2564 }
2565
2566 /* Copy xps maps at a given index */
2567 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2568                               struct xps_dev_maps *new_dev_maps, int index,
2569                               int tc, bool skip_tc)
2570 {
2571         int i, tci = index * dev_maps->num_tc;
2572         struct xps_map *map;
2573
2574         /* copy maps belonging to foreign traffic classes */
2575         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2576                 if (i == tc && skip_tc)
2577                         continue;
2578
2579                 /* fill in the new device map from the old device map */
2580                 map = xmap_dereference(dev_maps->attr_map[tci]);
2581                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2582         }
2583 }
2584
2585 /* Must be called under cpus_read_lock */
2586 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2587                           u16 index, enum xps_map_type type)
2588 {
2589         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2590         const unsigned long *online_mask = NULL;
2591         bool active = false, copy = false;
2592         int i, j, tci, numa_node_id = -2;
2593         int maps_sz, num_tc = 1, tc = 0;
2594         struct xps_map *map, *new_map;
2595         unsigned int nr_ids;
2596
2597         WARN_ON_ONCE(index >= dev->num_tx_queues);
2598
2599         if (dev->num_tc) {
2600                 /* Do not allow XPS on subordinate device directly */
2601                 num_tc = dev->num_tc;
2602                 if (num_tc < 0)
2603                         return -EINVAL;
2604
2605                 /* If queue belongs to subordinate dev use its map */
2606                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2607
2608                 tc = netdev_txq_to_tc(dev, index);
2609                 if (tc < 0)
2610                         return -EINVAL;
2611         }
2612
2613         mutex_lock(&xps_map_mutex);
2614
2615         dev_maps = xmap_dereference(dev->xps_maps[type]);
2616         if (type == XPS_RXQS) {
2617                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2618                 nr_ids = dev->num_rx_queues;
2619         } else {
2620                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2621                 if (num_possible_cpus() > 1)
2622                         online_mask = cpumask_bits(cpu_online_mask);
2623                 nr_ids = nr_cpu_ids;
2624         }
2625
2626         if (maps_sz < L1_CACHE_BYTES)
2627                 maps_sz = L1_CACHE_BYTES;
2628
2629         /* The old dev_maps could be larger or smaller than the one we're
2630          * setting up now, as dev->num_tc or nr_ids could have been updated in
2631          * between. We could try to be smart, but let's be safe instead and only
2632          * copy foreign traffic classes if the two map sizes match.
2633          */
2634         if (dev_maps &&
2635             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2636                 copy = true;
2637
2638         /* allocate memory for queue storage */
2639         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2640              j < nr_ids;) {
2641                 if (!new_dev_maps) {
2642                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2643                         if (!new_dev_maps) {
2644                                 mutex_unlock(&xps_map_mutex);
2645                                 return -ENOMEM;
2646                         }
2647
2648                         new_dev_maps->nr_ids = nr_ids;
2649                         new_dev_maps->num_tc = num_tc;
2650                 }
2651
2652                 tci = j * num_tc + tc;
2653                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2654
2655                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2656                 if (!map)
2657                         goto error;
2658
2659                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2660         }
2661
2662         if (!new_dev_maps)
2663                 goto out_no_new_maps;
2664
2665         if (!dev_maps) {
2666                 /* Increment static keys at most once per type */
2667                 static_key_slow_inc_cpuslocked(&xps_needed);
2668                 if (type == XPS_RXQS)
2669                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2670         }
2671
2672         for (j = 0; j < nr_ids; j++) {
2673                 bool skip_tc = false;
2674
2675                 tci = j * num_tc + tc;
2676                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2677                     netif_attr_test_online(j, online_mask, nr_ids)) {
2678                         /* add tx-queue to CPU/rx-queue maps */
2679                         int pos = 0;
2680
2681                         skip_tc = true;
2682
2683                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2684                         while ((pos < map->len) && (map->queues[pos] != index))
2685                                 pos++;
2686
2687                         if (pos == map->len)
2688                                 map->queues[map->len++] = index;
2689 #ifdef CONFIG_NUMA
2690                         if (type == XPS_CPUS) {
2691                                 if (numa_node_id == -2)
2692                                         numa_node_id = cpu_to_node(j);
2693                                 else if (numa_node_id != cpu_to_node(j))
2694                                         numa_node_id = -1;
2695                         }
2696 #endif
2697                 }
2698
2699                 if (copy)
2700                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2701                                           skip_tc);
2702         }
2703
2704         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2705
2706         /* Cleanup old maps */
2707         if (!dev_maps)
2708                 goto out_no_old_maps;
2709
2710         for (j = 0; j < dev_maps->nr_ids; j++) {
2711                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2712                         map = xmap_dereference(dev_maps->attr_map[tci]);
2713                         if (!map)
2714                                 continue;
2715
2716                         if (copy) {
2717                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2718                                 if (map == new_map)
2719                                         continue;
2720                         }
2721
2722                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2723                         kfree_rcu(map, rcu);
2724                 }
2725         }
2726
2727         old_dev_maps = dev_maps;
2728
2729 out_no_old_maps:
2730         dev_maps = new_dev_maps;
2731         active = true;
2732
2733 out_no_new_maps:
2734         if (type == XPS_CPUS)
2735                 /* update Tx queue numa node */
2736                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2737                                              (numa_node_id >= 0) ?
2738                                              numa_node_id : NUMA_NO_NODE);
2739
2740         if (!dev_maps)
2741                 goto out_no_maps;
2742
2743         /* removes tx-queue from unused CPUs/rx-queues */
2744         for (j = 0; j < dev_maps->nr_ids; j++) {
2745                 tci = j * dev_maps->num_tc;
2746
2747                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2748                         if (i == tc &&
2749                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2750                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2751                                 continue;
2752
2753                         active |= remove_xps_queue(dev_maps,
2754                                                    copy ? old_dev_maps : NULL,
2755                                                    tci, index);
2756                 }
2757         }
2758
2759         if (old_dev_maps)
2760                 kfree_rcu(old_dev_maps, rcu);
2761
2762         /* free map if not active */
2763         if (!active)
2764                 reset_xps_maps(dev, dev_maps, type);
2765
2766 out_no_maps:
2767         mutex_unlock(&xps_map_mutex);
2768
2769         return 0;
2770 error:
2771         /* remove any maps that we added */
2772         for (j = 0; j < nr_ids; j++) {
2773                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2774                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2775                         map = copy ?
2776                               xmap_dereference(dev_maps->attr_map[tci]) :
2777                               NULL;
2778                         if (new_map && new_map != map)
2779                                 kfree(new_map);
2780                 }
2781         }
2782
2783         mutex_unlock(&xps_map_mutex);
2784
2785         kfree(new_dev_maps);
2786         return -ENOMEM;
2787 }
2788 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2789
2790 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2791                         u16 index)
2792 {
2793         int ret;
2794
2795         cpus_read_lock();
2796         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2797         cpus_read_unlock();
2798
2799         return ret;
2800 }
2801 EXPORT_SYMBOL(netif_set_xps_queue);
2802
2803 #endif
2804 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2805 {
2806         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2807
2808         /* Unbind any subordinate channels */
2809         while (txq-- != &dev->_tx[0]) {
2810                 if (txq->sb_dev)
2811                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2812         }
2813 }
2814
2815 void netdev_reset_tc(struct net_device *dev)
2816 {
2817 #ifdef CONFIG_XPS
2818         netif_reset_xps_queues_gt(dev, 0);
2819 #endif
2820         netdev_unbind_all_sb_channels(dev);
2821
2822         /* Reset TC configuration of device */
2823         dev->num_tc = 0;
2824         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2825         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2826 }
2827 EXPORT_SYMBOL(netdev_reset_tc);
2828
2829 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2830 {
2831         if (tc >= dev->num_tc)
2832                 return -EINVAL;
2833
2834 #ifdef CONFIG_XPS
2835         netif_reset_xps_queues(dev, offset, count);
2836 #endif
2837         dev->tc_to_txq[tc].count = count;
2838         dev->tc_to_txq[tc].offset = offset;
2839         return 0;
2840 }
2841 EXPORT_SYMBOL(netdev_set_tc_queue);
2842
2843 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2844 {
2845         if (num_tc > TC_MAX_QUEUE)
2846                 return -EINVAL;
2847
2848 #ifdef CONFIG_XPS
2849         netif_reset_xps_queues_gt(dev, 0);
2850 #endif
2851         netdev_unbind_all_sb_channels(dev);
2852
2853         dev->num_tc = num_tc;
2854         return 0;
2855 }
2856 EXPORT_SYMBOL(netdev_set_num_tc);
2857
2858 void netdev_unbind_sb_channel(struct net_device *dev,
2859                               struct net_device *sb_dev)
2860 {
2861         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2862
2863 #ifdef CONFIG_XPS
2864         netif_reset_xps_queues_gt(sb_dev, 0);
2865 #endif
2866         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2867         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2868
2869         while (txq-- != &dev->_tx[0]) {
2870                 if (txq->sb_dev == sb_dev)
2871                         txq->sb_dev = NULL;
2872         }
2873 }
2874 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2875
2876 int netdev_bind_sb_channel_queue(struct net_device *dev,
2877                                  struct net_device *sb_dev,
2878                                  u8 tc, u16 count, u16 offset)
2879 {
2880         /* Make certain the sb_dev and dev are already configured */
2881         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2882                 return -EINVAL;
2883
2884         /* We cannot hand out queues we don't have */
2885         if ((offset + count) > dev->real_num_tx_queues)
2886                 return -EINVAL;
2887
2888         /* Record the mapping */
2889         sb_dev->tc_to_txq[tc].count = count;
2890         sb_dev->tc_to_txq[tc].offset = offset;
2891
2892         /* Provide a way for Tx queue to find the tc_to_txq map or
2893          * XPS map for itself.
2894          */
2895         while (count--)
2896                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2897
2898         return 0;
2899 }
2900 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2901
2902 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2903 {
2904         /* Do not use a multiqueue device to represent a subordinate channel */
2905         if (netif_is_multiqueue(dev))
2906                 return -ENODEV;
2907
2908         /* We allow channels 1 - 32767 to be used for subordinate channels.
2909          * Channel 0 is meant to be "native" mode and used only to represent
2910          * the main root device. We allow writing 0 to reset the device back
2911          * to normal mode after being used as a subordinate channel.
2912          */
2913         if (channel > S16_MAX)
2914                 return -EINVAL;
2915
2916         dev->num_tc = -channel;
2917
2918         return 0;
2919 }
2920 EXPORT_SYMBOL(netdev_set_sb_channel);
2921
2922 /*
2923  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2924  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2925  */
2926 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2927 {
2928         bool disabling;
2929         int rc;
2930
2931         disabling = txq < dev->real_num_tx_queues;
2932
2933         if (txq < 1 || txq > dev->num_tx_queues)
2934                 return -EINVAL;
2935
2936         if (dev->reg_state == NETREG_REGISTERED ||
2937             dev->reg_state == NETREG_UNREGISTERING) {
2938                 ASSERT_RTNL();
2939
2940                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2941                                                   txq);
2942                 if (rc)
2943                         return rc;
2944
2945                 if (dev->num_tc)
2946                         netif_setup_tc(dev, txq);
2947
2948                 dev_qdisc_change_real_num_tx(dev, txq);
2949
2950                 dev->real_num_tx_queues = txq;
2951
2952                 if (disabling) {
2953                         synchronize_net();
2954                         qdisc_reset_all_tx_gt(dev, txq);
2955 #ifdef CONFIG_XPS
2956                         netif_reset_xps_queues_gt(dev, txq);
2957 #endif
2958                 }
2959         } else {
2960                 dev->real_num_tx_queues = txq;
2961         }
2962
2963         return 0;
2964 }
2965 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2966
2967 #ifdef CONFIG_SYSFS
2968 /**
2969  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2970  *      @dev: Network device
2971  *      @rxq: Actual number of RX queues
2972  *
2973  *      This must be called either with the rtnl_lock held or before
2974  *      registration of the net device.  Returns 0 on success, or a
2975  *      negative error code.  If called before registration, it always
2976  *      succeeds.
2977  */
2978 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2979 {
2980         int rc;
2981
2982         if (rxq < 1 || rxq > dev->num_rx_queues)
2983                 return -EINVAL;
2984
2985         if (dev->reg_state == NETREG_REGISTERED) {
2986                 ASSERT_RTNL();
2987
2988                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2989                                                   rxq);
2990                 if (rc)
2991                         return rc;
2992         }
2993
2994         dev->real_num_rx_queues = rxq;
2995         return 0;
2996 }
2997 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2998 #endif
2999
3000 /**
3001  *      netif_set_real_num_queues - set actual number of RX and TX queues used
3002  *      @dev: Network device
3003  *      @txq: Actual number of TX queues
3004  *      @rxq: Actual number of RX queues
3005  *
3006  *      Set the real number of both TX and RX queues.
3007  *      Does nothing if the number of queues is already correct.
3008  */
3009 int netif_set_real_num_queues(struct net_device *dev,
3010                               unsigned int txq, unsigned int rxq)
3011 {
3012         unsigned int old_rxq = dev->real_num_rx_queues;
3013         int err;
3014
3015         if (txq < 1 || txq > dev->num_tx_queues ||
3016             rxq < 1 || rxq > dev->num_rx_queues)
3017                 return -EINVAL;
3018
3019         /* Start from increases, so the error path only does decreases -
3020          * decreases can't fail.
3021          */
3022         if (rxq > dev->real_num_rx_queues) {
3023                 err = netif_set_real_num_rx_queues(dev, rxq);
3024                 if (err)
3025                         return err;
3026         }
3027         if (txq > dev->real_num_tx_queues) {
3028                 err = netif_set_real_num_tx_queues(dev, txq);
3029                 if (err)
3030                         goto undo_rx;
3031         }
3032         if (rxq < dev->real_num_rx_queues)
3033                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3034         if (txq < dev->real_num_tx_queues)
3035                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3036
3037         return 0;
3038 undo_rx:
3039         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3040         return err;
3041 }
3042 EXPORT_SYMBOL(netif_set_real_num_queues);
3043
3044 /**
3045  * netif_get_num_default_rss_queues - default number of RSS queues
3046  *
3047  * This routine should set an upper limit on the number of RSS queues
3048  * used by default by multiqueue devices.
3049  */
3050 int netif_get_num_default_rss_queues(void)
3051 {
3052         return is_kdump_kernel() ?
3053                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3054 }
3055 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3056
3057 static void __netif_reschedule(struct Qdisc *q)
3058 {
3059         struct softnet_data *sd;
3060         unsigned long flags;
3061
3062         local_irq_save(flags);
3063         sd = this_cpu_ptr(&softnet_data);
3064         q->next_sched = NULL;
3065         *sd->output_queue_tailp = q;
3066         sd->output_queue_tailp = &q->next_sched;
3067         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3068         local_irq_restore(flags);
3069 }
3070
3071 void __netif_schedule(struct Qdisc *q)
3072 {
3073         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3074                 __netif_reschedule(q);
3075 }
3076 EXPORT_SYMBOL(__netif_schedule);
3077
3078 struct dev_kfree_skb_cb {
3079         enum skb_free_reason reason;
3080 };
3081
3082 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3083 {
3084         return (struct dev_kfree_skb_cb *)skb->cb;
3085 }
3086
3087 void netif_schedule_queue(struct netdev_queue *txq)
3088 {
3089         rcu_read_lock();
3090         if (!netif_xmit_stopped(txq)) {
3091                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3092
3093                 __netif_schedule(q);
3094         }
3095         rcu_read_unlock();
3096 }
3097 EXPORT_SYMBOL(netif_schedule_queue);
3098
3099 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3100 {
3101         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3102                 struct Qdisc *q;
3103
3104                 rcu_read_lock();
3105                 q = rcu_dereference(dev_queue->qdisc);
3106                 __netif_schedule(q);
3107                 rcu_read_unlock();
3108         }
3109 }
3110 EXPORT_SYMBOL(netif_tx_wake_queue);
3111
3112 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3113 {
3114         unsigned long flags;
3115
3116         if (unlikely(!skb))
3117                 return;
3118
3119         if (likely(refcount_read(&skb->users) == 1)) {
3120                 smp_rmb();
3121                 refcount_set(&skb->users, 0);
3122         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3123                 return;
3124         }
3125         get_kfree_skb_cb(skb)->reason = reason;
3126         local_irq_save(flags);
3127         skb->next = __this_cpu_read(softnet_data.completion_queue);
3128         __this_cpu_write(softnet_data.completion_queue, skb);
3129         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3130         local_irq_restore(flags);
3131 }
3132 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3133
3134 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3135 {
3136         if (in_hardirq() || irqs_disabled())
3137                 __dev_kfree_skb_irq(skb, reason);
3138         else if (unlikely(reason == SKB_REASON_DROPPED))
3139                 kfree_skb(skb);
3140         else
3141                 consume_skb(skb);
3142 }
3143 EXPORT_SYMBOL(__dev_kfree_skb_any);
3144
3145
3146 /**
3147  * netif_device_detach - mark device as removed
3148  * @dev: network device
3149  *
3150  * Mark device as removed from system and therefore no longer available.
3151  */
3152 void netif_device_detach(struct net_device *dev)
3153 {
3154         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3155             netif_running(dev)) {
3156                 netif_tx_stop_all_queues(dev);
3157         }
3158 }
3159 EXPORT_SYMBOL(netif_device_detach);
3160
3161 /**
3162  * netif_device_attach - mark device as attached
3163  * @dev: network device
3164  *
3165  * Mark device as attached from system and restart if needed.
3166  */
3167 void netif_device_attach(struct net_device *dev)
3168 {
3169         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3170             netif_running(dev)) {
3171                 netif_tx_wake_all_queues(dev);
3172                 __netdev_watchdog_up(dev);
3173         }
3174 }
3175 EXPORT_SYMBOL(netif_device_attach);
3176
3177 /*
3178  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3179  * to be used as a distribution range.
3180  */
3181 static u16 skb_tx_hash(const struct net_device *dev,
3182                        const struct net_device *sb_dev,
3183                        struct sk_buff *skb)
3184 {
3185         u32 hash;
3186         u16 qoffset = 0;
3187         u16 qcount = dev->real_num_tx_queues;
3188
3189         if (dev->num_tc) {
3190                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3191
3192                 qoffset = sb_dev->tc_to_txq[tc].offset;
3193                 qcount = sb_dev->tc_to_txq[tc].count;
3194                 if (unlikely(!qcount)) {
3195                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3196                                              sb_dev->name, qoffset, tc);
3197                         qoffset = 0;
3198                         qcount = dev->real_num_tx_queues;
3199                 }
3200         }
3201
3202         if (skb_rx_queue_recorded(skb)) {
3203                 hash = skb_get_rx_queue(skb);
3204                 if (hash >= qoffset)
3205                         hash -= qoffset;
3206                 while (unlikely(hash >= qcount))
3207                         hash -= qcount;
3208                 return hash + qoffset;
3209         }
3210
3211         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3212 }
3213
3214 static void skb_warn_bad_offload(const struct sk_buff *skb)
3215 {
3216         static const netdev_features_t null_features;
3217         struct net_device *dev = skb->dev;
3218         const char *name = "";
3219
3220         if (!net_ratelimit())
3221                 return;
3222
3223         if (dev) {
3224                 if (dev->dev.parent)
3225                         name = dev_driver_string(dev->dev.parent);
3226                 else
3227                         name = netdev_name(dev);
3228         }
3229         skb_dump(KERN_WARNING, skb, false);
3230         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3231              name, dev ? &dev->features : &null_features,
3232              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3233 }
3234
3235 /*
3236  * Invalidate hardware checksum when packet is to be mangled, and
3237  * complete checksum manually on outgoing path.
3238  */
3239 int skb_checksum_help(struct sk_buff *skb)
3240 {
3241         __wsum csum;
3242         int ret = 0, offset;
3243
3244         if (skb->ip_summed == CHECKSUM_COMPLETE)
3245                 goto out_set_summed;
3246
3247         if (unlikely(skb_is_gso(skb))) {
3248                 skb_warn_bad_offload(skb);
3249                 return -EINVAL;
3250         }
3251
3252         /* Before computing a checksum, we should make sure no frag could
3253          * be modified by an external entity : checksum could be wrong.
3254          */
3255         if (skb_has_shared_frag(skb)) {
3256                 ret = __skb_linearize(skb);
3257                 if (ret)
3258                         goto out;
3259         }
3260
3261         offset = skb_checksum_start_offset(skb);
3262         ret = -EINVAL;
3263         if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3264                 goto out;
3265
3266         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3267
3268         offset += skb->csum_offset;
3269         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3270                 goto out;
3271
3272         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3273         if (ret)
3274                 goto out;
3275
3276         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3277 out_set_summed:
3278         skb->ip_summed = CHECKSUM_NONE;
3279 out:
3280         return ret;
3281 }
3282 EXPORT_SYMBOL(skb_checksum_help);
3283
3284 int skb_crc32c_csum_help(struct sk_buff *skb)
3285 {
3286         __le32 crc32c_csum;
3287         int ret = 0, offset, start;
3288
3289         if (skb->ip_summed != CHECKSUM_PARTIAL)
3290                 goto out;
3291
3292         if (unlikely(skb_is_gso(skb)))
3293                 goto out;
3294
3295         /* Before computing a checksum, we should make sure no frag could
3296          * be modified by an external entity : checksum could be wrong.
3297          */
3298         if (unlikely(skb_has_shared_frag(skb))) {
3299                 ret = __skb_linearize(skb);
3300                 if (ret)
3301                         goto out;
3302         }
3303         start = skb_checksum_start_offset(skb);
3304         offset = start + offsetof(struct sctphdr, checksum);
3305         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3306                 ret = -EINVAL;
3307                 goto out;
3308         }
3309
3310         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3311         if (ret)
3312                 goto out;
3313
3314         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3315                                                   skb->len - start, ~(__u32)0,
3316                                                   crc32c_csum_stub));
3317         *(__le32 *)(skb->data + offset) = crc32c_csum;
3318         skb->ip_summed = CHECKSUM_NONE;
3319         skb->csum_not_inet = 0;
3320 out:
3321         return ret;
3322 }
3323
3324 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3325 {
3326         __be16 type = skb->protocol;
3327
3328         /* Tunnel gso handlers can set protocol to ethernet. */
3329         if (type == htons(ETH_P_TEB)) {
3330                 struct ethhdr *eth;
3331
3332                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3333                         return 0;
3334
3335                 eth = (struct ethhdr *)skb->data;
3336                 type = eth->h_proto;
3337         }
3338
3339         return vlan_get_protocol_and_depth(skb, type, depth);
3340 }
3341
3342 /**
3343  *      skb_mac_gso_segment - mac layer segmentation handler.
3344  *      @skb: buffer to segment
3345  *      @features: features for the output path (see dev->features)
3346  */
3347 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3348                                     netdev_features_t features)
3349 {
3350         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3351         struct packet_offload *ptype;
3352         int vlan_depth = skb->mac_len;
3353         __be16 type = skb_network_protocol(skb, &vlan_depth);
3354
3355         if (unlikely(!type))
3356                 return ERR_PTR(-EINVAL);
3357
3358         __skb_pull(skb, vlan_depth);
3359
3360         rcu_read_lock();
3361         list_for_each_entry_rcu(ptype, &offload_base, list) {
3362                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3363                         segs = ptype->callbacks.gso_segment(skb, features);
3364                         break;
3365                 }
3366         }
3367         rcu_read_unlock();
3368
3369         __skb_push(skb, skb->data - skb_mac_header(skb));
3370
3371         return segs;
3372 }
3373 EXPORT_SYMBOL(skb_mac_gso_segment);
3374
3375
3376 /* openvswitch calls this on rx path, so we need a different check.
3377  */
3378 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3379 {
3380         if (tx_path)
3381                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3382                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3383
3384         return skb->ip_summed == CHECKSUM_NONE;
3385 }
3386
3387 /**
3388  *      __skb_gso_segment - Perform segmentation on skb.
3389  *      @skb: buffer to segment
3390  *      @features: features for the output path (see dev->features)
3391  *      @tx_path: whether it is called in TX path
3392  *
3393  *      This function segments the given skb and returns a list of segments.
3394  *
3395  *      It may return NULL if the skb requires no segmentation.  This is
3396  *      only possible when GSO is used for verifying header integrity.
3397  *
3398  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3399  */
3400 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3401                                   netdev_features_t features, bool tx_path)
3402 {
3403         struct sk_buff *segs;
3404
3405         if (unlikely(skb_needs_check(skb, tx_path))) {
3406                 int err;
3407
3408                 /* We're going to init ->check field in TCP or UDP header */
3409                 err = skb_cow_head(skb, 0);
3410                 if (err < 0)
3411                         return ERR_PTR(err);
3412         }
3413
3414         /* Only report GSO partial support if it will enable us to
3415          * support segmentation on this frame without needing additional
3416          * work.
3417          */
3418         if (features & NETIF_F_GSO_PARTIAL) {
3419                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3420                 struct net_device *dev = skb->dev;
3421
3422                 partial_features |= dev->features & dev->gso_partial_features;
3423                 if (!skb_gso_ok(skb, features | partial_features))
3424                         features &= ~NETIF_F_GSO_PARTIAL;
3425         }
3426
3427         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3428                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3429
3430         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3431         SKB_GSO_CB(skb)->encap_level = 0;
3432
3433         skb_reset_mac_header(skb);
3434         skb_reset_mac_len(skb);
3435
3436         segs = skb_mac_gso_segment(skb, features);
3437
3438         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3439                 skb_warn_bad_offload(skb);
3440
3441         return segs;
3442 }
3443 EXPORT_SYMBOL(__skb_gso_segment);
3444
3445 /* Take action when hardware reception checksum errors are detected. */
3446 #ifdef CONFIG_BUG
3447 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3448 {
3449         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3450         skb_dump(KERN_ERR, skb, true);
3451         dump_stack();
3452 }
3453
3454 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3455 {
3456         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3457 }
3458 EXPORT_SYMBOL(netdev_rx_csum_fault);
3459 #endif
3460
3461 /* XXX: check that highmem exists at all on the given machine. */
3462 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3463 {
3464 #ifdef CONFIG_HIGHMEM
3465         int i;
3466
3467         if (!(dev->features & NETIF_F_HIGHDMA)) {
3468                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3469                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3470
3471                         if (PageHighMem(skb_frag_page(frag)))
3472                                 return 1;
3473                 }
3474         }
3475 #endif
3476         return 0;
3477 }
3478
3479 /* If MPLS offload request, verify we are testing hardware MPLS features
3480  * instead of standard features for the netdev.
3481  */
3482 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3483 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3484                                            netdev_features_t features,
3485                                            __be16 type)
3486 {
3487         if (eth_p_mpls(type))
3488                 features &= skb->dev->mpls_features;
3489
3490         return features;
3491 }
3492 #else
3493 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3494                                            netdev_features_t features,
3495                                            __be16 type)
3496 {
3497         return features;
3498 }
3499 #endif
3500
3501 static netdev_features_t harmonize_features(struct sk_buff *skb,
3502         netdev_features_t features)
3503 {
3504         __be16 type;
3505
3506         type = skb_network_protocol(skb, NULL);
3507         features = net_mpls_features(skb, features, type);
3508
3509         if (skb->ip_summed != CHECKSUM_NONE &&
3510             !can_checksum_protocol(features, type)) {
3511                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3512         }
3513         if (illegal_highdma(skb->dev, skb))
3514                 features &= ~NETIF_F_SG;
3515
3516         return features;
3517 }
3518
3519 netdev_features_t passthru_features_check(struct sk_buff *skb,
3520                                           struct net_device *dev,
3521                                           netdev_features_t features)
3522 {
3523         return features;
3524 }
3525 EXPORT_SYMBOL(passthru_features_check);
3526
3527 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3528                                              struct net_device *dev,
3529                                              netdev_features_t features)
3530 {
3531         return vlan_features_check(skb, features);
3532 }
3533
3534 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3535                                             struct net_device *dev,
3536                                             netdev_features_t features)
3537 {
3538         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3539
3540         if (gso_segs > dev->gso_max_segs)
3541                 return features & ~NETIF_F_GSO_MASK;
3542
3543         if (!skb_shinfo(skb)->gso_type) {
3544                 skb_warn_bad_offload(skb);
3545                 return features & ~NETIF_F_GSO_MASK;
3546         }
3547
3548         /* Support for GSO partial features requires software
3549          * intervention before we can actually process the packets
3550          * so we need to strip support for any partial features now
3551          * and we can pull them back in after we have partially
3552          * segmented the frame.
3553          */
3554         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3555                 features &= ~dev->gso_partial_features;
3556
3557         /* Make sure to clear the IPv4 ID mangling feature if the
3558          * IPv4 header has the potential to be fragmented.
3559          */
3560         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3561                 struct iphdr *iph = skb->encapsulation ?
3562                                     inner_ip_hdr(skb) : ip_hdr(skb);
3563
3564                 if (!(iph->frag_off & htons(IP_DF)))
3565                         features &= ~NETIF_F_TSO_MANGLEID;
3566         }
3567
3568         return features;
3569 }
3570
3571 netdev_features_t netif_skb_features(struct sk_buff *skb)
3572 {
3573         struct net_device *dev = skb->dev;
3574         netdev_features_t features = dev->features;
3575
3576         if (skb_is_gso(skb))
3577                 features = gso_features_check(skb, dev, features);
3578
3579         /* If encapsulation offload request, verify we are testing
3580          * hardware encapsulation features instead of standard
3581          * features for the netdev
3582          */
3583         if (skb->encapsulation)
3584                 features &= dev->hw_enc_features;
3585
3586         if (skb_vlan_tagged(skb))
3587                 features = netdev_intersect_features(features,
3588                                                      dev->vlan_features |
3589                                                      NETIF_F_HW_VLAN_CTAG_TX |
3590                                                      NETIF_F_HW_VLAN_STAG_TX);
3591
3592         if (dev->netdev_ops->ndo_features_check)
3593                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3594                                                                 features);
3595         else
3596                 features &= dflt_features_check(skb, dev, features);
3597
3598         return harmonize_features(skb, features);
3599 }
3600 EXPORT_SYMBOL(netif_skb_features);
3601
3602 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3603                     struct netdev_queue *txq, bool more)
3604 {
3605         unsigned int len;
3606         int rc;
3607
3608         if (dev_nit_active(dev))
3609                 dev_queue_xmit_nit(skb, dev);
3610
3611         len = skb->len;
3612         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3613         trace_net_dev_start_xmit(skb, dev);
3614         rc = netdev_start_xmit(skb, dev, txq, more);
3615         trace_net_dev_xmit(skb, rc, dev, len);
3616
3617         return rc;
3618 }
3619
3620 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3621                                     struct netdev_queue *txq, int *ret)
3622 {
3623         struct sk_buff *skb = first;
3624         int rc = NETDEV_TX_OK;
3625
3626         while (skb) {
3627                 struct sk_buff *next = skb->next;
3628
3629                 skb_mark_not_on_list(skb);
3630                 rc = xmit_one(skb, dev, txq, next != NULL);
3631                 if (unlikely(!dev_xmit_complete(rc))) {
3632                         skb->next = next;
3633                         goto out;
3634                 }
3635
3636                 skb = next;
3637                 if (netif_tx_queue_stopped(txq) && skb) {
3638                         rc = NETDEV_TX_BUSY;
3639                         break;
3640                 }
3641         }
3642
3643 out:
3644         *ret = rc;
3645         return skb;
3646 }
3647
3648 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3649                                           netdev_features_t features)
3650 {
3651         if (skb_vlan_tag_present(skb) &&
3652             !vlan_hw_offload_capable(features, skb->vlan_proto))
3653                 skb = __vlan_hwaccel_push_inside(skb);
3654         return skb;
3655 }
3656
3657 int skb_csum_hwoffload_help(struct sk_buff *skb,
3658                             const netdev_features_t features)
3659 {
3660         if (unlikely(skb_csum_is_sctp(skb)))
3661                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3662                         skb_crc32c_csum_help(skb);
3663
3664         if (features & NETIF_F_HW_CSUM)
3665                 return 0;
3666
3667         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3668                 switch (skb->csum_offset) {
3669                 case offsetof(struct tcphdr, check):
3670                 case offsetof(struct udphdr, check):
3671                         return 0;
3672                 }
3673         }
3674
3675         return skb_checksum_help(skb);
3676 }
3677 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3678
3679 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3680 {
3681         netdev_features_t features;
3682
3683         features = netif_skb_features(skb);
3684         skb = validate_xmit_vlan(skb, features);
3685         if (unlikely(!skb))
3686                 goto out_null;
3687
3688         skb = sk_validate_xmit_skb(skb, dev);
3689         if (unlikely(!skb))
3690                 goto out_null;
3691
3692         if (netif_needs_gso(skb, features)) {
3693                 struct sk_buff *segs;
3694
3695                 segs = skb_gso_segment(skb, features);
3696                 if (IS_ERR(segs)) {
3697                         goto out_kfree_skb;
3698                 } else if (segs) {
3699                         consume_skb(skb);
3700                         skb = segs;
3701                 }
3702         } else {
3703                 if (skb_needs_linearize(skb, features) &&
3704                     __skb_linearize(skb))
3705                         goto out_kfree_skb;
3706
3707                 /* If packet is not checksummed and device does not
3708                  * support checksumming for this protocol, complete
3709                  * checksumming here.
3710                  */
3711                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3712                         if (skb->encapsulation)
3713                                 skb_set_inner_transport_header(skb,
3714                                                                skb_checksum_start_offset(skb));
3715                         else
3716                                 skb_set_transport_header(skb,
3717                                                          skb_checksum_start_offset(skb));
3718                         if (skb_csum_hwoffload_help(skb, features))
3719                                 goto out_kfree_skb;
3720                 }
3721         }
3722
3723         skb = validate_xmit_xfrm(skb, features, again);
3724
3725         return skb;
3726
3727 out_kfree_skb:
3728         kfree_skb(skb);
3729 out_null:
3730         atomic_long_inc(&dev->tx_dropped);
3731         return NULL;
3732 }
3733
3734 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3735 {
3736         struct sk_buff *next, *head = NULL, *tail;
3737
3738         for (; skb != NULL; skb = next) {
3739                 next = skb->next;
3740                 skb_mark_not_on_list(skb);
3741
3742                 /* in case skb wont be segmented, point to itself */
3743                 skb->prev = skb;
3744
3745                 skb = validate_xmit_skb(skb, dev, again);
3746                 if (!skb)
3747                         continue;
3748
3749                 if (!head)
3750                         head = skb;
3751                 else
3752                         tail->next = skb;
3753                 /* If skb was segmented, skb->prev points to
3754                  * the last segment. If not, it still contains skb.
3755                  */
3756                 tail = skb->prev;
3757         }
3758         return head;
3759 }
3760 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3761
3762 static void qdisc_pkt_len_init(struct sk_buff *skb)
3763 {
3764         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3765
3766         qdisc_skb_cb(skb)->pkt_len = skb->len;
3767
3768         /* To get more precise estimation of bytes sent on wire,
3769          * we add to pkt_len the headers size of all segments
3770          */
3771         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3772                 unsigned int hdr_len;
3773                 u16 gso_segs = shinfo->gso_segs;
3774
3775                 /* mac layer + network layer */
3776                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3777
3778                 /* + transport layer */
3779                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3780                         const struct tcphdr *th;
3781                         struct tcphdr _tcphdr;
3782
3783                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3784                                                 sizeof(_tcphdr), &_tcphdr);
3785                         if (likely(th))
3786                                 hdr_len += __tcp_hdrlen(th);
3787                 } else {
3788                         struct udphdr _udphdr;
3789
3790                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3791                                                sizeof(_udphdr), &_udphdr))
3792                                 hdr_len += sizeof(struct udphdr);
3793                 }
3794
3795                 if (shinfo->gso_type & SKB_GSO_DODGY)
3796                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3797                                                 shinfo->gso_size);
3798
3799                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3800         }
3801 }
3802
3803 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3804                              struct sk_buff **to_free,
3805                              struct netdev_queue *txq)
3806 {
3807         int rc;
3808
3809         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3810         if (rc == NET_XMIT_SUCCESS)
3811                 trace_qdisc_enqueue(q, txq, skb);
3812         return rc;
3813 }
3814
3815 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3816                                  struct net_device *dev,
3817                                  struct netdev_queue *txq)
3818 {
3819         spinlock_t *root_lock = qdisc_lock(q);
3820         struct sk_buff *to_free = NULL;
3821         bool contended;
3822         int rc;
3823
3824         qdisc_calculate_pkt_len(skb, q);
3825
3826         if (q->flags & TCQ_F_NOLOCK) {
3827                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3828                     qdisc_run_begin(q)) {
3829                         /* Retest nolock_qdisc_is_empty() within the protection
3830                          * of q->seqlock to protect from racing with requeuing.
3831                          */
3832                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3833                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3834                                 __qdisc_run(q);
3835                                 qdisc_run_end(q);
3836
3837                                 goto no_lock_out;
3838                         }
3839
3840                         qdisc_bstats_cpu_update(q, skb);
3841                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3842                             !nolock_qdisc_is_empty(q))
3843                                 __qdisc_run(q);
3844
3845                         qdisc_run_end(q);
3846                         return NET_XMIT_SUCCESS;
3847                 }
3848
3849                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3850                 qdisc_run(q);
3851
3852 no_lock_out:
3853                 if (unlikely(to_free))
3854                         kfree_skb_list(to_free);
3855                 return rc;
3856         }
3857
3858         /*
3859          * Heuristic to force contended enqueues to serialize on a
3860          * separate lock before trying to get qdisc main lock.
3861          * This permits qdisc->running owner to get the lock more
3862          * often and dequeue packets faster.
3863          */
3864         contended = qdisc_is_running(q);
3865         if (unlikely(contended))
3866                 spin_lock(&q->busylock);
3867
3868         spin_lock(root_lock);
3869         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3870                 __qdisc_drop(skb, &to_free);
3871                 rc = NET_XMIT_DROP;
3872         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3873                    qdisc_run_begin(q)) {
3874                 /*
3875                  * This is a work-conserving queue; there are no old skbs
3876                  * waiting to be sent out; and the qdisc is not running -
3877                  * xmit the skb directly.
3878                  */
3879
3880                 qdisc_bstats_update(q, skb);
3881
3882                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3883                         if (unlikely(contended)) {
3884                                 spin_unlock(&q->busylock);
3885                                 contended = false;
3886                         }
3887                         __qdisc_run(q);
3888                 }
3889
3890                 qdisc_run_end(q);
3891                 rc = NET_XMIT_SUCCESS;
3892         } else {
3893                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3894                 if (qdisc_run_begin(q)) {
3895                         if (unlikely(contended)) {
3896                                 spin_unlock(&q->busylock);
3897                                 contended = false;
3898                         }
3899                         __qdisc_run(q);
3900                         qdisc_run_end(q);
3901                 }
3902         }
3903         spin_unlock(root_lock);
3904         if (unlikely(to_free))
3905                 kfree_skb_list(to_free);
3906         if (unlikely(contended))
3907                 spin_unlock(&q->busylock);
3908         return rc;
3909 }
3910
3911 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3912 static void skb_update_prio(struct sk_buff *skb)
3913 {
3914         const struct netprio_map *map;
3915         const struct sock *sk;
3916         unsigned int prioidx;
3917
3918         if (skb->priority)
3919                 return;
3920         map = rcu_dereference_bh(skb->dev->priomap);
3921         if (!map)
3922                 return;
3923         sk = skb_to_full_sk(skb);
3924         if (!sk)
3925                 return;
3926
3927         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3928
3929         if (prioidx < map->priomap_len)
3930                 skb->priority = map->priomap[prioidx];
3931 }
3932 #else
3933 #define skb_update_prio(skb)
3934 #endif
3935
3936 /**
3937  *      dev_loopback_xmit - loop back @skb
3938  *      @net: network namespace this loopback is happening in
3939  *      @sk:  sk needed to be a netfilter okfn
3940  *      @skb: buffer to transmit
3941  */
3942 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3943 {
3944         skb_reset_mac_header(skb);
3945         __skb_pull(skb, skb_network_offset(skb));
3946         skb->pkt_type = PACKET_LOOPBACK;
3947         if (skb->ip_summed == CHECKSUM_NONE)
3948                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3949         WARN_ON(!skb_dst(skb));
3950         skb_dst_force(skb);
3951         netif_rx_ni(skb);
3952         return 0;
3953 }
3954 EXPORT_SYMBOL(dev_loopback_xmit);
3955
3956 #ifdef CONFIG_NET_EGRESS
3957 static struct sk_buff *
3958 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3959 {
3960         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3961         struct tcf_result cl_res;
3962
3963         if (!miniq)
3964                 return skb;
3965
3966         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3967         tc_skb_cb(skb)->mru = 0;
3968         tc_skb_cb(skb)->post_ct = false;
3969         mini_qdisc_bstats_cpu_update(miniq, skb);
3970
3971         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3972         case TC_ACT_OK:
3973         case TC_ACT_RECLASSIFY:
3974                 skb->tc_index = TC_H_MIN(cl_res.classid);
3975                 break;
3976         case TC_ACT_SHOT:
3977                 mini_qdisc_qstats_cpu_drop(miniq);
3978                 *ret = NET_XMIT_DROP;
3979                 kfree_skb(skb);
3980                 return NULL;
3981         case TC_ACT_STOLEN:
3982         case TC_ACT_QUEUED:
3983         case TC_ACT_TRAP:
3984                 *ret = NET_XMIT_SUCCESS;
3985                 consume_skb(skb);
3986                 return NULL;
3987         case TC_ACT_REDIRECT:
3988                 /* No need to push/pop skb's mac_header here on egress! */
3989                 skb_do_redirect(skb);
3990                 *ret = NET_XMIT_SUCCESS;
3991                 return NULL;
3992         default:
3993                 break;
3994         }
3995
3996         return skb;
3997 }
3998 #endif /* CONFIG_NET_EGRESS */
3999
4000 #ifdef CONFIG_XPS
4001 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4002                                struct xps_dev_maps *dev_maps, unsigned int tci)
4003 {
4004         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4005         struct xps_map *map;
4006         int queue_index = -1;
4007
4008         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4009                 return queue_index;
4010
4011         tci *= dev_maps->num_tc;
4012         tci += tc;
4013
4014         map = rcu_dereference(dev_maps->attr_map[tci]);
4015         if (map) {
4016                 if (map->len == 1)
4017                         queue_index = map->queues[0];
4018                 else
4019                         queue_index = map->queues[reciprocal_scale(
4020                                                 skb_get_hash(skb), map->len)];
4021                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4022                         queue_index = -1;
4023         }
4024         return queue_index;
4025 }
4026 #endif
4027
4028 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4029                          struct sk_buff *skb)
4030 {
4031 #ifdef CONFIG_XPS
4032         struct xps_dev_maps *dev_maps;
4033         struct sock *sk = skb->sk;
4034         int queue_index = -1;
4035
4036         if (!static_key_false(&xps_needed))
4037                 return -1;
4038
4039         rcu_read_lock();
4040         if (!static_key_false(&xps_rxqs_needed))
4041                 goto get_cpus_map;
4042
4043         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4044         if (dev_maps) {
4045                 int tci = sk_rx_queue_get(sk);
4046
4047                 if (tci >= 0)
4048                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4049                                                           tci);
4050         }
4051
4052 get_cpus_map:
4053         if (queue_index < 0) {
4054                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4055                 if (dev_maps) {
4056                         unsigned int tci = skb->sender_cpu - 1;
4057
4058                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4059                                                           tci);
4060                 }
4061         }
4062         rcu_read_unlock();
4063
4064         return queue_index;
4065 #else
4066         return -1;
4067 #endif
4068 }
4069
4070 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4071                      struct net_device *sb_dev)
4072 {
4073         return 0;
4074 }
4075 EXPORT_SYMBOL(dev_pick_tx_zero);
4076
4077 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4078                        struct net_device *sb_dev)
4079 {
4080         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4081 }
4082 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4083
4084 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4085                      struct net_device *sb_dev)
4086 {
4087         struct sock *sk = skb->sk;
4088         int queue_index = sk_tx_queue_get(sk);
4089
4090         sb_dev = sb_dev ? : dev;
4091
4092         if (queue_index < 0 || skb->ooo_okay ||
4093             queue_index >= dev->real_num_tx_queues) {
4094                 int new_index = get_xps_queue(dev, sb_dev, skb);
4095
4096                 if (new_index < 0)
4097                         new_index = skb_tx_hash(dev, sb_dev, skb);
4098
4099                 if (queue_index != new_index && sk &&
4100                     sk_fullsock(sk) &&
4101                     rcu_access_pointer(sk->sk_dst_cache))
4102                         sk_tx_queue_set(sk, new_index);
4103
4104                 queue_index = new_index;
4105         }
4106
4107         return queue_index;
4108 }
4109 EXPORT_SYMBOL(netdev_pick_tx);
4110
4111 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4112                                          struct sk_buff *skb,
4113                                          struct net_device *sb_dev)
4114 {
4115         int queue_index = 0;
4116
4117 #ifdef CONFIG_XPS
4118         u32 sender_cpu = skb->sender_cpu - 1;
4119
4120         if (sender_cpu >= (u32)NR_CPUS)
4121                 skb->sender_cpu = raw_smp_processor_id() + 1;
4122 #endif
4123
4124         if (dev->real_num_tx_queues != 1) {
4125                 const struct net_device_ops *ops = dev->netdev_ops;
4126
4127                 if (ops->ndo_select_queue)
4128                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4129                 else
4130                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4131
4132                 queue_index = netdev_cap_txqueue(dev, queue_index);
4133         }
4134
4135         skb_set_queue_mapping(skb, queue_index);
4136         return netdev_get_tx_queue(dev, queue_index);
4137 }
4138
4139 /**
4140  *      __dev_queue_xmit - transmit a buffer
4141  *      @skb: buffer to transmit
4142  *      @sb_dev: suboordinate device used for L2 forwarding offload
4143  *
4144  *      Queue a buffer for transmission to a network device. The caller must
4145  *      have set the device and priority and built the buffer before calling
4146  *      this function. The function can be called from an interrupt.
4147  *
4148  *      A negative errno code is returned on a failure. A success does not
4149  *      guarantee the frame will be transmitted as it may be dropped due
4150  *      to congestion or traffic shaping.
4151  *
4152  * -----------------------------------------------------------------------------------
4153  *      I notice this method can also return errors from the queue disciplines,
4154  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4155  *      be positive.
4156  *
4157  *      Regardless of the return value, the skb is consumed, so it is currently
4158  *      difficult to retry a send to this method.  (You can bump the ref count
4159  *      before sending to hold a reference for retry if you are careful.)
4160  *
4161  *      When calling this method, interrupts MUST be enabled.  This is because
4162  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4163  *          --BLG
4164  */
4165 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4166 {
4167         struct net_device *dev = skb->dev;
4168         struct netdev_queue *txq;
4169         struct Qdisc *q;
4170         int rc = -ENOMEM;
4171         bool again = false;
4172
4173         skb_reset_mac_header(skb);
4174         skb_assert_len(skb);
4175
4176         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4177                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4178
4179         /* Disable soft irqs for various locks below. Also
4180          * stops preemption for RCU.
4181          */
4182         rcu_read_lock_bh();
4183
4184         skb_update_prio(skb);
4185
4186         qdisc_pkt_len_init(skb);
4187 #ifdef CONFIG_NET_CLS_ACT
4188         skb->tc_at_ingress = 0;
4189 # ifdef CONFIG_NET_EGRESS
4190         if (static_branch_unlikely(&egress_needed_key)) {
4191                 skb = sch_handle_egress(skb, &rc, dev);
4192                 if (!skb)
4193                         goto out;
4194         }
4195 # endif
4196 #endif
4197         /* If device/qdisc don't need skb->dst, release it right now while
4198          * its hot in this cpu cache.
4199          */
4200         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4201                 skb_dst_drop(skb);
4202         else
4203                 skb_dst_force(skb);
4204
4205         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4206         q = rcu_dereference_bh(txq->qdisc);
4207
4208         trace_net_dev_queue(skb);
4209         if (q->enqueue) {
4210                 rc = __dev_xmit_skb(skb, q, dev, txq);
4211                 goto out;
4212         }
4213
4214         /* The device has no queue. Common case for software devices:
4215          * loopback, all the sorts of tunnels...
4216
4217          * Really, it is unlikely that netif_tx_lock protection is necessary
4218          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4219          * counters.)
4220          * However, it is possible, that they rely on protection
4221          * made by us here.
4222
4223          * Check this and shot the lock. It is not prone from deadlocks.
4224          *Either shot noqueue qdisc, it is even simpler 8)
4225          */
4226         if (dev->flags & IFF_UP) {
4227                 int cpu = smp_processor_id(); /* ok because BHs are off */
4228
4229                 /* Other cpus might concurrently change txq->xmit_lock_owner
4230                  * to -1 or to their cpu id, but not to our id.
4231                  */
4232                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4233                         if (dev_xmit_recursion())
4234                                 goto recursion_alert;
4235
4236                         skb = validate_xmit_skb(skb, dev, &again);
4237                         if (!skb)
4238                                 goto out;
4239
4240                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4241                         HARD_TX_LOCK(dev, txq, cpu);
4242
4243                         if (!netif_xmit_stopped(txq)) {
4244                                 dev_xmit_recursion_inc();
4245                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4246                                 dev_xmit_recursion_dec();
4247                                 if (dev_xmit_complete(rc)) {
4248                                         HARD_TX_UNLOCK(dev, txq);
4249                                         goto out;
4250                                 }
4251                         }
4252                         HARD_TX_UNLOCK(dev, txq);
4253                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4254                                              dev->name);
4255                 } else {
4256                         /* Recursion is detected! It is possible,
4257                          * unfortunately
4258                          */
4259 recursion_alert:
4260                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4261                                              dev->name);
4262                 }
4263         }
4264
4265         rc = -ENETDOWN;
4266         rcu_read_unlock_bh();
4267
4268         atomic_long_inc(&dev->tx_dropped);
4269         kfree_skb_list(skb);
4270         return rc;
4271 out:
4272         rcu_read_unlock_bh();
4273         return rc;
4274 }
4275
4276 int dev_queue_xmit(struct sk_buff *skb)
4277 {
4278         return __dev_queue_xmit(skb, NULL);
4279 }
4280 EXPORT_SYMBOL(dev_queue_xmit);
4281
4282 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4283 {
4284         return __dev_queue_xmit(skb, sb_dev);
4285 }
4286 EXPORT_SYMBOL(dev_queue_xmit_accel);
4287
4288 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289 {
4290         struct net_device *dev = skb->dev;
4291         struct sk_buff *orig_skb = skb;
4292         struct netdev_queue *txq;
4293         int ret = NETDEV_TX_BUSY;
4294         bool again = false;
4295
4296         if (unlikely(!netif_running(dev) ||
4297                      !netif_carrier_ok(dev)))
4298                 goto drop;
4299
4300         skb = validate_xmit_skb_list(skb, dev, &again);
4301         if (skb != orig_skb)
4302                 goto drop;
4303
4304         skb_set_queue_mapping(skb, queue_id);
4305         txq = skb_get_tx_queue(dev, skb);
4306         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4307
4308         local_bh_disable();
4309
4310         dev_xmit_recursion_inc();
4311         HARD_TX_LOCK(dev, txq, smp_processor_id());
4312         if (!netif_xmit_frozen_or_drv_stopped(txq))
4313                 ret = netdev_start_xmit(skb, dev, txq, false);
4314         HARD_TX_UNLOCK(dev, txq);
4315         dev_xmit_recursion_dec();
4316
4317         local_bh_enable();
4318         return ret;
4319 drop:
4320         atomic_long_inc(&dev->tx_dropped);
4321         kfree_skb_list(skb);
4322         return NET_XMIT_DROP;
4323 }
4324 EXPORT_SYMBOL(__dev_direct_xmit);
4325
4326 /*************************************************************************
4327  *                      Receiver routines
4328  *************************************************************************/
4329
4330 int netdev_max_backlog __read_mostly = 1000;
4331 EXPORT_SYMBOL(netdev_max_backlog);
4332
4333 int netdev_tstamp_prequeue __read_mostly = 1;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64;           /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4343 int gro_normal_batch __read_mostly = 8;
4344
4345 /* Called with irq disabled */
4346 static inline void ____napi_schedule(struct softnet_data *sd,
4347                                      struct napi_struct *napi)
4348 {
4349         struct task_struct *thread;
4350
4351         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352                 /* Paired with smp_mb__before_atomic() in
4353                  * napi_enable()/dev_set_threaded().
4354                  * Use READ_ONCE() to guarantee a complete
4355                  * read on napi->thread. Only call
4356                  * wake_up_process() when it's not NULL.
4357                  */
4358                 thread = READ_ONCE(napi->thread);
4359                 if (thread) {
4360                         /* Avoid doing set_bit() if the thread is in
4361                          * INTERRUPTIBLE state, cause napi_thread_wait()
4362                          * makes sure to proceed with napi polling
4363                          * if the thread is explicitly woken from here.
4364                          */
4365                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4366                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367                         wake_up_process(thread);
4368                         return;
4369                 }
4370         }
4371
4372         list_add_tail(&napi->poll_list, &sd->poll_list);
4373         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375
4376 #ifdef CONFIG_RPS
4377
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388
4389 static struct rps_dev_flow *
4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391             struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393         if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395                 struct netdev_rx_queue *rxqueue;
4396                 struct rps_dev_flow_table *flow_table;
4397                 struct rps_dev_flow *old_rflow;
4398                 u32 flow_id;
4399                 u16 rxq_index;
4400                 int rc;
4401
4402                 /* Should we steer this flow to a different hardware queue? */
4403                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404                     !(dev->features & NETIF_F_NTUPLE))
4405                         goto out;
4406                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407                 if (rxq_index == skb_get_rx_queue(skb))
4408                         goto out;
4409
4410                 rxqueue = dev->_rx + rxq_index;
4411                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412                 if (!flow_table)
4413                         goto out;
4414                 flow_id = skb_get_hash(skb) & flow_table->mask;
4415                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416                                                         rxq_index, flow_id);
4417                 if (rc < 0)
4418                         goto out;
4419                 old_rflow = rflow;
4420                 rflow = &flow_table->flows[flow_id];
4421                 rflow->filter = rc;
4422                 if (old_rflow->filter == rflow->filter)
4423                         old_rflow->filter = RPS_NO_FILTER;
4424         out:
4425 #endif
4426                 rflow->last_qtail =
4427                         per_cpu(softnet_data, next_cpu).input_queue_head;
4428         }
4429
4430         rflow->cpu = next_cpu;
4431         return rflow;
4432 }
4433
4434 /*
4435  * get_rps_cpu is called from netif_receive_skb and returns the target
4436  * CPU from the RPS map of the receiving queue for a given skb.
4437  * rcu_read_lock must be held on entry.
4438  */
4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440                        struct rps_dev_flow **rflowp)
4441 {
4442         const struct rps_sock_flow_table *sock_flow_table;
4443         struct netdev_rx_queue *rxqueue = dev->_rx;
4444         struct rps_dev_flow_table *flow_table;
4445         struct rps_map *map;
4446         int cpu = -1;
4447         u32 tcpu;
4448         u32 hash;
4449
4450         if (skb_rx_queue_recorded(skb)) {
4451                 u16 index = skb_get_rx_queue(skb);
4452
4453                 if (unlikely(index >= dev->real_num_rx_queues)) {
4454                         WARN_ONCE(dev->real_num_rx_queues > 1,
4455                                   "%s received packet on queue %u, but number "
4456                                   "of RX queues is %u\n",
4457                                   dev->name, index, dev->real_num_rx_queues);
4458                         goto done;
4459                 }
4460                 rxqueue += index;
4461         }
4462
4463         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464
4465         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466         map = rcu_dereference(rxqueue->rps_map);
4467         if (!flow_table && !map)
4468                 goto done;
4469
4470         skb_reset_network_header(skb);
4471         hash = skb_get_hash(skb);
4472         if (!hash)
4473                 goto done;
4474
4475         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476         if (flow_table && sock_flow_table) {
4477                 struct rps_dev_flow *rflow;
4478                 u32 next_cpu;
4479                 u32 ident;
4480
4481                 /* First check into global flow table if there is a match.
4482                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4483                  */
4484                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4485                 if ((ident ^ hash) & ~rps_cpu_mask)
4486                         goto try_rps;
4487
4488                 next_cpu = ident & rps_cpu_mask;
4489
4490                 /* OK, now we know there is a match,
4491                  * we can look at the local (per receive queue) flow table
4492                  */
4493                 rflow = &flow_table->flows[hash & flow_table->mask];
4494                 tcpu = rflow->cpu;
4495
4496                 /*
4497                  * If the desired CPU (where last recvmsg was done) is
4498                  * different from current CPU (one in the rx-queue flow
4499                  * table entry), switch if one of the following holds:
4500                  *   - Current CPU is unset (>= nr_cpu_ids).
4501                  *   - Current CPU is offline.
4502                  *   - The current CPU's queue tail has advanced beyond the
4503                  *     last packet that was enqueued using this table entry.
4504                  *     This guarantees that all previous packets for the flow
4505                  *     have been dequeued, thus preserving in order delivery.
4506                  */
4507                 if (unlikely(tcpu != next_cpu) &&
4508                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4509                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4510                       rflow->last_qtail)) >= 0)) {
4511                         tcpu = next_cpu;
4512                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4513                 }
4514
4515                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4516                         *rflowp = rflow;
4517                         cpu = tcpu;
4518                         goto done;
4519                 }
4520         }
4521
4522 try_rps:
4523
4524         if (map) {
4525                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4526                 if (cpu_online(tcpu)) {
4527                         cpu = tcpu;
4528                         goto done;
4529                 }
4530         }
4531
4532 done:
4533         return cpu;
4534 }
4535
4536 #ifdef CONFIG_RFS_ACCEL
4537
4538 /**
4539  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4540  * @dev: Device on which the filter was set
4541  * @rxq_index: RX queue index
4542  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4543  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4544  *
4545  * Drivers that implement ndo_rx_flow_steer() should periodically call
4546  * this function for each installed filter and remove the filters for
4547  * which it returns %true.
4548  */
4549 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4550                          u32 flow_id, u16 filter_id)
4551 {
4552         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4553         struct rps_dev_flow_table *flow_table;
4554         struct rps_dev_flow *rflow;
4555         bool expire = true;
4556         unsigned int cpu;
4557
4558         rcu_read_lock();
4559         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4560         if (flow_table && flow_id <= flow_table->mask) {
4561                 rflow = &flow_table->flows[flow_id];
4562                 cpu = READ_ONCE(rflow->cpu);
4563                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4564                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4565                            rflow->last_qtail) <
4566                      (int)(10 * flow_table->mask)))
4567                         expire = false;
4568         }
4569         rcu_read_unlock();
4570         return expire;
4571 }
4572 EXPORT_SYMBOL(rps_may_expire_flow);
4573
4574 #endif /* CONFIG_RFS_ACCEL */
4575
4576 /* Called from hardirq (IPI) context */
4577 static void rps_trigger_softirq(void *data)
4578 {
4579         struct softnet_data *sd = data;
4580
4581         ____napi_schedule(sd, &sd->backlog);
4582         sd->received_rps++;
4583 }
4584
4585 #endif /* CONFIG_RPS */
4586
4587 /*
4588  * Check if this softnet_data structure is another cpu one
4589  * If yes, queue it to our IPI list and return 1
4590  * If no, return 0
4591  */
4592 static int rps_ipi_queued(struct softnet_data *sd)
4593 {
4594 #ifdef CONFIG_RPS
4595         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4596
4597         if (sd != mysd) {
4598                 sd->rps_ipi_next = mysd->rps_ipi_list;
4599                 mysd->rps_ipi_list = sd;
4600
4601                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4602                 return 1;
4603         }
4604 #endif /* CONFIG_RPS */
4605         return 0;
4606 }
4607
4608 #ifdef CONFIG_NET_FLOW_LIMIT
4609 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4610 #endif
4611
4612 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4613 {
4614 #ifdef CONFIG_NET_FLOW_LIMIT
4615         struct sd_flow_limit *fl;
4616         struct softnet_data *sd;
4617         unsigned int old_flow, new_flow;
4618
4619         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4620                 return false;
4621
4622         sd = this_cpu_ptr(&softnet_data);
4623
4624         rcu_read_lock();
4625         fl = rcu_dereference(sd->flow_limit);
4626         if (fl) {
4627                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4628                 old_flow = fl->history[fl->history_head];
4629                 fl->history[fl->history_head] = new_flow;
4630
4631                 fl->history_head++;
4632                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4633
4634                 if (likely(fl->buckets[old_flow]))
4635                         fl->buckets[old_flow]--;
4636
4637                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4638                         fl->count++;
4639                         rcu_read_unlock();
4640                         return true;
4641                 }
4642         }
4643         rcu_read_unlock();
4644 #endif
4645         return false;
4646 }
4647
4648 /*
4649  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4650  * queue (may be a remote CPU queue).
4651  */
4652 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4653                               unsigned int *qtail)
4654 {
4655         struct softnet_data *sd;
4656         unsigned long flags;
4657         unsigned int qlen;
4658
4659         sd = &per_cpu(softnet_data, cpu);
4660
4661         local_irq_save(flags);
4662
4663         rps_lock(sd);
4664         if (!netif_running(skb->dev))
4665                 goto drop;
4666         qlen = skb_queue_len(&sd->input_pkt_queue);
4667         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4668                 if (qlen) {
4669 enqueue:
4670                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4671                         input_queue_tail_incr_save(sd, qtail);
4672                         rps_unlock(sd);
4673                         local_irq_restore(flags);
4674                         return NET_RX_SUCCESS;
4675                 }
4676
4677                 /* Schedule NAPI for backlog device
4678                  * We can use non atomic operation since we own the queue lock
4679                  */
4680                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4681                         if (!rps_ipi_queued(sd))
4682                                 ____napi_schedule(sd, &sd->backlog);
4683                 }
4684                 goto enqueue;
4685         }
4686
4687 drop:
4688         sd->dropped++;
4689         rps_unlock(sd);
4690
4691         local_irq_restore(flags);
4692
4693         atomic_long_inc(&skb->dev->rx_dropped);
4694         kfree_skb(skb);
4695         return NET_RX_DROP;
4696 }
4697
4698 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4699 {
4700         struct net_device *dev = skb->dev;
4701         struct netdev_rx_queue *rxqueue;
4702
4703         rxqueue = dev->_rx;
4704
4705         if (skb_rx_queue_recorded(skb)) {
4706                 u16 index = skb_get_rx_queue(skb);
4707
4708                 if (unlikely(index >= dev->real_num_rx_queues)) {
4709                         WARN_ONCE(dev->real_num_rx_queues > 1,
4710                                   "%s received packet on queue %u, but number "
4711                                   "of RX queues is %u\n",
4712                                   dev->name, index, dev->real_num_rx_queues);
4713
4714                         return rxqueue; /* Return first rxqueue */
4715                 }
4716                 rxqueue += index;
4717         }
4718         return rxqueue;
4719 }
4720
4721 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4722                              struct bpf_prog *xdp_prog)
4723 {
4724         void *orig_data, *orig_data_end, *hard_start;
4725         struct netdev_rx_queue *rxqueue;
4726         bool orig_bcast, orig_host;
4727         u32 mac_len, frame_sz;
4728         __be16 orig_eth_type;
4729         struct ethhdr *eth;
4730         u32 metalen, act;
4731         int off;
4732
4733         /* The XDP program wants to see the packet starting at the MAC
4734          * header.
4735          */
4736         mac_len = skb->data - skb_mac_header(skb);
4737         hard_start = skb->data - skb_headroom(skb);
4738
4739         /* SKB "head" area always have tailroom for skb_shared_info */
4740         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4741         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4742
4743         rxqueue = netif_get_rxqueue(skb);
4744         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4745         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4746                          skb_headlen(skb) + mac_len, true);
4747
4748         orig_data_end = xdp->data_end;
4749         orig_data = xdp->data;
4750         eth = (struct ethhdr *)xdp->data;
4751         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4752         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4753         orig_eth_type = eth->h_proto;
4754
4755         act = bpf_prog_run_xdp(xdp_prog, xdp);
4756
4757         /* check if bpf_xdp_adjust_head was used */
4758         off = xdp->data - orig_data;
4759         if (off) {
4760                 if (off > 0)
4761                         __skb_pull(skb, off);
4762                 else if (off < 0)
4763                         __skb_push(skb, -off);
4764
4765                 skb->mac_header += off;
4766                 skb_reset_network_header(skb);
4767         }
4768
4769         /* check if bpf_xdp_adjust_tail was used */
4770         off = xdp->data_end - orig_data_end;
4771         if (off != 0) {
4772                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4773                 skb->len += off; /* positive on grow, negative on shrink */
4774         }
4775
4776         /* check if XDP changed eth hdr such SKB needs update */
4777         eth = (struct ethhdr *)xdp->data;
4778         if ((orig_eth_type != eth->h_proto) ||
4779             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4780                                                   skb->dev->dev_addr)) ||
4781             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4782                 __skb_push(skb, ETH_HLEN);
4783                 skb->pkt_type = PACKET_HOST;
4784                 skb->protocol = eth_type_trans(skb, skb->dev);
4785         }
4786
4787         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4788          * before calling us again on redirect path. We do not call do_redirect
4789          * as we leave that up to the caller.
4790          *
4791          * Caller is responsible for managing lifetime of skb (i.e. calling
4792          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4793          */
4794         switch (act) {
4795         case XDP_REDIRECT:
4796         case XDP_TX:
4797                 __skb_push(skb, mac_len);
4798                 break;
4799         case XDP_PASS:
4800                 metalen = xdp->data - xdp->data_meta;
4801                 if (metalen)
4802                         skb_metadata_set(skb, metalen);
4803                 break;
4804         }
4805
4806         return act;
4807 }
4808
4809 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4810                                      struct xdp_buff *xdp,
4811                                      struct bpf_prog *xdp_prog)
4812 {
4813         u32 act = XDP_DROP;
4814
4815         /* Reinjected packets coming from act_mirred or similar should
4816          * not get XDP generic processing.
4817          */
4818         if (skb_is_redirected(skb))
4819                 return XDP_PASS;
4820
4821         /* XDP packets must be linear and must have sufficient headroom
4822          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4823          * native XDP provides, thus we need to do it here as well.
4824          */
4825         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4826             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4827                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4828                 int troom = skb->tail + skb->data_len - skb->end;
4829
4830                 /* In case we have to go down the path and also linearize,
4831                  * then lets do the pskb_expand_head() work just once here.
4832                  */
4833                 if (pskb_expand_head(skb,
4834                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4835                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4836                         goto do_drop;
4837                 if (skb_linearize(skb))
4838                         goto do_drop;
4839         }
4840
4841         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4842         switch (act) {
4843         case XDP_REDIRECT:
4844         case XDP_TX:
4845         case XDP_PASS:
4846                 break;
4847         default:
4848                 bpf_warn_invalid_xdp_action(act);
4849                 fallthrough;
4850         case XDP_ABORTED:
4851                 trace_xdp_exception(skb->dev, xdp_prog, act);
4852                 fallthrough;
4853         case XDP_DROP:
4854         do_drop:
4855                 kfree_skb(skb);
4856                 break;
4857         }
4858
4859         return act;
4860 }
4861
4862 /* When doing generic XDP we have to bypass the qdisc layer and the
4863  * network taps in order to match in-driver-XDP behavior.
4864  */
4865 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4866 {
4867         struct net_device *dev = skb->dev;
4868         struct netdev_queue *txq;
4869         bool free_skb = true;
4870         int cpu, rc;
4871
4872         txq = netdev_core_pick_tx(dev, skb, NULL);
4873         cpu = smp_processor_id();
4874         HARD_TX_LOCK(dev, txq, cpu);
4875         if (!netif_xmit_stopped(txq)) {
4876                 rc = netdev_start_xmit(skb, dev, txq, 0);
4877                 if (dev_xmit_complete(rc))
4878                         free_skb = false;
4879         }
4880         HARD_TX_UNLOCK(dev, txq);
4881         if (free_skb) {
4882                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4883                 kfree_skb(skb);
4884         }
4885 }
4886
4887 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4888
4889 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4890 {
4891         if (xdp_prog) {
4892                 struct xdp_buff xdp;
4893                 u32 act;
4894                 int err;
4895
4896                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4897                 if (act != XDP_PASS) {
4898                         switch (act) {
4899                         case XDP_REDIRECT:
4900                                 err = xdp_do_generic_redirect(skb->dev, skb,
4901                                                               &xdp, xdp_prog);
4902                                 if (err)
4903                                         goto out_redir;
4904                                 break;
4905                         case XDP_TX:
4906                                 generic_xdp_tx(skb, xdp_prog);
4907                                 break;
4908                         }
4909                         return XDP_DROP;
4910                 }
4911         }
4912         return XDP_PASS;
4913 out_redir:
4914         kfree_skb(skb);
4915         return XDP_DROP;
4916 }
4917 EXPORT_SYMBOL_GPL(do_xdp_generic);
4918
4919 static int netif_rx_internal(struct sk_buff *skb)
4920 {
4921         int ret;
4922
4923         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4924
4925         trace_netif_rx(skb);
4926
4927 #ifdef CONFIG_RPS
4928         if (static_branch_unlikely(&rps_needed)) {
4929                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4930                 int cpu;
4931
4932                 preempt_disable();
4933                 rcu_read_lock();
4934
4935                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4936                 if (cpu < 0)
4937                         cpu = smp_processor_id();
4938
4939                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4940
4941                 rcu_read_unlock();
4942                 preempt_enable();
4943         } else
4944 #endif
4945         {
4946                 unsigned int qtail;
4947
4948                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4949                 put_cpu();
4950         }
4951         return ret;
4952 }
4953
4954 /**
4955  *      netif_rx        -       post buffer to the network code
4956  *      @skb: buffer to post
4957  *
4958  *      This function receives a packet from a device driver and queues it for
4959  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4960  *      may be dropped during processing for congestion control or by the
4961  *      protocol layers.
4962  *
4963  *      return values:
4964  *      NET_RX_SUCCESS  (no congestion)
4965  *      NET_RX_DROP     (packet was dropped)
4966  *
4967  */
4968
4969 int netif_rx(struct sk_buff *skb)
4970 {
4971         int ret;
4972
4973         trace_netif_rx_entry(skb);
4974
4975         ret = netif_rx_internal(skb);
4976         trace_netif_rx_exit(ret);
4977
4978         return ret;
4979 }
4980 EXPORT_SYMBOL(netif_rx);
4981
4982 int netif_rx_ni(struct sk_buff *skb)
4983 {
4984         int err;
4985
4986         trace_netif_rx_ni_entry(skb);
4987
4988         preempt_disable();
4989         err = netif_rx_internal(skb);
4990         if (local_softirq_pending())
4991                 do_softirq();
4992         preempt_enable();
4993         trace_netif_rx_ni_exit(err);
4994
4995         return err;
4996 }
4997 EXPORT_SYMBOL(netif_rx_ni);
4998
4999 int netif_rx_any_context(struct sk_buff *skb)
5000 {
5001         /*
5002          * If invoked from contexts which do not invoke bottom half
5003          * processing either at return from interrupt or when softrqs are
5004          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5005          * directly.
5006          */
5007         if (in_interrupt())
5008                 return netif_rx(skb);
5009         else
5010                 return netif_rx_ni(skb);
5011 }
5012 EXPORT_SYMBOL(netif_rx_any_context);
5013
5014 static __latent_entropy void net_tx_action(struct softirq_action *h)
5015 {
5016         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5017
5018         if (sd->completion_queue) {
5019                 struct sk_buff *clist;
5020
5021                 local_irq_disable();
5022                 clist = sd->completion_queue;
5023                 sd->completion_queue = NULL;
5024                 local_irq_enable();
5025
5026                 while (clist) {
5027                         struct sk_buff *skb = clist;
5028
5029                         clist = clist->next;
5030
5031                         WARN_ON(refcount_read(&skb->users));
5032                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5033                                 trace_consume_skb(skb);
5034                         else
5035                                 trace_kfree_skb(skb, net_tx_action,
5036                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5037
5038                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5039                                 __kfree_skb(skb);
5040                         else
5041                                 __kfree_skb_defer(skb);
5042                 }
5043         }
5044
5045         if (sd->output_queue) {
5046                 struct Qdisc *head;
5047
5048                 local_irq_disable();
5049                 head = sd->output_queue;
5050                 sd->output_queue = NULL;
5051                 sd->output_queue_tailp = &sd->output_queue;
5052                 local_irq_enable();
5053
5054                 rcu_read_lock();
5055
5056                 while (head) {
5057                         struct Qdisc *q = head;
5058                         spinlock_t *root_lock = NULL;
5059
5060                         head = head->next_sched;
5061
5062                         /* We need to make sure head->next_sched is read
5063                          * before clearing __QDISC_STATE_SCHED
5064                          */
5065                         smp_mb__before_atomic();
5066
5067                         if (!(q->flags & TCQ_F_NOLOCK)) {
5068                                 root_lock = qdisc_lock(q);
5069                                 spin_lock(root_lock);
5070                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5071                                                      &q->state))) {
5072                                 /* There is a synchronize_net() between
5073                                  * STATE_DEACTIVATED flag being set and
5074                                  * qdisc_reset()/some_qdisc_is_busy() in
5075                                  * dev_deactivate(), so we can safely bail out
5076                                  * early here to avoid data race between
5077                                  * qdisc_deactivate() and some_qdisc_is_busy()
5078                                  * for lockless qdisc.
5079                                  */
5080                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5081                                 continue;
5082                         }
5083
5084                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5085                         qdisc_run(q);
5086                         if (root_lock)
5087                                 spin_unlock(root_lock);
5088                 }
5089
5090                 rcu_read_unlock();
5091         }
5092
5093         xfrm_dev_backlog(sd);
5094 }
5095
5096 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5097 /* This hook is defined here for ATM LANE */
5098 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5099                              unsigned char *addr) __read_mostly;
5100 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5101 #endif
5102
5103 static inline struct sk_buff *
5104 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5105                    struct net_device *orig_dev, bool *another)
5106 {
5107 #ifdef CONFIG_NET_CLS_ACT
5108         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5109         struct tcf_result cl_res;
5110
5111         /* If there's at least one ingress present somewhere (so
5112          * we get here via enabled static key), remaining devices
5113          * that are not configured with an ingress qdisc will bail
5114          * out here.
5115          */
5116         if (!miniq)
5117                 return skb;
5118
5119         if (*pt_prev) {
5120                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5121                 *pt_prev = NULL;
5122         }
5123
5124         qdisc_skb_cb(skb)->pkt_len = skb->len;
5125         tc_skb_cb(skb)->mru = 0;
5126         tc_skb_cb(skb)->post_ct = false;
5127         skb->tc_at_ingress = 1;
5128         mini_qdisc_bstats_cpu_update(miniq, skb);
5129
5130         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5131         case TC_ACT_OK:
5132         case TC_ACT_RECLASSIFY:
5133                 skb->tc_index = TC_H_MIN(cl_res.classid);
5134                 break;
5135         case TC_ACT_SHOT:
5136                 mini_qdisc_qstats_cpu_drop(miniq);
5137                 kfree_skb(skb);
5138                 return NULL;
5139         case TC_ACT_STOLEN:
5140         case TC_ACT_QUEUED:
5141         case TC_ACT_TRAP:
5142                 consume_skb(skb);
5143                 return NULL;
5144         case TC_ACT_REDIRECT:
5145                 /* skb_mac_header check was done by cls/act_bpf, so
5146                  * we can safely push the L2 header back before
5147                  * redirecting to another netdev
5148                  */
5149                 __skb_push(skb, skb->mac_len);
5150                 if (skb_do_redirect(skb) == -EAGAIN) {
5151                         __skb_pull(skb, skb->mac_len);
5152                         *another = true;
5153                         break;
5154                 }
5155                 return NULL;
5156         case TC_ACT_CONSUMED:
5157                 return NULL;
5158         default:
5159                 break;
5160         }
5161 #endif /* CONFIG_NET_CLS_ACT */
5162         return skb;
5163 }
5164
5165 /**
5166  *      netdev_is_rx_handler_busy - check if receive handler is registered
5167  *      @dev: device to check
5168  *
5169  *      Check if a receive handler is already registered for a given device.
5170  *      Return true if there one.
5171  *
5172  *      The caller must hold the rtnl_mutex.
5173  */
5174 bool netdev_is_rx_handler_busy(struct net_device *dev)
5175 {
5176         ASSERT_RTNL();
5177         return dev && rtnl_dereference(dev->rx_handler);
5178 }
5179 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5180
5181 /**
5182  *      netdev_rx_handler_register - register receive handler
5183  *      @dev: device to register a handler for
5184  *      @rx_handler: receive handler to register
5185  *      @rx_handler_data: data pointer that is used by rx handler
5186  *
5187  *      Register a receive handler for a device. This handler will then be
5188  *      called from __netif_receive_skb. A negative errno code is returned
5189  *      on a failure.
5190  *
5191  *      The caller must hold the rtnl_mutex.
5192  *
5193  *      For a general description of rx_handler, see enum rx_handler_result.
5194  */
5195 int netdev_rx_handler_register(struct net_device *dev,
5196                                rx_handler_func_t *rx_handler,
5197                                void *rx_handler_data)
5198 {
5199         if (netdev_is_rx_handler_busy(dev))
5200                 return -EBUSY;
5201
5202         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5203                 return -EINVAL;
5204
5205         /* Note: rx_handler_data must be set before rx_handler */
5206         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5207         rcu_assign_pointer(dev->rx_handler, rx_handler);
5208
5209         return 0;
5210 }
5211 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5212
5213 /**
5214  *      netdev_rx_handler_unregister - unregister receive handler
5215  *      @dev: device to unregister a handler from
5216  *
5217  *      Unregister a receive handler from a device.
5218  *
5219  *      The caller must hold the rtnl_mutex.
5220  */
5221 void netdev_rx_handler_unregister(struct net_device *dev)
5222 {
5223
5224         ASSERT_RTNL();
5225         RCU_INIT_POINTER(dev->rx_handler, NULL);
5226         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5227          * section has a guarantee to see a non NULL rx_handler_data
5228          * as well.
5229          */
5230         synchronize_net();
5231         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5232 }
5233 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5234
5235 /*
5236  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5237  * the special handling of PFMEMALLOC skbs.
5238  */
5239 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5240 {
5241         switch (skb->protocol) {
5242         case htons(ETH_P_ARP):
5243         case htons(ETH_P_IP):
5244         case htons(ETH_P_IPV6):
5245         case htons(ETH_P_8021Q):
5246         case htons(ETH_P_8021AD):
5247                 return true;
5248         default:
5249                 return false;
5250         }
5251 }
5252
5253 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5254                              int *ret, struct net_device *orig_dev)
5255 {
5256         if (nf_hook_ingress_active(skb)) {
5257                 int ingress_retval;
5258
5259                 if (*pt_prev) {
5260                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5261                         *pt_prev = NULL;
5262                 }
5263
5264                 rcu_read_lock();
5265                 ingress_retval = nf_hook_ingress(skb);
5266                 rcu_read_unlock();
5267                 return ingress_retval;
5268         }
5269         return 0;
5270 }
5271
5272 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5273                                     struct packet_type **ppt_prev)
5274 {
5275         struct packet_type *ptype, *pt_prev;
5276         rx_handler_func_t *rx_handler;
5277         struct sk_buff *skb = *pskb;
5278         struct net_device *orig_dev;
5279         bool deliver_exact = false;
5280         int ret = NET_RX_DROP;
5281         __be16 type;
5282
5283         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5284
5285         trace_netif_receive_skb(skb);
5286
5287         orig_dev = skb->dev;
5288
5289         skb_reset_network_header(skb);
5290         if (!skb_transport_header_was_set(skb))
5291                 skb_reset_transport_header(skb);
5292         skb_reset_mac_len(skb);
5293
5294         pt_prev = NULL;
5295
5296 another_round:
5297         skb->skb_iif = skb->dev->ifindex;
5298
5299         __this_cpu_inc(softnet_data.processed);
5300
5301         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5302                 int ret2;
5303
5304                 migrate_disable();
5305                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5306                 migrate_enable();
5307
5308                 if (ret2 != XDP_PASS) {
5309                         ret = NET_RX_DROP;
5310                         goto out;
5311                 }
5312         }
5313
5314         if (eth_type_vlan(skb->protocol)) {
5315                 skb = skb_vlan_untag(skb);
5316                 if (unlikely(!skb))
5317                         goto out;
5318         }
5319
5320         if (skb_skip_tc_classify(skb))
5321                 goto skip_classify;
5322
5323         if (pfmemalloc)
5324                 goto skip_taps;
5325
5326         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5327                 if (pt_prev)
5328                         ret = deliver_skb(skb, pt_prev, orig_dev);
5329                 pt_prev = ptype;
5330         }
5331
5332         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5333                 if (pt_prev)
5334                         ret = deliver_skb(skb, pt_prev, orig_dev);
5335                 pt_prev = ptype;
5336         }
5337
5338 skip_taps:
5339 #ifdef CONFIG_NET_INGRESS
5340         if (static_branch_unlikely(&ingress_needed_key)) {
5341                 bool another = false;
5342
5343                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5344                                          &another);
5345                 if (another)
5346                         goto another_round;
5347                 if (!skb)
5348                         goto out;
5349
5350                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5351                         goto out;
5352         }
5353 #endif
5354         skb_reset_redirect(skb);
5355 skip_classify:
5356         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5357                 goto drop;
5358
5359         if (skb_vlan_tag_present(skb)) {
5360                 if (pt_prev) {
5361                         ret = deliver_skb(skb, pt_prev, orig_dev);
5362                         pt_prev = NULL;
5363                 }
5364                 if (vlan_do_receive(&skb))
5365                         goto another_round;
5366                 else if (unlikely(!skb))
5367                         goto out;
5368         }
5369
5370         rx_handler = rcu_dereference(skb->dev->rx_handler);
5371         if (rx_handler) {
5372                 if (pt_prev) {
5373                         ret = deliver_skb(skb, pt_prev, orig_dev);
5374                         pt_prev = NULL;
5375                 }
5376                 switch (rx_handler(&skb)) {
5377                 case RX_HANDLER_CONSUMED:
5378                         ret = NET_RX_SUCCESS;
5379                         goto out;
5380                 case RX_HANDLER_ANOTHER:
5381                         goto another_round;
5382                 case RX_HANDLER_EXACT:
5383                         deliver_exact = true;
5384                         break;
5385                 case RX_HANDLER_PASS:
5386                         break;
5387                 default:
5388                         BUG();
5389                 }
5390         }
5391
5392         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5393 check_vlan_id:
5394                 if (skb_vlan_tag_get_id(skb)) {
5395                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5396                          * find vlan device.
5397                          */
5398                         skb->pkt_type = PACKET_OTHERHOST;
5399                 } else if (eth_type_vlan(skb->protocol)) {
5400                         /* Outer header is 802.1P with vlan 0, inner header is
5401                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5402                          * not find vlan dev for vlan id 0.
5403                          */
5404                         __vlan_hwaccel_clear_tag(skb);
5405                         skb = skb_vlan_untag(skb);
5406                         if (unlikely(!skb))
5407                                 goto out;
5408                         if (vlan_do_receive(&skb))
5409                                 /* After stripping off 802.1P header with vlan 0
5410                                  * vlan dev is found for inner header.
5411                                  */
5412                                 goto another_round;
5413                         else if (unlikely(!skb))
5414                                 goto out;
5415                         else
5416                                 /* We have stripped outer 802.1P vlan 0 header.
5417                                  * But could not find vlan dev.
5418                                  * check again for vlan id to set OTHERHOST.
5419                                  */
5420                                 goto check_vlan_id;
5421                 }
5422                 /* Note: we might in the future use prio bits
5423                  * and set skb->priority like in vlan_do_receive()
5424                  * For the time being, just ignore Priority Code Point
5425                  */
5426                 __vlan_hwaccel_clear_tag(skb);
5427         }
5428
5429         type = skb->protocol;
5430
5431         /* deliver only exact match when indicated */
5432         if (likely(!deliver_exact)) {
5433                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5434                                        &ptype_base[ntohs(type) &
5435                                                    PTYPE_HASH_MASK]);
5436         }
5437
5438         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5439                                &orig_dev->ptype_specific);
5440
5441         if (unlikely(skb->dev != orig_dev)) {
5442                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443                                        &skb->dev->ptype_specific);
5444         }
5445
5446         if (pt_prev) {
5447                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5448                         goto drop;
5449                 *ppt_prev = pt_prev;
5450         } else {
5451 drop:
5452                 if (!deliver_exact)
5453                         atomic_long_inc(&skb->dev->rx_dropped);
5454                 else
5455                         atomic_long_inc(&skb->dev->rx_nohandler);
5456                 kfree_skb(skb);
5457                 /* Jamal, now you will not able to escape explaining
5458                  * me how you were going to use this. :-)
5459                  */
5460                 ret = NET_RX_DROP;
5461         }
5462
5463 out:
5464         /* The invariant here is that if *ppt_prev is not NULL
5465          * then skb should also be non-NULL.
5466          *
5467          * Apparently *ppt_prev assignment above holds this invariant due to
5468          * skb dereferencing near it.
5469          */
5470         *pskb = skb;
5471         return ret;
5472 }
5473
5474 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5475 {
5476         struct net_device *orig_dev = skb->dev;
5477         struct packet_type *pt_prev = NULL;
5478         int ret;
5479
5480         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5481         if (pt_prev)
5482                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5483                                          skb->dev, pt_prev, orig_dev);
5484         return ret;
5485 }
5486
5487 /**
5488  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5489  *      @skb: buffer to process
5490  *
5491  *      More direct receive version of netif_receive_skb().  It should
5492  *      only be used by callers that have a need to skip RPS and Generic XDP.
5493  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5494  *
5495  *      This function may only be called from softirq context and interrupts
5496  *      should be enabled.
5497  *
5498  *      Return values (usually ignored):
5499  *      NET_RX_SUCCESS: no congestion
5500  *      NET_RX_DROP: packet was dropped
5501  */
5502 int netif_receive_skb_core(struct sk_buff *skb)
5503 {
5504         int ret;
5505
5506         rcu_read_lock();
5507         ret = __netif_receive_skb_one_core(skb, false);
5508         rcu_read_unlock();
5509
5510         return ret;
5511 }
5512 EXPORT_SYMBOL(netif_receive_skb_core);
5513
5514 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5515                                                   struct packet_type *pt_prev,
5516                                                   struct net_device *orig_dev)
5517 {
5518         struct sk_buff *skb, *next;
5519
5520         if (!pt_prev)
5521                 return;
5522         if (list_empty(head))
5523                 return;
5524         if (pt_prev->list_func != NULL)
5525                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5526                                    ip_list_rcv, head, pt_prev, orig_dev);
5527         else
5528                 list_for_each_entry_safe(skb, next, head, list) {
5529                         skb_list_del_init(skb);
5530                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5531                 }
5532 }
5533
5534 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5535 {
5536         /* Fast-path assumptions:
5537          * - There is no RX handler.
5538          * - Only one packet_type matches.
5539          * If either of these fails, we will end up doing some per-packet
5540          * processing in-line, then handling the 'last ptype' for the whole
5541          * sublist.  This can't cause out-of-order delivery to any single ptype,
5542          * because the 'last ptype' must be constant across the sublist, and all
5543          * other ptypes are handled per-packet.
5544          */
5545         /* Current (common) ptype of sublist */
5546         struct packet_type *pt_curr = NULL;
5547         /* Current (common) orig_dev of sublist */
5548         struct net_device *od_curr = NULL;
5549         struct list_head sublist;
5550         struct sk_buff *skb, *next;
5551
5552         INIT_LIST_HEAD(&sublist);
5553         list_for_each_entry_safe(skb, next, head, list) {
5554                 struct net_device *orig_dev = skb->dev;
5555                 struct packet_type *pt_prev = NULL;
5556
5557                 skb_list_del_init(skb);
5558                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5559                 if (!pt_prev)
5560                         continue;
5561                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5562                         /* dispatch old sublist */
5563                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5564                         /* start new sublist */
5565                         INIT_LIST_HEAD(&sublist);
5566                         pt_curr = pt_prev;
5567                         od_curr = orig_dev;
5568                 }
5569                 list_add_tail(&skb->list, &sublist);
5570         }
5571
5572         /* dispatch final sublist */
5573         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5574 }
5575
5576 static int __netif_receive_skb(struct sk_buff *skb)
5577 {
5578         int ret;
5579
5580         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5581                 unsigned int noreclaim_flag;
5582
5583                 /*
5584                  * PFMEMALLOC skbs are special, they should
5585                  * - be delivered to SOCK_MEMALLOC sockets only
5586                  * - stay away from userspace
5587                  * - have bounded memory usage
5588                  *
5589                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5590                  * context down to all allocation sites.
5591                  */
5592                 noreclaim_flag = memalloc_noreclaim_save();
5593                 ret = __netif_receive_skb_one_core(skb, true);
5594                 memalloc_noreclaim_restore(noreclaim_flag);
5595         } else
5596                 ret = __netif_receive_skb_one_core(skb, false);
5597
5598         return ret;
5599 }
5600
5601 static void __netif_receive_skb_list(struct list_head *head)
5602 {
5603         unsigned long noreclaim_flag = 0;
5604         struct sk_buff *skb, *next;
5605         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5606
5607         list_for_each_entry_safe(skb, next, head, list) {
5608                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5609                         struct list_head sublist;
5610
5611                         /* Handle the previous sublist */
5612                         list_cut_before(&sublist, head, &skb->list);
5613                         if (!list_empty(&sublist))
5614                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5615                         pfmemalloc = !pfmemalloc;
5616                         /* See comments in __netif_receive_skb */
5617                         if (pfmemalloc)
5618                                 noreclaim_flag = memalloc_noreclaim_save();
5619                         else
5620                                 memalloc_noreclaim_restore(noreclaim_flag);
5621                 }
5622         }
5623         /* Handle the remaining sublist */
5624         if (!list_empty(head))
5625                 __netif_receive_skb_list_core(head, pfmemalloc);
5626         /* Restore pflags */
5627         if (pfmemalloc)
5628                 memalloc_noreclaim_restore(noreclaim_flag);
5629 }
5630
5631 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5632 {
5633         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5634         struct bpf_prog *new = xdp->prog;
5635         int ret = 0;
5636
5637         switch (xdp->command) {
5638         case XDP_SETUP_PROG:
5639                 rcu_assign_pointer(dev->xdp_prog, new);
5640                 if (old)
5641                         bpf_prog_put(old);
5642
5643                 if (old && !new) {
5644                         static_branch_dec(&generic_xdp_needed_key);
5645                 } else if (new && !old) {
5646                         static_branch_inc(&generic_xdp_needed_key);
5647                         dev_disable_lro(dev);
5648                         dev_disable_gro_hw(dev);
5649                 }
5650                 break;
5651
5652         default:
5653                 ret = -EINVAL;
5654                 break;
5655         }
5656
5657         return ret;
5658 }
5659
5660 static int netif_receive_skb_internal(struct sk_buff *skb)
5661 {
5662         int ret;
5663
5664         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5665
5666         if (skb_defer_rx_timestamp(skb))
5667                 return NET_RX_SUCCESS;
5668
5669         rcu_read_lock();
5670 #ifdef CONFIG_RPS
5671         if (static_branch_unlikely(&rps_needed)) {
5672                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5673                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5674
5675                 if (cpu >= 0) {
5676                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5677                         rcu_read_unlock();
5678                         return ret;
5679                 }
5680         }
5681 #endif
5682         ret = __netif_receive_skb(skb);
5683         rcu_read_unlock();
5684         return ret;
5685 }
5686
5687 static void netif_receive_skb_list_internal(struct list_head *head)
5688 {
5689         struct sk_buff *skb, *next;
5690         struct list_head sublist;
5691
5692         INIT_LIST_HEAD(&sublist);
5693         list_for_each_entry_safe(skb, next, head, list) {
5694                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5695                 skb_list_del_init(skb);
5696                 if (!skb_defer_rx_timestamp(skb))
5697                         list_add_tail(&skb->list, &sublist);
5698         }
5699         list_splice_init(&sublist, head);
5700
5701         rcu_read_lock();
5702 #ifdef CONFIG_RPS
5703         if (static_branch_unlikely(&rps_needed)) {
5704                 list_for_each_entry_safe(skb, next, head, list) {
5705                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5706                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5707
5708                         if (cpu >= 0) {
5709                                 /* Will be handled, remove from list */
5710                                 skb_list_del_init(skb);
5711                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5712                         }
5713                 }
5714         }
5715 #endif
5716         __netif_receive_skb_list(head);
5717         rcu_read_unlock();
5718 }
5719
5720 /**
5721  *      netif_receive_skb - process receive buffer from network
5722  *      @skb: buffer to process
5723  *
5724  *      netif_receive_skb() is the main receive data processing function.
5725  *      It always succeeds. The buffer may be dropped during processing
5726  *      for congestion control or by the protocol layers.
5727  *
5728  *      This function may only be called from softirq context and interrupts
5729  *      should be enabled.
5730  *
5731  *      Return values (usually ignored):
5732  *      NET_RX_SUCCESS: no congestion
5733  *      NET_RX_DROP: packet was dropped
5734  */
5735 int netif_receive_skb(struct sk_buff *skb)
5736 {
5737         int ret;
5738
5739         trace_netif_receive_skb_entry(skb);
5740
5741         ret = netif_receive_skb_internal(skb);
5742         trace_netif_receive_skb_exit(ret);
5743
5744         return ret;
5745 }
5746 EXPORT_SYMBOL(netif_receive_skb);
5747
5748 /**
5749  *      netif_receive_skb_list - process many receive buffers from network
5750  *      @head: list of skbs to process.
5751  *
5752  *      Since return value of netif_receive_skb() is normally ignored, and
5753  *      wouldn't be meaningful for a list, this function returns void.
5754  *
5755  *      This function may only be called from softirq context and interrupts
5756  *      should be enabled.
5757  */
5758 void netif_receive_skb_list(struct list_head *head)
5759 {
5760         struct sk_buff *skb;
5761
5762         if (list_empty(head))
5763                 return;
5764         if (trace_netif_receive_skb_list_entry_enabled()) {
5765                 list_for_each_entry(skb, head, list)
5766                         trace_netif_receive_skb_list_entry(skb);
5767         }
5768         netif_receive_skb_list_internal(head);
5769         trace_netif_receive_skb_list_exit(0);
5770 }
5771 EXPORT_SYMBOL(netif_receive_skb_list);
5772
5773 static DEFINE_PER_CPU(struct work_struct, flush_works);
5774
5775 /* Network device is going away, flush any packets still pending */
5776 static void flush_backlog(struct work_struct *work)
5777 {
5778         struct sk_buff *skb, *tmp;
5779         struct softnet_data *sd;
5780
5781         local_bh_disable();
5782         sd = this_cpu_ptr(&softnet_data);
5783
5784         local_irq_disable();
5785         rps_lock(sd);
5786         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5787                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5788                         __skb_unlink(skb, &sd->input_pkt_queue);
5789                         dev_kfree_skb_irq(skb);
5790                         input_queue_head_incr(sd);
5791                 }
5792         }
5793         rps_unlock(sd);
5794         local_irq_enable();
5795
5796         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5797                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5798                         __skb_unlink(skb, &sd->process_queue);
5799                         kfree_skb(skb);
5800                         input_queue_head_incr(sd);
5801                 }
5802         }
5803         local_bh_enable();
5804 }
5805
5806 static bool flush_required(int cpu)
5807 {
5808 #if IS_ENABLED(CONFIG_RPS)
5809         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5810         bool do_flush;
5811
5812         local_irq_disable();
5813         rps_lock(sd);
5814
5815         /* as insertion into process_queue happens with the rps lock held,
5816          * process_queue access may race only with dequeue
5817          */
5818         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5819                    !skb_queue_empty_lockless(&sd->process_queue);
5820         rps_unlock(sd);
5821         local_irq_enable();
5822
5823         return do_flush;
5824 #endif
5825         /* without RPS we can't safely check input_pkt_queue: during a
5826          * concurrent remote skb_queue_splice() we can detect as empty both
5827          * input_pkt_queue and process_queue even if the latter could end-up
5828          * containing a lot of packets.
5829          */
5830         return true;
5831 }
5832
5833 static void flush_all_backlogs(void)
5834 {
5835         static cpumask_t flush_cpus;
5836         unsigned int cpu;
5837
5838         /* since we are under rtnl lock protection we can use static data
5839          * for the cpumask and avoid allocating on stack the possibly
5840          * large mask
5841          */
5842         ASSERT_RTNL();
5843
5844         cpus_read_lock();
5845
5846         cpumask_clear(&flush_cpus);
5847         for_each_online_cpu(cpu) {
5848                 if (flush_required(cpu)) {
5849                         queue_work_on(cpu, system_highpri_wq,
5850                                       per_cpu_ptr(&flush_works, cpu));
5851                         cpumask_set_cpu(cpu, &flush_cpus);
5852                 }
5853         }
5854
5855         /* we can have in flight packet[s] on the cpus we are not flushing,
5856          * synchronize_net() in unregister_netdevice_many() will take care of
5857          * them
5858          */
5859         for_each_cpu(cpu, &flush_cpus)
5860                 flush_work(per_cpu_ptr(&flush_works, cpu));
5861
5862         cpus_read_unlock();
5863 }
5864
5865 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5866 static void gro_normal_list(struct napi_struct *napi)
5867 {
5868         if (!napi->rx_count)
5869                 return;
5870         netif_receive_skb_list_internal(&napi->rx_list);
5871         INIT_LIST_HEAD(&napi->rx_list);
5872         napi->rx_count = 0;
5873 }
5874
5875 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5876  * pass the whole batch up to the stack.
5877  */
5878 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5879 {
5880         list_add_tail(&skb->list, &napi->rx_list);
5881         napi->rx_count += segs;
5882         if (napi->rx_count >= gro_normal_batch)
5883                 gro_normal_list(napi);
5884 }
5885
5886 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5887 {
5888         struct packet_offload *ptype;
5889         __be16 type = skb->protocol;
5890         struct list_head *head = &offload_base;
5891         int err = -ENOENT;
5892
5893         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5894
5895         if (NAPI_GRO_CB(skb)->count == 1) {
5896                 skb_shinfo(skb)->gso_size = 0;
5897                 goto out;
5898         }
5899
5900         rcu_read_lock();
5901         list_for_each_entry_rcu(ptype, head, list) {
5902                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5903                         continue;
5904
5905                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5906                                          ipv6_gro_complete, inet_gro_complete,
5907                                          skb, 0);
5908                 break;
5909         }
5910         rcu_read_unlock();
5911
5912         if (err) {
5913                 WARN_ON(&ptype->list == head);
5914                 kfree_skb(skb);
5915                 return NET_RX_SUCCESS;
5916         }
5917
5918 out:
5919         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5920         return NET_RX_SUCCESS;
5921 }
5922
5923 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5924                                    bool flush_old)
5925 {
5926         struct list_head *head = &napi->gro_hash[index].list;
5927         struct sk_buff *skb, *p;
5928
5929         list_for_each_entry_safe_reverse(skb, p, head, list) {
5930                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5931                         return;
5932                 skb_list_del_init(skb);
5933                 napi_gro_complete(napi, skb);
5934                 napi->gro_hash[index].count--;
5935         }
5936
5937         if (!napi->gro_hash[index].count)
5938                 __clear_bit(index, &napi->gro_bitmask);
5939 }
5940
5941 /* napi->gro_hash[].list contains packets ordered by age.
5942  * youngest packets at the head of it.
5943  * Complete skbs in reverse order to reduce latencies.
5944  */
5945 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5946 {
5947         unsigned long bitmask = napi->gro_bitmask;
5948         unsigned int i, base = ~0U;
5949
5950         while ((i = ffs(bitmask)) != 0) {
5951                 bitmask >>= i;
5952                 base += i;
5953                 __napi_gro_flush_chain(napi, base, flush_old);
5954         }
5955 }
5956 EXPORT_SYMBOL(napi_gro_flush);
5957
5958 static void gro_list_prepare(const struct list_head *head,
5959                              const struct sk_buff *skb)
5960 {
5961         unsigned int maclen = skb->dev->hard_header_len;
5962         u32 hash = skb_get_hash_raw(skb);
5963         struct sk_buff *p;
5964
5965         list_for_each_entry(p, head, list) {
5966                 unsigned long diffs;
5967
5968                 NAPI_GRO_CB(p)->flush = 0;
5969
5970                 if (hash != skb_get_hash_raw(p)) {
5971                         NAPI_GRO_CB(p)->same_flow = 0;
5972                         continue;
5973                 }
5974
5975                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5976                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5977                 if (skb_vlan_tag_present(p))
5978                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5979                 diffs |= skb_metadata_differs(p, skb);
5980                 if (maclen == ETH_HLEN)
5981                         diffs |= compare_ether_header(skb_mac_header(p),
5982                                                       skb_mac_header(skb));
5983                 else if (!diffs)
5984                         diffs = memcmp(skb_mac_header(p),
5985                                        skb_mac_header(skb),
5986                                        maclen);
5987
5988                 /* in most common scenarions 'slow_gro' is 0
5989                  * otherwise we are already on some slower paths
5990                  * either skip all the infrequent tests altogether or
5991                  * avoid trying too hard to skip each of them individually
5992                  */
5993                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5994 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5995                         struct tc_skb_ext *skb_ext;
5996                         struct tc_skb_ext *p_ext;
5997 #endif
5998
5999                         diffs |= p->sk != skb->sk;
6000                         diffs |= skb_metadata_dst_cmp(p, skb);
6001                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
6002
6003 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6004                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6005                         p_ext = skb_ext_find(p, TC_SKB_EXT);
6006
6007                         diffs |= (!!p_ext) ^ (!!skb_ext);
6008                         if (!diffs && unlikely(skb_ext))
6009                                 diffs |= p_ext->chain ^ skb_ext->chain;
6010 #endif
6011                 }
6012
6013                 NAPI_GRO_CB(p)->same_flow = !diffs;
6014         }
6015 }
6016
6017 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6018 {
6019         const struct skb_shared_info *pinfo = skb_shinfo(skb);
6020         const skb_frag_t *frag0 = &pinfo->frags[0];
6021
6022         NAPI_GRO_CB(skb)->data_offset = 0;
6023         NAPI_GRO_CB(skb)->frag0 = NULL;
6024         NAPI_GRO_CB(skb)->frag0_len = 0;
6025
6026         if (!skb_headlen(skb) && pinfo->nr_frags &&
6027             !PageHighMem(skb_frag_page(frag0)) &&
6028             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6029                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6030                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6031                                                     skb_frag_size(frag0),
6032                                                     skb->end - skb->tail);
6033         }
6034 }
6035
6036 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6037 {
6038         struct skb_shared_info *pinfo = skb_shinfo(skb);
6039
6040         BUG_ON(skb->end - skb->tail < grow);
6041
6042         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6043
6044         skb->data_len -= grow;
6045         skb->tail += grow;
6046
6047         skb_frag_off_add(&pinfo->frags[0], grow);
6048         skb_frag_size_sub(&pinfo->frags[0], grow);
6049
6050         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6051                 skb_frag_unref(skb, 0);
6052                 memmove(pinfo->frags, pinfo->frags + 1,
6053                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6054         }
6055 }
6056
6057 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6058 {
6059         struct sk_buff *oldest;
6060
6061         oldest = list_last_entry(head, struct sk_buff, list);
6062
6063         /* We are called with head length >= MAX_GRO_SKBS, so this is
6064          * impossible.
6065          */
6066         if (WARN_ON_ONCE(!oldest))
6067                 return;
6068
6069         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6070          * SKB to the chain.
6071          */
6072         skb_list_del_init(oldest);
6073         napi_gro_complete(napi, oldest);
6074 }
6075
6076 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6077 {
6078         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6079         struct gro_list *gro_list = &napi->gro_hash[bucket];
6080         struct list_head *head = &offload_base;
6081         struct packet_offload *ptype;
6082         __be16 type = skb->protocol;
6083         struct sk_buff *pp = NULL;
6084         enum gro_result ret;
6085         int same_flow;
6086         int grow;
6087
6088         if (netif_elide_gro(skb->dev))
6089                 goto normal;
6090
6091         gro_list_prepare(&gro_list->list, skb);
6092
6093         rcu_read_lock();
6094         list_for_each_entry_rcu(ptype, head, list) {
6095                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6096                         continue;
6097
6098                 skb_set_network_header(skb, skb_gro_offset(skb));
6099                 skb_reset_mac_len(skb);
6100                 NAPI_GRO_CB(skb)->same_flow = 0;
6101                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6102                 NAPI_GRO_CB(skb)->free = 0;
6103                 NAPI_GRO_CB(skb)->encap_mark = 0;
6104                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6105                 NAPI_GRO_CB(skb)->is_fou = 0;
6106                 NAPI_GRO_CB(skb)->is_atomic = 1;
6107                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6108
6109                 /* Setup for GRO checksum validation */
6110                 switch (skb->ip_summed) {
6111                 case CHECKSUM_COMPLETE:
6112                         NAPI_GRO_CB(skb)->csum = skb->csum;
6113                         NAPI_GRO_CB(skb)->csum_valid = 1;
6114                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6115                         break;
6116                 case CHECKSUM_UNNECESSARY:
6117                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6118                         NAPI_GRO_CB(skb)->csum_valid = 0;
6119                         break;
6120                 default:
6121                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6122                         NAPI_GRO_CB(skb)->csum_valid = 0;
6123                 }
6124
6125                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6126                                         ipv6_gro_receive, inet_gro_receive,
6127                                         &gro_list->list, skb);
6128                 break;
6129         }
6130         rcu_read_unlock();
6131
6132         if (&ptype->list == head)
6133                 goto normal;
6134
6135         if (PTR_ERR(pp) == -EINPROGRESS) {
6136                 ret = GRO_CONSUMED;
6137                 goto ok;
6138         }
6139
6140         same_flow = NAPI_GRO_CB(skb)->same_flow;
6141         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6142
6143         if (pp) {
6144                 skb_list_del_init(pp);
6145                 napi_gro_complete(napi, pp);
6146                 gro_list->count--;
6147         }
6148
6149         if (same_flow)
6150                 goto ok;
6151
6152         if (NAPI_GRO_CB(skb)->flush)
6153                 goto normal;
6154
6155         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6156                 gro_flush_oldest(napi, &gro_list->list);
6157         else
6158                 gro_list->count++;
6159
6160         NAPI_GRO_CB(skb)->count = 1;
6161         NAPI_GRO_CB(skb)->age = jiffies;
6162         NAPI_GRO_CB(skb)->last = skb;
6163         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6164         list_add(&skb->list, &gro_list->list);
6165         ret = GRO_HELD;
6166
6167 pull:
6168         grow = skb_gro_offset(skb) - skb_headlen(skb);
6169         if (grow > 0)
6170                 gro_pull_from_frag0(skb, grow);
6171 ok:
6172         if (gro_list->count) {
6173                 if (!test_bit(bucket, &napi->gro_bitmask))
6174                         __set_bit(bucket, &napi->gro_bitmask);
6175         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6176                 __clear_bit(bucket, &napi->gro_bitmask);
6177         }
6178
6179         return ret;
6180
6181 normal:
6182         ret = GRO_NORMAL;
6183         goto pull;
6184 }
6185
6186 struct packet_offload *gro_find_receive_by_type(__be16 type)
6187 {
6188         struct list_head *offload_head = &offload_base;
6189         struct packet_offload *ptype;
6190
6191         list_for_each_entry_rcu(ptype, offload_head, list) {
6192                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6193                         continue;
6194                 return ptype;
6195         }
6196         return NULL;
6197 }
6198 EXPORT_SYMBOL(gro_find_receive_by_type);
6199
6200 struct packet_offload *gro_find_complete_by_type(__be16 type)
6201 {
6202         struct list_head *offload_head = &offload_base;
6203         struct packet_offload *ptype;
6204
6205         list_for_each_entry_rcu(ptype, offload_head, list) {
6206                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6207                         continue;
6208                 return ptype;
6209         }
6210         return NULL;
6211 }
6212 EXPORT_SYMBOL(gro_find_complete_by_type);
6213
6214 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6215                                     struct sk_buff *skb,
6216                                     gro_result_t ret)
6217 {
6218         switch (ret) {
6219         case GRO_NORMAL:
6220                 gro_normal_one(napi, skb, 1);
6221                 break;
6222
6223         case GRO_MERGED_FREE:
6224                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6225                         napi_skb_free_stolen_head(skb);
6226                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6227                         __kfree_skb(skb);
6228                 else
6229                         __kfree_skb_defer(skb);
6230                 break;
6231
6232         case GRO_HELD:
6233         case GRO_MERGED:
6234         case GRO_CONSUMED:
6235                 break;
6236         }
6237
6238         return ret;
6239 }
6240
6241 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6242 {
6243         gro_result_t ret;
6244
6245         skb_mark_napi_id(skb, napi);
6246         trace_napi_gro_receive_entry(skb);
6247
6248         skb_gro_reset_offset(skb, 0);
6249
6250         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6251         trace_napi_gro_receive_exit(ret);
6252
6253         return ret;
6254 }
6255 EXPORT_SYMBOL(napi_gro_receive);
6256
6257 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6258 {
6259         if (unlikely(skb->pfmemalloc)) {
6260                 consume_skb(skb);
6261                 return;
6262         }
6263         __skb_pull(skb, skb_headlen(skb));
6264         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6265         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6266         __vlan_hwaccel_clear_tag(skb);
6267         skb->dev = napi->dev;
6268         skb->skb_iif = 0;
6269
6270         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6271         skb->pkt_type = PACKET_HOST;
6272
6273         skb->encapsulation = 0;
6274         skb_shinfo(skb)->gso_type = 0;
6275         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6276         if (unlikely(skb->slow_gro)) {
6277                 skb_orphan(skb);
6278                 skb_ext_reset(skb);
6279                 nf_reset_ct(skb);
6280                 skb->slow_gro = 0;
6281         }
6282
6283         napi->skb = skb;
6284 }
6285
6286 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6287 {
6288         struct sk_buff *skb = napi->skb;
6289
6290         if (!skb) {
6291                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6292                 if (skb) {
6293                         napi->skb = skb;
6294                         skb_mark_napi_id(skb, napi);
6295                 }
6296         }
6297         return skb;
6298 }
6299 EXPORT_SYMBOL(napi_get_frags);
6300
6301 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6302                                       struct sk_buff *skb,
6303                                       gro_result_t ret)
6304 {
6305         switch (ret) {
6306         case GRO_NORMAL:
6307         case GRO_HELD:
6308                 __skb_push(skb, ETH_HLEN);
6309                 skb->protocol = eth_type_trans(skb, skb->dev);
6310                 if (ret == GRO_NORMAL)
6311                         gro_normal_one(napi, skb, 1);
6312                 break;
6313
6314         case GRO_MERGED_FREE:
6315                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6316                         napi_skb_free_stolen_head(skb);
6317                 else
6318                         napi_reuse_skb(napi, skb);
6319                 break;
6320
6321         case GRO_MERGED:
6322         case GRO_CONSUMED:
6323                 break;
6324         }
6325
6326         return ret;
6327 }
6328
6329 /* Upper GRO stack assumes network header starts at gro_offset=0
6330  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6331  * We copy ethernet header into skb->data to have a common layout.
6332  */
6333 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6334 {
6335         struct sk_buff *skb = napi->skb;
6336         const struct ethhdr *eth;
6337         unsigned int hlen = sizeof(*eth);
6338
6339         napi->skb = NULL;
6340
6341         skb_reset_mac_header(skb);
6342         skb_gro_reset_offset(skb, hlen);
6343
6344         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6345                 eth = skb_gro_header_slow(skb, hlen, 0);
6346                 if (unlikely(!eth)) {
6347                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6348                                              __func__, napi->dev->name);
6349                         napi_reuse_skb(napi, skb);
6350                         return NULL;
6351                 }
6352         } else {
6353                 eth = (const struct ethhdr *)skb->data;
6354                 gro_pull_from_frag0(skb, hlen);
6355                 NAPI_GRO_CB(skb)->frag0 += hlen;
6356                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6357         }
6358         __skb_pull(skb, hlen);
6359
6360         /*
6361          * This works because the only protocols we care about don't require
6362          * special handling.
6363          * We'll fix it up properly in napi_frags_finish()
6364          */
6365         skb->protocol = eth->h_proto;
6366
6367         return skb;
6368 }
6369
6370 gro_result_t napi_gro_frags(struct napi_struct *napi)
6371 {
6372         gro_result_t ret;
6373         struct sk_buff *skb = napi_frags_skb(napi);
6374
6375         trace_napi_gro_frags_entry(skb);
6376
6377         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6378         trace_napi_gro_frags_exit(ret);
6379
6380         return ret;
6381 }
6382 EXPORT_SYMBOL(napi_gro_frags);
6383
6384 /* Compute the checksum from gro_offset and return the folded value
6385  * after adding in any pseudo checksum.
6386  */
6387 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6388 {
6389         __wsum wsum;
6390         __sum16 sum;
6391
6392         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6393
6394         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6395         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6396         /* See comments in __skb_checksum_complete(). */
6397         if (likely(!sum)) {
6398                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6399                     !skb->csum_complete_sw)
6400                         netdev_rx_csum_fault(skb->dev, skb);
6401         }
6402
6403         NAPI_GRO_CB(skb)->csum = wsum;
6404         NAPI_GRO_CB(skb)->csum_valid = 1;
6405
6406         return sum;
6407 }
6408 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6409
6410 static void net_rps_send_ipi(struct softnet_data *remsd)
6411 {
6412 #ifdef CONFIG_RPS
6413         while (remsd) {
6414                 struct softnet_data *next = remsd->rps_ipi_next;
6415
6416                 if (cpu_online(remsd->cpu))
6417                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6418                 remsd = next;
6419         }
6420 #endif
6421 }
6422
6423 /*
6424  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6425  * Note: called with local irq disabled, but exits with local irq enabled.
6426  */
6427 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6428 {
6429 #ifdef CONFIG_RPS
6430         struct softnet_data *remsd = sd->rps_ipi_list;
6431
6432         if (remsd) {
6433                 sd->rps_ipi_list = NULL;
6434
6435                 local_irq_enable();
6436
6437                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6438                 net_rps_send_ipi(remsd);
6439         } else
6440 #endif
6441                 local_irq_enable();
6442 }
6443
6444 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6445 {
6446 #ifdef CONFIG_RPS
6447         return sd->rps_ipi_list != NULL;
6448 #else
6449         return false;
6450 #endif
6451 }
6452
6453 static int process_backlog(struct napi_struct *napi, int quota)
6454 {
6455         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6456         bool again = true;
6457         int work = 0;
6458
6459         /* Check if we have pending ipi, its better to send them now,
6460          * not waiting net_rx_action() end.
6461          */
6462         if (sd_has_rps_ipi_waiting(sd)) {
6463                 local_irq_disable();
6464                 net_rps_action_and_irq_enable(sd);
6465         }
6466
6467         napi->weight = READ_ONCE(dev_rx_weight);
6468         while (again) {
6469                 struct sk_buff *skb;
6470
6471                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6472                         rcu_read_lock();
6473                         __netif_receive_skb(skb);
6474                         rcu_read_unlock();
6475                         input_queue_head_incr(sd);
6476                         if (++work >= quota)
6477                                 return work;
6478
6479                 }
6480
6481                 local_irq_disable();
6482                 rps_lock(sd);
6483                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6484                         /*
6485                          * Inline a custom version of __napi_complete().
6486                          * only current cpu owns and manipulates this napi,
6487                          * and NAPI_STATE_SCHED is the only possible flag set
6488                          * on backlog.
6489                          * We can use a plain write instead of clear_bit(),
6490                          * and we dont need an smp_mb() memory barrier.
6491                          */
6492                         napi->state = 0;
6493                         again = false;
6494                 } else {
6495                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6496                                                    &sd->process_queue);
6497                 }
6498                 rps_unlock(sd);
6499                 local_irq_enable();
6500         }
6501
6502         return work;
6503 }
6504
6505 /**
6506  * __napi_schedule - schedule for receive
6507  * @n: entry to schedule
6508  *
6509  * The entry's receive function will be scheduled to run.
6510  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6511  */
6512 void __napi_schedule(struct napi_struct *n)
6513 {
6514         unsigned long flags;
6515
6516         local_irq_save(flags);
6517         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6518         local_irq_restore(flags);
6519 }
6520 EXPORT_SYMBOL(__napi_schedule);
6521
6522 /**
6523  *      napi_schedule_prep - check if napi can be scheduled
6524  *      @n: napi context
6525  *
6526  * Test if NAPI routine is already running, and if not mark
6527  * it as running.  This is used as a condition variable to
6528  * insure only one NAPI poll instance runs.  We also make
6529  * sure there is no pending NAPI disable.
6530  */
6531 bool napi_schedule_prep(struct napi_struct *n)
6532 {
6533         unsigned long val, new;
6534
6535         do {
6536                 val = READ_ONCE(n->state);
6537                 if (unlikely(val & NAPIF_STATE_DISABLE))
6538                         return false;
6539                 new = val | NAPIF_STATE_SCHED;
6540
6541                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6542                  * This was suggested by Alexander Duyck, as compiler
6543                  * emits better code than :
6544                  * if (val & NAPIF_STATE_SCHED)
6545                  *     new |= NAPIF_STATE_MISSED;
6546                  */
6547                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6548                                                    NAPIF_STATE_MISSED;
6549         } while (cmpxchg(&n->state, val, new) != val);
6550
6551         return !(val & NAPIF_STATE_SCHED);
6552 }
6553 EXPORT_SYMBOL(napi_schedule_prep);
6554
6555 /**
6556  * __napi_schedule_irqoff - schedule for receive
6557  * @n: entry to schedule
6558  *
6559  * Variant of __napi_schedule() assuming hard irqs are masked.
6560  *
6561  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6562  * because the interrupt disabled assumption might not be true
6563  * due to force-threaded interrupts and spinlock substitution.
6564  */
6565 void __napi_schedule_irqoff(struct napi_struct *n)
6566 {
6567         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6568                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6569         else
6570                 __napi_schedule(n);
6571 }
6572 EXPORT_SYMBOL(__napi_schedule_irqoff);
6573
6574 bool napi_complete_done(struct napi_struct *n, int work_done)
6575 {
6576         unsigned long flags, val, new, timeout = 0;
6577         bool ret = true;
6578
6579         /*
6580          * 1) Don't let napi dequeue from the cpu poll list
6581          *    just in case its running on a different cpu.
6582          * 2) If we are busy polling, do nothing here, we have
6583          *    the guarantee we will be called later.
6584          */
6585         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6586                                  NAPIF_STATE_IN_BUSY_POLL)))
6587                 return false;
6588
6589         if (work_done) {
6590                 if (n->gro_bitmask)
6591                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6592                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6593         }
6594         if (n->defer_hard_irqs_count > 0) {
6595                 n->defer_hard_irqs_count--;
6596                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6597                 if (timeout)
6598                         ret = false;
6599         }
6600         if (n->gro_bitmask) {
6601                 /* When the NAPI instance uses a timeout and keeps postponing
6602                  * it, we need to bound somehow the time packets are kept in
6603                  * the GRO layer
6604                  */
6605                 napi_gro_flush(n, !!timeout);
6606         }
6607
6608         gro_normal_list(n);
6609
6610         if (unlikely(!list_empty(&n->poll_list))) {
6611                 /* If n->poll_list is not empty, we need to mask irqs */
6612                 local_irq_save(flags);
6613                 list_del_init(&n->poll_list);
6614                 local_irq_restore(flags);
6615         }
6616
6617         do {
6618                 val = READ_ONCE(n->state);
6619
6620                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6621
6622                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6623                               NAPIF_STATE_SCHED_THREADED |
6624                               NAPIF_STATE_PREFER_BUSY_POLL);
6625
6626                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6627                  * because we will call napi->poll() one more time.
6628                  * This C code was suggested by Alexander Duyck to help gcc.
6629                  */
6630                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6631                                                     NAPIF_STATE_SCHED;
6632         } while (cmpxchg(&n->state, val, new) != val);
6633
6634         if (unlikely(val & NAPIF_STATE_MISSED)) {
6635                 __napi_schedule(n);
6636                 return false;
6637         }
6638
6639         if (timeout)
6640                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6641                               HRTIMER_MODE_REL_PINNED);
6642         return ret;
6643 }
6644 EXPORT_SYMBOL(napi_complete_done);
6645
6646 /* must be called under rcu_read_lock(), as we dont take a reference */
6647 static struct napi_struct *napi_by_id(unsigned int napi_id)
6648 {
6649         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6650         struct napi_struct *napi;
6651
6652         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6653                 if (napi->napi_id == napi_id)
6654                         return napi;
6655
6656         return NULL;
6657 }
6658
6659 #if defined(CONFIG_NET_RX_BUSY_POLL)
6660
6661 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6662 {
6663         if (!skip_schedule) {
6664                 gro_normal_list(napi);
6665                 __napi_schedule(napi);
6666                 return;
6667         }
6668
6669         if (napi->gro_bitmask) {
6670                 /* flush too old packets
6671                  * If HZ < 1000, flush all packets.
6672                  */
6673                 napi_gro_flush(napi, HZ >= 1000);
6674         }
6675
6676         gro_normal_list(napi);
6677         clear_bit(NAPI_STATE_SCHED, &napi->state);
6678 }
6679
6680 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6681                            u16 budget)
6682 {
6683         bool skip_schedule = false;
6684         unsigned long timeout;
6685         int rc;
6686
6687         /* Busy polling means there is a high chance device driver hard irq
6688          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6689          * set in napi_schedule_prep().
6690          * Since we are about to call napi->poll() once more, we can safely
6691          * clear NAPI_STATE_MISSED.
6692          *
6693          * Note: x86 could use a single "lock and ..." instruction
6694          * to perform these two clear_bit()
6695          */
6696         clear_bit(NAPI_STATE_MISSED, &napi->state);
6697         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6698
6699         local_bh_disable();
6700
6701         if (prefer_busy_poll) {
6702                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6703                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6704                 if (napi->defer_hard_irqs_count && timeout) {
6705                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6706                         skip_schedule = true;
6707                 }
6708         }
6709
6710         /* All we really want here is to re-enable device interrupts.
6711          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6712          */
6713         rc = napi->poll(napi, budget);
6714         /* We can't gro_normal_list() here, because napi->poll() might have
6715          * rearmed the napi (napi_complete_done()) in which case it could
6716          * already be running on another CPU.
6717          */
6718         trace_napi_poll(napi, rc, budget);
6719         netpoll_poll_unlock(have_poll_lock);
6720         if (rc == budget)
6721                 __busy_poll_stop(napi, skip_schedule);
6722         local_bh_enable();
6723 }
6724
6725 void napi_busy_loop(unsigned int napi_id,
6726                     bool (*loop_end)(void *, unsigned long),
6727                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6728 {
6729         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6730         int (*napi_poll)(struct napi_struct *napi, int budget);
6731         void *have_poll_lock = NULL;
6732         struct napi_struct *napi;
6733
6734 restart:
6735         napi_poll = NULL;
6736
6737         rcu_read_lock();
6738
6739         napi = napi_by_id(napi_id);
6740         if (!napi)
6741                 goto out;
6742
6743         preempt_disable();
6744         for (;;) {
6745                 int work = 0;
6746
6747                 local_bh_disable();
6748                 if (!napi_poll) {
6749                         unsigned long val = READ_ONCE(napi->state);
6750
6751                         /* If multiple threads are competing for this napi,
6752                          * we avoid dirtying napi->state as much as we can.
6753                          */
6754                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6755                                    NAPIF_STATE_IN_BUSY_POLL)) {
6756                                 if (prefer_busy_poll)
6757                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6758                                 goto count;
6759                         }
6760                         if (cmpxchg(&napi->state, val,
6761                                     val | NAPIF_STATE_IN_BUSY_POLL |
6762                                           NAPIF_STATE_SCHED) != val) {
6763                                 if (prefer_busy_poll)
6764                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6765                                 goto count;
6766                         }
6767                         have_poll_lock = netpoll_poll_lock(napi);
6768                         napi_poll = napi->poll;
6769                 }
6770                 work = napi_poll(napi, budget);
6771                 trace_napi_poll(napi, work, budget);
6772                 gro_normal_list(napi);
6773 count:
6774                 if (work > 0)
6775                         __NET_ADD_STATS(dev_net(napi->dev),
6776                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6777                 local_bh_enable();
6778
6779                 if (!loop_end || loop_end(loop_end_arg, start_time))
6780                         break;
6781
6782                 if (unlikely(need_resched())) {
6783                         if (napi_poll)
6784                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6785                         preempt_enable();
6786                         rcu_read_unlock();
6787                         cond_resched();
6788                         if (loop_end(loop_end_arg, start_time))
6789                                 return;
6790                         goto restart;
6791                 }
6792                 cpu_relax();
6793         }
6794         if (napi_poll)
6795                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6796         preempt_enable();
6797 out:
6798         rcu_read_unlock();
6799 }
6800 EXPORT_SYMBOL(napi_busy_loop);
6801
6802 #endif /* CONFIG_NET_RX_BUSY_POLL */
6803
6804 static void napi_hash_add(struct napi_struct *napi)
6805 {
6806         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6807                 return;
6808
6809         spin_lock(&napi_hash_lock);
6810
6811         /* 0..NR_CPUS range is reserved for sender_cpu use */
6812         do {
6813                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6814                         napi_gen_id = MIN_NAPI_ID;
6815         } while (napi_by_id(napi_gen_id));
6816         napi->napi_id = napi_gen_id;
6817
6818         hlist_add_head_rcu(&napi->napi_hash_node,
6819                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6820
6821         spin_unlock(&napi_hash_lock);
6822 }
6823
6824 /* Warning : caller is responsible to make sure rcu grace period
6825  * is respected before freeing memory containing @napi
6826  */
6827 static void napi_hash_del(struct napi_struct *napi)
6828 {
6829         spin_lock(&napi_hash_lock);
6830
6831         hlist_del_init_rcu(&napi->napi_hash_node);
6832
6833         spin_unlock(&napi_hash_lock);
6834 }
6835
6836 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6837 {
6838         struct napi_struct *napi;
6839
6840         napi = container_of(timer, struct napi_struct, timer);
6841
6842         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6843          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6844          */
6845         if (!napi_disable_pending(napi) &&
6846             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6847                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6848                 __napi_schedule_irqoff(napi);
6849         }
6850
6851         return HRTIMER_NORESTART;
6852 }
6853
6854 static void init_gro_hash(struct napi_struct *napi)
6855 {
6856         int i;
6857
6858         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6859                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6860                 napi->gro_hash[i].count = 0;
6861         }
6862         napi->gro_bitmask = 0;
6863 }
6864
6865 int dev_set_threaded(struct net_device *dev, bool threaded)
6866 {
6867         struct napi_struct *napi;
6868         int err = 0;
6869
6870         if (dev->threaded == threaded)
6871                 return 0;
6872
6873         if (threaded) {
6874                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6875                         if (!napi->thread) {
6876                                 err = napi_kthread_create(napi);
6877                                 if (err) {
6878                                         threaded = false;
6879                                         break;
6880                                 }
6881                         }
6882                 }
6883         }
6884
6885         dev->threaded = threaded;
6886
6887         /* Make sure kthread is created before THREADED bit
6888          * is set.
6889          */
6890         smp_mb__before_atomic();
6891
6892         /* Setting/unsetting threaded mode on a napi might not immediately
6893          * take effect, if the current napi instance is actively being
6894          * polled. In this case, the switch between threaded mode and
6895          * softirq mode will happen in the next round of napi_schedule().
6896          * This should not cause hiccups/stalls to the live traffic.
6897          */
6898         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6899                 if (threaded)
6900                         set_bit(NAPI_STATE_THREADED, &napi->state);
6901                 else
6902                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6903         }
6904
6905         return err;
6906 }
6907 EXPORT_SYMBOL(dev_set_threaded);
6908
6909 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6910                     int (*poll)(struct napi_struct *, int), int weight)
6911 {
6912         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6913                 return;
6914
6915         INIT_LIST_HEAD(&napi->poll_list);
6916         INIT_HLIST_NODE(&napi->napi_hash_node);
6917         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6918         napi->timer.function = napi_watchdog;
6919         init_gro_hash(napi);
6920         napi->skb = NULL;
6921         INIT_LIST_HEAD(&napi->rx_list);
6922         napi->rx_count = 0;
6923         napi->poll = poll;
6924         if (weight > NAPI_POLL_WEIGHT)
6925                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6926                                 weight);
6927         napi->weight = weight;
6928         napi->dev = dev;
6929 #ifdef CONFIG_NETPOLL
6930         napi->poll_owner = -1;
6931 #endif
6932         set_bit(NAPI_STATE_SCHED, &napi->state);
6933         set_bit(NAPI_STATE_NPSVC, &napi->state);
6934         list_add_rcu(&napi->dev_list, &dev->napi_list);
6935         napi_hash_add(napi);
6936         /* Create kthread for this napi if dev->threaded is set.
6937          * Clear dev->threaded if kthread creation failed so that
6938          * threaded mode will not be enabled in napi_enable().
6939          */
6940         if (dev->threaded && napi_kthread_create(napi))
6941                 dev->threaded = 0;
6942 }
6943 EXPORT_SYMBOL(netif_napi_add);
6944
6945 void napi_disable(struct napi_struct *n)
6946 {
6947         might_sleep();
6948         set_bit(NAPI_STATE_DISABLE, &n->state);
6949
6950         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6951                 msleep(1);
6952         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6953                 msleep(1);
6954
6955         hrtimer_cancel(&n->timer);
6956
6957         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6958         clear_bit(NAPI_STATE_DISABLE, &n->state);
6959         clear_bit(NAPI_STATE_THREADED, &n->state);
6960 }
6961 EXPORT_SYMBOL(napi_disable);
6962
6963 /**
6964  *      napi_enable - enable NAPI scheduling
6965  *      @n: NAPI context
6966  *
6967  * Resume NAPI from being scheduled on this context.
6968  * Must be paired with napi_disable.
6969  */
6970 void napi_enable(struct napi_struct *n)
6971 {
6972         unsigned long val, new;
6973
6974         do {
6975                 val = READ_ONCE(n->state);
6976                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6977
6978                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6979                 if (n->dev->threaded && n->thread)
6980                         new |= NAPIF_STATE_THREADED;
6981         } while (cmpxchg(&n->state, val, new) != val);
6982 }
6983 EXPORT_SYMBOL(napi_enable);
6984
6985 static void flush_gro_hash(struct napi_struct *napi)
6986 {
6987         int i;
6988
6989         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6990                 struct sk_buff *skb, *n;
6991
6992                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6993                         kfree_skb(skb);
6994                 napi->gro_hash[i].count = 0;
6995         }
6996 }
6997
6998 /* Must be called in process context */
6999 void __netif_napi_del(struct napi_struct *napi)
7000 {
7001         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7002                 return;
7003
7004         napi_hash_del(napi);
7005         list_del_rcu(&napi->dev_list);
7006         napi_free_frags(napi);
7007
7008         flush_gro_hash(napi);
7009         napi->gro_bitmask = 0;
7010
7011         if (napi->thread) {
7012                 kthread_stop(napi->thread);
7013                 napi->thread = NULL;
7014         }
7015 }
7016 EXPORT_SYMBOL(__netif_napi_del);
7017
7018 static int __napi_poll(struct napi_struct *n, bool *repoll)
7019 {
7020         int work, weight;
7021
7022         weight = n->weight;
7023
7024         /* This NAPI_STATE_SCHED test is for avoiding a race
7025          * with netpoll's poll_napi().  Only the entity which
7026          * obtains the lock and sees NAPI_STATE_SCHED set will
7027          * actually make the ->poll() call.  Therefore we avoid
7028          * accidentally calling ->poll() when NAPI is not scheduled.
7029          */
7030         work = 0;
7031         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7032                 work = n->poll(n, weight);
7033                 trace_napi_poll(n, work, weight);
7034         }
7035
7036         if (unlikely(work > weight))
7037                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7038                             n->poll, work, weight);
7039
7040         if (likely(work < weight))
7041                 return work;
7042
7043         /* Drivers must not modify the NAPI state if they
7044          * consume the entire weight.  In such cases this code
7045          * still "owns" the NAPI instance and therefore can
7046          * move the instance around on the list at-will.
7047          */
7048         if (unlikely(napi_disable_pending(n))) {
7049                 napi_complete(n);
7050                 return work;
7051         }
7052
7053         /* The NAPI context has more processing work, but busy-polling
7054          * is preferred. Exit early.
7055          */
7056         if (napi_prefer_busy_poll(n)) {
7057                 if (napi_complete_done(n, work)) {
7058                         /* If timeout is not set, we need to make sure
7059                          * that the NAPI is re-scheduled.
7060                          */
7061                         napi_schedule(n);
7062                 }
7063                 return work;
7064         }
7065
7066         if (n->gro_bitmask) {
7067                 /* flush too old packets
7068                  * If HZ < 1000, flush all packets.
7069                  */
7070                 napi_gro_flush(n, HZ >= 1000);
7071         }
7072
7073         gro_normal_list(n);
7074
7075         /* Some drivers may have called napi_schedule
7076          * prior to exhausting their budget.
7077          */
7078         if (unlikely(!list_empty(&n->poll_list))) {
7079                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7080                              n->dev ? n->dev->name : "backlog");
7081                 return work;
7082         }
7083
7084         *repoll = true;
7085
7086         return work;
7087 }
7088
7089 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7090 {
7091         bool do_repoll = false;
7092         void *have;
7093         int work;
7094
7095         list_del_init(&n->poll_list);
7096
7097         have = netpoll_poll_lock(n);
7098
7099         work = __napi_poll(n, &do_repoll);
7100
7101         if (do_repoll)
7102                 list_add_tail(&n->poll_list, repoll);
7103
7104         netpoll_poll_unlock(have);
7105
7106         return work;
7107 }
7108
7109 static int napi_thread_wait(struct napi_struct *napi)
7110 {
7111         bool woken = false;
7112
7113         set_current_state(TASK_INTERRUPTIBLE);
7114
7115         while (!kthread_should_stop()) {
7116                 /* Testing SCHED_THREADED bit here to make sure the current
7117                  * kthread owns this napi and could poll on this napi.
7118                  * Testing SCHED bit is not enough because SCHED bit might be
7119                  * set by some other busy poll thread or by napi_disable().
7120                  */
7121                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7122                         WARN_ON(!list_empty(&napi->poll_list));
7123                         __set_current_state(TASK_RUNNING);
7124                         return 0;
7125                 }
7126
7127                 schedule();
7128                 /* woken being true indicates this thread owns this napi. */
7129                 woken = true;
7130                 set_current_state(TASK_INTERRUPTIBLE);
7131         }
7132         __set_current_state(TASK_RUNNING);
7133
7134         return -1;
7135 }
7136
7137 static int napi_threaded_poll(void *data)
7138 {
7139         struct napi_struct *napi = data;
7140         void *have;
7141
7142         while (!napi_thread_wait(napi)) {
7143                 for (;;) {
7144                         bool repoll = false;
7145
7146                         local_bh_disable();
7147
7148                         have = netpoll_poll_lock(napi);
7149                         __napi_poll(napi, &repoll);
7150                         netpoll_poll_unlock(have);
7151
7152                         local_bh_enable();
7153
7154                         if (!repoll)
7155                                 break;
7156
7157                         cond_resched();
7158                 }
7159         }
7160         return 0;
7161 }
7162
7163 static __latent_entropy void net_rx_action(struct softirq_action *h)
7164 {
7165         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7166         unsigned long time_limit = jiffies +
7167                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
7168         int budget = READ_ONCE(netdev_budget);
7169         LIST_HEAD(list);
7170         LIST_HEAD(repoll);
7171
7172         local_irq_disable();
7173         list_splice_init(&sd->poll_list, &list);
7174         local_irq_enable();
7175
7176         for (;;) {
7177                 struct napi_struct *n;
7178
7179                 if (list_empty(&list)) {
7180                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7181                                 return;
7182                         break;
7183                 }
7184
7185                 n = list_first_entry(&list, struct napi_struct, poll_list);
7186                 budget -= napi_poll(n, &repoll);
7187
7188                 /* If softirq window is exhausted then punt.
7189                  * Allow this to run for 2 jiffies since which will allow
7190                  * an average latency of 1.5/HZ.
7191                  */
7192                 if (unlikely(budget <= 0 ||
7193                              time_after_eq(jiffies, time_limit))) {
7194                         sd->time_squeeze++;
7195                         break;
7196                 }
7197         }
7198
7199         local_irq_disable();
7200
7201         list_splice_tail_init(&sd->poll_list, &list);
7202         list_splice_tail(&repoll, &list);
7203         list_splice(&list, &sd->poll_list);
7204         if (!list_empty(&sd->poll_list))
7205                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7206
7207         net_rps_action_and_irq_enable(sd);
7208 }
7209
7210 struct netdev_adjacent {
7211         struct net_device *dev;
7212
7213         /* upper master flag, there can only be one master device per list */
7214         bool master;
7215
7216         /* lookup ignore flag */
7217         bool ignore;
7218
7219         /* counter for the number of times this device was added to us */
7220         u16 ref_nr;
7221
7222         /* private field for the users */
7223         void *private;
7224
7225         struct list_head list;
7226         struct rcu_head rcu;
7227 };
7228
7229 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7230                                                  struct list_head *adj_list)
7231 {
7232         struct netdev_adjacent *adj;
7233
7234         list_for_each_entry(adj, adj_list, list) {
7235                 if (adj->dev == adj_dev)
7236                         return adj;
7237         }
7238         return NULL;
7239 }
7240
7241 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7242                                     struct netdev_nested_priv *priv)
7243 {
7244         struct net_device *dev = (struct net_device *)priv->data;
7245
7246         return upper_dev == dev;
7247 }
7248
7249 /**
7250  * netdev_has_upper_dev - Check if device is linked to an upper device
7251  * @dev: device
7252  * @upper_dev: upper device to check
7253  *
7254  * Find out if a device is linked to specified upper device and return true
7255  * in case it is. Note that this checks only immediate upper device,
7256  * not through a complete stack of devices. The caller must hold the RTNL lock.
7257  */
7258 bool netdev_has_upper_dev(struct net_device *dev,
7259                           struct net_device *upper_dev)
7260 {
7261         struct netdev_nested_priv priv = {
7262                 .data = (void *)upper_dev,
7263         };
7264
7265         ASSERT_RTNL();
7266
7267         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7268                                              &priv);
7269 }
7270 EXPORT_SYMBOL(netdev_has_upper_dev);
7271
7272 /**
7273  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7274  * @dev: device
7275  * @upper_dev: upper device to check
7276  *
7277  * Find out if a device is linked to specified upper device and return true
7278  * in case it is. Note that this checks the entire upper device chain.
7279  * The caller must hold rcu lock.
7280  */
7281
7282 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7283                                   struct net_device *upper_dev)
7284 {
7285         struct netdev_nested_priv priv = {
7286                 .data = (void *)upper_dev,
7287         };
7288
7289         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7290                                                &priv);
7291 }
7292 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7293
7294 /**
7295  * netdev_has_any_upper_dev - Check if device is linked to some device
7296  * @dev: device
7297  *
7298  * Find out if a device is linked to an upper device and return true in case
7299  * it is. The caller must hold the RTNL lock.
7300  */
7301 bool netdev_has_any_upper_dev(struct net_device *dev)
7302 {
7303         ASSERT_RTNL();
7304
7305         return !list_empty(&dev->adj_list.upper);
7306 }
7307 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7308
7309 /**
7310  * netdev_master_upper_dev_get - Get master upper device
7311  * @dev: device
7312  *
7313  * Find a master upper device and return pointer to it or NULL in case
7314  * it's not there. The caller must hold the RTNL lock.
7315  */
7316 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7317 {
7318         struct netdev_adjacent *upper;
7319
7320         ASSERT_RTNL();
7321
7322         if (list_empty(&dev->adj_list.upper))
7323                 return NULL;
7324
7325         upper = list_first_entry(&dev->adj_list.upper,
7326                                  struct netdev_adjacent, list);
7327         if (likely(upper->master))
7328                 return upper->dev;
7329         return NULL;
7330 }
7331 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7332
7333 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7334 {
7335         struct netdev_adjacent *upper;
7336
7337         ASSERT_RTNL();
7338
7339         if (list_empty(&dev->adj_list.upper))
7340                 return NULL;
7341
7342         upper = list_first_entry(&dev->adj_list.upper,
7343                                  struct netdev_adjacent, list);
7344         if (likely(upper->master) && !upper->ignore)
7345                 return upper->dev;
7346         return NULL;
7347 }
7348
7349 /**
7350  * netdev_has_any_lower_dev - Check if device is linked to some device
7351  * @dev: device
7352  *
7353  * Find out if a device is linked to a lower device and return true in case
7354  * it is. The caller must hold the RTNL lock.
7355  */
7356 static bool netdev_has_any_lower_dev(struct net_device *dev)
7357 {
7358         ASSERT_RTNL();
7359
7360         return !list_empty(&dev->adj_list.lower);
7361 }
7362
7363 void *netdev_adjacent_get_private(struct list_head *adj_list)
7364 {
7365         struct netdev_adjacent *adj;
7366
7367         adj = list_entry(adj_list, struct netdev_adjacent, list);
7368
7369         return adj->private;
7370 }
7371 EXPORT_SYMBOL(netdev_adjacent_get_private);
7372
7373 /**
7374  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7375  * @dev: device
7376  * @iter: list_head ** of the current position
7377  *
7378  * Gets the next device from the dev's upper list, starting from iter
7379  * position. The caller must hold RCU read lock.
7380  */
7381 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7382                                                  struct list_head **iter)
7383 {
7384         struct netdev_adjacent *upper;
7385
7386         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7387
7388         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7389
7390         if (&upper->list == &dev->adj_list.upper)
7391                 return NULL;
7392
7393         *iter = &upper->list;
7394
7395         return upper->dev;
7396 }
7397 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7398
7399 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7400                                                   struct list_head **iter,
7401                                                   bool *ignore)
7402 {
7403         struct netdev_adjacent *upper;
7404
7405         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7406
7407         if (&upper->list == &dev->adj_list.upper)
7408                 return NULL;
7409
7410         *iter = &upper->list;
7411         *ignore = upper->ignore;
7412
7413         return upper->dev;
7414 }
7415
7416 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7417                                                     struct list_head **iter)
7418 {
7419         struct netdev_adjacent *upper;
7420
7421         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7422
7423         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7424
7425         if (&upper->list == &dev->adj_list.upper)
7426                 return NULL;
7427
7428         *iter = &upper->list;
7429
7430         return upper->dev;
7431 }
7432
7433 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7434                                        int (*fn)(struct net_device *dev,
7435                                          struct netdev_nested_priv *priv),
7436                                        struct netdev_nested_priv *priv)
7437 {
7438         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7439         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7440         int ret, cur = 0;
7441         bool ignore;
7442
7443         now = dev;
7444         iter = &dev->adj_list.upper;
7445
7446         while (1) {
7447                 if (now != dev) {
7448                         ret = fn(now, priv);
7449                         if (ret)
7450                                 return ret;
7451                 }
7452
7453                 next = NULL;
7454                 while (1) {
7455                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7456                         if (!udev)
7457                                 break;
7458                         if (ignore)
7459                                 continue;
7460
7461                         next = udev;
7462                         niter = &udev->adj_list.upper;
7463                         dev_stack[cur] = now;
7464                         iter_stack[cur++] = iter;
7465                         break;
7466                 }
7467
7468                 if (!next) {
7469                         if (!cur)
7470                                 return 0;
7471                         next = dev_stack[--cur];
7472                         niter = iter_stack[cur];
7473                 }
7474
7475                 now = next;
7476                 iter = niter;
7477         }
7478
7479         return 0;
7480 }
7481
7482 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7483                                   int (*fn)(struct net_device *dev,
7484                                             struct netdev_nested_priv *priv),
7485                                   struct netdev_nested_priv *priv)
7486 {
7487         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7488         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7489         int ret, cur = 0;
7490
7491         now = dev;
7492         iter = &dev->adj_list.upper;
7493
7494         while (1) {
7495                 if (now != dev) {
7496                         ret = fn(now, priv);
7497                         if (ret)
7498                                 return ret;
7499                 }
7500
7501                 next = NULL;
7502                 while (1) {
7503                         udev = netdev_next_upper_dev_rcu(now, &iter);
7504                         if (!udev)
7505                                 break;
7506
7507                         next = udev;
7508                         niter = &udev->adj_list.upper;
7509                         dev_stack[cur] = now;
7510                         iter_stack[cur++] = iter;
7511                         break;
7512                 }
7513
7514                 if (!next) {
7515                         if (!cur)
7516                                 return 0;
7517                         next = dev_stack[--cur];
7518                         niter = iter_stack[cur];
7519                 }
7520
7521                 now = next;
7522                 iter = niter;
7523         }
7524
7525         return 0;
7526 }
7527 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7528
7529 static bool __netdev_has_upper_dev(struct net_device *dev,
7530                                    struct net_device *upper_dev)
7531 {
7532         struct netdev_nested_priv priv = {
7533                 .flags = 0,
7534                 .data = (void *)upper_dev,
7535         };
7536
7537         ASSERT_RTNL();
7538
7539         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7540                                            &priv);
7541 }
7542
7543 /**
7544  * netdev_lower_get_next_private - Get the next ->private from the
7545  *                                 lower neighbour list
7546  * @dev: device
7547  * @iter: list_head ** of the current position
7548  *
7549  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7550  * list, starting from iter position. The caller must hold either hold the
7551  * RTNL lock or its own locking that guarantees that the neighbour lower
7552  * list will remain unchanged.
7553  */
7554 void *netdev_lower_get_next_private(struct net_device *dev,
7555                                     struct list_head **iter)
7556 {
7557         struct netdev_adjacent *lower;
7558
7559         lower = list_entry(*iter, struct netdev_adjacent, list);
7560
7561         if (&lower->list == &dev->adj_list.lower)
7562                 return NULL;
7563
7564         *iter = lower->list.next;
7565
7566         return lower->private;
7567 }
7568 EXPORT_SYMBOL(netdev_lower_get_next_private);
7569
7570 /**
7571  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7572  *                                     lower neighbour list, RCU
7573  *                                     variant
7574  * @dev: device
7575  * @iter: list_head ** of the current position
7576  *
7577  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7578  * list, starting from iter position. The caller must hold RCU read lock.
7579  */
7580 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7581                                         struct list_head **iter)
7582 {
7583         struct netdev_adjacent *lower;
7584
7585         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7586
7587         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7588
7589         if (&lower->list == &dev->adj_list.lower)
7590                 return NULL;
7591
7592         *iter = &lower->list;
7593
7594         return lower->private;
7595 }
7596 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7597
7598 /**
7599  * netdev_lower_get_next - Get the next device from the lower neighbour
7600  *                         list
7601  * @dev: device
7602  * @iter: list_head ** of the current position
7603  *
7604  * Gets the next netdev_adjacent from the dev's lower neighbour
7605  * list, starting from iter position. The caller must hold RTNL lock or
7606  * its own locking that guarantees that the neighbour lower
7607  * list will remain unchanged.
7608  */
7609 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7610 {
7611         struct netdev_adjacent *lower;
7612
7613         lower = list_entry(*iter, struct netdev_adjacent, list);
7614
7615         if (&lower->list == &dev->adj_list.lower)
7616                 return NULL;
7617
7618         *iter = lower->list.next;
7619
7620         return lower->dev;
7621 }
7622 EXPORT_SYMBOL(netdev_lower_get_next);
7623
7624 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7625                                                 struct list_head **iter)
7626 {
7627         struct netdev_adjacent *lower;
7628
7629         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7630
7631         if (&lower->list == &dev->adj_list.lower)
7632                 return NULL;
7633
7634         *iter = &lower->list;
7635
7636         return lower->dev;
7637 }
7638
7639 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7640                                                   struct list_head **iter,
7641                                                   bool *ignore)
7642 {
7643         struct netdev_adjacent *lower;
7644
7645         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7646
7647         if (&lower->list == &dev->adj_list.lower)
7648                 return NULL;
7649
7650         *iter = &lower->list;
7651         *ignore = lower->ignore;
7652
7653         return lower->dev;
7654 }
7655
7656 int netdev_walk_all_lower_dev(struct net_device *dev,
7657                               int (*fn)(struct net_device *dev,
7658                                         struct netdev_nested_priv *priv),
7659                               struct netdev_nested_priv *priv)
7660 {
7661         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7662         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7663         int ret, cur = 0;
7664
7665         now = dev;
7666         iter = &dev->adj_list.lower;
7667
7668         while (1) {
7669                 if (now != dev) {
7670                         ret = fn(now, priv);
7671                         if (ret)
7672                                 return ret;
7673                 }
7674
7675                 next = NULL;
7676                 while (1) {
7677                         ldev = netdev_next_lower_dev(now, &iter);
7678                         if (!ldev)
7679                                 break;
7680
7681                         next = ldev;
7682                         niter = &ldev->adj_list.lower;
7683                         dev_stack[cur] = now;
7684                         iter_stack[cur++] = iter;
7685                         break;
7686                 }
7687
7688                 if (!next) {
7689                         if (!cur)
7690                                 return 0;
7691                         next = dev_stack[--cur];
7692                         niter = iter_stack[cur];
7693                 }
7694
7695                 now = next;
7696                 iter = niter;
7697         }
7698
7699         return 0;
7700 }
7701 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7702
7703 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7704                                        int (*fn)(struct net_device *dev,
7705                                          struct netdev_nested_priv *priv),
7706                                        struct netdev_nested_priv *priv)
7707 {
7708         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7709         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7710         int ret, cur = 0;
7711         bool ignore;
7712
7713         now = dev;
7714         iter = &dev->adj_list.lower;
7715
7716         while (1) {
7717                 if (now != dev) {
7718                         ret = fn(now, priv);
7719                         if (ret)
7720                                 return ret;
7721                 }
7722
7723                 next = NULL;
7724                 while (1) {
7725                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7726                         if (!ldev)
7727                                 break;
7728                         if (ignore)
7729                                 continue;
7730
7731                         next = ldev;
7732                         niter = &ldev->adj_list.lower;
7733                         dev_stack[cur] = now;
7734                         iter_stack[cur++] = iter;
7735                         break;
7736                 }
7737
7738                 if (!next) {
7739                         if (!cur)
7740                                 return 0;
7741                         next = dev_stack[--cur];
7742                         niter = iter_stack[cur];
7743                 }
7744
7745                 now = next;
7746                 iter = niter;
7747         }
7748
7749         return 0;
7750 }
7751
7752 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7753                                              struct list_head **iter)
7754 {
7755         struct netdev_adjacent *lower;
7756
7757         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7758         if (&lower->list == &dev->adj_list.lower)
7759                 return NULL;
7760
7761         *iter = &lower->list;
7762
7763         return lower->dev;
7764 }
7765 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7766
7767 static u8 __netdev_upper_depth(struct net_device *dev)
7768 {
7769         struct net_device *udev;
7770         struct list_head *iter;
7771         u8 max_depth = 0;
7772         bool ignore;
7773
7774         for (iter = &dev->adj_list.upper,
7775              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7776              udev;
7777              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7778                 if (ignore)
7779                         continue;
7780                 if (max_depth < udev->upper_level)
7781                         max_depth = udev->upper_level;
7782         }
7783
7784         return max_depth;
7785 }
7786
7787 static u8 __netdev_lower_depth(struct net_device *dev)
7788 {
7789         struct net_device *ldev;
7790         struct list_head *iter;
7791         u8 max_depth = 0;
7792         bool ignore;
7793
7794         for (iter = &dev->adj_list.lower,
7795              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7796              ldev;
7797              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7798                 if (ignore)
7799                         continue;
7800                 if (max_depth < ldev->lower_level)
7801                         max_depth = ldev->lower_level;
7802         }
7803
7804         return max_depth;
7805 }
7806
7807 static int __netdev_update_upper_level(struct net_device *dev,
7808                                        struct netdev_nested_priv *__unused)
7809 {
7810         dev->upper_level = __netdev_upper_depth(dev) + 1;
7811         return 0;
7812 }
7813
7814 static int __netdev_update_lower_level(struct net_device *dev,
7815                                        struct netdev_nested_priv *priv)
7816 {
7817         dev->lower_level = __netdev_lower_depth(dev) + 1;
7818
7819 #ifdef CONFIG_LOCKDEP
7820         if (!priv)
7821                 return 0;
7822
7823         if (priv->flags & NESTED_SYNC_IMM)
7824                 dev->nested_level = dev->lower_level - 1;
7825         if (priv->flags & NESTED_SYNC_TODO)
7826                 net_unlink_todo(dev);
7827 #endif
7828         return 0;
7829 }
7830
7831 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7832                                   int (*fn)(struct net_device *dev,
7833                                             struct netdev_nested_priv *priv),
7834                                   struct netdev_nested_priv *priv)
7835 {
7836         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7837         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7838         int ret, cur = 0;
7839
7840         now = dev;
7841         iter = &dev->adj_list.lower;
7842
7843         while (1) {
7844                 if (now != dev) {
7845                         ret = fn(now, priv);
7846                         if (ret)
7847                                 return ret;
7848                 }
7849
7850                 next = NULL;
7851                 while (1) {
7852                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7853                         if (!ldev)
7854                                 break;
7855
7856                         next = ldev;
7857                         niter = &ldev->adj_list.lower;
7858                         dev_stack[cur] = now;
7859                         iter_stack[cur++] = iter;
7860                         break;
7861                 }
7862
7863                 if (!next) {
7864                         if (!cur)
7865                                 return 0;
7866                         next = dev_stack[--cur];
7867                         niter = iter_stack[cur];
7868                 }
7869
7870                 now = next;
7871                 iter = niter;
7872         }
7873
7874         return 0;
7875 }
7876 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7877
7878 /**
7879  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7880  *                                     lower neighbour list, RCU
7881  *                                     variant
7882  * @dev: device
7883  *
7884  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7885  * list. The caller must hold RCU read lock.
7886  */
7887 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7888 {
7889         struct netdev_adjacent *lower;
7890
7891         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7892                         struct netdev_adjacent, list);
7893         if (lower)
7894                 return lower->private;
7895         return NULL;
7896 }
7897 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7898
7899 /**
7900  * netdev_master_upper_dev_get_rcu - Get master upper device
7901  * @dev: device
7902  *
7903  * Find a master upper device and return pointer to it or NULL in case
7904  * it's not there. The caller must hold the RCU read lock.
7905  */
7906 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7907 {
7908         struct netdev_adjacent *upper;
7909
7910         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7911                                        struct netdev_adjacent, list);
7912         if (upper && likely(upper->master))
7913                 return upper->dev;
7914         return NULL;
7915 }
7916 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7917
7918 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7919                               struct net_device *adj_dev,
7920                               struct list_head *dev_list)
7921 {
7922         char linkname[IFNAMSIZ+7];
7923
7924         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7925                 "upper_%s" : "lower_%s", adj_dev->name);
7926         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7927                                  linkname);
7928 }
7929 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7930                                char *name,
7931                                struct list_head *dev_list)
7932 {
7933         char linkname[IFNAMSIZ+7];
7934
7935         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7936                 "upper_%s" : "lower_%s", name);
7937         sysfs_remove_link(&(dev->dev.kobj), linkname);
7938 }
7939
7940 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7941                                                  struct net_device *adj_dev,
7942                                                  struct list_head *dev_list)
7943 {
7944         return (dev_list == &dev->adj_list.upper ||
7945                 dev_list == &dev->adj_list.lower) &&
7946                 net_eq(dev_net(dev), dev_net(adj_dev));
7947 }
7948
7949 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7950                                         struct net_device *adj_dev,
7951                                         struct list_head *dev_list,
7952                                         void *private, bool master)
7953 {
7954         struct netdev_adjacent *adj;
7955         int ret;
7956
7957         adj = __netdev_find_adj(adj_dev, dev_list);
7958
7959         if (adj) {
7960                 adj->ref_nr += 1;
7961                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7962                          dev->name, adj_dev->name, adj->ref_nr);
7963
7964                 return 0;
7965         }
7966
7967         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7968         if (!adj)
7969                 return -ENOMEM;
7970
7971         adj->dev = adj_dev;
7972         adj->master = master;
7973         adj->ref_nr = 1;
7974         adj->private = private;
7975         adj->ignore = false;
7976         dev_hold(adj_dev);
7977
7978         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7979                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7980
7981         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7982                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7983                 if (ret)
7984                         goto free_adj;
7985         }
7986
7987         /* Ensure that master link is always the first item in list. */
7988         if (master) {
7989                 ret = sysfs_create_link(&(dev->dev.kobj),
7990                                         &(adj_dev->dev.kobj), "master");
7991                 if (ret)
7992                         goto remove_symlinks;
7993
7994                 list_add_rcu(&adj->list, dev_list);
7995         } else {
7996                 list_add_tail_rcu(&adj->list, dev_list);
7997         }
7998
7999         return 0;
8000
8001 remove_symlinks:
8002         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8003                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8004 free_adj:
8005         kfree(adj);
8006         dev_put(adj_dev);
8007
8008         return ret;
8009 }
8010
8011 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8012                                          struct net_device *adj_dev,
8013                                          u16 ref_nr,
8014                                          struct list_head *dev_list)
8015 {
8016         struct netdev_adjacent *adj;
8017
8018         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8019                  dev->name, adj_dev->name, ref_nr);
8020
8021         adj = __netdev_find_adj(adj_dev, dev_list);
8022
8023         if (!adj) {
8024                 pr_err("Adjacency does not exist for device %s from %s\n",
8025                        dev->name, adj_dev->name);
8026                 WARN_ON(1);
8027                 return;
8028         }
8029
8030         if (adj->ref_nr > ref_nr) {
8031                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8032                          dev->name, adj_dev->name, ref_nr,
8033                          adj->ref_nr - ref_nr);
8034                 adj->ref_nr -= ref_nr;
8035                 return;
8036         }
8037
8038         if (adj->master)
8039                 sysfs_remove_link(&(dev->dev.kobj), "master");
8040
8041         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8042                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8043
8044         list_del_rcu(&adj->list);
8045         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8046                  adj_dev->name, dev->name, adj_dev->name);
8047         dev_put(adj_dev);
8048         kfree_rcu(adj, rcu);
8049 }
8050
8051 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8052                                             struct net_device *upper_dev,
8053                                             struct list_head *up_list,
8054                                             struct list_head *down_list,
8055                                             void *private, bool master)
8056 {
8057         int ret;
8058
8059         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8060                                            private, master);
8061         if (ret)
8062                 return ret;
8063
8064         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8065                                            private, false);
8066         if (ret) {
8067                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8068                 return ret;
8069         }
8070
8071         return 0;
8072 }
8073
8074 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8075                                                struct net_device *upper_dev,
8076                                                u16 ref_nr,
8077                                                struct list_head *up_list,
8078                                                struct list_head *down_list)
8079 {
8080         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8081         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8082 }
8083
8084 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8085                                                 struct net_device *upper_dev,
8086                                                 void *private, bool master)
8087 {
8088         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8089                                                 &dev->adj_list.upper,
8090                                                 &upper_dev->adj_list.lower,
8091                                                 private, master);
8092 }
8093
8094 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8095                                                    struct net_device *upper_dev)
8096 {
8097         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8098                                            &dev->adj_list.upper,
8099                                            &upper_dev->adj_list.lower);
8100 }
8101
8102 static int __netdev_upper_dev_link(struct net_device *dev,
8103                                    struct net_device *upper_dev, bool master,
8104                                    void *upper_priv, void *upper_info,
8105                                    struct netdev_nested_priv *priv,
8106                                    struct netlink_ext_ack *extack)
8107 {
8108         struct netdev_notifier_changeupper_info changeupper_info = {
8109                 .info = {
8110                         .dev = dev,
8111                         .extack = extack,
8112                 },
8113                 .upper_dev = upper_dev,
8114                 .master = master,
8115                 .linking = true,
8116                 .upper_info = upper_info,
8117         };
8118         struct net_device *master_dev;
8119         int ret = 0;
8120
8121         ASSERT_RTNL();
8122
8123         if (dev == upper_dev)
8124                 return -EBUSY;
8125
8126         /* To prevent loops, check if dev is not upper device to upper_dev. */
8127         if (__netdev_has_upper_dev(upper_dev, dev))
8128                 return -EBUSY;
8129
8130         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8131                 return -EMLINK;
8132
8133         if (!master) {
8134                 if (__netdev_has_upper_dev(dev, upper_dev))
8135                         return -EEXIST;
8136         } else {
8137                 master_dev = __netdev_master_upper_dev_get(dev);
8138                 if (master_dev)
8139                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8140         }
8141
8142         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8143                                             &changeupper_info.info);
8144         ret = notifier_to_errno(ret);
8145         if (ret)
8146                 return ret;
8147
8148         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8149                                                    master);
8150         if (ret)
8151                 return ret;
8152
8153         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8154                                             &changeupper_info.info);
8155         ret = notifier_to_errno(ret);
8156         if (ret)
8157                 goto rollback;
8158
8159         __netdev_update_upper_level(dev, NULL);
8160         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8161
8162         __netdev_update_lower_level(upper_dev, priv);
8163         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8164                                     priv);
8165
8166         return 0;
8167
8168 rollback:
8169         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8170
8171         return ret;
8172 }
8173
8174 /**
8175  * netdev_upper_dev_link - Add a link to the upper device
8176  * @dev: device
8177  * @upper_dev: new upper device
8178  * @extack: netlink extended ack
8179  *
8180  * Adds a link to device which is upper to this one. The caller must hold
8181  * the RTNL lock. On a failure a negative errno code is returned.
8182  * On success the reference counts are adjusted and the function
8183  * returns zero.
8184  */
8185 int netdev_upper_dev_link(struct net_device *dev,
8186                           struct net_device *upper_dev,
8187                           struct netlink_ext_ack *extack)
8188 {
8189         struct netdev_nested_priv priv = {
8190                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8191                 .data = NULL,
8192         };
8193
8194         return __netdev_upper_dev_link(dev, upper_dev, false,
8195                                        NULL, NULL, &priv, extack);
8196 }
8197 EXPORT_SYMBOL(netdev_upper_dev_link);
8198
8199 /**
8200  * netdev_master_upper_dev_link - Add a master link to the upper device
8201  * @dev: device
8202  * @upper_dev: new upper device
8203  * @upper_priv: upper device private
8204  * @upper_info: upper info to be passed down via notifier
8205  * @extack: netlink extended ack
8206  *
8207  * Adds a link to device which is upper to this one. In this case, only
8208  * one master upper device can be linked, although other non-master devices
8209  * might be linked as well. The caller must hold the RTNL lock.
8210  * On a failure a negative errno code is returned. On success the reference
8211  * counts are adjusted and the function returns zero.
8212  */
8213 int netdev_master_upper_dev_link(struct net_device *dev,
8214                                  struct net_device *upper_dev,
8215                                  void *upper_priv, void *upper_info,
8216                                  struct netlink_ext_ack *extack)
8217 {
8218         struct netdev_nested_priv priv = {
8219                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8220                 .data = NULL,
8221         };
8222
8223         return __netdev_upper_dev_link(dev, upper_dev, true,
8224                                        upper_priv, upper_info, &priv, extack);
8225 }
8226 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8227
8228 static void __netdev_upper_dev_unlink(struct net_device *dev,
8229                                       struct net_device *upper_dev,
8230                                       struct netdev_nested_priv *priv)
8231 {
8232         struct netdev_notifier_changeupper_info changeupper_info = {
8233                 .info = {
8234                         .dev = dev,
8235                 },
8236                 .upper_dev = upper_dev,
8237                 .linking = false,
8238         };
8239
8240         ASSERT_RTNL();
8241
8242         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8243
8244         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8245                                       &changeupper_info.info);
8246
8247         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8248
8249         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8250                                       &changeupper_info.info);
8251
8252         __netdev_update_upper_level(dev, NULL);
8253         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8254
8255         __netdev_update_lower_level(upper_dev, priv);
8256         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8257                                     priv);
8258 }
8259
8260 /**
8261  * netdev_upper_dev_unlink - Removes a link to upper device
8262  * @dev: device
8263  * @upper_dev: new upper device
8264  *
8265  * Removes a link to device which is upper to this one. The caller must hold
8266  * the RTNL lock.
8267  */
8268 void netdev_upper_dev_unlink(struct net_device *dev,
8269                              struct net_device *upper_dev)
8270 {
8271         struct netdev_nested_priv priv = {
8272                 .flags = NESTED_SYNC_TODO,
8273                 .data = NULL,
8274         };
8275
8276         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8277 }
8278 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8279
8280 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8281                                       struct net_device *lower_dev,
8282                                       bool val)
8283 {
8284         struct netdev_adjacent *adj;
8285
8286         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8287         if (adj)
8288                 adj->ignore = val;
8289
8290         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8291         if (adj)
8292                 adj->ignore = val;
8293 }
8294
8295 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8296                                         struct net_device *lower_dev)
8297 {
8298         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8299 }
8300
8301 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8302                                        struct net_device *lower_dev)
8303 {
8304         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8305 }
8306
8307 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8308                                    struct net_device *new_dev,
8309                                    struct net_device *dev,
8310                                    struct netlink_ext_ack *extack)
8311 {
8312         struct netdev_nested_priv priv = {
8313                 .flags = 0,
8314                 .data = NULL,
8315         };
8316         int err;
8317
8318         if (!new_dev)
8319                 return 0;
8320
8321         if (old_dev && new_dev != old_dev)
8322                 netdev_adjacent_dev_disable(dev, old_dev);
8323         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8324                                       extack);
8325         if (err) {
8326                 if (old_dev && new_dev != old_dev)
8327                         netdev_adjacent_dev_enable(dev, old_dev);
8328                 return err;
8329         }
8330
8331         return 0;
8332 }
8333 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8334
8335 void netdev_adjacent_change_commit(struct net_device *old_dev,
8336                                    struct net_device *new_dev,
8337                                    struct net_device *dev)
8338 {
8339         struct netdev_nested_priv priv = {
8340                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8341                 .data = NULL,
8342         };
8343
8344         if (!new_dev || !old_dev)
8345                 return;
8346
8347         if (new_dev == old_dev)
8348                 return;
8349
8350         netdev_adjacent_dev_enable(dev, old_dev);
8351         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8352 }
8353 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8354
8355 void netdev_adjacent_change_abort(struct net_device *old_dev,
8356                                   struct net_device *new_dev,
8357                                   struct net_device *dev)
8358 {
8359         struct netdev_nested_priv priv = {
8360                 .flags = 0,
8361                 .data = NULL,
8362         };
8363
8364         if (!new_dev)
8365                 return;
8366
8367         if (old_dev && new_dev != old_dev)
8368                 netdev_adjacent_dev_enable(dev, old_dev);
8369
8370         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8371 }
8372 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8373
8374 /**
8375  * netdev_bonding_info_change - Dispatch event about slave change
8376  * @dev: device
8377  * @bonding_info: info to dispatch
8378  *
8379  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8380  * The caller must hold the RTNL lock.
8381  */
8382 void netdev_bonding_info_change(struct net_device *dev,
8383                                 struct netdev_bonding_info *bonding_info)
8384 {
8385         struct netdev_notifier_bonding_info info = {
8386                 .info.dev = dev,
8387         };
8388
8389         memcpy(&info.bonding_info, bonding_info,
8390                sizeof(struct netdev_bonding_info));
8391         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8392                                       &info.info);
8393 }
8394 EXPORT_SYMBOL(netdev_bonding_info_change);
8395
8396 /**
8397  * netdev_get_xmit_slave - Get the xmit slave of master device
8398  * @dev: device
8399  * @skb: The packet
8400  * @all_slaves: assume all the slaves are active
8401  *
8402  * The reference counters are not incremented so the caller must be
8403  * careful with locks. The caller must hold RCU lock.
8404  * %NULL is returned if no slave is found.
8405  */
8406
8407 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8408                                          struct sk_buff *skb,
8409                                          bool all_slaves)
8410 {
8411         const struct net_device_ops *ops = dev->netdev_ops;
8412
8413         if (!ops->ndo_get_xmit_slave)
8414                 return NULL;
8415         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8416 }
8417 EXPORT_SYMBOL(netdev_get_xmit_slave);
8418
8419 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8420                                                   struct sock *sk)
8421 {
8422         const struct net_device_ops *ops = dev->netdev_ops;
8423
8424         if (!ops->ndo_sk_get_lower_dev)
8425                 return NULL;
8426         return ops->ndo_sk_get_lower_dev(dev, sk);
8427 }
8428
8429 /**
8430  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8431  * @dev: device
8432  * @sk: the socket
8433  *
8434  * %NULL is returned if no lower device is found.
8435  */
8436
8437 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8438                                             struct sock *sk)
8439 {
8440         struct net_device *lower;
8441
8442         lower = netdev_sk_get_lower_dev(dev, sk);
8443         while (lower) {
8444                 dev = lower;
8445                 lower = netdev_sk_get_lower_dev(dev, sk);
8446         }
8447
8448         return dev;
8449 }
8450 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8451
8452 static void netdev_adjacent_add_links(struct net_device *dev)
8453 {
8454         struct netdev_adjacent *iter;
8455
8456         struct net *net = dev_net(dev);
8457
8458         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8459                 if (!net_eq(net, dev_net(iter->dev)))
8460                         continue;
8461                 netdev_adjacent_sysfs_add(iter->dev, dev,
8462                                           &iter->dev->adj_list.lower);
8463                 netdev_adjacent_sysfs_add(dev, iter->dev,
8464                                           &dev->adj_list.upper);
8465         }
8466
8467         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8468                 if (!net_eq(net, dev_net(iter->dev)))
8469                         continue;
8470                 netdev_adjacent_sysfs_add(iter->dev, dev,
8471                                           &iter->dev->adj_list.upper);
8472                 netdev_adjacent_sysfs_add(dev, iter->dev,
8473                                           &dev->adj_list.lower);
8474         }
8475 }
8476
8477 static void netdev_adjacent_del_links(struct net_device *dev)
8478 {
8479         struct netdev_adjacent *iter;
8480
8481         struct net *net = dev_net(dev);
8482
8483         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8484                 if (!net_eq(net, dev_net(iter->dev)))
8485                         continue;
8486                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8487                                           &iter->dev->adj_list.lower);
8488                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8489                                           &dev->adj_list.upper);
8490         }
8491
8492         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8493                 if (!net_eq(net, dev_net(iter->dev)))
8494                         continue;
8495                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8496                                           &iter->dev->adj_list.upper);
8497                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8498                                           &dev->adj_list.lower);
8499         }
8500 }
8501
8502 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8503 {
8504         struct netdev_adjacent *iter;
8505
8506         struct net *net = dev_net(dev);
8507
8508         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8509                 if (!net_eq(net, dev_net(iter->dev)))
8510                         continue;
8511                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8512                                           &iter->dev->adj_list.lower);
8513                 netdev_adjacent_sysfs_add(iter->dev, dev,
8514                                           &iter->dev->adj_list.lower);
8515         }
8516
8517         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8518                 if (!net_eq(net, dev_net(iter->dev)))
8519                         continue;
8520                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8521                                           &iter->dev->adj_list.upper);
8522                 netdev_adjacent_sysfs_add(iter->dev, dev,
8523                                           &iter->dev->adj_list.upper);
8524         }
8525 }
8526
8527 void *netdev_lower_dev_get_private(struct net_device *dev,
8528                                    struct net_device *lower_dev)
8529 {
8530         struct netdev_adjacent *lower;
8531
8532         if (!lower_dev)
8533                 return NULL;
8534         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8535         if (!lower)
8536                 return NULL;
8537
8538         return lower->private;
8539 }
8540 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8541
8542
8543 /**
8544  * netdev_lower_state_changed - Dispatch event about lower device state change
8545  * @lower_dev: device
8546  * @lower_state_info: state to dispatch
8547  *
8548  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8549  * The caller must hold the RTNL lock.
8550  */
8551 void netdev_lower_state_changed(struct net_device *lower_dev,
8552                                 void *lower_state_info)
8553 {
8554         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8555                 .info.dev = lower_dev,
8556         };
8557
8558         ASSERT_RTNL();
8559         changelowerstate_info.lower_state_info = lower_state_info;
8560         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8561                                       &changelowerstate_info.info);
8562 }
8563 EXPORT_SYMBOL(netdev_lower_state_changed);
8564
8565 static void dev_change_rx_flags(struct net_device *dev, int flags)
8566 {
8567         const struct net_device_ops *ops = dev->netdev_ops;
8568
8569         if (ops->ndo_change_rx_flags)
8570                 ops->ndo_change_rx_flags(dev, flags);
8571 }
8572
8573 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8574 {
8575         unsigned int old_flags = dev->flags;
8576         kuid_t uid;
8577         kgid_t gid;
8578
8579         ASSERT_RTNL();
8580
8581         dev->flags |= IFF_PROMISC;
8582         dev->promiscuity += inc;
8583         if (dev->promiscuity == 0) {
8584                 /*
8585                  * Avoid overflow.
8586                  * If inc causes overflow, untouch promisc and return error.
8587                  */
8588                 if (inc < 0)
8589                         dev->flags &= ~IFF_PROMISC;
8590                 else {
8591                         dev->promiscuity -= inc;
8592                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8593                                 dev->name);
8594                         return -EOVERFLOW;
8595                 }
8596         }
8597         if (dev->flags != old_flags) {
8598                 pr_info("device %s %s promiscuous mode\n",
8599                         dev->name,
8600                         dev->flags & IFF_PROMISC ? "entered" : "left");
8601                 if (audit_enabled) {
8602                         current_uid_gid(&uid, &gid);
8603                         audit_log(audit_context(), GFP_ATOMIC,
8604                                   AUDIT_ANOM_PROMISCUOUS,
8605                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8606                                   dev->name, (dev->flags & IFF_PROMISC),
8607                                   (old_flags & IFF_PROMISC),
8608                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8609                                   from_kuid(&init_user_ns, uid),
8610                                   from_kgid(&init_user_ns, gid),
8611                                   audit_get_sessionid(current));
8612                 }
8613
8614                 dev_change_rx_flags(dev, IFF_PROMISC);
8615         }
8616         if (notify)
8617                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8618         return 0;
8619 }
8620
8621 /**
8622  *      dev_set_promiscuity     - update promiscuity count on a device
8623  *      @dev: device
8624  *      @inc: modifier
8625  *
8626  *      Add or remove promiscuity from a device. While the count in the device
8627  *      remains above zero the interface remains promiscuous. Once it hits zero
8628  *      the device reverts back to normal filtering operation. A negative inc
8629  *      value is used to drop promiscuity on the device.
8630  *      Return 0 if successful or a negative errno code on error.
8631  */
8632 int dev_set_promiscuity(struct net_device *dev, int inc)
8633 {
8634         unsigned int old_flags = dev->flags;
8635         int err;
8636
8637         err = __dev_set_promiscuity(dev, inc, true);
8638         if (err < 0)
8639                 return err;
8640         if (dev->flags != old_flags)
8641                 dev_set_rx_mode(dev);
8642         return err;
8643 }
8644 EXPORT_SYMBOL(dev_set_promiscuity);
8645
8646 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8647 {
8648         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8649
8650         ASSERT_RTNL();
8651
8652         dev->flags |= IFF_ALLMULTI;
8653         dev->allmulti += inc;
8654         if (dev->allmulti == 0) {
8655                 /*
8656                  * Avoid overflow.
8657                  * If inc causes overflow, untouch allmulti and return error.
8658                  */
8659                 if (inc < 0)
8660                         dev->flags &= ~IFF_ALLMULTI;
8661                 else {
8662                         dev->allmulti -= inc;
8663                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8664                                 dev->name);
8665                         return -EOVERFLOW;
8666                 }
8667         }
8668         if (dev->flags ^ old_flags) {
8669                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8670                 dev_set_rx_mode(dev);
8671                 if (notify)
8672                         __dev_notify_flags(dev, old_flags,
8673                                            dev->gflags ^ old_gflags);
8674         }
8675         return 0;
8676 }
8677
8678 /**
8679  *      dev_set_allmulti        - update allmulti count on a device
8680  *      @dev: device
8681  *      @inc: modifier
8682  *
8683  *      Add or remove reception of all multicast frames to a device. While the
8684  *      count in the device remains above zero the interface remains listening
8685  *      to all interfaces. Once it hits zero the device reverts back to normal
8686  *      filtering operation. A negative @inc value is used to drop the counter
8687  *      when releasing a resource needing all multicasts.
8688  *      Return 0 if successful or a negative errno code on error.
8689  */
8690
8691 int dev_set_allmulti(struct net_device *dev, int inc)
8692 {
8693         return __dev_set_allmulti(dev, inc, true);
8694 }
8695 EXPORT_SYMBOL(dev_set_allmulti);
8696
8697 /*
8698  *      Upload unicast and multicast address lists to device and
8699  *      configure RX filtering. When the device doesn't support unicast
8700  *      filtering it is put in promiscuous mode while unicast addresses
8701  *      are present.
8702  */
8703 void __dev_set_rx_mode(struct net_device *dev)
8704 {
8705         const struct net_device_ops *ops = dev->netdev_ops;
8706
8707         /* dev_open will call this function so the list will stay sane. */
8708         if (!(dev->flags&IFF_UP))
8709                 return;
8710
8711         if (!netif_device_present(dev))
8712                 return;
8713
8714         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8715                 /* Unicast addresses changes may only happen under the rtnl,
8716                  * therefore calling __dev_set_promiscuity here is safe.
8717                  */
8718                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8719                         __dev_set_promiscuity(dev, 1, false);
8720                         dev->uc_promisc = true;
8721                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8722                         __dev_set_promiscuity(dev, -1, false);
8723                         dev->uc_promisc = false;
8724                 }
8725         }
8726
8727         if (ops->ndo_set_rx_mode)
8728                 ops->ndo_set_rx_mode(dev);
8729 }
8730
8731 void dev_set_rx_mode(struct net_device *dev)
8732 {
8733         netif_addr_lock_bh(dev);
8734         __dev_set_rx_mode(dev);
8735         netif_addr_unlock_bh(dev);
8736 }
8737
8738 /**
8739  *      dev_get_flags - get flags reported to userspace
8740  *      @dev: device
8741  *
8742  *      Get the combination of flag bits exported through APIs to userspace.
8743  */
8744 unsigned int dev_get_flags(const struct net_device *dev)
8745 {
8746         unsigned int flags;
8747
8748         flags = (dev->flags & ~(IFF_PROMISC |
8749                                 IFF_ALLMULTI |
8750                                 IFF_RUNNING |
8751                                 IFF_LOWER_UP |
8752                                 IFF_DORMANT)) |
8753                 (dev->gflags & (IFF_PROMISC |
8754                                 IFF_ALLMULTI));
8755
8756         if (netif_running(dev)) {
8757                 if (netif_oper_up(dev))
8758                         flags |= IFF_RUNNING;
8759                 if (netif_carrier_ok(dev))
8760                         flags |= IFF_LOWER_UP;
8761                 if (netif_dormant(dev))
8762                         flags |= IFF_DORMANT;
8763         }
8764
8765         return flags;
8766 }
8767 EXPORT_SYMBOL(dev_get_flags);
8768
8769 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8770                        struct netlink_ext_ack *extack)
8771 {
8772         unsigned int old_flags = dev->flags;
8773         int ret;
8774
8775         ASSERT_RTNL();
8776
8777         /*
8778          *      Set the flags on our device.
8779          */
8780
8781         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8782                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8783                                IFF_AUTOMEDIA)) |
8784                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8785                                     IFF_ALLMULTI));
8786
8787         /*
8788          *      Load in the correct multicast list now the flags have changed.
8789          */
8790
8791         if ((old_flags ^ flags) & IFF_MULTICAST)
8792                 dev_change_rx_flags(dev, IFF_MULTICAST);
8793
8794         dev_set_rx_mode(dev);
8795
8796         /*
8797          *      Have we downed the interface. We handle IFF_UP ourselves
8798          *      according to user attempts to set it, rather than blindly
8799          *      setting it.
8800          */
8801
8802         ret = 0;
8803         if ((old_flags ^ flags) & IFF_UP) {
8804                 if (old_flags & IFF_UP)
8805                         __dev_close(dev);
8806                 else
8807                         ret = __dev_open(dev, extack);
8808         }
8809
8810         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8811                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8812                 unsigned int old_flags = dev->flags;
8813
8814                 dev->gflags ^= IFF_PROMISC;
8815
8816                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8817                         if (dev->flags != old_flags)
8818                                 dev_set_rx_mode(dev);
8819         }
8820
8821         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8822          * is important. Some (broken) drivers set IFF_PROMISC, when
8823          * IFF_ALLMULTI is requested not asking us and not reporting.
8824          */
8825         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8826                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8827
8828                 dev->gflags ^= IFF_ALLMULTI;
8829                 __dev_set_allmulti(dev, inc, false);
8830         }
8831
8832         return ret;
8833 }
8834
8835 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8836                         unsigned int gchanges)
8837 {
8838         unsigned int changes = dev->flags ^ old_flags;
8839
8840         if (gchanges)
8841                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8842
8843         if (changes & IFF_UP) {
8844                 if (dev->flags & IFF_UP)
8845                         call_netdevice_notifiers(NETDEV_UP, dev);
8846                 else
8847                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8848         }
8849
8850         if (dev->flags & IFF_UP &&
8851             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8852                 struct netdev_notifier_change_info change_info = {
8853                         .info = {
8854                                 .dev = dev,
8855                         },
8856                         .flags_changed = changes,
8857                 };
8858
8859                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8860         }
8861 }
8862
8863 /**
8864  *      dev_change_flags - change device settings
8865  *      @dev: device
8866  *      @flags: device state flags
8867  *      @extack: netlink extended ack
8868  *
8869  *      Change settings on device based state flags. The flags are
8870  *      in the userspace exported format.
8871  */
8872 int dev_change_flags(struct net_device *dev, unsigned int flags,
8873                      struct netlink_ext_ack *extack)
8874 {
8875         int ret;
8876         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8877
8878         ret = __dev_change_flags(dev, flags, extack);
8879         if (ret < 0)
8880                 return ret;
8881
8882         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8883         __dev_notify_flags(dev, old_flags, changes);
8884         return ret;
8885 }
8886 EXPORT_SYMBOL(dev_change_flags);
8887
8888 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8889 {
8890         const struct net_device_ops *ops = dev->netdev_ops;
8891
8892         if (ops->ndo_change_mtu)
8893                 return ops->ndo_change_mtu(dev, new_mtu);
8894
8895         /* Pairs with all the lockless reads of dev->mtu in the stack */
8896         WRITE_ONCE(dev->mtu, new_mtu);
8897         return 0;
8898 }
8899 EXPORT_SYMBOL(__dev_set_mtu);
8900
8901 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8902                      struct netlink_ext_ack *extack)
8903 {
8904         /* MTU must be positive, and in range */
8905         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8906                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8907                 return -EINVAL;
8908         }
8909
8910         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8911                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8912                 return -EINVAL;
8913         }
8914         return 0;
8915 }
8916
8917 /**
8918  *      dev_set_mtu_ext - Change maximum transfer unit
8919  *      @dev: device
8920  *      @new_mtu: new transfer unit
8921  *      @extack: netlink extended ack
8922  *
8923  *      Change the maximum transfer size of the network device.
8924  */
8925 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8926                     struct netlink_ext_ack *extack)
8927 {
8928         int err, orig_mtu;
8929
8930         if (new_mtu == dev->mtu)
8931                 return 0;
8932
8933         err = dev_validate_mtu(dev, new_mtu, extack);
8934         if (err)
8935                 return err;
8936
8937         if (!netif_device_present(dev))
8938                 return -ENODEV;
8939
8940         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8941         err = notifier_to_errno(err);
8942         if (err)
8943                 return err;
8944
8945         orig_mtu = dev->mtu;
8946         err = __dev_set_mtu(dev, new_mtu);
8947
8948         if (!err) {
8949                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8950                                                    orig_mtu);
8951                 err = notifier_to_errno(err);
8952                 if (err) {
8953                         /* setting mtu back and notifying everyone again,
8954                          * so that they have a chance to revert changes.
8955                          */
8956                         __dev_set_mtu(dev, orig_mtu);
8957                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8958                                                      new_mtu);
8959                 }
8960         }
8961         return err;
8962 }
8963
8964 int dev_set_mtu(struct net_device *dev, int new_mtu)
8965 {
8966         struct netlink_ext_ack extack;
8967         int err;
8968
8969         memset(&extack, 0, sizeof(extack));
8970         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8971         if (err && extack._msg)
8972                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8973         return err;
8974 }
8975 EXPORT_SYMBOL(dev_set_mtu);
8976
8977 /**
8978  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8979  *      @dev: device
8980  *      @new_len: new tx queue length
8981  */
8982 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8983 {
8984         unsigned int orig_len = dev->tx_queue_len;
8985         int res;
8986
8987         if (new_len != (unsigned int)new_len)
8988                 return -ERANGE;
8989
8990         if (new_len != orig_len) {
8991                 dev->tx_queue_len = new_len;
8992                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8993                 res = notifier_to_errno(res);
8994                 if (res)
8995                         goto err_rollback;
8996                 res = dev_qdisc_change_tx_queue_len(dev);
8997                 if (res)
8998                         goto err_rollback;
8999         }
9000
9001         return 0;
9002
9003 err_rollback:
9004         netdev_err(dev, "refused to change device tx_queue_len\n");
9005         dev->tx_queue_len = orig_len;
9006         return res;
9007 }
9008
9009 /**
9010  *      dev_set_group - Change group this device belongs to
9011  *      @dev: device
9012  *      @new_group: group this device should belong to
9013  */
9014 void dev_set_group(struct net_device *dev, int new_group)
9015 {
9016         dev->group = new_group;
9017 }
9018 EXPORT_SYMBOL(dev_set_group);
9019
9020 /**
9021  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9022  *      @dev: device
9023  *      @addr: new address
9024  *      @extack: netlink extended ack
9025  */
9026 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9027                               struct netlink_ext_ack *extack)
9028 {
9029         struct netdev_notifier_pre_changeaddr_info info = {
9030                 .info.dev = dev,
9031                 .info.extack = extack,
9032                 .dev_addr = addr,
9033         };
9034         int rc;
9035
9036         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9037         return notifier_to_errno(rc);
9038 }
9039 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9040
9041 /**
9042  *      dev_set_mac_address - Change Media Access Control Address
9043  *      @dev: device
9044  *      @sa: new address
9045  *      @extack: netlink extended ack
9046  *
9047  *      Change the hardware (MAC) address of the device
9048  */
9049 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9050                         struct netlink_ext_ack *extack)
9051 {
9052         const struct net_device_ops *ops = dev->netdev_ops;
9053         int err;
9054
9055         if (!ops->ndo_set_mac_address)
9056                 return -EOPNOTSUPP;
9057         if (sa->sa_family != dev->type)
9058                 return -EINVAL;
9059         if (!netif_device_present(dev))
9060                 return -ENODEV;
9061         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9062         if (err)
9063                 return err;
9064         err = ops->ndo_set_mac_address(dev, sa);
9065         if (err)
9066                 return err;
9067         dev->addr_assign_type = NET_ADDR_SET;
9068         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9069         add_device_randomness(dev->dev_addr, dev->addr_len);
9070         return 0;
9071 }
9072 EXPORT_SYMBOL(dev_set_mac_address);
9073
9074 static DECLARE_RWSEM(dev_addr_sem);
9075
9076 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9077                              struct netlink_ext_ack *extack)
9078 {
9079         int ret;
9080
9081         down_write(&dev_addr_sem);
9082         ret = dev_set_mac_address(dev, sa, extack);
9083         up_write(&dev_addr_sem);
9084         return ret;
9085 }
9086 EXPORT_SYMBOL(dev_set_mac_address_user);
9087
9088 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9089 {
9090         size_t size = sizeof(sa->sa_data);
9091         struct net_device *dev;
9092         int ret = 0;
9093
9094         down_read(&dev_addr_sem);
9095         rcu_read_lock();
9096
9097         dev = dev_get_by_name_rcu(net, dev_name);
9098         if (!dev) {
9099                 ret = -ENODEV;
9100                 goto unlock;
9101         }
9102         if (!dev->addr_len)
9103                 memset(sa->sa_data, 0, size);
9104         else
9105                 memcpy(sa->sa_data, dev->dev_addr,
9106                        min_t(size_t, size, dev->addr_len));
9107         sa->sa_family = dev->type;
9108
9109 unlock:
9110         rcu_read_unlock();
9111         up_read(&dev_addr_sem);
9112         return ret;
9113 }
9114 EXPORT_SYMBOL(dev_get_mac_address);
9115
9116 /**
9117  *      dev_change_carrier - Change device carrier
9118  *      @dev: device
9119  *      @new_carrier: new value
9120  *
9121  *      Change device carrier
9122  */
9123 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9124 {
9125         const struct net_device_ops *ops = dev->netdev_ops;
9126
9127         if (!ops->ndo_change_carrier)
9128                 return -EOPNOTSUPP;
9129         if (!netif_device_present(dev))
9130                 return -ENODEV;
9131         return ops->ndo_change_carrier(dev, new_carrier);
9132 }
9133 EXPORT_SYMBOL(dev_change_carrier);
9134
9135 /**
9136  *      dev_get_phys_port_id - Get device physical port ID
9137  *      @dev: device
9138  *      @ppid: port ID
9139  *
9140  *      Get device physical port ID
9141  */
9142 int dev_get_phys_port_id(struct net_device *dev,
9143                          struct netdev_phys_item_id *ppid)
9144 {
9145         const struct net_device_ops *ops = dev->netdev_ops;
9146
9147         if (!ops->ndo_get_phys_port_id)
9148                 return -EOPNOTSUPP;
9149         return ops->ndo_get_phys_port_id(dev, ppid);
9150 }
9151 EXPORT_SYMBOL(dev_get_phys_port_id);
9152
9153 /**
9154  *      dev_get_phys_port_name - Get device physical port name
9155  *      @dev: device
9156  *      @name: port name
9157  *      @len: limit of bytes to copy to name
9158  *
9159  *      Get device physical port name
9160  */
9161 int dev_get_phys_port_name(struct net_device *dev,
9162                            char *name, size_t len)
9163 {
9164         const struct net_device_ops *ops = dev->netdev_ops;
9165         int err;
9166
9167         if (ops->ndo_get_phys_port_name) {
9168                 err = ops->ndo_get_phys_port_name(dev, name, len);
9169                 if (err != -EOPNOTSUPP)
9170                         return err;
9171         }
9172         return devlink_compat_phys_port_name_get(dev, name, len);
9173 }
9174 EXPORT_SYMBOL(dev_get_phys_port_name);
9175
9176 /**
9177  *      dev_get_port_parent_id - Get the device's port parent identifier
9178  *      @dev: network device
9179  *      @ppid: pointer to a storage for the port's parent identifier
9180  *      @recurse: allow/disallow recursion to lower devices
9181  *
9182  *      Get the devices's port parent identifier
9183  */
9184 int dev_get_port_parent_id(struct net_device *dev,
9185                            struct netdev_phys_item_id *ppid,
9186                            bool recurse)
9187 {
9188         const struct net_device_ops *ops = dev->netdev_ops;
9189         struct netdev_phys_item_id first = { };
9190         struct net_device *lower_dev;
9191         struct list_head *iter;
9192         int err;
9193
9194         if (ops->ndo_get_port_parent_id) {
9195                 err = ops->ndo_get_port_parent_id(dev, ppid);
9196                 if (err != -EOPNOTSUPP)
9197                         return err;
9198         }
9199
9200         err = devlink_compat_switch_id_get(dev, ppid);
9201         if (!err || err != -EOPNOTSUPP)
9202                 return err;
9203
9204         if (!recurse)
9205                 return -EOPNOTSUPP;
9206
9207         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9208                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9209                 if (err)
9210                         break;
9211                 if (!first.id_len)
9212                         first = *ppid;
9213                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9214                         return -EOPNOTSUPP;
9215         }
9216
9217         return err;
9218 }
9219 EXPORT_SYMBOL(dev_get_port_parent_id);
9220
9221 /**
9222  *      netdev_port_same_parent_id - Indicate if two network devices have
9223  *      the same port parent identifier
9224  *      @a: first network device
9225  *      @b: second network device
9226  */
9227 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9228 {
9229         struct netdev_phys_item_id a_id = { };
9230         struct netdev_phys_item_id b_id = { };
9231
9232         if (dev_get_port_parent_id(a, &a_id, true) ||
9233             dev_get_port_parent_id(b, &b_id, true))
9234                 return false;
9235
9236         return netdev_phys_item_id_same(&a_id, &b_id);
9237 }
9238 EXPORT_SYMBOL(netdev_port_same_parent_id);
9239
9240 /**
9241  *      dev_change_proto_down - update protocol port state information
9242  *      @dev: device
9243  *      @proto_down: new value
9244  *
9245  *      This info can be used by switch drivers to set the phys state of the
9246  *      port.
9247  */
9248 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9249 {
9250         const struct net_device_ops *ops = dev->netdev_ops;
9251
9252         if (!ops->ndo_change_proto_down)
9253                 return -EOPNOTSUPP;
9254         if (!netif_device_present(dev))
9255                 return -ENODEV;
9256         return ops->ndo_change_proto_down(dev, proto_down);
9257 }
9258 EXPORT_SYMBOL(dev_change_proto_down);
9259
9260 /**
9261  *      dev_change_proto_down_generic - generic implementation for
9262  *      ndo_change_proto_down that sets carrier according to
9263  *      proto_down.
9264  *
9265  *      @dev: device
9266  *      @proto_down: new value
9267  */
9268 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9269 {
9270         if (proto_down)
9271                 netif_carrier_off(dev);
9272         else
9273                 netif_carrier_on(dev);
9274         dev->proto_down = proto_down;
9275         return 0;
9276 }
9277 EXPORT_SYMBOL(dev_change_proto_down_generic);
9278
9279 /**
9280  *      dev_change_proto_down_reason - proto down reason
9281  *
9282  *      @dev: device
9283  *      @mask: proto down mask
9284  *      @value: proto down value
9285  */
9286 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9287                                   u32 value)
9288 {
9289         int b;
9290
9291         if (!mask) {
9292                 dev->proto_down_reason = value;
9293         } else {
9294                 for_each_set_bit(b, &mask, 32) {
9295                         if (value & (1 << b))
9296                                 dev->proto_down_reason |= BIT(b);
9297                         else
9298                                 dev->proto_down_reason &= ~BIT(b);
9299                 }
9300         }
9301 }
9302 EXPORT_SYMBOL(dev_change_proto_down_reason);
9303
9304 struct bpf_xdp_link {
9305         struct bpf_link link;
9306         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9307         int flags;
9308 };
9309
9310 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9311 {
9312         if (flags & XDP_FLAGS_HW_MODE)
9313                 return XDP_MODE_HW;
9314         if (flags & XDP_FLAGS_DRV_MODE)
9315                 return XDP_MODE_DRV;
9316         if (flags & XDP_FLAGS_SKB_MODE)
9317                 return XDP_MODE_SKB;
9318         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9319 }
9320
9321 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9322 {
9323         switch (mode) {
9324         case XDP_MODE_SKB:
9325                 return generic_xdp_install;
9326         case XDP_MODE_DRV:
9327         case XDP_MODE_HW:
9328                 return dev->netdev_ops->ndo_bpf;
9329         default:
9330                 return NULL;
9331         }
9332 }
9333
9334 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9335                                          enum bpf_xdp_mode mode)
9336 {
9337         return dev->xdp_state[mode].link;
9338 }
9339
9340 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9341                                      enum bpf_xdp_mode mode)
9342 {
9343         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9344
9345         if (link)
9346                 return link->link.prog;
9347         return dev->xdp_state[mode].prog;
9348 }
9349
9350 u8 dev_xdp_prog_count(struct net_device *dev)
9351 {
9352         u8 count = 0;
9353         int i;
9354
9355         for (i = 0; i < __MAX_XDP_MODE; i++)
9356                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9357                         count++;
9358         return count;
9359 }
9360 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9361
9362 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9363 {
9364         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9365
9366         return prog ? prog->aux->id : 0;
9367 }
9368
9369 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9370                              struct bpf_xdp_link *link)
9371 {
9372         dev->xdp_state[mode].link = link;
9373         dev->xdp_state[mode].prog = NULL;
9374 }
9375
9376 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9377                              struct bpf_prog *prog)
9378 {
9379         dev->xdp_state[mode].link = NULL;
9380         dev->xdp_state[mode].prog = prog;
9381 }
9382
9383 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9384                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9385                            u32 flags, struct bpf_prog *prog)
9386 {
9387         struct netdev_bpf xdp;
9388         int err;
9389
9390         memset(&xdp, 0, sizeof(xdp));
9391         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9392         xdp.extack = extack;
9393         xdp.flags = flags;
9394         xdp.prog = prog;
9395
9396         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9397          * "moved" into driver), so they don't increment it on their own, but
9398          * they do decrement refcnt when program is detached or replaced.
9399          * Given net_device also owns link/prog, we need to bump refcnt here
9400          * to prevent drivers from underflowing it.
9401          */
9402         if (prog)
9403                 bpf_prog_inc(prog);
9404         err = bpf_op(dev, &xdp);
9405         if (err) {
9406                 if (prog)
9407                         bpf_prog_put(prog);
9408                 return err;
9409         }
9410
9411         if (mode != XDP_MODE_HW)
9412                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9413
9414         return 0;
9415 }
9416
9417 static void dev_xdp_uninstall(struct net_device *dev)
9418 {
9419         struct bpf_xdp_link *link;
9420         struct bpf_prog *prog;
9421         enum bpf_xdp_mode mode;
9422         bpf_op_t bpf_op;
9423
9424         ASSERT_RTNL();
9425
9426         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9427                 prog = dev_xdp_prog(dev, mode);
9428                 if (!prog)
9429                         continue;
9430
9431                 bpf_op = dev_xdp_bpf_op(dev, mode);
9432                 if (!bpf_op)
9433                         continue;
9434
9435                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9436
9437                 /* auto-detach link from net device */
9438                 link = dev_xdp_link(dev, mode);
9439                 if (link)
9440                         link->dev = NULL;
9441                 else
9442                         bpf_prog_put(prog);
9443
9444                 dev_xdp_set_link(dev, mode, NULL);
9445         }
9446 }
9447
9448 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9449                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9450                           struct bpf_prog *old_prog, u32 flags)
9451 {
9452         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9453         struct bpf_prog *cur_prog;
9454         struct net_device *upper;
9455         struct list_head *iter;
9456         enum bpf_xdp_mode mode;
9457         bpf_op_t bpf_op;
9458         int err;
9459
9460         ASSERT_RTNL();
9461
9462         /* either link or prog attachment, never both */
9463         if (link && (new_prog || old_prog))
9464                 return -EINVAL;
9465         /* link supports only XDP mode flags */
9466         if (link && (flags & ~XDP_FLAGS_MODES)) {
9467                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9468                 return -EINVAL;
9469         }
9470         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9471         if (num_modes > 1) {
9472                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9473                 return -EINVAL;
9474         }
9475         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9476         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9477                 NL_SET_ERR_MSG(extack,
9478                                "More than one program loaded, unset mode is ambiguous");
9479                 return -EINVAL;
9480         }
9481         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9482         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9483                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9484                 return -EINVAL;
9485         }
9486
9487         mode = dev_xdp_mode(dev, flags);
9488         /* can't replace attached link */
9489         if (dev_xdp_link(dev, mode)) {
9490                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9491                 return -EBUSY;
9492         }
9493
9494         /* don't allow if an upper device already has a program */
9495         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9496                 if (dev_xdp_prog_count(upper) > 0) {
9497                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9498                         return -EEXIST;
9499                 }
9500         }
9501
9502         cur_prog = dev_xdp_prog(dev, mode);
9503         /* can't replace attached prog with link */
9504         if (link && cur_prog) {
9505                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9506                 return -EBUSY;
9507         }
9508         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9509                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9510                 return -EEXIST;
9511         }
9512
9513         /* put effective new program into new_prog */
9514         if (link)
9515                 new_prog = link->link.prog;
9516
9517         if (new_prog) {
9518                 bool offload = mode == XDP_MODE_HW;
9519                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9520                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9521
9522                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9523                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9524                         return -EBUSY;
9525                 }
9526                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9527                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9528                         return -EEXIST;
9529                 }
9530                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9531                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9532                         return -EINVAL;
9533                 }
9534                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9535                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9536                         return -EINVAL;
9537                 }
9538                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9539                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9540                         return -EINVAL;
9541                 }
9542         }
9543
9544         /* don't call drivers if the effective program didn't change */
9545         if (new_prog != cur_prog) {
9546                 bpf_op = dev_xdp_bpf_op(dev, mode);
9547                 if (!bpf_op) {
9548                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9549                         return -EOPNOTSUPP;
9550                 }
9551
9552                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9553                 if (err)
9554                         return err;
9555         }
9556
9557         if (link)
9558                 dev_xdp_set_link(dev, mode, link);
9559         else
9560                 dev_xdp_set_prog(dev, mode, new_prog);
9561         if (cur_prog)
9562                 bpf_prog_put(cur_prog);
9563
9564         return 0;
9565 }
9566
9567 static int dev_xdp_attach_link(struct net_device *dev,
9568                                struct netlink_ext_ack *extack,
9569                                struct bpf_xdp_link *link)
9570 {
9571         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9572 }
9573
9574 static int dev_xdp_detach_link(struct net_device *dev,
9575                                struct netlink_ext_ack *extack,
9576                                struct bpf_xdp_link *link)
9577 {
9578         enum bpf_xdp_mode mode;
9579         bpf_op_t bpf_op;
9580
9581         ASSERT_RTNL();
9582
9583         mode = dev_xdp_mode(dev, link->flags);
9584         if (dev_xdp_link(dev, mode) != link)
9585                 return -EINVAL;
9586
9587         bpf_op = dev_xdp_bpf_op(dev, mode);
9588         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9589         dev_xdp_set_link(dev, mode, NULL);
9590         return 0;
9591 }
9592
9593 static void bpf_xdp_link_release(struct bpf_link *link)
9594 {
9595         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9596
9597         rtnl_lock();
9598
9599         /* if racing with net_device's tear down, xdp_link->dev might be
9600          * already NULL, in which case link was already auto-detached
9601          */
9602         if (xdp_link->dev) {
9603                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9604                 xdp_link->dev = NULL;
9605         }
9606
9607         rtnl_unlock();
9608 }
9609
9610 static int bpf_xdp_link_detach(struct bpf_link *link)
9611 {
9612         bpf_xdp_link_release(link);
9613         return 0;
9614 }
9615
9616 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9617 {
9618         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9619
9620         kfree(xdp_link);
9621 }
9622
9623 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9624                                      struct seq_file *seq)
9625 {
9626         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9627         u32 ifindex = 0;
9628
9629         rtnl_lock();
9630         if (xdp_link->dev)
9631                 ifindex = xdp_link->dev->ifindex;
9632         rtnl_unlock();
9633
9634         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9635 }
9636
9637 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9638                                        struct bpf_link_info *info)
9639 {
9640         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9641         u32 ifindex = 0;
9642
9643         rtnl_lock();
9644         if (xdp_link->dev)
9645                 ifindex = xdp_link->dev->ifindex;
9646         rtnl_unlock();
9647
9648         info->xdp.ifindex = ifindex;
9649         return 0;
9650 }
9651
9652 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9653                                struct bpf_prog *old_prog)
9654 {
9655         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9656         enum bpf_xdp_mode mode;
9657         bpf_op_t bpf_op;
9658         int err = 0;
9659
9660         rtnl_lock();
9661
9662         /* link might have been auto-released already, so fail */
9663         if (!xdp_link->dev) {
9664                 err = -ENOLINK;
9665                 goto out_unlock;
9666         }
9667
9668         if (old_prog && link->prog != old_prog) {
9669                 err = -EPERM;
9670                 goto out_unlock;
9671         }
9672         old_prog = link->prog;
9673         if (old_prog->type != new_prog->type ||
9674             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9675                 err = -EINVAL;
9676                 goto out_unlock;
9677         }
9678
9679         if (old_prog == new_prog) {
9680                 /* no-op, don't disturb drivers */
9681                 bpf_prog_put(new_prog);
9682                 goto out_unlock;
9683         }
9684
9685         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9686         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9687         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9688                               xdp_link->flags, new_prog);
9689         if (err)
9690                 goto out_unlock;
9691
9692         old_prog = xchg(&link->prog, new_prog);
9693         bpf_prog_put(old_prog);
9694
9695 out_unlock:
9696         rtnl_unlock();
9697         return err;
9698 }
9699
9700 static const struct bpf_link_ops bpf_xdp_link_lops = {
9701         .release = bpf_xdp_link_release,
9702         .dealloc = bpf_xdp_link_dealloc,
9703         .detach = bpf_xdp_link_detach,
9704         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9705         .fill_link_info = bpf_xdp_link_fill_link_info,
9706         .update_prog = bpf_xdp_link_update,
9707 };
9708
9709 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9710 {
9711         struct net *net = current->nsproxy->net_ns;
9712         struct bpf_link_primer link_primer;
9713         struct bpf_xdp_link *link;
9714         struct net_device *dev;
9715         int err, fd;
9716
9717         rtnl_lock();
9718         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9719         if (!dev) {
9720                 rtnl_unlock();
9721                 return -EINVAL;
9722         }
9723
9724         link = kzalloc(sizeof(*link), GFP_USER);
9725         if (!link) {
9726                 err = -ENOMEM;
9727                 goto unlock;
9728         }
9729
9730         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9731         link->dev = dev;
9732         link->flags = attr->link_create.flags;
9733
9734         err = bpf_link_prime(&link->link, &link_primer);
9735         if (err) {
9736                 kfree(link);
9737                 goto unlock;
9738         }
9739
9740         err = dev_xdp_attach_link(dev, NULL, link);
9741         rtnl_unlock();
9742
9743         if (err) {
9744                 link->dev = NULL;
9745                 bpf_link_cleanup(&link_primer);
9746                 goto out_put_dev;
9747         }
9748
9749         fd = bpf_link_settle(&link_primer);
9750         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9751         dev_put(dev);
9752         return fd;
9753
9754 unlock:
9755         rtnl_unlock();
9756
9757 out_put_dev:
9758         dev_put(dev);
9759         return err;
9760 }
9761
9762 /**
9763  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9764  *      @dev: device
9765  *      @extack: netlink extended ack
9766  *      @fd: new program fd or negative value to clear
9767  *      @expected_fd: old program fd that userspace expects to replace or clear
9768  *      @flags: xdp-related flags
9769  *
9770  *      Set or clear a bpf program for a device
9771  */
9772 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9773                       int fd, int expected_fd, u32 flags)
9774 {
9775         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9776         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9777         int err;
9778
9779         ASSERT_RTNL();
9780
9781         if (fd >= 0) {
9782                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9783                                                  mode != XDP_MODE_SKB);
9784                 if (IS_ERR(new_prog))
9785                         return PTR_ERR(new_prog);
9786         }
9787
9788         if (expected_fd >= 0) {
9789                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9790                                                  mode != XDP_MODE_SKB);
9791                 if (IS_ERR(old_prog)) {
9792                         err = PTR_ERR(old_prog);
9793                         old_prog = NULL;
9794                         goto err_out;
9795                 }
9796         }
9797
9798         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9799
9800 err_out:
9801         if (err && new_prog)
9802                 bpf_prog_put(new_prog);
9803         if (old_prog)
9804                 bpf_prog_put(old_prog);
9805         return err;
9806 }
9807
9808 /**
9809  *      dev_new_index   -       allocate an ifindex
9810  *      @net: the applicable net namespace
9811  *
9812  *      Returns a suitable unique value for a new device interface
9813  *      number.  The caller must hold the rtnl semaphore or the
9814  *      dev_base_lock to be sure it remains unique.
9815  */
9816 static int dev_new_index(struct net *net)
9817 {
9818         int ifindex = net->ifindex;
9819
9820         for (;;) {
9821                 if (++ifindex <= 0)
9822                         ifindex = 1;
9823                 if (!__dev_get_by_index(net, ifindex))
9824                         return net->ifindex = ifindex;
9825         }
9826 }
9827
9828 /* Delayed registration/unregisteration */
9829 static LIST_HEAD(net_todo_list);
9830 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9831
9832 static void net_set_todo(struct net_device *dev)
9833 {
9834         list_add_tail(&dev->todo_list, &net_todo_list);
9835         dev_net(dev)->dev_unreg_count++;
9836 }
9837
9838 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9839         struct net_device *upper, netdev_features_t features)
9840 {
9841         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9842         netdev_features_t feature;
9843         int feature_bit;
9844
9845         for_each_netdev_feature(upper_disables, feature_bit) {
9846                 feature = __NETIF_F_BIT(feature_bit);
9847                 if (!(upper->wanted_features & feature)
9848                     && (features & feature)) {
9849                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9850                                    &feature, upper->name);
9851                         features &= ~feature;
9852                 }
9853         }
9854
9855         return features;
9856 }
9857
9858 static void netdev_sync_lower_features(struct net_device *upper,
9859         struct net_device *lower, netdev_features_t features)
9860 {
9861         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9862         netdev_features_t feature;
9863         int feature_bit;
9864
9865         for_each_netdev_feature(upper_disables, feature_bit) {
9866                 feature = __NETIF_F_BIT(feature_bit);
9867                 if (!(features & feature) && (lower->features & feature)) {
9868                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9869                                    &feature, lower->name);
9870                         lower->wanted_features &= ~feature;
9871                         __netdev_update_features(lower);
9872
9873                         if (unlikely(lower->features & feature))
9874                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9875                                             &feature, lower->name);
9876                         else
9877                                 netdev_features_change(lower);
9878                 }
9879         }
9880 }
9881
9882 static netdev_features_t netdev_fix_features(struct net_device *dev,
9883         netdev_features_t features)
9884 {
9885         /* Fix illegal checksum combinations */
9886         if ((features & NETIF_F_HW_CSUM) &&
9887             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9888                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9889                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9890         }
9891
9892         /* TSO requires that SG is present as well. */
9893         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9894                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9895                 features &= ~NETIF_F_ALL_TSO;
9896         }
9897
9898         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9899                                         !(features & NETIF_F_IP_CSUM)) {
9900                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9901                 features &= ~NETIF_F_TSO;
9902                 features &= ~NETIF_F_TSO_ECN;
9903         }
9904
9905         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9906                                          !(features & NETIF_F_IPV6_CSUM)) {
9907                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9908                 features &= ~NETIF_F_TSO6;
9909         }
9910
9911         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9912         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9913                 features &= ~NETIF_F_TSO_MANGLEID;
9914
9915         /* TSO ECN requires that TSO is present as well. */
9916         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9917                 features &= ~NETIF_F_TSO_ECN;
9918
9919         /* Software GSO depends on SG. */
9920         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9921                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9922                 features &= ~NETIF_F_GSO;
9923         }
9924
9925         /* GSO partial features require GSO partial be set */
9926         if ((features & dev->gso_partial_features) &&
9927             !(features & NETIF_F_GSO_PARTIAL)) {
9928                 netdev_dbg(dev,
9929                            "Dropping partially supported GSO features since no GSO partial.\n");
9930                 features &= ~dev->gso_partial_features;
9931         }
9932
9933         if (!(features & NETIF_F_RXCSUM)) {
9934                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9935                  * successfully merged by hardware must also have the
9936                  * checksum verified by hardware.  If the user does not
9937                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9938                  */
9939                 if (features & NETIF_F_GRO_HW) {
9940                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9941                         features &= ~NETIF_F_GRO_HW;
9942                 }
9943         }
9944
9945         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9946         if (features & NETIF_F_RXFCS) {
9947                 if (features & NETIF_F_LRO) {
9948                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9949                         features &= ~NETIF_F_LRO;
9950                 }
9951
9952                 if (features & NETIF_F_GRO_HW) {
9953                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9954                         features &= ~NETIF_F_GRO_HW;
9955                 }
9956         }
9957
9958         if (features & NETIF_F_HW_TLS_TX) {
9959                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9960                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9961                 bool hw_csum = features & NETIF_F_HW_CSUM;
9962
9963                 if (!ip_csum && !hw_csum) {
9964                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9965                         features &= ~NETIF_F_HW_TLS_TX;
9966                 }
9967         }
9968
9969         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9970                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9971                 features &= ~NETIF_F_HW_TLS_RX;
9972         }
9973
9974         return features;
9975 }
9976
9977 int __netdev_update_features(struct net_device *dev)
9978 {
9979         struct net_device *upper, *lower;
9980         netdev_features_t features;
9981         struct list_head *iter;
9982         int err = -1;
9983
9984         ASSERT_RTNL();
9985
9986         features = netdev_get_wanted_features(dev);
9987
9988         if (dev->netdev_ops->ndo_fix_features)
9989                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9990
9991         /* driver might be less strict about feature dependencies */
9992         features = netdev_fix_features(dev, features);
9993
9994         /* some features can't be enabled if they're off on an upper device */
9995         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9996                 features = netdev_sync_upper_features(dev, upper, features);
9997
9998         if (dev->features == features)
9999                 goto sync_lower;
10000
10001         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10002                 &dev->features, &features);
10003
10004         if (dev->netdev_ops->ndo_set_features)
10005                 err = dev->netdev_ops->ndo_set_features(dev, features);
10006         else
10007                 err = 0;
10008
10009         if (unlikely(err < 0)) {
10010                 netdev_err(dev,
10011                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
10012                         err, &features, &dev->features);
10013                 /* return non-0 since some features might have changed and
10014                  * it's better to fire a spurious notification than miss it
10015                  */
10016                 return -1;
10017         }
10018
10019 sync_lower:
10020         /* some features must be disabled on lower devices when disabled
10021          * on an upper device (think: bonding master or bridge)
10022          */
10023         netdev_for_each_lower_dev(dev, lower, iter)
10024                 netdev_sync_lower_features(dev, lower, features);
10025
10026         if (!err) {
10027                 netdev_features_t diff = features ^ dev->features;
10028
10029                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10030                         /* udp_tunnel_{get,drop}_rx_info both need
10031                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10032                          * device, or they won't do anything.
10033                          * Thus we need to update dev->features
10034                          * *before* calling udp_tunnel_get_rx_info,
10035                          * but *after* calling udp_tunnel_drop_rx_info.
10036                          */
10037                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10038                                 dev->features = features;
10039                                 udp_tunnel_get_rx_info(dev);
10040                         } else {
10041                                 udp_tunnel_drop_rx_info(dev);
10042                         }
10043                 }
10044
10045                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10046                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10047                                 dev->features = features;
10048                                 err |= vlan_get_rx_ctag_filter_info(dev);
10049                         } else {
10050                                 vlan_drop_rx_ctag_filter_info(dev);
10051                         }
10052                 }
10053
10054                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10055                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10056                                 dev->features = features;
10057                                 err |= vlan_get_rx_stag_filter_info(dev);
10058                         } else {
10059                                 vlan_drop_rx_stag_filter_info(dev);
10060                         }
10061                 }
10062
10063                 dev->features = features;
10064         }
10065
10066         return err < 0 ? 0 : 1;
10067 }
10068
10069 /**
10070  *      netdev_update_features - recalculate device features
10071  *      @dev: the device to check
10072  *
10073  *      Recalculate dev->features set and send notifications if it
10074  *      has changed. Should be called after driver or hardware dependent
10075  *      conditions might have changed that influence the features.
10076  */
10077 void netdev_update_features(struct net_device *dev)
10078 {
10079         if (__netdev_update_features(dev))
10080                 netdev_features_change(dev);
10081 }
10082 EXPORT_SYMBOL(netdev_update_features);
10083
10084 /**
10085  *      netdev_change_features - recalculate device features
10086  *      @dev: the device to check
10087  *
10088  *      Recalculate dev->features set and send notifications even
10089  *      if they have not changed. Should be called instead of
10090  *      netdev_update_features() if also dev->vlan_features might
10091  *      have changed to allow the changes to be propagated to stacked
10092  *      VLAN devices.
10093  */
10094 void netdev_change_features(struct net_device *dev)
10095 {
10096         __netdev_update_features(dev);
10097         netdev_features_change(dev);
10098 }
10099 EXPORT_SYMBOL(netdev_change_features);
10100
10101 /**
10102  *      netif_stacked_transfer_operstate -      transfer operstate
10103  *      @rootdev: the root or lower level device to transfer state from
10104  *      @dev: the device to transfer operstate to
10105  *
10106  *      Transfer operational state from root to device. This is normally
10107  *      called when a stacking relationship exists between the root
10108  *      device and the device(a leaf device).
10109  */
10110 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10111                                         struct net_device *dev)
10112 {
10113         if (rootdev->operstate == IF_OPER_DORMANT)
10114                 netif_dormant_on(dev);
10115         else
10116                 netif_dormant_off(dev);
10117
10118         if (rootdev->operstate == IF_OPER_TESTING)
10119                 netif_testing_on(dev);
10120         else
10121                 netif_testing_off(dev);
10122
10123         if (netif_carrier_ok(rootdev))
10124                 netif_carrier_on(dev);
10125         else
10126                 netif_carrier_off(dev);
10127 }
10128 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10129
10130 static int netif_alloc_rx_queues(struct net_device *dev)
10131 {
10132         unsigned int i, count = dev->num_rx_queues;
10133         struct netdev_rx_queue *rx;
10134         size_t sz = count * sizeof(*rx);
10135         int err = 0;
10136
10137         BUG_ON(count < 1);
10138
10139         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10140         if (!rx)
10141                 return -ENOMEM;
10142
10143         dev->_rx = rx;
10144
10145         for (i = 0; i < count; i++) {
10146                 rx[i].dev = dev;
10147
10148                 /* XDP RX-queue setup */
10149                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10150                 if (err < 0)
10151                         goto err_rxq_info;
10152         }
10153         return 0;
10154
10155 err_rxq_info:
10156         /* Rollback successful reg's and free other resources */
10157         while (i--)
10158                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10159         kvfree(dev->_rx);
10160         dev->_rx = NULL;
10161         return err;
10162 }
10163
10164 static void netif_free_rx_queues(struct net_device *dev)
10165 {
10166         unsigned int i, count = dev->num_rx_queues;
10167
10168         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10169         if (!dev->_rx)
10170                 return;
10171
10172         for (i = 0; i < count; i++)
10173                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10174
10175         kvfree(dev->_rx);
10176 }
10177
10178 static void netdev_init_one_queue(struct net_device *dev,
10179                                   struct netdev_queue *queue, void *_unused)
10180 {
10181         /* Initialize queue lock */
10182         spin_lock_init(&queue->_xmit_lock);
10183         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10184         queue->xmit_lock_owner = -1;
10185         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10186         queue->dev = dev;
10187 #ifdef CONFIG_BQL
10188         dql_init(&queue->dql, HZ);
10189 #endif
10190 }
10191
10192 static void netif_free_tx_queues(struct net_device *dev)
10193 {
10194         kvfree(dev->_tx);
10195 }
10196
10197 static int netif_alloc_netdev_queues(struct net_device *dev)
10198 {
10199         unsigned int count = dev->num_tx_queues;
10200         struct netdev_queue *tx;
10201         size_t sz = count * sizeof(*tx);
10202
10203         if (count < 1 || count > 0xffff)
10204                 return -EINVAL;
10205
10206         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10207         if (!tx)
10208                 return -ENOMEM;
10209
10210         dev->_tx = tx;
10211
10212         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10213         spin_lock_init(&dev->tx_global_lock);
10214
10215         return 0;
10216 }
10217
10218 void netif_tx_stop_all_queues(struct net_device *dev)
10219 {
10220         unsigned int i;
10221
10222         for (i = 0; i < dev->num_tx_queues; i++) {
10223                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10224
10225                 netif_tx_stop_queue(txq);
10226         }
10227 }
10228 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10229
10230 /**
10231  *      register_netdevice      - register a network device
10232  *      @dev: device to register
10233  *
10234  *      Take a completed network device structure and add it to the kernel
10235  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10236  *      chain. 0 is returned on success. A negative errno code is returned
10237  *      on a failure to set up the device, or if the name is a duplicate.
10238  *
10239  *      Callers must hold the rtnl semaphore. You may want
10240  *      register_netdev() instead of this.
10241  *
10242  *      BUGS:
10243  *      The locking appears insufficient to guarantee two parallel registers
10244  *      will not get the same name.
10245  */
10246
10247 int register_netdevice(struct net_device *dev)
10248 {
10249         int ret;
10250         struct net *net = dev_net(dev);
10251
10252         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10253                      NETDEV_FEATURE_COUNT);
10254         BUG_ON(dev_boot_phase);
10255         ASSERT_RTNL();
10256
10257         might_sleep();
10258
10259         /* When net_device's are persistent, this will be fatal. */
10260         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10261         BUG_ON(!net);
10262
10263         ret = ethtool_check_ops(dev->ethtool_ops);
10264         if (ret)
10265                 return ret;
10266
10267         spin_lock_init(&dev->addr_list_lock);
10268         netdev_set_addr_lockdep_class(dev);
10269
10270         ret = dev_get_valid_name(net, dev, dev->name);
10271         if (ret < 0)
10272                 goto out;
10273
10274         ret = -ENOMEM;
10275         dev->name_node = netdev_name_node_head_alloc(dev);
10276         if (!dev->name_node)
10277                 goto out;
10278
10279         /* Init, if this function is available */
10280         if (dev->netdev_ops->ndo_init) {
10281                 ret = dev->netdev_ops->ndo_init(dev);
10282                 if (ret) {
10283                         if (ret > 0)
10284                                 ret = -EIO;
10285                         goto err_free_name;
10286                 }
10287         }
10288
10289         if (((dev->hw_features | dev->features) &
10290              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10291             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10292              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10293                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10294                 ret = -EINVAL;
10295                 goto err_uninit;
10296         }
10297
10298         ret = -EBUSY;
10299         if (!dev->ifindex)
10300                 dev->ifindex = dev_new_index(net);
10301         else if (__dev_get_by_index(net, dev->ifindex))
10302                 goto err_uninit;
10303
10304         /* Transfer changeable features to wanted_features and enable
10305          * software offloads (GSO and GRO).
10306          */
10307         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10308         dev->features |= NETIF_F_SOFT_FEATURES;
10309
10310         if (dev->udp_tunnel_nic_info) {
10311                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10312                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10313         }
10314
10315         dev->wanted_features = dev->features & dev->hw_features;
10316
10317         if (!(dev->flags & IFF_LOOPBACK))
10318                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10319
10320         /* If IPv4 TCP segmentation offload is supported we should also
10321          * allow the device to enable segmenting the frame with the option
10322          * of ignoring a static IP ID value.  This doesn't enable the
10323          * feature itself but allows the user to enable it later.
10324          */
10325         if (dev->hw_features & NETIF_F_TSO)
10326                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10327         if (dev->vlan_features & NETIF_F_TSO)
10328                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10329         if (dev->mpls_features & NETIF_F_TSO)
10330                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10331         if (dev->hw_enc_features & NETIF_F_TSO)
10332                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10333
10334         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10335          */
10336         dev->vlan_features |= NETIF_F_HIGHDMA;
10337
10338         /* Make NETIF_F_SG inheritable to tunnel devices.
10339          */
10340         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10341
10342         /* Make NETIF_F_SG inheritable to MPLS.
10343          */
10344         dev->mpls_features |= NETIF_F_SG;
10345
10346         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10347         ret = notifier_to_errno(ret);
10348         if (ret)
10349                 goto err_uninit;
10350
10351         ret = netdev_register_kobject(dev);
10352         write_lock(&dev_base_lock);
10353         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10354         write_unlock(&dev_base_lock);
10355         if (ret)
10356                 goto err_uninit;
10357
10358         __netdev_update_features(dev);
10359
10360         /*
10361          *      Default initial state at registry is that the
10362          *      device is present.
10363          */
10364
10365         set_bit(__LINK_STATE_PRESENT, &dev->state);
10366
10367         linkwatch_init_dev(dev);
10368
10369         dev_init_scheduler(dev);
10370         dev_hold(dev);
10371         list_netdevice(dev);
10372         add_device_randomness(dev->dev_addr, dev->addr_len);
10373
10374         /* If the device has permanent device address, driver should
10375          * set dev_addr and also addr_assign_type should be set to
10376          * NET_ADDR_PERM (default value).
10377          */
10378         if (dev->addr_assign_type == NET_ADDR_PERM)
10379                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10380
10381         /* Notify protocols, that a new device appeared. */
10382         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10383         ret = notifier_to_errno(ret);
10384         if (ret) {
10385                 /* Expect explicit free_netdev() on failure */
10386                 dev->needs_free_netdev = false;
10387                 unregister_netdevice_queue(dev, NULL);
10388                 goto out;
10389         }
10390         /*
10391          *      Prevent userspace races by waiting until the network
10392          *      device is fully setup before sending notifications.
10393          */
10394         if (!dev->rtnl_link_ops ||
10395             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10396                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10397
10398 out:
10399         return ret;
10400
10401 err_uninit:
10402         if (dev->netdev_ops->ndo_uninit)
10403                 dev->netdev_ops->ndo_uninit(dev);
10404         if (dev->priv_destructor)
10405                 dev->priv_destructor(dev);
10406 err_free_name:
10407         netdev_name_node_free(dev->name_node);
10408         goto out;
10409 }
10410 EXPORT_SYMBOL(register_netdevice);
10411
10412 /**
10413  *      init_dummy_netdev       - init a dummy network device for NAPI
10414  *      @dev: device to init
10415  *
10416  *      This takes a network device structure and initialize the minimum
10417  *      amount of fields so it can be used to schedule NAPI polls without
10418  *      registering a full blown interface. This is to be used by drivers
10419  *      that need to tie several hardware interfaces to a single NAPI
10420  *      poll scheduler due to HW limitations.
10421  */
10422 int init_dummy_netdev(struct net_device *dev)
10423 {
10424         /* Clear everything. Note we don't initialize spinlocks
10425          * are they aren't supposed to be taken by any of the
10426          * NAPI code and this dummy netdev is supposed to be
10427          * only ever used for NAPI polls
10428          */
10429         memset(dev, 0, sizeof(struct net_device));
10430
10431         /* make sure we BUG if trying to hit standard
10432          * register/unregister code path
10433          */
10434         dev->reg_state = NETREG_DUMMY;
10435
10436         /* NAPI wants this */
10437         INIT_LIST_HEAD(&dev->napi_list);
10438
10439         /* a dummy interface is started by default */
10440         set_bit(__LINK_STATE_PRESENT, &dev->state);
10441         set_bit(__LINK_STATE_START, &dev->state);
10442
10443         /* napi_busy_loop stats accounting wants this */
10444         dev_net_set(dev, &init_net);
10445
10446         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10447          * because users of this 'device' dont need to change
10448          * its refcount.
10449          */
10450
10451         return 0;
10452 }
10453 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10454
10455
10456 /**
10457  *      register_netdev - register a network device
10458  *      @dev: device to register
10459  *
10460  *      Take a completed network device structure and add it to the kernel
10461  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10462  *      chain. 0 is returned on success. A negative errno code is returned
10463  *      on a failure to set up the device, or if the name is a duplicate.
10464  *
10465  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10466  *      and expands the device name if you passed a format string to
10467  *      alloc_netdev.
10468  */
10469 int register_netdev(struct net_device *dev)
10470 {
10471         int err;
10472
10473         if (rtnl_lock_killable())
10474                 return -EINTR;
10475         err = register_netdevice(dev);
10476         rtnl_unlock();
10477         return err;
10478 }
10479 EXPORT_SYMBOL(register_netdev);
10480
10481 int netdev_refcnt_read(const struct net_device *dev)
10482 {
10483 #ifdef CONFIG_PCPU_DEV_REFCNT
10484         int i, refcnt = 0;
10485
10486         for_each_possible_cpu(i)
10487                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10488         return refcnt;
10489 #else
10490         return refcount_read(&dev->dev_refcnt);
10491 #endif
10492 }
10493 EXPORT_SYMBOL(netdev_refcnt_read);
10494
10495 int netdev_unregister_timeout_secs __read_mostly = 10;
10496
10497 #define WAIT_REFS_MIN_MSECS 1
10498 #define WAIT_REFS_MAX_MSECS 250
10499 /**
10500  * netdev_wait_allrefs - wait until all references are gone.
10501  * @dev: target net_device
10502  *
10503  * This is called when unregistering network devices.
10504  *
10505  * Any protocol or device that holds a reference should register
10506  * for netdevice notification, and cleanup and put back the
10507  * reference if they receive an UNREGISTER event.
10508  * We can get stuck here if buggy protocols don't correctly
10509  * call dev_put.
10510  */
10511 static void netdev_wait_allrefs(struct net_device *dev)
10512 {
10513         unsigned long rebroadcast_time, warning_time;
10514         int wait = 0, refcnt;
10515
10516         rebroadcast_time = warning_time = jiffies;
10517         refcnt = netdev_refcnt_read(dev);
10518
10519         while (refcnt != 1) {
10520                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10521                         rtnl_lock();
10522
10523                         /* Rebroadcast unregister notification */
10524                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10525
10526                         __rtnl_unlock();
10527                         rcu_barrier();
10528                         rtnl_lock();
10529
10530                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10531                                      &dev->state)) {
10532                                 /* We must not have linkwatch events
10533                                  * pending on unregister. If this
10534                                  * happens, we simply run the queue
10535                                  * unscheduled, resulting in a noop
10536                                  * for this device.
10537                                  */
10538                                 linkwatch_run_queue();
10539                         }
10540
10541                         __rtnl_unlock();
10542
10543                         rebroadcast_time = jiffies;
10544                 }
10545
10546                 if (!wait) {
10547                         rcu_barrier();
10548                         wait = WAIT_REFS_MIN_MSECS;
10549                 } else {
10550                         msleep(wait);
10551                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10552                 }
10553
10554                 refcnt = netdev_refcnt_read(dev);
10555
10556                 if (refcnt != 1 &&
10557                     time_after(jiffies, warning_time +
10558                                netdev_unregister_timeout_secs * HZ)) {
10559                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10560                                  dev->name, refcnt);
10561                         warning_time = jiffies;
10562                 }
10563         }
10564 }
10565
10566 /* The sequence is:
10567  *
10568  *      rtnl_lock();
10569  *      ...
10570  *      register_netdevice(x1);
10571  *      register_netdevice(x2);
10572  *      ...
10573  *      unregister_netdevice(y1);
10574  *      unregister_netdevice(y2);
10575  *      ...
10576  *      rtnl_unlock();
10577  *      free_netdev(y1);
10578  *      free_netdev(y2);
10579  *
10580  * We are invoked by rtnl_unlock().
10581  * This allows us to deal with problems:
10582  * 1) We can delete sysfs objects which invoke hotplug
10583  *    without deadlocking with linkwatch via keventd.
10584  * 2) Since we run with the RTNL semaphore not held, we can sleep
10585  *    safely in order to wait for the netdev refcnt to drop to zero.
10586  *
10587  * We must not return until all unregister events added during
10588  * the interval the lock was held have been completed.
10589  */
10590 void netdev_run_todo(void)
10591 {
10592         struct list_head list;
10593 #ifdef CONFIG_LOCKDEP
10594         struct list_head unlink_list;
10595
10596         list_replace_init(&net_unlink_list, &unlink_list);
10597
10598         while (!list_empty(&unlink_list)) {
10599                 struct net_device *dev = list_first_entry(&unlink_list,
10600                                                           struct net_device,
10601                                                           unlink_list);
10602                 list_del_init(&dev->unlink_list);
10603                 dev->nested_level = dev->lower_level - 1;
10604         }
10605 #endif
10606
10607         /* Snapshot list, allow later requests */
10608         list_replace_init(&net_todo_list, &list);
10609
10610         __rtnl_unlock();
10611
10612
10613         /* Wait for rcu callbacks to finish before next phase */
10614         if (!list_empty(&list))
10615                 rcu_barrier();
10616
10617         while (!list_empty(&list)) {
10618                 struct net_device *dev
10619                         = list_first_entry(&list, struct net_device, todo_list);
10620                 list_del(&dev->todo_list);
10621
10622                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10623                         pr_err("network todo '%s' but state %d\n",
10624                                dev->name, dev->reg_state);
10625                         dump_stack();
10626                         continue;
10627                 }
10628
10629                 write_lock(&dev_base_lock);
10630                 dev->reg_state = NETREG_UNREGISTERED;
10631                 write_unlock(&dev_base_lock);
10632                 linkwatch_forget_dev(dev);
10633
10634                 netdev_wait_allrefs(dev);
10635
10636                 /* paranoia */
10637                 BUG_ON(netdev_refcnt_read(dev) != 1);
10638                 BUG_ON(!list_empty(&dev->ptype_all));
10639                 BUG_ON(!list_empty(&dev->ptype_specific));
10640                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10641                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10642
10643                 if (dev->priv_destructor)
10644                         dev->priv_destructor(dev);
10645                 if (dev->needs_free_netdev)
10646                         free_netdev(dev);
10647
10648                 /* Report a network device has been unregistered */
10649                 rtnl_lock();
10650                 dev_net(dev)->dev_unreg_count--;
10651                 __rtnl_unlock();
10652                 wake_up(&netdev_unregistering_wq);
10653
10654                 /* Free network device */
10655                 kobject_put(&dev->dev.kobj);
10656         }
10657 }
10658
10659 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10660  * all the same fields in the same order as net_device_stats, with only
10661  * the type differing, but rtnl_link_stats64 may have additional fields
10662  * at the end for newer counters.
10663  */
10664 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10665                              const struct net_device_stats *netdev_stats)
10666 {
10667         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10668         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10669         u64 *dst = (u64 *)stats64;
10670
10671         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10672         for (i = 0; i < n; i++)
10673                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10674         /* zero out counters that only exist in rtnl_link_stats64 */
10675         memset((char *)stats64 + n * sizeof(u64), 0,
10676                sizeof(*stats64) - n * sizeof(u64));
10677 }
10678 EXPORT_SYMBOL(netdev_stats_to_stats64);
10679
10680 /**
10681  *      dev_get_stats   - get network device statistics
10682  *      @dev: device to get statistics from
10683  *      @storage: place to store stats
10684  *
10685  *      Get network statistics from device. Return @storage.
10686  *      The device driver may provide its own method by setting
10687  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10688  *      otherwise the internal statistics structure is used.
10689  */
10690 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10691                                         struct rtnl_link_stats64 *storage)
10692 {
10693         const struct net_device_ops *ops = dev->netdev_ops;
10694
10695         if (ops->ndo_get_stats64) {
10696                 memset(storage, 0, sizeof(*storage));
10697                 ops->ndo_get_stats64(dev, storage);
10698         } else if (ops->ndo_get_stats) {
10699                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10700         } else {
10701                 netdev_stats_to_stats64(storage, &dev->stats);
10702         }
10703         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10704         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10705         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10706         return storage;
10707 }
10708 EXPORT_SYMBOL(dev_get_stats);
10709
10710 /**
10711  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10712  *      @s: place to store stats
10713  *      @netstats: per-cpu network stats to read from
10714  *
10715  *      Read per-cpu network statistics and populate the related fields in @s.
10716  */
10717 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10718                            const struct pcpu_sw_netstats __percpu *netstats)
10719 {
10720         int cpu;
10721
10722         for_each_possible_cpu(cpu) {
10723                 const struct pcpu_sw_netstats *stats;
10724                 struct pcpu_sw_netstats tmp;
10725                 unsigned int start;
10726
10727                 stats = per_cpu_ptr(netstats, cpu);
10728                 do {
10729                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10730                         tmp.rx_packets = stats->rx_packets;
10731                         tmp.rx_bytes   = stats->rx_bytes;
10732                         tmp.tx_packets = stats->tx_packets;
10733                         tmp.tx_bytes   = stats->tx_bytes;
10734                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10735
10736                 s->rx_packets += tmp.rx_packets;
10737                 s->rx_bytes   += tmp.rx_bytes;
10738                 s->tx_packets += tmp.tx_packets;
10739                 s->tx_bytes   += tmp.tx_bytes;
10740         }
10741 }
10742 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10743
10744 /**
10745  *      dev_get_tstats64 - ndo_get_stats64 implementation
10746  *      @dev: device to get statistics from
10747  *      @s: place to store stats
10748  *
10749  *      Populate @s from dev->stats and dev->tstats. Can be used as
10750  *      ndo_get_stats64() callback.
10751  */
10752 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10753 {
10754         netdev_stats_to_stats64(s, &dev->stats);
10755         dev_fetch_sw_netstats(s, dev->tstats);
10756 }
10757 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10758
10759 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10760 {
10761         struct netdev_queue *queue = dev_ingress_queue(dev);
10762
10763 #ifdef CONFIG_NET_CLS_ACT
10764         if (queue)
10765                 return queue;
10766         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10767         if (!queue)
10768                 return NULL;
10769         netdev_init_one_queue(dev, queue, NULL);
10770         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10771         queue->qdisc_sleeping = &noop_qdisc;
10772         rcu_assign_pointer(dev->ingress_queue, queue);
10773 #endif
10774         return queue;
10775 }
10776
10777 static const struct ethtool_ops default_ethtool_ops;
10778
10779 void netdev_set_default_ethtool_ops(struct net_device *dev,
10780                                     const struct ethtool_ops *ops)
10781 {
10782         if (dev->ethtool_ops == &default_ethtool_ops)
10783                 dev->ethtool_ops = ops;
10784 }
10785 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10786
10787 void netdev_freemem(struct net_device *dev)
10788 {
10789         char *addr = (char *)dev - dev->padded;
10790
10791         kvfree(addr);
10792 }
10793
10794 /**
10795  * alloc_netdev_mqs - allocate network device
10796  * @sizeof_priv: size of private data to allocate space for
10797  * @name: device name format string
10798  * @name_assign_type: origin of device name
10799  * @setup: callback to initialize device
10800  * @txqs: the number of TX subqueues to allocate
10801  * @rxqs: the number of RX subqueues to allocate
10802  *
10803  * Allocates a struct net_device with private data area for driver use
10804  * and performs basic initialization.  Also allocates subqueue structs
10805  * for each queue on the device.
10806  */
10807 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10808                 unsigned char name_assign_type,
10809                 void (*setup)(struct net_device *),
10810                 unsigned int txqs, unsigned int rxqs)
10811 {
10812         struct net_device *dev;
10813         unsigned int alloc_size;
10814         struct net_device *p;
10815
10816         BUG_ON(strlen(name) >= sizeof(dev->name));
10817
10818         if (txqs < 1) {
10819                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10820                 return NULL;
10821         }
10822
10823         if (rxqs < 1) {
10824                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10825                 return NULL;
10826         }
10827
10828         alloc_size = sizeof(struct net_device);
10829         if (sizeof_priv) {
10830                 /* ensure 32-byte alignment of private area */
10831                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10832                 alloc_size += sizeof_priv;
10833         }
10834         /* ensure 32-byte alignment of whole construct */
10835         alloc_size += NETDEV_ALIGN - 1;
10836
10837         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10838         if (!p)
10839                 return NULL;
10840
10841         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10842         dev->padded = (char *)dev - (char *)p;
10843
10844 #ifdef CONFIG_PCPU_DEV_REFCNT
10845         dev->pcpu_refcnt = alloc_percpu(int);
10846         if (!dev->pcpu_refcnt)
10847                 goto free_dev;
10848         dev_hold(dev);
10849 #else
10850         refcount_set(&dev->dev_refcnt, 1);
10851 #endif
10852
10853         if (dev_addr_init(dev))
10854                 goto free_pcpu;
10855
10856         dev_mc_init(dev);
10857         dev_uc_init(dev);
10858
10859         dev_net_set(dev, &init_net);
10860
10861         dev->gso_max_size = GSO_MAX_SIZE;
10862         dev->gso_max_segs = GSO_MAX_SEGS;
10863         dev->upper_level = 1;
10864         dev->lower_level = 1;
10865 #ifdef CONFIG_LOCKDEP
10866         dev->nested_level = 0;
10867         INIT_LIST_HEAD(&dev->unlink_list);
10868 #endif
10869
10870         INIT_LIST_HEAD(&dev->napi_list);
10871         INIT_LIST_HEAD(&dev->unreg_list);
10872         INIT_LIST_HEAD(&dev->close_list);
10873         INIT_LIST_HEAD(&dev->link_watch_list);
10874         INIT_LIST_HEAD(&dev->adj_list.upper);
10875         INIT_LIST_HEAD(&dev->adj_list.lower);
10876         INIT_LIST_HEAD(&dev->ptype_all);
10877         INIT_LIST_HEAD(&dev->ptype_specific);
10878         INIT_LIST_HEAD(&dev->net_notifier_list);
10879 #ifdef CONFIG_NET_SCHED
10880         hash_init(dev->qdisc_hash);
10881 #endif
10882         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10883         setup(dev);
10884
10885         if (!dev->tx_queue_len) {
10886                 dev->priv_flags |= IFF_NO_QUEUE;
10887                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10888         }
10889
10890         dev->num_tx_queues = txqs;
10891         dev->real_num_tx_queues = txqs;
10892         if (netif_alloc_netdev_queues(dev))
10893                 goto free_all;
10894
10895         dev->num_rx_queues = rxqs;
10896         dev->real_num_rx_queues = rxqs;
10897         if (netif_alloc_rx_queues(dev))
10898                 goto free_all;
10899
10900         strcpy(dev->name, name);
10901         dev->name_assign_type = name_assign_type;
10902         dev->group = INIT_NETDEV_GROUP;
10903         if (!dev->ethtool_ops)
10904                 dev->ethtool_ops = &default_ethtool_ops;
10905
10906         nf_hook_ingress_init(dev);
10907
10908         return dev;
10909
10910 free_all:
10911         free_netdev(dev);
10912         return NULL;
10913
10914 free_pcpu:
10915 #ifdef CONFIG_PCPU_DEV_REFCNT
10916         free_percpu(dev->pcpu_refcnt);
10917 free_dev:
10918 #endif
10919         netdev_freemem(dev);
10920         return NULL;
10921 }
10922 EXPORT_SYMBOL(alloc_netdev_mqs);
10923
10924 /**
10925  * free_netdev - free network device
10926  * @dev: device
10927  *
10928  * This function does the last stage of destroying an allocated device
10929  * interface. The reference to the device object is released. If this
10930  * is the last reference then it will be freed.Must be called in process
10931  * context.
10932  */
10933 void free_netdev(struct net_device *dev)
10934 {
10935         struct napi_struct *p, *n;
10936
10937         might_sleep();
10938
10939         /* When called immediately after register_netdevice() failed the unwind
10940          * handling may still be dismantling the device. Handle that case by
10941          * deferring the free.
10942          */
10943         if (dev->reg_state == NETREG_UNREGISTERING) {
10944                 ASSERT_RTNL();
10945                 dev->needs_free_netdev = true;
10946                 return;
10947         }
10948
10949         netif_free_tx_queues(dev);
10950         netif_free_rx_queues(dev);
10951
10952         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10953
10954         /* Flush device addresses */
10955         dev_addr_flush(dev);
10956
10957         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10958                 netif_napi_del(p);
10959
10960 #ifdef CONFIG_PCPU_DEV_REFCNT
10961         free_percpu(dev->pcpu_refcnt);
10962         dev->pcpu_refcnt = NULL;
10963 #endif
10964         free_percpu(dev->xdp_bulkq);
10965         dev->xdp_bulkq = NULL;
10966
10967         /*  Compatibility with error handling in drivers */
10968         if (dev->reg_state == NETREG_UNINITIALIZED) {
10969                 netdev_freemem(dev);
10970                 return;
10971         }
10972
10973         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10974         dev->reg_state = NETREG_RELEASED;
10975
10976         /* will free via device release */
10977         put_device(&dev->dev);
10978 }
10979 EXPORT_SYMBOL(free_netdev);
10980
10981 /**
10982  *      synchronize_net -  Synchronize with packet receive processing
10983  *
10984  *      Wait for packets currently being received to be done.
10985  *      Does not block later packets from starting.
10986  */
10987 void synchronize_net(void)
10988 {
10989         might_sleep();
10990         if (rtnl_is_locked())
10991                 synchronize_rcu_expedited();
10992         else
10993                 synchronize_rcu();
10994 }
10995 EXPORT_SYMBOL(synchronize_net);
10996
10997 /**
10998  *      unregister_netdevice_queue - remove device from the kernel
10999  *      @dev: device
11000  *      @head: list
11001  *
11002  *      This function shuts down a device interface and removes it
11003  *      from the kernel tables.
11004  *      If head not NULL, device is queued to be unregistered later.
11005  *
11006  *      Callers must hold the rtnl semaphore.  You may want
11007  *      unregister_netdev() instead of this.
11008  */
11009
11010 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11011 {
11012         ASSERT_RTNL();
11013
11014         if (head) {
11015                 list_move_tail(&dev->unreg_list, head);
11016         } else {
11017                 LIST_HEAD(single);
11018
11019                 list_add(&dev->unreg_list, &single);
11020                 unregister_netdevice_many(&single);
11021         }
11022 }
11023 EXPORT_SYMBOL(unregister_netdevice_queue);
11024
11025 /**
11026  *      unregister_netdevice_many - unregister many devices
11027  *      @head: list of devices
11028  *
11029  *  Note: As most callers use a stack allocated list_head,
11030  *  we force a list_del() to make sure stack wont be corrupted later.
11031  */
11032 void unregister_netdevice_many(struct list_head *head)
11033 {
11034         struct net_device *dev, *tmp;
11035         LIST_HEAD(close_head);
11036
11037         BUG_ON(dev_boot_phase);
11038         ASSERT_RTNL();
11039
11040         if (list_empty(head))
11041                 return;
11042
11043         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11044                 /* Some devices call without registering
11045                  * for initialization unwind. Remove those
11046                  * devices and proceed with the remaining.
11047                  */
11048                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11049                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11050                                  dev->name, dev);
11051
11052                         WARN_ON(1);
11053                         list_del(&dev->unreg_list);
11054                         continue;
11055                 }
11056                 dev->dismantle = true;
11057                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11058         }
11059
11060         /* If device is running, close it first. */
11061         list_for_each_entry(dev, head, unreg_list)
11062                 list_add_tail(&dev->close_list, &close_head);
11063         dev_close_many(&close_head, true);
11064
11065         list_for_each_entry(dev, head, unreg_list) {
11066                 /* And unlink it from device chain. */
11067                 write_lock(&dev_base_lock);
11068                 unlist_netdevice(dev, false);
11069                 dev->reg_state = NETREG_UNREGISTERING;
11070                 write_unlock(&dev_base_lock);
11071         }
11072         flush_all_backlogs();
11073
11074         synchronize_net();
11075
11076         list_for_each_entry(dev, head, unreg_list) {
11077                 struct sk_buff *skb = NULL;
11078
11079                 /* Shutdown queueing discipline. */
11080                 dev_shutdown(dev);
11081
11082                 dev_xdp_uninstall(dev);
11083
11084                 /* Notify protocols, that we are about to destroy
11085                  * this device. They should clean all the things.
11086                  */
11087                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11088
11089                 if (!dev->rtnl_link_ops ||
11090                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11091                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11092                                                      GFP_KERNEL, NULL, 0);
11093
11094                 /*
11095                  *      Flush the unicast and multicast chains
11096                  */
11097                 dev_uc_flush(dev);
11098                 dev_mc_flush(dev);
11099
11100                 netdev_name_node_alt_flush(dev);
11101                 netdev_name_node_free(dev->name_node);
11102
11103                 if (dev->netdev_ops->ndo_uninit)
11104                         dev->netdev_ops->ndo_uninit(dev);
11105
11106                 if (skb)
11107                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11108
11109                 /* Notifier chain MUST detach us all upper devices. */
11110                 WARN_ON(netdev_has_any_upper_dev(dev));
11111                 WARN_ON(netdev_has_any_lower_dev(dev));
11112
11113                 /* Remove entries from kobject tree */
11114                 netdev_unregister_kobject(dev);
11115 #ifdef CONFIG_XPS
11116                 /* Remove XPS queueing entries */
11117                 netif_reset_xps_queues_gt(dev, 0);
11118 #endif
11119         }
11120
11121         synchronize_net();
11122
11123         list_for_each_entry(dev, head, unreg_list) {
11124                 dev_put(dev);
11125                 net_set_todo(dev);
11126         }
11127
11128         list_del(head);
11129 }
11130 EXPORT_SYMBOL(unregister_netdevice_many);
11131
11132 /**
11133  *      unregister_netdev - remove device from the kernel
11134  *      @dev: device
11135  *
11136  *      This function shuts down a device interface and removes it
11137  *      from the kernel tables.
11138  *
11139  *      This is just a wrapper for unregister_netdevice that takes
11140  *      the rtnl semaphore.  In general you want to use this and not
11141  *      unregister_netdevice.
11142  */
11143 void unregister_netdev(struct net_device *dev)
11144 {
11145         rtnl_lock();
11146         unregister_netdevice(dev);
11147         rtnl_unlock();
11148 }
11149 EXPORT_SYMBOL(unregister_netdev);
11150
11151 /**
11152  *      __dev_change_net_namespace - move device to different nethost namespace
11153  *      @dev: device
11154  *      @net: network namespace
11155  *      @pat: If not NULL name pattern to try if the current device name
11156  *            is already taken in the destination network namespace.
11157  *      @new_ifindex: If not zero, specifies device index in the target
11158  *                    namespace.
11159  *
11160  *      This function shuts down a device interface and moves it
11161  *      to a new network namespace. On success 0 is returned, on
11162  *      a failure a netagive errno code is returned.
11163  *
11164  *      Callers must hold the rtnl semaphore.
11165  */
11166
11167 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11168                                const char *pat, int new_ifindex)
11169 {
11170         struct net *net_old = dev_net(dev);
11171         char new_name[IFNAMSIZ] = {};
11172         int err, new_nsid;
11173
11174         ASSERT_RTNL();
11175
11176         /* Don't allow namespace local devices to be moved. */
11177         err = -EINVAL;
11178         if (dev->features & NETIF_F_NETNS_LOCAL)
11179                 goto out;
11180
11181         /* Ensure the device has been registrered */
11182         if (dev->reg_state != NETREG_REGISTERED)
11183                 goto out;
11184
11185         /* Get out if there is nothing todo */
11186         err = 0;
11187         if (net_eq(net_old, net))
11188                 goto out;
11189
11190         /* Pick the destination device name, and ensure
11191          * we can use it in the destination network namespace.
11192          */
11193         err = -EEXIST;
11194         if (netdev_name_in_use(net, dev->name)) {
11195                 /* We get here if we can't use the current device name */
11196                 if (!pat)
11197                         goto out;
11198                 err = dev_prep_valid_name(net, dev, pat, new_name);
11199                 if (err < 0)
11200                         goto out;
11201         }
11202
11203         /* Check that new_ifindex isn't used yet. */
11204         err = -EBUSY;
11205         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11206                 goto out;
11207
11208         /*
11209          * And now a mini version of register_netdevice unregister_netdevice.
11210          */
11211
11212         /* If device is running close it first. */
11213         dev_close(dev);
11214
11215         /* And unlink it from device chain */
11216         unlist_netdevice(dev, true);
11217
11218         synchronize_net();
11219
11220         /* Shutdown queueing discipline. */
11221         dev_shutdown(dev);
11222
11223         /* Notify protocols, that we are about to destroy
11224          * this device. They should clean all the things.
11225          *
11226          * Note that dev->reg_state stays at NETREG_REGISTERED.
11227          * This is wanted because this way 8021q and macvlan know
11228          * the device is just moving and can keep their slaves up.
11229          */
11230         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11231         rcu_barrier();
11232
11233         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11234         /* If there is an ifindex conflict assign a new one */
11235         if (!new_ifindex) {
11236                 if (__dev_get_by_index(net, dev->ifindex))
11237                         new_ifindex = dev_new_index(net);
11238                 else
11239                         new_ifindex = dev->ifindex;
11240         }
11241
11242         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11243                             new_ifindex);
11244
11245         /*
11246          *      Flush the unicast and multicast chains
11247          */
11248         dev_uc_flush(dev);
11249         dev_mc_flush(dev);
11250
11251         /* Send a netdev-removed uevent to the old namespace */
11252         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11253         netdev_adjacent_del_links(dev);
11254
11255         /* Move per-net netdevice notifiers that are following the netdevice */
11256         move_netdevice_notifiers_dev_net(dev, net);
11257
11258         /* Actually switch the network namespace */
11259         dev_net_set(dev, net);
11260         dev->ifindex = new_ifindex;
11261
11262         /* Send a netdev-add uevent to the new namespace */
11263         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11264         netdev_adjacent_add_links(dev);
11265
11266         if (new_name[0]) /* Rename the netdev to prepared name */
11267                 strscpy(dev->name, new_name, IFNAMSIZ);
11268
11269         /* Fixup kobjects */
11270         err = device_rename(&dev->dev, dev->name);
11271         WARN_ON(err);
11272
11273         /* Adapt owner in case owning user namespace of target network
11274          * namespace is different from the original one.
11275          */
11276         err = netdev_change_owner(dev, net_old, net);
11277         WARN_ON(err);
11278
11279         /* Add the device back in the hashes */
11280         list_netdevice(dev);
11281
11282         /* Notify protocols, that a new device appeared. */
11283         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11284
11285         /*
11286          *      Prevent userspace races by waiting until the network
11287          *      device is fully setup before sending notifications.
11288          */
11289         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11290
11291         synchronize_net();
11292         err = 0;
11293 out:
11294         return err;
11295 }
11296 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11297
11298 static int dev_cpu_dead(unsigned int oldcpu)
11299 {
11300         struct sk_buff **list_skb;
11301         struct sk_buff *skb;
11302         unsigned int cpu;
11303         struct softnet_data *sd, *oldsd, *remsd = NULL;
11304
11305         local_irq_disable();
11306         cpu = smp_processor_id();
11307         sd = &per_cpu(softnet_data, cpu);
11308         oldsd = &per_cpu(softnet_data, oldcpu);
11309
11310         /* Find end of our completion_queue. */
11311         list_skb = &sd->completion_queue;
11312         while (*list_skb)
11313                 list_skb = &(*list_skb)->next;
11314         /* Append completion queue from offline CPU. */
11315         *list_skb = oldsd->completion_queue;
11316         oldsd->completion_queue = NULL;
11317
11318         /* Append output queue from offline CPU. */
11319         if (oldsd->output_queue) {
11320                 *sd->output_queue_tailp = oldsd->output_queue;
11321                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11322                 oldsd->output_queue = NULL;
11323                 oldsd->output_queue_tailp = &oldsd->output_queue;
11324         }
11325         /* Append NAPI poll list from offline CPU, with one exception :
11326          * process_backlog() must be called by cpu owning percpu backlog.
11327          * We properly handle process_queue & input_pkt_queue later.
11328          */
11329         while (!list_empty(&oldsd->poll_list)) {
11330                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11331                                                             struct napi_struct,
11332                                                             poll_list);
11333
11334                 list_del_init(&napi->poll_list);
11335                 if (napi->poll == process_backlog)
11336                         napi->state = 0;
11337                 else
11338                         ____napi_schedule(sd, napi);
11339         }
11340
11341         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11342         local_irq_enable();
11343
11344 #ifdef CONFIG_RPS
11345         remsd = oldsd->rps_ipi_list;
11346         oldsd->rps_ipi_list = NULL;
11347 #endif
11348         /* send out pending IPI's on offline CPU */
11349         net_rps_send_ipi(remsd);
11350
11351         /* Process offline CPU's input_pkt_queue */
11352         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11353                 netif_rx_ni(skb);
11354                 input_queue_head_incr(oldsd);
11355         }
11356         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11357                 netif_rx_ni(skb);
11358                 input_queue_head_incr(oldsd);
11359         }
11360
11361         return 0;
11362 }
11363
11364 /**
11365  *      netdev_increment_features - increment feature set by one
11366  *      @all: current feature set
11367  *      @one: new feature set
11368  *      @mask: mask feature set
11369  *
11370  *      Computes a new feature set after adding a device with feature set
11371  *      @one to the master device with current feature set @all.  Will not
11372  *      enable anything that is off in @mask. Returns the new feature set.
11373  */
11374 netdev_features_t netdev_increment_features(netdev_features_t all,
11375         netdev_features_t one, netdev_features_t mask)
11376 {
11377         if (mask & NETIF_F_HW_CSUM)
11378                 mask |= NETIF_F_CSUM_MASK;
11379         mask |= NETIF_F_VLAN_CHALLENGED;
11380
11381         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11382         all &= one | ~NETIF_F_ALL_FOR_ALL;
11383
11384         /* If one device supports hw checksumming, set for all. */
11385         if (all & NETIF_F_HW_CSUM)
11386                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11387
11388         return all;
11389 }
11390 EXPORT_SYMBOL(netdev_increment_features);
11391
11392 static struct hlist_head * __net_init netdev_create_hash(void)
11393 {
11394         int i;
11395         struct hlist_head *hash;
11396
11397         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11398         if (hash != NULL)
11399                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11400                         INIT_HLIST_HEAD(&hash[i]);
11401
11402         return hash;
11403 }
11404
11405 /* Initialize per network namespace state */
11406 static int __net_init netdev_init(struct net *net)
11407 {
11408         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11409                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11410
11411         INIT_LIST_HEAD(&net->dev_base_head);
11412
11413         net->dev_name_head = netdev_create_hash();
11414         if (net->dev_name_head == NULL)
11415                 goto err_name;
11416
11417         net->dev_index_head = netdev_create_hash();
11418         if (net->dev_index_head == NULL)
11419                 goto err_idx;
11420
11421         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11422
11423         return 0;
11424
11425 err_idx:
11426         kfree(net->dev_name_head);
11427 err_name:
11428         return -ENOMEM;
11429 }
11430
11431 /**
11432  *      netdev_drivername - network driver for the device
11433  *      @dev: network device
11434  *
11435  *      Determine network driver for device.
11436  */
11437 const char *netdev_drivername(const struct net_device *dev)
11438 {
11439         const struct device_driver *driver;
11440         const struct device *parent;
11441         const char *empty = "";
11442
11443         parent = dev->dev.parent;
11444         if (!parent)
11445                 return empty;
11446
11447         driver = parent->driver;
11448         if (driver && driver->name)
11449                 return driver->name;
11450         return empty;
11451 }
11452
11453 static void __netdev_printk(const char *level, const struct net_device *dev,
11454                             struct va_format *vaf)
11455 {
11456         if (dev && dev->dev.parent) {
11457                 dev_printk_emit(level[1] - '0',
11458                                 dev->dev.parent,
11459                                 "%s %s %s%s: %pV",
11460                                 dev_driver_string(dev->dev.parent),
11461                                 dev_name(dev->dev.parent),
11462                                 netdev_name(dev), netdev_reg_state(dev),
11463                                 vaf);
11464         } else if (dev) {
11465                 printk("%s%s%s: %pV",
11466                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11467         } else {
11468                 printk("%s(NULL net_device): %pV", level, vaf);
11469         }
11470 }
11471
11472 void netdev_printk(const char *level, const struct net_device *dev,
11473                    const char *format, ...)
11474 {
11475         struct va_format vaf;
11476         va_list args;
11477
11478         va_start(args, format);
11479
11480         vaf.fmt = format;
11481         vaf.va = &args;
11482
11483         __netdev_printk(level, dev, &vaf);
11484
11485         va_end(args);
11486 }
11487 EXPORT_SYMBOL(netdev_printk);
11488
11489 #define define_netdev_printk_level(func, level)                 \
11490 void func(const struct net_device *dev, const char *fmt, ...)   \
11491 {                                                               \
11492         struct va_format vaf;                                   \
11493         va_list args;                                           \
11494                                                                 \
11495         va_start(args, fmt);                                    \
11496                                                                 \
11497         vaf.fmt = fmt;                                          \
11498         vaf.va = &args;                                         \
11499                                                                 \
11500         __netdev_printk(level, dev, &vaf);                      \
11501                                                                 \
11502         va_end(args);                                           \
11503 }                                                               \
11504 EXPORT_SYMBOL(func);
11505
11506 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11507 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11508 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11509 define_netdev_printk_level(netdev_err, KERN_ERR);
11510 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11511 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11512 define_netdev_printk_level(netdev_info, KERN_INFO);
11513
11514 static void __net_exit netdev_exit(struct net *net)
11515 {
11516         kfree(net->dev_name_head);
11517         kfree(net->dev_index_head);
11518         if (net != &init_net)
11519                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11520 }
11521
11522 static struct pernet_operations __net_initdata netdev_net_ops = {
11523         .init = netdev_init,
11524         .exit = netdev_exit,
11525 };
11526
11527 static void __net_exit default_device_exit(struct net *net)
11528 {
11529         struct net_device *dev, *aux;
11530         /*
11531          * Push all migratable network devices back to the
11532          * initial network namespace
11533          */
11534         rtnl_lock();
11535         for_each_netdev_safe(net, dev, aux) {
11536                 int err;
11537                 char fb_name[IFNAMSIZ];
11538
11539                 /* Ignore unmoveable devices (i.e. loopback) */
11540                 if (dev->features & NETIF_F_NETNS_LOCAL)
11541                         continue;
11542
11543                 /* Leave virtual devices for the generic cleanup */
11544                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11545                         continue;
11546
11547                 /* Push remaining network devices to init_net */
11548                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11549                 if (netdev_name_in_use(&init_net, fb_name))
11550                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11551                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11552                 if (err) {
11553                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11554                                  __func__, dev->name, err);
11555                         BUG();
11556                 }
11557         }
11558         rtnl_unlock();
11559 }
11560
11561 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11562 {
11563         /* Return with the rtnl_lock held when there are no network
11564          * devices unregistering in any network namespace in net_list.
11565          */
11566         struct net *net;
11567         bool unregistering;
11568         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11569
11570         add_wait_queue(&netdev_unregistering_wq, &wait);
11571         for (;;) {
11572                 unregistering = false;
11573                 rtnl_lock();
11574                 list_for_each_entry(net, net_list, exit_list) {
11575                         if (net->dev_unreg_count > 0) {
11576                                 unregistering = true;
11577                                 break;
11578                         }
11579                 }
11580                 if (!unregistering)
11581                         break;
11582                 __rtnl_unlock();
11583
11584                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11585         }
11586         remove_wait_queue(&netdev_unregistering_wq, &wait);
11587 }
11588
11589 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11590 {
11591         /* At exit all network devices most be removed from a network
11592          * namespace.  Do this in the reverse order of registration.
11593          * Do this across as many network namespaces as possible to
11594          * improve batching efficiency.
11595          */
11596         struct net_device *dev;
11597         struct net *net;
11598         LIST_HEAD(dev_kill_list);
11599
11600         /* To prevent network device cleanup code from dereferencing
11601          * loopback devices or network devices that have been freed
11602          * wait here for all pending unregistrations to complete,
11603          * before unregistring the loopback device and allowing the
11604          * network namespace be freed.
11605          *
11606          * The netdev todo list containing all network devices
11607          * unregistrations that happen in default_device_exit_batch
11608          * will run in the rtnl_unlock() at the end of
11609          * default_device_exit_batch.
11610          */
11611         rtnl_lock_unregistering(net_list);
11612         list_for_each_entry(net, net_list, exit_list) {
11613                 for_each_netdev_reverse(net, dev) {
11614                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11615                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11616                         else
11617                                 unregister_netdevice_queue(dev, &dev_kill_list);
11618                 }
11619         }
11620         unregister_netdevice_many(&dev_kill_list);
11621         rtnl_unlock();
11622 }
11623
11624 static struct pernet_operations __net_initdata default_device_ops = {
11625         .exit = default_device_exit,
11626         .exit_batch = default_device_exit_batch,
11627 };
11628
11629 /*
11630  *      Initialize the DEV module. At boot time this walks the device list and
11631  *      unhooks any devices that fail to initialise (normally hardware not
11632  *      present) and leaves us with a valid list of present and active devices.
11633  *
11634  */
11635
11636 /*
11637  *       This is called single threaded during boot, so no need
11638  *       to take the rtnl semaphore.
11639  */
11640 static int __init net_dev_init(void)
11641 {
11642         int i, rc = -ENOMEM;
11643
11644         BUG_ON(!dev_boot_phase);
11645
11646         if (dev_proc_init())
11647                 goto out;
11648
11649         if (netdev_kobject_init())
11650                 goto out;
11651
11652         INIT_LIST_HEAD(&ptype_all);
11653         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11654                 INIT_LIST_HEAD(&ptype_base[i]);
11655
11656         INIT_LIST_HEAD(&offload_base);
11657
11658         if (register_pernet_subsys(&netdev_net_ops))
11659                 goto out;
11660
11661         /*
11662          *      Initialise the packet receive queues.
11663          */
11664
11665         for_each_possible_cpu(i) {
11666                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11667                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11668
11669                 INIT_WORK(flush, flush_backlog);
11670
11671                 skb_queue_head_init(&sd->input_pkt_queue);
11672                 skb_queue_head_init(&sd->process_queue);
11673 #ifdef CONFIG_XFRM_OFFLOAD
11674                 skb_queue_head_init(&sd->xfrm_backlog);
11675 #endif
11676                 INIT_LIST_HEAD(&sd->poll_list);
11677                 sd->output_queue_tailp = &sd->output_queue;
11678 #ifdef CONFIG_RPS
11679                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11680                 sd->cpu = i;
11681 #endif
11682
11683                 init_gro_hash(&sd->backlog);
11684                 sd->backlog.poll = process_backlog;
11685                 sd->backlog.weight = weight_p;
11686         }
11687
11688         dev_boot_phase = 0;
11689
11690         /* The loopback device is special if any other network devices
11691          * is present in a network namespace the loopback device must
11692          * be present. Since we now dynamically allocate and free the
11693          * loopback device ensure this invariant is maintained by
11694          * keeping the loopback device as the first device on the
11695          * list of network devices.  Ensuring the loopback devices
11696          * is the first device that appears and the last network device
11697          * that disappears.
11698          */
11699         if (register_pernet_device(&loopback_net_ops))
11700                 goto out;
11701
11702         if (register_pernet_device(&default_device_ops))
11703                 goto out;
11704
11705         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11706         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11707
11708         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11709                                        NULL, dev_cpu_dead);
11710         WARN_ON(rc < 0);
11711         rc = 0;
11712 out:
11713         return rc;
11714 }
11715
11716 subsys_initcall(net_dev_init);