GNU Linux-libre 4.19.245-gnu1
[releases.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/rwsem.h>
87 #include <linux/string.h>
88 #include <linux/mm.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/errno.h>
92 #include <linux/interrupt.h>
93 #include <linux/if_ether.h>
94 #include <linux/netdevice.h>
95 #include <linux/etherdevice.h>
96 #include <linux/ethtool.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153 #define MAX_NEST_DEV 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  */
904 int netdev_get_name(struct net *net, char *name, int ifindex)
905 {
906         struct net_device *dev;
907         int ret;
908
909         down_read(&devnet_rename_sem);
910         rcu_read_lock();
911
912         dev = dev_get_by_index_rcu(net, ifindex);
913         if (!dev) {
914                 ret = -ENODEV;
915                 goto out;
916         }
917
918         strcpy(name, dev->name);
919
920         ret = 0;
921 out:
922         rcu_read_unlock();
923         up_read(&devnet_rename_sem);
924         return ret;
925 }
926
927 /**
928  *      dev_getbyhwaddr_rcu - find a device by its hardware address
929  *      @net: the applicable net namespace
930  *      @type: media type of device
931  *      @ha: hardware address
932  *
933  *      Search for an interface by MAC address. Returns NULL if the device
934  *      is not found or a pointer to the device.
935  *      The caller must hold RCU or RTNL.
936  *      The returned device has not had its ref count increased
937  *      and the caller must therefore be careful about locking
938  *
939  */
940
941 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
942                                        const char *ha)
943 {
944         struct net_device *dev;
945
946         for_each_netdev_rcu(net, dev)
947                 if (dev->type == type &&
948                     !memcmp(dev->dev_addr, ha, dev->addr_len))
949                         return dev;
950
951         return NULL;
952 }
953 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
954
955 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
956 {
957         struct net_device *dev;
958
959         ASSERT_RTNL();
960         for_each_netdev(net, dev)
961                 if (dev->type == type)
962                         return dev;
963
964         return NULL;
965 }
966 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
967
968 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
969 {
970         struct net_device *dev, *ret = NULL;
971
972         rcu_read_lock();
973         for_each_netdev_rcu(net, dev)
974                 if (dev->type == type) {
975                         dev_hold(dev);
976                         ret = dev;
977                         break;
978                 }
979         rcu_read_unlock();
980         return ret;
981 }
982 EXPORT_SYMBOL(dev_getfirstbyhwtype);
983
984 /**
985  *      __dev_get_by_flags - find any device with given flags
986  *      @net: the applicable net namespace
987  *      @if_flags: IFF_* values
988  *      @mask: bitmask of bits in if_flags to check
989  *
990  *      Search for any interface with the given flags. Returns NULL if a device
991  *      is not found or a pointer to the device. Must be called inside
992  *      rtnl_lock(), and result refcount is unchanged.
993  */
994
995 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
996                                       unsigned short mask)
997 {
998         struct net_device *dev, *ret;
999
1000         ASSERT_RTNL();
1001
1002         ret = NULL;
1003         for_each_netdev(net, dev) {
1004                 if (((dev->flags ^ if_flags) & mask) == 0) {
1005                         ret = dev;
1006                         break;
1007                 }
1008         }
1009         return ret;
1010 }
1011 EXPORT_SYMBOL(__dev_get_by_flags);
1012
1013 /**
1014  *      dev_valid_name - check if name is okay for network device
1015  *      @name: name string
1016  *
1017  *      Network device names need to be valid file names to
1018  *      to allow sysfs to work.  We also disallow any kind of
1019  *      whitespace.
1020  */
1021 bool dev_valid_name(const char *name)
1022 {
1023         if (*name == '\0')
1024                 return false;
1025         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1026                 return false;
1027         if (!strcmp(name, ".") || !strcmp(name, ".."))
1028                 return false;
1029
1030         while (*name) {
1031                 if (*name == '/' || *name == ':' || isspace(*name))
1032                         return false;
1033                 name++;
1034         }
1035         return true;
1036 }
1037 EXPORT_SYMBOL(dev_valid_name);
1038
1039 /**
1040  *      __dev_alloc_name - allocate a name for a device
1041  *      @net: network namespace to allocate the device name in
1042  *      @name: name format string
1043  *      @buf:  scratch buffer and result name string
1044  *
1045  *      Passed a format string - eg "lt%d" it will try and find a suitable
1046  *      id. It scans list of devices to build up a free map, then chooses
1047  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1048  *      while allocating the name and adding the device in order to avoid
1049  *      duplicates.
1050  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051  *      Returns the number of the unit assigned or a negative errno code.
1052  */
1053
1054 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1055 {
1056         int i = 0;
1057         const char *p;
1058         const int max_netdevices = 8*PAGE_SIZE;
1059         unsigned long *inuse;
1060         struct net_device *d;
1061
1062         if (!dev_valid_name(name))
1063                 return -EINVAL;
1064
1065         p = strchr(name, '%');
1066         if (p) {
1067                 /*
1068                  * Verify the string as this thing may have come from
1069                  * the user.  There must be either one "%d" and no other "%"
1070                  * characters.
1071                  */
1072                 if (p[1] != 'd' || strchr(p + 2, '%'))
1073                         return -EINVAL;
1074
1075                 /* Use one page as a bit array of possible slots */
1076                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077                 if (!inuse)
1078                         return -ENOMEM;
1079
1080                 for_each_netdev(net, d) {
1081                         if (!sscanf(d->name, name, &i))
1082                                 continue;
1083                         if (i < 0 || i >= max_netdevices)
1084                                 continue;
1085
1086                         /*  avoid cases where sscanf is not exact inverse of printf */
1087                         snprintf(buf, IFNAMSIZ, name, i);
1088                         if (!strncmp(buf, d->name, IFNAMSIZ))
1089                                 set_bit(i, inuse);
1090                 }
1091
1092                 i = find_first_zero_bit(inuse, max_netdevices);
1093                 free_page((unsigned long) inuse);
1094         }
1095
1096         snprintf(buf, IFNAMSIZ, name, i);
1097         if (!__dev_get_by_name(net, buf))
1098                 return i;
1099
1100         /* It is possible to run out of possible slots
1101          * when the name is long and there isn't enough space left
1102          * for the digits, or if all bits are used.
1103          */
1104         return -ENFILE;
1105 }
1106
1107 static int dev_alloc_name_ns(struct net *net,
1108                              struct net_device *dev,
1109                              const char *name)
1110 {
1111         char buf[IFNAMSIZ];
1112         int ret;
1113
1114         BUG_ON(!net);
1115         ret = __dev_alloc_name(net, name, buf);
1116         if (ret >= 0)
1117                 strlcpy(dev->name, buf, IFNAMSIZ);
1118         return ret;
1119 }
1120
1121 /**
1122  *      dev_alloc_name - allocate a name for a device
1123  *      @dev: device
1124  *      @name: name format string
1125  *
1126  *      Passed a format string - eg "lt%d" it will try and find a suitable
1127  *      id. It scans list of devices to build up a free map, then chooses
1128  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1129  *      while allocating the name and adding the device in order to avoid
1130  *      duplicates.
1131  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1132  *      Returns the number of the unit assigned or a negative errno code.
1133  */
1134
1135 int dev_alloc_name(struct net_device *dev, const char *name)
1136 {
1137         return dev_alloc_name_ns(dev_net(dev), dev, name);
1138 }
1139 EXPORT_SYMBOL(dev_alloc_name);
1140
1141 int dev_get_valid_name(struct net *net, struct net_device *dev,
1142                        const char *name)
1143 {
1144         BUG_ON(!net);
1145
1146         if (!dev_valid_name(name))
1147                 return -EINVAL;
1148
1149         if (strchr(name, '%'))
1150                 return dev_alloc_name_ns(net, dev, name);
1151         else if (__dev_get_by_name(net, name))
1152                 return -EEXIST;
1153         else if (dev->name != name)
1154                 strlcpy(dev->name, name, IFNAMSIZ);
1155
1156         return 0;
1157 }
1158 EXPORT_SYMBOL(dev_get_valid_name);
1159
1160 /**
1161  *      dev_change_name - change name of a device
1162  *      @dev: device
1163  *      @newname: name (or format string) must be at least IFNAMSIZ
1164  *
1165  *      Change name of a device, can pass format strings "eth%d".
1166  *      for wildcarding.
1167  */
1168 int dev_change_name(struct net_device *dev, const char *newname)
1169 {
1170         unsigned char old_assign_type;
1171         char oldname[IFNAMSIZ];
1172         int err = 0;
1173         int ret;
1174         struct net *net;
1175
1176         ASSERT_RTNL();
1177         BUG_ON(!dev_net(dev));
1178
1179         net = dev_net(dev);
1180
1181         /* Some auto-enslaved devices e.g. failover slaves are
1182          * special, as userspace might rename the device after
1183          * the interface had been brought up and running since
1184          * the point kernel initiated auto-enslavement. Allow
1185          * live name change even when these slave devices are
1186          * up and running.
1187          *
1188          * Typically, users of these auto-enslaving devices
1189          * don't actually care about slave name change, as
1190          * they are supposed to operate on master interface
1191          * directly.
1192          */
1193         if (dev->flags & IFF_UP &&
1194             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1195                 return -EBUSY;
1196
1197         down_write(&devnet_rename_sem);
1198
1199         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1200                 up_write(&devnet_rename_sem);
1201                 return 0;
1202         }
1203
1204         memcpy(oldname, dev->name, IFNAMSIZ);
1205
1206         err = dev_get_valid_name(net, dev, newname);
1207         if (err < 0) {
1208                 up_write(&devnet_rename_sem);
1209                 return err;
1210         }
1211
1212         if (oldname[0] && !strchr(oldname, '%'))
1213                 netdev_info(dev, "renamed from %s\n", oldname);
1214
1215         old_assign_type = dev->name_assign_type;
1216         dev->name_assign_type = NET_NAME_RENAMED;
1217
1218 rollback:
1219         ret = device_rename(&dev->dev, dev->name);
1220         if (ret) {
1221                 memcpy(dev->name, oldname, IFNAMSIZ);
1222                 dev->name_assign_type = old_assign_type;
1223                 up_write(&devnet_rename_sem);
1224                 return ret;
1225         }
1226
1227         up_write(&devnet_rename_sem);
1228
1229         netdev_adjacent_rename_links(dev, oldname);
1230
1231         write_lock_bh(&dev_base_lock);
1232         hlist_del_rcu(&dev->name_hlist);
1233         write_unlock_bh(&dev_base_lock);
1234
1235         synchronize_rcu();
1236
1237         write_lock_bh(&dev_base_lock);
1238         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1239         write_unlock_bh(&dev_base_lock);
1240
1241         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242         ret = notifier_to_errno(ret);
1243
1244         if (ret) {
1245                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1246                 if (err >= 0) {
1247                         err = ret;
1248                         down_write(&devnet_rename_sem);
1249                         memcpy(dev->name, oldname, IFNAMSIZ);
1250                         memcpy(oldname, newname, IFNAMSIZ);
1251                         dev->name_assign_type = old_assign_type;
1252                         old_assign_type = NET_NAME_RENAMED;
1253                         goto rollback;
1254                 } else {
1255                         pr_err("%s: name change rollback failed: %d\n",
1256                                dev->name, ret);
1257                 }
1258         }
1259
1260         return err;
1261 }
1262
1263 /**
1264  *      dev_set_alias - change ifalias of a device
1265  *      @dev: device
1266  *      @alias: name up to IFALIASZ
1267  *      @len: limit of bytes to copy from info
1268  *
1269  *      Set ifalias for a device,
1270  */
1271 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1272 {
1273         struct dev_ifalias *new_alias = NULL;
1274
1275         if (len >= IFALIASZ)
1276                 return -EINVAL;
1277
1278         if (len) {
1279                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1280                 if (!new_alias)
1281                         return -ENOMEM;
1282
1283                 memcpy(new_alias->ifalias, alias, len);
1284                 new_alias->ifalias[len] = 0;
1285         }
1286
1287         mutex_lock(&ifalias_mutex);
1288         rcu_swap_protected(dev->ifalias, new_alias,
1289                            mutex_is_locked(&ifalias_mutex));
1290         mutex_unlock(&ifalias_mutex);
1291
1292         if (new_alias)
1293                 kfree_rcu(new_alias, rcuhead);
1294
1295         return len;
1296 }
1297 EXPORT_SYMBOL(dev_set_alias);
1298
1299 /**
1300  *      dev_get_alias - get ifalias of a device
1301  *      @dev: device
1302  *      @name: buffer to store name of ifalias
1303  *      @len: size of buffer
1304  *
1305  *      get ifalias for a device.  Caller must make sure dev cannot go
1306  *      away,  e.g. rcu read lock or own a reference count to device.
1307  */
1308 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1309 {
1310         const struct dev_ifalias *alias;
1311         int ret = 0;
1312
1313         rcu_read_lock();
1314         alias = rcu_dereference(dev->ifalias);
1315         if (alias)
1316                 ret = snprintf(name, len, "%s", alias->ifalias);
1317         rcu_read_unlock();
1318
1319         return ret;
1320 }
1321
1322 /**
1323  *      netdev_features_change - device changes features
1324  *      @dev: device to cause notification
1325  *
1326  *      Called to indicate a device has changed features.
1327  */
1328 void netdev_features_change(struct net_device *dev)
1329 {
1330         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1331 }
1332 EXPORT_SYMBOL(netdev_features_change);
1333
1334 /**
1335  *      netdev_state_change - device changes state
1336  *      @dev: device to cause notification
1337  *
1338  *      Called to indicate a device has changed state. This function calls
1339  *      the notifier chains for netdev_chain and sends a NEWLINK message
1340  *      to the routing socket.
1341  */
1342 void netdev_state_change(struct net_device *dev)
1343 {
1344         if (dev->flags & IFF_UP) {
1345                 struct netdev_notifier_change_info change_info = {
1346                         .info.dev = dev,
1347                 };
1348
1349                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1350                                               &change_info.info);
1351                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1352         }
1353 }
1354 EXPORT_SYMBOL(netdev_state_change);
1355
1356 /**
1357  * netdev_notify_peers - notify network peers about existence of @dev
1358  * @dev: network device
1359  *
1360  * Generate traffic such that interested network peers are aware of
1361  * @dev, such as by generating a gratuitous ARP. This may be used when
1362  * a device wants to inform the rest of the network about some sort of
1363  * reconfiguration such as a failover event or virtual machine
1364  * migration.
1365  */
1366 void netdev_notify_peers(struct net_device *dev)
1367 {
1368         rtnl_lock();
1369         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371         rtnl_unlock();
1372 }
1373 EXPORT_SYMBOL(netdev_notify_peers);
1374
1375 static int __dev_open(struct net_device *dev)
1376 {
1377         const struct net_device_ops *ops = dev->netdev_ops;
1378         int ret;
1379
1380         ASSERT_RTNL();
1381
1382         if (!netif_device_present(dev))
1383                 return -ENODEV;
1384
1385         /* Block netpoll from trying to do any rx path servicing.
1386          * If we don't do this there is a chance ndo_poll_controller
1387          * or ndo_poll may be running while we open the device
1388          */
1389         netpoll_poll_disable(dev);
1390
1391         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1392         ret = notifier_to_errno(ret);
1393         if (ret)
1394                 return ret;
1395
1396         set_bit(__LINK_STATE_START, &dev->state);
1397
1398         if (ops->ndo_validate_addr)
1399                 ret = ops->ndo_validate_addr(dev);
1400
1401         if (!ret && ops->ndo_open)
1402                 ret = ops->ndo_open(dev);
1403
1404         netpoll_poll_enable(dev);
1405
1406         if (ret)
1407                 clear_bit(__LINK_STATE_START, &dev->state);
1408         else {
1409                 dev->flags |= IFF_UP;
1410                 dev_set_rx_mode(dev);
1411                 dev_activate(dev);
1412                 add_device_randomness(dev->dev_addr, dev->addr_len);
1413         }
1414
1415         return ret;
1416 }
1417
1418 /**
1419  *      dev_open        - prepare an interface for use.
1420  *      @dev:   device to open
1421  *
1422  *      Takes a device from down to up state. The device's private open
1423  *      function is invoked and then the multicast lists are loaded. Finally
1424  *      the device is moved into the up state and a %NETDEV_UP message is
1425  *      sent to the netdev notifier chain.
1426  *
1427  *      Calling this function on an active interface is a nop. On a failure
1428  *      a negative errno code is returned.
1429  */
1430 int dev_open(struct net_device *dev)
1431 {
1432         int ret;
1433
1434         if (dev->flags & IFF_UP)
1435                 return 0;
1436
1437         ret = __dev_open(dev);
1438         if (ret < 0)
1439                 return ret;
1440
1441         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1442         call_netdevice_notifiers(NETDEV_UP, dev);
1443
1444         return ret;
1445 }
1446 EXPORT_SYMBOL(dev_open);
1447
1448 static void __dev_close_many(struct list_head *head)
1449 {
1450         struct net_device *dev;
1451
1452         ASSERT_RTNL();
1453         might_sleep();
1454
1455         list_for_each_entry(dev, head, close_list) {
1456                 /* Temporarily disable netpoll until the interface is down */
1457                 netpoll_poll_disable(dev);
1458
1459                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1460
1461                 clear_bit(__LINK_STATE_START, &dev->state);
1462
1463                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1464                  * can be even on different cpu. So just clear netif_running().
1465                  *
1466                  * dev->stop() will invoke napi_disable() on all of it's
1467                  * napi_struct instances on this device.
1468                  */
1469                 smp_mb__after_atomic(); /* Commit netif_running(). */
1470         }
1471
1472         dev_deactivate_many(head);
1473
1474         list_for_each_entry(dev, head, close_list) {
1475                 const struct net_device_ops *ops = dev->netdev_ops;
1476
1477                 /*
1478                  *      Call the device specific close. This cannot fail.
1479                  *      Only if device is UP
1480                  *
1481                  *      We allow it to be called even after a DETACH hot-plug
1482                  *      event.
1483                  */
1484                 if (ops->ndo_stop)
1485                         ops->ndo_stop(dev);
1486
1487                 dev->flags &= ~IFF_UP;
1488                 netpoll_poll_enable(dev);
1489         }
1490 }
1491
1492 static void __dev_close(struct net_device *dev)
1493 {
1494         LIST_HEAD(single);
1495
1496         list_add(&dev->close_list, &single);
1497         __dev_close_many(&single);
1498         list_del(&single);
1499 }
1500
1501 void dev_close_many(struct list_head *head, bool unlink)
1502 {
1503         struct net_device *dev, *tmp;
1504
1505         /* Remove the devices that don't need to be closed */
1506         list_for_each_entry_safe(dev, tmp, head, close_list)
1507                 if (!(dev->flags & IFF_UP))
1508                         list_del_init(&dev->close_list);
1509
1510         __dev_close_many(head);
1511
1512         list_for_each_entry_safe(dev, tmp, head, close_list) {
1513                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1514                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1515                 if (unlink)
1516                         list_del_init(&dev->close_list);
1517         }
1518 }
1519 EXPORT_SYMBOL(dev_close_many);
1520
1521 /**
1522  *      dev_close - shutdown an interface.
1523  *      @dev: device to shutdown
1524  *
1525  *      This function moves an active device into down state. A
1526  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1527  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1528  *      chain.
1529  */
1530 void dev_close(struct net_device *dev)
1531 {
1532         if (dev->flags & IFF_UP) {
1533                 LIST_HEAD(single);
1534
1535                 list_add(&dev->close_list, &single);
1536                 dev_close_many(&single, true);
1537                 list_del(&single);
1538         }
1539 }
1540 EXPORT_SYMBOL(dev_close);
1541
1542
1543 /**
1544  *      dev_disable_lro - disable Large Receive Offload on a device
1545  *      @dev: device
1546  *
1547  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1548  *      called under RTNL.  This is needed if received packets may be
1549  *      forwarded to another interface.
1550  */
1551 void dev_disable_lro(struct net_device *dev)
1552 {
1553         struct net_device *lower_dev;
1554         struct list_head *iter;
1555
1556         dev->wanted_features &= ~NETIF_F_LRO;
1557         netdev_update_features(dev);
1558
1559         if (unlikely(dev->features & NETIF_F_LRO))
1560                 netdev_WARN(dev, "failed to disable LRO!\n");
1561
1562         netdev_for_each_lower_dev(dev, lower_dev, iter)
1563                 dev_disable_lro(lower_dev);
1564 }
1565 EXPORT_SYMBOL(dev_disable_lro);
1566
1567 /**
1568  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1569  *      @dev: device
1570  *
1571  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1572  *      called under RTNL.  This is needed if Generic XDP is installed on
1573  *      the device.
1574  */
1575 static void dev_disable_gro_hw(struct net_device *dev)
1576 {
1577         dev->wanted_features &= ~NETIF_F_GRO_HW;
1578         netdev_update_features(dev);
1579
1580         if (unlikely(dev->features & NETIF_F_GRO_HW))
1581                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1582 }
1583
1584 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1585 {
1586 #define N(val)                                          \
1587         case NETDEV_##val:                              \
1588                 return "NETDEV_" __stringify(val);
1589         switch (cmd) {
1590         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1591         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1592         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1593         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1594         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1595         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1596         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1597         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1598         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1599         }
1600 #undef N
1601         return "UNKNOWN_NETDEV_EVENT";
1602 }
1603 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1604
1605 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1606                                    struct net_device *dev)
1607 {
1608         struct netdev_notifier_info info = {
1609                 .dev = dev,
1610         };
1611
1612         return nb->notifier_call(nb, val, &info);
1613 }
1614
1615 static int dev_boot_phase = 1;
1616
1617 /**
1618  * register_netdevice_notifier - register a network notifier block
1619  * @nb: notifier
1620  *
1621  * Register a notifier to be called when network device events occur.
1622  * The notifier passed is linked into the kernel structures and must
1623  * not be reused until it has been unregistered. A negative errno code
1624  * is returned on a failure.
1625  *
1626  * When registered all registration and up events are replayed
1627  * to the new notifier to allow device to have a race free
1628  * view of the network device list.
1629  */
1630
1631 int register_netdevice_notifier(struct notifier_block *nb)
1632 {
1633         struct net_device *dev;
1634         struct net_device *last;
1635         struct net *net;
1636         int err;
1637
1638         /* Close race with setup_net() and cleanup_net() */
1639         down_write(&pernet_ops_rwsem);
1640         rtnl_lock();
1641         err = raw_notifier_chain_register(&netdev_chain, nb);
1642         if (err)
1643                 goto unlock;
1644         if (dev_boot_phase)
1645                 goto unlock;
1646         for_each_net(net) {
1647                 for_each_netdev(net, dev) {
1648                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1649                         err = notifier_to_errno(err);
1650                         if (err)
1651                                 goto rollback;
1652
1653                         if (!(dev->flags & IFF_UP))
1654                                 continue;
1655
1656                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1657                 }
1658         }
1659
1660 unlock:
1661         rtnl_unlock();
1662         up_write(&pernet_ops_rwsem);
1663         return err;
1664
1665 rollback:
1666         last = dev;
1667         for_each_net(net) {
1668                 for_each_netdev(net, dev) {
1669                         if (dev == last)
1670                                 goto outroll;
1671
1672                         if (dev->flags & IFF_UP) {
1673                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1674                                                         dev);
1675                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1676                         }
1677                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1678                 }
1679         }
1680
1681 outroll:
1682         raw_notifier_chain_unregister(&netdev_chain, nb);
1683         goto unlock;
1684 }
1685 EXPORT_SYMBOL(register_netdevice_notifier);
1686
1687 /**
1688  * unregister_netdevice_notifier - unregister a network notifier block
1689  * @nb: notifier
1690  *
1691  * Unregister a notifier previously registered by
1692  * register_netdevice_notifier(). The notifier is unlinked into the
1693  * kernel structures and may then be reused. A negative errno code
1694  * is returned on a failure.
1695  *
1696  * After unregistering unregister and down device events are synthesized
1697  * for all devices on the device list to the removed notifier to remove
1698  * the need for special case cleanup code.
1699  */
1700
1701 int unregister_netdevice_notifier(struct notifier_block *nb)
1702 {
1703         struct net_device *dev;
1704         struct net *net;
1705         int err;
1706
1707         /* Close race with setup_net() and cleanup_net() */
1708         down_write(&pernet_ops_rwsem);
1709         rtnl_lock();
1710         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1711         if (err)
1712                 goto unlock;
1713
1714         for_each_net(net) {
1715                 for_each_netdev(net, dev) {
1716                         if (dev->flags & IFF_UP) {
1717                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1718                                                         dev);
1719                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1720                         }
1721                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1722                 }
1723         }
1724 unlock:
1725         rtnl_unlock();
1726         up_write(&pernet_ops_rwsem);
1727         return err;
1728 }
1729 EXPORT_SYMBOL(unregister_netdevice_notifier);
1730
1731 /**
1732  *      call_netdevice_notifiers_info - call all network notifier blocks
1733  *      @val: value passed unmodified to notifier function
1734  *      @info: notifier information data
1735  *
1736  *      Call all network notifier blocks.  Parameters and return value
1737  *      are as for raw_notifier_call_chain().
1738  */
1739
1740 static int call_netdevice_notifiers_info(unsigned long val,
1741                                          struct netdev_notifier_info *info)
1742 {
1743         ASSERT_RTNL();
1744         return raw_notifier_call_chain(&netdev_chain, val, info);
1745 }
1746
1747 /**
1748  *      call_netdevice_notifiers - call all network notifier blocks
1749  *      @val: value passed unmodified to notifier function
1750  *      @dev: net_device pointer passed unmodified to notifier function
1751  *
1752  *      Call all network notifier blocks.  Parameters and return value
1753  *      are as for raw_notifier_call_chain().
1754  */
1755
1756 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1757 {
1758         struct netdev_notifier_info info = {
1759                 .dev = dev,
1760         };
1761
1762         return call_netdevice_notifiers_info(val, &info);
1763 }
1764 EXPORT_SYMBOL(call_netdevice_notifiers);
1765
1766 /**
1767  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1768  *      @val: value passed unmodified to notifier function
1769  *      @dev: net_device pointer passed unmodified to notifier function
1770  *      @arg: additional u32 argument passed to the notifier function
1771  *
1772  *      Call all network notifier blocks.  Parameters and return value
1773  *      are as for raw_notifier_call_chain().
1774  */
1775 static int call_netdevice_notifiers_mtu(unsigned long val,
1776                                         struct net_device *dev, u32 arg)
1777 {
1778         struct netdev_notifier_info_ext info = {
1779                 .info.dev = dev,
1780                 .ext.mtu = arg,
1781         };
1782
1783         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1784
1785         return call_netdevice_notifiers_info(val, &info.info);
1786 }
1787
1788 #ifdef CONFIG_NET_INGRESS
1789 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1790
1791 void net_inc_ingress_queue(void)
1792 {
1793         static_branch_inc(&ingress_needed_key);
1794 }
1795 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1796
1797 void net_dec_ingress_queue(void)
1798 {
1799         static_branch_dec(&ingress_needed_key);
1800 }
1801 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1802 #endif
1803
1804 #ifdef CONFIG_NET_EGRESS
1805 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1806
1807 void net_inc_egress_queue(void)
1808 {
1809         static_branch_inc(&egress_needed_key);
1810 }
1811 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1812
1813 void net_dec_egress_queue(void)
1814 {
1815         static_branch_dec(&egress_needed_key);
1816 }
1817 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1818 #endif
1819
1820 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1821 #ifdef CONFIG_JUMP_LABEL
1822 static atomic_t netstamp_needed_deferred;
1823 static atomic_t netstamp_wanted;
1824 static void netstamp_clear(struct work_struct *work)
1825 {
1826         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1827         int wanted;
1828
1829         wanted = atomic_add_return(deferred, &netstamp_wanted);
1830         if (wanted > 0)
1831                 static_branch_enable(&netstamp_needed_key);
1832         else
1833                 static_branch_disable(&netstamp_needed_key);
1834 }
1835 static DECLARE_WORK(netstamp_work, netstamp_clear);
1836 #endif
1837
1838 void net_enable_timestamp(void)
1839 {
1840 #ifdef CONFIG_JUMP_LABEL
1841         int wanted;
1842
1843         while (1) {
1844                 wanted = atomic_read(&netstamp_wanted);
1845                 if (wanted <= 0)
1846                         break;
1847                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1848                         return;
1849         }
1850         atomic_inc(&netstamp_needed_deferred);
1851         schedule_work(&netstamp_work);
1852 #else
1853         static_branch_inc(&netstamp_needed_key);
1854 #endif
1855 }
1856 EXPORT_SYMBOL(net_enable_timestamp);
1857
1858 void net_disable_timestamp(void)
1859 {
1860 #ifdef CONFIG_JUMP_LABEL
1861         int wanted;
1862
1863         while (1) {
1864                 wanted = atomic_read(&netstamp_wanted);
1865                 if (wanted <= 1)
1866                         break;
1867                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1868                         return;
1869         }
1870         atomic_dec(&netstamp_needed_deferred);
1871         schedule_work(&netstamp_work);
1872 #else
1873         static_branch_dec(&netstamp_needed_key);
1874 #endif
1875 }
1876 EXPORT_SYMBOL(net_disable_timestamp);
1877
1878 static inline void net_timestamp_set(struct sk_buff *skb)
1879 {
1880         skb->tstamp = 0;
1881         if (static_branch_unlikely(&netstamp_needed_key))
1882                 __net_timestamp(skb);
1883 }
1884
1885 #define net_timestamp_check(COND, SKB)                          \
1886         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1887                 if ((COND) && !(SKB)->tstamp)                   \
1888                         __net_timestamp(SKB);                   \
1889         }                                                       \
1890
1891 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1892 {
1893         unsigned int len;
1894
1895         if (!(dev->flags & IFF_UP))
1896                 return false;
1897
1898         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1899         if (skb->len <= len)
1900                 return true;
1901
1902         /* if TSO is enabled, we don't care about the length as the packet
1903          * could be forwarded without being segmented before
1904          */
1905         if (skb_is_gso(skb))
1906                 return true;
1907
1908         return false;
1909 }
1910 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1911
1912 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914         int ret = ____dev_forward_skb(dev, skb);
1915
1916         if (likely(!ret)) {
1917                 skb->protocol = eth_type_trans(skb, dev);
1918                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1919         }
1920
1921         return ret;
1922 }
1923 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1924
1925 /**
1926  * dev_forward_skb - loopback an skb to another netif
1927  *
1928  * @dev: destination network device
1929  * @skb: buffer to forward
1930  *
1931  * return values:
1932  *      NET_RX_SUCCESS  (no congestion)
1933  *      NET_RX_DROP     (packet was dropped, but freed)
1934  *
1935  * dev_forward_skb can be used for injecting an skb from the
1936  * start_xmit function of one device into the receive queue
1937  * of another device.
1938  *
1939  * The receiving device may be in another namespace, so
1940  * we have to clear all information in the skb that could
1941  * impact namespace isolation.
1942  */
1943 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1944 {
1945         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1946 }
1947 EXPORT_SYMBOL_GPL(dev_forward_skb);
1948
1949 static inline int deliver_skb(struct sk_buff *skb,
1950                               struct packet_type *pt_prev,
1951                               struct net_device *orig_dev)
1952 {
1953         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1954                 return -ENOMEM;
1955         refcount_inc(&skb->users);
1956         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1957 }
1958
1959 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1960                                           struct packet_type **pt,
1961                                           struct net_device *orig_dev,
1962                                           __be16 type,
1963                                           struct list_head *ptype_list)
1964 {
1965         struct packet_type *ptype, *pt_prev = *pt;
1966
1967         list_for_each_entry_rcu(ptype, ptype_list, list) {
1968                 if (ptype->type != type)
1969                         continue;
1970                 if (pt_prev)
1971                         deliver_skb(skb, pt_prev, orig_dev);
1972                 pt_prev = ptype;
1973         }
1974         *pt = pt_prev;
1975 }
1976
1977 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1978 {
1979         if (!ptype->af_packet_priv || !skb->sk)
1980                 return false;
1981
1982         if (ptype->id_match)
1983                 return ptype->id_match(ptype, skb->sk);
1984         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1985                 return true;
1986
1987         return false;
1988 }
1989
1990 /*
1991  *      Support routine. Sends outgoing frames to any network
1992  *      taps currently in use.
1993  */
1994
1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996 {
1997         struct packet_type *ptype;
1998         struct sk_buff *skb2 = NULL;
1999         struct packet_type *pt_prev = NULL;
2000         struct list_head *ptype_list = &ptype_all;
2001
2002         rcu_read_lock();
2003 again:
2004         list_for_each_entry_rcu(ptype, ptype_list, list) {
2005                 /* Never send packets back to the socket
2006                  * they originated from - MvS (miquels@drinkel.ow.org)
2007                  */
2008                 if (skb_loop_sk(ptype, skb))
2009                         continue;
2010
2011                 if (pt_prev) {
2012                         deliver_skb(skb2, pt_prev, skb->dev);
2013                         pt_prev = ptype;
2014                         continue;
2015                 }
2016
2017                 /* need to clone skb, done only once */
2018                 skb2 = skb_clone(skb, GFP_ATOMIC);
2019                 if (!skb2)
2020                         goto out_unlock;
2021
2022                 net_timestamp_set(skb2);
2023
2024                 /* skb->nh should be correctly
2025                  * set by sender, so that the second statement is
2026                  * just protection against buggy protocols.
2027                  */
2028                 skb_reset_mac_header(skb2);
2029
2030                 if (skb_network_header(skb2) < skb2->data ||
2031                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2032                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2033                                              ntohs(skb2->protocol),
2034                                              dev->name);
2035                         skb_reset_network_header(skb2);
2036                 }
2037
2038                 skb2->transport_header = skb2->network_header;
2039                 skb2->pkt_type = PACKET_OUTGOING;
2040                 pt_prev = ptype;
2041         }
2042
2043         if (ptype_list == &ptype_all) {
2044                 ptype_list = &dev->ptype_all;
2045                 goto again;
2046         }
2047 out_unlock:
2048         if (pt_prev) {
2049                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2050                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2051                 else
2052                         kfree_skb(skb2);
2053         }
2054         rcu_read_unlock();
2055 }
2056 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2057
2058 /**
2059  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2060  * @dev: Network device
2061  * @txq: number of queues available
2062  *
2063  * If real_num_tx_queues is changed the tc mappings may no longer be
2064  * valid. To resolve this verify the tc mapping remains valid and if
2065  * not NULL the mapping. With no priorities mapping to this
2066  * offset/count pair it will no longer be used. In the worst case TC0
2067  * is invalid nothing can be done so disable priority mappings. If is
2068  * expected that drivers will fix this mapping if they can before
2069  * calling netif_set_real_num_tx_queues.
2070  */
2071 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2072 {
2073         int i;
2074         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2075
2076         /* If TC0 is invalidated disable TC mapping */
2077         if (tc->offset + tc->count > txq) {
2078                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2079                 dev->num_tc = 0;
2080                 return;
2081         }
2082
2083         /* Invalidated prio to tc mappings set to TC0 */
2084         for (i = 1; i < TC_BITMASK + 1; i++) {
2085                 int q = netdev_get_prio_tc_map(dev, i);
2086
2087                 tc = &dev->tc_to_txq[q];
2088                 if (tc->offset + tc->count > txq) {
2089                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2090                                 i, q);
2091                         netdev_set_prio_tc_map(dev, i, 0);
2092                 }
2093         }
2094 }
2095
2096 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2097 {
2098         if (dev->num_tc) {
2099                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2100                 int i;
2101
2102                 /* walk through the TCs and see if it falls into any of them */
2103                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2104                         if ((txq - tc->offset) < tc->count)
2105                                 return i;
2106                 }
2107
2108                 /* didn't find it, just return -1 to indicate no match */
2109                 return -1;
2110         }
2111
2112         return 0;
2113 }
2114 EXPORT_SYMBOL(netdev_txq_to_tc);
2115
2116 #ifdef CONFIG_XPS
2117 struct static_key xps_needed __read_mostly;
2118 EXPORT_SYMBOL(xps_needed);
2119 struct static_key xps_rxqs_needed __read_mostly;
2120 EXPORT_SYMBOL(xps_rxqs_needed);
2121 static DEFINE_MUTEX(xps_map_mutex);
2122 #define xmap_dereference(P)             \
2123         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2124
2125 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2126                              int tci, u16 index)
2127 {
2128         struct xps_map *map = NULL;
2129         int pos;
2130
2131         if (dev_maps)
2132                 map = xmap_dereference(dev_maps->attr_map[tci]);
2133         if (!map)
2134                 return false;
2135
2136         for (pos = map->len; pos--;) {
2137                 if (map->queues[pos] != index)
2138                         continue;
2139
2140                 if (map->len > 1) {
2141                         map->queues[pos] = map->queues[--map->len];
2142                         break;
2143                 }
2144
2145                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2146                 kfree_rcu(map, rcu);
2147                 return false;
2148         }
2149
2150         return true;
2151 }
2152
2153 static bool remove_xps_queue_cpu(struct net_device *dev,
2154                                  struct xps_dev_maps *dev_maps,
2155                                  int cpu, u16 offset, u16 count)
2156 {
2157         int num_tc = dev->num_tc ? : 1;
2158         bool active = false;
2159         int tci;
2160
2161         for (tci = cpu * num_tc; num_tc--; tci++) {
2162                 int i, j;
2163
2164                 for (i = count, j = offset; i--; j++) {
2165                         if (!remove_xps_queue(dev_maps, tci, j))
2166                                 break;
2167                 }
2168
2169                 active |= i < 0;
2170         }
2171
2172         return active;
2173 }
2174
2175 static void reset_xps_maps(struct net_device *dev,
2176                            struct xps_dev_maps *dev_maps,
2177                            bool is_rxqs_map)
2178 {
2179         if (is_rxqs_map) {
2180                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2181                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2182         } else {
2183                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2184         }
2185         static_key_slow_dec_cpuslocked(&xps_needed);
2186         kfree_rcu(dev_maps, rcu);
2187 }
2188
2189 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2190                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2191                            u16 offset, u16 count, bool is_rxqs_map)
2192 {
2193         bool active = false;
2194         int i, j;
2195
2196         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2197              j < nr_ids;)
2198                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2199                                                count);
2200         if (!active)
2201                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2202
2203         if (!is_rxqs_map) {
2204                 for (i = offset + (count - 1); count--; i--) {
2205                         netdev_queue_numa_node_write(
2206                                 netdev_get_tx_queue(dev, i),
2207                                 NUMA_NO_NODE);
2208                 }
2209         }
2210 }
2211
2212 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2213                                    u16 count)
2214 {
2215         const unsigned long *possible_mask = NULL;
2216         struct xps_dev_maps *dev_maps;
2217         unsigned int nr_ids;
2218
2219         if (!static_key_false(&xps_needed))
2220                 return;
2221
2222         cpus_read_lock();
2223         mutex_lock(&xps_map_mutex);
2224
2225         if (static_key_false(&xps_rxqs_needed)) {
2226                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2227                 if (dev_maps) {
2228                         nr_ids = dev->num_rx_queues;
2229                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2230                                        offset, count, true);
2231                 }
2232         }
2233
2234         dev_maps = xmap_dereference(dev->xps_cpus_map);
2235         if (!dev_maps)
2236                 goto out_no_maps;
2237
2238         if (num_possible_cpus() > 1)
2239                 possible_mask = cpumask_bits(cpu_possible_mask);
2240         nr_ids = nr_cpu_ids;
2241         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2242                        false);
2243
2244 out_no_maps:
2245         mutex_unlock(&xps_map_mutex);
2246         cpus_read_unlock();
2247 }
2248
2249 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2250 {
2251         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2252 }
2253
2254 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2255                                       u16 index, bool is_rxqs_map)
2256 {
2257         struct xps_map *new_map;
2258         int alloc_len = XPS_MIN_MAP_ALLOC;
2259         int i, pos;
2260
2261         for (pos = 0; map && pos < map->len; pos++) {
2262                 if (map->queues[pos] != index)
2263                         continue;
2264                 return map;
2265         }
2266
2267         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2268         if (map) {
2269                 if (pos < map->alloc_len)
2270                         return map;
2271
2272                 alloc_len = map->alloc_len * 2;
2273         }
2274
2275         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2276          *  map
2277          */
2278         if (is_rxqs_map)
2279                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2280         else
2281                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2282                                        cpu_to_node(attr_index));
2283         if (!new_map)
2284                 return NULL;
2285
2286         for (i = 0; i < pos; i++)
2287                 new_map->queues[i] = map->queues[i];
2288         new_map->alloc_len = alloc_len;
2289         new_map->len = pos;
2290
2291         return new_map;
2292 }
2293
2294 /* Must be called under cpus_read_lock */
2295 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2296                           u16 index, bool is_rxqs_map)
2297 {
2298         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2299         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2300         int i, j, tci, numa_node_id = -2;
2301         int maps_sz, num_tc = 1, tc = 0;
2302         struct xps_map *map, *new_map;
2303         bool active = false;
2304         unsigned int nr_ids;
2305
2306         if (dev->num_tc) {
2307                 /* Do not allow XPS on subordinate device directly */
2308                 num_tc = dev->num_tc;
2309                 if (num_tc < 0)
2310                         return -EINVAL;
2311
2312                 /* If queue belongs to subordinate dev use its map */
2313                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2314
2315                 tc = netdev_txq_to_tc(dev, index);
2316                 if (tc < 0)
2317                         return -EINVAL;
2318         }
2319
2320         mutex_lock(&xps_map_mutex);
2321         if (is_rxqs_map) {
2322                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2323                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2324                 nr_ids = dev->num_rx_queues;
2325         } else {
2326                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2327                 if (num_possible_cpus() > 1) {
2328                         online_mask = cpumask_bits(cpu_online_mask);
2329                         possible_mask = cpumask_bits(cpu_possible_mask);
2330                 }
2331                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2332                 nr_ids = nr_cpu_ids;
2333         }
2334
2335         if (maps_sz < L1_CACHE_BYTES)
2336                 maps_sz = L1_CACHE_BYTES;
2337
2338         /* allocate memory for queue storage */
2339         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2340              j < nr_ids;) {
2341                 if (!new_dev_maps)
2342                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2343                 if (!new_dev_maps) {
2344                         mutex_unlock(&xps_map_mutex);
2345                         return -ENOMEM;
2346                 }
2347
2348                 tci = j * num_tc + tc;
2349                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2350                                  NULL;
2351
2352                 map = expand_xps_map(map, j, index, is_rxqs_map);
2353                 if (!map)
2354                         goto error;
2355
2356                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2357         }
2358
2359         if (!new_dev_maps)
2360                 goto out_no_new_maps;
2361
2362         if (!dev_maps) {
2363                 /* Increment static keys at most once per type */
2364                 static_key_slow_inc_cpuslocked(&xps_needed);
2365                 if (is_rxqs_map)
2366                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2367         }
2368
2369         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2370              j < nr_ids;) {
2371                 /* copy maps belonging to foreign traffic classes */
2372                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2373                         /* fill in the new device map from the old device map */
2374                         map = xmap_dereference(dev_maps->attr_map[tci]);
2375                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2376                 }
2377
2378                 /* We need to explicitly update tci as prevous loop
2379                  * could break out early if dev_maps is NULL.
2380                  */
2381                 tci = j * num_tc + tc;
2382
2383                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2384                     netif_attr_test_online(j, online_mask, nr_ids)) {
2385                         /* add tx-queue to CPU/rx-queue maps */
2386                         int pos = 0;
2387
2388                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2389                         while ((pos < map->len) && (map->queues[pos] != index))
2390                                 pos++;
2391
2392                         if (pos == map->len)
2393                                 map->queues[map->len++] = index;
2394 #ifdef CONFIG_NUMA
2395                         if (!is_rxqs_map) {
2396                                 if (numa_node_id == -2)
2397                                         numa_node_id = cpu_to_node(j);
2398                                 else if (numa_node_id != cpu_to_node(j))
2399                                         numa_node_id = -1;
2400                         }
2401 #endif
2402                 } else if (dev_maps) {
2403                         /* fill in the new device map from the old device map */
2404                         map = xmap_dereference(dev_maps->attr_map[tci]);
2405                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2406                 }
2407
2408                 /* copy maps belonging to foreign traffic classes */
2409                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2410                         /* fill in the new device map from the old device map */
2411                         map = xmap_dereference(dev_maps->attr_map[tci]);
2412                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2413                 }
2414         }
2415
2416         if (is_rxqs_map)
2417                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2418         else
2419                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2420
2421         /* Cleanup old maps */
2422         if (!dev_maps)
2423                 goto out_no_old_maps;
2424
2425         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2426              j < nr_ids;) {
2427                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2428                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2429                         map = xmap_dereference(dev_maps->attr_map[tci]);
2430                         if (map && map != new_map)
2431                                 kfree_rcu(map, rcu);
2432                 }
2433         }
2434
2435         kfree_rcu(dev_maps, rcu);
2436
2437 out_no_old_maps:
2438         dev_maps = new_dev_maps;
2439         active = true;
2440
2441 out_no_new_maps:
2442         if (!is_rxqs_map) {
2443                 /* update Tx queue numa node */
2444                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2445                                              (numa_node_id >= 0) ?
2446                                              numa_node_id : NUMA_NO_NODE);
2447         }
2448
2449         if (!dev_maps)
2450                 goto out_no_maps;
2451
2452         /* removes tx-queue from unused CPUs/rx-queues */
2453         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2454              j < nr_ids;) {
2455                 for (i = tc, tci = j * num_tc; i--; tci++)
2456                         active |= remove_xps_queue(dev_maps, tci, index);
2457                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2458                     !netif_attr_test_online(j, online_mask, nr_ids))
2459                         active |= remove_xps_queue(dev_maps, tci, index);
2460                 for (i = num_tc - tc, tci++; --i; tci++)
2461                         active |= remove_xps_queue(dev_maps, tci, index);
2462         }
2463
2464         /* free map if not active */
2465         if (!active)
2466                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2467
2468 out_no_maps:
2469         mutex_unlock(&xps_map_mutex);
2470
2471         return 0;
2472 error:
2473         /* remove any maps that we added */
2474         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2475              j < nr_ids;) {
2476                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2477                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2478                         map = dev_maps ?
2479                               xmap_dereference(dev_maps->attr_map[tci]) :
2480                               NULL;
2481                         if (new_map && new_map != map)
2482                                 kfree(new_map);
2483                 }
2484         }
2485
2486         mutex_unlock(&xps_map_mutex);
2487
2488         kfree(new_dev_maps);
2489         return -ENOMEM;
2490 }
2491 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2492
2493 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2494                         u16 index)
2495 {
2496         int ret;
2497
2498         cpus_read_lock();
2499         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2500         cpus_read_unlock();
2501
2502         return ret;
2503 }
2504 EXPORT_SYMBOL(netif_set_xps_queue);
2505
2506 #endif
2507 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2508 {
2509         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2510
2511         /* Unbind any subordinate channels */
2512         while (txq-- != &dev->_tx[0]) {
2513                 if (txq->sb_dev)
2514                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2515         }
2516 }
2517
2518 void netdev_reset_tc(struct net_device *dev)
2519 {
2520 #ifdef CONFIG_XPS
2521         netif_reset_xps_queues_gt(dev, 0);
2522 #endif
2523         netdev_unbind_all_sb_channels(dev);
2524
2525         /* Reset TC configuration of device */
2526         dev->num_tc = 0;
2527         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2528         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2529 }
2530 EXPORT_SYMBOL(netdev_reset_tc);
2531
2532 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2533 {
2534         if (tc >= dev->num_tc)
2535                 return -EINVAL;
2536
2537 #ifdef CONFIG_XPS
2538         netif_reset_xps_queues(dev, offset, count);
2539 #endif
2540         dev->tc_to_txq[tc].count = count;
2541         dev->tc_to_txq[tc].offset = offset;
2542         return 0;
2543 }
2544 EXPORT_SYMBOL(netdev_set_tc_queue);
2545
2546 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2547 {
2548         if (num_tc > TC_MAX_QUEUE)
2549                 return -EINVAL;
2550
2551 #ifdef CONFIG_XPS
2552         netif_reset_xps_queues_gt(dev, 0);
2553 #endif
2554         netdev_unbind_all_sb_channels(dev);
2555
2556         dev->num_tc = num_tc;
2557         return 0;
2558 }
2559 EXPORT_SYMBOL(netdev_set_num_tc);
2560
2561 void netdev_unbind_sb_channel(struct net_device *dev,
2562                               struct net_device *sb_dev)
2563 {
2564         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2565
2566 #ifdef CONFIG_XPS
2567         netif_reset_xps_queues_gt(sb_dev, 0);
2568 #endif
2569         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2570         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2571
2572         while (txq-- != &dev->_tx[0]) {
2573                 if (txq->sb_dev == sb_dev)
2574                         txq->sb_dev = NULL;
2575         }
2576 }
2577 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2578
2579 int netdev_bind_sb_channel_queue(struct net_device *dev,
2580                                  struct net_device *sb_dev,
2581                                  u8 tc, u16 count, u16 offset)
2582 {
2583         /* Make certain the sb_dev and dev are already configured */
2584         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2585                 return -EINVAL;
2586
2587         /* We cannot hand out queues we don't have */
2588         if ((offset + count) > dev->real_num_tx_queues)
2589                 return -EINVAL;
2590
2591         /* Record the mapping */
2592         sb_dev->tc_to_txq[tc].count = count;
2593         sb_dev->tc_to_txq[tc].offset = offset;
2594
2595         /* Provide a way for Tx queue to find the tc_to_txq map or
2596          * XPS map for itself.
2597          */
2598         while (count--)
2599                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2600
2601         return 0;
2602 }
2603 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2604
2605 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2606 {
2607         /* Do not use a multiqueue device to represent a subordinate channel */
2608         if (netif_is_multiqueue(dev))
2609                 return -ENODEV;
2610
2611         /* We allow channels 1 - 32767 to be used for subordinate channels.
2612          * Channel 0 is meant to be "native" mode and used only to represent
2613          * the main root device. We allow writing 0 to reset the device back
2614          * to normal mode after being used as a subordinate channel.
2615          */
2616         if (channel > S16_MAX)
2617                 return -EINVAL;
2618
2619         dev->num_tc = -channel;
2620
2621         return 0;
2622 }
2623 EXPORT_SYMBOL(netdev_set_sb_channel);
2624
2625 /*
2626  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2627  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2628  */
2629 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2630 {
2631         bool disabling;
2632         int rc;
2633
2634         disabling = txq < dev->real_num_tx_queues;
2635
2636         if (txq < 1 || txq > dev->num_tx_queues)
2637                 return -EINVAL;
2638
2639         if (dev->reg_state == NETREG_REGISTERED ||
2640             dev->reg_state == NETREG_UNREGISTERING) {
2641                 ASSERT_RTNL();
2642
2643                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2644                                                   txq);
2645                 if (rc)
2646                         return rc;
2647
2648                 if (dev->num_tc)
2649                         netif_setup_tc(dev, txq);
2650
2651                 dev_qdisc_change_real_num_tx(dev, txq);
2652
2653                 dev->real_num_tx_queues = txq;
2654
2655                 if (disabling) {
2656                         synchronize_net();
2657                         qdisc_reset_all_tx_gt(dev, txq);
2658 #ifdef CONFIG_XPS
2659                         netif_reset_xps_queues_gt(dev, txq);
2660 #endif
2661                 }
2662         } else {
2663                 dev->real_num_tx_queues = txq;
2664         }
2665
2666         return 0;
2667 }
2668 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2669
2670 #ifdef CONFIG_SYSFS
2671 /**
2672  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2673  *      @dev: Network device
2674  *      @rxq: Actual number of RX queues
2675  *
2676  *      This must be called either with the rtnl_lock held or before
2677  *      registration of the net device.  Returns 0 on success, or a
2678  *      negative error code.  If called before registration, it always
2679  *      succeeds.
2680  */
2681 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2682 {
2683         int rc;
2684
2685         if (rxq < 1 || rxq > dev->num_rx_queues)
2686                 return -EINVAL;
2687
2688         if (dev->reg_state == NETREG_REGISTERED) {
2689                 ASSERT_RTNL();
2690
2691                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2692                                                   rxq);
2693                 if (rc)
2694                         return rc;
2695         }
2696
2697         dev->real_num_rx_queues = rxq;
2698         return 0;
2699 }
2700 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2701 #endif
2702
2703 /**
2704  * netif_get_num_default_rss_queues - default number of RSS queues
2705  *
2706  * This routine should set an upper limit on the number of RSS queues
2707  * used by default by multiqueue devices.
2708  */
2709 int netif_get_num_default_rss_queues(void)
2710 {
2711         return is_kdump_kernel() ?
2712                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2713 }
2714 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2715
2716 static void __netif_reschedule(struct Qdisc *q)
2717 {
2718         struct softnet_data *sd;
2719         unsigned long flags;
2720
2721         local_irq_save(flags);
2722         sd = this_cpu_ptr(&softnet_data);
2723         q->next_sched = NULL;
2724         *sd->output_queue_tailp = q;
2725         sd->output_queue_tailp = &q->next_sched;
2726         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2727         local_irq_restore(flags);
2728 }
2729
2730 void __netif_schedule(struct Qdisc *q)
2731 {
2732         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2733                 __netif_reschedule(q);
2734 }
2735 EXPORT_SYMBOL(__netif_schedule);
2736
2737 struct dev_kfree_skb_cb {
2738         enum skb_free_reason reason;
2739 };
2740
2741 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2742 {
2743         return (struct dev_kfree_skb_cb *)skb->cb;
2744 }
2745
2746 void netif_schedule_queue(struct netdev_queue *txq)
2747 {
2748         rcu_read_lock();
2749         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2750                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2751
2752                 __netif_schedule(q);
2753         }
2754         rcu_read_unlock();
2755 }
2756 EXPORT_SYMBOL(netif_schedule_queue);
2757
2758 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2759 {
2760         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2761                 struct Qdisc *q;
2762
2763                 rcu_read_lock();
2764                 q = rcu_dereference(dev_queue->qdisc);
2765                 __netif_schedule(q);
2766                 rcu_read_unlock();
2767         }
2768 }
2769 EXPORT_SYMBOL(netif_tx_wake_queue);
2770
2771 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2772 {
2773         unsigned long flags;
2774
2775         if (unlikely(!skb))
2776                 return;
2777
2778         if (likely(refcount_read(&skb->users) == 1)) {
2779                 smp_rmb();
2780                 refcount_set(&skb->users, 0);
2781         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2782                 return;
2783         }
2784         get_kfree_skb_cb(skb)->reason = reason;
2785         local_irq_save(flags);
2786         skb->next = __this_cpu_read(softnet_data.completion_queue);
2787         __this_cpu_write(softnet_data.completion_queue, skb);
2788         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2789         local_irq_restore(flags);
2790 }
2791 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2792
2793 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2794 {
2795         if (in_irq() || irqs_disabled())
2796                 __dev_kfree_skb_irq(skb, reason);
2797         else
2798                 dev_kfree_skb(skb);
2799 }
2800 EXPORT_SYMBOL(__dev_kfree_skb_any);
2801
2802
2803 /**
2804  * netif_device_detach - mark device as removed
2805  * @dev: network device
2806  *
2807  * Mark device as removed from system and therefore no longer available.
2808  */
2809 void netif_device_detach(struct net_device *dev)
2810 {
2811         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2812             netif_running(dev)) {
2813                 netif_tx_stop_all_queues(dev);
2814         }
2815 }
2816 EXPORT_SYMBOL(netif_device_detach);
2817
2818 /**
2819  * netif_device_attach - mark device as attached
2820  * @dev: network device
2821  *
2822  * Mark device as attached from system and restart if needed.
2823  */
2824 void netif_device_attach(struct net_device *dev)
2825 {
2826         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2827             netif_running(dev)) {
2828                 netif_tx_wake_all_queues(dev);
2829                 __netdev_watchdog_up(dev);
2830         }
2831 }
2832 EXPORT_SYMBOL(netif_device_attach);
2833
2834 /*
2835  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2836  * to be used as a distribution range.
2837  */
2838 static u16 skb_tx_hash(const struct net_device *dev,
2839                        const struct net_device *sb_dev,
2840                        struct sk_buff *skb)
2841 {
2842         u32 hash;
2843         u16 qoffset = 0;
2844         u16 qcount = dev->real_num_tx_queues;
2845
2846         if (dev->num_tc) {
2847                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2848
2849                 qoffset = sb_dev->tc_to_txq[tc].offset;
2850                 qcount = sb_dev->tc_to_txq[tc].count;
2851                 if (unlikely(!qcount)) {
2852                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
2853                                              sb_dev->name, qoffset, tc);
2854                         qoffset = 0;
2855                         qcount = dev->real_num_tx_queues;
2856                 }
2857         }
2858
2859         if (skb_rx_queue_recorded(skb)) {
2860                 hash = skb_get_rx_queue(skb);
2861                 if (hash >= qoffset)
2862                         hash -= qoffset;
2863                 while (unlikely(hash >= qcount))
2864                         hash -= qcount;
2865                 return hash + qoffset;
2866         }
2867
2868         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2869 }
2870
2871 static void skb_warn_bad_offload(const struct sk_buff *skb)
2872 {
2873         static const netdev_features_t null_features;
2874         struct net_device *dev = skb->dev;
2875         const char *name = "";
2876
2877         if (!net_ratelimit())
2878                 return;
2879
2880         if (dev) {
2881                 if (dev->dev.parent)
2882                         name = dev_driver_string(dev->dev.parent);
2883                 else
2884                         name = netdev_name(dev);
2885         }
2886         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2887              "gso_type=%d ip_summed=%d\n",
2888              name, dev ? &dev->features : &null_features,
2889              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2890              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2891              skb_shinfo(skb)->gso_type, skb->ip_summed);
2892 }
2893
2894 /*
2895  * Invalidate hardware checksum when packet is to be mangled, and
2896  * complete checksum manually on outgoing path.
2897  */
2898 int skb_checksum_help(struct sk_buff *skb)
2899 {
2900         __wsum csum;
2901         int ret = 0, offset;
2902
2903         if (skb->ip_summed == CHECKSUM_COMPLETE)
2904                 goto out_set_summed;
2905
2906         if (unlikely(skb_shinfo(skb)->gso_size)) {
2907                 skb_warn_bad_offload(skb);
2908                 return -EINVAL;
2909         }
2910
2911         /* Before computing a checksum, we should make sure no frag could
2912          * be modified by an external entity : checksum could be wrong.
2913          */
2914         if (skb_has_shared_frag(skb)) {
2915                 ret = __skb_linearize(skb);
2916                 if (ret)
2917                         goto out;
2918         }
2919
2920         offset = skb_checksum_start_offset(skb);
2921         BUG_ON(offset >= skb_headlen(skb));
2922         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2923
2924         offset += skb->csum_offset;
2925         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2926
2927         if (skb_cloned(skb) &&
2928             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2929                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2930                 if (ret)
2931                         goto out;
2932         }
2933
2934         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2935 out_set_summed:
2936         skb->ip_summed = CHECKSUM_NONE;
2937 out:
2938         return ret;
2939 }
2940 EXPORT_SYMBOL(skb_checksum_help);
2941
2942 int skb_crc32c_csum_help(struct sk_buff *skb)
2943 {
2944         __le32 crc32c_csum;
2945         int ret = 0, offset, start;
2946
2947         if (skb->ip_summed != CHECKSUM_PARTIAL)
2948                 goto out;
2949
2950         if (unlikely(skb_is_gso(skb)))
2951                 goto out;
2952
2953         /* Before computing a checksum, we should make sure no frag could
2954          * be modified by an external entity : checksum could be wrong.
2955          */
2956         if (unlikely(skb_has_shared_frag(skb))) {
2957                 ret = __skb_linearize(skb);
2958                 if (ret)
2959                         goto out;
2960         }
2961         start = skb_checksum_start_offset(skb);
2962         offset = start + offsetof(struct sctphdr, checksum);
2963         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2964                 ret = -EINVAL;
2965                 goto out;
2966         }
2967         if (skb_cloned(skb) &&
2968             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2969                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2970                 if (ret)
2971                         goto out;
2972         }
2973         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2974                                                   skb->len - start, ~(__u32)0,
2975                                                   crc32c_csum_stub));
2976         *(__le32 *)(skb->data + offset) = crc32c_csum;
2977         skb->ip_summed = CHECKSUM_NONE;
2978         skb->csum_not_inet = 0;
2979 out:
2980         return ret;
2981 }
2982
2983 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2984 {
2985         __be16 type = skb->protocol;
2986
2987         /* Tunnel gso handlers can set protocol to ethernet. */
2988         if (type == htons(ETH_P_TEB)) {
2989                 struct ethhdr *eth;
2990
2991                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2992                         return 0;
2993
2994                 eth = (struct ethhdr *)skb->data;
2995                 type = eth->h_proto;
2996         }
2997
2998         return __vlan_get_protocol(skb, type, depth);
2999 }
3000
3001 /**
3002  *      skb_mac_gso_segment - mac layer segmentation handler.
3003  *      @skb: buffer to segment
3004  *      @features: features for the output path (see dev->features)
3005  */
3006 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3007                                     netdev_features_t features)
3008 {
3009         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3010         struct packet_offload *ptype;
3011         int vlan_depth = skb->mac_len;
3012         __be16 type = skb_network_protocol(skb, &vlan_depth);
3013
3014         if (unlikely(!type))
3015                 return ERR_PTR(-EINVAL);
3016
3017         __skb_pull(skb, vlan_depth);
3018
3019         rcu_read_lock();
3020         list_for_each_entry_rcu(ptype, &offload_base, list) {
3021                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3022                         segs = ptype->callbacks.gso_segment(skb, features);
3023                         break;
3024                 }
3025         }
3026         rcu_read_unlock();
3027
3028         __skb_push(skb, skb->data - skb_mac_header(skb));
3029
3030         return segs;
3031 }
3032 EXPORT_SYMBOL(skb_mac_gso_segment);
3033
3034
3035 /* openvswitch calls this on rx path, so we need a different check.
3036  */
3037 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3038 {
3039         if (tx_path)
3040                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3041                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3042
3043         return skb->ip_summed == CHECKSUM_NONE;
3044 }
3045
3046 /**
3047  *      __skb_gso_segment - Perform segmentation on skb.
3048  *      @skb: buffer to segment
3049  *      @features: features for the output path (see dev->features)
3050  *      @tx_path: whether it is called in TX path
3051  *
3052  *      This function segments the given skb and returns a list of segments.
3053  *
3054  *      It may return NULL if the skb requires no segmentation.  This is
3055  *      only possible when GSO is used for verifying header integrity.
3056  *
3057  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3058  */
3059 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3060                                   netdev_features_t features, bool tx_path)
3061 {
3062         struct sk_buff *segs;
3063
3064         if (unlikely(skb_needs_check(skb, tx_path))) {
3065                 int err;
3066
3067                 /* We're going to init ->check field in TCP or UDP header */
3068                 err = skb_cow_head(skb, 0);
3069                 if (err < 0)
3070                         return ERR_PTR(err);
3071         }
3072
3073         /* Only report GSO partial support if it will enable us to
3074          * support segmentation on this frame without needing additional
3075          * work.
3076          */
3077         if (features & NETIF_F_GSO_PARTIAL) {
3078                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3079                 struct net_device *dev = skb->dev;
3080
3081                 partial_features |= dev->features & dev->gso_partial_features;
3082                 if (!skb_gso_ok(skb, features | partial_features))
3083                         features &= ~NETIF_F_GSO_PARTIAL;
3084         }
3085
3086         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3087                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3088
3089         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3090         SKB_GSO_CB(skb)->encap_level = 0;
3091
3092         skb_reset_mac_header(skb);
3093         skb_reset_mac_len(skb);
3094
3095         segs = skb_mac_gso_segment(skb, features);
3096
3097         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3098                 skb_warn_bad_offload(skb);
3099
3100         return segs;
3101 }
3102 EXPORT_SYMBOL(__skb_gso_segment);
3103
3104 /* Take action when hardware reception checksum errors are detected. */
3105 #ifdef CONFIG_BUG
3106 void netdev_rx_csum_fault(struct net_device *dev)
3107 {
3108         if (net_ratelimit()) {
3109                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3110                 dump_stack();
3111         }
3112 }
3113 EXPORT_SYMBOL(netdev_rx_csum_fault);
3114 #endif
3115
3116 /* XXX: check that highmem exists at all on the given machine. */
3117 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3118 {
3119 #ifdef CONFIG_HIGHMEM
3120         int i;
3121
3122         if (!(dev->features & NETIF_F_HIGHDMA)) {
3123                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3124                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3125
3126                         if (PageHighMem(skb_frag_page(frag)))
3127                                 return 1;
3128                 }
3129         }
3130 #endif
3131         return 0;
3132 }
3133
3134 /* If MPLS offload request, verify we are testing hardware MPLS features
3135  * instead of standard features for the netdev.
3136  */
3137 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3138 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3139                                            netdev_features_t features,
3140                                            __be16 type)
3141 {
3142         if (eth_p_mpls(type))
3143                 features &= skb->dev->mpls_features;
3144
3145         return features;
3146 }
3147 #else
3148 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3149                                            netdev_features_t features,
3150                                            __be16 type)
3151 {
3152         return features;
3153 }
3154 #endif
3155
3156 static netdev_features_t harmonize_features(struct sk_buff *skb,
3157         netdev_features_t features)
3158 {
3159         int tmp;
3160         __be16 type;
3161
3162         type = skb_network_protocol(skb, &tmp);
3163         features = net_mpls_features(skb, features, type);
3164
3165         if (skb->ip_summed != CHECKSUM_NONE &&
3166             !can_checksum_protocol(features, type)) {
3167                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3168         }
3169         if (illegal_highdma(skb->dev, skb))
3170                 features &= ~NETIF_F_SG;
3171
3172         return features;
3173 }
3174
3175 netdev_features_t passthru_features_check(struct sk_buff *skb,
3176                                           struct net_device *dev,
3177                                           netdev_features_t features)
3178 {
3179         return features;
3180 }
3181 EXPORT_SYMBOL(passthru_features_check);
3182
3183 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3184                                              struct net_device *dev,
3185                                              netdev_features_t features)
3186 {
3187         return vlan_features_check(skb, features);
3188 }
3189
3190 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3191                                             struct net_device *dev,
3192                                             netdev_features_t features)
3193 {
3194         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3195
3196         if (gso_segs > dev->gso_max_segs)
3197                 return features & ~NETIF_F_GSO_MASK;
3198
3199         /* Support for GSO partial features requires software
3200          * intervention before we can actually process the packets
3201          * so we need to strip support for any partial features now
3202          * and we can pull them back in after we have partially
3203          * segmented the frame.
3204          */
3205         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3206                 features &= ~dev->gso_partial_features;
3207
3208         /* Make sure to clear the IPv4 ID mangling feature if the
3209          * IPv4 header has the potential to be fragmented.
3210          */
3211         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3212                 struct iphdr *iph = skb->encapsulation ?
3213                                     inner_ip_hdr(skb) : ip_hdr(skb);
3214
3215                 if (!(iph->frag_off & htons(IP_DF)))
3216                         features &= ~NETIF_F_TSO_MANGLEID;
3217         }
3218
3219         return features;
3220 }
3221
3222 netdev_features_t netif_skb_features(struct sk_buff *skb)
3223 {
3224         struct net_device *dev = skb->dev;
3225         netdev_features_t features = dev->features;
3226
3227         if (skb_is_gso(skb))
3228                 features = gso_features_check(skb, dev, features);
3229
3230         /* If encapsulation offload request, verify we are testing
3231          * hardware encapsulation features instead of standard
3232          * features for the netdev
3233          */
3234         if (skb->encapsulation)
3235                 features &= dev->hw_enc_features;
3236
3237         if (skb_vlan_tagged(skb))
3238                 features = netdev_intersect_features(features,
3239                                                      dev->vlan_features |
3240                                                      NETIF_F_HW_VLAN_CTAG_TX |
3241                                                      NETIF_F_HW_VLAN_STAG_TX);
3242
3243         if (dev->netdev_ops->ndo_features_check)
3244                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3245                                                                 features);
3246         else
3247                 features &= dflt_features_check(skb, dev, features);
3248
3249         return harmonize_features(skb, features);
3250 }
3251 EXPORT_SYMBOL(netif_skb_features);
3252
3253 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3254                     struct netdev_queue *txq, bool more)
3255 {
3256         unsigned int len;
3257         int rc;
3258
3259         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3260                 dev_queue_xmit_nit(skb, dev);
3261
3262         len = skb->len;
3263         trace_net_dev_start_xmit(skb, dev);
3264         rc = netdev_start_xmit(skb, dev, txq, more);
3265         trace_net_dev_xmit(skb, rc, dev, len);
3266
3267         return rc;
3268 }
3269
3270 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3271                                     struct netdev_queue *txq, int *ret)
3272 {
3273         struct sk_buff *skb = first;
3274         int rc = NETDEV_TX_OK;
3275
3276         while (skb) {
3277                 struct sk_buff *next = skb->next;
3278
3279                 skb->next = NULL;
3280                 rc = xmit_one(skb, dev, txq, next != NULL);
3281                 if (unlikely(!dev_xmit_complete(rc))) {
3282                         skb->next = next;
3283                         goto out;
3284                 }
3285
3286                 skb = next;
3287                 if (netif_tx_queue_stopped(txq) && skb) {
3288                         rc = NETDEV_TX_BUSY;
3289                         break;
3290                 }
3291         }
3292
3293 out:
3294         *ret = rc;
3295         return skb;
3296 }
3297
3298 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3299                                           netdev_features_t features)
3300 {
3301         if (skb_vlan_tag_present(skb) &&
3302             !vlan_hw_offload_capable(features, skb->vlan_proto))
3303                 skb = __vlan_hwaccel_push_inside(skb);
3304         return skb;
3305 }
3306
3307 int skb_csum_hwoffload_help(struct sk_buff *skb,
3308                             const netdev_features_t features)
3309 {
3310         if (unlikely(skb->csum_not_inet))
3311                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3312                         skb_crc32c_csum_help(skb);
3313
3314         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3315 }
3316 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3317
3318 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3319 {
3320         netdev_features_t features;
3321
3322         features = netif_skb_features(skb);
3323         skb = validate_xmit_vlan(skb, features);
3324         if (unlikely(!skb))
3325                 goto out_null;
3326
3327         skb = sk_validate_xmit_skb(skb, dev);
3328         if (unlikely(!skb))
3329                 goto out_null;
3330
3331         if (netif_needs_gso(skb, features)) {
3332                 struct sk_buff *segs;
3333
3334                 segs = skb_gso_segment(skb, features);
3335                 if (IS_ERR(segs)) {
3336                         goto out_kfree_skb;
3337                 } else if (segs) {
3338                         consume_skb(skb);
3339                         skb = segs;
3340                 }
3341         } else {
3342                 if (skb_needs_linearize(skb, features) &&
3343                     __skb_linearize(skb))
3344                         goto out_kfree_skb;
3345
3346                 /* If packet is not checksummed and device does not
3347                  * support checksumming for this protocol, complete
3348                  * checksumming here.
3349                  */
3350                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3351                         if (skb->encapsulation)
3352                                 skb_set_inner_transport_header(skb,
3353                                                                skb_checksum_start_offset(skb));
3354                         else
3355                                 skb_set_transport_header(skb,
3356                                                          skb_checksum_start_offset(skb));
3357                         if (skb_csum_hwoffload_help(skb, features))
3358                                 goto out_kfree_skb;
3359                 }
3360         }
3361
3362         skb = validate_xmit_xfrm(skb, features, again);
3363
3364         return skb;
3365
3366 out_kfree_skb:
3367         kfree_skb(skb);
3368 out_null:
3369         atomic_long_inc(&dev->tx_dropped);
3370         return NULL;
3371 }
3372
3373 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3374 {
3375         struct sk_buff *next, *head = NULL, *tail;
3376
3377         for (; skb != NULL; skb = next) {
3378                 next = skb->next;
3379                 skb->next = NULL;
3380
3381                 /* in case skb wont be segmented, point to itself */
3382                 skb->prev = skb;
3383
3384                 skb = validate_xmit_skb(skb, dev, again);
3385                 if (!skb)
3386                         continue;
3387
3388                 if (!head)
3389                         head = skb;
3390                 else
3391                         tail->next = skb;
3392                 /* If skb was segmented, skb->prev points to
3393                  * the last segment. If not, it still contains skb.
3394                  */
3395                 tail = skb->prev;
3396         }
3397         return head;
3398 }
3399 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3400
3401 static void qdisc_pkt_len_init(struct sk_buff *skb)
3402 {
3403         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3404
3405         qdisc_skb_cb(skb)->pkt_len = skb->len;
3406
3407         /* To get more precise estimation of bytes sent on wire,
3408          * we add to pkt_len the headers size of all segments
3409          */
3410         if (shinfo->gso_size)  {
3411                 unsigned int hdr_len;
3412                 u16 gso_segs = shinfo->gso_segs;
3413
3414                 /* mac layer + network layer */
3415                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3416
3417                 /* + transport layer */
3418                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3419                         const struct tcphdr *th;
3420                         struct tcphdr _tcphdr;
3421
3422                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3423                                                 sizeof(_tcphdr), &_tcphdr);
3424                         if (likely(th))
3425                                 hdr_len += __tcp_hdrlen(th);
3426                 } else {
3427                         struct udphdr _udphdr;
3428
3429                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3430                                                sizeof(_udphdr), &_udphdr))
3431                                 hdr_len += sizeof(struct udphdr);
3432                 }
3433
3434                 if (shinfo->gso_type & SKB_GSO_DODGY)
3435                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3436                                                 shinfo->gso_size);
3437
3438                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3439         }
3440 }
3441
3442 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3443                                  struct net_device *dev,
3444                                  struct netdev_queue *txq)
3445 {
3446         spinlock_t *root_lock = qdisc_lock(q);
3447         struct sk_buff *to_free = NULL;
3448         bool contended;
3449         int rc;
3450
3451         qdisc_calculate_pkt_len(skb, q);
3452
3453         if (q->flags & TCQ_F_NOLOCK) {
3454                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3455                         __qdisc_drop(skb, &to_free);
3456                         rc = NET_XMIT_DROP;
3457                 } else {
3458                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3459                         qdisc_run(q);
3460                 }
3461
3462                 if (unlikely(to_free))
3463                         kfree_skb_list(to_free);
3464                 return rc;
3465         }
3466
3467         /*
3468          * Heuristic to force contended enqueues to serialize on a
3469          * separate lock before trying to get qdisc main lock.
3470          * This permits qdisc->running owner to get the lock more
3471          * often and dequeue packets faster.
3472          */
3473         contended = qdisc_is_running(q);
3474         if (unlikely(contended))
3475                 spin_lock(&q->busylock);
3476
3477         spin_lock(root_lock);
3478         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3479                 __qdisc_drop(skb, &to_free);
3480                 rc = NET_XMIT_DROP;
3481         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3482                    qdisc_run_begin(q)) {
3483                 /*
3484                  * This is a work-conserving queue; there are no old skbs
3485                  * waiting to be sent out; and the qdisc is not running -
3486                  * xmit the skb directly.
3487                  */
3488
3489                 qdisc_bstats_update(q, skb);
3490
3491                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3492                         if (unlikely(contended)) {
3493                                 spin_unlock(&q->busylock);
3494                                 contended = false;
3495                         }
3496                         __qdisc_run(q);
3497                 }
3498
3499                 qdisc_run_end(q);
3500                 rc = NET_XMIT_SUCCESS;
3501         } else {
3502                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3503                 if (qdisc_run_begin(q)) {
3504                         if (unlikely(contended)) {
3505                                 spin_unlock(&q->busylock);
3506                                 contended = false;
3507                         }
3508                         __qdisc_run(q);
3509                         qdisc_run_end(q);
3510                 }
3511         }
3512         spin_unlock(root_lock);
3513         if (unlikely(to_free))
3514                 kfree_skb_list(to_free);
3515         if (unlikely(contended))
3516                 spin_unlock(&q->busylock);
3517         return rc;
3518 }
3519
3520 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3521 static void skb_update_prio(struct sk_buff *skb)
3522 {
3523         const struct netprio_map *map;
3524         const struct sock *sk;
3525         unsigned int prioidx;
3526
3527         if (skb->priority)
3528                 return;
3529         map = rcu_dereference_bh(skb->dev->priomap);
3530         if (!map)
3531                 return;
3532         sk = skb_to_full_sk(skb);
3533         if (!sk)
3534                 return;
3535
3536         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3537
3538         if (prioidx < map->priomap_len)
3539                 skb->priority = map->priomap[prioidx];
3540 }
3541 #else
3542 #define skb_update_prio(skb)
3543 #endif
3544
3545 /**
3546  *      dev_loopback_xmit - loop back @skb
3547  *      @net: network namespace this loopback is happening in
3548  *      @sk:  sk needed to be a netfilter okfn
3549  *      @skb: buffer to transmit
3550  */
3551 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3552 {
3553         skb_reset_mac_header(skb);
3554         __skb_pull(skb, skb_network_offset(skb));
3555         skb->pkt_type = PACKET_LOOPBACK;
3556         skb->ip_summed = CHECKSUM_UNNECESSARY;
3557         WARN_ON(!skb_dst(skb));
3558         skb_dst_force(skb);
3559         netif_rx_ni(skb);
3560         return 0;
3561 }
3562 EXPORT_SYMBOL(dev_loopback_xmit);
3563
3564 #ifdef CONFIG_NET_EGRESS
3565 static struct sk_buff *
3566 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3567 {
3568         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3569         struct tcf_result cl_res;
3570
3571         if (!miniq)
3572                 return skb;
3573
3574         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3575         mini_qdisc_bstats_cpu_update(miniq, skb);
3576
3577         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3578         case TC_ACT_OK:
3579         case TC_ACT_RECLASSIFY:
3580                 skb->tc_index = TC_H_MIN(cl_res.classid);
3581                 break;
3582         case TC_ACT_SHOT:
3583                 mini_qdisc_qstats_cpu_drop(miniq);
3584                 *ret = NET_XMIT_DROP;
3585                 kfree_skb(skb);
3586                 return NULL;
3587         case TC_ACT_STOLEN:
3588         case TC_ACT_QUEUED:
3589         case TC_ACT_TRAP:
3590                 *ret = NET_XMIT_SUCCESS;
3591                 consume_skb(skb);
3592                 return NULL;
3593         case TC_ACT_REDIRECT:
3594                 /* No need to push/pop skb's mac_header here on egress! */
3595                 skb_do_redirect(skb);
3596                 *ret = NET_XMIT_SUCCESS;
3597                 return NULL;
3598         default:
3599                 break;
3600         }
3601
3602         return skb;
3603 }
3604 #endif /* CONFIG_NET_EGRESS */
3605
3606 #ifdef CONFIG_XPS
3607 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3608                                struct xps_dev_maps *dev_maps, unsigned int tci)
3609 {
3610         struct xps_map *map;
3611         int queue_index = -1;
3612
3613         if (dev->num_tc) {
3614                 tci *= dev->num_tc;
3615                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3616         }
3617
3618         map = rcu_dereference(dev_maps->attr_map[tci]);
3619         if (map) {
3620                 if (map->len == 1)
3621                         queue_index = map->queues[0];
3622                 else
3623                         queue_index = map->queues[reciprocal_scale(
3624                                                 skb_get_hash(skb), map->len)];
3625                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3626                         queue_index = -1;
3627         }
3628         return queue_index;
3629 }
3630 #endif
3631
3632 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3633                          struct sk_buff *skb)
3634 {
3635 #ifdef CONFIG_XPS
3636         struct xps_dev_maps *dev_maps;
3637         struct sock *sk = skb->sk;
3638         int queue_index = -1;
3639
3640         if (!static_key_false(&xps_needed))
3641                 return -1;
3642
3643         rcu_read_lock();
3644         if (!static_key_false(&xps_rxqs_needed))
3645                 goto get_cpus_map;
3646
3647         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3648         if (dev_maps) {
3649                 int tci = sk_rx_queue_get(sk);
3650
3651                 if (tci >= 0 && tci < dev->num_rx_queues)
3652                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3653                                                           tci);
3654         }
3655
3656 get_cpus_map:
3657         if (queue_index < 0) {
3658                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3659                 if (dev_maps) {
3660                         unsigned int tci = skb->sender_cpu - 1;
3661
3662                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3663                                                           tci);
3664                 }
3665         }
3666         rcu_read_unlock();
3667
3668         return queue_index;
3669 #else
3670         return -1;
3671 #endif
3672 }
3673
3674 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3675                      struct net_device *sb_dev,
3676                      select_queue_fallback_t fallback)
3677 {
3678         return 0;
3679 }
3680 EXPORT_SYMBOL(dev_pick_tx_zero);
3681
3682 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3683                        struct net_device *sb_dev,
3684                        select_queue_fallback_t fallback)
3685 {
3686         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3687 }
3688 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3689
3690 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3691                             struct net_device *sb_dev)
3692 {
3693         struct sock *sk = skb->sk;
3694         int queue_index = sk_tx_queue_get(sk);
3695
3696         sb_dev = sb_dev ? : dev;
3697
3698         if (queue_index < 0 || skb->ooo_okay ||
3699             queue_index >= dev->real_num_tx_queues) {
3700                 int new_index = get_xps_queue(dev, sb_dev, skb);
3701
3702                 if (new_index < 0)
3703                         new_index = skb_tx_hash(dev, sb_dev, skb);
3704
3705                 if (queue_index != new_index && sk &&
3706                     sk_fullsock(sk) &&
3707                     rcu_access_pointer(sk->sk_dst_cache))
3708                         sk_tx_queue_set(sk, new_index);
3709
3710                 queue_index = new_index;
3711         }
3712
3713         return queue_index;
3714 }
3715
3716 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3717                                     struct sk_buff *skb,
3718                                     struct net_device *sb_dev)
3719 {
3720         int queue_index = 0;
3721
3722 #ifdef CONFIG_XPS
3723         u32 sender_cpu = skb->sender_cpu - 1;
3724
3725         if (sender_cpu >= (u32)NR_CPUS)
3726                 skb->sender_cpu = raw_smp_processor_id() + 1;
3727 #endif
3728
3729         if (dev->real_num_tx_queues != 1) {
3730                 const struct net_device_ops *ops = dev->netdev_ops;
3731
3732                 if (ops->ndo_select_queue)
3733                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3734                                                             __netdev_pick_tx);
3735                 else
3736                         queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3737
3738                 queue_index = netdev_cap_txqueue(dev, queue_index);
3739         }
3740
3741         skb_set_queue_mapping(skb, queue_index);
3742         return netdev_get_tx_queue(dev, queue_index);
3743 }
3744
3745 /**
3746  *      __dev_queue_xmit - transmit a buffer
3747  *      @skb: buffer to transmit
3748  *      @sb_dev: suboordinate device used for L2 forwarding offload
3749  *
3750  *      Queue a buffer for transmission to a network device. The caller must
3751  *      have set the device and priority and built the buffer before calling
3752  *      this function. The function can be called from an interrupt.
3753  *
3754  *      A negative errno code is returned on a failure. A success does not
3755  *      guarantee the frame will be transmitted as it may be dropped due
3756  *      to congestion or traffic shaping.
3757  *
3758  * -----------------------------------------------------------------------------------
3759  *      I notice this method can also return errors from the queue disciplines,
3760  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3761  *      be positive.
3762  *
3763  *      Regardless of the return value, the skb is consumed, so it is currently
3764  *      difficult to retry a send to this method.  (You can bump the ref count
3765  *      before sending to hold a reference for retry if you are careful.)
3766  *
3767  *      When calling this method, interrupts MUST be enabled.  This is because
3768  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3769  *          --BLG
3770  */
3771 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3772 {
3773         struct net_device *dev = skb->dev;
3774         struct netdev_queue *txq;
3775         struct Qdisc *q;
3776         int rc = -ENOMEM;
3777         bool again = false;
3778
3779         skb_reset_mac_header(skb);
3780
3781         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3782                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3783
3784         /* Disable soft irqs for various locks below. Also
3785          * stops preemption for RCU.
3786          */
3787         rcu_read_lock_bh();
3788
3789         skb_update_prio(skb);
3790
3791         qdisc_pkt_len_init(skb);
3792 #ifdef CONFIG_NET_CLS_ACT
3793         skb->tc_at_ingress = 0;
3794 # ifdef CONFIG_NET_EGRESS
3795         if (static_branch_unlikely(&egress_needed_key)) {
3796                 skb = sch_handle_egress(skb, &rc, dev);
3797                 if (!skb)
3798                         goto out;
3799         }
3800 # endif
3801 #endif
3802         /* If device/qdisc don't need skb->dst, release it right now while
3803          * its hot in this cpu cache.
3804          */
3805         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3806                 skb_dst_drop(skb);
3807         else
3808                 skb_dst_force(skb);
3809
3810         txq = netdev_pick_tx(dev, skb, sb_dev);
3811         q = rcu_dereference_bh(txq->qdisc);
3812
3813         trace_net_dev_queue(skb);
3814         if (q->enqueue) {
3815                 rc = __dev_xmit_skb(skb, q, dev, txq);
3816                 goto out;
3817         }
3818
3819         /* The device has no queue. Common case for software devices:
3820          * loopback, all the sorts of tunnels...
3821
3822          * Really, it is unlikely that netif_tx_lock protection is necessary
3823          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3824          * counters.)
3825          * However, it is possible, that they rely on protection
3826          * made by us here.
3827
3828          * Check this and shot the lock. It is not prone from deadlocks.
3829          *Either shot noqueue qdisc, it is even simpler 8)
3830          */
3831         if (dev->flags & IFF_UP) {
3832                 int cpu = smp_processor_id(); /* ok because BHs are off */
3833
3834                 /* Other cpus might concurrently change txq->xmit_lock_owner
3835                  * to -1 or to their cpu id, but not to our id.
3836                  */
3837                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
3838                         if (dev_xmit_recursion())
3839                                 goto recursion_alert;
3840
3841                         skb = validate_xmit_skb(skb, dev, &again);
3842                         if (!skb)
3843                                 goto out;
3844
3845                         HARD_TX_LOCK(dev, txq, cpu);
3846
3847                         if (!netif_xmit_stopped(txq)) {
3848                                 dev_xmit_recursion_inc();
3849                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3850                                 dev_xmit_recursion_dec();
3851                                 if (dev_xmit_complete(rc)) {
3852                                         HARD_TX_UNLOCK(dev, txq);
3853                                         goto out;
3854                                 }
3855                         }
3856                         HARD_TX_UNLOCK(dev, txq);
3857                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3858                                              dev->name);
3859                 } else {
3860                         /* Recursion is detected! It is possible,
3861                          * unfortunately
3862                          */
3863 recursion_alert:
3864                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3865                                              dev->name);
3866                 }
3867         }
3868
3869         rc = -ENETDOWN;
3870         rcu_read_unlock_bh();
3871
3872         atomic_long_inc(&dev->tx_dropped);
3873         kfree_skb_list(skb);
3874         return rc;
3875 out:
3876         rcu_read_unlock_bh();
3877         return rc;
3878 }
3879
3880 int dev_queue_xmit(struct sk_buff *skb)
3881 {
3882         return __dev_queue_xmit(skb, NULL);
3883 }
3884 EXPORT_SYMBOL(dev_queue_xmit);
3885
3886 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3887 {
3888         return __dev_queue_xmit(skb, sb_dev);
3889 }
3890 EXPORT_SYMBOL(dev_queue_xmit_accel);
3891
3892 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3893 {
3894         struct net_device *dev = skb->dev;
3895         struct sk_buff *orig_skb = skb;
3896         struct netdev_queue *txq;
3897         int ret = NETDEV_TX_BUSY;
3898         bool again = false;
3899
3900         if (unlikely(!netif_running(dev) ||
3901                      !netif_carrier_ok(dev)))
3902                 goto drop;
3903
3904         skb = validate_xmit_skb_list(skb, dev, &again);
3905         if (skb != orig_skb)
3906                 goto drop;
3907
3908         skb_set_queue_mapping(skb, queue_id);
3909         txq = skb_get_tx_queue(dev, skb);
3910
3911         local_bh_disable();
3912
3913         dev_xmit_recursion_inc();
3914         HARD_TX_LOCK(dev, txq, smp_processor_id());
3915         if (!netif_xmit_frozen_or_drv_stopped(txq))
3916                 ret = netdev_start_xmit(skb, dev, txq, false);
3917         HARD_TX_UNLOCK(dev, txq);
3918         dev_xmit_recursion_dec();
3919
3920         local_bh_enable();
3921
3922         if (!dev_xmit_complete(ret))
3923                 kfree_skb(skb);
3924
3925         return ret;
3926 drop:
3927         atomic_long_inc(&dev->tx_dropped);
3928         kfree_skb_list(skb);
3929         return NET_XMIT_DROP;
3930 }
3931 EXPORT_SYMBOL(dev_direct_xmit);
3932
3933 /*************************************************************************
3934  *                      Receiver routines
3935  *************************************************************************/
3936
3937 int netdev_max_backlog __read_mostly = 1000;
3938 EXPORT_SYMBOL(netdev_max_backlog);
3939
3940 int netdev_tstamp_prequeue __read_mostly = 1;
3941 int netdev_budget __read_mostly = 300;
3942 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3943 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3944 int weight_p __read_mostly = 64;           /* old backlog weight */
3945 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3946 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3947 int dev_rx_weight __read_mostly = 64;
3948 int dev_tx_weight __read_mostly = 64;
3949
3950 /* Called with irq disabled */
3951 static inline void ____napi_schedule(struct softnet_data *sd,
3952                                      struct napi_struct *napi)
3953 {
3954         list_add_tail(&napi->poll_list, &sd->poll_list);
3955         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3956 }
3957
3958 #ifdef CONFIG_RPS
3959
3960 /* One global table that all flow-based protocols share. */
3961 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3962 EXPORT_SYMBOL(rps_sock_flow_table);
3963 u32 rps_cpu_mask __read_mostly;
3964 EXPORT_SYMBOL(rps_cpu_mask);
3965
3966 struct static_key rps_needed __read_mostly;
3967 EXPORT_SYMBOL(rps_needed);
3968 struct static_key rfs_needed __read_mostly;
3969 EXPORT_SYMBOL(rfs_needed);
3970
3971 static struct rps_dev_flow *
3972 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3973             struct rps_dev_flow *rflow, u16 next_cpu)
3974 {
3975         if (next_cpu < nr_cpu_ids) {
3976 #ifdef CONFIG_RFS_ACCEL
3977                 struct netdev_rx_queue *rxqueue;
3978                 struct rps_dev_flow_table *flow_table;
3979                 struct rps_dev_flow *old_rflow;
3980                 u32 flow_id;
3981                 u16 rxq_index;
3982                 int rc;
3983
3984                 /* Should we steer this flow to a different hardware queue? */
3985                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3986                     !(dev->features & NETIF_F_NTUPLE))
3987                         goto out;
3988                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3989                 if (rxq_index == skb_get_rx_queue(skb))
3990                         goto out;
3991
3992                 rxqueue = dev->_rx + rxq_index;
3993                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3994                 if (!flow_table)
3995                         goto out;
3996                 flow_id = skb_get_hash(skb) & flow_table->mask;
3997                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3998                                                         rxq_index, flow_id);
3999                 if (rc < 0)
4000                         goto out;
4001                 old_rflow = rflow;
4002                 rflow = &flow_table->flows[flow_id];
4003                 rflow->filter = rc;
4004                 if (old_rflow->filter == rflow->filter)
4005                         old_rflow->filter = RPS_NO_FILTER;
4006         out:
4007 #endif
4008                 rflow->last_qtail =
4009                         per_cpu(softnet_data, next_cpu).input_queue_head;
4010         }
4011
4012         rflow->cpu = next_cpu;
4013         return rflow;
4014 }
4015
4016 /*
4017  * get_rps_cpu is called from netif_receive_skb and returns the target
4018  * CPU from the RPS map of the receiving queue for a given skb.
4019  * rcu_read_lock must be held on entry.
4020  */
4021 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4022                        struct rps_dev_flow **rflowp)
4023 {
4024         const struct rps_sock_flow_table *sock_flow_table;
4025         struct netdev_rx_queue *rxqueue = dev->_rx;
4026         struct rps_dev_flow_table *flow_table;
4027         struct rps_map *map;
4028         int cpu = -1;
4029         u32 tcpu;
4030         u32 hash;
4031
4032         if (skb_rx_queue_recorded(skb)) {
4033                 u16 index = skb_get_rx_queue(skb);
4034
4035                 if (unlikely(index >= dev->real_num_rx_queues)) {
4036                         WARN_ONCE(dev->real_num_rx_queues > 1,
4037                                   "%s received packet on queue %u, but number "
4038                                   "of RX queues is %u\n",
4039                                   dev->name, index, dev->real_num_rx_queues);
4040                         goto done;
4041                 }
4042                 rxqueue += index;
4043         }
4044
4045         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4046
4047         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4048         map = rcu_dereference(rxqueue->rps_map);
4049         if (!flow_table && !map)
4050                 goto done;
4051
4052         skb_reset_network_header(skb);
4053         hash = skb_get_hash(skb);
4054         if (!hash)
4055                 goto done;
4056
4057         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4058         if (flow_table && sock_flow_table) {
4059                 struct rps_dev_flow *rflow;
4060                 u32 next_cpu;
4061                 u32 ident;
4062
4063                 /* First check into global flow table if there is a match */
4064                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4065                 if ((ident ^ hash) & ~rps_cpu_mask)
4066                         goto try_rps;
4067
4068                 next_cpu = ident & rps_cpu_mask;
4069
4070                 /* OK, now we know there is a match,
4071                  * we can look at the local (per receive queue) flow table
4072                  */
4073                 rflow = &flow_table->flows[hash & flow_table->mask];
4074                 tcpu = rflow->cpu;
4075
4076                 /*
4077                  * If the desired CPU (where last recvmsg was done) is
4078                  * different from current CPU (one in the rx-queue flow
4079                  * table entry), switch if one of the following holds:
4080                  *   - Current CPU is unset (>= nr_cpu_ids).
4081                  *   - Current CPU is offline.
4082                  *   - The current CPU's queue tail has advanced beyond the
4083                  *     last packet that was enqueued using this table entry.
4084                  *     This guarantees that all previous packets for the flow
4085                  *     have been dequeued, thus preserving in order delivery.
4086                  */
4087                 if (unlikely(tcpu != next_cpu) &&
4088                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4089                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4090                       rflow->last_qtail)) >= 0)) {
4091                         tcpu = next_cpu;
4092                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4093                 }
4094
4095                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4096                         *rflowp = rflow;
4097                         cpu = tcpu;
4098                         goto done;
4099                 }
4100         }
4101
4102 try_rps:
4103
4104         if (map) {
4105                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4106                 if (cpu_online(tcpu)) {
4107                         cpu = tcpu;
4108                         goto done;
4109                 }
4110         }
4111
4112 done:
4113         return cpu;
4114 }
4115
4116 #ifdef CONFIG_RFS_ACCEL
4117
4118 /**
4119  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4120  * @dev: Device on which the filter was set
4121  * @rxq_index: RX queue index
4122  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4123  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4124  *
4125  * Drivers that implement ndo_rx_flow_steer() should periodically call
4126  * this function for each installed filter and remove the filters for
4127  * which it returns %true.
4128  */
4129 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4130                          u32 flow_id, u16 filter_id)
4131 {
4132         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4133         struct rps_dev_flow_table *flow_table;
4134         struct rps_dev_flow *rflow;
4135         bool expire = true;
4136         unsigned int cpu;
4137
4138         rcu_read_lock();
4139         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4140         if (flow_table && flow_id <= flow_table->mask) {
4141                 rflow = &flow_table->flows[flow_id];
4142                 cpu = READ_ONCE(rflow->cpu);
4143                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4144                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4145                            rflow->last_qtail) <
4146                      (int)(10 * flow_table->mask)))
4147                         expire = false;
4148         }
4149         rcu_read_unlock();
4150         return expire;
4151 }
4152 EXPORT_SYMBOL(rps_may_expire_flow);
4153
4154 #endif /* CONFIG_RFS_ACCEL */
4155
4156 /* Called from hardirq (IPI) context */
4157 static void rps_trigger_softirq(void *data)
4158 {
4159         struct softnet_data *sd = data;
4160
4161         ____napi_schedule(sd, &sd->backlog);
4162         sd->received_rps++;
4163 }
4164
4165 #endif /* CONFIG_RPS */
4166
4167 /*
4168  * Check if this softnet_data structure is another cpu one
4169  * If yes, queue it to our IPI list and return 1
4170  * If no, return 0
4171  */
4172 static int rps_ipi_queued(struct softnet_data *sd)
4173 {
4174 #ifdef CONFIG_RPS
4175         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4176
4177         if (sd != mysd) {
4178                 sd->rps_ipi_next = mysd->rps_ipi_list;
4179                 mysd->rps_ipi_list = sd;
4180
4181                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4182                 return 1;
4183         }
4184 #endif /* CONFIG_RPS */
4185         return 0;
4186 }
4187
4188 #ifdef CONFIG_NET_FLOW_LIMIT
4189 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4190 #endif
4191
4192 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4193 {
4194 #ifdef CONFIG_NET_FLOW_LIMIT
4195         struct sd_flow_limit *fl;
4196         struct softnet_data *sd;
4197         unsigned int old_flow, new_flow;
4198
4199         if (qlen < (netdev_max_backlog >> 1))
4200                 return false;
4201
4202         sd = this_cpu_ptr(&softnet_data);
4203
4204         rcu_read_lock();
4205         fl = rcu_dereference(sd->flow_limit);
4206         if (fl) {
4207                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4208                 old_flow = fl->history[fl->history_head];
4209                 fl->history[fl->history_head] = new_flow;
4210
4211                 fl->history_head++;
4212                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4213
4214                 if (likely(fl->buckets[old_flow]))
4215                         fl->buckets[old_flow]--;
4216
4217                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4218                         fl->count++;
4219                         rcu_read_unlock();
4220                         return true;
4221                 }
4222         }
4223         rcu_read_unlock();
4224 #endif
4225         return false;
4226 }
4227
4228 /*
4229  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4230  * queue (may be a remote CPU queue).
4231  */
4232 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4233                               unsigned int *qtail)
4234 {
4235         struct softnet_data *sd;
4236         unsigned long flags;
4237         unsigned int qlen;
4238
4239         sd = &per_cpu(softnet_data, cpu);
4240
4241         local_irq_save(flags);
4242
4243         rps_lock(sd);
4244         if (!netif_running(skb->dev))
4245                 goto drop;
4246         qlen = skb_queue_len(&sd->input_pkt_queue);
4247         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4248                 if (qlen) {
4249 enqueue:
4250                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4251                         input_queue_tail_incr_save(sd, qtail);
4252                         rps_unlock(sd);
4253                         local_irq_restore(flags);
4254                         return NET_RX_SUCCESS;
4255                 }
4256
4257                 /* Schedule NAPI for backlog device
4258                  * We can use non atomic operation since we own the queue lock
4259                  */
4260                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4261                         if (!rps_ipi_queued(sd))
4262                                 ____napi_schedule(sd, &sd->backlog);
4263                 }
4264                 goto enqueue;
4265         }
4266
4267 drop:
4268         sd->dropped++;
4269         rps_unlock(sd);
4270
4271         local_irq_restore(flags);
4272
4273         atomic_long_inc(&skb->dev->rx_dropped);
4274         kfree_skb(skb);
4275         return NET_RX_DROP;
4276 }
4277
4278 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4279 {
4280         struct net_device *dev = skb->dev;
4281         struct netdev_rx_queue *rxqueue;
4282
4283         rxqueue = dev->_rx;
4284
4285         if (skb_rx_queue_recorded(skb)) {
4286                 u16 index = skb_get_rx_queue(skb);
4287
4288                 if (unlikely(index >= dev->real_num_rx_queues)) {
4289                         WARN_ONCE(dev->real_num_rx_queues > 1,
4290                                   "%s received packet on queue %u, but number "
4291                                   "of RX queues is %u\n",
4292                                   dev->name, index, dev->real_num_rx_queues);
4293
4294                         return rxqueue; /* Return first rxqueue */
4295                 }
4296                 rxqueue += index;
4297         }
4298         return rxqueue;
4299 }
4300
4301 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4302                                      struct xdp_buff *xdp,
4303                                      struct bpf_prog *xdp_prog)
4304 {
4305         struct netdev_rx_queue *rxqueue;
4306         void *orig_data, *orig_data_end;
4307         u32 metalen, act = XDP_DROP;
4308         __be16 orig_eth_type;
4309         struct ethhdr *eth;
4310         bool orig_bcast;
4311         int hlen, off;
4312         u32 mac_len;
4313
4314         /* Reinjected packets coming from act_mirred or similar should
4315          * not get XDP generic processing.
4316          */
4317         if (skb_is_tc_redirected(skb))
4318                 return XDP_PASS;
4319
4320         /* XDP packets must be linear and must have sufficient headroom
4321          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4322          * native XDP provides, thus we need to do it here as well.
4323          */
4324         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4325             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4326                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4327                 int troom = skb->tail + skb->data_len - skb->end;
4328
4329                 /* In case we have to go down the path and also linearize,
4330                  * then lets do the pskb_expand_head() work just once here.
4331                  */
4332                 if (pskb_expand_head(skb,
4333                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4334                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4335                         goto do_drop;
4336                 if (skb_linearize(skb))
4337                         goto do_drop;
4338         }
4339
4340         /* The XDP program wants to see the packet starting at the MAC
4341          * header.
4342          */
4343         mac_len = skb->data - skb_mac_header(skb);
4344         hlen = skb_headlen(skb) + mac_len;
4345         xdp->data = skb->data - mac_len;
4346         xdp->data_meta = xdp->data;
4347         xdp->data_end = xdp->data + hlen;
4348         xdp->data_hard_start = skb->data - skb_headroom(skb);
4349         orig_data_end = xdp->data_end;
4350         orig_data = xdp->data;
4351         eth = (struct ethhdr *)xdp->data;
4352         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4353         orig_eth_type = eth->h_proto;
4354
4355         rxqueue = netif_get_rxqueue(skb);
4356         xdp->rxq = &rxqueue->xdp_rxq;
4357
4358         act = bpf_prog_run_xdp(xdp_prog, xdp);
4359
4360         /* check if bpf_xdp_adjust_head was used */
4361         off = xdp->data - orig_data;
4362         if (off) {
4363                 if (off > 0)
4364                         __skb_pull(skb, off);
4365                 else if (off < 0)
4366                         __skb_push(skb, -off);
4367
4368                 skb->mac_header += off;
4369                 skb_reset_network_header(skb);
4370         }
4371
4372         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4373          * pckt.
4374          */
4375         off = orig_data_end - xdp->data_end;
4376         if (off != 0) {
4377                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4378                 skb->len -= off;
4379
4380         }
4381
4382         /* check if XDP changed eth hdr such SKB needs update */
4383         eth = (struct ethhdr *)xdp->data;
4384         if ((orig_eth_type != eth->h_proto) ||
4385             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4386                 __skb_push(skb, ETH_HLEN);
4387                 skb->protocol = eth_type_trans(skb, skb->dev);
4388         }
4389
4390         switch (act) {
4391         case XDP_REDIRECT:
4392         case XDP_TX:
4393                 __skb_push(skb, mac_len);
4394                 break;
4395         case XDP_PASS:
4396                 metalen = xdp->data - xdp->data_meta;
4397                 if (metalen)
4398                         skb_metadata_set(skb, metalen);
4399                 break;
4400         default:
4401                 bpf_warn_invalid_xdp_action(act);
4402                 /* fall through */
4403         case XDP_ABORTED:
4404                 trace_xdp_exception(skb->dev, xdp_prog, act);
4405                 /* fall through */
4406         case XDP_DROP:
4407         do_drop:
4408                 kfree_skb(skb);
4409                 break;
4410         }
4411
4412         return act;
4413 }
4414
4415 /* When doing generic XDP we have to bypass the qdisc layer and the
4416  * network taps in order to match in-driver-XDP behavior.
4417  */
4418 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4419 {
4420         struct net_device *dev = skb->dev;
4421         struct netdev_queue *txq;
4422         bool free_skb = true;
4423         int cpu, rc;
4424
4425         txq = netdev_pick_tx(dev, skb, NULL);
4426         cpu = smp_processor_id();
4427         HARD_TX_LOCK(dev, txq, cpu);
4428         if (!netif_xmit_stopped(txq)) {
4429                 rc = netdev_start_xmit(skb, dev, txq, 0);
4430                 if (dev_xmit_complete(rc))
4431                         free_skb = false;
4432         }
4433         HARD_TX_UNLOCK(dev, txq);
4434         if (free_skb) {
4435                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4436                 kfree_skb(skb);
4437         }
4438 }
4439 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4440
4441 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4442
4443 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4444 {
4445         if (xdp_prog) {
4446                 struct xdp_buff xdp;
4447                 u32 act;
4448                 int err;
4449
4450                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4451                 if (act != XDP_PASS) {
4452                         switch (act) {
4453                         case XDP_REDIRECT:
4454                                 err = xdp_do_generic_redirect(skb->dev, skb,
4455                                                               &xdp, xdp_prog);
4456                                 if (err)
4457                                         goto out_redir;
4458                                 break;
4459                         case XDP_TX:
4460                                 generic_xdp_tx(skb, xdp_prog);
4461                                 break;
4462                         }
4463                         return XDP_DROP;
4464                 }
4465         }
4466         return XDP_PASS;
4467 out_redir:
4468         kfree_skb(skb);
4469         return XDP_DROP;
4470 }
4471 EXPORT_SYMBOL_GPL(do_xdp_generic);
4472
4473 static int netif_rx_internal(struct sk_buff *skb)
4474 {
4475         int ret;
4476
4477         net_timestamp_check(netdev_tstamp_prequeue, skb);
4478
4479         trace_netif_rx(skb);
4480
4481 #ifdef CONFIG_RPS
4482         if (static_key_false(&rps_needed)) {
4483                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4484                 int cpu;
4485
4486                 preempt_disable();
4487                 rcu_read_lock();
4488
4489                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4490                 if (cpu < 0)
4491                         cpu = smp_processor_id();
4492
4493                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4494
4495                 rcu_read_unlock();
4496                 preempt_enable();
4497         } else
4498 #endif
4499         {
4500                 unsigned int qtail;
4501
4502                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4503                 put_cpu();
4504         }
4505         return ret;
4506 }
4507
4508 /**
4509  *      netif_rx        -       post buffer to the network code
4510  *      @skb: buffer to post
4511  *
4512  *      This function receives a packet from a device driver and queues it for
4513  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4514  *      may be dropped during processing for congestion control or by the
4515  *      protocol layers.
4516  *
4517  *      return values:
4518  *      NET_RX_SUCCESS  (no congestion)
4519  *      NET_RX_DROP     (packet was dropped)
4520  *
4521  */
4522
4523 int netif_rx(struct sk_buff *skb)
4524 {
4525         trace_netif_rx_entry(skb);
4526
4527         return netif_rx_internal(skb);
4528 }
4529 EXPORT_SYMBOL(netif_rx);
4530
4531 int netif_rx_ni(struct sk_buff *skb)
4532 {
4533         int err;
4534
4535         trace_netif_rx_ni_entry(skb);
4536
4537         preempt_disable();
4538         err = netif_rx_internal(skb);
4539         if (local_softirq_pending())
4540                 do_softirq();
4541         preempt_enable();
4542
4543         return err;
4544 }
4545 EXPORT_SYMBOL(netif_rx_ni);
4546
4547 static __latent_entropy void net_tx_action(struct softirq_action *h)
4548 {
4549         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4550
4551         if (sd->completion_queue) {
4552                 struct sk_buff *clist;
4553
4554                 local_irq_disable();
4555                 clist = sd->completion_queue;
4556                 sd->completion_queue = NULL;
4557                 local_irq_enable();
4558
4559                 while (clist) {
4560                         struct sk_buff *skb = clist;
4561
4562                         clist = clist->next;
4563
4564                         WARN_ON(refcount_read(&skb->users));
4565                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4566                                 trace_consume_skb(skb);
4567                         else
4568                                 trace_kfree_skb(skb, net_tx_action);
4569
4570                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4571                                 __kfree_skb(skb);
4572                         else
4573                                 __kfree_skb_defer(skb);
4574                 }
4575
4576                 __kfree_skb_flush();
4577         }
4578
4579         if (sd->output_queue) {
4580                 struct Qdisc *head;
4581
4582                 local_irq_disable();
4583                 head = sd->output_queue;
4584                 sd->output_queue = NULL;
4585                 sd->output_queue_tailp = &sd->output_queue;
4586                 local_irq_enable();
4587
4588                 while (head) {
4589                         struct Qdisc *q = head;
4590                         spinlock_t *root_lock = NULL;
4591
4592                         head = head->next_sched;
4593
4594                         if (!(q->flags & TCQ_F_NOLOCK)) {
4595                                 root_lock = qdisc_lock(q);
4596                                 spin_lock(root_lock);
4597                         }
4598                         /* We need to make sure head->next_sched is read
4599                          * before clearing __QDISC_STATE_SCHED
4600                          */
4601                         smp_mb__before_atomic();
4602                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4603                         qdisc_run(q);
4604                         if (root_lock)
4605                                 spin_unlock(root_lock);
4606                 }
4607         }
4608
4609         xfrm_dev_backlog(sd);
4610 }
4611
4612 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4613 /* This hook is defined here for ATM LANE */
4614 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4615                              unsigned char *addr) __read_mostly;
4616 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4617 #endif
4618
4619 static inline struct sk_buff *
4620 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4621                    struct net_device *orig_dev)
4622 {
4623 #ifdef CONFIG_NET_CLS_ACT
4624         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4625         struct tcf_result cl_res;
4626
4627         /* If there's at least one ingress present somewhere (so
4628          * we get here via enabled static key), remaining devices
4629          * that are not configured with an ingress qdisc will bail
4630          * out here.
4631          */
4632         if (!miniq)
4633                 return skb;
4634
4635         if (*pt_prev) {
4636                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4637                 *pt_prev = NULL;
4638         }
4639
4640         qdisc_skb_cb(skb)->pkt_len = skb->len;
4641         skb->tc_at_ingress = 1;
4642         mini_qdisc_bstats_cpu_update(miniq, skb);
4643
4644         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4645         case TC_ACT_OK:
4646         case TC_ACT_RECLASSIFY:
4647                 skb->tc_index = TC_H_MIN(cl_res.classid);
4648                 break;
4649         case TC_ACT_SHOT:
4650                 mini_qdisc_qstats_cpu_drop(miniq);
4651                 kfree_skb(skb);
4652                 return NULL;
4653         case TC_ACT_STOLEN:
4654         case TC_ACT_QUEUED:
4655         case TC_ACT_TRAP:
4656                 consume_skb(skb);
4657                 return NULL;
4658         case TC_ACT_REDIRECT:
4659                 /* skb_mac_header check was done by cls/act_bpf, so
4660                  * we can safely push the L2 header back before
4661                  * redirecting to another netdev
4662                  */
4663                 __skb_push(skb, skb->mac_len);
4664                 skb_do_redirect(skb);
4665                 return NULL;
4666         case TC_ACT_REINSERT:
4667                 /* this does not scrub the packet, and updates stats on error */
4668                 skb_tc_reinsert(skb, &cl_res);
4669                 return NULL;
4670         default:
4671                 break;
4672         }
4673 #endif /* CONFIG_NET_CLS_ACT */
4674         return skb;
4675 }
4676
4677 /**
4678  *      netdev_is_rx_handler_busy - check if receive handler is registered
4679  *      @dev: device to check
4680  *
4681  *      Check if a receive handler is already registered for a given device.
4682  *      Return true if there one.
4683  *
4684  *      The caller must hold the rtnl_mutex.
4685  */
4686 bool netdev_is_rx_handler_busy(struct net_device *dev)
4687 {
4688         ASSERT_RTNL();
4689         return dev && rtnl_dereference(dev->rx_handler);
4690 }
4691 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4692
4693 /**
4694  *      netdev_rx_handler_register - register receive handler
4695  *      @dev: device to register a handler for
4696  *      @rx_handler: receive handler to register
4697  *      @rx_handler_data: data pointer that is used by rx handler
4698  *
4699  *      Register a receive handler for a device. This handler will then be
4700  *      called from __netif_receive_skb. A negative errno code is returned
4701  *      on a failure.
4702  *
4703  *      The caller must hold the rtnl_mutex.
4704  *
4705  *      For a general description of rx_handler, see enum rx_handler_result.
4706  */
4707 int netdev_rx_handler_register(struct net_device *dev,
4708                                rx_handler_func_t *rx_handler,
4709                                void *rx_handler_data)
4710 {
4711         if (netdev_is_rx_handler_busy(dev))
4712                 return -EBUSY;
4713
4714         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4715                 return -EINVAL;
4716
4717         /* Note: rx_handler_data must be set before rx_handler */
4718         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4719         rcu_assign_pointer(dev->rx_handler, rx_handler);
4720
4721         return 0;
4722 }
4723 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4724
4725 /**
4726  *      netdev_rx_handler_unregister - unregister receive handler
4727  *      @dev: device to unregister a handler from
4728  *
4729  *      Unregister a receive handler from a device.
4730  *
4731  *      The caller must hold the rtnl_mutex.
4732  */
4733 void netdev_rx_handler_unregister(struct net_device *dev)
4734 {
4735
4736         ASSERT_RTNL();
4737         RCU_INIT_POINTER(dev->rx_handler, NULL);
4738         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4739          * section has a guarantee to see a non NULL rx_handler_data
4740          * as well.
4741          */
4742         synchronize_net();
4743         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4744 }
4745 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4746
4747 /*
4748  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4749  * the special handling of PFMEMALLOC skbs.
4750  */
4751 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4752 {
4753         switch (skb->protocol) {
4754         case htons(ETH_P_ARP):
4755         case htons(ETH_P_IP):
4756         case htons(ETH_P_IPV6):
4757         case htons(ETH_P_8021Q):
4758         case htons(ETH_P_8021AD):
4759                 return true;
4760         default:
4761                 return false;
4762         }
4763 }
4764
4765 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4766                              int *ret, struct net_device *orig_dev)
4767 {
4768 #ifdef CONFIG_NETFILTER_INGRESS
4769         if (nf_hook_ingress_active(skb)) {
4770                 int ingress_retval;
4771
4772                 if (*pt_prev) {
4773                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4774                         *pt_prev = NULL;
4775                 }
4776
4777                 rcu_read_lock();
4778                 ingress_retval = nf_hook_ingress(skb);
4779                 rcu_read_unlock();
4780                 return ingress_retval;
4781         }
4782 #endif /* CONFIG_NETFILTER_INGRESS */
4783         return 0;
4784 }
4785
4786 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4787                                     struct packet_type **ppt_prev)
4788 {
4789         struct packet_type *ptype, *pt_prev;
4790         rx_handler_func_t *rx_handler;
4791         struct sk_buff *skb = *pskb;
4792         struct net_device *orig_dev;
4793         bool deliver_exact = false;
4794         int ret = NET_RX_DROP;
4795         __be16 type;
4796
4797         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4798
4799         trace_netif_receive_skb(skb);
4800
4801         orig_dev = skb->dev;
4802
4803         skb_reset_network_header(skb);
4804         if (!skb_transport_header_was_set(skb))
4805                 skb_reset_transport_header(skb);
4806         skb_reset_mac_len(skb);
4807
4808         pt_prev = NULL;
4809
4810 another_round:
4811         skb->skb_iif = skb->dev->ifindex;
4812
4813         __this_cpu_inc(softnet_data.processed);
4814
4815         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4816                 int ret2;
4817
4818                 preempt_disable();
4819                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4820                 preempt_enable();
4821
4822                 if (ret2 != XDP_PASS) {
4823                         ret = NET_RX_DROP;
4824                         goto out;
4825                 }
4826                 skb_reset_mac_len(skb);
4827         }
4828
4829         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4830             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4831                 skb = skb_vlan_untag(skb);
4832                 if (unlikely(!skb))
4833                         goto out;
4834         }
4835
4836         if (skb_skip_tc_classify(skb))
4837                 goto skip_classify;
4838
4839         if (pfmemalloc)
4840                 goto skip_taps;
4841
4842         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4843                 if (pt_prev)
4844                         ret = deliver_skb(skb, pt_prev, orig_dev);
4845                 pt_prev = ptype;
4846         }
4847
4848         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4849                 if (pt_prev)
4850                         ret = deliver_skb(skb, pt_prev, orig_dev);
4851                 pt_prev = ptype;
4852         }
4853
4854 skip_taps:
4855 #ifdef CONFIG_NET_INGRESS
4856         if (static_branch_unlikely(&ingress_needed_key)) {
4857                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4858                 if (!skb)
4859                         goto out;
4860
4861                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4862                         goto out;
4863         }
4864 #endif
4865         skb_reset_tc(skb);
4866 skip_classify:
4867         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4868                 goto drop;
4869
4870         if (skb_vlan_tag_present(skb)) {
4871                 if (pt_prev) {
4872                         ret = deliver_skb(skb, pt_prev, orig_dev);
4873                         pt_prev = NULL;
4874                 }
4875                 if (vlan_do_receive(&skb))
4876                         goto another_round;
4877                 else if (unlikely(!skb))
4878                         goto out;
4879         }
4880
4881         rx_handler = rcu_dereference(skb->dev->rx_handler);
4882         if (rx_handler) {
4883                 if (pt_prev) {
4884                         ret = deliver_skb(skb, pt_prev, orig_dev);
4885                         pt_prev = NULL;
4886                 }
4887                 switch (rx_handler(&skb)) {
4888                 case RX_HANDLER_CONSUMED:
4889                         ret = NET_RX_SUCCESS;
4890                         goto out;
4891                 case RX_HANDLER_ANOTHER:
4892                         goto another_round;
4893                 case RX_HANDLER_EXACT:
4894                         deliver_exact = true;
4895                 case RX_HANDLER_PASS:
4896                         break;
4897                 default:
4898                         BUG();
4899                 }
4900         }
4901
4902         if (unlikely(skb_vlan_tag_present(skb))) {
4903                 if (skb_vlan_tag_get_id(skb))
4904                         skb->pkt_type = PACKET_OTHERHOST;
4905                 /* Note: we might in the future use prio bits
4906                  * and set skb->priority like in vlan_do_receive()
4907                  * For the time being, just ignore Priority Code Point
4908                  */
4909                 skb->vlan_tci = 0;
4910         }
4911
4912         type = skb->protocol;
4913
4914         /* deliver only exact match when indicated */
4915         if (likely(!deliver_exact)) {
4916                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4917                                        &ptype_base[ntohs(type) &
4918                                                    PTYPE_HASH_MASK]);
4919         }
4920
4921         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4922                                &orig_dev->ptype_specific);
4923
4924         if (unlikely(skb->dev != orig_dev)) {
4925                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4926                                        &skb->dev->ptype_specific);
4927         }
4928
4929         if (pt_prev) {
4930                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4931                         goto drop;
4932                 *ppt_prev = pt_prev;
4933         } else {
4934 drop:
4935                 if (!deliver_exact)
4936                         atomic_long_inc(&skb->dev->rx_dropped);
4937                 else
4938                         atomic_long_inc(&skb->dev->rx_nohandler);
4939                 kfree_skb(skb);
4940                 /* Jamal, now you will not able to escape explaining
4941                  * me how you were going to use this. :-)
4942                  */
4943                 ret = NET_RX_DROP;
4944         }
4945
4946 out:
4947         /* The invariant here is that if *ppt_prev is not NULL
4948          * then skb should also be non-NULL.
4949          *
4950          * Apparently *ppt_prev assignment above holds this invariant due to
4951          * skb dereferencing near it.
4952          */
4953         *pskb = skb;
4954         return ret;
4955 }
4956
4957 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4958 {
4959         struct net_device *orig_dev = skb->dev;
4960         struct packet_type *pt_prev = NULL;
4961         int ret;
4962
4963         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
4964         if (pt_prev)
4965                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4966         return ret;
4967 }
4968
4969 /**
4970  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4971  *      @skb: buffer to process
4972  *
4973  *      More direct receive version of netif_receive_skb().  It should
4974  *      only be used by callers that have a need to skip RPS and Generic XDP.
4975  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4976  *
4977  *      This function may only be called from softirq context and interrupts
4978  *      should be enabled.
4979  *
4980  *      Return values (usually ignored):
4981  *      NET_RX_SUCCESS: no congestion
4982  *      NET_RX_DROP: packet was dropped
4983  */
4984 int netif_receive_skb_core(struct sk_buff *skb)
4985 {
4986         int ret;
4987
4988         rcu_read_lock();
4989         ret = __netif_receive_skb_one_core(skb, false);
4990         rcu_read_unlock();
4991
4992         return ret;
4993 }
4994 EXPORT_SYMBOL(netif_receive_skb_core);
4995
4996 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4997                                                   struct packet_type *pt_prev,
4998                                                   struct net_device *orig_dev)
4999 {
5000         struct sk_buff *skb, *next;
5001
5002         if (!pt_prev)
5003                 return;
5004         if (list_empty(head))
5005                 return;
5006         if (pt_prev->list_func != NULL)
5007                 pt_prev->list_func(head, pt_prev, orig_dev);
5008         else
5009                 list_for_each_entry_safe(skb, next, head, list) {
5010                         skb_list_del_init(skb);
5011                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5012                 }
5013 }
5014
5015 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5016 {
5017         /* Fast-path assumptions:
5018          * - There is no RX handler.
5019          * - Only one packet_type matches.
5020          * If either of these fails, we will end up doing some per-packet
5021          * processing in-line, then handling the 'last ptype' for the whole
5022          * sublist.  This can't cause out-of-order delivery to any single ptype,
5023          * because the 'last ptype' must be constant across the sublist, and all
5024          * other ptypes are handled per-packet.
5025          */
5026         /* Current (common) ptype of sublist */
5027         struct packet_type *pt_curr = NULL;
5028         /* Current (common) orig_dev of sublist */
5029         struct net_device *od_curr = NULL;
5030         struct list_head sublist;
5031         struct sk_buff *skb, *next;
5032
5033         INIT_LIST_HEAD(&sublist);
5034         list_for_each_entry_safe(skb, next, head, list) {
5035                 struct net_device *orig_dev = skb->dev;
5036                 struct packet_type *pt_prev = NULL;
5037
5038                 skb_list_del_init(skb);
5039                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5040                 if (!pt_prev)
5041                         continue;
5042                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5043                         /* dispatch old sublist */
5044                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5045                         /* start new sublist */
5046                         INIT_LIST_HEAD(&sublist);
5047                         pt_curr = pt_prev;
5048                         od_curr = orig_dev;
5049                 }
5050                 list_add_tail(&skb->list, &sublist);
5051         }
5052
5053         /* dispatch final sublist */
5054         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5055 }
5056
5057 static int __netif_receive_skb(struct sk_buff *skb)
5058 {
5059         int ret;
5060
5061         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5062                 unsigned int noreclaim_flag;
5063
5064                 /*
5065                  * PFMEMALLOC skbs are special, they should
5066                  * - be delivered to SOCK_MEMALLOC sockets only
5067                  * - stay away from userspace
5068                  * - have bounded memory usage
5069                  *
5070                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5071                  * context down to all allocation sites.
5072                  */
5073                 noreclaim_flag = memalloc_noreclaim_save();
5074                 ret = __netif_receive_skb_one_core(skb, true);
5075                 memalloc_noreclaim_restore(noreclaim_flag);
5076         } else
5077                 ret = __netif_receive_skb_one_core(skb, false);
5078
5079         return ret;
5080 }
5081
5082 static void __netif_receive_skb_list(struct list_head *head)
5083 {
5084         unsigned long noreclaim_flag = 0;
5085         struct sk_buff *skb, *next;
5086         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5087
5088         list_for_each_entry_safe(skb, next, head, list) {
5089                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5090                         struct list_head sublist;
5091
5092                         /* Handle the previous sublist */
5093                         list_cut_before(&sublist, head, &skb->list);
5094                         if (!list_empty(&sublist))
5095                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5096                         pfmemalloc = !pfmemalloc;
5097                         /* See comments in __netif_receive_skb */
5098                         if (pfmemalloc)
5099                                 noreclaim_flag = memalloc_noreclaim_save();
5100                         else
5101                                 memalloc_noreclaim_restore(noreclaim_flag);
5102                 }
5103         }
5104         /* Handle the remaining sublist */
5105         if (!list_empty(head))
5106                 __netif_receive_skb_list_core(head, pfmemalloc);
5107         /* Restore pflags */
5108         if (pfmemalloc)
5109                 memalloc_noreclaim_restore(noreclaim_flag);
5110 }
5111
5112 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5113 {
5114         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5115         struct bpf_prog *new = xdp->prog;
5116         int ret = 0;
5117
5118         switch (xdp->command) {
5119         case XDP_SETUP_PROG:
5120                 rcu_assign_pointer(dev->xdp_prog, new);
5121                 if (old)
5122                         bpf_prog_put(old);
5123
5124                 if (old && !new) {
5125                         static_branch_dec(&generic_xdp_needed_key);
5126                 } else if (new && !old) {
5127                         static_branch_inc(&generic_xdp_needed_key);
5128                         dev_disable_lro(dev);
5129                         dev_disable_gro_hw(dev);
5130                 }
5131                 break;
5132
5133         case XDP_QUERY_PROG:
5134                 xdp->prog_id = old ? old->aux->id : 0;
5135                 break;
5136
5137         default:
5138                 ret = -EINVAL;
5139                 break;
5140         }
5141
5142         return ret;
5143 }
5144
5145 static int netif_receive_skb_internal(struct sk_buff *skb)
5146 {
5147         int ret;
5148
5149         net_timestamp_check(netdev_tstamp_prequeue, skb);
5150
5151         if (skb_defer_rx_timestamp(skb))
5152                 return NET_RX_SUCCESS;
5153
5154         rcu_read_lock();
5155 #ifdef CONFIG_RPS
5156         if (static_key_false(&rps_needed)) {
5157                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5158                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5159
5160                 if (cpu >= 0) {
5161                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5162                         rcu_read_unlock();
5163                         return ret;
5164                 }
5165         }
5166 #endif
5167         ret = __netif_receive_skb(skb);
5168         rcu_read_unlock();
5169         return ret;
5170 }
5171
5172 static void netif_receive_skb_list_internal(struct list_head *head)
5173 {
5174         struct sk_buff *skb, *next;
5175         struct list_head sublist;
5176
5177         INIT_LIST_HEAD(&sublist);
5178         list_for_each_entry_safe(skb, next, head, list) {
5179                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5180                 skb_list_del_init(skb);
5181                 if (!skb_defer_rx_timestamp(skb))
5182                         list_add_tail(&skb->list, &sublist);
5183         }
5184         list_splice_init(&sublist, head);
5185
5186         rcu_read_lock();
5187 #ifdef CONFIG_RPS
5188         if (static_key_false(&rps_needed)) {
5189                 list_for_each_entry_safe(skb, next, head, list) {
5190                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5191                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5192
5193                         if (cpu >= 0) {
5194                                 /* Will be handled, remove from list */
5195                                 skb_list_del_init(skb);
5196                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5197                         }
5198                 }
5199         }
5200 #endif
5201         __netif_receive_skb_list(head);
5202         rcu_read_unlock();
5203 }
5204
5205 /**
5206  *      netif_receive_skb - process receive buffer from network
5207  *      @skb: buffer to process
5208  *
5209  *      netif_receive_skb() is the main receive data processing function.
5210  *      It always succeeds. The buffer may be dropped during processing
5211  *      for congestion control or by the protocol layers.
5212  *
5213  *      This function may only be called from softirq context and interrupts
5214  *      should be enabled.
5215  *
5216  *      Return values (usually ignored):
5217  *      NET_RX_SUCCESS: no congestion
5218  *      NET_RX_DROP: packet was dropped
5219  */
5220 int netif_receive_skb(struct sk_buff *skb)
5221 {
5222         trace_netif_receive_skb_entry(skb);
5223
5224         return netif_receive_skb_internal(skb);
5225 }
5226 EXPORT_SYMBOL(netif_receive_skb);
5227
5228 /**
5229  *      netif_receive_skb_list - process many receive buffers from network
5230  *      @head: list of skbs to process.
5231  *
5232  *      Since return value of netif_receive_skb() is normally ignored, and
5233  *      wouldn't be meaningful for a list, this function returns void.
5234  *
5235  *      This function may only be called from softirq context and interrupts
5236  *      should be enabled.
5237  */
5238 void netif_receive_skb_list(struct list_head *head)
5239 {
5240         struct sk_buff *skb;
5241
5242         if (list_empty(head))
5243                 return;
5244         list_for_each_entry(skb, head, list)
5245                 trace_netif_receive_skb_list_entry(skb);
5246         netif_receive_skb_list_internal(head);
5247 }
5248 EXPORT_SYMBOL(netif_receive_skb_list);
5249
5250 DEFINE_PER_CPU(struct work_struct, flush_works);
5251
5252 /* Network device is going away, flush any packets still pending */
5253 static void flush_backlog(struct work_struct *work)
5254 {
5255         struct sk_buff *skb, *tmp;
5256         struct softnet_data *sd;
5257
5258         local_bh_disable();
5259         sd = this_cpu_ptr(&softnet_data);
5260
5261         local_irq_disable();
5262         rps_lock(sd);
5263         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5264                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5265                         __skb_unlink(skb, &sd->input_pkt_queue);
5266                         dev_kfree_skb_irq(skb);
5267                         input_queue_head_incr(sd);
5268                 }
5269         }
5270         rps_unlock(sd);
5271         local_irq_enable();
5272
5273         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5274                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5275                         __skb_unlink(skb, &sd->process_queue);
5276                         kfree_skb(skb);
5277                         input_queue_head_incr(sd);
5278                 }
5279         }
5280         local_bh_enable();
5281 }
5282
5283 static void flush_all_backlogs(void)
5284 {
5285         unsigned int cpu;
5286
5287         get_online_cpus();
5288
5289         for_each_online_cpu(cpu)
5290                 queue_work_on(cpu, system_highpri_wq,
5291                               per_cpu_ptr(&flush_works, cpu));
5292
5293         for_each_online_cpu(cpu)
5294                 flush_work(per_cpu_ptr(&flush_works, cpu));
5295
5296         put_online_cpus();
5297 }
5298
5299 static int napi_gro_complete(struct sk_buff *skb)
5300 {
5301         struct packet_offload *ptype;
5302         __be16 type = skb->protocol;
5303         struct list_head *head = &offload_base;
5304         int err = -ENOENT;
5305
5306         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5307
5308         if (NAPI_GRO_CB(skb)->count == 1) {
5309                 skb_shinfo(skb)->gso_size = 0;
5310                 goto out;
5311         }
5312
5313         rcu_read_lock();
5314         list_for_each_entry_rcu(ptype, head, list) {
5315                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5316                         continue;
5317
5318                 err = ptype->callbacks.gro_complete(skb, 0);
5319                 break;
5320         }
5321         rcu_read_unlock();
5322
5323         if (err) {
5324                 WARN_ON(&ptype->list == head);
5325                 kfree_skb(skb);
5326                 return NET_RX_SUCCESS;
5327         }
5328
5329 out:
5330         return netif_receive_skb_internal(skb);
5331 }
5332
5333 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5334                                    bool flush_old)
5335 {
5336         struct list_head *head = &napi->gro_hash[index].list;
5337         struct sk_buff *skb, *p;
5338
5339         list_for_each_entry_safe_reverse(skb, p, head, list) {
5340                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5341                         return;
5342                 list_del(&skb->list);
5343                 skb->next = NULL;
5344                 napi_gro_complete(skb);
5345                 napi->gro_hash[index].count--;
5346         }
5347
5348         if (!napi->gro_hash[index].count)
5349                 __clear_bit(index, &napi->gro_bitmask);
5350 }
5351
5352 /* napi->gro_hash[].list contains packets ordered by age.
5353  * youngest packets at the head of it.
5354  * Complete skbs in reverse order to reduce latencies.
5355  */
5356 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5357 {
5358         u32 i;
5359
5360         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5361                 if (test_bit(i, &napi->gro_bitmask))
5362                         __napi_gro_flush_chain(napi, i, flush_old);
5363         }
5364 }
5365 EXPORT_SYMBOL(napi_gro_flush);
5366
5367 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5368                                           struct sk_buff *skb)
5369 {
5370         unsigned int maclen = skb->dev->hard_header_len;
5371         u32 hash = skb_get_hash_raw(skb);
5372         struct list_head *head;
5373         struct sk_buff *p;
5374
5375         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5376         list_for_each_entry(p, head, list) {
5377                 unsigned long diffs;
5378
5379                 NAPI_GRO_CB(p)->flush = 0;
5380
5381                 if (hash != skb_get_hash_raw(p)) {
5382                         NAPI_GRO_CB(p)->same_flow = 0;
5383                         continue;
5384                 }
5385
5386                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5387                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5388                 diffs |= skb_metadata_dst_cmp(p, skb);
5389                 diffs |= skb_metadata_differs(p, skb);
5390                 if (maclen == ETH_HLEN)
5391                         diffs |= compare_ether_header(skb_mac_header(p),
5392                                                       skb_mac_header(skb));
5393                 else if (!diffs)
5394                         diffs = memcmp(skb_mac_header(p),
5395                                        skb_mac_header(skb),
5396                                        maclen);
5397                 NAPI_GRO_CB(p)->same_flow = !diffs;
5398         }
5399
5400         return head;
5401 }
5402
5403 static void skb_gro_reset_offset(struct sk_buff *skb)
5404 {
5405         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5406         const skb_frag_t *frag0 = &pinfo->frags[0];
5407
5408         NAPI_GRO_CB(skb)->data_offset = 0;
5409         NAPI_GRO_CB(skb)->frag0 = NULL;
5410         NAPI_GRO_CB(skb)->frag0_len = 0;
5411
5412         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5413             pinfo->nr_frags &&
5414             !PageHighMem(skb_frag_page(frag0)) &&
5415             (!NET_IP_ALIGN || !(skb_frag_off(frag0) & 3))) {
5416                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5417                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5418                                                     skb_frag_size(frag0),
5419                                                     skb->end - skb->tail);
5420         }
5421 }
5422
5423 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5424 {
5425         struct skb_shared_info *pinfo = skb_shinfo(skb);
5426
5427         BUG_ON(skb->end - skb->tail < grow);
5428
5429         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5430
5431         skb->data_len -= grow;
5432         skb->tail += grow;
5433
5434         pinfo->frags[0].page_offset += grow;
5435         skb_frag_size_sub(&pinfo->frags[0], grow);
5436
5437         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5438                 skb_frag_unref(skb, 0);
5439                 memmove(pinfo->frags, pinfo->frags + 1,
5440                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5441         }
5442 }
5443
5444 static void gro_flush_oldest(struct list_head *head)
5445 {
5446         struct sk_buff *oldest;
5447
5448         oldest = list_last_entry(head, struct sk_buff, list);
5449
5450         /* We are called with head length >= MAX_GRO_SKBS, so this is
5451          * impossible.
5452          */
5453         if (WARN_ON_ONCE(!oldest))
5454                 return;
5455
5456         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5457          * SKB to the chain.
5458          */
5459         list_del(&oldest->list);
5460         oldest->next = NULL;
5461         napi_gro_complete(oldest);
5462 }
5463
5464 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5465 {
5466         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5467         struct list_head *head = &offload_base;
5468         struct packet_offload *ptype;
5469         __be16 type = skb->protocol;
5470         struct list_head *gro_head;
5471         struct sk_buff *pp = NULL;
5472         enum gro_result ret;
5473         int same_flow;
5474         int grow;
5475
5476         if (netif_elide_gro(skb->dev))
5477                 goto normal;
5478
5479         gro_head = gro_list_prepare(napi, skb);
5480
5481         rcu_read_lock();
5482         list_for_each_entry_rcu(ptype, head, list) {
5483                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5484                         continue;
5485
5486                 skb_set_network_header(skb, skb_gro_offset(skb));
5487                 skb_reset_mac_len(skb);
5488                 NAPI_GRO_CB(skb)->same_flow = 0;
5489                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5490                 NAPI_GRO_CB(skb)->free = 0;
5491                 NAPI_GRO_CB(skb)->encap_mark = 0;
5492                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5493                 NAPI_GRO_CB(skb)->is_fou = 0;
5494                 NAPI_GRO_CB(skb)->is_atomic = 1;
5495                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5496
5497                 /* Setup for GRO checksum validation */
5498                 switch (skb->ip_summed) {
5499                 case CHECKSUM_COMPLETE:
5500                         NAPI_GRO_CB(skb)->csum = skb->csum;
5501                         NAPI_GRO_CB(skb)->csum_valid = 1;
5502                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5503                         break;
5504                 case CHECKSUM_UNNECESSARY:
5505                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5506                         NAPI_GRO_CB(skb)->csum_valid = 0;
5507                         break;
5508                 default:
5509                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5510                         NAPI_GRO_CB(skb)->csum_valid = 0;
5511                 }
5512
5513                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5514                 break;
5515         }
5516         rcu_read_unlock();
5517
5518         if (&ptype->list == head)
5519                 goto normal;
5520
5521         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5522                 ret = GRO_CONSUMED;
5523                 goto ok;
5524         }
5525
5526         same_flow = NAPI_GRO_CB(skb)->same_flow;
5527         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5528
5529         if (pp) {
5530                 list_del(&pp->list);
5531                 pp->next = NULL;
5532                 napi_gro_complete(pp);
5533                 napi->gro_hash[hash].count--;
5534         }
5535
5536         if (same_flow)
5537                 goto ok;
5538
5539         if (NAPI_GRO_CB(skb)->flush)
5540                 goto normal;
5541
5542         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5543                 gro_flush_oldest(gro_head);
5544         } else {
5545                 napi->gro_hash[hash].count++;
5546         }
5547         NAPI_GRO_CB(skb)->count = 1;
5548         NAPI_GRO_CB(skb)->age = jiffies;
5549         NAPI_GRO_CB(skb)->last = skb;
5550         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5551         list_add(&skb->list, gro_head);
5552         ret = GRO_HELD;
5553
5554 pull:
5555         grow = skb_gro_offset(skb) - skb_headlen(skb);
5556         if (grow > 0)
5557                 gro_pull_from_frag0(skb, grow);
5558 ok:
5559         if (napi->gro_hash[hash].count) {
5560                 if (!test_bit(hash, &napi->gro_bitmask))
5561                         __set_bit(hash, &napi->gro_bitmask);
5562         } else if (test_bit(hash, &napi->gro_bitmask)) {
5563                 __clear_bit(hash, &napi->gro_bitmask);
5564         }
5565
5566         return ret;
5567
5568 normal:
5569         ret = GRO_NORMAL;
5570         goto pull;
5571 }
5572
5573 struct packet_offload *gro_find_receive_by_type(__be16 type)
5574 {
5575         struct list_head *offload_head = &offload_base;
5576         struct packet_offload *ptype;
5577
5578         list_for_each_entry_rcu(ptype, offload_head, list) {
5579                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5580                         continue;
5581                 return ptype;
5582         }
5583         return NULL;
5584 }
5585 EXPORT_SYMBOL(gro_find_receive_by_type);
5586
5587 struct packet_offload *gro_find_complete_by_type(__be16 type)
5588 {
5589         struct list_head *offload_head = &offload_base;
5590         struct packet_offload *ptype;
5591
5592         list_for_each_entry_rcu(ptype, offload_head, list) {
5593                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5594                         continue;
5595                 return ptype;
5596         }
5597         return NULL;
5598 }
5599 EXPORT_SYMBOL(gro_find_complete_by_type);
5600
5601 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5602 {
5603         skb_dst_drop(skb);
5604         secpath_reset(skb);
5605         kmem_cache_free(skbuff_head_cache, skb);
5606 }
5607
5608 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5609 {
5610         switch (ret) {
5611         case GRO_NORMAL:
5612                 if (netif_receive_skb_internal(skb))
5613                         ret = GRO_DROP;
5614                 break;
5615
5616         case GRO_DROP:
5617                 kfree_skb(skb);
5618                 break;
5619
5620         case GRO_MERGED_FREE:
5621                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5622                         napi_skb_free_stolen_head(skb);
5623                 else
5624                         __kfree_skb(skb);
5625                 break;
5626
5627         case GRO_HELD:
5628         case GRO_MERGED:
5629         case GRO_CONSUMED:
5630                 break;
5631         }
5632
5633         return ret;
5634 }
5635
5636 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5637 {
5638         skb_mark_napi_id(skb, napi);
5639         trace_napi_gro_receive_entry(skb);
5640
5641         skb_gro_reset_offset(skb);
5642
5643         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5644 }
5645 EXPORT_SYMBOL(napi_gro_receive);
5646
5647 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5648 {
5649         if (unlikely(skb->pfmemalloc)) {
5650                 consume_skb(skb);
5651                 return;
5652         }
5653         __skb_pull(skb, skb_headlen(skb));
5654         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5655         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5656         skb->vlan_tci = 0;
5657         skb->dev = napi->dev;
5658         skb->skb_iif = 0;
5659
5660         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5661         skb->pkt_type = PACKET_HOST;
5662
5663         skb->encapsulation = 0;
5664         skb_shinfo(skb)->gso_type = 0;
5665         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5666         secpath_reset(skb);
5667
5668         napi->skb = skb;
5669 }
5670
5671 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5672 {
5673         struct sk_buff *skb = napi->skb;
5674
5675         if (!skb) {
5676                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5677                 if (skb) {
5678                         napi->skb = skb;
5679                         skb_mark_napi_id(skb, napi);
5680                 }
5681         }
5682         return skb;
5683 }
5684 EXPORT_SYMBOL(napi_get_frags);
5685
5686 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5687                                       struct sk_buff *skb,
5688                                       gro_result_t ret)
5689 {
5690         switch (ret) {
5691         case GRO_NORMAL:
5692         case GRO_HELD:
5693                 __skb_push(skb, ETH_HLEN);
5694                 skb->protocol = eth_type_trans(skb, skb->dev);
5695                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5696                         ret = GRO_DROP;
5697                 break;
5698
5699         case GRO_DROP:
5700                 napi_reuse_skb(napi, skb);
5701                 break;
5702
5703         case GRO_MERGED_FREE:
5704                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5705                         napi_skb_free_stolen_head(skb);
5706                 else
5707                         napi_reuse_skb(napi, skb);
5708                 break;
5709
5710         case GRO_MERGED:
5711         case GRO_CONSUMED:
5712                 break;
5713         }
5714
5715         return ret;
5716 }
5717
5718 /* Upper GRO stack assumes network header starts at gro_offset=0
5719  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5720  * We copy ethernet header into skb->data to have a common layout.
5721  */
5722 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5723 {
5724         struct sk_buff *skb = napi->skb;
5725         const struct ethhdr *eth;
5726         unsigned int hlen = sizeof(*eth);
5727
5728         napi->skb = NULL;
5729
5730         skb_reset_mac_header(skb);
5731         skb_gro_reset_offset(skb);
5732
5733         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5734                 eth = skb_gro_header_slow(skb, hlen, 0);
5735                 if (unlikely(!eth)) {
5736                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5737                                              __func__, napi->dev->name);
5738                         napi_reuse_skb(napi, skb);
5739                         return NULL;
5740                 }
5741         } else {
5742                 eth = (const struct ethhdr *)skb->data;
5743                 gro_pull_from_frag0(skb, hlen);
5744                 NAPI_GRO_CB(skb)->frag0 += hlen;
5745                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5746         }
5747         __skb_pull(skb, hlen);
5748
5749         /*
5750          * This works because the only protocols we care about don't require
5751          * special handling.
5752          * We'll fix it up properly in napi_frags_finish()
5753          */
5754         skb->protocol = eth->h_proto;
5755
5756         return skb;
5757 }
5758
5759 gro_result_t napi_gro_frags(struct napi_struct *napi)
5760 {
5761         struct sk_buff *skb = napi_frags_skb(napi);
5762
5763         if (!skb)
5764                 return GRO_DROP;
5765
5766         trace_napi_gro_frags_entry(skb);
5767
5768         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5769 }
5770 EXPORT_SYMBOL(napi_gro_frags);
5771
5772 /* Compute the checksum from gro_offset and return the folded value
5773  * after adding in any pseudo checksum.
5774  */
5775 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5776 {
5777         __wsum wsum;
5778         __sum16 sum;
5779
5780         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5781
5782         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5783         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5784         if (likely(!sum)) {
5785                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5786                     !skb->csum_complete_sw)
5787                         netdev_rx_csum_fault(skb->dev);
5788         }
5789
5790         NAPI_GRO_CB(skb)->csum = wsum;
5791         NAPI_GRO_CB(skb)->csum_valid = 1;
5792
5793         return sum;
5794 }
5795 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5796
5797 static void net_rps_send_ipi(struct softnet_data *remsd)
5798 {
5799 #ifdef CONFIG_RPS
5800         while (remsd) {
5801                 struct softnet_data *next = remsd->rps_ipi_next;
5802
5803                 if (cpu_online(remsd->cpu))
5804                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5805                 remsd = next;
5806         }
5807 #endif
5808 }
5809
5810 /*
5811  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5812  * Note: called with local irq disabled, but exits with local irq enabled.
5813  */
5814 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5815 {
5816 #ifdef CONFIG_RPS
5817         struct softnet_data *remsd = sd->rps_ipi_list;
5818
5819         if (remsd) {
5820                 sd->rps_ipi_list = NULL;
5821
5822                 local_irq_enable();
5823
5824                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5825                 net_rps_send_ipi(remsd);
5826         } else
5827 #endif
5828                 local_irq_enable();
5829 }
5830
5831 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5832 {
5833 #ifdef CONFIG_RPS
5834         return sd->rps_ipi_list != NULL;
5835 #else
5836         return false;
5837 #endif
5838 }
5839
5840 static int process_backlog(struct napi_struct *napi, int quota)
5841 {
5842         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5843         bool again = true;
5844         int work = 0;
5845
5846         /* Check if we have pending ipi, its better to send them now,
5847          * not waiting net_rx_action() end.
5848          */
5849         if (sd_has_rps_ipi_waiting(sd)) {
5850                 local_irq_disable();
5851                 net_rps_action_and_irq_enable(sd);
5852         }
5853
5854         napi->weight = dev_rx_weight;
5855         while (again) {
5856                 struct sk_buff *skb;
5857
5858                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5859                         rcu_read_lock();
5860                         __netif_receive_skb(skb);
5861                         rcu_read_unlock();
5862                         input_queue_head_incr(sd);
5863                         if (++work >= quota)
5864                                 return work;
5865
5866                 }
5867
5868                 local_irq_disable();
5869                 rps_lock(sd);
5870                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5871                         /*
5872                          * Inline a custom version of __napi_complete().
5873                          * only current cpu owns and manipulates this napi,
5874                          * and NAPI_STATE_SCHED is the only possible flag set
5875                          * on backlog.
5876                          * We can use a plain write instead of clear_bit(),
5877                          * and we dont need an smp_mb() memory barrier.
5878                          */
5879                         napi->state = 0;
5880                         again = false;
5881                 } else {
5882                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5883                                                    &sd->process_queue);
5884                 }
5885                 rps_unlock(sd);
5886                 local_irq_enable();
5887         }
5888
5889         return work;
5890 }
5891
5892 /**
5893  * __napi_schedule - schedule for receive
5894  * @n: entry to schedule
5895  *
5896  * The entry's receive function will be scheduled to run.
5897  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5898  */
5899 void __napi_schedule(struct napi_struct *n)
5900 {
5901         unsigned long flags;
5902
5903         local_irq_save(flags);
5904         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5905         local_irq_restore(flags);
5906 }
5907 EXPORT_SYMBOL(__napi_schedule);
5908
5909 /**
5910  *      napi_schedule_prep - check if napi can be scheduled
5911  *      @n: napi context
5912  *
5913  * Test if NAPI routine is already running, and if not mark
5914  * it as running.  This is used as a condition variable
5915  * insure only one NAPI poll instance runs.  We also make
5916  * sure there is no pending NAPI disable.
5917  */
5918 bool napi_schedule_prep(struct napi_struct *n)
5919 {
5920         unsigned long val, new;
5921
5922         do {
5923                 val = READ_ONCE(n->state);
5924                 if (unlikely(val & NAPIF_STATE_DISABLE))
5925                         return false;
5926                 new = val | NAPIF_STATE_SCHED;
5927
5928                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5929                  * This was suggested by Alexander Duyck, as compiler
5930                  * emits better code than :
5931                  * if (val & NAPIF_STATE_SCHED)
5932                  *     new |= NAPIF_STATE_MISSED;
5933                  */
5934                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5935                                                    NAPIF_STATE_MISSED;
5936         } while (cmpxchg(&n->state, val, new) != val);
5937
5938         return !(val & NAPIF_STATE_SCHED);
5939 }
5940 EXPORT_SYMBOL(napi_schedule_prep);
5941
5942 /**
5943  * __napi_schedule_irqoff - schedule for receive
5944  * @n: entry to schedule
5945  *
5946  * Variant of __napi_schedule() assuming hard irqs are masked.
5947  *
5948  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5949  * because the interrupt disabled assumption might not be true
5950  * due to force-threaded interrupts and spinlock substitution.
5951  */
5952 void __napi_schedule_irqoff(struct napi_struct *n)
5953 {
5954         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5955                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5956         else
5957                 __napi_schedule(n);
5958 }
5959 EXPORT_SYMBOL(__napi_schedule_irqoff);
5960
5961 bool napi_complete_done(struct napi_struct *n, int work_done)
5962 {
5963         unsigned long flags, val, new;
5964
5965         /*
5966          * 1) Don't let napi dequeue from the cpu poll list
5967          *    just in case its running on a different cpu.
5968          * 2) If we are busy polling, do nothing here, we have
5969          *    the guarantee we will be called later.
5970          */
5971         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5972                                  NAPIF_STATE_IN_BUSY_POLL)))
5973                 return false;
5974
5975         if (n->gro_bitmask) {
5976                 unsigned long timeout = 0;
5977
5978                 if (work_done)
5979                         timeout = n->dev->gro_flush_timeout;
5980
5981                 /* When the NAPI instance uses a timeout and keeps postponing
5982                  * it, we need to bound somehow the time packets are kept in
5983                  * the GRO layer
5984                  */
5985                 napi_gro_flush(n, !!timeout);
5986                 if (timeout)
5987                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5988                                       HRTIMER_MODE_REL_PINNED);
5989         }
5990         if (unlikely(!list_empty(&n->poll_list))) {
5991                 /* If n->poll_list is not empty, we need to mask irqs */
5992                 local_irq_save(flags);
5993                 list_del_init(&n->poll_list);
5994                 local_irq_restore(flags);
5995         }
5996
5997         do {
5998                 val = READ_ONCE(n->state);
5999
6000                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6001
6002                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6003
6004                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6005                  * because we will call napi->poll() one more time.
6006                  * This C code was suggested by Alexander Duyck to help gcc.
6007                  */
6008                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6009                                                     NAPIF_STATE_SCHED;
6010         } while (cmpxchg(&n->state, val, new) != val);
6011
6012         if (unlikely(val & NAPIF_STATE_MISSED)) {
6013                 __napi_schedule(n);
6014                 return false;
6015         }
6016
6017         return true;
6018 }
6019 EXPORT_SYMBOL(napi_complete_done);
6020
6021 /* must be called under rcu_read_lock(), as we dont take a reference */
6022 static struct napi_struct *napi_by_id(unsigned int napi_id)
6023 {
6024         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6025         struct napi_struct *napi;
6026
6027         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6028                 if (napi->napi_id == napi_id)
6029                         return napi;
6030
6031         return NULL;
6032 }
6033
6034 #if defined(CONFIG_NET_RX_BUSY_POLL)
6035
6036 #define BUSY_POLL_BUDGET 8
6037
6038 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6039 {
6040         int rc;
6041
6042         /* Busy polling means there is a high chance device driver hard irq
6043          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6044          * set in napi_schedule_prep().
6045          * Since we are about to call napi->poll() once more, we can safely
6046          * clear NAPI_STATE_MISSED.
6047          *
6048          * Note: x86 could use a single "lock and ..." instruction
6049          * to perform these two clear_bit()
6050          */
6051         clear_bit(NAPI_STATE_MISSED, &napi->state);
6052         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6053
6054         local_bh_disable();
6055
6056         /* All we really want here is to re-enable device interrupts.
6057          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6058          */
6059         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6060         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6061         netpoll_poll_unlock(have_poll_lock);
6062         if (rc == BUSY_POLL_BUDGET)
6063                 __napi_schedule(napi);
6064         local_bh_enable();
6065 }
6066
6067 void napi_busy_loop(unsigned int napi_id,
6068                     bool (*loop_end)(void *, unsigned long),
6069                     void *loop_end_arg)
6070 {
6071         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6072         int (*napi_poll)(struct napi_struct *napi, int budget);
6073         void *have_poll_lock = NULL;
6074         struct napi_struct *napi;
6075
6076 restart:
6077         napi_poll = NULL;
6078
6079         rcu_read_lock();
6080
6081         napi = napi_by_id(napi_id);
6082         if (!napi)
6083                 goto out;
6084
6085         preempt_disable();
6086         for (;;) {
6087                 int work = 0;
6088
6089                 local_bh_disable();
6090                 if (!napi_poll) {
6091                         unsigned long val = READ_ONCE(napi->state);
6092
6093                         /* If multiple threads are competing for this napi,
6094                          * we avoid dirtying napi->state as much as we can.
6095                          */
6096                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6097                                    NAPIF_STATE_IN_BUSY_POLL))
6098                                 goto count;
6099                         if (cmpxchg(&napi->state, val,
6100                                     val | NAPIF_STATE_IN_BUSY_POLL |
6101                                           NAPIF_STATE_SCHED) != val)
6102                                 goto count;
6103                         have_poll_lock = netpoll_poll_lock(napi);
6104                         napi_poll = napi->poll;
6105                 }
6106                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6107                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6108 count:
6109                 if (work > 0)
6110                         __NET_ADD_STATS(dev_net(napi->dev),
6111                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6112                 local_bh_enable();
6113
6114                 if (!loop_end || loop_end(loop_end_arg, start_time))
6115                         break;
6116
6117                 if (unlikely(need_resched())) {
6118                         if (napi_poll)
6119                                 busy_poll_stop(napi, have_poll_lock);
6120                         preempt_enable();
6121                         rcu_read_unlock();
6122                         cond_resched();
6123                         if (loop_end(loop_end_arg, start_time))
6124                                 return;
6125                         goto restart;
6126                 }
6127                 cpu_relax();
6128         }
6129         if (napi_poll)
6130                 busy_poll_stop(napi, have_poll_lock);
6131         preempt_enable();
6132 out:
6133         rcu_read_unlock();
6134 }
6135 EXPORT_SYMBOL(napi_busy_loop);
6136
6137 #endif /* CONFIG_NET_RX_BUSY_POLL */
6138
6139 static void napi_hash_add(struct napi_struct *napi)
6140 {
6141         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6142             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6143                 return;
6144
6145         spin_lock(&napi_hash_lock);
6146
6147         /* 0..NR_CPUS range is reserved for sender_cpu use */
6148         do {
6149                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6150                         napi_gen_id = MIN_NAPI_ID;
6151         } while (napi_by_id(napi_gen_id));
6152         napi->napi_id = napi_gen_id;
6153
6154         hlist_add_head_rcu(&napi->napi_hash_node,
6155                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6156
6157         spin_unlock(&napi_hash_lock);
6158 }
6159
6160 /* Warning : caller is responsible to make sure rcu grace period
6161  * is respected before freeing memory containing @napi
6162  */
6163 bool napi_hash_del(struct napi_struct *napi)
6164 {
6165         bool rcu_sync_needed = false;
6166
6167         spin_lock(&napi_hash_lock);
6168
6169         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6170                 rcu_sync_needed = true;
6171                 hlist_del_rcu(&napi->napi_hash_node);
6172         }
6173         spin_unlock(&napi_hash_lock);
6174         return rcu_sync_needed;
6175 }
6176 EXPORT_SYMBOL_GPL(napi_hash_del);
6177
6178 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6179 {
6180         struct napi_struct *napi;
6181
6182         napi = container_of(timer, struct napi_struct, timer);
6183
6184         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6185          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6186          */
6187         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6188             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6189                 __napi_schedule_irqoff(napi);
6190
6191         return HRTIMER_NORESTART;
6192 }
6193
6194 static void init_gro_hash(struct napi_struct *napi)
6195 {
6196         int i;
6197
6198         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6199                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6200                 napi->gro_hash[i].count = 0;
6201         }
6202         napi->gro_bitmask = 0;
6203 }
6204
6205 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6206                     int (*poll)(struct napi_struct *, int), int weight)
6207 {
6208         INIT_LIST_HEAD(&napi->poll_list);
6209         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6210         napi->timer.function = napi_watchdog;
6211         init_gro_hash(napi);
6212         napi->skb = NULL;
6213         napi->poll = poll;
6214         if (weight > NAPI_POLL_WEIGHT)
6215                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6216                             weight, dev->name);
6217         napi->weight = weight;
6218         napi->dev = dev;
6219 #ifdef CONFIG_NETPOLL
6220         napi->poll_owner = -1;
6221 #endif
6222         set_bit(NAPI_STATE_SCHED, &napi->state);
6223         set_bit(NAPI_STATE_NPSVC, &napi->state);
6224         list_add_rcu(&napi->dev_list, &dev->napi_list);
6225         napi_hash_add(napi);
6226 }
6227 EXPORT_SYMBOL(netif_napi_add);
6228
6229 void napi_disable(struct napi_struct *n)
6230 {
6231         might_sleep();
6232         set_bit(NAPI_STATE_DISABLE, &n->state);
6233
6234         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6235                 msleep(1);
6236         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6237                 msleep(1);
6238
6239         hrtimer_cancel(&n->timer);
6240
6241         clear_bit(NAPI_STATE_DISABLE, &n->state);
6242 }
6243 EXPORT_SYMBOL(napi_disable);
6244
6245 static void flush_gro_hash(struct napi_struct *napi)
6246 {
6247         int i;
6248
6249         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6250                 struct sk_buff *skb, *n;
6251
6252                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6253                         kfree_skb(skb);
6254                 napi->gro_hash[i].count = 0;
6255         }
6256 }
6257
6258 /* Must be called in process context */
6259 void netif_napi_del(struct napi_struct *napi)
6260 {
6261         might_sleep();
6262         if (napi_hash_del(napi))
6263                 synchronize_net();
6264         list_del_init(&napi->dev_list);
6265         napi_free_frags(napi);
6266
6267         flush_gro_hash(napi);
6268         napi->gro_bitmask = 0;
6269 }
6270 EXPORT_SYMBOL(netif_napi_del);
6271
6272 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6273 {
6274         void *have;
6275         int work, weight;
6276
6277         list_del_init(&n->poll_list);
6278
6279         have = netpoll_poll_lock(n);
6280
6281         weight = n->weight;
6282
6283         /* This NAPI_STATE_SCHED test is for avoiding a race
6284          * with netpoll's poll_napi().  Only the entity which
6285          * obtains the lock and sees NAPI_STATE_SCHED set will
6286          * actually make the ->poll() call.  Therefore we avoid
6287          * accidentally calling ->poll() when NAPI is not scheduled.
6288          */
6289         work = 0;
6290         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6291                 work = n->poll(n, weight);
6292                 trace_napi_poll(n, work, weight);
6293         }
6294
6295         WARN_ON_ONCE(work > weight);
6296
6297         if (likely(work < weight))
6298                 goto out_unlock;
6299
6300         /* Drivers must not modify the NAPI state if they
6301          * consume the entire weight.  In such cases this code
6302          * still "owns" the NAPI instance and therefore can
6303          * move the instance around on the list at-will.
6304          */
6305         if (unlikely(napi_disable_pending(n))) {
6306                 napi_complete(n);
6307                 goto out_unlock;
6308         }
6309
6310         if (n->gro_bitmask) {
6311                 /* flush too old packets
6312                  * If HZ < 1000, flush all packets.
6313                  */
6314                 napi_gro_flush(n, HZ >= 1000);
6315         }
6316
6317         /* Some drivers may have called napi_schedule
6318          * prior to exhausting their budget.
6319          */
6320         if (unlikely(!list_empty(&n->poll_list))) {
6321                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6322                              n->dev ? n->dev->name : "backlog");
6323                 goto out_unlock;
6324         }
6325
6326         list_add_tail(&n->poll_list, repoll);
6327
6328 out_unlock:
6329         netpoll_poll_unlock(have);
6330
6331         return work;
6332 }
6333
6334 static __latent_entropy void net_rx_action(struct softirq_action *h)
6335 {
6336         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6337         unsigned long time_limit = jiffies +
6338                 usecs_to_jiffies(netdev_budget_usecs);
6339         int budget = netdev_budget;
6340         LIST_HEAD(list);
6341         LIST_HEAD(repoll);
6342
6343         local_irq_disable();
6344         list_splice_init(&sd->poll_list, &list);
6345         local_irq_enable();
6346
6347         for (;;) {
6348                 struct napi_struct *n;
6349
6350                 if (list_empty(&list)) {
6351                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6352                                 goto out;
6353                         break;
6354                 }
6355
6356                 n = list_first_entry(&list, struct napi_struct, poll_list);
6357                 budget -= napi_poll(n, &repoll);
6358
6359                 /* If softirq window is exhausted then punt.
6360                  * Allow this to run for 2 jiffies since which will allow
6361                  * an average latency of 1.5/HZ.
6362                  */
6363                 if (unlikely(budget <= 0 ||
6364                              time_after_eq(jiffies, time_limit))) {
6365                         sd->time_squeeze++;
6366                         break;
6367                 }
6368         }
6369
6370         local_irq_disable();
6371
6372         list_splice_tail_init(&sd->poll_list, &list);
6373         list_splice_tail(&repoll, &list);
6374         list_splice(&list, &sd->poll_list);
6375         if (!list_empty(&sd->poll_list))
6376                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6377
6378         net_rps_action_and_irq_enable(sd);
6379 out:
6380         __kfree_skb_flush();
6381 }
6382
6383 struct netdev_adjacent {
6384         struct net_device *dev;
6385
6386         /* upper master flag, there can only be one master device per list */
6387         bool master;
6388
6389         /* counter for the number of times this device was added to us */
6390         u16 ref_nr;
6391
6392         /* private field for the users */
6393         void *private;
6394
6395         struct list_head list;
6396         struct rcu_head rcu;
6397 };
6398
6399 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6400                                                  struct list_head *adj_list)
6401 {
6402         struct netdev_adjacent *adj;
6403
6404         list_for_each_entry(adj, adj_list, list) {
6405                 if (adj->dev == adj_dev)
6406                         return adj;
6407         }
6408         return NULL;
6409 }
6410
6411 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6412 {
6413         struct net_device *dev = data;
6414
6415         return upper_dev == dev;
6416 }
6417
6418 /**
6419  * netdev_has_upper_dev - Check if device is linked to an upper device
6420  * @dev: device
6421  * @upper_dev: upper device to check
6422  *
6423  * Find out if a device is linked to specified upper device and return true
6424  * in case it is. Note that this checks only immediate upper device,
6425  * not through a complete stack of devices. The caller must hold the RTNL lock.
6426  */
6427 bool netdev_has_upper_dev(struct net_device *dev,
6428                           struct net_device *upper_dev)
6429 {
6430         ASSERT_RTNL();
6431
6432         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6433                                              upper_dev);
6434 }
6435 EXPORT_SYMBOL(netdev_has_upper_dev);
6436
6437 /**
6438  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6439  * @dev: device
6440  * @upper_dev: upper device to check
6441  *
6442  * Find out if a device is linked to specified upper device and return true
6443  * in case it is. Note that this checks the entire upper device chain.
6444  * The caller must hold rcu lock.
6445  */
6446
6447 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6448                                   struct net_device *upper_dev)
6449 {
6450         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6451                                                upper_dev);
6452 }
6453 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6454
6455 /**
6456  * netdev_has_any_upper_dev - Check if device is linked to some device
6457  * @dev: device
6458  *
6459  * Find out if a device is linked to an upper device and return true in case
6460  * it is. The caller must hold the RTNL lock.
6461  */
6462 bool netdev_has_any_upper_dev(struct net_device *dev)
6463 {
6464         ASSERT_RTNL();
6465
6466         return !list_empty(&dev->adj_list.upper);
6467 }
6468 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6469
6470 /**
6471  * netdev_master_upper_dev_get - Get master upper device
6472  * @dev: device
6473  *
6474  * Find a master upper device and return pointer to it or NULL in case
6475  * it's not there. The caller must hold the RTNL lock.
6476  */
6477 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6478 {
6479         struct netdev_adjacent *upper;
6480
6481         ASSERT_RTNL();
6482
6483         if (list_empty(&dev->adj_list.upper))
6484                 return NULL;
6485
6486         upper = list_first_entry(&dev->adj_list.upper,
6487                                  struct netdev_adjacent, list);
6488         if (likely(upper->master))
6489                 return upper->dev;
6490         return NULL;
6491 }
6492 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6493
6494 /**
6495  * netdev_has_any_lower_dev - Check if device is linked to some device
6496  * @dev: device
6497  *
6498  * Find out if a device is linked to a lower device and return true in case
6499  * it is. The caller must hold the RTNL lock.
6500  */
6501 static bool netdev_has_any_lower_dev(struct net_device *dev)
6502 {
6503         ASSERT_RTNL();
6504
6505         return !list_empty(&dev->adj_list.lower);
6506 }
6507
6508 void *netdev_adjacent_get_private(struct list_head *adj_list)
6509 {
6510         struct netdev_adjacent *adj;
6511
6512         adj = list_entry(adj_list, struct netdev_adjacent, list);
6513
6514         return adj->private;
6515 }
6516 EXPORT_SYMBOL(netdev_adjacent_get_private);
6517
6518 /**
6519  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6520  * @dev: device
6521  * @iter: list_head ** of the current position
6522  *
6523  * Gets the next device from the dev's upper list, starting from iter
6524  * position. The caller must hold RCU read lock.
6525  */
6526 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6527                                                  struct list_head **iter)
6528 {
6529         struct netdev_adjacent *upper;
6530
6531         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6532
6533         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6534
6535         if (&upper->list == &dev->adj_list.upper)
6536                 return NULL;
6537
6538         *iter = &upper->list;
6539
6540         return upper->dev;
6541 }
6542 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6543
6544 static struct net_device *netdev_next_upper_dev(struct net_device *dev,
6545                                                 struct list_head **iter)
6546 {
6547         struct netdev_adjacent *upper;
6548
6549         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6550
6551         if (&upper->list == &dev->adj_list.upper)
6552                 return NULL;
6553
6554         *iter = &upper->list;
6555
6556         return upper->dev;
6557 }
6558
6559 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6560                                                     struct list_head **iter)
6561 {
6562         struct netdev_adjacent *upper;
6563
6564         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6565
6566         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6567
6568         if (&upper->list == &dev->adj_list.upper)
6569                 return NULL;
6570
6571         *iter = &upper->list;
6572
6573         return upper->dev;
6574 }
6575
6576 static int netdev_walk_all_upper_dev(struct net_device *dev,
6577                                      int (*fn)(struct net_device *dev,
6578                                                void *data),
6579                                      void *data)
6580 {
6581         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6582         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6583         int ret, cur = 0;
6584
6585         now = dev;
6586         iter = &dev->adj_list.upper;
6587
6588         while (1) {
6589                 if (now != dev) {
6590                         ret = fn(now, data);
6591                         if (ret)
6592                                 return ret;
6593                 }
6594
6595                 next = NULL;
6596                 while (1) {
6597                         udev = netdev_next_upper_dev(now, &iter);
6598                         if (!udev)
6599                                 break;
6600
6601                         next = udev;
6602                         niter = &udev->adj_list.upper;
6603                         dev_stack[cur] = now;
6604                         iter_stack[cur++] = iter;
6605                         break;
6606                 }
6607
6608                 if (!next) {
6609                         if (!cur)
6610                                 return 0;
6611                         next = dev_stack[--cur];
6612                         niter = iter_stack[cur];
6613                 }
6614
6615                 now = next;
6616                 iter = niter;
6617         }
6618
6619         return 0;
6620 }
6621
6622 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6623                                   int (*fn)(struct net_device *dev,
6624                                             void *data),
6625                                   void *data)
6626 {
6627         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6628         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6629         int ret, cur = 0;
6630
6631         now = dev;
6632         iter = &dev->adj_list.upper;
6633
6634         while (1) {
6635                 if (now != dev) {
6636                         ret = fn(now, data);
6637                         if (ret)
6638                                 return ret;
6639                 }
6640
6641                 next = NULL;
6642                 while (1) {
6643                         udev = netdev_next_upper_dev_rcu(now, &iter);
6644                         if (!udev)
6645                                 break;
6646
6647                         next = udev;
6648                         niter = &udev->adj_list.upper;
6649                         dev_stack[cur] = now;
6650                         iter_stack[cur++] = iter;
6651                         break;
6652                 }
6653
6654                 if (!next) {
6655                         if (!cur)
6656                                 return 0;
6657                         next = dev_stack[--cur];
6658                         niter = iter_stack[cur];
6659                 }
6660
6661                 now = next;
6662                 iter = niter;
6663         }
6664
6665         return 0;
6666 }
6667 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6668
6669 /**
6670  * netdev_lower_get_next_private - Get the next ->private from the
6671  *                                 lower neighbour list
6672  * @dev: device
6673  * @iter: list_head ** of the current position
6674  *
6675  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6676  * list, starting from iter position. The caller must hold either hold the
6677  * RTNL lock or its own locking that guarantees that the neighbour lower
6678  * list will remain unchanged.
6679  */
6680 void *netdev_lower_get_next_private(struct net_device *dev,
6681                                     struct list_head **iter)
6682 {
6683         struct netdev_adjacent *lower;
6684
6685         lower = list_entry(*iter, struct netdev_adjacent, list);
6686
6687         if (&lower->list == &dev->adj_list.lower)
6688                 return NULL;
6689
6690         *iter = lower->list.next;
6691
6692         return lower->private;
6693 }
6694 EXPORT_SYMBOL(netdev_lower_get_next_private);
6695
6696 /**
6697  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6698  *                                     lower neighbour list, RCU
6699  *                                     variant
6700  * @dev: device
6701  * @iter: list_head ** of the current position
6702  *
6703  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6704  * list, starting from iter position. The caller must hold RCU read lock.
6705  */
6706 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6707                                         struct list_head **iter)
6708 {
6709         struct netdev_adjacent *lower;
6710
6711         WARN_ON_ONCE(!rcu_read_lock_held());
6712
6713         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6714
6715         if (&lower->list == &dev->adj_list.lower)
6716                 return NULL;
6717
6718         *iter = &lower->list;
6719
6720         return lower->private;
6721 }
6722 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6723
6724 /**
6725  * netdev_lower_get_next - Get the next device from the lower neighbour
6726  *                         list
6727  * @dev: device
6728  * @iter: list_head ** of the current position
6729  *
6730  * Gets the next netdev_adjacent from the dev's lower neighbour
6731  * list, starting from iter position. The caller must hold RTNL lock or
6732  * its own locking that guarantees that the neighbour lower
6733  * list will remain unchanged.
6734  */
6735 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6736 {
6737         struct netdev_adjacent *lower;
6738
6739         lower = list_entry(*iter, struct netdev_adjacent, list);
6740
6741         if (&lower->list == &dev->adj_list.lower)
6742                 return NULL;
6743
6744         *iter = lower->list.next;
6745
6746         return lower->dev;
6747 }
6748 EXPORT_SYMBOL(netdev_lower_get_next);
6749
6750 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6751                                                 struct list_head **iter)
6752 {
6753         struct netdev_adjacent *lower;
6754
6755         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6756
6757         if (&lower->list == &dev->adj_list.lower)
6758                 return NULL;
6759
6760         *iter = &lower->list;
6761
6762         return lower->dev;
6763 }
6764
6765 int netdev_walk_all_lower_dev(struct net_device *dev,
6766                               int (*fn)(struct net_device *dev,
6767                                         void *data),
6768                               void *data)
6769 {
6770         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6771         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6772         int ret, cur = 0;
6773
6774         now = dev;
6775         iter = &dev->adj_list.lower;
6776
6777         while (1) {
6778                 if (now != dev) {
6779                         ret = fn(now, data);
6780                         if (ret)
6781                                 return ret;
6782                 }
6783
6784                 next = NULL;
6785                 while (1) {
6786                         ldev = netdev_next_lower_dev(now, &iter);
6787                         if (!ldev)
6788                                 break;
6789
6790                         next = ldev;
6791                         niter = &ldev->adj_list.lower;
6792                         dev_stack[cur] = now;
6793                         iter_stack[cur++] = iter;
6794                         break;
6795                 }
6796
6797                 if (!next) {
6798                         if (!cur)
6799                                 return 0;
6800                         next = dev_stack[--cur];
6801                         niter = iter_stack[cur];
6802                 }
6803
6804                 now = next;
6805                 iter = niter;
6806         }
6807
6808         return 0;
6809 }
6810 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6811
6812 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6813                                                     struct list_head **iter)
6814 {
6815         struct netdev_adjacent *lower;
6816
6817         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6818         if (&lower->list == &dev->adj_list.lower)
6819                 return NULL;
6820
6821         *iter = &lower->list;
6822
6823         return lower->dev;
6824 }
6825
6826 static u8 __netdev_upper_depth(struct net_device *dev)
6827 {
6828         struct net_device *udev;
6829         struct list_head *iter;
6830         u8 max_depth = 0;
6831
6832         for (iter = &dev->adj_list.upper,
6833              udev = netdev_next_upper_dev(dev, &iter);
6834              udev;
6835              udev = netdev_next_upper_dev(dev, &iter)) {
6836                 if (max_depth < udev->upper_level)
6837                         max_depth = udev->upper_level;
6838         }
6839
6840         return max_depth;
6841 }
6842
6843 static u8 __netdev_lower_depth(struct net_device *dev)
6844 {
6845         struct net_device *ldev;
6846         struct list_head *iter;
6847         u8 max_depth = 0;
6848
6849         for (iter = &dev->adj_list.lower,
6850              ldev = netdev_next_lower_dev(dev, &iter);
6851              ldev;
6852              ldev = netdev_next_lower_dev(dev, &iter)) {
6853                 if (max_depth < ldev->lower_level)
6854                         max_depth = ldev->lower_level;
6855         }
6856
6857         return max_depth;
6858 }
6859
6860 static int __netdev_update_upper_level(struct net_device *dev, void *data)
6861 {
6862         dev->upper_level = __netdev_upper_depth(dev) + 1;
6863         return 0;
6864 }
6865
6866 static int __netdev_update_lower_level(struct net_device *dev, void *data)
6867 {
6868         dev->lower_level = __netdev_lower_depth(dev) + 1;
6869         return 0;
6870 }
6871
6872 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6873                                   int (*fn)(struct net_device *dev,
6874                                             void *data),
6875                                   void *data)
6876 {
6877         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6878         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6879         int ret, cur = 0;
6880
6881         now = dev;
6882         iter = &dev->adj_list.lower;
6883
6884         while (1) {
6885                 if (now != dev) {
6886                         ret = fn(now, data);
6887                         if (ret)
6888                                 return ret;
6889                 }
6890
6891                 next = NULL;
6892                 while (1) {
6893                         ldev = netdev_next_lower_dev_rcu(now, &iter);
6894                         if (!ldev)
6895                                 break;
6896
6897                         next = ldev;
6898                         niter = &ldev->adj_list.lower;
6899                         dev_stack[cur] = now;
6900                         iter_stack[cur++] = iter;
6901                         break;
6902                 }
6903
6904                 if (!next) {
6905                         if (!cur)
6906                                 return 0;
6907                         next = dev_stack[--cur];
6908                         niter = iter_stack[cur];
6909                 }
6910
6911                 now = next;
6912                 iter = niter;
6913         }
6914
6915         return 0;
6916 }
6917 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6918
6919 /**
6920  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6921  *                                     lower neighbour list, RCU
6922  *                                     variant
6923  * @dev: device
6924  *
6925  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6926  * list. The caller must hold RCU read lock.
6927  */
6928 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6929 {
6930         struct netdev_adjacent *lower;
6931
6932         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6933                         struct netdev_adjacent, list);
6934         if (lower)
6935                 return lower->private;
6936         return NULL;
6937 }
6938 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6939
6940 /**
6941  * netdev_master_upper_dev_get_rcu - Get master upper device
6942  * @dev: device
6943  *
6944  * Find a master upper device and return pointer to it or NULL in case
6945  * it's not there. The caller must hold the RCU read lock.
6946  */
6947 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6948 {
6949         struct netdev_adjacent *upper;
6950
6951         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6952                                        struct netdev_adjacent, list);
6953         if (upper && likely(upper->master))
6954                 return upper->dev;
6955         return NULL;
6956 }
6957 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6958
6959 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6960                               struct net_device *adj_dev,
6961                               struct list_head *dev_list)
6962 {
6963         char linkname[IFNAMSIZ+7];
6964
6965         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6966                 "upper_%s" : "lower_%s", adj_dev->name);
6967         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6968                                  linkname);
6969 }
6970 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6971                                char *name,
6972                                struct list_head *dev_list)
6973 {
6974         char linkname[IFNAMSIZ+7];
6975
6976         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6977                 "upper_%s" : "lower_%s", name);
6978         sysfs_remove_link(&(dev->dev.kobj), linkname);
6979 }
6980
6981 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6982                                                  struct net_device *adj_dev,
6983                                                  struct list_head *dev_list)
6984 {
6985         return (dev_list == &dev->adj_list.upper ||
6986                 dev_list == &dev->adj_list.lower) &&
6987                 net_eq(dev_net(dev), dev_net(adj_dev));
6988 }
6989
6990 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6991                                         struct net_device *adj_dev,
6992                                         struct list_head *dev_list,
6993                                         void *private, bool master)
6994 {
6995         struct netdev_adjacent *adj;
6996         int ret;
6997
6998         adj = __netdev_find_adj(adj_dev, dev_list);
6999
7000         if (adj) {
7001                 adj->ref_nr += 1;
7002                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7003                          dev->name, adj_dev->name, adj->ref_nr);
7004
7005                 return 0;
7006         }
7007
7008         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7009         if (!adj)
7010                 return -ENOMEM;
7011
7012         adj->dev = adj_dev;
7013         adj->master = master;
7014         adj->ref_nr = 1;
7015         adj->private = private;
7016         dev_hold(adj_dev);
7017
7018         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7019                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7020
7021         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7022                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7023                 if (ret)
7024                         goto free_adj;
7025         }
7026
7027         /* Ensure that master link is always the first item in list. */
7028         if (master) {
7029                 ret = sysfs_create_link(&(dev->dev.kobj),
7030                                         &(adj_dev->dev.kobj), "master");
7031                 if (ret)
7032                         goto remove_symlinks;
7033
7034                 list_add_rcu(&adj->list, dev_list);
7035         } else {
7036                 list_add_tail_rcu(&adj->list, dev_list);
7037         }
7038
7039         return 0;
7040
7041 remove_symlinks:
7042         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7043                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7044 free_adj:
7045         kfree(adj);
7046         dev_put(adj_dev);
7047
7048         return ret;
7049 }
7050
7051 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7052                                          struct net_device *adj_dev,
7053                                          u16 ref_nr,
7054                                          struct list_head *dev_list)
7055 {
7056         struct netdev_adjacent *adj;
7057
7058         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7059                  dev->name, adj_dev->name, ref_nr);
7060
7061         adj = __netdev_find_adj(adj_dev, dev_list);
7062
7063         if (!adj) {
7064                 pr_err("Adjacency does not exist for device %s from %s\n",
7065                        dev->name, adj_dev->name);
7066                 WARN_ON(1);
7067                 return;
7068         }
7069
7070         if (adj->ref_nr > ref_nr) {
7071                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7072                          dev->name, adj_dev->name, ref_nr,
7073                          adj->ref_nr - ref_nr);
7074                 adj->ref_nr -= ref_nr;
7075                 return;
7076         }
7077
7078         if (adj->master)
7079                 sysfs_remove_link(&(dev->dev.kobj), "master");
7080
7081         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7082                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7083
7084         list_del_rcu(&adj->list);
7085         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7086                  adj_dev->name, dev->name, adj_dev->name);
7087         dev_put(adj_dev);
7088         kfree_rcu(adj, rcu);
7089 }
7090
7091 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7092                                             struct net_device *upper_dev,
7093                                             struct list_head *up_list,
7094                                             struct list_head *down_list,
7095                                             void *private, bool master)
7096 {
7097         int ret;
7098
7099         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7100                                            private, master);
7101         if (ret)
7102                 return ret;
7103
7104         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7105                                            private, false);
7106         if (ret) {
7107                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7108                 return ret;
7109         }
7110
7111         return 0;
7112 }
7113
7114 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7115                                                struct net_device *upper_dev,
7116                                                u16 ref_nr,
7117                                                struct list_head *up_list,
7118                                                struct list_head *down_list)
7119 {
7120         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7121         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7122 }
7123
7124 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7125                                                 struct net_device *upper_dev,
7126                                                 void *private, bool master)
7127 {
7128         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7129                                                 &dev->adj_list.upper,
7130                                                 &upper_dev->adj_list.lower,
7131                                                 private, master);
7132 }
7133
7134 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7135                                                    struct net_device *upper_dev)
7136 {
7137         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7138                                            &dev->adj_list.upper,
7139                                            &upper_dev->adj_list.lower);
7140 }
7141
7142 static int __netdev_upper_dev_link(struct net_device *dev,
7143                                    struct net_device *upper_dev, bool master,
7144                                    void *upper_priv, void *upper_info,
7145                                    struct netlink_ext_ack *extack)
7146 {
7147         struct netdev_notifier_changeupper_info changeupper_info = {
7148                 .info = {
7149                         .dev = dev,
7150                         .extack = extack,
7151                 },
7152                 .upper_dev = upper_dev,
7153                 .master = master,
7154                 .linking = true,
7155                 .upper_info = upper_info,
7156         };
7157         struct net_device *master_dev;
7158         int ret = 0;
7159
7160         ASSERT_RTNL();
7161
7162         if (dev == upper_dev)
7163                 return -EBUSY;
7164
7165         /* To prevent loops, check if dev is not upper device to upper_dev. */
7166         if (netdev_has_upper_dev(upper_dev, dev))
7167                 return -EBUSY;
7168
7169         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7170                 return -EMLINK;
7171
7172         if (!master) {
7173                 if (netdev_has_upper_dev(dev, upper_dev))
7174                         return -EEXIST;
7175         } else {
7176                 master_dev = netdev_master_upper_dev_get(dev);
7177                 if (master_dev)
7178                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7179         }
7180
7181         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7182                                             &changeupper_info.info);
7183         ret = notifier_to_errno(ret);
7184         if (ret)
7185                 return ret;
7186
7187         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7188                                                    master);
7189         if (ret)
7190                 return ret;
7191
7192         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7193                                             &changeupper_info.info);
7194         ret = notifier_to_errno(ret);
7195         if (ret)
7196                 goto rollback;
7197
7198         __netdev_update_upper_level(dev, NULL);
7199         netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7200
7201         __netdev_update_lower_level(upper_dev, NULL);
7202         netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7203
7204         return 0;
7205
7206 rollback:
7207         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7208
7209         return ret;
7210 }
7211
7212 /**
7213  * netdev_upper_dev_link - Add a link to the upper device
7214  * @dev: device
7215  * @upper_dev: new upper device
7216  * @extack: netlink extended ack
7217  *
7218  * Adds a link to device which is upper to this one. The caller must hold
7219  * the RTNL lock. On a failure a negative errno code is returned.
7220  * On success the reference counts are adjusted and the function
7221  * returns zero.
7222  */
7223 int netdev_upper_dev_link(struct net_device *dev,
7224                           struct net_device *upper_dev,
7225                           struct netlink_ext_ack *extack)
7226 {
7227         return __netdev_upper_dev_link(dev, upper_dev, false,
7228                                        NULL, NULL, extack);
7229 }
7230 EXPORT_SYMBOL(netdev_upper_dev_link);
7231
7232 /**
7233  * netdev_master_upper_dev_link - Add a master link to the upper device
7234  * @dev: device
7235  * @upper_dev: new upper device
7236  * @upper_priv: upper device private
7237  * @upper_info: upper info to be passed down via notifier
7238  * @extack: netlink extended ack
7239  *
7240  * Adds a link to device which is upper to this one. In this case, only
7241  * one master upper device can be linked, although other non-master devices
7242  * might be linked as well. The caller must hold the RTNL lock.
7243  * On a failure a negative errno code is returned. On success the reference
7244  * counts are adjusted and the function returns zero.
7245  */
7246 int netdev_master_upper_dev_link(struct net_device *dev,
7247                                  struct net_device *upper_dev,
7248                                  void *upper_priv, void *upper_info,
7249                                  struct netlink_ext_ack *extack)
7250 {
7251         return __netdev_upper_dev_link(dev, upper_dev, true,
7252                                        upper_priv, upper_info, extack);
7253 }
7254 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7255
7256 /**
7257  * netdev_upper_dev_unlink - Removes a link to upper device
7258  * @dev: device
7259  * @upper_dev: new upper device
7260  *
7261  * Removes a link to device which is upper to this one. The caller must hold
7262  * the RTNL lock.
7263  */
7264 void netdev_upper_dev_unlink(struct net_device *dev,
7265                              struct net_device *upper_dev)
7266 {
7267         struct netdev_notifier_changeupper_info changeupper_info = {
7268                 .info = {
7269                         .dev = dev,
7270                 },
7271                 .upper_dev = upper_dev,
7272                 .linking = false,
7273         };
7274
7275         ASSERT_RTNL();
7276
7277         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7278
7279         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7280                                       &changeupper_info.info);
7281
7282         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7283
7284         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7285                                       &changeupper_info.info);
7286
7287         __netdev_update_upper_level(dev, NULL);
7288         netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7289
7290         __netdev_update_lower_level(upper_dev, NULL);
7291         netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7292 }
7293 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7294
7295 /**
7296  * netdev_bonding_info_change - Dispatch event about slave change
7297  * @dev: device
7298  * @bonding_info: info to dispatch
7299  *
7300  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7301  * The caller must hold the RTNL lock.
7302  */
7303 void netdev_bonding_info_change(struct net_device *dev,
7304                                 struct netdev_bonding_info *bonding_info)
7305 {
7306         struct netdev_notifier_bonding_info info = {
7307                 .info.dev = dev,
7308         };
7309
7310         memcpy(&info.bonding_info, bonding_info,
7311                sizeof(struct netdev_bonding_info));
7312         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7313                                       &info.info);
7314 }
7315 EXPORT_SYMBOL(netdev_bonding_info_change);
7316
7317 static void netdev_adjacent_add_links(struct net_device *dev)
7318 {
7319         struct netdev_adjacent *iter;
7320
7321         struct net *net = dev_net(dev);
7322
7323         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7324                 if (!net_eq(net, dev_net(iter->dev)))
7325                         continue;
7326                 netdev_adjacent_sysfs_add(iter->dev, dev,
7327                                           &iter->dev->adj_list.lower);
7328                 netdev_adjacent_sysfs_add(dev, iter->dev,
7329                                           &dev->adj_list.upper);
7330         }
7331
7332         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7333                 if (!net_eq(net, dev_net(iter->dev)))
7334                         continue;
7335                 netdev_adjacent_sysfs_add(iter->dev, dev,
7336                                           &iter->dev->adj_list.upper);
7337                 netdev_adjacent_sysfs_add(dev, iter->dev,
7338                                           &dev->adj_list.lower);
7339         }
7340 }
7341
7342 static void netdev_adjacent_del_links(struct net_device *dev)
7343 {
7344         struct netdev_adjacent *iter;
7345
7346         struct net *net = dev_net(dev);
7347
7348         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7349                 if (!net_eq(net, dev_net(iter->dev)))
7350                         continue;
7351                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7352                                           &iter->dev->adj_list.lower);
7353                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7354                                           &dev->adj_list.upper);
7355         }
7356
7357         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7358                 if (!net_eq(net, dev_net(iter->dev)))
7359                         continue;
7360                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7361                                           &iter->dev->adj_list.upper);
7362                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7363                                           &dev->adj_list.lower);
7364         }
7365 }
7366
7367 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7368 {
7369         struct netdev_adjacent *iter;
7370
7371         struct net *net = dev_net(dev);
7372
7373         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7374                 if (!net_eq(net, dev_net(iter->dev)))
7375                         continue;
7376                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7377                                           &iter->dev->adj_list.lower);
7378                 netdev_adjacent_sysfs_add(iter->dev, dev,
7379                                           &iter->dev->adj_list.lower);
7380         }
7381
7382         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7383                 if (!net_eq(net, dev_net(iter->dev)))
7384                         continue;
7385                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7386                                           &iter->dev->adj_list.upper);
7387                 netdev_adjacent_sysfs_add(iter->dev, dev,
7388                                           &iter->dev->adj_list.upper);
7389         }
7390 }
7391
7392 void *netdev_lower_dev_get_private(struct net_device *dev,
7393                                    struct net_device *lower_dev)
7394 {
7395         struct netdev_adjacent *lower;
7396
7397         if (!lower_dev)
7398                 return NULL;
7399         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7400         if (!lower)
7401                 return NULL;
7402
7403         return lower->private;
7404 }
7405 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7406
7407
7408 int dev_get_nest_level(struct net_device *dev)
7409 {
7410         struct net_device *lower = NULL;
7411         struct list_head *iter;
7412         int max_nest = -1;
7413         int nest;
7414
7415         ASSERT_RTNL();
7416
7417         netdev_for_each_lower_dev(dev, lower, iter) {
7418                 nest = dev_get_nest_level(lower);
7419                 if (max_nest < nest)
7420                         max_nest = nest;
7421         }
7422
7423         return max_nest + 1;
7424 }
7425 EXPORT_SYMBOL(dev_get_nest_level);
7426
7427 /**
7428  * netdev_lower_change - Dispatch event about lower device state change
7429  * @lower_dev: device
7430  * @lower_state_info: state to dispatch
7431  *
7432  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7433  * The caller must hold the RTNL lock.
7434  */
7435 void netdev_lower_state_changed(struct net_device *lower_dev,
7436                                 void *lower_state_info)
7437 {
7438         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7439                 .info.dev = lower_dev,
7440         };
7441
7442         ASSERT_RTNL();
7443         changelowerstate_info.lower_state_info = lower_state_info;
7444         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7445                                       &changelowerstate_info.info);
7446 }
7447 EXPORT_SYMBOL(netdev_lower_state_changed);
7448
7449 static void dev_change_rx_flags(struct net_device *dev, int flags)
7450 {
7451         const struct net_device_ops *ops = dev->netdev_ops;
7452
7453         if (ops->ndo_change_rx_flags)
7454                 ops->ndo_change_rx_flags(dev, flags);
7455 }
7456
7457 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7458 {
7459         unsigned int old_flags = dev->flags;
7460         kuid_t uid;
7461         kgid_t gid;
7462
7463         ASSERT_RTNL();
7464
7465         dev->flags |= IFF_PROMISC;
7466         dev->promiscuity += inc;
7467         if (dev->promiscuity == 0) {
7468                 /*
7469                  * Avoid overflow.
7470                  * If inc causes overflow, untouch promisc and return error.
7471                  */
7472                 if (inc < 0)
7473                         dev->flags &= ~IFF_PROMISC;
7474                 else {
7475                         dev->promiscuity -= inc;
7476                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7477                                 dev->name);
7478                         return -EOVERFLOW;
7479                 }
7480         }
7481         if (dev->flags != old_flags) {
7482                 pr_info("device %s %s promiscuous mode\n",
7483                         dev->name,
7484                         dev->flags & IFF_PROMISC ? "entered" : "left");
7485                 if (audit_enabled) {
7486                         current_uid_gid(&uid, &gid);
7487                         audit_log(audit_context(), GFP_ATOMIC,
7488                                   AUDIT_ANOM_PROMISCUOUS,
7489                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7490                                   dev->name, (dev->flags & IFF_PROMISC),
7491                                   (old_flags & IFF_PROMISC),
7492                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7493                                   from_kuid(&init_user_ns, uid),
7494                                   from_kgid(&init_user_ns, gid),
7495                                   audit_get_sessionid(current));
7496                 }
7497
7498                 dev_change_rx_flags(dev, IFF_PROMISC);
7499         }
7500         if (notify)
7501                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7502         return 0;
7503 }
7504
7505 /**
7506  *      dev_set_promiscuity     - update promiscuity count on a device
7507  *      @dev: device
7508  *      @inc: modifier
7509  *
7510  *      Add or remove promiscuity from a device. While the count in the device
7511  *      remains above zero the interface remains promiscuous. Once it hits zero
7512  *      the device reverts back to normal filtering operation. A negative inc
7513  *      value is used to drop promiscuity on the device.
7514  *      Return 0 if successful or a negative errno code on error.
7515  */
7516 int dev_set_promiscuity(struct net_device *dev, int inc)
7517 {
7518         unsigned int old_flags = dev->flags;
7519         int err;
7520
7521         err = __dev_set_promiscuity(dev, inc, true);
7522         if (err < 0)
7523                 return err;
7524         if (dev->flags != old_flags)
7525                 dev_set_rx_mode(dev);
7526         return err;
7527 }
7528 EXPORT_SYMBOL(dev_set_promiscuity);
7529
7530 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7531 {
7532         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7533
7534         ASSERT_RTNL();
7535
7536         dev->flags |= IFF_ALLMULTI;
7537         dev->allmulti += inc;
7538         if (dev->allmulti == 0) {
7539                 /*
7540                  * Avoid overflow.
7541                  * If inc causes overflow, untouch allmulti and return error.
7542                  */
7543                 if (inc < 0)
7544                         dev->flags &= ~IFF_ALLMULTI;
7545                 else {
7546                         dev->allmulti -= inc;
7547                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7548                                 dev->name);
7549                         return -EOVERFLOW;
7550                 }
7551         }
7552         if (dev->flags ^ old_flags) {
7553                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7554                 dev_set_rx_mode(dev);
7555                 if (notify)
7556                         __dev_notify_flags(dev, old_flags,
7557                                            dev->gflags ^ old_gflags);
7558         }
7559         return 0;
7560 }
7561
7562 /**
7563  *      dev_set_allmulti        - update allmulti count on a device
7564  *      @dev: device
7565  *      @inc: modifier
7566  *
7567  *      Add or remove reception of all multicast frames to a device. While the
7568  *      count in the device remains above zero the interface remains listening
7569  *      to all interfaces. Once it hits zero the device reverts back to normal
7570  *      filtering operation. A negative @inc value is used to drop the counter
7571  *      when releasing a resource needing all multicasts.
7572  *      Return 0 if successful or a negative errno code on error.
7573  */
7574
7575 int dev_set_allmulti(struct net_device *dev, int inc)
7576 {
7577         return __dev_set_allmulti(dev, inc, true);
7578 }
7579 EXPORT_SYMBOL(dev_set_allmulti);
7580
7581 /*
7582  *      Upload unicast and multicast address lists to device and
7583  *      configure RX filtering. When the device doesn't support unicast
7584  *      filtering it is put in promiscuous mode while unicast addresses
7585  *      are present.
7586  */
7587 void __dev_set_rx_mode(struct net_device *dev)
7588 {
7589         const struct net_device_ops *ops = dev->netdev_ops;
7590
7591         /* dev_open will call this function so the list will stay sane. */
7592         if (!(dev->flags&IFF_UP))
7593                 return;
7594
7595         if (!netif_device_present(dev))
7596                 return;
7597
7598         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7599                 /* Unicast addresses changes may only happen under the rtnl,
7600                  * therefore calling __dev_set_promiscuity here is safe.
7601                  */
7602                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7603                         __dev_set_promiscuity(dev, 1, false);
7604                         dev->uc_promisc = true;
7605                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7606                         __dev_set_promiscuity(dev, -1, false);
7607                         dev->uc_promisc = false;
7608                 }
7609         }
7610
7611         if (ops->ndo_set_rx_mode)
7612                 ops->ndo_set_rx_mode(dev);
7613 }
7614
7615 void dev_set_rx_mode(struct net_device *dev)
7616 {
7617         netif_addr_lock_bh(dev);
7618         __dev_set_rx_mode(dev);
7619         netif_addr_unlock_bh(dev);
7620 }
7621
7622 /**
7623  *      dev_get_flags - get flags reported to userspace
7624  *      @dev: device
7625  *
7626  *      Get the combination of flag bits exported through APIs to userspace.
7627  */
7628 unsigned int dev_get_flags(const struct net_device *dev)
7629 {
7630         unsigned int flags;
7631
7632         flags = (dev->flags & ~(IFF_PROMISC |
7633                                 IFF_ALLMULTI |
7634                                 IFF_RUNNING |
7635                                 IFF_LOWER_UP |
7636                                 IFF_DORMANT)) |
7637                 (dev->gflags & (IFF_PROMISC |
7638                                 IFF_ALLMULTI));
7639
7640         if (netif_running(dev)) {
7641                 if (netif_oper_up(dev))
7642                         flags |= IFF_RUNNING;
7643                 if (netif_carrier_ok(dev))
7644                         flags |= IFF_LOWER_UP;
7645                 if (netif_dormant(dev))
7646                         flags |= IFF_DORMANT;
7647         }
7648
7649         return flags;
7650 }
7651 EXPORT_SYMBOL(dev_get_flags);
7652
7653 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7654 {
7655         unsigned int old_flags = dev->flags;
7656         int ret;
7657
7658         ASSERT_RTNL();
7659
7660         /*
7661          *      Set the flags on our device.
7662          */
7663
7664         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7665                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7666                                IFF_AUTOMEDIA)) |
7667                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7668                                     IFF_ALLMULTI));
7669
7670         /*
7671          *      Load in the correct multicast list now the flags have changed.
7672          */
7673
7674         if ((old_flags ^ flags) & IFF_MULTICAST)
7675                 dev_change_rx_flags(dev, IFF_MULTICAST);
7676
7677         dev_set_rx_mode(dev);
7678
7679         /*
7680          *      Have we downed the interface. We handle IFF_UP ourselves
7681          *      according to user attempts to set it, rather than blindly
7682          *      setting it.
7683          */
7684
7685         ret = 0;
7686         if ((old_flags ^ flags) & IFF_UP) {
7687                 if (old_flags & IFF_UP)
7688                         __dev_close(dev);
7689                 else
7690                         ret = __dev_open(dev);
7691         }
7692
7693         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7694                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7695                 unsigned int old_flags = dev->flags;
7696
7697                 dev->gflags ^= IFF_PROMISC;
7698
7699                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7700                         if (dev->flags != old_flags)
7701                                 dev_set_rx_mode(dev);
7702         }
7703
7704         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7705          * is important. Some (broken) drivers set IFF_PROMISC, when
7706          * IFF_ALLMULTI is requested not asking us and not reporting.
7707          */
7708         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7709                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7710
7711                 dev->gflags ^= IFF_ALLMULTI;
7712                 __dev_set_allmulti(dev, inc, false);
7713         }
7714
7715         return ret;
7716 }
7717
7718 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7719                         unsigned int gchanges)
7720 {
7721         unsigned int changes = dev->flags ^ old_flags;
7722
7723         if (gchanges)
7724                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7725
7726         if (changes & IFF_UP) {
7727                 if (dev->flags & IFF_UP)
7728                         call_netdevice_notifiers(NETDEV_UP, dev);
7729                 else
7730                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7731         }
7732
7733         if (dev->flags & IFF_UP &&
7734             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7735                 struct netdev_notifier_change_info change_info = {
7736                         .info = {
7737                                 .dev = dev,
7738                         },
7739                         .flags_changed = changes,
7740                 };
7741
7742                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7743         }
7744 }
7745
7746 /**
7747  *      dev_change_flags - change device settings
7748  *      @dev: device
7749  *      @flags: device state flags
7750  *
7751  *      Change settings on device based state flags. The flags are
7752  *      in the userspace exported format.
7753  */
7754 int dev_change_flags(struct net_device *dev, unsigned int flags)
7755 {
7756         int ret;
7757         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7758
7759         ret = __dev_change_flags(dev, flags);
7760         if (ret < 0)
7761                 return ret;
7762
7763         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7764         __dev_notify_flags(dev, old_flags, changes);
7765         return ret;
7766 }
7767 EXPORT_SYMBOL(dev_change_flags);
7768
7769 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7770 {
7771         const struct net_device_ops *ops = dev->netdev_ops;
7772
7773         if (ops->ndo_change_mtu)
7774                 return ops->ndo_change_mtu(dev, new_mtu);
7775
7776         /* Pairs with all the lockless reads of dev->mtu in the stack */
7777         WRITE_ONCE(dev->mtu, new_mtu);
7778         return 0;
7779 }
7780 EXPORT_SYMBOL(__dev_set_mtu);
7781
7782 int dev_validate_mtu(struct net_device *dev, int new_mtu,
7783                      struct netlink_ext_ack *extack)
7784 {
7785         /* MTU must be positive, and in range */
7786         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7787                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7788                 return -EINVAL;
7789         }
7790
7791         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7792                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7793                 return -EINVAL;
7794         }
7795         return 0;
7796 }
7797
7798 /**
7799  *      dev_set_mtu_ext - Change maximum transfer unit
7800  *      @dev: device
7801  *      @new_mtu: new transfer unit
7802  *      @extack: netlink extended ack
7803  *
7804  *      Change the maximum transfer size of the network device.
7805  */
7806 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7807                     struct netlink_ext_ack *extack)
7808 {
7809         int err, orig_mtu;
7810
7811         if (new_mtu == dev->mtu)
7812                 return 0;
7813
7814         err = dev_validate_mtu(dev, new_mtu, extack);
7815         if (err)
7816                 return err;
7817
7818         if (!netif_device_present(dev))
7819                 return -ENODEV;
7820
7821         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7822         err = notifier_to_errno(err);
7823         if (err)
7824                 return err;
7825
7826         orig_mtu = dev->mtu;
7827         err = __dev_set_mtu(dev, new_mtu);
7828
7829         if (!err) {
7830                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7831                                                    orig_mtu);
7832                 err = notifier_to_errno(err);
7833                 if (err) {
7834                         /* setting mtu back and notifying everyone again,
7835                          * so that they have a chance to revert changes.
7836                          */
7837                         __dev_set_mtu(dev, orig_mtu);
7838                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7839                                                      new_mtu);
7840                 }
7841         }
7842         return err;
7843 }
7844
7845 int dev_set_mtu(struct net_device *dev, int new_mtu)
7846 {
7847         struct netlink_ext_ack extack;
7848         int err;
7849
7850         memset(&extack, 0, sizeof(extack));
7851         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7852         if (err && extack._msg)
7853                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7854         return err;
7855 }
7856 EXPORT_SYMBOL(dev_set_mtu);
7857
7858 /**
7859  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7860  *      @dev: device
7861  *      @new_len: new tx queue length
7862  */
7863 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7864 {
7865         unsigned int orig_len = dev->tx_queue_len;
7866         int res;
7867
7868         if (new_len != (unsigned int)new_len)
7869                 return -ERANGE;
7870
7871         if (new_len != orig_len) {
7872                 dev->tx_queue_len = new_len;
7873                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7874                 res = notifier_to_errno(res);
7875                 if (res)
7876                         goto err_rollback;
7877                 res = dev_qdisc_change_tx_queue_len(dev);
7878                 if (res)
7879                         goto err_rollback;
7880         }
7881
7882         return 0;
7883
7884 err_rollback:
7885         netdev_err(dev, "refused to change device tx_queue_len\n");
7886         dev->tx_queue_len = orig_len;
7887         return res;
7888 }
7889
7890 /**
7891  *      dev_set_group - Change group this device belongs to
7892  *      @dev: device
7893  *      @new_group: group this device should belong to
7894  */
7895 void dev_set_group(struct net_device *dev, int new_group)
7896 {
7897         dev->group = new_group;
7898 }
7899 EXPORT_SYMBOL(dev_set_group);
7900
7901 /**
7902  *      dev_set_mac_address - Change Media Access Control Address
7903  *      @dev: device
7904  *      @sa: new address
7905  *
7906  *      Change the hardware (MAC) address of the device
7907  */
7908 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7909 {
7910         const struct net_device_ops *ops = dev->netdev_ops;
7911         int err;
7912
7913         if (!ops->ndo_set_mac_address)
7914                 return -EOPNOTSUPP;
7915         if (sa->sa_family != dev->type)
7916                 return -EINVAL;
7917         if (!netif_device_present(dev))
7918                 return -ENODEV;
7919         err = ops->ndo_set_mac_address(dev, sa);
7920         if (err)
7921                 return err;
7922         dev->addr_assign_type = NET_ADDR_SET;
7923         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7924         add_device_randomness(dev->dev_addr, dev->addr_len);
7925         return 0;
7926 }
7927 EXPORT_SYMBOL(dev_set_mac_address);
7928
7929 /**
7930  *      dev_change_carrier - Change device carrier
7931  *      @dev: device
7932  *      @new_carrier: new value
7933  *
7934  *      Change device carrier
7935  */
7936 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7937 {
7938         const struct net_device_ops *ops = dev->netdev_ops;
7939
7940         if (!ops->ndo_change_carrier)
7941                 return -EOPNOTSUPP;
7942         if (!netif_device_present(dev))
7943                 return -ENODEV;
7944         return ops->ndo_change_carrier(dev, new_carrier);
7945 }
7946 EXPORT_SYMBOL(dev_change_carrier);
7947
7948 /**
7949  *      dev_get_phys_port_id - Get device physical port ID
7950  *      @dev: device
7951  *      @ppid: port ID
7952  *
7953  *      Get device physical port ID
7954  */
7955 int dev_get_phys_port_id(struct net_device *dev,
7956                          struct netdev_phys_item_id *ppid)
7957 {
7958         const struct net_device_ops *ops = dev->netdev_ops;
7959
7960         if (!ops->ndo_get_phys_port_id)
7961                 return -EOPNOTSUPP;
7962         return ops->ndo_get_phys_port_id(dev, ppid);
7963 }
7964 EXPORT_SYMBOL(dev_get_phys_port_id);
7965
7966 /**
7967  *      dev_get_phys_port_name - Get device physical port name
7968  *      @dev: device
7969  *      @name: port name
7970  *      @len: limit of bytes to copy to name
7971  *
7972  *      Get device physical port name
7973  */
7974 int dev_get_phys_port_name(struct net_device *dev,
7975                            char *name, size_t len)
7976 {
7977         const struct net_device_ops *ops = dev->netdev_ops;
7978
7979         if (!ops->ndo_get_phys_port_name)
7980                 return -EOPNOTSUPP;
7981         return ops->ndo_get_phys_port_name(dev, name, len);
7982 }
7983 EXPORT_SYMBOL(dev_get_phys_port_name);
7984
7985 /**
7986  *      dev_change_proto_down - update protocol port state information
7987  *      @dev: device
7988  *      @proto_down: new value
7989  *
7990  *      This info can be used by switch drivers to set the phys state of the
7991  *      port.
7992  */
7993 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7994 {
7995         const struct net_device_ops *ops = dev->netdev_ops;
7996
7997         if (!ops->ndo_change_proto_down)
7998                 return -EOPNOTSUPP;
7999         if (!netif_device_present(dev))
8000                 return -ENODEV;
8001         return ops->ndo_change_proto_down(dev, proto_down);
8002 }
8003 EXPORT_SYMBOL(dev_change_proto_down);
8004
8005 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8006                     enum bpf_netdev_command cmd)
8007 {
8008         struct netdev_bpf xdp;
8009
8010         if (!bpf_op)
8011                 return 0;
8012
8013         memset(&xdp, 0, sizeof(xdp));
8014         xdp.command = cmd;
8015
8016         /* Query must always succeed. */
8017         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8018
8019         return xdp.prog_id;
8020 }
8021
8022 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8023                            struct netlink_ext_ack *extack, u32 flags,
8024                            struct bpf_prog *prog)
8025 {
8026         struct netdev_bpf xdp;
8027
8028         memset(&xdp, 0, sizeof(xdp));
8029         if (flags & XDP_FLAGS_HW_MODE)
8030                 xdp.command = XDP_SETUP_PROG_HW;
8031         else
8032                 xdp.command = XDP_SETUP_PROG;
8033         xdp.extack = extack;
8034         xdp.flags = flags;
8035         xdp.prog = prog;
8036
8037         return bpf_op(dev, &xdp);
8038 }
8039
8040 static void dev_xdp_uninstall(struct net_device *dev)
8041 {
8042         struct netdev_bpf xdp;
8043         bpf_op_t ndo_bpf;
8044
8045         /* Remove generic XDP */
8046         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8047
8048         /* Remove from the driver */
8049         ndo_bpf = dev->netdev_ops->ndo_bpf;
8050         if (!ndo_bpf)
8051                 return;
8052
8053         memset(&xdp, 0, sizeof(xdp));
8054         xdp.command = XDP_QUERY_PROG;
8055         WARN_ON(ndo_bpf(dev, &xdp));
8056         if (xdp.prog_id)
8057                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8058                                         NULL));
8059
8060         /* Remove HW offload */
8061         memset(&xdp, 0, sizeof(xdp));
8062         xdp.command = XDP_QUERY_PROG_HW;
8063         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8064                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8065                                         NULL));
8066 }
8067
8068 /**
8069  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8070  *      @dev: device
8071  *      @extack: netlink extended ack
8072  *      @fd: new program fd or negative value to clear
8073  *      @flags: xdp-related flags
8074  *
8075  *      Set or clear a bpf program for a device
8076  */
8077 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8078                       int fd, u32 flags)
8079 {
8080         const struct net_device_ops *ops = dev->netdev_ops;
8081         enum bpf_netdev_command query;
8082         struct bpf_prog *prog = NULL;
8083         bpf_op_t bpf_op, bpf_chk;
8084         int err;
8085
8086         ASSERT_RTNL();
8087
8088         query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8089
8090         bpf_op = bpf_chk = ops->ndo_bpf;
8091         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
8092                 return -EOPNOTSUPP;
8093         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8094                 bpf_op = generic_xdp_install;
8095         if (bpf_op == bpf_chk)
8096                 bpf_chk = generic_xdp_install;
8097
8098         if (fd >= 0) {
8099                 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
8100                     __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
8101                         return -EEXIST;
8102                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8103                     __dev_xdp_query(dev, bpf_op, query))
8104                         return -EBUSY;
8105
8106                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8107                                              bpf_op == ops->ndo_bpf);
8108                 if (IS_ERR(prog))
8109                         return PTR_ERR(prog);
8110
8111                 if (!(flags & XDP_FLAGS_HW_MODE) &&
8112                     bpf_prog_is_dev_bound(prog->aux)) {
8113                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8114                         bpf_prog_put(prog);
8115                         return -EINVAL;
8116                 }
8117         }
8118
8119         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8120         if (err < 0 && prog)
8121                 bpf_prog_put(prog);
8122
8123         return err;
8124 }
8125
8126 /**
8127  *      dev_new_index   -       allocate an ifindex
8128  *      @net: the applicable net namespace
8129  *
8130  *      Returns a suitable unique value for a new device interface
8131  *      number.  The caller must hold the rtnl semaphore or the
8132  *      dev_base_lock to be sure it remains unique.
8133  */
8134 static int dev_new_index(struct net *net)
8135 {
8136         int ifindex = net->ifindex;
8137
8138         for (;;) {
8139                 if (++ifindex <= 0)
8140                         ifindex = 1;
8141                 if (!__dev_get_by_index(net, ifindex))
8142                         return net->ifindex = ifindex;
8143         }
8144 }
8145
8146 /* Delayed registration/unregisteration */
8147 static LIST_HEAD(net_todo_list);
8148 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8149
8150 static void net_set_todo(struct net_device *dev)
8151 {
8152         list_add_tail(&dev->todo_list, &net_todo_list);
8153         dev_net(dev)->dev_unreg_count++;
8154 }
8155
8156 static void rollback_registered_many(struct list_head *head)
8157 {
8158         struct net_device *dev, *tmp;
8159         LIST_HEAD(close_head);
8160
8161         BUG_ON(dev_boot_phase);
8162         ASSERT_RTNL();
8163
8164         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8165                 /* Some devices call without registering
8166                  * for initialization unwind. Remove those
8167                  * devices and proceed with the remaining.
8168                  */
8169                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8170                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8171                                  dev->name, dev);
8172
8173                         WARN_ON(1);
8174                         list_del(&dev->unreg_list);
8175                         continue;
8176                 }
8177                 dev->dismantle = true;
8178                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8179         }
8180
8181         /* If device is running, close it first. */
8182         list_for_each_entry(dev, head, unreg_list)
8183                 list_add_tail(&dev->close_list, &close_head);
8184         dev_close_many(&close_head, true);
8185
8186         list_for_each_entry(dev, head, unreg_list) {
8187                 /* And unlink it from device chain. */
8188                 unlist_netdevice(dev);
8189
8190                 dev->reg_state = NETREG_UNREGISTERING;
8191         }
8192         flush_all_backlogs();
8193
8194         synchronize_net();
8195
8196         list_for_each_entry(dev, head, unreg_list) {
8197                 struct sk_buff *skb = NULL;
8198
8199                 /* Shutdown queueing discipline. */
8200                 dev_shutdown(dev);
8201
8202                 dev_xdp_uninstall(dev);
8203
8204                 /* Notify protocols, that we are about to destroy
8205                  * this device. They should clean all the things.
8206                  */
8207                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8208
8209                 if (!dev->rtnl_link_ops ||
8210                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8211                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8212                                                      GFP_KERNEL, NULL, 0);
8213
8214                 /*
8215                  *      Flush the unicast and multicast chains
8216                  */
8217                 dev_uc_flush(dev);
8218                 dev_mc_flush(dev);
8219
8220                 if (dev->netdev_ops->ndo_uninit)
8221                         dev->netdev_ops->ndo_uninit(dev);
8222
8223                 if (skb)
8224                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8225
8226                 /* Notifier chain MUST detach us all upper devices. */
8227                 WARN_ON(netdev_has_any_upper_dev(dev));
8228                 WARN_ON(netdev_has_any_lower_dev(dev));
8229
8230                 /* Remove entries from kobject tree */
8231                 netdev_unregister_kobject(dev);
8232 #ifdef CONFIG_XPS
8233                 /* Remove XPS queueing entries */
8234                 netif_reset_xps_queues_gt(dev, 0);
8235 #endif
8236         }
8237
8238         synchronize_net();
8239
8240         list_for_each_entry(dev, head, unreg_list)
8241                 dev_put(dev);
8242 }
8243
8244 static void rollback_registered(struct net_device *dev)
8245 {
8246         LIST_HEAD(single);
8247
8248         list_add(&dev->unreg_list, &single);
8249         rollback_registered_many(&single);
8250         list_del(&single);
8251 }
8252
8253 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8254         struct net_device *upper, netdev_features_t features)
8255 {
8256         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8257         netdev_features_t feature;
8258         int feature_bit;
8259
8260         for_each_netdev_feature(upper_disables, feature_bit) {
8261                 feature = __NETIF_F_BIT(feature_bit);
8262                 if (!(upper->wanted_features & feature)
8263                     && (features & feature)) {
8264                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8265                                    &feature, upper->name);
8266                         features &= ~feature;
8267                 }
8268         }
8269
8270         return features;
8271 }
8272
8273 static void netdev_sync_lower_features(struct net_device *upper,
8274         struct net_device *lower, netdev_features_t features)
8275 {
8276         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8277         netdev_features_t feature;
8278         int feature_bit;
8279
8280         for_each_netdev_feature(upper_disables, feature_bit) {
8281                 feature = __NETIF_F_BIT(feature_bit);
8282                 if (!(features & feature) && (lower->features & feature)) {
8283                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8284                                    &feature, lower->name);
8285                         lower->wanted_features &= ~feature;
8286                         __netdev_update_features(lower);
8287
8288                         if (unlikely(lower->features & feature))
8289                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8290                                             &feature, lower->name);
8291                         else
8292                                 netdev_features_change(lower);
8293                 }
8294         }
8295 }
8296
8297 static netdev_features_t netdev_fix_features(struct net_device *dev,
8298         netdev_features_t features)
8299 {
8300         /* Fix illegal checksum combinations */
8301         if ((features & NETIF_F_HW_CSUM) &&
8302             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8303                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8304                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8305         }
8306
8307         /* TSO requires that SG is present as well. */
8308         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8309                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8310                 features &= ~NETIF_F_ALL_TSO;
8311         }
8312
8313         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8314                                         !(features & NETIF_F_IP_CSUM)) {
8315                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8316                 features &= ~NETIF_F_TSO;
8317                 features &= ~NETIF_F_TSO_ECN;
8318         }
8319
8320         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8321                                          !(features & NETIF_F_IPV6_CSUM)) {
8322                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8323                 features &= ~NETIF_F_TSO6;
8324         }
8325
8326         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8327         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8328                 features &= ~NETIF_F_TSO_MANGLEID;
8329
8330         /* TSO ECN requires that TSO is present as well. */
8331         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8332                 features &= ~NETIF_F_TSO_ECN;
8333
8334         /* Software GSO depends on SG. */
8335         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8336                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8337                 features &= ~NETIF_F_GSO;
8338         }
8339
8340         /* GSO partial features require GSO partial be set */
8341         if ((features & dev->gso_partial_features) &&
8342             !(features & NETIF_F_GSO_PARTIAL)) {
8343                 netdev_dbg(dev,
8344                            "Dropping partially supported GSO features since no GSO partial.\n");
8345                 features &= ~dev->gso_partial_features;
8346         }
8347
8348         if (!(features & NETIF_F_RXCSUM)) {
8349                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8350                  * successfully merged by hardware must also have the
8351                  * checksum verified by hardware.  If the user does not
8352                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8353                  */
8354                 if (features & NETIF_F_GRO_HW) {
8355                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8356                         features &= ~NETIF_F_GRO_HW;
8357                 }
8358         }
8359
8360         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8361         if (features & NETIF_F_RXFCS) {
8362                 if (features & NETIF_F_LRO) {
8363                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8364                         features &= ~NETIF_F_LRO;
8365                 }
8366
8367                 if (features & NETIF_F_GRO_HW) {
8368                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8369                         features &= ~NETIF_F_GRO_HW;
8370                 }
8371         }
8372
8373         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
8374                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
8375                 features &= ~NETIF_F_HW_TLS_RX;
8376         }
8377
8378         return features;
8379 }
8380
8381 int __netdev_update_features(struct net_device *dev)
8382 {
8383         struct net_device *upper, *lower;
8384         netdev_features_t features;
8385         struct list_head *iter;
8386         int err = -1;
8387
8388         ASSERT_RTNL();
8389
8390         features = netdev_get_wanted_features(dev);
8391
8392         if (dev->netdev_ops->ndo_fix_features)
8393                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8394
8395         /* driver might be less strict about feature dependencies */
8396         features = netdev_fix_features(dev, features);
8397
8398         /* some features can't be enabled if they're off an an upper device */
8399         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8400                 features = netdev_sync_upper_features(dev, upper, features);
8401
8402         if (dev->features == features)
8403                 goto sync_lower;
8404
8405         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8406                 &dev->features, &features);
8407
8408         if (dev->netdev_ops->ndo_set_features)
8409                 err = dev->netdev_ops->ndo_set_features(dev, features);
8410         else
8411                 err = 0;
8412
8413         if (unlikely(err < 0)) {
8414                 netdev_err(dev,
8415                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8416                         err, &features, &dev->features);
8417                 /* return non-0 since some features might have changed and
8418                  * it's better to fire a spurious notification than miss it
8419                  */
8420                 return -1;
8421         }
8422
8423 sync_lower:
8424         /* some features must be disabled on lower devices when disabled
8425          * on an upper device (think: bonding master or bridge)
8426          */
8427         netdev_for_each_lower_dev(dev, lower, iter)
8428                 netdev_sync_lower_features(dev, lower, features);
8429
8430         if (!err) {
8431                 netdev_features_t diff = features ^ dev->features;
8432
8433                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8434                         /* udp_tunnel_{get,drop}_rx_info both need
8435                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8436                          * device, or they won't do anything.
8437                          * Thus we need to update dev->features
8438                          * *before* calling udp_tunnel_get_rx_info,
8439                          * but *after* calling udp_tunnel_drop_rx_info.
8440                          */
8441                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8442                                 dev->features = features;
8443                                 udp_tunnel_get_rx_info(dev);
8444                         } else {
8445                                 udp_tunnel_drop_rx_info(dev);
8446                         }
8447                 }
8448
8449                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8450                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8451                                 dev->features = features;
8452                                 err |= vlan_get_rx_ctag_filter_info(dev);
8453                         } else {
8454                                 vlan_drop_rx_ctag_filter_info(dev);
8455                         }
8456                 }
8457
8458                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8459                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8460                                 dev->features = features;
8461                                 err |= vlan_get_rx_stag_filter_info(dev);
8462                         } else {
8463                                 vlan_drop_rx_stag_filter_info(dev);
8464                         }
8465                 }
8466
8467                 dev->features = features;
8468         }
8469
8470         return err < 0 ? 0 : 1;
8471 }
8472
8473 /**
8474  *      netdev_update_features - recalculate device features
8475  *      @dev: the device to check
8476  *
8477  *      Recalculate dev->features set and send notifications if it
8478  *      has changed. Should be called after driver or hardware dependent
8479  *      conditions might have changed that influence the features.
8480  */
8481 void netdev_update_features(struct net_device *dev)
8482 {
8483         if (__netdev_update_features(dev))
8484                 netdev_features_change(dev);
8485 }
8486 EXPORT_SYMBOL(netdev_update_features);
8487
8488 /**
8489  *      netdev_change_features - recalculate device features
8490  *      @dev: the device to check
8491  *
8492  *      Recalculate dev->features set and send notifications even
8493  *      if they have not changed. Should be called instead of
8494  *      netdev_update_features() if also dev->vlan_features might
8495  *      have changed to allow the changes to be propagated to stacked
8496  *      VLAN devices.
8497  */
8498 void netdev_change_features(struct net_device *dev)
8499 {
8500         __netdev_update_features(dev);
8501         netdev_features_change(dev);
8502 }
8503 EXPORT_SYMBOL(netdev_change_features);
8504
8505 /**
8506  *      netif_stacked_transfer_operstate -      transfer operstate
8507  *      @rootdev: the root or lower level device to transfer state from
8508  *      @dev: the device to transfer operstate to
8509  *
8510  *      Transfer operational state from root to device. This is normally
8511  *      called when a stacking relationship exists between the root
8512  *      device and the device(a leaf device).
8513  */
8514 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8515                                         struct net_device *dev)
8516 {
8517         if (rootdev->operstate == IF_OPER_DORMANT)
8518                 netif_dormant_on(dev);
8519         else
8520                 netif_dormant_off(dev);
8521
8522         if (netif_carrier_ok(rootdev))
8523                 netif_carrier_on(dev);
8524         else
8525                 netif_carrier_off(dev);
8526 }
8527 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8528
8529 static int netif_alloc_rx_queues(struct net_device *dev)
8530 {
8531         unsigned int i, count = dev->num_rx_queues;
8532         struct netdev_rx_queue *rx;
8533         size_t sz = count * sizeof(*rx);
8534         int err = 0;
8535
8536         BUG_ON(count < 1);
8537
8538         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8539         if (!rx)
8540                 return -ENOMEM;
8541
8542         dev->_rx = rx;
8543
8544         for (i = 0; i < count; i++) {
8545                 rx[i].dev = dev;
8546
8547                 /* XDP RX-queue setup */
8548                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8549                 if (err < 0)
8550                         goto err_rxq_info;
8551         }
8552         return 0;
8553
8554 err_rxq_info:
8555         /* Rollback successful reg's and free other resources */
8556         while (i--)
8557                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8558         kvfree(dev->_rx);
8559         dev->_rx = NULL;
8560         return err;
8561 }
8562
8563 static void netif_free_rx_queues(struct net_device *dev)
8564 {
8565         unsigned int i, count = dev->num_rx_queues;
8566
8567         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8568         if (!dev->_rx)
8569                 return;
8570
8571         for (i = 0; i < count; i++)
8572                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8573
8574         kvfree(dev->_rx);
8575 }
8576
8577 static void netdev_init_one_queue(struct net_device *dev,
8578                                   struct netdev_queue *queue, void *_unused)
8579 {
8580         /* Initialize queue lock */
8581         spin_lock_init(&queue->_xmit_lock);
8582         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8583         queue->xmit_lock_owner = -1;
8584         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8585         queue->dev = dev;
8586 #ifdef CONFIG_BQL
8587         dql_init(&queue->dql, HZ);
8588 #endif
8589 }
8590
8591 static void netif_free_tx_queues(struct net_device *dev)
8592 {
8593         kvfree(dev->_tx);
8594 }
8595
8596 static int netif_alloc_netdev_queues(struct net_device *dev)
8597 {
8598         unsigned int count = dev->num_tx_queues;
8599         struct netdev_queue *tx;
8600         size_t sz = count * sizeof(*tx);
8601
8602         if (count < 1 || count > 0xffff)
8603                 return -EINVAL;
8604
8605         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8606         if (!tx)
8607                 return -ENOMEM;
8608
8609         dev->_tx = tx;
8610
8611         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8612         spin_lock_init(&dev->tx_global_lock);
8613
8614         return 0;
8615 }
8616
8617 void netif_tx_stop_all_queues(struct net_device *dev)
8618 {
8619         unsigned int i;
8620
8621         for (i = 0; i < dev->num_tx_queues; i++) {
8622                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8623
8624                 netif_tx_stop_queue(txq);
8625         }
8626 }
8627 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8628
8629 /**
8630  *      register_netdevice      - register a network device
8631  *      @dev: device to register
8632  *
8633  *      Take a completed network device structure and add it to the kernel
8634  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8635  *      chain. 0 is returned on success. A negative errno code is returned
8636  *      on a failure to set up the device, or if the name is a duplicate.
8637  *
8638  *      Callers must hold the rtnl semaphore. You may want
8639  *      register_netdev() instead of this.
8640  *
8641  *      BUGS:
8642  *      The locking appears insufficient to guarantee two parallel registers
8643  *      will not get the same name.
8644  */
8645
8646 int register_netdevice(struct net_device *dev)
8647 {
8648         int ret;
8649         struct net *net = dev_net(dev);
8650
8651         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8652                      NETDEV_FEATURE_COUNT);
8653         BUG_ON(dev_boot_phase);
8654         ASSERT_RTNL();
8655
8656         might_sleep();
8657
8658         /* When net_device's are persistent, this will be fatal. */
8659         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8660         BUG_ON(!net);
8661
8662         spin_lock_init(&dev->addr_list_lock);
8663         netdev_set_addr_lockdep_class(dev);
8664
8665         ret = dev_get_valid_name(net, dev, dev->name);
8666         if (ret < 0)
8667                 goto out;
8668
8669         /* Init, if this function is available */
8670         if (dev->netdev_ops->ndo_init) {
8671                 ret = dev->netdev_ops->ndo_init(dev);
8672                 if (ret) {
8673                         if (ret > 0)
8674                                 ret = -EIO;
8675                         goto out;
8676                 }
8677         }
8678
8679         if (((dev->hw_features | dev->features) &
8680              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8681             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8682              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8683                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8684                 ret = -EINVAL;
8685                 goto err_uninit;
8686         }
8687
8688         ret = -EBUSY;
8689         if (!dev->ifindex)
8690                 dev->ifindex = dev_new_index(net);
8691         else if (__dev_get_by_index(net, dev->ifindex))
8692                 goto err_uninit;
8693
8694         /* Transfer changeable features to wanted_features and enable
8695          * software offloads (GSO and GRO).
8696          */
8697         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8698         dev->features |= NETIF_F_SOFT_FEATURES;
8699
8700         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8701                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8702                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8703         }
8704
8705         dev->wanted_features = dev->features & dev->hw_features;
8706
8707         if (!(dev->flags & IFF_LOOPBACK))
8708                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8709
8710         /* If IPv4 TCP segmentation offload is supported we should also
8711          * allow the device to enable segmenting the frame with the option
8712          * of ignoring a static IP ID value.  This doesn't enable the
8713          * feature itself but allows the user to enable it later.
8714          */
8715         if (dev->hw_features & NETIF_F_TSO)
8716                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8717         if (dev->vlan_features & NETIF_F_TSO)
8718                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8719         if (dev->mpls_features & NETIF_F_TSO)
8720                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8721         if (dev->hw_enc_features & NETIF_F_TSO)
8722                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8723
8724         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8725          */
8726         dev->vlan_features |= NETIF_F_HIGHDMA;
8727
8728         /* Make NETIF_F_SG inheritable to tunnel devices.
8729          */
8730         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8731
8732         /* Make NETIF_F_SG inheritable to MPLS.
8733          */
8734         dev->mpls_features |= NETIF_F_SG;
8735
8736         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8737         ret = notifier_to_errno(ret);
8738         if (ret)
8739                 goto err_uninit;
8740
8741         ret = netdev_register_kobject(dev);
8742         if (ret) {
8743                 dev->reg_state = NETREG_UNREGISTERED;
8744                 goto err_uninit;
8745         }
8746         dev->reg_state = NETREG_REGISTERED;
8747
8748         __netdev_update_features(dev);
8749
8750         /*
8751          *      Default initial state at registry is that the
8752          *      device is present.
8753          */
8754
8755         set_bit(__LINK_STATE_PRESENT, &dev->state);
8756
8757         linkwatch_init_dev(dev);
8758
8759         dev_init_scheduler(dev);
8760         dev_hold(dev);
8761         list_netdevice(dev);
8762         add_device_randomness(dev->dev_addr, dev->addr_len);
8763
8764         /* If the device has permanent device address, driver should
8765          * set dev_addr and also addr_assign_type should be set to
8766          * NET_ADDR_PERM (default value).
8767          */
8768         if (dev->addr_assign_type == NET_ADDR_PERM)
8769                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8770
8771         /* Notify protocols, that a new device appeared. */
8772         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8773         ret = notifier_to_errno(ret);
8774         if (ret) {
8775                 rollback_registered(dev);
8776                 rcu_barrier();
8777
8778                 dev->reg_state = NETREG_UNREGISTERED;
8779                 /* We should put the kobject that hold in
8780                  * netdev_unregister_kobject(), otherwise
8781                  * the net device cannot be freed when
8782                  * driver calls free_netdev(), because the
8783                  * kobject is being hold.
8784                  */
8785                 kobject_put(&dev->dev.kobj);
8786         }
8787         /*
8788          *      Prevent userspace races by waiting until the network
8789          *      device is fully setup before sending notifications.
8790          */
8791         if (!dev->rtnl_link_ops ||
8792             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8793                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8794
8795 out:
8796         return ret;
8797
8798 err_uninit:
8799         if (dev->netdev_ops->ndo_uninit)
8800                 dev->netdev_ops->ndo_uninit(dev);
8801         if (dev->priv_destructor)
8802                 dev->priv_destructor(dev);
8803         goto out;
8804 }
8805 EXPORT_SYMBOL(register_netdevice);
8806
8807 /**
8808  *      init_dummy_netdev       - init a dummy network device for NAPI
8809  *      @dev: device to init
8810  *
8811  *      This takes a network device structure and initialize the minimum
8812  *      amount of fields so it can be used to schedule NAPI polls without
8813  *      registering a full blown interface. This is to be used by drivers
8814  *      that need to tie several hardware interfaces to a single NAPI
8815  *      poll scheduler due to HW limitations.
8816  */
8817 int init_dummy_netdev(struct net_device *dev)
8818 {
8819         /* Clear everything. Note we don't initialize spinlocks
8820          * are they aren't supposed to be taken by any of the
8821          * NAPI code and this dummy netdev is supposed to be
8822          * only ever used for NAPI polls
8823          */
8824         memset(dev, 0, sizeof(struct net_device));
8825
8826         /* make sure we BUG if trying to hit standard
8827          * register/unregister code path
8828          */
8829         dev->reg_state = NETREG_DUMMY;
8830
8831         /* NAPI wants this */
8832         INIT_LIST_HEAD(&dev->napi_list);
8833
8834         /* a dummy interface is started by default */
8835         set_bit(__LINK_STATE_PRESENT, &dev->state);
8836         set_bit(__LINK_STATE_START, &dev->state);
8837
8838         /* napi_busy_loop stats accounting wants this */
8839         dev_net_set(dev, &init_net);
8840
8841         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8842          * because users of this 'device' dont need to change
8843          * its refcount.
8844          */
8845
8846         return 0;
8847 }
8848 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8849
8850
8851 /**
8852  *      register_netdev - register a network device
8853  *      @dev: device to register
8854  *
8855  *      Take a completed network device structure and add it to the kernel
8856  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8857  *      chain. 0 is returned on success. A negative errno code is returned
8858  *      on a failure to set up the device, or if the name is a duplicate.
8859  *
8860  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8861  *      and expands the device name if you passed a format string to
8862  *      alloc_netdev.
8863  */
8864 int register_netdev(struct net_device *dev)
8865 {
8866         int err;
8867
8868         if (rtnl_lock_killable())
8869                 return -EINTR;
8870         err = register_netdevice(dev);
8871         rtnl_unlock();
8872         return err;
8873 }
8874 EXPORT_SYMBOL(register_netdev);
8875
8876 int netdev_refcnt_read(const struct net_device *dev)
8877 {
8878         int i, refcnt = 0;
8879
8880         for_each_possible_cpu(i)
8881                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8882         return refcnt;
8883 }
8884 EXPORT_SYMBOL(netdev_refcnt_read);
8885
8886 /**
8887  * netdev_wait_allrefs - wait until all references are gone.
8888  * @dev: target net_device
8889  *
8890  * This is called when unregistering network devices.
8891  *
8892  * Any protocol or device that holds a reference should register
8893  * for netdevice notification, and cleanup and put back the
8894  * reference if they receive an UNREGISTER event.
8895  * We can get stuck here if buggy protocols don't correctly
8896  * call dev_put.
8897  */
8898 static void netdev_wait_allrefs(struct net_device *dev)
8899 {
8900         unsigned long rebroadcast_time, warning_time;
8901         int refcnt;
8902
8903         linkwatch_forget_dev(dev);
8904
8905         rebroadcast_time = warning_time = jiffies;
8906         refcnt = netdev_refcnt_read(dev);
8907
8908         while (refcnt != 0) {
8909                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8910                         rtnl_lock();
8911
8912                         /* Rebroadcast unregister notification */
8913                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8914
8915                         __rtnl_unlock();
8916                         rcu_barrier();
8917                         rtnl_lock();
8918
8919                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8920                                      &dev->state)) {
8921                                 /* We must not have linkwatch events
8922                                  * pending on unregister. If this
8923                                  * happens, we simply run the queue
8924                                  * unscheduled, resulting in a noop
8925                                  * for this device.
8926                                  */
8927                                 linkwatch_run_queue();
8928                         }
8929
8930                         __rtnl_unlock();
8931
8932                         rebroadcast_time = jiffies;
8933                 }
8934
8935                 msleep(250);
8936
8937                 refcnt = netdev_refcnt_read(dev);
8938
8939                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8940                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8941                                  dev->name, refcnt);
8942                         warning_time = jiffies;
8943                 }
8944         }
8945 }
8946
8947 /* The sequence is:
8948  *
8949  *      rtnl_lock();
8950  *      ...
8951  *      register_netdevice(x1);
8952  *      register_netdevice(x2);
8953  *      ...
8954  *      unregister_netdevice(y1);
8955  *      unregister_netdevice(y2);
8956  *      ...
8957  *      rtnl_unlock();
8958  *      free_netdev(y1);
8959  *      free_netdev(y2);
8960  *
8961  * We are invoked by rtnl_unlock().
8962  * This allows us to deal with problems:
8963  * 1) We can delete sysfs objects which invoke hotplug
8964  *    without deadlocking with linkwatch via keventd.
8965  * 2) Since we run with the RTNL semaphore not held, we can sleep
8966  *    safely in order to wait for the netdev refcnt to drop to zero.
8967  *
8968  * We must not return until all unregister events added during
8969  * the interval the lock was held have been completed.
8970  */
8971 void netdev_run_todo(void)
8972 {
8973         struct list_head list;
8974
8975         /* Snapshot list, allow later requests */
8976         list_replace_init(&net_todo_list, &list);
8977
8978         __rtnl_unlock();
8979
8980
8981         /* Wait for rcu callbacks to finish before next phase */
8982         if (!list_empty(&list))
8983                 rcu_barrier();
8984
8985         while (!list_empty(&list)) {
8986                 struct net_device *dev
8987                         = list_first_entry(&list, struct net_device, todo_list);
8988                 list_del(&dev->todo_list);
8989
8990                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8991                         pr_err("network todo '%s' but state %d\n",
8992                                dev->name, dev->reg_state);
8993                         dump_stack();
8994                         continue;
8995                 }
8996
8997                 dev->reg_state = NETREG_UNREGISTERED;
8998
8999                 netdev_wait_allrefs(dev);
9000
9001                 /* paranoia */
9002                 BUG_ON(netdev_refcnt_read(dev));
9003                 BUG_ON(!list_empty(&dev->ptype_all));
9004                 BUG_ON(!list_empty(&dev->ptype_specific));
9005                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9006                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9007 #if IS_ENABLED(CONFIG_DECNET)
9008                 WARN_ON(dev->dn_ptr);
9009 #endif
9010                 if (dev->priv_destructor)
9011                         dev->priv_destructor(dev);
9012                 if (dev->needs_free_netdev)
9013                         free_netdev(dev);
9014
9015                 /* Report a network device has been unregistered */
9016                 rtnl_lock();
9017                 dev_net(dev)->dev_unreg_count--;
9018                 __rtnl_unlock();
9019                 wake_up(&netdev_unregistering_wq);
9020
9021                 /* Free network device */
9022                 kobject_put(&dev->dev.kobj);
9023         }
9024 }
9025
9026 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9027  * all the same fields in the same order as net_device_stats, with only
9028  * the type differing, but rtnl_link_stats64 may have additional fields
9029  * at the end for newer counters.
9030  */
9031 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9032                              const struct net_device_stats *netdev_stats)
9033 {
9034 #if BITS_PER_LONG == 64
9035         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9036         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9037         /* zero out counters that only exist in rtnl_link_stats64 */
9038         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9039                sizeof(*stats64) - sizeof(*netdev_stats));
9040 #else
9041         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9042         const unsigned long *src = (const unsigned long *)netdev_stats;
9043         u64 *dst = (u64 *)stats64;
9044
9045         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9046         for (i = 0; i < n; i++)
9047                 dst[i] = src[i];
9048         /* zero out counters that only exist in rtnl_link_stats64 */
9049         memset((char *)stats64 + n * sizeof(u64), 0,
9050                sizeof(*stats64) - n * sizeof(u64));
9051 #endif
9052 }
9053 EXPORT_SYMBOL(netdev_stats_to_stats64);
9054
9055 /**
9056  *      dev_get_stats   - get network device statistics
9057  *      @dev: device to get statistics from
9058  *      @storage: place to store stats
9059  *
9060  *      Get network statistics from device. Return @storage.
9061  *      The device driver may provide its own method by setting
9062  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9063  *      otherwise the internal statistics structure is used.
9064  */
9065 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9066                                         struct rtnl_link_stats64 *storage)
9067 {
9068         const struct net_device_ops *ops = dev->netdev_ops;
9069
9070         if (ops->ndo_get_stats64) {
9071                 memset(storage, 0, sizeof(*storage));
9072                 ops->ndo_get_stats64(dev, storage);
9073         } else if (ops->ndo_get_stats) {
9074                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9075         } else {
9076                 netdev_stats_to_stats64(storage, &dev->stats);
9077         }
9078         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9079         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9080         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9081         return storage;
9082 }
9083 EXPORT_SYMBOL(dev_get_stats);
9084
9085 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9086 {
9087         struct netdev_queue *queue = dev_ingress_queue(dev);
9088
9089 #ifdef CONFIG_NET_CLS_ACT
9090         if (queue)
9091                 return queue;
9092         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9093         if (!queue)
9094                 return NULL;
9095         netdev_init_one_queue(dev, queue, NULL);
9096         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9097         queue->qdisc_sleeping = &noop_qdisc;
9098         rcu_assign_pointer(dev->ingress_queue, queue);
9099 #endif
9100         return queue;
9101 }
9102
9103 static const struct ethtool_ops default_ethtool_ops;
9104
9105 void netdev_set_default_ethtool_ops(struct net_device *dev,
9106                                     const struct ethtool_ops *ops)
9107 {
9108         if (dev->ethtool_ops == &default_ethtool_ops)
9109                 dev->ethtool_ops = ops;
9110 }
9111 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9112
9113 void netdev_freemem(struct net_device *dev)
9114 {
9115         char *addr = (char *)dev - dev->padded;
9116
9117         kvfree(addr);
9118 }
9119
9120 /**
9121  * alloc_netdev_mqs - allocate network device
9122  * @sizeof_priv: size of private data to allocate space for
9123  * @name: device name format string
9124  * @name_assign_type: origin of device name
9125  * @setup: callback to initialize device
9126  * @txqs: the number of TX subqueues to allocate
9127  * @rxqs: the number of RX subqueues to allocate
9128  *
9129  * Allocates a struct net_device with private data area for driver use
9130  * and performs basic initialization.  Also allocates subqueue structs
9131  * for each queue on the device.
9132  */
9133 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9134                 unsigned char name_assign_type,
9135                 void (*setup)(struct net_device *),
9136                 unsigned int txqs, unsigned int rxqs)
9137 {
9138         struct net_device *dev;
9139         unsigned int alloc_size;
9140         struct net_device *p;
9141
9142         BUG_ON(strlen(name) >= sizeof(dev->name));
9143
9144         if (txqs < 1) {
9145                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9146                 return NULL;
9147         }
9148
9149         if (rxqs < 1) {
9150                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9151                 return NULL;
9152         }
9153
9154         alloc_size = sizeof(struct net_device);
9155         if (sizeof_priv) {
9156                 /* ensure 32-byte alignment of private area */
9157                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9158                 alloc_size += sizeof_priv;
9159         }
9160         /* ensure 32-byte alignment of whole construct */
9161         alloc_size += NETDEV_ALIGN - 1;
9162
9163         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9164         if (!p)
9165                 return NULL;
9166
9167         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9168         dev->padded = (char *)dev - (char *)p;
9169
9170         dev->pcpu_refcnt = alloc_percpu(int);
9171         if (!dev->pcpu_refcnt)
9172                 goto free_dev;
9173
9174         if (dev_addr_init(dev))
9175                 goto free_pcpu;
9176
9177         dev_mc_init(dev);
9178         dev_uc_init(dev);
9179
9180         dev_net_set(dev, &init_net);
9181
9182         dev->gso_max_size = GSO_MAX_SIZE;
9183         dev->gso_max_segs = GSO_MAX_SEGS;
9184         dev->upper_level = 1;
9185         dev->lower_level = 1;
9186
9187         INIT_LIST_HEAD(&dev->napi_list);
9188         INIT_LIST_HEAD(&dev->unreg_list);
9189         INIT_LIST_HEAD(&dev->close_list);
9190         INIT_LIST_HEAD(&dev->link_watch_list);
9191         INIT_LIST_HEAD(&dev->adj_list.upper);
9192         INIT_LIST_HEAD(&dev->adj_list.lower);
9193         INIT_LIST_HEAD(&dev->ptype_all);
9194         INIT_LIST_HEAD(&dev->ptype_specific);
9195 #ifdef CONFIG_NET_SCHED
9196         hash_init(dev->qdisc_hash);
9197 #endif
9198         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9199         setup(dev);
9200
9201         if (!dev->tx_queue_len) {
9202                 dev->priv_flags |= IFF_NO_QUEUE;
9203                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9204         }
9205
9206         dev->num_tx_queues = txqs;
9207         dev->real_num_tx_queues = txqs;
9208         if (netif_alloc_netdev_queues(dev))
9209                 goto free_all;
9210
9211         dev->num_rx_queues = rxqs;
9212         dev->real_num_rx_queues = rxqs;
9213         if (netif_alloc_rx_queues(dev))
9214                 goto free_all;
9215
9216         strcpy(dev->name, name);
9217         dev->name_assign_type = name_assign_type;
9218         dev->group = INIT_NETDEV_GROUP;
9219         if (!dev->ethtool_ops)
9220                 dev->ethtool_ops = &default_ethtool_ops;
9221
9222         nf_hook_ingress_init(dev);
9223
9224         return dev;
9225
9226 free_all:
9227         free_netdev(dev);
9228         return NULL;
9229
9230 free_pcpu:
9231         free_percpu(dev->pcpu_refcnt);
9232 free_dev:
9233         netdev_freemem(dev);
9234         return NULL;
9235 }
9236 EXPORT_SYMBOL(alloc_netdev_mqs);
9237
9238 /**
9239  * free_netdev - free network device
9240  * @dev: device
9241  *
9242  * This function does the last stage of destroying an allocated device
9243  * interface. The reference to the device object is released. If this
9244  * is the last reference then it will be freed.Must be called in process
9245  * context.
9246  */
9247 void free_netdev(struct net_device *dev)
9248 {
9249         struct napi_struct *p, *n;
9250
9251         might_sleep();
9252         netif_free_tx_queues(dev);
9253         netif_free_rx_queues(dev);
9254
9255         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9256
9257         /* Flush device addresses */
9258         dev_addr_flush(dev);
9259
9260         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9261                 netif_napi_del(p);
9262
9263         free_percpu(dev->pcpu_refcnt);
9264         dev->pcpu_refcnt = NULL;
9265
9266         /*  Compatibility with error handling in drivers */
9267         if (dev->reg_state == NETREG_UNINITIALIZED) {
9268                 netdev_freemem(dev);
9269                 return;
9270         }
9271
9272         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9273         dev->reg_state = NETREG_RELEASED;
9274
9275         /* will free via device release */
9276         put_device(&dev->dev);
9277 }
9278 EXPORT_SYMBOL(free_netdev);
9279
9280 /**
9281  *      synchronize_net -  Synchronize with packet receive processing
9282  *
9283  *      Wait for packets currently being received to be done.
9284  *      Does not block later packets from starting.
9285  */
9286 void synchronize_net(void)
9287 {
9288         might_sleep();
9289         if (rtnl_is_locked())
9290                 synchronize_rcu_expedited();
9291         else
9292                 synchronize_rcu();
9293 }
9294 EXPORT_SYMBOL(synchronize_net);
9295
9296 /**
9297  *      unregister_netdevice_queue - remove device from the kernel
9298  *      @dev: device
9299  *      @head: list
9300  *
9301  *      This function shuts down a device interface and removes it
9302  *      from the kernel tables.
9303  *      If head not NULL, device is queued to be unregistered later.
9304  *
9305  *      Callers must hold the rtnl semaphore.  You may want
9306  *      unregister_netdev() instead of this.
9307  */
9308
9309 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9310 {
9311         ASSERT_RTNL();
9312
9313         if (head) {
9314                 list_move_tail(&dev->unreg_list, head);
9315         } else {
9316                 rollback_registered(dev);
9317                 /* Finish processing unregister after unlock */
9318                 net_set_todo(dev);
9319         }
9320 }
9321 EXPORT_SYMBOL(unregister_netdevice_queue);
9322
9323 /**
9324  *      unregister_netdevice_many - unregister many devices
9325  *      @head: list of devices
9326  *
9327  *  Note: As most callers use a stack allocated list_head,
9328  *  we force a list_del() to make sure stack wont be corrupted later.
9329  */
9330 void unregister_netdevice_many(struct list_head *head)
9331 {
9332         struct net_device *dev;
9333
9334         if (!list_empty(head)) {
9335                 rollback_registered_many(head);
9336                 list_for_each_entry(dev, head, unreg_list)
9337                         net_set_todo(dev);
9338                 list_del(head);
9339         }
9340 }
9341 EXPORT_SYMBOL(unregister_netdevice_many);
9342
9343 /**
9344  *      unregister_netdev - remove device from the kernel
9345  *      @dev: device
9346  *
9347  *      This function shuts down a device interface and removes it
9348  *      from the kernel tables.
9349  *
9350  *      This is just a wrapper for unregister_netdevice that takes
9351  *      the rtnl semaphore.  In general you want to use this and not
9352  *      unregister_netdevice.
9353  */
9354 void unregister_netdev(struct net_device *dev)
9355 {
9356         rtnl_lock();
9357         unregister_netdevice(dev);
9358         rtnl_unlock();
9359 }
9360 EXPORT_SYMBOL(unregister_netdev);
9361
9362 /**
9363  *      dev_change_net_namespace - move device to different nethost namespace
9364  *      @dev: device
9365  *      @net: network namespace
9366  *      @pat: If not NULL name pattern to try if the current device name
9367  *            is already taken in the destination network namespace.
9368  *
9369  *      This function shuts down a device interface and moves it
9370  *      to a new network namespace. On success 0 is returned, on
9371  *      a failure a netagive errno code is returned.
9372  *
9373  *      Callers must hold the rtnl semaphore.
9374  */
9375
9376 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9377 {
9378         int err, new_nsid, new_ifindex;
9379
9380         ASSERT_RTNL();
9381
9382         /* Don't allow namespace local devices to be moved. */
9383         err = -EINVAL;
9384         if (dev->features & NETIF_F_NETNS_LOCAL)
9385                 goto out;
9386
9387         /* Ensure the device has been registrered */
9388         if (dev->reg_state != NETREG_REGISTERED)
9389                 goto out;
9390
9391         /* Get out if there is nothing todo */
9392         err = 0;
9393         if (net_eq(dev_net(dev), net))
9394                 goto out;
9395
9396         /* Pick the destination device name, and ensure
9397          * we can use it in the destination network namespace.
9398          */
9399         err = -EEXIST;
9400         if (__dev_get_by_name(net, dev->name)) {
9401                 /* We get here if we can't use the current device name */
9402                 if (!pat)
9403                         goto out;
9404                 err = dev_get_valid_name(net, dev, pat);
9405                 if (err < 0)
9406                         goto out;
9407         }
9408
9409         /*
9410          * And now a mini version of register_netdevice unregister_netdevice.
9411          */
9412
9413         /* If device is running close it first. */
9414         dev_close(dev);
9415
9416         /* And unlink it from device chain */
9417         unlist_netdevice(dev);
9418
9419         synchronize_net();
9420
9421         /* Shutdown queueing discipline. */
9422         dev_shutdown(dev);
9423
9424         /* Notify protocols, that we are about to destroy
9425          * this device. They should clean all the things.
9426          *
9427          * Note that dev->reg_state stays at NETREG_REGISTERED.
9428          * This is wanted because this way 8021q and macvlan know
9429          * the device is just moving and can keep their slaves up.
9430          */
9431         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9432         rcu_barrier();
9433
9434         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
9435         /* If there is an ifindex conflict assign a new one */
9436         if (__dev_get_by_index(net, dev->ifindex))
9437                 new_ifindex = dev_new_index(net);
9438         else
9439                 new_ifindex = dev->ifindex;
9440
9441         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9442                             new_ifindex);
9443
9444         /*
9445          *      Flush the unicast and multicast chains
9446          */
9447         dev_uc_flush(dev);
9448         dev_mc_flush(dev);
9449
9450         /* Send a netdev-removed uevent to the old namespace */
9451         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9452         netdev_adjacent_del_links(dev);
9453
9454         /* Actually switch the network namespace */
9455         dev_net_set(dev, net);
9456         dev->ifindex = new_ifindex;
9457
9458         /* Send a netdev-add uevent to the new namespace */
9459         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9460         netdev_adjacent_add_links(dev);
9461
9462         /* Fixup kobjects */
9463         err = device_rename(&dev->dev, dev->name);
9464         WARN_ON(err);
9465
9466         /* Add the device back in the hashes */
9467         list_netdevice(dev);
9468
9469         /* Notify protocols, that a new device appeared. */
9470         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9471
9472         /*
9473          *      Prevent userspace races by waiting until the network
9474          *      device is fully setup before sending notifications.
9475          */
9476         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9477
9478         synchronize_net();
9479         err = 0;
9480 out:
9481         return err;
9482 }
9483 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9484
9485 static int dev_cpu_dead(unsigned int oldcpu)
9486 {
9487         struct sk_buff **list_skb;
9488         struct sk_buff *skb;
9489         unsigned int cpu;
9490         struct softnet_data *sd, *oldsd, *remsd = NULL;
9491
9492         local_irq_disable();
9493         cpu = smp_processor_id();
9494         sd = &per_cpu(softnet_data, cpu);
9495         oldsd = &per_cpu(softnet_data, oldcpu);
9496
9497         /* Find end of our completion_queue. */
9498         list_skb = &sd->completion_queue;
9499         while (*list_skb)
9500                 list_skb = &(*list_skb)->next;
9501         /* Append completion queue from offline CPU. */
9502         *list_skb = oldsd->completion_queue;
9503         oldsd->completion_queue = NULL;
9504
9505         /* Append output queue from offline CPU. */
9506         if (oldsd->output_queue) {
9507                 *sd->output_queue_tailp = oldsd->output_queue;
9508                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9509                 oldsd->output_queue = NULL;
9510                 oldsd->output_queue_tailp = &oldsd->output_queue;
9511         }
9512         /* Append NAPI poll list from offline CPU, with one exception :
9513          * process_backlog() must be called by cpu owning percpu backlog.
9514          * We properly handle process_queue & input_pkt_queue later.
9515          */
9516         while (!list_empty(&oldsd->poll_list)) {
9517                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9518                                                             struct napi_struct,
9519                                                             poll_list);
9520
9521                 list_del_init(&napi->poll_list);
9522                 if (napi->poll == process_backlog)
9523                         napi->state = 0;
9524                 else
9525                         ____napi_schedule(sd, napi);
9526         }
9527
9528         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9529         local_irq_enable();
9530
9531 #ifdef CONFIG_RPS
9532         remsd = oldsd->rps_ipi_list;
9533         oldsd->rps_ipi_list = NULL;
9534 #endif
9535         /* send out pending IPI's on offline CPU */
9536         net_rps_send_ipi(remsd);
9537
9538         /* Process offline CPU's input_pkt_queue */
9539         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9540                 netif_rx_ni(skb);
9541                 input_queue_head_incr(oldsd);
9542         }
9543         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9544                 netif_rx_ni(skb);
9545                 input_queue_head_incr(oldsd);
9546         }
9547
9548         return 0;
9549 }
9550
9551 /**
9552  *      netdev_increment_features - increment feature set by one
9553  *      @all: current feature set
9554  *      @one: new feature set
9555  *      @mask: mask feature set
9556  *
9557  *      Computes a new feature set after adding a device with feature set
9558  *      @one to the master device with current feature set @all.  Will not
9559  *      enable anything that is off in @mask. Returns the new feature set.
9560  */
9561 netdev_features_t netdev_increment_features(netdev_features_t all,
9562         netdev_features_t one, netdev_features_t mask)
9563 {
9564         if (mask & NETIF_F_HW_CSUM)
9565                 mask |= NETIF_F_CSUM_MASK;
9566         mask |= NETIF_F_VLAN_CHALLENGED;
9567
9568         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9569         all &= one | ~NETIF_F_ALL_FOR_ALL;
9570
9571         /* If one device supports hw checksumming, set for all. */
9572         if (all & NETIF_F_HW_CSUM)
9573                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9574
9575         return all;
9576 }
9577 EXPORT_SYMBOL(netdev_increment_features);
9578
9579 static struct hlist_head * __net_init netdev_create_hash(void)
9580 {
9581         int i;
9582         struct hlist_head *hash;
9583
9584         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9585         if (hash != NULL)
9586                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9587                         INIT_HLIST_HEAD(&hash[i]);
9588
9589         return hash;
9590 }
9591
9592 /* Initialize per network namespace state */
9593 static int __net_init netdev_init(struct net *net)
9594 {
9595         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9596                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9597
9598         if (net != &init_net)
9599                 INIT_LIST_HEAD(&net->dev_base_head);
9600
9601         net->dev_name_head = netdev_create_hash();
9602         if (net->dev_name_head == NULL)
9603                 goto err_name;
9604
9605         net->dev_index_head = netdev_create_hash();
9606         if (net->dev_index_head == NULL)
9607                 goto err_idx;
9608
9609         return 0;
9610
9611 err_idx:
9612         kfree(net->dev_name_head);
9613 err_name:
9614         return -ENOMEM;
9615 }
9616
9617 /**
9618  *      netdev_drivername - network driver for the device
9619  *      @dev: network device
9620  *
9621  *      Determine network driver for device.
9622  */
9623 const char *netdev_drivername(const struct net_device *dev)
9624 {
9625         const struct device_driver *driver;
9626         const struct device *parent;
9627         const char *empty = "";
9628
9629         parent = dev->dev.parent;
9630         if (!parent)
9631                 return empty;
9632
9633         driver = parent->driver;
9634         if (driver && driver->name)
9635                 return driver->name;
9636         return empty;
9637 }
9638
9639 static void __netdev_printk(const char *level, const struct net_device *dev,
9640                             struct va_format *vaf)
9641 {
9642         if (dev && dev->dev.parent) {
9643                 dev_printk_emit(level[1] - '0',
9644                                 dev->dev.parent,
9645                                 "%s %s %s%s: %pV",
9646                                 dev_driver_string(dev->dev.parent),
9647                                 dev_name(dev->dev.parent),
9648                                 netdev_name(dev), netdev_reg_state(dev),
9649                                 vaf);
9650         } else if (dev) {
9651                 printk("%s%s%s: %pV",
9652                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9653         } else {
9654                 printk("%s(NULL net_device): %pV", level, vaf);
9655         }
9656 }
9657
9658 void netdev_printk(const char *level, const struct net_device *dev,
9659                    const char *format, ...)
9660 {
9661         struct va_format vaf;
9662         va_list args;
9663
9664         va_start(args, format);
9665
9666         vaf.fmt = format;
9667         vaf.va = &args;
9668
9669         __netdev_printk(level, dev, &vaf);
9670
9671         va_end(args);
9672 }
9673 EXPORT_SYMBOL(netdev_printk);
9674
9675 #define define_netdev_printk_level(func, level)                 \
9676 void func(const struct net_device *dev, const char *fmt, ...)   \
9677 {                                                               \
9678         struct va_format vaf;                                   \
9679         va_list args;                                           \
9680                                                                 \
9681         va_start(args, fmt);                                    \
9682                                                                 \
9683         vaf.fmt = fmt;                                          \
9684         vaf.va = &args;                                         \
9685                                                                 \
9686         __netdev_printk(level, dev, &vaf);                      \
9687                                                                 \
9688         va_end(args);                                           \
9689 }                                                               \
9690 EXPORT_SYMBOL(func);
9691
9692 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9693 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9694 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9695 define_netdev_printk_level(netdev_err, KERN_ERR);
9696 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9697 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9698 define_netdev_printk_level(netdev_info, KERN_INFO);
9699
9700 static void __net_exit netdev_exit(struct net *net)
9701 {
9702         kfree(net->dev_name_head);
9703         kfree(net->dev_index_head);
9704         if (net != &init_net)
9705                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9706 }
9707
9708 static struct pernet_operations __net_initdata netdev_net_ops = {
9709         .init = netdev_init,
9710         .exit = netdev_exit,
9711 };
9712
9713 static void __net_exit default_device_exit(struct net *net)
9714 {
9715         struct net_device *dev, *aux;
9716         /*
9717          * Push all migratable network devices back to the
9718          * initial network namespace
9719          */
9720         rtnl_lock();
9721         for_each_netdev_safe(net, dev, aux) {
9722                 int err;
9723                 char fb_name[IFNAMSIZ];
9724
9725                 /* Ignore unmoveable devices (i.e. loopback) */
9726                 if (dev->features & NETIF_F_NETNS_LOCAL)
9727                         continue;
9728
9729                 /* Leave virtual devices for the generic cleanup */
9730                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
9731                         continue;
9732
9733                 /* Push remaining network devices to init_net */
9734                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9735                 if (__dev_get_by_name(&init_net, fb_name))
9736                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
9737                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9738                 if (err) {
9739                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9740                                  __func__, dev->name, err);
9741                         BUG();
9742                 }
9743         }
9744         rtnl_unlock();
9745 }
9746
9747 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9748 {
9749         /* Return with the rtnl_lock held when there are no network
9750          * devices unregistering in any network namespace in net_list.
9751          */
9752         struct net *net;
9753         bool unregistering;
9754         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9755
9756         add_wait_queue(&netdev_unregistering_wq, &wait);
9757         for (;;) {
9758                 unregistering = false;
9759                 rtnl_lock();
9760                 list_for_each_entry(net, net_list, exit_list) {
9761                         if (net->dev_unreg_count > 0) {
9762                                 unregistering = true;
9763                                 break;
9764                         }
9765                 }
9766                 if (!unregistering)
9767                         break;
9768                 __rtnl_unlock();
9769
9770                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9771         }
9772         remove_wait_queue(&netdev_unregistering_wq, &wait);
9773 }
9774
9775 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9776 {
9777         /* At exit all network devices most be removed from a network
9778          * namespace.  Do this in the reverse order of registration.
9779          * Do this across as many network namespaces as possible to
9780          * improve batching efficiency.
9781          */
9782         struct net_device *dev;
9783         struct net *net;
9784         LIST_HEAD(dev_kill_list);
9785
9786         /* To prevent network device cleanup code from dereferencing
9787          * loopback devices or network devices that have been freed
9788          * wait here for all pending unregistrations to complete,
9789          * before unregistring the loopback device and allowing the
9790          * network namespace be freed.
9791          *
9792          * The netdev todo list containing all network devices
9793          * unregistrations that happen in default_device_exit_batch
9794          * will run in the rtnl_unlock() at the end of
9795          * default_device_exit_batch.
9796          */
9797         rtnl_lock_unregistering(net_list);
9798         list_for_each_entry(net, net_list, exit_list) {
9799                 for_each_netdev_reverse(net, dev) {
9800                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9801                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9802                         else
9803                                 unregister_netdevice_queue(dev, &dev_kill_list);
9804                 }
9805         }
9806         unregister_netdevice_many(&dev_kill_list);
9807         rtnl_unlock();
9808 }
9809
9810 static struct pernet_operations __net_initdata default_device_ops = {
9811         .exit = default_device_exit,
9812         .exit_batch = default_device_exit_batch,
9813 };
9814
9815 /*
9816  *      Initialize the DEV module. At boot time this walks the device list and
9817  *      unhooks any devices that fail to initialise (normally hardware not
9818  *      present) and leaves us with a valid list of present and active devices.
9819  *
9820  */
9821
9822 /*
9823  *       This is called single threaded during boot, so no need
9824  *       to take the rtnl semaphore.
9825  */
9826 static int __init net_dev_init(void)
9827 {
9828         int i, rc = -ENOMEM;
9829
9830         BUG_ON(!dev_boot_phase);
9831
9832         if (dev_proc_init())
9833                 goto out;
9834
9835         if (netdev_kobject_init())
9836                 goto out;
9837
9838         INIT_LIST_HEAD(&ptype_all);
9839         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9840                 INIT_LIST_HEAD(&ptype_base[i]);
9841
9842         INIT_LIST_HEAD(&offload_base);
9843
9844         if (register_pernet_subsys(&netdev_net_ops))
9845                 goto out;
9846
9847         /*
9848          *      Initialise the packet receive queues.
9849          */
9850
9851         for_each_possible_cpu(i) {
9852                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9853                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9854
9855                 INIT_WORK(flush, flush_backlog);
9856
9857                 skb_queue_head_init(&sd->input_pkt_queue);
9858                 skb_queue_head_init(&sd->process_queue);
9859 #ifdef CONFIG_XFRM_OFFLOAD
9860                 skb_queue_head_init(&sd->xfrm_backlog);
9861 #endif
9862                 INIT_LIST_HEAD(&sd->poll_list);
9863                 sd->output_queue_tailp = &sd->output_queue;
9864 #ifdef CONFIG_RPS
9865                 sd->csd.func = rps_trigger_softirq;
9866                 sd->csd.info = sd;
9867                 sd->cpu = i;
9868 #endif
9869
9870                 init_gro_hash(&sd->backlog);
9871                 sd->backlog.poll = process_backlog;
9872                 sd->backlog.weight = weight_p;
9873         }
9874
9875         dev_boot_phase = 0;
9876
9877         /* The loopback device is special if any other network devices
9878          * is present in a network namespace the loopback device must
9879          * be present. Since we now dynamically allocate and free the
9880          * loopback device ensure this invariant is maintained by
9881          * keeping the loopback device as the first device on the
9882          * list of network devices.  Ensuring the loopback devices
9883          * is the first device that appears and the last network device
9884          * that disappears.
9885          */
9886         if (register_pernet_device(&loopback_net_ops))
9887                 goto out;
9888
9889         if (register_pernet_device(&default_device_ops))
9890                 goto out;
9891
9892         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9893         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9894
9895         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9896                                        NULL, dev_cpu_dead);
9897         WARN_ON(rc < 0);
9898         rc = 0;
9899 out:
9900         return rc;
9901 }
9902
9903 subsys_initcall(net_dev_init);