GNU Linux-libre 6.1.24-gnu
[releases.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(net);
395 }
396
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412
413         dev_base_seq_inc(dev_net(dev));
414 }
415
416 /*
417  *      Our notifier list
418  */
419
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518
519
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585
586         spin_lock(&ptype_lock);
587
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620
621
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677
678         return &stack->path[k];
679 }
680
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707
708         if (!ctx.dev)
709                 return ret;
710
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873
874         WARN_ON_ONCE(!rcu_read_lock_held());
875
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878
879         napi = napi_by_id(napi_id);
880
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904
905         strcpy(name, dev->name);
906
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strscpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strscpy(dev->name, name, IFNAMSIZ);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163
1164         net = dev_net(dev);
1165
1166         /* Some auto-enslaved devices e.g. failover slaves are
1167          * special, as userspace might rename the device after
1168          * the interface had been brought up and running since
1169          * the point kernel initiated auto-enslavement. Allow
1170          * live name change even when these slave devices are
1171          * up and running.
1172          *
1173          * Typically, users of these auto-enslaving devices
1174          * don't actually care about slave name change, as
1175          * they are supposed to operate on master interface
1176          * directly.
1177          */
1178         if (dev->flags & IFF_UP &&
1179             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180                 return -EBUSY;
1181
1182         down_write(&devnet_rename_sem);
1183
1184         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185                 up_write(&devnet_rename_sem);
1186                 return 0;
1187         }
1188
1189         memcpy(oldname, dev->name, IFNAMSIZ);
1190
1191         err = dev_get_valid_name(net, dev, newname);
1192         if (err < 0) {
1193                 up_write(&devnet_rename_sem);
1194                 return err;
1195         }
1196
1197         if (oldname[0] && !strchr(oldname, '%'))
1198                 netdev_info(dev, "renamed from %s\n", oldname);
1199
1200         old_assign_type = dev->name_assign_type;
1201         dev->name_assign_type = NET_NAME_RENAMED;
1202
1203 rollback:
1204         ret = device_rename(&dev->dev, dev->name);
1205         if (ret) {
1206                 memcpy(dev->name, oldname, IFNAMSIZ);
1207                 dev->name_assign_type = old_assign_type;
1208                 up_write(&devnet_rename_sem);
1209                 return ret;
1210         }
1211
1212         up_write(&devnet_rename_sem);
1213
1214         netdev_adjacent_rename_links(dev, oldname);
1215
1216         write_lock(&dev_base_lock);
1217         netdev_name_node_del(dev->name_node);
1218         write_unlock(&dev_base_lock);
1219
1220         synchronize_rcu();
1221
1222         write_lock(&dev_base_lock);
1223         netdev_name_node_add(net, dev->name_node);
1224         write_unlock(&dev_base_lock);
1225
1226         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227         ret = notifier_to_errno(ret);
1228
1229         if (ret) {
1230                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231                 if (err >= 0) {
1232                         err = ret;
1233                         down_write(&devnet_rename_sem);
1234                         memcpy(dev->name, oldname, IFNAMSIZ);
1235                         memcpy(oldname, newname, IFNAMSIZ);
1236                         dev->name_assign_type = old_assign_type;
1237                         old_assign_type = NET_NAME_RENAMED;
1238                         goto rollback;
1239                 } else {
1240                         netdev_err(dev, "name change rollback failed: %d\n",
1241                                    ret);
1242                 }
1243         }
1244
1245         return err;
1246 }
1247
1248 /**
1249  *      dev_set_alias - change ifalias of a device
1250  *      @dev: device
1251  *      @alias: name up to IFALIASZ
1252  *      @len: limit of bytes to copy from info
1253  *
1254  *      Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258         struct dev_ifalias *new_alias = NULL;
1259
1260         if (len >= IFALIASZ)
1261                 return -EINVAL;
1262
1263         if (len) {
1264                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265                 if (!new_alias)
1266                         return -ENOMEM;
1267
1268                 memcpy(new_alias->ifalias, alias, len);
1269                 new_alias->ifalias[len] = 0;
1270         }
1271
1272         mutex_lock(&ifalias_mutex);
1273         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274                                         mutex_is_locked(&ifalias_mutex));
1275         mutex_unlock(&ifalias_mutex);
1276
1277         if (new_alias)
1278                 kfree_rcu(new_alias, rcuhead);
1279
1280         return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283
1284 /**
1285  *      dev_get_alias - get ifalias of a device
1286  *      @dev: device
1287  *      @name: buffer to store name of ifalias
1288  *      @len: size of buffer
1289  *
1290  *      get ifalias for a device.  Caller must make sure dev cannot go
1291  *      away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295         const struct dev_ifalias *alias;
1296         int ret = 0;
1297
1298         rcu_read_lock();
1299         alias = rcu_dereference(dev->ifalias);
1300         if (alias)
1301                 ret = snprintf(name, len, "%s", alias->ifalias);
1302         rcu_read_unlock();
1303
1304         return ret;
1305 }
1306
1307 /**
1308  *      netdev_features_change - device changes features
1309  *      @dev: device to cause notification
1310  *
1311  *      Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318
1319 /**
1320  *      netdev_state_change - device changes state
1321  *      @dev: device to cause notification
1322  *
1323  *      Called to indicate a device has changed state. This function calls
1324  *      the notifier chains for netdev_chain and sends a NEWLINK message
1325  *      to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329         if (dev->flags & IFF_UP) {
1330                 struct netdev_notifier_change_info change_info = {
1331                         .info.dev = dev,
1332                 };
1333
1334                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1335                                               &change_info.info);
1336                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337         }
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354         ASSERT_RTNL();
1355         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372         rtnl_lock();
1373         __netdev_notify_peers(dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int napi_threaded_poll(void *data);
1379
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382         int err = 0;
1383
1384         /* Create and wake up the kthread once to put it in
1385          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386          * warning and work with loadavg.
1387          */
1388         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389                                 n->dev->name, n->napi_id);
1390         if (IS_ERR(n->thread)) {
1391                 err = PTR_ERR(n->thread);
1392                 pr_err("kthread_run failed with err %d\n", err);
1393                 n->thread = NULL;
1394         }
1395
1396         return err;
1397 }
1398
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401         const struct net_device_ops *ops = dev->netdev_ops;
1402         int ret;
1403
1404         ASSERT_RTNL();
1405         dev_addr_check(dev);
1406
1407         if (!netif_device_present(dev)) {
1408                 /* may be detached because parent is runtime-suspended */
1409                 if (dev->dev.parent)
1410                         pm_runtime_resume(dev->dev.parent);
1411                 if (!netif_device_present(dev))
1412                         return -ENODEV;
1413         }
1414
1415         /* Block netpoll from trying to do any rx path servicing.
1416          * If we don't do this there is a chance ndo_poll_controller
1417          * or ndo_poll may be running while we open the device
1418          */
1419         netpoll_poll_disable(dev);
1420
1421         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422         ret = notifier_to_errno(ret);
1423         if (ret)
1424                 return ret;
1425
1426         set_bit(__LINK_STATE_START, &dev->state);
1427
1428         if (ops->ndo_validate_addr)
1429                 ret = ops->ndo_validate_addr(dev);
1430
1431         if (!ret && ops->ndo_open)
1432                 ret = ops->ndo_open(dev);
1433
1434         netpoll_poll_enable(dev);
1435
1436         if (ret)
1437                 clear_bit(__LINK_STATE_START, &dev->state);
1438         else {
1439                 dev->flags |= IFF_UP;
1440                 dev_set_rx_mode(dev);
1441                 dev_activate(dev);
1442                 add_device_randomness(dev->dev_addr, dev->addr_len);
1443         }
1444
1445         return ret;
1446 }
1447
1448 /**
1449  *      dev_open        - prepare an interface for use.
1450  *      @dev: device to open
1451  *      @extack: netlink extended ack
1452  *
1453  *      Takes a device from down to up state. The device's private open
1454  *      function is invoked and then the multicast lists are loaded. Finally
1455  *      the device is moved into the up state and a %NETDEV_UP message is
1456  *      sent to the netdev notifier chain.
1457  *
1458  *      Calling this function on an active interface is a nop. On a failure
1459  *      a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463         int ret;
1464
1465         if (dev->flags & IFF_UP)
1466                 return 0;
1467
1468         ret = __dev_open(dev, extack);
1469         if (ret < 0)
1470                 return ret;
1471
1472         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473         call_netdevice_notifiers(NETDEV_UP, dev);
1474
1475         return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481         struct net_device *dev;
1482
1483         ASSERT_RTNL();
1484         might_sleep();
1485
1486         list_for_each_entry(dev, head, close_list) {
1487                 /* Temporarily disable netpoll until the interface is down */
1488                 netpoll_poll_disable(dev);
1489
1490                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491
1492                 clear_bit(__LINK_STATE_START, &dev->state);
1493
1494                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1495                  * can be even on different cpu. So just clear netif_running().
1496                  *
1497                  * dev->stop() will invoke napi_disable() on all of it's
1498                  * napi_struct instances on this device.
1499                  */
1500                 smp_mb__after_atomic(); /* Commit netif_running(). */
1501         }
1502
1503         dev_deactivate_many(head);
1504
1505         list_for_each_entry(dev, head, close_list) {
1506                 const struct net_device_ops *ops = dev->netdev_ops;
1507
1508                 /*
1509                  *      Call the device specific close. This cannot fail.
1510                  *      Only if device is UP
1511                  *
1512                  *      We allow it to be called even after a DETACH hot-plug
1513                  *      event.
1514                  */
1515                 if (ops->ndo_stop)
1516                         ops->ndo_stop(dev);
1517
1518                 dev->flags &= ~IFF_UP;
1519                 netpoll_poll_enable(dev);
1520         }
1521 }
1522
1523 static void __dev_close(struct net_device *dev)
1524 {
1525         LIST_HEAD(single);
1526
1527         list_add(&dev->close_list, &single);
1528         __dev_close_many(&single);
1529         list_del(&single);
1530 }
1531
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534         struct net_device *dev, *tmp;
1535
1536         /* Remove the devices that don't need to be closed */
1537         list_for_each_entry_safe(dev, tmp, head, close_list)
1538                 if (!(dev->flags & IFF_UP))
1539                         list_del_init(&dev->close_list);
1540
1541         __dev_close_many(head);
1542
1543         list_for_each_entry_safe(dev, tmp, head, close_list) {
1544                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1546                 if (unlink)
1547                         list_del_init(&dev->close_list);
1548         }
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551
1552 /**
1553  *      dev_close - shutdown an interface.
1554  *      @dev: device to shutdown
1555  *
1556  *      This function moves an active device into down state. A
1557  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *      chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563         if (dev->flags & IFF_UP) {
1564                 LIST_HEAD(single);
1565
1566                 list_add(&dev->close_list, &single);
1567                 dev_close_many(&single, true);
1568                 list_del(&single);
1569         }
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572
1573
1574 /**
1575  *      dev_disable_lro - disable Large Receive Offload on a device
1576  *      @dev: device
1577  *
1578  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *      called under RTNL.  This is needed if received packets may be
1580  *      forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584         struct net_device *lower_dev;
1585         struct list_head *iter;
1586
1587         dev->wanted_features &= ~NETIF_F_LRO;
1588         netdev_update_features(dev);
1589
1590         if (unlikely(dev->features & NETIF_F_LRO))
1591                 netdev_WARN(dev, "failed to disable LRO!\n");
1592
1593         netdev_for_each_lower_dev(dev, lower_dev, iter)
1594                 dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597
1598 /**
1599  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *      @dev: device
1601  *
1602  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *      called under RTNL.  This is needed if Generic XDP is installed on
1604  *      the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608         dev->wanted_features &= ~NETIF_F_GRO_HW;
1609         netdev_update_features(dev);
1610
1611         if (unlikely(dev->features & NETIF_F_GRO_HW))
1612                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val)                                          \
1618         case NETDEV_##val:                              \
1619                 return "NETDEV_" __stringify(val);
1620         switch (cmd) {
1621         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632         }
1633 #undef N
1634         return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639                                    struct net_device *dev)
1640 {
1641         struct netdev_notifier_info info = {
1642                 .dev = dev,
1643         };
1644
1645         return nb->notifier_call(nb, val, &info);
1646 }
1647
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649                                              struct net_device *dev)
1650 {
1651         int err;
1652
1653         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654         err = notifier_to_errno(err);
1655         if (err)
1656                 return err;
1657
1658         if (!(dev->flags & IFF_UP))
1659                 return 0;
1660
1661         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662         return 0;
1663 }
1664
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666                                                 struct net_device *dev)
1667 {
1668         if (dev->flags & IFF_UP) {
1669                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670                                         dev);
1671                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672         }
1673         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677                                                  struct net *net)
1678 {
1679         struct net_device *dev;
1680         int err;
1681
1682         for_each_netdev(net, dev) {
1683                 err = call_netdevice_register_notifiers(nb, dev);
1684                 if (err)
1685                         goto rollback;
1686         }
1687         return 0;
1688
1689 rollback:
1690         for_each_netdev_continue_reverse(net, dev)
1691                 call_netdevice_unregister_notifiers(nb, dev);
1692         return err;
1693 }
1694
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696                                                     struct net *net)
1697 {
1698         struct net_device *dev;
1699
1700         for_each_netdev(net, dev)
1701                 call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703
1704 static int dev_boot_phase = 1;
1705
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722         struct net *net;
1723         int err;
1724
1725         /* Close race with setup_net() and cleanup_net() */
1726         down_write(&pernet_ops_rwsem);
1727         rtnl_lock();
1728         err = raw_notifier_chain_register(&netdev_chain, nb);
1729         if (err)
1730                 goto unlock;
1731         if (dev_boot_phase)
1732                 goto unlock;
1733         for_each_net(net) {
1734                 err = call_netdevice_register_net_notifiers(nb, net);
1735                 if (err)
1736                         goto rollback;
1737         }
1738
1739 unlock:
1740         rtnl_unlock();
1741         up_write(&pernet_ops_rwsem);
1742         return err;
1743
1744 rollback:
1745         for_each_net_continue_reverse(net)
1746                 call_netdevice_unregister_net_notifiers(nb, net);
1747
1748         raw_notifier_chain_unregister(&netdev_chain, nb);
1749         goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769         struct net *net;
1770         int err;
1771
1772         /* Close race with setup_net() and cleanup_net() */
1773         down_write(&pernet_ops_rwsem);
1774         rtnl_lock();
1775         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776         if (err)
1777                 goto unlock;
1778
1779         for_each_net(net)
1780                 call_netdevice_unregister_net_notifiers(nb, net);
1781
1782 unlock:
1783         rtnl_unlock();
1784         up_write(&pernet_ops_rwsem);
1785         return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788
1789 static int __register_netdevice_notifier_net(struct net *net,
1790                                              struct notifier_block *nb,
1791                                              bool ignore_call_fail)
1792 {
1793         int err;
1794
1795         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796         if (err)
1797                 return err;
1798         if (dev_boot_phase)
1799                 return 0;
1800
1801         err = call_netdevice_register_net_notifiers(nb, net);
1802         if (err && !ignore_call_fail)
1803                 goto chain_unregister;
1804
1805         return 0;
1806
1807 chain_unregister:
1808         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809         return err;
1810 }
1811
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813                                                struct notifier_block *nb)
1814 {
1815         int err;
1816
1817         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818         if (err)
1819                 return err;
1820
1821         call_netdevice_unregister_net_notifiers(nb, net);
1822         return 0;
1823 }
1824
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842         int err;
1843
1844         rtnl_lock();
1845         err = __register_netdevice_notifier_net(net, nb, false);
1846         rtnl_unlock();
1847         return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866
1867 int unregister_netdevice_notifier_net(struct net *net,
1868                                       struct notifier_block *nb)
1869 {
1870         int err;
1871
1872         rtnl_lock();
1873         err = __unregister_netdevice_notifier_net(net, nb);
1874         rtnl_unlock();
1875         return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880                                         struct notifier_block *nb,
1881                                         struct netdev_net_notifier *nn)
1882 {
1883         int err;
1884
1885         rtnl_lock();
1886         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887         if (!err) {
1888                 nn->nb = nb;
1889                 list_add(&nn->list, &dev->net_notifier_list);
1890         }
1891         rtnl_unlock();
1892         return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897                                           struct notifier_block *nb,
1898                                           struct netdev_net_notifier *nn)
1899 {
1900         int err;
1901
1902         rtnl_lock();
1903         list_del(&nn->list);
1904         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905         rtnl_unlock();
1906         return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911                                              struct net *net)
1912 {
1913         struct netdev_net_notifier *nn;
1914
1915         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917                 __register_netdevice_notifier_net(net, nn->nb, true);
1918         }
1919 }
1920
1921 /**
1922  *      call_netdevice_notifiers_info - call all network notifier blocks
1923  *      @val: value passed unmodified to notifier function
1924  *      @info: notifier information data
1925  *
1926  *      Call all network notifier blocks.  Parameters and return value
1927  *      are as for raw_notifier_call_chain().
1928  */
1929
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931                                          struct netdev_notifier_info *info)
1932 {
1933         struct net *net = dev_net(info->dev);
1934         int ret;
1935
1936         ASSERT_RTNL();
1937
1938         /* Run per-netns notifier block chain first, then run the global one.
1939          * Hopefully, one day, the global one is going to be removed after
1940          * all notifier block registrators get converted to be per-netns.
1941          */
1942         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943         if (ret & NOTIFY_STOP_MASK)
1944                 return ret;
1945         return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947
1948 /**
1949  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *                                             for and rollback on error
1951  *      @val_up: value passed unmodified to notifier function
1952  *      @val_down: value passed unmodified to the notifier function when
1953  *                 recovering from an error on @val_up
1954  *      @info: notifier information data
1955  *
1956  *      Call all per-netns network notifier blocks, but not notifier blocks on
1957  *      the global notifier chain. Parameters and return value are as for
1958  *      raw_notifier_call_chain_robust().
1959  */
1960
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963                                      unsigned long val_down,
1964                                      struct netdev_notifier_info *info)
1965 {
1966         struct net *net = dev_net(info->dev);
1967
1968         ASSERT_RTNL();
1969
1970         return raw_notifier_call_chain_robust(&net->netdev_chain,
1971                                               val_up, val_down, info);
1972 }
1973
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975                                            struct net_device *dev,
1976                                            struct netlink_ext_ack *extack)
1977 {
1978         struct netdev_notifier_info info = {
1979                 .dev = dev,
1980                 .extack = extack,
1981         };
1982
1983         return call_netdevice_notifiers_info(val, &info);
1984 }
1985
1986 /**
1987  *      call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *      Call all network notifier blocks.  Parameters and return value
1992  *      are as for raw_notifier_call_chain().
1993  */
1994
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997         return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000
2001 /**
2002  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *      @val: value passed unmodified to notifier function
2004  *      @dev: net_device pointer passed unmodified to notifier function
2005  *      @arg: additional u32 argument passed to the notifier function
2006  *
2007  *      Call all network notifier blocks.  Parameters and return value
2008  *      are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011                                         struct net_device *dev, u32 arg)
2012 {
2013         struct netdev_notifier_info_ext info = {
2014                 .info.dev = dev,
2015                 .ext.mtu = arg,
2016         };
2017
2018         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019
2020         return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025
2026 void net_inc_ingress_queue(void)
2027 {
2028         static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031
2032 void net_dec_ingress_queue(void)
2033 {
2034         static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041
2042 void net_inc_egress_queue(void)
2043 {
2044         static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047
2048 void net_dec_egress_queue(void)
2049 {
2050         static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063         int wanted;
2064
2065         wanted = atomic_add_return(deferred, &netstamp_wanted);
2066         if (wanted > 0)
2067                 static_branch_enable(&netstamp_needed_key);
2068         else
2069                 static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077         int wanted;
2078
2079         while (1) {
2080                 wanted = atomic_read(&netstamp_wanted);
2081                 if (wanted <= 0)
2082                         break;
2083                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084                         return;
2085         }
2086         atomic_inc(&netstamp_needed_deferred);
2087         schedule_work(&netstamp_work);
2088 #else
2089         static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097         int wanted;
2098
2099         while (1) {
2100                 wanted = atomic_read(&netstamp_wanted);
2101                 if (wanted <= 1)
2102                         break;
2103                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104                         return;
2105         }
2106         atomic_dec(&netstamp_needed_deferred);
2107         schedule_work(&netstamp_work);
2108 #else
2109         static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116         skb->tstamp = 0;
2117         skb->mono_delivery_time = 0;
2118         if (static_branch_unlikely(&netstamp_needed_key))
2119                 skb->tstamp = ktime_get_real();
2120 }
2121
2122 #define net_timestamp_check(COND, SKB)                          \
2123         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2124                 if ((COND) && !(SKB)->tstamp)                   \
2125                         (SKB)->tstamp = ktime_get_real();       \
2126         }                                                       \
2127
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130         return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135                               bool check_mtu)
2136 {
2137         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138
2139         if (likely(!ret)) {
2140                 skb->protocol = eth_type_trans(skb, dev);
2141                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142         }
2143
2144         return ret;
2145 }
2146
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149         return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *      NET_RX_SUCCESS  (no congestion)
2161  *      NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181
2182 static inline int deliver_skb(struct sk_buff *skb,
2183                               struct packet_type *pt_prev,
2184                               struct net_device *orig_dev)
2185 {
2186         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187                 return -ENOMEM;
2188         refcount_inc(&skb->users);
2189         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193                                           struct packet_type **pt,
2194                                           struct net_device *orig_dev,
2195                                           __be16 type,
2196                                           struct list_head *ptype_list)
2197 {
2198         struct packet_type *ptype, *pt_prev = *pt;
2199
2200         list_for_each_entry_rcu(ptype, ptype_list, list) {
2201                 if (ptype->type != type)
2202                         continue;
2203                 if (pt_prev)
2204                         deliver_skb(skb, pt_prev, orig_dev);
2205                 pt_prev = ptype;
2206         }
2207         *pt = pt_prev;
2208 }
2209
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212         if (!ptype->af_packet_priv || !skb->sk)
2213                 return false;
2214
2215         if (ptype->id_match)
2216                 return ptype->id_match(ptype, skb->sk);
2217         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218                 return true;
2219
2220         return false;
2221 }
2222
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234 /*
2235  *      Support routine. Sends outgoing frames to any network
2236  *      taps currently in use.
2237  */
2238
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241         struct packet_type *ptype;
2242         struct sk_buff *skb2 = NULL;
2243         struct packet_type *pt_prev = NULL;
2244         struct list_head *ptype_list = &ptype_all;
2245
2246         rcu_read_lock();
2247 again:
2248         list_for_each_entry_rcu(ptype, ptype_list, list) {
2249                 if (ptype->ignore_outgoing)
2250                         continue;
2251
2252                 /* Never send packets back to the socket
2253                  * they originated from - MvS (miquels@drinkel.ow.org)
2254                  */
2255                 if (skb_loop_sk(ptype, skb))
2256                         continue;
2257
2258                 if (pt_prev) {
2259                         deliver_skb(skb2, pt_prev, skb->dev);
2260                         pt_prev = ptype;
2261                         continue;
2262                 }
2263
2264                 /* need to clone skb, done only once */
2265                 skb2 = skb_clone(skb, GFP_ATOMIC);
2266                 if (!skb2)
2267                         goto out_unlock;
2268
2269                 net_timestamp_set(skb2);
2270
2271                 /* skb->nh should be correctly
2272                  * set by sender, so that the second statement is
2273                  * just protection against buggy protocols.
2274                  */
2275                 skb_reset_mac_header(skb2);
2276
2277                 if (skb_network_header(skb2) < skb2->data ||
2278                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280                                              ntohs(skb2->protocol),
2281                                              dev->name);
2282                         skb_reset_network_header(skb2);
2283                 }
2284
2285                 skb2->transport_header = skb2->network_header;
2286                 skb2->pkt_type = PACKET_OUTGOING;
2287                 pt_prev = ptype;
2288         }
2289
2290         if (ptype_list == &ptype_all) {
2291                 ptype_list = &dev->ptype_all;
2292                 goto again;
2293         }
2294 out_unlock:
2295         if (pt_prev) {
2296                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298                 else
2299                         kfree_skb(skb2);
2300         }
2301         rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320         int i;
2321         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322
2323         /* If TC0 is invalidated disable TC mapping */
2324         if (tc->offset + tc->count > txq) {
2325                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326                 dev->num_tc = 0;
2327                 return;
2328         }
2329
2330         /* Invalidated prio to tc mappings set to TC0 */
2331         for (i = 1; i < TC_BITMASK + 1; i++) {
2332                 int q = netdev_get_prio_tc_map(dev, i);
2333
2334                 tc = &dev->tc_to_txq[q];
2335                 if (tc->offset + tc->count > txq) {
2336                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337                                     i, q);
2338                         netdev_set_prio_tc_map(dev, i, 0);
2339                 }
2340         }
2341 }
2342
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         if (dev->num_tc) {
2346                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347                 int i;
2348
2349                 /* walk through the TCs and see if it falls into any of them */
2350                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351                         if ((txq - tc->offset) < tc->count)
2352                                 return i;
2353                 }
2354
2355                 /* didn't find it, just return -1 to indicate no match */
2356                 return -1;
2357         }
2358
2359         return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)             \
2368         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371                              struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373         struct xps_map *map = NULL;
2374         int pos;
2375
2376         if (dev_maps)
2377                 map = xmap_dereference(dev_maps->attr_map[tci]);
2378         if (!map)
2379                 return false;
2380
2381         for (pos = map->len; pos--;) {
2382                 if (map->queues[pos] != index)
2383                         continue;
2384
2385                 if (map->len > 1) {
2386                         map->queues[pos] = map->queues[--map->len];
2387                         break;
2388                 }
2389
2390                 if (old_maps)
2391                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393                 kfree_rcu(map, rcu);
2394                 return false;
2395         }
2396
2397         return true;
2398 }
2399
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401                                  struct xps_dev_maps *dev_maps,
2402                                  int cpu, u16 offset, u16 count)
2403 {
2404         int num_tc = dev_maps->num_tc;
2405         bool active = false;
2406         int tci;
2407
2408         for (tci = cpu * num_tc; num_tc--; tci++) {
2409                 int i, j;
2410
2411                 for (i = count, j = offset; i--; j++) {
2412                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413                                 break;
2414                 }
2415
2416                 active |= i < 0;
2417         }
2418
2419         return active;
2420 }
2421
2422 static void reset_xps_maps(struct net_device *dev,
2423                            struct xps_dev_maps *dev_maps,
2424                            enum xps_map_type type)
2425 {
2426         static_key_slow_dec_cpuslocked(&xps_needed);
2427         if (type == XPS_RXQS)
2428                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429
2430         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431
2432         kfree_rcu(dev_maps, rcu);
2433 }
2434
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436                            u16 offset, u16 count)
2437 {
2438         struct xps_dev_maps *dev_maps;
2439         bool active = false;
2440         int i, j;
2441
2442         dev_maps = xmap_dereference(dev->xps_maps[type]);
2443         if (!dev_maps)
2444                 return;
2445
2446         for (j = 0; j < dev_maps->nr_ids; j++)
2447                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448         if (!active)
2449                 reset_xps_maps(dev, dev_maps, type);
2450
2451         if (type == XPS_CPUS) {
2452                 for (i = offset + (count - 1); count--; i--)
2453                         netdev_queue_numa_node_write(
2454                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455         }
2456 }
2457
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459                                    u16 count)
2460 {
2461         if (!static_key_false(&xps_needed))
2462                 return;
2463
2464         cpus_read_lock();
2465         mutex_lock(&xps_map_mutex);
2466
2467         if (static_key_false(&xps_rxqs_needed))
2468                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2469
2470         clean_xps_maps(dev, XPS_CPUS, offset, count);
2471
2472         mutex_unlock(&xps_map_mutex);
2473         cpus_read_unlock();
2474 }
2475
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482                                       u16 index, bool is_rxqs_map)
2483 {
2484         struct xps_map *new_map;
2485         int alloc_len = XPS_MIN_MAP_ALLOC;
2486         int i, pos;
2487
2488         for (pos = 0; map && pos < map->len; pos++) {
2489                 if (map->queues[pos] != index)
2490                         continue;
2491                 return map;
2492         }
2493
2494         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495         if (map) {
2496                 if (pos < map->alloc_len)
2497                         return map;
2498
2499                 alloc_len = map->alloc_len * 2;
2500         }
2501
2502         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503          *  map
2504          */
2505         if (is_rxqs_map)
2506                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507         else
2508                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509                                        cpu_to_node(attr_index));
2510         if (!new_map)
2511                 return NULL;
2512
2513         for (i = 0; i < pos; i++)
2514                 new_map->queues[i] = map->queues[i];
2515         new_map->alloc_len = alloc_len;
2516         new_map->len = pos;
2517
2518         return new_map;
2519 }
2520
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523                               struct xps_dev_maps *new_dev_maps, int index,
2524                               int tc, bool skip_tc)
2525 {
2526         int i, tci = index * dev_maps->num_tc;
2527         struct xps_map *map;
2528
2529         /* copy maps belonging to foreign traffic classes */
2530         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531                 if (i == tc && skip_tc)
2532                         continue;
2533
2534                 /* fill in the new device map from the old device map */
2535                 map = xmap_dereference(dev_maps->attr_map[tci]);
2536                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537         }
2538 }
2539
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542                           u16 index, enum xps_map_type type)
2543 {
2544         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545         const unsigned long *online_mask = NULL;
2546         bool active = false, copy = false;
2547         int i, j, tci, numa_node_id = -2;
2548         int maps_sz, num_tc = 1, tc = 0;
2549         struct xps_map *map, *new_map;
2550         unsigned int nr_ids;
2551
2552         if (dev->num_tc) {
2553                 /* Do not allow XPS on subordinate device directly */
2554                 num_tc = dev->num_tc;
2555                 if (num_tc < 0)
2556                         return -EINVAL;
2557
2558                 /* If queue belongs to subordinate dev use its map */
2559                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560
2561                 tc = netdev_txq_to_tc(dev, index);
2562                 if (tc < 0)
2563                         return -EINVAL;
2564         }
2565
2566         mutex_lock(&xps_map_mutex);
2567
2568         dev_maps = xmap_dereference(dev->xps_maps[type]);
2569         if (type == XPS_RXQS) {
2570                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571                 nr_ids = dev->num_rx_queues;
2572         } else {
2573                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574                 if (num_possible_cpus() > 1)
2575                         online_mask = cpumask_bits(cpu_online_mask);
2576                 nr_ids = nr_cpu_ids;
2577         }
2578
2579         if (maps_sz < L1_CACHE_BYTES)
2580                 maps_sz = L1_CACHE_BYTES;
2581
2582         /* The old dev_maps could be larger or smaller than the one we're
2583          * setting up now, as dev->num_tc or nr_ids could have been updated in
2584          * between. We could try to be smart, but let's be safe instead and only
2585          * copy foreign traffic classes if the two map sizes match.
2586          */
2587         if (dev_maps &&
2588             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589                 copy = true;
2590
2591         /* allocate memory for queue storage */
2592         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593              j < nr_ids;) {
2594                 if (!new_dev_maps) {
2595                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596                         if (!new_dev_maps) {
2597                                 mutex_unlock(&xps_map_mutex);
2598                                 return -ENOMEM;
2599                         }
2600
2601                         new_dev_maps->nr_ids = nr_ids;
2602                         new_dev_maps->num_tc = num_tc;
2603                 }
2604
2605                 tci = j * num_tc + tc;
2606                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607
2608                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609                 if (!map)
2610                         goto error;
2611
2612                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613         }
2614
2615         if (!new_dev_maps)
2616                 goto out_no_new_maps;
2617
2618         if (!dev_maps) {
2619                 /* Increment static keys at most once per type */
2620                 static_key_slow_inc_cpuslocked(&xps_needed);
2621                 if (type == XPS_RXQS)
2622                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623         }
2624
2625         for (j = 0; j < nr_ids; j++) {
2626                 bool skip_tc = false;
2627
2628                 tci = j * num_tc + tc;
2629                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2630                     netif_attr_test_online(j, online_mask, nr_ids)) {
2631                         /* add tx-queue to CPU/rx-queue maps */
2632                         int pos = 0;
2633
2634                         skip_tc = true;
2635
2636                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637                         while ((pos < map->len) && (map->queues[pos] != index))
2638                                 pos++;
2639
2640                         if (pos == map->len)
2641                                 map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643                         if (type == XPS_CPUS) {
2644                                 if (numa_node_id == -2)
2645                                         numa_node_id = cpu_to_node(j);
2646                                 else if (numa_node_id != cpu_to_node(j))
2647                                         numa_node_id = -1;
2648                         }
2649 #endif
2650                 }
2651
2652                 if (copy)
2653                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654                                           skip_tc);
2655         }
2656
2657         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658
2659         /* Cleanup old maps */
2660         if (!dev_maps)
2661                 goto out_no_old_maps;
2662
2663         for (j = 0; j < dev_maps->nr_ids; j++) {
2664                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665                         map = xmap_dereference(dev_maps->attr_map[tci]);
2666                         if (!map)
2667                                 continue;
2668
2669                         if (copy) {
2670                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671                                 if (map == new_map)
2672                                         continue;
2673                         }
2674
2675                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676                         kfree_rcu(map, rcu);
2677                 }
2678         }
2679
2680         old_dev_maps = dev_maps;
2681
2682 out_no_old_maps:
2683         dev_maps = new_dev_maps;
2684         active = true;
2685
2686 out_no_new_maps:
2687         if (type == XPS_CPUS)
2688                 /* update Tx queue numa node */
2689                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690                                              (numa_node_id >= 0) ?
2691                                              numa_node_id : NUMA_NO_NODE);
2692
2693         if (!dev_maps)
2694                 goto out_no_maps;
2695
2696         /* removes tx-queue from unused CPUs/rx-queues */
2697         for (j = 0; j < dev_maps->nr_ids; j++) {
2698                 tci = j * dev_maps->num_tc;
2699
2700                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701                         if (i == tc &&
2702                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704                                 continue;
2705
2706                         active |= remove_xps_queue(dev_maps,
2707                                                    copy ? old_dev_maps : NULL,
2708                                                    tci, index);
2709                 }
2710         }
2711
2712         if (old_dev_maps)
2713                 kfree_rcu(old_dev_maps, rcu);
2714
2715         /* free map if not active */
2716         if (!active)
2717                 reset_xps_maps(dev, dev_maps, type);
2718
2719 out_no_maps:
2720         mutex_unlock(&xps_map_mutex);
2721
2722         return 0;
2723 error:
2724         /* remove any maps that we added */
2725         for (j = 0; j < nr_ids; j++) {
2726                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728                         map = copy ?
2729                               xmap_dereference(dev_maps->attr_map[tci]) :
2730                               NULL;
2731                         if (new_map && new_map != map)
2732                                 kfree(new_map);
2733                 }
2734         }
2735
2736         mutex_unlock(&xps_map_mutex);
2737
2738         kfree(new_dev_maps);
2739         return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744                         u16 index)
2745 {
2746         int ret;
2747
2748         cpus_read_lock();
2749         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750         cpus_read_unlock();
2751
2752         return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760
2761         /* Unbind any subordinate channels */
2762         while (txq-- != &dev->_tx[0]) {
2763                 if (txq->sb_dev)
2764                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2765         }
2766 }
2767
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771         netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773         netdev_unbind_all_sb_channels(dev);
2774
2775         /* Reset TC configuration of device */
2776         dev->num_tc = 0;
2777         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784         if (tc >= dev->num_tc)
2785                 return -EINVAL;
2786
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790         dev->tc_to_txq[tc].count = count;
2791         dev->tc_to_txq[tc].offset = offset;
2792         return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798         if (num_tc > TC_MAX_QUEUE)
2799                 return -EINVAL;
2800
2801 #ifdef CONFIG_XPS
2802         netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804         netdev_unbind_all_sb_channels(dev);
2805
2806         dev->num_tc = num_tc;
2807         return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812                               struct net_device *sb_dev)
2813 {
2814         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821
2822         while (txq-- != &dev->_tx[0]) {
2823                 if (txq->sb_dev == sb_dev)
2824                         txq->sb_dev = NULL;
2825         }
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830                                  struct net_device *sb_dev,
2831                                  u8 tc, u16 count, u16 offset)
2832 {
2833         /* Make certain the sb_dev and dev are already configured */
2834         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835                 return -EINVAL;
2836
2837         /* We cannot hand out queues we don't have */
2838         if ((offset + count) > dev->real_num_tx_queues)
2839                 return -EINVAL;
2840
2841         /* Record the mapping */
2842         sb_dev->tc_to_txq[tc].count = count;
2843         sb_dev->tc_to_txq[tc].offset = offset;
2844
2845         /* Provide a way for Tx queue to find the tc_to_txq map or
2846          * XPS map for itself.
2847          */
2848         while (count--)
2849                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850
2851         return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857         /* Do not use a multiqueue device to represent a subordinate channel */
2858         if (netif_is_multiqueue(dev))
2859                 return -ENODEV;
2860
2861         /* We allow channels 1 - 32767 to be used for subordinate channels.
2862          * Channel 0 is meant to be "native" mode and used only to represent
2863          * the main root device. We allow writing 0 to reset the device back
2864          * to normal mode after being used as a subordinate channel.
2865          */
2866         if (channel > S16_MAX)
2867                 return -EINVAL;
2868
2869         dev->num_tc = -channel;
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881         bool disabling;
2882         int rc;
2883
2884         disabling = txq < dev->real_num_tx_queues;
2885
2886         if (txq < 1 || txq > dev->num_tx_queues)
2887                 return -EINVAL;
2888
2889         if (dev->reg_state == NETREG_REGISTERED ||
2890             dev->reg_state == NETREG_UNREGISTERING) {
2891                 ASSERT_RTNL();
2892
2893                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894                                                   txq);
2895                 if (rc)
2896                         return rc;
2897
2898                 if (dev->num_tc)
2899                         netif_setup_tc(dev, txq);
2900
2901                 dev_qdisc_change_real_num_tx(dev, txq);
2902
2903                 dev->real_num_tx_queues = txq;
2904
2905                 if (disabling) {
2906                         synchronize_net();
2907                         qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909                         netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911                 }
2912         } else {
2913                 dev->real_num_tx_queues = txq;
2914         }
2915
2916         return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *      @dev: Network device
2924  *      @rxq: Actual number of RX queues
2925  *
2926  *      This must be called either with the rtnl_lock held or before
2927  *      registration of the net device.  Returns 0 on success, or a
2928  *      negative error code.  If called before registration, it always
2929  *      succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933         int rc;
2934
2935         if (rxq < 1 || rxq > dev->num_rx_queues)
2936                 return -EINVAL;
2937
2938         if (dev->reg_state == NETREG_REGISTERED) {
2939                 ASSERT_RTNL();
2940
2941                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942                                                   rxq);
2943                 if (rc)
2944                         return rc;
2945         }
2946
2947         dev->real_num_rx_queues = rxq;
2948         return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952
2953 /**
2954  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *      @dev: Network device
2956  *      @txq: Actual number of TX queues
2957  *      @rxq: Actual number of RX queues
2958  *
2959  *      Set the real number of both TX and RX queues.
2960  *      Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963                               unsigned int txq, unsigned int rxq)
2964 {
2965         unsigned int old_rxq = dev->real_num_rx_queues;
2966         int err;
2967
2968         if (txq < 1 || txq > dev->num_tx_queues ||
2969             rxq < 1 || rxq > dev->num_rx_queues)
2970                 return -EINVAL;
2971
2972         /* Start from increases, so the error path only does decreases -
2973          * decreases can't fail.
2974          */
2975         if (rxq > dev->real_num_rx_queues) {
2976                 err = netif_set_real_num_rx_queues(dev, rxq);
2977                 if (err)
2978                         return err;
2979         }
2980         if (txq > dev->real_num_tx_queues) {
2981                 err = netif_set_real_num_tx_queues(dev, txq);
2982                 if (err)
2983                         goto undo_rx;
2984         }
2985         if (rxq < dev->real_num_rx_queues)
2986                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987         if (txq < dev->real_num_tx_queues)
2988                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989
2990         return 0;
2991 undo_rx:
2992         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993         return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:        netdev to update
3000  * @size:       max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009         if (size < READ_ONCE(dev->gso_max_size))
3010                 netif_set_gso_max_size(dev, size);
3011 }
3012 EXPORT_SYMBOL(netif_set_tso_max_size);
3013
3014 /**
3015  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016  * @dev:        netdev to update
3017  * @segs:       max number of TCP segments
3018  *
3019  * Set the limit on the number of TCP segments the device can generate from
3020  * a single TSO super-frame.
3021  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022  */
3023 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024 {
3025         dev->tso_max_segs = segs;
3026         if (segs < READ_ONCE(dev->gso_max_segs))
3027                 netif_set_gso_max_segs(dev, segs);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_segs);
3030
3031 /**
3032  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033  * @to:         netdev to update
3034  * @from:       netdev from which to copy the limits
3035  */
3036 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037 {
3038         netif_set_tso_max_size(to, from->tso_max_size);
3039         netif_set_tso_max_segs(to, from->tso_max_segs);
3040 }
3041 EXPORT_SYMBOL(netif_inherit_tso_max);
3042
3043 /**
3044  * netif_get_num_default_rss_queues - default number of RSS queues
3045  *
3046  * Default value is the number of physical cores if there are only 1 or 2, or
3047  * divided by 2 if there are more.
3048  */
3049 int netif_get_num_default_rss_queues(void)
3050 {
3051         cpumask_var_t cpus;
3052         int cpu, count = 0;
3053
3054         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055                 return 1;
3056
3057         cpumask_copy(cpus, cpu_online_mask);
3058         for_each_cpu(cpu, cpus) {
3059                 ++count;
3060                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061         }
3062         free_cpumask_var(cpus);
3063
3064         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065 }
3066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067
3068 static void __netif_reschedule(struct Qdisc *q)
3069 {
3070         struct softnet_data *sd;
3071         unsigned long flags;
3072
3073         local_irq_save(flags);
3074         sd = this_cpu_ptr(&softnet_data);
3075         q->next_sched = NULL;
3076         *sd->output_queue_tailp = q;
3077         sd->output_queue_tailp = &q->next_sched;
3078         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079         local_irq_restore(flags);
3080 }
3081
3082 void __netif_schedule(struct Qdisc *q)
3083 {
3084         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085                 __netif_reschedule(q);
3086 }
3087 EXPORT_SYMBOL(__netif_schedule);
3088
3089 struct dev_kfree_skb_cb {
3090         enum skb_free_reason reason;
3091 };
3092
3093 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094 {
3095         return (struct dev_kfree_skb_cb *)skb->cb;
3096 }
3097
3098 void netif_schedule_queue(struct netdev_queue *txq)
3099 {
3100         rcu_read_lock();
3101         if (!netif_xmit_stopped(txq)) {
3102                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3103
3104                 __netif_schedule(q);
3105         }
3106         rcu_read_unlock();
3107 }
3108 EXPORT_SYMBOL(netif_schedule_queue);
3109
3110 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111 {
3112         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113                 struct Qdisc *q;
3114
3115                 rcu_read_lock();
3116                 q = rcu_dereference(dev_queue->qdisc);
3117                 __netif_schedule(q);
3118                 rcu_read_unlock();
3119         }
3120 }
3121 EXPORT_SYMBOL(netif_tx_wake_queue);
3122
3123 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124 {
3125         unsigned long flags;
3126
3127         if (unlikely(!skb))
3128                 return;
3129
3130         if (likely(refcount_read(&skb->users) == 1)) {
3131                 smp_rmb();
3132                 refcount_set(&skb->users, 0);
3133         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3134                 return;
3135         }
3136         get_kfree_skb_cb(skb)->reason = reason;
3137         local_irq_save(flags);
3138         skb->next = __this_cpu_read(softnet_data.completion_queue);
3139         __this_cpu_write(softnet_data.completion_queue, skb);
3140         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141         local_irq_restore(flags);
3142 }
3143 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144
3145 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146 {
3147         if (in_hardirq() || irqs_disabled())
3148                 __dev_kfree_skb_irq(skb, reason);
3149         else if (unlikely(reason == SKB_REASON_DROPPED))
3150                 kfree_skb(skb);
3151         else
3152                 consume_skb(skb);
3153 }
3154 EXPORT_SYMBOL(__dev_kfree_skb_any);
3155
3156
3157 /**
3158  * netif_device_detach - mark device as removed
3159  * @dev: network device
3160  *
3161  * Mark device as removed from system and therefore no longer available.
3162  */
3163 void netif_device_detach(struct net_device *dev)
3164 {
3165         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166             netif_running(dev)) {
3167                 netif_tx_stop_all_queues(dev);
3168         }
3169 }
3170 EXPORT_SYMBOL(netif_device_detach);
3171
3172 /**
3173  * netif_device_attach - mark device as attached
3174  * @dev: network device
3175  *
3176  * Mark device as attached from system and restart if needed.
3177  */
3178 void netif_device_attach(struct net_device *dev)
3179 {
3180         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3181             netif_running(dev)) {
3182                 netif_tx_wake_all_queues(dev);
3183                 __netdev_watchdog_up(dev);
3184         }
3185 }
3186 EXPORT_SYMBOL(netif_device_attach);
3187
3188 /*
3189  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3190  * to be used as a distribution range.
3191  */
3192 static u16 skb_tx_hash(const struct net_device *dev,
3193                        const struct net_device *sb_dev,
3194                        struct sk_buff *skb)
3195 {
3196         u32 hash;
3197         u16 qoffset = 0;
3198         u16 qcount = dev->real_num_tx_queues;
3199
3200         if (dev->num_tc) {
3201                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3202
3203                 qoffset = sb_dev->tc_to_txq[tc].offset;
3204                 qcount = sb_dev->tc_to_txq[tc].count;
3205                 if (unlikely(!qcount)) {
3206                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3207                                              sb_dev->name, qoffset, tc);
3208                         qoffset = 0;
3209                         qcount = dev->real_num_tx_queues;
3210                 }
3211         }
3212
3213         if (skb_rx_queue_recorded(skb)) {
3214                 hash = skb_get_rx_queue(skb);
3215                 if (hash >= qoffset)
3216                         hash -= qoffset;
3217                 while (unlikely(hash >= qcount))
3218                         hash -= qcount;
3219                 return hash + qoffset;
3220         }
3221
3222         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3223 }
3224
3225 static void skb_warn_bad_offload(const struct sk_buff *skb)
3226 {
3227         static const netdev_features_t null_features;
3228         struct net_device *dev = skb->dev;
3229         const char *name = "";
3230
3231         if (!net_ratelimit())
3232                 return;
3233
3234         if (dev) {
3235                 if (dev->dev.parent)
3236                         name = dev_driver_string(dev->dev.parent);
3237                 else
3238                         name = netdev_name(dev);
3239         }
3240         skb_dump(KERN_WARNING, skb, false);
3241         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3242              name, dev ? &dev->features : &null_features,
3243              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3244 }
3245
3246 /*
3247  * Invalidate hardware checksum when packet is to be mangled, and
3248  * complete checksum manually on outgoing path.
3249  */
3250 int skb_checksum_help(struct sk_buff *skb)
3251 {
3252         __wsum csum;
3253         int ret = 0, offset;
3254
3255         if (skb->ip_summed == CHECKSUM_COMPLETE)
3256                 goto out_set_summed;
3257
3258         if (unlikely(skb_is_gso(skb))) {
3259                 skb_warn_bad_offload(skb);
3260                 return -EINVAL;
3261         }
3262
3263         /* Before computing a checksum, we should make sure no frag could
3264          * be modified by an external entity : checksum could be wrong.
3265          */
3266         if (skb_has_shared_frag(skb)) {
3267                 ret = __skb_linearize(skb);
3268                 if (ret)
3269                         goto out;
3270         }
3271
3272         offset = skb_checksum_start_offset(skb);
3273         ret = -EINVAL;
3274         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3275                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3276                 goto out;
3277         }
3278         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3279
3280         offset += skb->csum_offset;
3281         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3282                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3283                 goto out;
3284         }
3285         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3286         if (ret)
3287                 goto out;
3288
3289         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3290 out_set_summed:
3291         skb->ip_summed = CHECKSUM_NONE;
3292 out:
3293         return ret;
3294 }
3295 EXPORT_SYMBOL(skb_checksum_help);
3296
3297 int skb_crc32c_csum_help(struct sk_buff *skb)
3298 {
3299         __le32 crc32c_csum;
3300         int ret = 0, offset, start;
3301
3302         if (skb->ip_summed != CHECKSUM_PARTIAL)
3303                 goto out;
3304
3305         if (unlikely(skb_is_gso(skb)))
3306                 goto out;
3307
3308         /* Before computing a checksum, we should make sure no frag could
3309          * be modified by an external entity : checksum could be wrong.
3310          */
3311         if (unlikely(skb_has_shared_frag(skb))) {
3312                 ret = __skb_linearize(skb);
3313                 if (ret)
3314                         goto out;
3315         }
3316         start = skb_checksum_start_offset(skb);
3317         offset = start + offsetof(struct sctphdr, checksum);
3318         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3319                 ret = -EINVAL;
3320                 goto out;
3321         }
3322
3323         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3324         if (ret)
3325                 goto out;
3326
3327         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3328                                                   skb->len - start, ~(__u32)0,
3329                                                   crc32c_csum_stub));
3330         *(__le32 *)(skb->data + offset) = crc32c_csum;
3331         skb->ip_summed = CHECKSUM_NONE;
3332         skb->csum_not_inet = 0;
3333 out:
3334         return ret;
3335 }
3336
3337 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3338 {
3339         __be16 type = skb->protocol;
3340
3341         /* Tunnel gso handlers can set protocol to ethernet. */
3342         if (type == htons(ETH_P_TEB)) {
3343                 struct ethhdr *eth;
3344
3345                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3346                         return 0;
3347
3348                 eth = (struct ethhdr *)skb->data;
3349                 type = eth->h_proto;
3350         }
3351
3352         return __vlan_get_protocol(skb, type, depth);
3353 }
3354
3355 /* openvswitch calls this on rx path, so we need a different check.
3356  */
3357 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3358 {
3359         if (tx_path)
3360                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3361                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3362
3363         return skb->ip_summed == CHECKSUM_NONE;
3364 }
3365
3366 /**
3367  *      __skb_gso_segment - Perform segmentation on skb.
3368  *      @skb: buffer to segment
3369  *      @features: features for the output path (see dev->features)
3370  *      @tx_path: whether it is called in TX path
3371  *
3372  *      This function segments the given skb and returns a list of segments.
3373  *
3374  *      It may return NULL if the skb requires no segmentation.  This is
3375  *      only possible when GSO is used for verifying header integrity.
3376  *
3377  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3378  */
3379 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3380                                   netdev_features_t features, bool tx_path)
3381 {
3382         struct sk_buff *segs;
3383
3384         if (unlikely(skb_needs_check(skb, tx_path))) {
3385                 int err;
3386
3387                 /* We're going to init ->check field in TCP or UDP header */
3388                 err = skb_cow_head(skb, 0);
3389                 if (err < 0)
3390                         return ERR_PTR(err);
3391         }
3392
3393         /* Only report GSO partial support if it will enable us to
3394          * support segmentation on this frame without needing additional
3395          * work.
3396          */
3397         if (features & NETIF_F_GSO_PARTIAL) {
3398                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3399                 struct net_device *dev = skb->dev;
3400
3401                 partial_features |= dev->features & dev->gso_partial_features;
3402                 if (!skb_gso_ok(skb, features | partial_features))
3403                         features &= ~NETIF_F_GSO_PARTIAL;
3404         }
3405
3406         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3407                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3408
3409         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3410         SKB_GSO_CB(skb)->encap_level = 0;
3411
3412         skb_reset_mac_header(skb);
3413         skb_reset_mac_len(skb);
3414
3415         segs = skb_mac_gso_segment(skb, features);
3416
3417         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3418                 skb_warn_bad_offload(skb);
3419
3420         return segs;
3421 }
3422 EXPORT_SYMBOL(__skb_gso_segment);
3423
3424 /* Take action when hardware reception checksum errors are detected. */
3425 #ifdef CONFIG_BUG
3426 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3427 {
3428         netdev_err(dev, "hw csum failure\n");
3429         skb_dump(KERN_ERR, skb, true);
3430         dump_stack();
3431 }
3432
3433 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3434 {
3435         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3436 }
3437 EXPORT_SYMBOL(netdev_rx_csum_fault);
3438 #endif
3439
3440 /* XXX: check that highmem exists at all on the given machine. */
3441 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3442 {
3443 #ifdef CONFIG_HIGHMEM
3444         int i;
3445
3446         if (!(dev->features & NETIF_F_HIGHDMA)) {
3447                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3448                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3449
3450                         if (PageHighMem(skb_frag_page(frag)))
3451                                 return 1;
3452                 }
3453         }
3454 #endif
3455         return 0;
3456 }
3457
3458 /* If MPLS offload request, verify we are testing hardware MPLS features
3459  * instead of standard features for the netdev.
3460  */
3461 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3462 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3463                                            netdev_features_t features,
3464                                            __be16 type)
3465 {
3466         if (eth_p_mpls(type))
3467                 features &= skb->dev->mpls_features;
3468
3469         return features;
3470 }
3471 #else
3472 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3473                                            netdev_features_t features,
3474                                            __be16 type)
3475 {
3476         return features;
3477 }
3478 #endif
3479
3480 static netdev_features_t harmonize_features(struct sk_buff *skb,
3481         netdev_features_t features)
3482 {
3483         __be16 type;
3484
3485         type = skb_network_protocol(skb, NULL);
3486         features = net_mpls_features(skb, features, type);
3487
3488         if (skb->ip_summed != CHECKSUM_NONE &&
3489             !can_checksum_protocol(features, type)) {
3490                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3491         }
3492         if (illegal_highdma(skb->dev, skb))
3493                 features &= ~NETIF_F_SG;
3494
3495         return features;
3496 }
3497
3498 netdev_features_t passthru_features_check(struct sk_buff *skb,
3499                                           struct net_device *dev,
3500                                           netdev_features_t features)
3501 {
3502         return features;
3503 }
3504 EXPORT_SYMBOL(passthru_features_check);
3505
3506 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3507                                              struct net_device *dev,
3508                                              netdev_features_t features)
3509 {
3510         return vlan_features_check(skb, features);
3511 }
3512
3513 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3514                                             struct net_device *dev,
3515                                             netdev_features_t features)
3516 {
3517         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3518
3519         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3520                 return features & ~NETIF_F_GSO_MASK;
3521
3522         if (!skb_shinfo(skb)->gso_type) {
3523                 skb_warn_bad_offload(skb);
3524                 return features & ~NETIF_F_GSO_MASK;
3525         }
3526
3527         /* Support for GSO partial features requires software
3528          * intervention before we can actually process the packets
3529          * so we need to strip support for any partial features now
3530          * and we can pull them back in after we have partially
3531          * segmented the frame.
3532          */
3533         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3534                 features &= ~dev->gso_partial_features;
3535
3536         /* Make sure to clear the IPv4 ID mangling feature if the
3537          * IPv4 header has the potential to be fragmented.
3538          */
3539         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3540                 struct iphdr *iph = skb->encapsulation ?
3541                                     inner_ip_hdr(skb) : ip_hdr(skb);
3542
3543                 if (!(iph->frag_off & htons(IP_DF)))
3544                         features &= ~NETIF_F_TSO_MANGLEID;
3545         }
3546
3547         return features;
3548 }
3549
3550 netdev_features_t netif_skb_features(struct sk_buff *skb)
3551 {
3552         struct net_device *dev = skb->dev;
3553         netdev_features_t features = dev->features;
3554
3555         if (skb_is_gso(skb))
3556                 features = gso_features_check(skb, dev, features);
3557
3558         /* If encapsulation offload request, verify we are testing
3559          * hardware encapsulation features instead of standard
3560          * features for the netdev
3561          */
3562         if (skb->encapsulation)
3563                 features &= dev->hw_enc_features;
3564
3565         if (skb_vlan_tagged(skb))
3566                 features = netdev_intersect_features(features,
3567                                                      dev->vlan_features |
3568                                                      NETIF_F_HW_VLAN_CTAG_TX |
3569                                                      NETIF_F_HW_VLAN_STAG_TX);
3570
3571         if (dev->netdev_ops->ndo_features_check)
3572                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3573                                                                 features);
3574         else
3575                 features &= dflt_features_check(skb, dev, features);
3576
3577         return harmonize_features(skb, features);
3578 }
3579 EXPORT_SYMBOL(netif_skb_features);
3580
3581 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3582                     struct netdev_queue *txq, bool more)
3583 {
3584         unsigned int len;
3585         int rc;
3586
3587         if (dev_nit_active(dev))
3588                 dev_queue_xmit_nit(skb, dev);
3589
3590         len = skb->len;
3591         trace_net_dev_start_xmit(skb, dev);
3592         rc = netdev_start_xmit(skb, dev, txq, more);
3593         trace_net_dev_xmit(skb, rc, dev, len);
3594
3595         return rc;
3596 }
3597
3598 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3599                                     struct netdev_queue *txq, int *ret)
3600 {
3601         struct sk_buff *skb = first;
3602         int rc = NETDEV_TX_OK;
3603
3604         while (skb) {
3605                 struct sk_buff *next = skb->next;
3606
3607                 skb_mark_not_on_list(skb);
3608                 rc = xmit_one(skb, dev, txq, next != NULL);
3609                 if (unlikely(!dev_xmit_complete(rc))) {
3610                         skb->next = next;
3611                         goto out;
3612                 }
3613
3614                 skb = next;
3615                 if (netif_tx_queue_stopped(txq) && skb) {
3616                         rc = NETDEV_TX_BUSY;
3617                         break;
3618                 }
3619         }
3620
3621 out:
3622         *ret = rc;
3623         return skb;
3624 }
3625
3626 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3627                                           netdev_features_t features)
3628 {
3629         if (skb_vlan_tag_present(skb) &&
3630             !vlan_hw_offload_capable(features, skb->vlan_proto))
3631                 skb = __vlan_hwaccel_push_inside(skb);
3632         return skb;
3633 }
3634
3635 int skb_csum_hwoffload_help(struct sk_buff *skb,
3636                             const netdev_features_t features)
3637 {
3638         if (unlikely(skb_csum_is_sctp(skb)))
3639                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3640                         skb_crc32c_csum_help(skb);
3641
3642         if (features & NETIF_F_HW_CSUM)
3643                 return 0;
3644
3645         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3646                 switch (skb->csum_offset) {
3647                 case offsetof(struct tcphdr, check):
3648                 case offsetof(struct udphdr, check):
3649                         return 0;
3650                 }
3651         }
3652
3653         return skb_checksum_help(skb);
3654 }
3655 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3656
3657 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3658 {
3659         netdev_features_t features;
3660
3661         features = netif_skb_features(skb);
3662         skb = validate_xmit_vlan(skb, features);
3663         if (unlikely(!skb))
3664                 goto out_null;
3665
3666         skb = sk_validate_xmit_skb(skb, dev);
3667         if (unlikely(!skb))
3668                 goto out_null;
3669
3670         if (netif_needs_gso(skb, features)) {
3671                 struct sk_buff *segs;
3672
3673                 segs = skb_gso_segment(skb, features);
3674                 if (IS_ERR(segs)) {
3675                         goto out_kfree_skb;
3676                 } else if (segs) {
3677                         consume_skb(skb);
3678                         skb = segs;
3679                 }
3680         } else {
3681                 if (skb_needs_linearize(skb, features) &&
3682                     __skb_linearize(skb))
3683                         goto out_kfree_skb;
3684
3685                 /* If packet is not checksummed and device does not
3686                  * support checksumming for this protocol, complete
3687                  * checksumming here.
3688                  */
3689                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3690                         if (skb->encapsulation)
3691                                 skb_set_inner_transport_header(skb,
3692                                                                skb_checksum_start_offset(skb));
3693                         else
3694                                 skb_set_transport_header(skb,
3695                                                          skb_checksum_start_offset(skb));
3696                         if (skb_csum_hwoffload_help(skb, features))
3697                                 goto out_kfree_skb;
3698                 }
3699         }
3700
3701         skb = validate_xmit_xfrm(skb, features, again);
3702
3703         return skb;
3704
3705 out_kfree_skb:
3706         kfree_skb(skb);
3707 out_null:
3708         dev_core_stats_tx_dropped_inc(dev);
3709         return NULL;
3710 }
3711
3712 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3713 {
3714         struct sk_buff *next, *head = NULL, *tail;
3715
3716         for (; skb != NULL; skb = next) {
3717                 next = skb->next;
3718                 skb_mark_not_on_list(skb);
3719
3720                 /* in case skb wont be segmented, point to itself */
3721                 skb->prev = skb;
3722
3723                 skb = validate_xmit_skb(skb, dev, again);
3724                 if (!skb)
3725                         continue;
3726
3727                 if (!head)
3728                         head = skb;
3729                 else
3730                         tail->next = skb;
3731                 /* If skb was segmented, skb->prev points to
3732                  * the last segment. If not, it still contains skb.
3733                  */
3734                 tail = skb->prev;
3735         }
3736         return head;
3737 }
3738 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3739
3740 static void qdisc_pkt_len_init(struct sk_buff *skb)
3741 {
3742         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3743
3744         qdisc_skb_cb(skb)->pkt_len = skb->len;
3745
3746         /* To get more precise estimation of bytes sent on wire,
3747          * we add to pkt_len the headers size of all segments
3748          */
3749         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3750                 unsigned int hdr_len;
3751                 u16 gso_segs = shinfo->gso_segs;
3752
3753                 /* mac layer + network layer */
3754                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3755
3756                 /* + transport layer */
3757                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3758                         const struct tcphdr *th;
3759                         struct tcphdr _tcphdr;
3760
3761                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3762                                                 sizeof(_tcphdr), &_tcphdr);
3763                         if (likely(th))
3764                                 hdr_len += __tcp_hdrlen(th);
3765                 } else {
3766                         struct udphdr _udphdr;
3767
3768                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3769                                                sizeof(_udphdr), &_udphdr))
3770                                 hdr_len += sizeof(struct udphdr);
3771                 }
3772
3773                 if (shinfo->gso_type & SKB_GSO_DODGY)
3774                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3775                                                 shinfo->gso_size);
3776
3777                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3778         }
3779 }
3780
3781 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3782                              struct sk_buff **to_free,
3783                              struct netdev_queue *txq)
3784 {
3785         int rc;
3786
3787         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3788         if (rc == NET_XMIT_SUCCESS)
3789                 trace_qdisc_enqueue(q, txq, skb);
3790         return rc;
3791 }
3792
3793 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3794                                  struct net_device *dev,
3795                                  struct netdev_queue *txq)
3796 {
3797         spinlock_t *root_lock = qdisc_lock(q);
3798         struct sk_buff *to_free = NULL;
3799         bool contended;
3800         int rc;
3801
3802         qdisc_calculate_pkt_len(skb, q);
3803
3804         if (q->flags & TCQ_F_NOLOCK) {
3805                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3806                     qdisc_run_begin(q)) {
3807                         /* Retest nolock_qdisc_is_empty() within the protection
3808                          * of q->seqlock to protect from racing with requeuing.
3809                          */
3810                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3811                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3812                                 __qdisc_run(q);
3813                                 qdisc_run_end(q);
3814
3815                                 goto no_lock_out;
3816                         }
3817
3818                         qdisc_bstats_cpu_update(q, skb);
3819                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3820                             !nolock_qdisc_is_empty(q))
3821                                 __qdisc_run(q);
3822
3823                         qdisc_run_end(q);
3824                         return NET_XMIT_SUCCESS;
3825                 }
3826
3827                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3828                 qdisc_run(q);
3829
3830 no_lock_out:
3831                 if (unlikely(to_free))
3832                         kfree_skb_list_reason(to_free,
3833                                               SKB_DROP_REASON_QDISC_DROP);
3834                 return rc;
3835         }
3836
3837         /*
3838          * Heuristic to force contended enqueues to serialize on a
3839          * separate lock before trying to get qdisc main lock.
3840          * This permits qdisc->running owner to get the lock more
3841          * often and dequeue packets faster.
3842          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3843          * and then other tasks will only enqueue packets. The packets will be
3844          * sent after the qdisc owner is scheduled again. To prevent this
3845          * scenario the task always serialize on the lock.
3846          */
3847         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3848         if (unlikely(contended))
3849                 spin_lock(&q->busylock);
3850
3851         spin_lock(root_lock);
3852         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3853                 __qdisc_drop(skb, &to_free);
3854                 rc = NET_XMIT_DROP;
3855         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3856                    qdisc_run_begin(q)) {
3857                 /*
3858                  * This is a work-conserving queue; there are no old skbs
3859                  * waiting to be sent out; and the qdisc is not running -
3860                  * xmit the skb directly.
3861                  */
3862
3863                 qdisc_bstats_update(q, skb);
3864
3865                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3866                         if (unlikely(contended)) {
3867                                 spin_unlock(&q->busylock);
3868                                 contended = false;
3869                         }
3870                         __qdisc_run(q);
3871                 }
3872
3873                 qdisc_run_end(q);
3874                 rc = NET_XMIT_SUCCESS;
3875         } else {
3876                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3877                 if (qdisc_run_begin(q)) {
3878                         if (unlikely(contended)) {
3879                                 spin_unlock(&q->busylock);
3880                                 contended = false;
3881                         }
3882                         __qdisc_run(q);
3883                         qdisc_run_end(q);
3884                 }
3885         }
3886         spin_unlock(root_lock);
3887         if (unlikely(to_free))
3888                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3889         if (unlikely(contended))
3890                 spin_unlock(&q->busylock);
3891         return rc;
3892 }
3893
3894 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3895 static void skb_update_prio(struct sk_buff *skb)
3896 {
3897         const struct netprio_map *map;
3898         const struct sock *sk;
3899         unsigned int prioidx;
3900
3901         if (skb->priority)
3902                 return;
3903         map = rcu_dereference_bh(skb->dev->priomap);
3904         if (!map)
3905                 return;
3906         sk = skb_to_full_sk(skb);
3907         if (!sk)
3908                 return;
3909
3910         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3911
3912         if (prioidx < map->priomap_len)
3913                 skb->priority = map->priomap[prioidx];
3914 }
3915 #else
3916 #define skb_update_prio(skb)
3917 #endif
3918
3919 /**
3920  *      dev_loopback_xmit - loop back @skb
3921  *      @net: network namespace this loopback is happening in
3922  *      @sk:  sk needed to be a netfilter okfn
3923  *      @skb: buffer to transmit
3924  */
3925 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3926 {
3927         skb_reset_mac_header(skb);
3928         __skb_pull(skb, skb_network_offset(skb));
3929         skb->pkt_type = PACKET_LOOPBACK;
3930         if (skb->ip_summed == CHECKSUM_NONE)
3931                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3932         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3933         skb_dst_force(skb);
3934         netif_rx(skb);
3935         return 0;
3936 }
3937 EXPORT_SYMBOL(dev_loopback_xmit);
3938
3939 #ifdef CONFIG_NET_EGRESS
3940 static struct sk_buff *
3941 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3942 {
3943 #ifdef CONFIG_NET_CLS_ACT
3944         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3945         struct tcf_result cl_res;
3946
3947         if (!miniq)
3948                 return skb;
3949
3950         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3951         tc_skb_cb(skb)->mru = 0;
3952         tc_skb_cb(skb)->post_ct = false;
3953         mini_qdisc_bstats_cpu_update(miniq, skb);
3954
3955         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3956         case TC_ACT_OK:
3957         case TC_ACT_RECLASSIFY:
3958                 skb->tc_index = TC_H_MIN(cl_res.classid);
3959                 break;
3960         case TC_ACT_SHOT:
3961                 mini_qdisc_qstats_cpu_drop(miniq);
3962                 *ret = NET_XMIT_DROP;
3963                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3964                 return NULL;
3965         case TC_ACT_STOLEN:
3966         case TC_ACT_QUEUED:
3967         case TC_ACT_TRAP:
3968                 *ret = NET_XMIT_SUCCESS;
3969                 consume_skb(skb);
3970                 return NULL;
3971         case TC_ACT_REDIRECT:
3972                 /* No need to push/pop skb's mac_header here on egress! */
3973                 skb_do_redirect(skb);
3974                 *ret = NET_XMIT_SUCCESS;
3975                 return NULL;
3976         default:
3977                 break;
3978         }
3979 #endif /* CONFIG_NET_CLS_ACT */
3980
3981         return skb;
3982 }
3983
3984 static struct netdev_queue *
3985 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3986 {
3987         int qm = skb_get_queue_mapping(skb);
3988
3989         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3990 }
3991
3992 static bool netdev_xmit_txqueue_skipped(void)
3993 {
3994         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3995 }
3996
3997 void netdev_xmit_skip_txqueue(bool skip)
3998 {
3999         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4000 }
4001 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4002 #endif /* CONFIG_NET_EGRESS */
4003
4004 #ifdef CONFIG_XPS
4005 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4006                                struct xps_dev_maps *dev_maps, unsigned int tci)
4007 {
4008         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4009         struct xps_map *map;
4010         int queue_index = -1;
4011
4012         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4013                 return queue_index;
4014
4015         tci *= dev_maps->num_tc;
4016         tci += tc;
4017
4018         map = rcu_dereference(dev_maps->attr_map[tci]);
4019         if (map) {
4020                 if (map->len == 1)
4021                         queue_index = map->queues[0];
4022                 else
4023                         queue_index = map->queues[reciprocal_scale(
4024                                                 skb_get_hash(skb), map->len)];
4025                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4026                         queue_index = -1;
4027         }
4028         return queue_index;
4029 }
4030 #endif
4031
4032 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4033                          struct sk_buff *skb)
4034 {
4035 #ifdef CONFIG_XPS
4036         struct xps_dev_maps *dev_maps;
4037         struct sock *sk = skb->sk;
4038         int queue_index = -1;
4039
4040         if (!static_key_false(&xps_needed))
4041                 return -1;
4042
4043         rcu_read_lock();
4044         if (!static_key_false(&xps_rxqs_needed))
4045                 goto get_cpus_map;
4046
4047         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4048         if (dev_maps) {
4049                 int tci = sk_rx_queue_get(sk);
4050
4051                 if (tci >= 0)
4052                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4053                                                           tci);
4054         }
4055
4056 get_cpus_map:
4057         if (queue_index < 0) {
4058                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4059                 if (dev_maps) {
4060                         unsigned int tci = skb->sender_cpu - 1;
4061
4062                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4063                                                           tci);
4064                 }
4065         }
4066         rcu_read_unlock();
4067
4068         return queue_index;
4069 #else
4070         return -1;
4071 #endif
4072 }
4073
4074 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4075                      struct net_device *sb_dev)
4076 {
4077         return 0;
4078 }
4079 EXPORT_SYMBOL(dev_pick_tx_zero);
4080
4081 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4082                        struct net_device *sb_dev)
4083 {
4084         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4085 }
4086 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4087
4088 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4089                      struct net_device *sb_dev)
4090 {
4091         struct sock *sk = skb->sk;
4092         int queue_index = sk_tx_queue_get(sk);
4093
4094         sb_dev = sb_dev ? : dev;
4095
4096         if (queue_index < 0 || skb->ooo_okay ||
4097             queue_index >= dev->real_num_tx_queues) {
4098                 int new_index = get_xps_queue(dev, sb_dev, skb);
4099
4100                 if (new_index < 0)
4101                         new_index = skb_tx_hash(dev, sb_dev, skb);
4102
4103                 if (queue_index != new_index && sk &&
4104                     sk_fullsock(sk) &&
4105                     rcu_access_pointer(sk->sk_dst_cache))
4106                         sk_tx_queue_set(sk, new_index);
4107
4108                 queue_index = new_index;
4109         }
4110
4111         return queue_index;
4112 }
4113 EXPORT_SYMBOL(netdev_pick_tx);
4114
4115 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4116                                          struct sk_buff *skb,
4117                                          struct net_device *sb_dev)
4118 {
4119         int queue_index = 0;
4120
4121 #ifdef CONFIG_XPS
4122         u32 sender_cpu = skb->sender_cpu - 1;
4123
4124         if (sender_cpu >= (u32)NR_CPUS)
4125                 skb->sender_cpu = raw_smp_processor_id() + 1;
4126 #endif
4127
4128         if (dev->real_num_tx_queues != 1) {
4129                 const struct net_device_ops *ops = dev->netdev_ops;
4130
4131                 if (ops->ndo_select_queue)
4132                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4133                 else
4134                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4135
4136                 queue_index = netdev_cap_txqueue(dev, queue_index);
4137         }
4138
4139         skb_set_queue_mapping(skb, queue_index);
4140         return netdev_get_tx_queue(dev, queue_index);
4141 }
4142
4143 /**
4144  * __dev_queue_xmit() - transmit a buffer
4145  * @skb:        buffer to transmit
4146  * @sb_dev:     suboordinate device used for L2 forwarding offload
4147  *
4148  * Queue a buffer for transmission to a network device. The caller must
4149  * have set the device and priority and built the buffer before calling
4150  * this function. The function can be called from an interrupt.
4151  *
4152  * When calling this method, interrupts MUST be enabled. This is because
4153  * the BH enable code must have IRQs enabled so that it will not deadlock.
4154  *
4155  * Regardless of the return value, the skb is consumed, so it is currently
4156  * difficult to retry a send to this method. (You can bump the ref count
4157  * before sending to hold a reference for retry if you are careful.)
4158  *
4159  * Return:
4160  * * 0                          - buffer successfully transmitted
4161  * * positive qdisc return code - NET_XMIT_DROP etc.
4162  * * negative errno             - other errors
4163  */
4164 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4165 {
4166         struct net_device *dev = skb->dev;
4167         struct netdev_queue *txq = NULL;
4168         struct Qdisc *q;
4169         int rc = -ENOMEM;
4170         bool again = false;
4171
4172         skb_reset_mac_header(skb);
4173         skb_assert_len(skb);
4174
4175         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4176                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4177
4178         /* Disable soft irqs for various locks below. Also
4179          * stops preemption for RCU.
4180          */
4181         rcu_read_lock_bh();
4182
4183         skb_update_prio(skb);
4184
4185         qdisc_pkt_len_init(skb);
4186 #ifdef CONFIG_NET_CLS_ACT
4187         skb->tc_at_ingress = 0;
4188 #endif
4189 #ifdef CONFIG_NET_EGRESS
4190         if (static_branch_unlikely(&egress_needed_key)) {
4191                 if (nf_hook_egress_active()) {
4192                         skb = nf_hook_egress(skb, &rc, dev);
4193                         if (!skb)
4194                                 goto out;
4195                 }
4196
4197                 netdev_xmit_skip_txqueue(false);
4198
4199                 nf_skip_egress(skb, true);
4200                 skb = sch_handle_egress(skb, &rc, dev);
4201                 if (!skb)
4202                         goto out;
4203                 nf_skip_egress(skb, false);
4204
4205                 if (netdev_xmit_txqueue_skipped())
4206                         txq = netdev_tx_queue_mapping(dev, skb);
4207         }
4208 #endif
4209         /* If device/qdisc don't need skb->dst, release it right now while
4210          * its hot in this cpu cache.
4211          */
4212         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4213                 skb_dst_drop(skb);
4214         else
4215                 skb_dst_force(skb);
4216
4217         if (!txq)
4218                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4219
4220         q = rcu_dereference_bh(txq->qdisc);
4221
4222         trace_net_dev_queue(skb);
4223         if (q->enqueue) {
4224                 rc = __dev_xmit_skb(skb, q, dev, txq);
4225                 goto out;
4226         }
4227
4228         /* The device has no queue. Common case for software devices:
4229          * loopback, all the sorts of tunnels...
4230
4231          * Really, it is unlikely that netif_tx_lock protection is necessary
4232          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4233          * counters.)
4234          * However, it is possible, that they rely on protection
4235          * made by us here.
4236
4237          * Check this and shot the lock. It is not prone from deadlocks.
4238          *Either shot noqueue qdisc, it is even simpler 8)
4239          */
4240         if (dev->flags & IFF_UP) {
4241                 int cpu = smp_processor_id(); /* ok because BHs are off */
4242
4243                 /* Other cpus might concurrently change txq->xmit_lock_owner
4244                  * to -1 or to their cpu id, but not to our id.
4245                  */
4246                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4247                         if (dev_xmit_recursion())
4248                                 goto recursion_alert;
4249
4250                         skb = validate_xmit_skb(skb, dev, &again);
4251                         if (!skb)
4252                                 goto out;
4253
4254                         HARD_TX_LOCK(dev, txq, cpu);
4255
4256                         if (!netif_xmit_stopped(txq)) {
4257                                 dev_xmit_recursion_inc();
4258                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4259                                 dev_xmit_recursion_dec();
4260                                 if (dev_xmit_complete(rc)) {
4261                                         HARD_TX_UNLOCK(dev, txq);
4262                                         goto out;
4263                                 }
4264                         }
4265                         HARD_TX_UNLOCK(dev, txq);
4266                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4267                                              dev->name);
4268                 } else {
4269                         /* Recursion is detected! It is possible,
4270                          * unfortunately
4271                          */
4272 recursion_alert:
4273                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4274                                              dev->name);
4275                 }
4276         }
4277
4278         rc = -ENETDOWN;
4279         rcu_read_unlock_bh();
4280
4281         dev_core_stats_tx_dropped_inc(dev);
4282         kfree_skb_list(skb);
4283         return rc;
4284 out:
4285         rcu_read_unlock_bh();
4286         return rc;
4287 }
4288 EXPORT_SYMBOL(__dev_queue_xmit);
4289
4290 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4291 {
4292         struct net_device *dev = skb->dev;
4293         struct sk_buff *orig_skb = skb;
4294         struct netdev_queue *txq;
4295         int ret = NETDEV_TX_BUSY;
4296         bool again = false;
4297
4298         if (unlikely(!netif_running(dev) ||
4299                      !netif_carrier_ok(dev)))
4300                 goto drop;
4301
4302         skb = validate_xmit_skb_list(skb, dev, &again);
4303         if (skb != orig_skb)
4304                 goto drop;
4305
4306         skb_set_queue_mapping(skb, queue_id);
4307         txq = skb_get_tx_queue(dev, skb);
4308
4309         local_bh_disable();
4310
4311         dev_xmit_recursion_inc();
4312         HARD_TX_LOCK(dev, txq, smp_processor_id());
4313         if (!netif_xmit_frozen_or_drv_stopped(txq))
4314                 ret = netdev_start_xmit(skb, dev, txq, false);
4315         HARD_TX_UNLOCK(dev, txq);
4316         dev_xmit_recursion_dec();
4317
4318         local_bh_enable();
4319         return ret;
4320 drop:
4321         dev_core_stats_tx_dropped_inc(dev);
4322         kfree_skb_list(skb);
4323         return NET_XMIT_DROP;
4324 }
4325 EXPORT_SYMBOL(__dev_direct_xmit);
4326
4327 /*************************************************************************
4328  *                      Receiver routines
4329  *************************************************************************/
4330
4331 int netdev_max_backlog __read_mostly = 1000;
4332 EXPORT_SYMBOL(netdev_max_backlog);
4333
4334 int netdev_tstamp_prequeue __read_mostly = 1;
4335 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4336 int netdev_budget __read_mostly = 300;
4337 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4338 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4339 int weight_p __read_mostly = 64;           /* old backlog weight */
4340 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4341 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4342 int dev_rx_weight __read_mostly = 64;
4343 int dev_tx_weight __read_mostly = 64;
4344
4345 /* Called with irq disabled */
4346 static inline void ____napi_schedule(struct softnet_data *sd,
4347                                      struct napi_struct *napi)
4348 {
4349         struct task_struct *thread;
4350
4351         lockdep_assert_irqs_disabled();
4352
4353         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4354                 /* Paired with smp_mb__before_atomic() in
4355                  * napi_enable()/dev_set_threaded().
4356                  * Use READ_ONCE() to guarantee a complete
4357                  * read on napi->thread. Only call
4358                  * wake_up_process() when it's not NULL.
4359                  */
4360                 thread = READ_ONCE(napi->thread);
4361                 if (thread) {
4362                         /* Avoid doing set_bit() if the thread is in
4363                          * INTERRUPTIBLE state, cause napi_thread_wait()
4364                          * makes sure to proceed with napi polling
4365                          * if the thread is explicitly woken from here.
4366                          */
4367                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4368                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4369                         wake_up_process(thread);
4370                         return;
4371                 }
4372         }
4373
4374         list_add_tail(&napi->poll_list, &sd->poll_list);
4375         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4376 }
4377
4378 #ifdef CONFIG_RPS
4379
4380 /* One global table that all flow-based protocols share. */
4381 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4382 EXPORT_SYMBOL(rps_sock_flow_table);
4383 u32 rps_cpu_mask __read_mostly;
4384 EXPORT_SYMBOL(rps_cpu_mask);
4385
4386 struct static_key_false rps_needed __read_mostly;
4387 EXPORT_SYMBOL(rps_needed);
4388 struct static_key_false rfs_needed __read_mostly;
4389 EXPORT_SYMBOL(rfs_needed);
4390
4391 static struct rps_dev_flow *
4392 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4393             struct rps_dev_flow *rflow, u16 next_cpu)
4394 {
4395         if (next_cpu < nr_cpu_ids) {
4396 #ifdef CONFIG_RFS_ACCEL
4397                 struct netdev_rx_queue *rxqueue;
4398                 struct rps_dev_flow_table *flow_table;
4399                 struct rps_dev_flow *old_rflow;
4400                 u32 flow_id;
4401                 u16 rxq_index;
4402                 int rc;
4403
4404                 /* Should we steer this flow to a different hardware queue? */
4405                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4406                     !(dev->features & NETIF_F_NTUPLE))
4407                         goto out;
4408                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4409                 if (rxq_index == skb_get_rx_queue(skb))
4410                         goto out;
4411
4412                 rxqueue = dev->_rx + rxq_index;
4413                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4414                 if (!flow_table)
4415                         goto out;
4416                 flow_id = skb_get_hash(skb) & flow_table->mask;
4417                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4418                                                         rxq_index, flow_id);
4419                 if (rc < 0)
4420                         goto out;
4421                 old_rflow = rflow;
4422                 rflow = &flow_table->flows[flow_id];
4423                 rflow->filter = rc;
4424                 if (old_rflow->filter == rflow->filter)
4425                         old_rflow->filter = RPS_NO_FILTER;
4426         out:
4427 #endif
4428                 rflow->last_qtail =
4429                         per_cpu(softnet_data, next_cpu).input_queue_head;
4430         }
4431
4432         rflow->cpu = next_cpu;
4433         return rflow;
4434 }
4435
4436 /*
4437  * get_rps_cpu is called from netif_receive_skb and returns the target
4438  * CPU from the RPS map of the receiving queue for a given skb.
4439  * rcu_read_lock must be held on entry.
4440  */
4441 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4442                        struct rps_dev_flow **rflowp)
4443 {
4444         const struct rps_sock_flow_table *sock_flow_table;
4445         struct netdev_rx_queue *rxqueue = dev->_rx;
4446         struct rps_dev_flow_table *flow_table;
4447         struct rps_map *map;
4448         int cpu = -1;
4449         u32 tcpu;
4450         u32 hash;
4451
4452         if (skb_rx_queue_recorded(skb)) {
4453                 u16 index = skb_get_rx_queue(skb);
4454
4455                 if (unlikely(index >= dev->real_num_rx_queues)) {
4456                         WARN_ONCE(dev->real_num_rx_queues > 1,
4457                                   "%s received packet on queue %u, but number "
4458                                   "of RX queues is %u\n",
4459                                   dev->name, index, dev->real_num_rx_queues);
4460                         goto done;
4461                 }
4462                 rxqueue += index;
4463         }
4464
4465         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4466
4467         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4468         map = rcu_dereference(rxqueue->rps_map);
4469         if (!flow_table && !map)
4470                 goto done;
4471
4472         skb_reset_network_header(skb);
4473         hash = skb_get_hash(skb);
4474         if (!hash)
4475                 goto done;
4476
4477         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4478         if (flow_table && sock_flow_table) {
4479                 struct rps_dev_flow *rflow;
4480                 u32 next_cpu;
4481                 u32 ident;
4482
4483                 /* First check into global flow table if there is a match */
4484                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4485                 if ((ident ^ hash) & ~rps_cpu_mask)
4486                         goto try_rps;
4487
4488                 next_cpu = ident & rps_cpu_mask;
4489
4490                 /* OK, now we know there is a match,
4491                  * we can look at the local (per receive queue) flow table
4492                  */
4493                 rflow = &flow_table->flows[hash & flow_table->mask];
4494                 tcpu = rflow->cpu;
4495
4496                 /*
4497                  * If the desired CPU (where last recvmsg was done) is
4498                  * different from current CPU (one in the rx-queue flow
4499                  * table entry), switch if one of the following holds:
4500                  *   - Current CPU is unset (>= nr_cpu_ids).
4501                  *   - Current CPU is offline.
4502                  *   - The current CPU's queue tail has advanced beyond the
4503                  *     last packet that was enqueued using this table entry.
4504                  *     This guarantees that all previous packets for the flow
4505                  *     have been dequeued, thus preserving in order delivery.
4506                  */
4507                 if (unlikely(tcpu != next_cpu) &&
4508                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4509                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4510                       rflow->last_qtail)) >= 0)) {
4511                         tcpu = next_cpu;
4512                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4513                 }
4514
4515                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4516                         *rflowp = rflow;
4517                         cpu = tcpu;
4518                         goto done;
4519                 }
4520         }
4521
4522 try_rps:
4523
4524         if (map) {
4525                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4526                 if (cpu_online(tcpu)) {
4527                         cpu = tcpu;
4528                         goto done;
4529                 }
4530         }
4531
4532 done:
4533         return cpu;
4534 }
4535
4536 #ifdef CONFIG_RFS_ACCEL
4537
4538 /**
4539  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4540  * @dev: Device on which the filter was set
4541  * @rxq_index: RX queue index
4542  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4543  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4544  *
4545  * Drivers that implement ndo_rx_flow_steer() should periodically call
4546  * this function for each installed filter and remove the filters for
4547  * which it returns %true.
4548  */
4549 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4550                          u32 flow_id, u16 filter_id)
4551 {
4552         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4553         struct rps_dev_flow_table *flow_table;
4554         struct rps_dev_flow *rflow;
4555         bool expire = true;
4556         unsigned int cpu;
4557
4558         rcu_read_lock();
4559         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4560         if (flow_table && flow_id <= flow_table->mask) {
4561                 rflow = &flow_table->flows[flow_id];
4562                 cpu = READ_ONCE(rflow->cpu);
4563                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4564                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4565                            rflow->last_qtail) <
4566                      (int)(10 * flow_table->mask)))
4567                         expire = false;
4568         }
4569         rcu_read_unlock();
4570         return expire;
4571 }
4572 EXPORT_SYMBOL(rps_may_expire_flow);
4573
4574 #endif /* CONFIG_RFS_ACCEL */
4575
4576 /* Called from hardirq (IPI) context */
4577 static void rps_trigger_softirq(void *data)
4578 {
4579         struct softnet_data *sd = data;
4580
4581         ____napi_schedule(sd, &sd->backlog);
4582         sd->received_rps++;
4583 }
4584
4585 #endif /* CONFIG_RPS */
4586
4587 /* Called from hardirq (IPI) context */
4588 static void trigger_rx_softirq(void *data)
4589 {
4590         struct softnet_data *sd = data;
4591
4592         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4593         smp_store_release(&sd->defer_ipi_scheduled, 0);
4594 }
4595
4596 /*
4597  * Check if this softnet_data structure is another cpu one
4598  * If yes, queue it to our IPI list and return 1
4599  * If no, return 0
4600  */
4601 static int napi_schedule_rps(struct softnet_data *sd)
4602 {
4603         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4604
4605 #ifdef CONFIG_RPS
4606         if (sd != mysd) {
4607                 sd->rps_ipi_next = mysd->rps_ipi_list;
4608                 mysd->rps_ipi_list = sd;
4609
4610                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4611                 return 1;
4612         }
4613 #endif /* CONFIG_RPS */
4614         __napi_schedule_irqoff(&mysd->backlog);
4615         return 0;
4616 }
4617
4618 #ifdef CONFIG_NET_FLOW_LIMIT
4619 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4620 #endif
4621
4622 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4623 {
4624 #ifdef CONFIG_NET_FLOW_LIMIT
4625         struct sd_flow_limit *fl;
4626         struct softnet_data *sd;
4627         unsigned int old_flow, new_flow;
4628
4629         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4630                 return false;
4631
4632         sd = this_cpu_ptr(&softnet_data);
4633
4634         rcu_read_lock();
4635         fl = rcu_dereference(sd->flow_limit);
4636         if (fl) {
4637                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4638                 old_flow = fl->history[fl->history_head];
4639                 fl->history[fl->history_head] = new_flow;
4640
4641                 fl->history_head++;
4642                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4643
4644                 if (likely(fl->buckets[old_flow]))
4645                         fl->buckets[old_flow]--;
4646
4647                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4648                         fl->count++;
4649                         rcu_read_unlock();
4650                         return true;
4651                 }
4652         }
4653         rcu_read_unlock();
4654 #endif
4655         return false;
4656 }
4657
4658 /*
4659  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4660  * queue (may be a remote CPU queue).
4661  */
4662 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4663                               unsigned int *qtail)
4664 {
4665         enum skb_drop_reason reason;
4666         struct softnet_data *sd;
4667         unsigned long flags;
4668         unsigned int qlen;
4669
4670         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4671         sd = &per_cpu(softnet_data, cpu);
4672
4673         rps_lock_irqsave(sd, &flags);
4674         if (!netif_running(skb->dev))
4675                 goto drop;
4676         qlen = skb_queue_len(&sd->input_pkt_queue);
4677         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4678                 if (qlen) {
4679 enqueue:
4680                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4681                         input_queue_tail_incr_save(sd, qtail);
4682                         rps_unlock_irq_restore(sd, &flags);
4683                         return NET_RX_SUCCESS;
4684                 }
4685
4686                 /* Schedule NAPI for backlog device
4687                  * We can use non atomic operation since we own the queue lock
4688                  */
4689                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4690                         napi_schedule_rps(sd);
4691                 goto enqueue;
4692         }
4693         reason = SKB_DROP_REASON_CPU_BACKLOG;
4694
4695 drop:
4696         sd->dropped++;
4697         rps_unlock_irq_restore(sd, &flags);
4698
4699         dev_core_stats_rx_dropped_inc(skb->dev);
4700         kfree_skb_reason(skb, reason);
4701         return NET_RX_DROP;
4702 }
4703
4704 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4705 {
4706         struct net_device *dev = skb->dev;
4707         struct netdev_rx_queue *rxqueue;
4708
4709         rxqueue = dev->_rx;
4710
4711         if (skb_rx_queue_recorded(skb)) {
4712                 u16 index = skb_get_rx_queue(skb);
4713
4714                 if (unlikely(index >= dev->real_num_rx_queues)) {
4715                         WARN_ONCE(dev->real_num_rx_queues > 1,
4716                                   "%s received packet on queue %u, but number "
4717                                   "of RX queues is %u\n",
4718                                   dev->name, index, dev->real_num_rx_queues);
4719
4720                         return rxqueue; /* Return first rxqueue */
4721                 }
4722                 rxqueue += index;
4723         }
4724         return rxqueue;
4725 }
4726
4727 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4728                              struct bpf_prog *xdp_prog)
4729 {
4730         void *orig_data, *orig_data_end, *hard_start;
4731         struct netdev_rx_queue *rxqueue;
4732         bool orig_bcast, orig_host;
4733         u32 mac_len, frame_sz;
4734         __be16 orig_eth_type;
4735         struct ethhdr *eth;
4736         u32 metalen, act;
4737         int off;
4738
4739         /* The XDP program wants to see the packet starting at the MAC
4740          * header.
4741          */
4742         mac_len = skb->data - skb_mac_header(skb);
4743         hard_start = skb->data - skb_headroom(skb);
4744
4745         /* SKB "head" area always have tailroom for skb_shared_info */
4746         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4747         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4748
4749         rxqueue = netif_get_rxqueue(skb);
4750         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4751         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4752                          skb_headlen(skb) + mac_len, true);
4753
4754         orig_data_end = xdp->data_end;
4755         orig_data = xdp->data;
4756         eth = (struct ethhdr *)xdp->data;
4757         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4758         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4759         orig_eth_type = eth->h_proto;
4760
4761         act = bpf_prog_run_xdp(xdp_prog, xdp);
4762
4763         /* check if bpf_xdp_adjust_head was used */
4764         off = xdp->data - orig_data;
4765         if (off) {
4766                 if (off > 0)
4767                         __skb_pull(skb, off);
4768                 else if (off < 0)
4769                         __skb_push(skb, -off);
4770
4771                 skb->mac_header += off;
4772                 skb_reset_network_header(skb);
4773         }
4774
4775         /* check if bpf_xdp_adjust_tail was used */
4776         off = xdp->data_end - orig_data_end;
4777         if (off != 0) {
4778                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4779                 skb->len += off; /* positive on grow, negative on shrink */
4780         }
4781
4782         /* check if XDP changed eth hdr such SKB needs update */
4783         eth = (struct ethhdr *)xdp->data;
4784         if ((orig_eth_type != eth->h_proto) ||
4785             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4786                                                   skb->dev->dev_addr)) ||
4787             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4788                 __skb_push(skb, ETH_HLEN);
4789                 skb->pkt_type = PACKET_HOST;
4790                 skb->protocol = eth_type_trans(skb, skb->dev);
4791         }
4792
4793         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4794          * before calling us again on redirect path. We do not call do_redirect
4795          * as we leave that up to the caller.
4796          *
4797          * Caller is responsible for managing lifetime of skb (i.e. calling
4798          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4799          */
4800         switch (act) {
4801         case XDP_REDIRECT:
4802         case XDP_TX:
4803                 __skb_push(skb, mac_len);
4804                 break;
4805         case XDP_PASS:
4806                 metalen = xdp->data - xdp->data_meta;
4807                 if (metalen)
4808                         skb_metadata_set(skb, metalen);
4809                 break;
4810         }
4811
4812         return act;
4813 }
4814
4815 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4816                                      struct xdp_buff *xdp,
4817                                      struct bpf_prog *xdp_prog)
4818 {
4819         u32 act = XDP_DROP;
4820
4821         /* Reinjected packets coming from act_mirred or similar should
4822          * not get XDP generic processing.
4823          */
4824         if (skb_is_redirected(skb))
4825                 return XDP_PASS;
4826
4827         /* XDP packets must be linear and must have sufficient headroom
4828          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4829          * native XDP provides, thus we need to do it here as well.
4830          */
4831         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4832             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4833                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4834                 int troom = skb->tail + skb->data_len - skb->end;
4835
4836                 /* In case we have to go down the path and also linearize,
4837                  * then lets do the pskb_expand_head() work just once here.
4838                  */
4839                 if (pskb_expand_head(skb,
4840                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4841                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4842                         goto do_drop;
4843                 if (skb_linearize(skb))
4844                         goto do_drop;
4845         }
4846
4847         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4848         switch (act) {
4849         case XDP_REDIRECT:
4850         case XDP_TX:
4851         case XDP_PASS:
4852                 break;
4853         default:
4854                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4855                 fallthrough;
4856         case XDP_ABORTED:
4857                 trace_xdp_exception(skb->dev, xdp_prog, act);
4858                 fallthrough;
4859         case XDP_DROP:
4860         do_drop:
4861                 kfree_skb(skb);
4862                 break;
4863         }
4864
4865         return act;
4866 }
4867
4868 /* When doing generic XDP we have to bypass the qdisc layer and the
4869  * network taps in order to match in-driver-XDP behavior. This also means
4870  * that XDP packets are able to starve other packets going through a qdisc,
4871  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4872  * queues, so they do not have this starvation issue.
4873  */
4874 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4875 {
4876         struct net_device *dev = skb->dev;
4877         struct netdev_queue *txq;
4878         bool free_skb = true;
4879         int cpu, rc;
4880
4881         txq = netdev_core_pick_tx(dev, skb, NULL);
4882         cpu = smp_processor_id();
4883         HARD_TX_LOCK(dev, txq, cpu);
4884         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4885                 rc = netdev_start_xmit(skb, dev, txq, 0);
4886                 if (dev_xmit_complete(rc))
4887                         free_skb = false;
4888         }
4889         HARD_TX_UNLOCK(dev, txq);
4890         if (free_skb) {
4891                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4892                 dev_core_stats_tx_dropped_inc(dev);
4893                 kfree_skb(skb);
4894         }
4895 }
4896
4897 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4898
4899 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4900 {
4901         if (xdp_prog) {
4902                 struct xdp_buff xdp;
4903                 u32 act;
4904                 int err;
4905
4906                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4907                 if (act != XDP_PASS) {
4908                         switch (act) {
4909                         case XDP_REDIRECT:
4910                                 err = xdp_do_generic_redirect(skb->dev, skb,
4911                                                               &xdp, xdp_prog);
4912                                 if (err)
4913                                         goto out_redir;
4914                                 break;
4915                         case XDP_TX:
4916                                 generic_xdp_tx(skb, xdp_prog);
4917                                 break;
4918                         }
4919                         return XDP_DROP;
4920                 }
4921         }
4922         return XDP_PASS;
4923 out_redir:
4924         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4925         return XDP_DROP;
4926 }
4927 EXPORT_SYMBOL_GPL(do_xdp_generic);
4928
4929 static int netif_rx_internal(struct sk_buff *skb)
4930 {
4931         int ret;
4932
4933         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4934
4935         trace_netif_rx(skb);
4936
4937 #ifdef CONFIG_RPS
4938         if (static_branch_unlikely(&rps_needed)) {
4939                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4940                 int cpu;
4941
4942                 rcu_read_lock();
4943
4944                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4945                 if (cpu < 0)
4946                         cpu = smp_processor_id();
4947
4948                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4949
4950                 rcu_read_unlock();
4951         } else
4952 #endif
4953         {
4954                 unsigned int qtail;
4955
4956                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4957         }
4958         return ret;
4959 }
4960
4961 /**
4962  *      __netif_rx      -       Slightly optimized version of netif_rx
4963  *      @skb: buffer to post
4964  *
4965  *      This behaves as netif_rx except that it does not disable bottom halves.
4966  *      As a result this function may only be invoked from the interrupt context
4967  *      (either hard or soft interrupt).
4968  */
4969 int __netif_rx(struct sk_buff *skb)
4970 {
4971         int ret;
4972
4973         lockdep_assert_once(hardirq_count() | softirq_count());
4974
4975         trace_netif_rx_entry(skb);
4976         ret = netif_rx_internal(skb);
4977         trace_netif_rx_exit(ret);
4978         return ret;
4979 }
4980 EXPORT_SYMBOL(__netif_rx);
4981
4982 /**
4983  *      netif_rx        -       post buffer to the network code
4984  *      @skb: buffer to post
4985  *
4986  *      This function receives a packet from a device driver and queues it for
4987  *      the upper (protocol) levels to process via the backlog NAPI device. It
4988  *      always succeeds. The buffer may be dropped during processing for
4989  *      congestion control or by the protocol layers.
4990  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4991  *      driver should use NAPI and GRO.
4992  *      This function can used from interrupt and from process context. The
4993  *      caller from process context must not disable interrupts before invoking
4994  *      this function.
4995  *
4996  *      return values:
4997  *      NET_RX_SUCCESS  (no congestion)
4998  *      NET_RX_DROP     (packet was dropped)
4999  *
5000  */
5001 int netif_rx(struct sk_buff *skb)
5002 {
5003         bool need_bh_off = !(hardirq_count() | softirq_count());
5004         int ret;
5005
5006         if (need_bh_off)
5007                 local_bh_disable();
5008         trace_netif_rx_entry(skb);
5009         ret = netif_rx_internal(skb);
5010         trace_netif_rx_exit(ret);
5011         if (need_bh_off)
5012                 local_bh_enable();
5013         return ret;
5014 }
5015 EXPORT_SYMBOL(netif_rx);
5016
5017 static __latent_entropy void net_tx_action(struct softirq_action *h)
5018 {
5019         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5020
5021         if (sd->completion_queue) {
5022                 struct sk_buff *clist;
5023
5024                 local_irq_disable();
5025                 clist = sd->completion_queue;
5026                 sd->completion_queue = NULL;
5027                 local_irq_enable();
5028
5029                 while (clist) {
5030                         struct sk_buff *skb = clist;
5031
5032                         clist = clist->next;
5033
5034                         WARN_ON(refcount_read(&skb->users));
5035                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5036                                 trace_consume_skb(skb);
5037                         else
5038                                 trace_kfree_skb(skb, net_tx_action,
5039                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5040
5041                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5042                                 __kfree_skb(skb);
5043                         else
5044                                 __kfree_skb_defer(skb);
5045                 }
5046         }
5047
5048         if (sd->output_queue) {
5049                 struct Qdisc *head;
5050
5051                 local_irq_disable();
5052                 head = sd->output_queue;
5053                 sd->output_queue = NULL;
5054                 sd->output_queue_tailp = &sd->output_queue;
5055                 local_irq_enable();
5056
5057                 rcu_read_lock();
5058
5059                 while (head) {
5060                         struct Qdisc *q = head;
5061                         spinlock_t *root_lock = NULL;
5062
5063                         head = head->next_sched;
5064
5065                         /* We need to make sure head->next_sched is read
5066                          * before clearing __QDISC_STATE_SCHED
5067                          */
5068                         smp_mb__before_atomic();
5069
5070                         if (!(q->flags & TCQ_F_NOLOCK)) {
5071                                 root_lock = qdisc_lock(q);
5072                                 spin_lock(root_lock);
5073                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5074                                                      &q->state))) {
5075                                 /* There is a synchronize_net() between
5076                                  * STATE_DEACTIVATED flag being set and
5077                                  * qdisc_reset()/some_qdisc_is_busy() in
5078                                  * dev_deactivate(), so we can safely bail out
5079                                  * early here to avoid data race between
5080                                  * qdisc_deactivate() and some_qdisc_is_busy()
5081                                  * for lockless qdisc.
5082                                  */
5083                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5084                                 continue;
5085                         }
5086
5087                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5088                         qdisc_run(q);
5089                         if (root_lock)
5090                                 spin_unlock(root_lock);
5091                 }
5092
5093                 rcu_read_unlock();
5094         }
5095
5096         xfrm_dev_backlog(sd);
5097 }
5098
5099 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5100 /* This hook is defined here for ATM LANE */
5101 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5102                              unsigned char *addr) __read_mostly;
5103 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5104 #endif
5105
5106 static inline struct sk_buff *
5107 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5108                    struct net_device *orig_dev, bool *another)
5109 {
5110 #ifdef CONFIG_NET_CLS_ACT
5111         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5112         struct tcf_result cl_res;
5113
5114         /* If there's at least one ingress present somewhere (so
5115          * we get here via enabled static key), remaining devices
5116          * that are not configured with an ingress qdisc will bail
5117          * out here.
5118          */
5119         if (!miniq)
5120                 return skb;
5121
5122         if (*pt_prev) {
5123                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5124                 *pt_prev = NULL;
5125         }
5126
5127         qdisc_skb_cb(skb)->pkt_len = skb->len;
5128         tc_skb_cb(skb)->mru = 0;
5129         tc_skb_cb(skb)->post_ct = false;
5130         skb->tc_at_ingress = 1;
5131         mini_qdisc_bstats_cpu_update(miniq, skb);
5132
5133         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5134         case TC_ACT_OK:
5135         case TC_ACT_RECLASSIFY:
5136                 skb->tc_index = TC_H_MIN(cl_res.classid);
5137                 break;
5138         case TC_ACT_SHOT:
5139                 mini_qdisc_qstats_cpu_drop(miniq);
5140                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5141                 *ret = NET_RX_DROP;
5142                 return NULL;
5143         case TC_ACT_STOLEN:
5144         case TC_ACT_QUEUED:
5145         case TC_ACT_TRAP:
5146                 consume_skb(skb);
5147                 *ret = NET_RX_SUCCESS;
5148                 return NULL;
5149         case TC_ACT_REDIRECT:
5150                 /* skb_mac_header check was done by cls/act_bpf, so
5151                  * we can safely push the L2 header back before
5152                  * redirecting to another netdev
5153                  */
5154                 __skb_push(skb, skb->mac_len);
5155                 if (skb_do_redirect(skb) == -EAGAIN) {
5156                         __skb_pull(skb, skb->mac_len);
5157                         *another = true;
5158                         break;
5159                 }
5160                 *ret = NET_RX_SUCCESS;
5161                 return NULL;
5162         case TC_ACT_CONSUMED:
5163                 *ret = NET_RX_SUCCESS;
5164                 return NULL;
5165         default:
5166                 break;
5167         }
5168 #endif /* CONFIG_NET_CLS_ACT */
5169         return skb;
5170 }
5171
5172 /**
5173  *      netdev_is_rx_handler_busy - check if receive handler is registered
5174  *      @dev: device to check
5175  *
5176  *      Check if a receive handler is already registered for a given device.
5177  *      Return true if there one.
5178  *
5179  *      The caller must hold the rtnl_mutex.
5180  */
5181 bool netdev_is_rx_handler_busy(struct net_device *dev)
5182 {
5183         ASSERT_RTNL();
5184         return dev && rtnl_dereference(dev->rx_handler);
5185 }
5186 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5187
5188 /**
5189  *      netdev_rx_handler_register - register receive handler
5190  *      @dev: device to register a handler for
5191  *      @rx_handler: receive handler to register
5192  *      @rx_handler_data: data pointer that is used by rx handler
5193  *
5194  *      Register a receive handler for a device. This handler will then be
5195  *      called from __netif_receive_skb. A negative errno code is returned
5196  *      on a failure.
5197  *
5198  *      The caller must hold the rtnl_mutex.
5199  *
5200  *      For a general description of rx_handler, see enum rx_handler_result.
5201  */
5202 int netdev_rx_handler_register(struct net_device *dev,
5203                                rx_handler_func_t *rx_handler,
5204                                void *rx_handler_data)
5205 {
5206         if (netdev_is_rx_handler_busy(dev))
5207                 return -EBUSY;
5208
5209         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5210                 return -EINVAL;
5211
5212         /* Note: rx_handler_data must be set before rx_handler */
5213         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5214         rcu_assign_pointer(dev->rx_handler, rx_handler);
5215
5216         return 0;
5217 }
5218 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5219
5220 /**
5221  *      netdev_rx_handler_unregister - unregister receive handler
5222  *      @dev: device to unregister a handler from
5223  *
5224  *      Unregister a receive handler from a device.
5225  *
5226  *      The caller must hold the rtnl_mutex.
5227  */
5228 void netdev_rx_handler_unregister(struct net_device *dev)
5229 {
5230
5231         ASSERT_RTNL();
5232         RCU_INIT_POINTER(dev->rx_handler, NULL);
5233         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5234          * section has a guarantee to see a non NULL rx_handler_data
5235          * as well.
5236          */
5237         synchronize_net();
5238         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5239 }
5240 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5241
5242 /*
5243  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5244  * the special handling of PFMEMALLOC skbs.
5245  */
5246 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5247 {
5248         switch (skb->protocol) {
5249         case htons(ETH_P_ARP):
5250         case htons(ETH_P_IP):
5251         case htons(ETH_P_IPV6):
5252         case htons(ETH_P_8021Q):
5253         case htons(ETH_P_8021AD):
5254                 return true;
5255         default:
5256                 return false;
5257         }
5258 }
5259
5260 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5261                              int *ret, struct net_device *orig_dev)
5262 {
5263         if (nf_hook_ingress_active(skb)) {
5264                 int ingress_retval;
5265
5266                 if (*pt_prev) {
5267                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5268                         *pt_prev = NULL;
5269                 }
5270
5271                 rcu_read_lock();
5272                 ingress_retval = nf_hook_ingress(skb);
5273                 rcu_read_unlock();
5274                 return ingress_retval;
5275         }
5276         return 0;
5277 }
5278
5279 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5280                                     struct packet_type **ppt_prev)
5281 {
5282         struct packet_type *ptype, *pt_prev;
5283         rx_handler_func_t *rx_handler;
5284         struct sk_buff *skb = *pskb;
5285         struct net_device *orig_dev;
5286         bool deliver_exact = false;
5287         int ret = NET_RX_DROP;
5288         __be16 type;
5289
5290         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5291
5292         trace_netif_receive_skb(skb);
5293
5294         orig_dev = skb->dev;
5295
5296         skb_reset_network_header(skb);
5297         if (!skb_transport_header_was_set(skb))
5298                 skb_reset_transport_header(skb);
5299         skb_reset_mac_len(skb);
5300
5301         pt_prev = NULL;
5302
5303 another_round:
5304         skb->skb_iif = skb->dev->ifindex;
5305
5306         __this_cpu_inc(softnet_data.processed);
5307
5308         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5309                 int ret2;
5310
5311                 migrate_disable();
5312                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5313                 migrate_enable();
5314
5315                 if (ret2 != XDP_PASS) {
5316                         ret = NET_RX_DROP;
5317                         goto out;
5318                 }
5319         }
5320
5321         if (eth_type_vlan(skb->protocol)) {
5322                 skb = skb_vlan_untag(skb);
5323                 if (unlikely(!skb))
5324                         goto out;
5325         }
5326
5327         if (skb_skip_tc_classify(skb))
5328                 goto skip_classify;
5329
5330         if (pfmemalloc)
5331                 goto skip_taps;
5332
5333         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5334                 if (pt_prev)
5335                         ret = deliver_skb(skb, pt_prev, orig_dev);
5336                 pt_prev = ptype;
5337         }
5338
5339         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5340                 if (pt_prev)
5341                         ret = deliver_skb(skb, pt_prev, orig_dev);
5342                 pt_prev = ptype;
5343         }
5344
5345 skip_taps:
5346 #ifdef CONFIG_NET_INGRESS
5347         if (static_branch_unlikely(&ingress_needed_key)) {
5348                 bool another = false;
5349
5350                 nf_skip_egress(skb, true);
5351                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5352                                          &another);
5353                 if (another)
5354                         goto another_round;
5355                 if (!skb)
5356                         goto out;
5357
5358                 nf_skip_egress(skb, false);
5359                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5360                         goto out;
5361         }
5362 #endif
5363         skb_reset_redirect(skb);
5364 skip_classify:
5365         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5366                 goto drop;
5367
5368         if (skb_vlan_tag_present(skb)) {
5369                 if (pt_prev) {
5370                         ret = deliver_skb(skb, pt_prev, orig_dev);
5371                         pt_prev = NULL;
5372                 }
5373                 if (vlan_do_receive(&skb))
5374                         goto another_round;
5375                 else if (unlikely(!skb))
5376                         goto out;
5377         }
5378
5379         rx_handler = rcu_dereference(skb->dev->rx_handler);
5380         if (rx_handler) {
5381                 if (pt_prev) {
5382                         ret = deliver_skb(skb, pt_prev, orig_dev);
5383                         pt_prev = NULL;
5384                 }
5385                 switch (rx_handler(&skb)) {
5386                 case RX_HANDLER_CONSUMED:
5387                         ret = NET_RX_SUCCESS;
5388                         goto out;
5389                 case RX_HANDLER_ANOTHER:
5390                         goto another_round;
5391                 case RX_HANDLER_EXACT:
5392                         deliver_exact = true;
5393                         break;
5394                 case RX_HANDLER_PASS:
5395                         break;
5396                 default:
5397                         BUG();
5398                 }
5399         }
5400
5401         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5402 check_vlan_id:
5403                 if (skb_vlan_tag_get_id(skb)) {
5404                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5405                          * find vlan device.
5406                          */
5407                         skb->pkt_type = PACKET_OTHERHOST;
5408                 } else if (eth_type_vlan(skb->protocol)) {
5409                         /* Outer header is 802.1P with vlan 0, inner header is
5410                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5411                          * not find vlan dev for vlan id 0.
5412                          */
5413                         __vlan_hwaccel_clear_tag(skb);
5414                         skb = skb_vlan_untag(skb);
5415                         if (unlikely(!skb))
5416                                 goto out;
5417                         if (vlan_do_receive(&skb))
5418                                 /* After stripping off 802.1P header with vlan 0
5419                                  * vlan dev is found for inner header.
5420                                  */
5421                                 goto another_round;
5422                         else if (unlikely(!skb))
5423                                 goto out;
5424                         else
5425                                 /* We have stripped outer 802.1P vlan 0 header.
5426                                  * But could not find vlan dev.
5427                                  * check again for vlan id to set OTHERHOST.
5428                                  */
5429                                 goto check_vlan_id;
5430                 }
5431                 /* Note: we might in the future use prio bits
5432                  * and set skb->priority like in vlan_do_receive()
5433                  * For the time being, just ignore Priority Code Point
5434                  */
5435                 __vlan_hwaccel_clear_tag(skb);
5436         }
5437
5438         type = skb->protocol;
5439
5440         /* deliver only exact match when indicated */
5441         if (likely(!deliver_exact)) {
5442                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443                                        &ptype_base[ntohs(type) &
5444                                                    PTYPE_HASH_MASK]);
5445         }
5446
5447         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5448                                &orig_dev->ptype_specific);
5449
5450         if (unlikely(skb->dev != orig_dev)) {
5451                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5452                                        &skb->dev->ptype_specific);
5453         }
5454
5455         if (pt_prev) {
5456                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5457                         goto drop;
5458                 *ppt_prev = pt_prev;
5459         } else {
5460 drop:
5461                 if (!deliver_exact)
5462                         dev_core_stats_rx_dropped_inc(skb->dev);
5463                 else
5464                         dev_core_stats_rx_nohandler_inc(skb->dev);
5465                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5466                 /* Jamal, now you will not able to escape explaining
5467                  * me how you were going to use this. :-)
5468                  */
5469                 ret = NET_RX_DROP;
5470         }
5471
5472 out:
5473         /* The invariant here is that if *ppt_prev is not NULL
5474          * then skb should also be non-NULL.
5475          *
5476          * Apparently *ppt_prev assignment above holds this invariant due to
5477          * skb dereferencing near it.
5478          */
5479         *pskb = skb;
5480         return ret;
5481 }
5482
5483 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5484 {
5485         struct net_device *orig_dev = skb->dev;
5486         struct packet_type *pt_prev = NULL;
5487         int ret;
5488
5489         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5490         if (pt_prev)
5491                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5492                                          skb->dev, pt_prev, orig_dev);
5493         return ret;
5494 }
5495
5496 /**
5497  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5498  *      @skb: buffer to process
5499  *
5500  *      More direct receive version of netif_receive_skb().  It should
5501  *      only be used by callers that have a need to skip RPS and Generic XDP.
5502  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5503  *
5504  *      This function may only be called from softirq context and interrupts
5505  *      should be enabled.
5506  *
5507  *      Return values (usually ignored):
5508  *      NET_RX_SUCCESS: no congestion
5509  *      NET_RX_DROP: packet was dropped
5510  */
5511 int netif_receive_skb_core(struct sk_buff *skb)
5512 {
5513         int ret;
5514
5515         rcu_read_lock();
5516         ret = __netif_receive_skb_one_core(skb, false);
5517         rcu_read_unlock();
5518
5519         return ret;
5520 }
5521 EXPORT_SYMBOL(netif_receive_skb_core);
5522
5523 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5524                                                   struct packet_type *pt_prev,
5525                                                   struct net_device *orig_dev)
5526 {
5527         struct sk_buff *skb, *next;
5528
5529         if (!pt_prev)
5530                 return;
5531         if (list_empty(head))
5532                 return;
5533         if (pt_prev->list_func != NULL)
5534                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5535                                    ip_list_rcv, head, pt_prev, orig_dev);
5536         else
5537                 list_for_each_entry_safe(skb, next, head, list) {
5538                         skb_list_del_init(skb);
5539                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5540                 }
5541 }
5542
5543 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5544 {
5545         /* Fast-path assumptions:
5546          * - There is no RX handler.
5547          * - Only one packet_type matches.
5548          * If either of these fails, we will end up doing some per-packet
5549          * processing in-line, then handling the 'last ptype' for the whole
5550          * sublist.  This can't cause out-of-order delivery to any single ptype,
5551          * because the 'last ptype' must be constant across the sublist, and all
5552          * other ptypes are handled per-packet.
5553          */
5554         /* Current (common) ptype of sublist */
5555         struct packet_type *pt_curr = NULL;
5556         /* Current (common) orig_dev of sublist */
5557         struct net_device *od_curr = NULL;
5558         struct list_head sublist;
5559         struct sk_buff *skb, *next;
5560
5561         INIT_LIST_HEAD(&sublist);
5562         list_for_each_entry_safe(skb, next, head, list) {
5563                 struct net_device *orig_dev = skb->dev;
5564                 struct packet_type *pt_prev = NULL;
5565
5566                 skb_list_del_init(skb);
5567                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5568                 if (!pt_prev)
5569                         continue;
5570                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5571                         /* dispatch old sublist */
5572                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5573                         /* start new sublist */
5574                         INIT_LIST_HEAD(&sublist);
5575                         pt_curr = pt_prev;
5576                         od_curr = orig_dev;
5577                 }
5578                 list_add_tail(&skb->list, &sublist);
5579         }
5580
5581         /* dispatch final sublist */
5582         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5583 }
5584
5585 static int __netif_receive_skb(struct sk_buff *skb)
5586 {
5587         int ret;
5588
5589         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5590                 unsigned int noreclaim_flag;
5591
5592                 /*
5593                  * PFMEMALLOC skbs are special, they should
5594                  * - be delivered to SOCK_MEMALLOC sockets only
5595                  * - stay away from userspace
5596                  * - have bounded memory usage
5597                  *
5598                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5599                  * context down to all allocation sites.
5600                  */
5601                 noreclaim_flag = memalloc_noreclaim_save();
5602                 ret = __netif_receive_skb_one_core(skb, true);
5603                 memalloc_noreclaim_restore(noreclaim_flag);
5604         } else
5605                 ret = __netif_receive_skb_one_core(skb, false);
5606
5607         return ret;
5608 }
5609
5610 static void __netif_receive_skb_list(struct list_head *head)
5611 {
5612         unsigned long noreclaim_flag = 0;
5613         struct sk_buff *skb, *next;
5614         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5615
5616         list_for_each_entry_safe(skb, next, head, list) {
5617                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5618                         struct list_head sublist;
5619
5620                         /* Handle the previous sublist */
5621                         list_cut_before(&sublist, head, &skb->list);
5622                         if (!list_empty(&sublist))
5623                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5624                         pfmemalloc = !pfmemalloc;
5625                         /* See comments in __netif_receive_skb */
5626                         if (pfmemalloc)
5627                                 noreclaim_flag = memalloc_noreclaim_save();
5628                         else
5629                                 memalloc_noreclaim_restore(noreclaim_flag);
5630                 }
5631         }
5632         /* Handle the remaining sublist */
5633         if (!list_empty(head))
5634                 __netif_receive_skb_list_core(head, pfmemalloc);
5635         /* Restore pflags */
5636         if (pfmemalloc)
5637                 memalloc_noreclaim_restore(noreclaim_flag);
5638 }
5639
5640 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5641 {
5642         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5643         struct bpf_prog *new = xdp->prog;
5644         int ret = 0;
5645
5646         switch (xdp->command) {
5647         case XDP_SETUP_PROG:
5648                 rcu_assign_pointer(dev->xdp_prog, new);
5649                 if (old)
5650                         bpf_prog_put(old);
5651
5652                 if (old && !new) {
5653                         static_branch_dec(&generic_xdp_needed_key);
5654                 } else if (new && !old) {
5655                         static_branch_inc(&generic_xdp_needed_key);
5656                         dev_disable_lro(dev);
5657                         dev_disable_gro_hw(dev);
5658                 }
5659                 break;
5660
5661         default:
5662                 ret = -EINVAL;
5663                 break;
5664         }
5665
5666         return ret;
5667 }
5668
5669 static int netif_receive_skb_internal(struct sk_buff *skb)
5670 {
5671         int ret;
5672
5673         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5674
5675         if (skb_defer_rx_timestamp(skb))
5676                 return NET_RX_SUCCESS;
5677
5678         rcu_read_lock();
5679 #ifdef CONFIG_RPS
5680         if (static_branch_unlikely(&rps_needed)) {
5681                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5682                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5683
5684                 if (cpu >= 0) {
5685                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5686                         rcu_read_unlock();
5687                         return ret;
5688                 }
5689         }
5690 #endif
5691         ret = __netif_receive_skb(skb);
5692         rcu_read_unlock();
5693         return ret;
5694 }
5695
5696 void netif_receive_skb_list_internal(struct list_head *head)
5697 {
5698         struct sk_buff *skb, *next;
5699         struct list_head sublist;
5700
5701         INIT_LIST_HEAD(&sublist);
5702         list_for_each_entry_safe(skb, next, head, list) {
5703                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5704                 skb_list_del_init(skb);
5705                 if (!skb_defer_rx_timestamp(skb))
5706                         list_add_tail(&skb->list, &sublist);
5707         }
5708         list_splice_init(&sublist, head);
5709
5710         rcu_read_lock();
5711 #ifdef CONFIG_RPS
5712         if (static_branch_unlikely(&rps_needed)) {
5713                 list_for_each_entry_safe(skb, next, head, list) {
5714                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5715                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5716
5717                         if (cpu >= 0) {
5718                                 /* Will be handled, remove from list */
5719                                 skb_list_del_init(skb);
5720                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5721                         }
5722                 }
5723         }
5724 #endif
5725         __netif_receive_skb_list(head);
5726         rcu_read_unlock();
5727 }
5728
5729 /**
5730  *      netif_receive_skb - process receive buffer from network
5731  *      @skb: buffer to process
5732  *
5733  *      netif_receive_skb() is the main receive data processing function.
5734  *      It always succeeds. The buffer may be dropped during processing
5735  *      for congestion control or by the protocol layers.
5736  *
5737  *      This function may only be called from softirq context and interrupts
5738  *      should be enabled.
5739  *
5740  *      Return values (usually ignored):
5741  *      NET_RX_SUCCESS: no congestion
5742  *      NET_RX_DROP: packet was dropped
5743  */
5744 int netif_receive_skb(struct sk_buff *skb)
5745 {
5746         int ret;
5747
5748         trace_netif_receive_skb_entry(skb);
5749
5750         ret = netif_receive_skb_internal(skb);
5751         trace_netif_receive_skb_exit(ret);
5752
5753         return ret;
5754 }
5755 EXPORT_SYMBOL(netif_receive_skb);
5756
5757 /**
5758  *      netif_receive_skb_list - process many receive buffers from network
5759  *      @head: list of skbs to process.
5760  *
5761  *      Since return value of netif_receive_skb() is normally ignored, and
5762  *      wouldn't be meaningful for a list, this function returns void.
5763  *
5764  *      This function may only be called from softirq context and interrupts
5765  *      should be enabled.
5766  */
5767 void netif_receive_skb_list(struct list_head *head)
5768 {
5769         struct sk_buff *skb;
5770
5771         if (list_empty(head))
5772                 return;
5773         if (trace_netif_receive_skb_list_entry_enabled()) {
5774                 list_for_each_entry(skb, head, list)
5775                         trace_netif_receive_skb_list_entry(skb);
5776         }
5777         netif_receive_skb_list_internal(head);
5778         trace_netif_receive_skb_list_exit(0);
5779 }
5780 EXPORT_SYMBOL(netif_receive_skb_list);
5781
5782 static DEFINE_PER_CPU(struct work_struct, flush_works);
5783
5784 /* Network device is going away, flush any packets still pending */
5785 static void flush_backlog(struct work_struct *work)
5786 {
5787         struct sk_buff *skb, *tmp;
5788         struct softnet_data *sd;
5789
5790         local_bh_disable();
5791         sd = this_cpu_ptr(&softnet_data);
5792
5793         rps_lock_irq_disable(sd);
5794         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5795                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5796                         __skb_unlink(skb, &sd->input_pkt_queue);
5797                         dev_kfree_skb_irq(skb);
5798                         input_queue_head_incr(sd);
5799                 }
5800         }
5801         rps_unlock_irq_enable(sd);
5802
5803         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5804                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5805                         __skb_unlink(skb, &sd->process_queue);
5806                         kfree_skb(skb);
5807                         input_queue_head_incr(sd);
5808                 }
5809         }
5810         local_bh_enable();
5811 }
5812
5813 static bool flush_required(int cpu)
5814 {
5815 #if IS_ENABLED(CONFIG_RPS)
5816         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5817         bool do_flush;
5818
5819         rps_lock_irq_disable(sd);
5820
5821         /* as insertion into process_queue happens with the rps lock held,
5822          * process_queue access may race only with dequeue
5823          */
5824         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5825                    !skb_queue_empty_lockless(&sd->process_queue);
5826         rps_unlock_irq_enable(sd);
5827
5828         return do_flush;
5829 #endif
5830         /* without RPS we can't safely check input_pkt_queue: during a
5831          * concurrent remote skb_queue_splice() we can detect as empty both
5832          * input_pkt_queue and process_queue even if the latter could end-up
5833          * containing a lot of packets.
5834          */
5835         return true;
5836 }
5837
5838 static void flush_all_backlogs(void)
5839 {
5840         static cpumask_t flush_cpus;
5841         unsigned int cpu;
5842
5843         /* since we are under rtnl lock protection we can use static data
5844          * for the cpumask and avoid allocating on stack the possibly
5845          * large mask
5846          */
5847         ASSERT_RTNL();
5848
5849         cpus_read_lock();
5850
5851         cpumask_clear(&flush_cpus);
5852         for_each_online_cpu(cpu) {
5853                 if (flush_required(cpu)) {
5854                         queue_work_on(cpu, system_highpri_wq,
5855                                       per_cpu_ptr(&flush_works, cpu));
5856                         cpumask_set_cpu(cpu, &flush_cpus);
5857                 }
5858         }
5859
5860         /* we can have in flight packet[s] on the cpus we are not flushing,
5861          * synchronize_net() in unregister_netdevice_many() will take care of
5862          * them
5863          */
5864         for_each_cpu(cpu, &flush_cpus)
5865                 flush_work(per_cpu_ptr(&flush_works, cpu));
5866
5867         cpus_read_unlock();
5868 }
5869
5870 static void net_rps_send_ipi(struct softnet_data *remsd)
5871 {
5872 #ifdef CONFIG_RPS
5873         while (remsd) {
5874                 struct softnet_data *next = remsd->rps_ipi_next;
5875
5876                 if (cpu_online(remsd->cpu))
5877                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5878                 remsd = next;
5879         }
5880 #endif
5881 }
5882
5883 /*
5884  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5885  * Note: called with local irq disabled, but exits with local irq enabled.
5886  */
5887 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5888 {
5889 #ifdef CONFIG_RPS
5890         struct softnet_data *remsd = sd->rps_ipi_list;
5891
5892         if (remsd) {
5893                 sd->rps_ipi_list = NULL;
5894
5895                 local_irq_enable();
5896
5897                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5898                 net_rps_send_ipi(remsd);
5899         } else
5900 #endif
5901                 local_irq_enable();
5902 }
5903
5904 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5905 {
5906 #ifdef CONFIG_RPS
5907         return sd->rps_ipi_list != NULL;
5908 #else
5909         return false;
5910 #endif
5911 }
5912
5913 static int process_backlog(struct napi_struct *napi, int quota)
5914 {
5915         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5916         bool again = true;
5917         int work = 0;
5918
5919         /* Check if we have pending ipi, its better to send them now,
5920          * not waiting net_rx_action() end.
5921          */
5922         if (sd_has_rps_ipi_waiting(sd)) {
5923                 local_irq_disable();
5924                 net_rps_action_and_irq_enable(sd);
5925         }
5926
5927         napi->weight = READ_ONCE(dev_rx_weight);
5928         while (again) {
5929                 struct sk_buff *skb;
5930
5931                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5932                         rcu_read_lock();
5933                         __netif_receive_skb(skb);
5934                         rcu_read_unlock();
5935                         input_queue_head_incr(sd);
5936                         if (++work >= quota)
5937                                 return work;
5938
5939                 }
5940
5941                 rps_lock_irq_disable(sd);
5942                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5943                         /*
5944                          * Inline a custom version of __napi_complete().
5945                          * only current cpu owns and manipulates this napi,
5946                          * and NAPI_STATE_SCHED is the only possible flag set
5947                          * on backlog.
5948                          * We can use a plain write instead of clear_bit(),
5949                          * and we dont need an smp_mb() memory barrier.
5950                          */
5951                         napi->state = 0;
5952                         again = false;
5953                 } else {
5954                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5955                                                    &sd->process_queue);
5956                 }
5957                 rps_unlock_irq_enable(sd);
5958         }
5959
5960         return work;
5961 }
5962
5963 /**
5964  * __napi_schedule - schedule for receive
5965  * @n: entry to schedule
5966  *
5967  * The entry's receive function will be scheduled to run.
5968  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5969  */
5970 void __napi_schedule(struct napi_struct *n)
5971 {
5972         unsigned long flags;
5973
5974         local_irq_save(flags);
5975         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5976         local_irq_restore(flags);
5977 }
5978 EXPORT_SYMBOL(__napi_schedule);
5979
5980 /**
5981  *      napi_schedule_prep - check if napi can be scheduled
5982  *      @n: napi context
5983  *
5984  * Test if NAPI routine is already running, and if not mark
5985  * it as running.  This is used as a condition variable to
5986  * insure only one NAPI poll instance runs.  We also make
5987  * sure there is no pending NAPI disable.
5988  */
5989 bool napi_schedule_prep(struct napi_struct *n)
5990 {
5991         unsigned long val, new;
5992
5993         do {
5994                 val = READ_ONCE(n->state);
5995                 if (unlikely(val & NAPIF_STATE_DISABLE))
5996                         return false;
5997                 new = val | NAPIF_STATE_SCHED;
5998
5999                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6000                  * This was suggested by Alexander Duyck, as compiler
6001                  * emits better code than :
6002                  * if (val & NAPIF_STATE_SCHED)
6003                  *     new |= NAPIF_STATE_MISSED;
6004                  */
6005                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6006                                                    NAPIF_STATE_MISSED;
6007         } while (cmpxchg(&n->state, val, new) != val);
6008
6009         return !(val & NAPIF_STATE_SCHED);
6010 }
6011 EXPORT_SYMBOL(napi_schedule_prep);
6012
6013 /**
6014  * __napi_schedule_irqoff - schedule for receive
6015  * @n: entry to schedule
6016  *
6017  * Variant of __napi_schedule() assuming hard irqs are masked.
6018  *
6019  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6020  * because the interrupt disabled assumption might not be true
6021  * due to force-threaded interrupts and spinlock substitution.
6022  */
6023 void __napi_schedule_irqoff(struct napi_struct *n)
6024 {
6025         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6026                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6027         else
6028                 __napi_schedule(n);
6029 }
6030 EXPORT_SYMBOL(__napi_schedule_irqoff);
6031
6032 bool napi_complete_done(struct napi_struct *n, int work_done)
6033 {
6034         unsigned long flags, val, new, timeout = 0;
6035         bool ret = true;
6036
6037         /*
6038          * 1) Don't let napi dequeue from the cpu poll list
6039          *    just in case its running on a different cpu.
6040          * 2) If we are busy polling, do nothing here, we have
6041          *    the guarantee we will be called later.
6042          */
6043         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6044                                  NAPIF_STATE_IN_BUSY_POLL)))
6045                 return false;
6046
6047         if (work_done) {
6048                 if (n->gro_bitmask)
6049                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6050                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6051         }
6052         if (n->defer_hard_irqs_count > 0) {
6053                 n->defer_hard_irqs_count--;
6054                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6055                 if (timeout)
6056                         ret = false;
6057         }
6058         if (n->gro_bitmask) {
6059                 /* When the NAPI instance uses a timeout and keeps postponing
6060                  * it, we need to bound somehow the time packets are kept in
6061                  * the GRO layer
6062                  */
6063                 napi_gro_flush(n, !!timeout);
6064         }
6065
6066         gro_normal_list(n);
6067
6068         if (unlikely(!list_empty(&n->poll_list))) {
6069                 /* If n->poll_list is not empty, we need to mask irqs */
6070                 local_irq_save(flags);
6071                 list_del_init(&n->poll_list);
6072                 local_irq_restore(flags);
6073         }
6074
6075         do {
6076                 val = READ_ONCE(n->state);
6077
6078                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6079
6080                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6081                               NAPIF_STATE_SCHED_THREADED |
6082                               NAPIF_STATE_PREFER_BUSY_POLL);
6083
6084                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6085                  * because we will call napi->poll() one more time.
6086                  * This C code was suggested by Alexander Duyck to help gcc.
6087                  */
6088                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6089                                                     NAPIF_STATE_SCHED;
6090         } while (cmpxchg(&n->state, val, new) != val);
6091
6092         if (unlikely(val & NAPIF_STATE_MISSED)) {
6093                 __napi_schedule(n);
6094                 return false;
6095         }
6096
6097         if (timeout)
6098                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6099                               HRTIMER_MODE_REL_PINNED);
6100         return ret;
6101 }
6102 EXPORT_SYMBOL(napi_complete_done);
6103
6104 /* must be called under rcu_read_lock(), as we dont take a reference */
6105 static struct napi_struct *napi_by_id(unsigned int napi_id)
6106 {
6107         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6108         struct napi_struct *napi;
6109
6110         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6111                 if (napi->napi_id == napi_id)
6112                         return napi;
6113
6114         return NULL;
6115 }
6116
6117 #if defined(CONFIG_NET_RX_BUSY_POLL)
6118
6119 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6120 {
6121         if (!skip_schedule) {
6122                 gro_normal_list(napi);
6123                 __napi_schedule(napi);
6124                 return;
6125         }
6126
6127         if (napi->gro_bitmask) {
6128                 /* flush too old packets
6129                  * If HZ < 1000, flush all packets.
6130                  */
6131                 napi_gro_flush(napi, HZ >= 1000);
6132         }
6133
6134         gro_normal_list(napi);
6135         clear_bit(NAPI_STATE_SCHED, &napi->state);
6136 }
6137
6138 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6139                            u16 budget)
6140 {
6141         bool skip_schedule = false;
6142         unsigned long timeout;
6143         int rc;
6144
6145         /* Busy polling means there is a high chance device driver hard irq
6146          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6147          * set in napi_schedule_prep().
6148          * Since we are about to call napi->poll() once more, we can safely
6149          * clear NAPI_STATE_MISSED.
6150          *
6151          * Note: x86 could use a single "lock and ..." instruction
6152          * to perform these two clear_bit()
6153          */
6154         clear_bit(NAPI_STATE_MISSED, &napi->state);
6155         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6156
6157         local_bh_disable();
6158
6159         if (prefer_busy_poll) {
6160                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6161                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6162                 if (napi->defer_hard_irqs_count && timeout) {
6163                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6164                         skip_schedule = true;
6165                 }
6166         }
6167
6168         /* All we really want here is to re-enable device interrupts.
6169          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6170          */
6171         rc = napi->poll(napi, budget);
6172         /* We can't gro_normal_list() here, because napi->poll() might have
6173          * rearmed the napi (napi_complete_done()) in which case it could
6174          * already be running on another CPU.
6175          */
6176         trace_napi_poll(napi, rc, budget);
6177         netpoll_poll_unlock(have_poll_lock);
6178         if (rc == budget)
6179                 __busy_poll_stop(napi, skip_schedule);
6180         local_bh_enable();
6181 }
6182
6183 void napi_busy_loop(unsigned int napi_id,
6184                     bool (*loop_end)(void *, unsigned long),
6185                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6186 {
6187         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6188         int (*napi_poll)(struct napi_struct *napi, int budget);
6189         void *have_poll_lock = NULL;
6190         struct napi_struct *napi;
6191
6192 restart:
6193         napi_poll = NULL;
6194
6195         rcu_read_lock();
6196
6197         napi = napi_by_id(napi_id);
6198         if (!napi)
6199                 goto out;
6200
6201         preempt_disable();
6202         for (;;) {
6203                 int work = 0;
6204
6205                 local_bh_disable();
6206                 if (!napi_poll) {
6207                         unsigned long val = READ_ONCE(napi->state);
6208
6209                         /* If multiple threads are competing for this napi,
6210                          * we avoid dirtying napi->state as much as we can.
6211                          */
6212                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6213                                    NAPIF_STATE_IN_BUSY_POLL)) {
6214                                 if (prefer_busy_poll)
6215                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6216                                 goto count;
6217                         }
6218                         if (cmpxchg(&napi->state, val,
6219                                     val | NAPIF_STATE_IN_BUSY_POLL |
6220                                           NAPIF_STATE_SCHED) != val) {
6221                                 if (prefer_busy_poll)
6222                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6223                                 goto count;
6224                         }
6225                         have_poll_lock = netpoll_poll_lock(napi);
6226                         napi_poll = napi->poll;
6227                 }
6228                 work = napi_poll(napi, budget);
6229                 trace_napi_poll(napi, work, budget);
6230                 gro_normal_list(napi);
6231 count:
6232                 if (work > 0)
6233                         __NET_ADD_STATS(dev_net(napi->dev),
6234                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6235                 local_bh_enable();
6236
6237                 if (!loop_end || loop_end(loop_end_arg, start_time))
6238                         break;
6239
6240                 if (unlikely(need_resched())) {
6241                         if (napi_poll)
6242                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6243                         preempt_enable();
6244                         rcu_read_unlock();
6245                         cond_resched();
6246                         if (loop_end(loop_end_arg, start_time))
6247                                 return;
6248                         goto restart;
6249                 }
6250                 cpu_relax();
6251         }
6252         if (napi_poll)
6253                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6254         preempt_enable();
6255 out:
6256         rcu_read_unlock();
6257 }
6258 EXPORT_SYMBOL(napi_busy_loop);
6259
6260 #endif /* CONFIG_NET_RX_BUSY_POLL */
6261
6262 static void napi_hash_add(struct napi_struct *napi)
6263 {
6264         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6265                 return;
6266
6267         spin_lock(&napi_hash_lock);
6268
6269         /* 0..NR_CPUS range is reserved for sender_cpu use */
6270         do {
6271                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6272                         napi_gen_id = MIN_NAPI_ID;
6273         } while (napi_by_id(napi_gen_id));
6274         napi->napi_id = napi_gen_id;
6275
6276         hlist_add_head_rcu(&napi->napi_hash_node,
6277                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6278
6279         spin_unlock(&napi_hash_lock);
6280 }
6281
6282 /* Warning : caller is responsible to make sure rcu grace period
6283  * is respected before freeing memory containing @napi
6284  */
6285 static void napi_hash_del(struct napi_struct *napi)
6286 {
6287         spin_lock(&napi_hash_lock);
6288
6289         hlist_del_init_rcu(&napi->napi_hash_node);
6290
6291         spin_unlock(&napi_hash_lock);
6292 }
6293
6294 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6295 {
6296         struct napi_struct *napi;
6297
6298         napi = container_of(timer, struct napi_struct, timer);
6299
6300         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6301          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6302          */
6303         if (!napi_disable_pending(napi) &&
6304             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6305                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6306                 __napi_schedule_irqoff(napi);
6307         }
6308
6309         return HRTIMER_NORESTART;
6310 }
6311
6312 static void init_gro_hash(struct napi_struct *napi)
6313 {
6314         int i;
6315
6316         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6317                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6318                 napi->gro_hash[i].count = 0;
6319         }
6320         napi->gro_bitmask = 0;
6321 }
6322
6323 int dev_set_threaded(struct net_device *dev, bool threaded)
6324 {
6325         struct napi_struct *napi;
6326         int err = 0;
6327
6328         if (dev->threaded == threaded)
6329                 return 0;
6330
6331         if (threaded) {
6332                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6333                         if (!napi->thread) {
6334                                 err = napi_kthread_create(napi);
6335                                 if (err) {
6336                                         threaded = false;
6337                                         break;
6338                                 }
6339                         }
6340                 }
6341         }
6342
6343         dev->threaded = threaded;
6344
6345         /* Make sure kthread is created before THREADED bit
6346          * is set.
6347          */
6348         smp_mb__before_atomic();
6349
6350         /* Setting/unsetting threaded mode on a napi might not immediately
6351          * take effect, if the current napi instance is actively being
6352          * polled. In this case, the switch between threaded mode and
6353          * softirq mode will happen in the next round of napi_schedule().
6354          * This should not cause hiccups/stalls to the live traffic.
6355          */
6356         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6357                 if (threaded)
6358                         set_bit(NAPI_STATE_THREADED, &napi->state);
6359                 else
6360                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6361         }
6362
6363         return err;
6364 }
6365 EXPORT_SYMBOL(dev_set_threaded);
6366
6367 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6368                            int (*poll)(struct napi_struct *, int), int weight)
6369 {
6370         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6371                 return;
6372
6373         INIT_LIST_HEAD(&napi->poll_list);
6374         INIT_HLIST_NODE(&napi->napi_hash_node);
6375         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6376         napi->timer.function = napi_watchdog;
6377         init_gro_hash(napi);
6378         napi->skb = NULL;
6379         INIT_LIST_HEAD(&napi->rx_list);
6380         napi->rx_count = 0;
6381         napi->poll = poll;
6382         if (weight > NAPI_POLL_WEIGHT)
6383                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6384                                 weight);
6385         napi->weight = weight;
6386         napi->dev = dev;
6387 #ifdef CONFIG_NETPOLL
6388         napi->poll_owner = -1;
6389 #endif
6390         set_bit(NAPI_STATE_SCHED, &napi->state);
6391         set_bit(NAPI_STATE_NPSVC, &napi->state);
6392         list_add_rcu(&napi->dev_list, &dev->napi_list);
6393         napi_hash_add(napi);
6394         napi_get_frags_check(napi);
6395         /* Create kthread for this napi if dev->threaded is set.
6396          * Clear dev->threaded if kthread creation failed so that
6397          * threaded mode will not be enabled in napi_enable().
6398          */
6399         if (dev->threaded && napi_kthread_create(napi))
6400                 dev->threaded = 0;
6401 }
6402 EXPORT_SYMBOL(netif_napi_add_weight);
6403
6404 void napi_disable(struct napi_struct *n)
6405 {
6406         unsigned long val, new;
6407
6408         might_sleep();
6409         set_bit(NAPI_STATE_DISABLE, &n->state);
6410
6411         for ( ; ; ) {
6412                 val = READ_ONCE(n->state);
6413                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6414                         usleep_range(20, 200);
6415                         continue;
6416                 }
6417
6418                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6419                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6420
6421                 if (cmpxchg(&n->state, val, new) == val)
6422                         break;
6423         }
6424
6425         hrtimer_cancel(&n->timer);
6426
6427         clear_bit(NAPI_STATE_DISABLE, &n->state);
6428 }
6429 EXPORT_SYMBOL(napi_disable);
6430
6431 /**
6432  *      napi_enable - enable NAPI scheduling
6433  *      @n: NAPI context
6434  *
6435  * Resume NAPI from being scheduled on this context.
6436  * Must be paired with napi_disable.
6437  */
6438 void napi_enable(struct napi_struct *n)
6439 {
6440         unsigned long val, new;
6441
6442         do {
6443                 val = READ_ONCE(n->state);
6444                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6445
6446                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6447                 if (n->dev->threaded && n->thread)
6448                         new |= NAPIF_STATE_THREADED;
6449         } while (cmpxchg(&n->state, val, new) != val);
6450 }
6451 EXPORT_SYMBOL(napi_enable);
6452
6453 static void flush_gro_hash(struct napi_struct *napi)
6454 {
6455         int i;
6456
6457         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6458                 struct sk_buff *skb, *n;
6459
6460                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6461                         kfree_skb(skb);
6462                 napi->gro_hash[i].count = 0;
6463         }
6464 }
6465
6466 /* Must be called in process context */
6467 void __netif_napi_del(struct napi_struct *napi)
6468 {
6469         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6470                 return;
6471
6472         napi_hash_del(napi);
6473         list_del_rcu(&napi->dev_list);
6474         napi_free_frags(napi);
6475
6476         flush_gro_hash(napi);
6477         napi->gro_bitmask = 0;
6478
6479         if (napi->thread) {
6480                 kthread_stop(napi->thread);
6481                 napi->thread = NULL;
6482         }
6483 }
6484 EXPORT_SYMBOL(__netif_napi_del);
6485
6486 static int __napi_poll(struct napi_struct *n, bool *repoll)
6487 {
6488         int work, weight;
6489
6490         weight = n->weight;
6491
6492         /* This NAPI_STATE_SCHED test is for avoiding a race
6493          * with netpoll's poll_napi().  Only the entity which
6494          * obtains the lock and sees NAPI_STATE_SCHED set will
6495          * actually make the ->poll() call.  Therefore we avoid
6496          * accidentally calling ->poll() when NAPI is not scheduled.
6497          */
6498         work = 0;
6499         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6500                 work = n->poll(n, weight);
6501                 trace_napi_poll(n, work, weight);
6502         }
6503
6504         if (unlikely(work > weight))
6505                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6506                                 n->poll, work, weight);
6507
6508         if (likely(work < weight))
6509                 return work;
6510
6511         /* Drivers must not modify the NAPI state if they
6512          * consume the entire weight.  In such cases this code
6513          * still "owns" the NAPI instance and therefore can
6514          * move the instance around on the list at-will.
6515          */
6516         if (unlikely(napi_disable_pending(n))) {
6517                 napi_complete(n);
6518                 return work;
6519         }
6520
6521         /* The NAPI context has more processing work, but busy-polling
6522          * is preferred. Exit early.
6523          */
6524         if (napi_prefer_busy_poll(n)) {
6525                 if (napi_complete_done(n, work)) {
6526                         /* If timeout is not set, we need to make sure
6527                          * that the NAPI is re-scheduled.
6528                          */
6529                         napi_schedule(n);
6530                 }
6531                 return work;
6532         }
6533
6534         if (n->gro_bitmask) {
6535                 /* flush too old packets
6536                  * If HZ < 1000, flush all packets.
6537                  */
6538                 napi_gro_flush(n, HZ >= 1000);
6539         }
6540
6541         gro_normal_list(n);
6542
6543         /* Some drivers may have called napi_schedule
6544          * prior to exhausting their budget.
6545          */
6546         if (unlikely(!list_empty(&n->poll_list))) {
6547                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6548                              n->dev ? n->dev->name : "backlog");
6549                 return work;
6550         }
6551
6552         *repoll = true;
6553
6554         return work;
6555 }
6556
6557 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6558 {
6559         bool do_repoll = false;
6560         void *have;
6561         int work;
6562
6563         list_del_init(&n->poll_list);
6564
6565         have = netpoll_poll_lock(n);
6566
6567         work = __napi_poll(n, &do_repoll);
6568
6569         if (do_repoll)
6570                 list_add_tail(&n->poll_list, repoll);
6571
6572         netpoll_poll_unlock(have);
6573
6574         return work;
6575 }
6576
6577 static int napi_thread_wait(struct napi_struct *napi)
6578 {
6579         bool woken = false;
6580
6581         set_current_state(TASK_INTERRUPTIBLE);
6582
6583         while (!kthread_should_stop()) {
6584                 /* Testing SCHED_THREADED bit here to make sure the current
6585                  * kthread owns this napi and could poll on this napi.
6586                  * Testing SCHED bit is not enough because SCHED bit might be
6587                  * set by some other busy poll thread or by napi_disable().
6588                  */
6589                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6590                         WARN_ON(!list_empty(&napi->poll_list));
6591                         __set_current_state(TASK_RUNNING);
6592                         return 0;
6593                 }
6594
6595                 schedule();
6596                 /* woken being true indicates this thread owns this napi. */
6597                 woken = true;
6598                 set_current_state(TASK_INTERRUPTIBLE);
6599         }
6600         __set_current_state(TASK_RUNNING);
6601
6602         return -1;
6603 }
6604
6605 static int napi_threaded_poll(void *data)
6606 {
6607         struct napi_struct *napi = data;
6608         void *have;
6609
6610         while (!napi_thread_wait(napi)) {
6611                 for (;;) {
6612                         bool repoll = false;
6613
6614                         local_bh_disable();
6615
6616                         have = netpoll_poll_lock(napi);
6617                         __napi_poll(napi, &repoll);
6618                         netpoll_poll_unlock(have);
6619
6620                         local_bh_enable();
6621
6622                         if (!repoll)
6623                                 break;
6624
6625                         cond_resched();
6626                 }
6627         }
6628         return 0;
6629 }
6630
6631 static void skb_defer_free_flush(struct softnet_data *sd)
6632 {
6633         struct sk_buff *skb, *next;
6634         unsigned long flags;
6635
6636         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6637         if (!READ_ONCE(sd->defer_list))
6638                 return;
6639
6640         spin_lock_irqsave(&sd->defer_lock, flags);
6641         skb = sd->defer_list;
6642         sd->defer_list = NULL;
6643         sd->defer_count = 0;
6644         spin_unlock_irqrestore(&sd->defer_lock, flags);
6645
6646         while (skb != NULL) {
6647                 next = skb->next;
6648                 napi_consume_skb(skb, 1);
6649                 skb = next;
6650         }
6651 }
6652
6653 static __latent_entropy void net_rx_action(struct softirq_action *h)
6654 {
6655         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6656         unsigned long time_limit = jiffies +
6657                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6658         int budget = READ_ONCE(netdev_budget);
6659         LIST_HEAD(list);
6660         LIST_HEAD(repoll);
6661
6662         local_irq_disable();
6663         list_splice_init(&sd->poll_list, &list);
6664         local_irq_enable();
6665
6666         for (;;) {
6667                 struct napi_struct *n;
6668
6669                 skb_defer_free_flush(sd);
6670
6671                 if (list_empty(&list)) {
6672                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6673                                 goto end;
6674                         break;
6675                 }
6676
6677                 n = list_first_entry(&list, struct napi_struct, poll_list);
6678                 budget -= napi_poll(n, &repoll);
6679
6680                 /* If softirq window is exhausted then punt.
6681                  * Allow this to run for 2 jiffies since which will allow
6682                  * an average latency of 1.5/HZ.
6683                  */
6684                 if (unlikely(budget <= 0 ||
6685                              time_after_eq(jiffies, time_limit))) {
6686                         sd->time_squeeze++;
6687                         break;
6688                 }
6689         }
6690
6691         local_irq_disable();
6692
6693         list_splice_tail_init(&sd->poll_list, &list);
6694         list_splice_tail(&repoll, &list);
6695         list_splice(&list, &sd->poll_list);
6696         if (!list_empty(&sd->poll_list))
6697                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6698
6699         net_rps_action_and_irq_enable(sd);
6700 end:;
6701 }
6702
6703 struct netdev_adjacent {
6704         struct net_device *dev;
6705         netdevice_tracker dev_tracker;
6706
6707         /* upper master flag, there can only be one master device per list */
6708         bool master;
6709
6710         /* lookup ignore flag */
6711         bool ignore;
6712
6713         /* counter for the number of times this device was added to us */
6714         u16 ref_nr;
6715
6716         /* private field for the users */
6717         void *private;
6718
6719         struct list_head list;
6720         struct rcu_head rcu;
6721 };
6722
6723 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6724                                                  struct list_head *adj_list)
6725 {
6726         struct netdev_adjacent *adj;
6727
6728         list_for_each_entry(adj, adj_list, list) {
6729                 if (adj->dev == adj_dev)
6730                         return adj;
6731         }
6732         return NULL;
6733 }
6734
6735 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6736                                     struct netdev_nested_priv *priv)
6737 {
6738         struct net_device *dev = (struct net_device *)priv->data;
6739
6740         return upper_dev == dev;
6741 }
6742
6743 /**
6744  * netdev_has_upper_dev - Check if device is linked to an upper device
6745  * @dev: device
6746  * @upper_dev: upper device to check
6747  *
6748  * Find out if a device is linked to specified upper device and return true
6749  * in case it is. Note that this checks only immediate upper device,
6750  * not through a complete stack of devices. The caller must hold the RTNL lock.
6751  */
6752 bool netdev_has_upper_dev(struct net_device *dev,
6753                           struct net_device *upper_dev)
6754 {
6755         struct netdev_nested_priv priv = {
6756                 .data = (void *)upper_dev,
6757         };
6758
6759         ASSERT_RTNL();
6760
6761         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6762                                              &priv);
6763 }
6764 EXPORT_SYMBOL(netdev_has_upper_dev);
6765
6766 /**
6767  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6768  * @dev: device
6769  * @upper_dev: upper device to check
6770  *
6771  * Find out if a device is linked to specified upper device and return true
6772  * in case it is. Note that this checks the entire upper device chain.
6773  * The caller must hold rcu lock.
6774  */
6775
6776 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6777                                   struct net_device *upper_dev)
6778 {
6779         struct netdev_nested_priv priv = {
6780                 .data = (void *)upper_dev,
6781         };
6782
6783         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6784                                                &priv);
6785 }
6786 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6787
6788 /**
6789  * netdev_has_any_upper_dev - Check if device is linked to some device
6790  * @dev: device
6791  *
6792  * Find out if a device is linked to an upper device and return true in case
6793  * it is. The caller must hold the RTNL lock.
6794  */
6795 bool netdev_has_any_upper_dev(struct net_device *dev)
6796 {
6797         ASSERT_RTNL();
6798
6799         return !list_empty(&dev->adj_list.upper);
6800 }
6801 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6802
6803 /**
6804  * netdev_master_upper_dev_get - Get master upper device
6805  * @dev: device
6806  *
6807  * Find a master upper device and return pointer to it or NULL in case
6808  * it's not there. The caller must hold the RTNL lock.
6809  */
6810 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6811 {
6812         struct netdev_adjacent *upper;
6813
6814         ASSERT_RTNL();
6815
6816         if (list_empty(&dev->adj_list.upper))
6817                 return NULL;
6818
6819         upper = list_first_entry(&dev->adj_list.upper,
6820                                  struct netdev_adjacent, list);
6821         if (likely(upper->master))
6822                 return upper->dev;
6823         return NULL;
6824 }
6825 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6826
6827 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6828 {
6829         struct netdev_adjacent *upper;
6830
6831         ASSERT_RTNL();
6832
6833         if (list_empty(&dev->adj_list.upper))
6834                 return NULL;
6835
6836         upper = list_first_entry(&dev->adj_list.upper,
6837                                  struct netdev_adjacent, list);
6838         if (likely(upper->master) && !upper->ignore)
6839                 return upper->dev;
6840         return NULL;
6841 }
6842
6843 /**
6844  * netdev_has_any_lower_dev - Check if device is linked to some device
6845  * @dev: device
6846  *
6847  * Find out if a device is linked to a lower device and return true in case
6848  * it is. The caller must hold the RTNL lock.
6849  */
6850 static bool netdev_has_any_lower_dev(struct net_device *dev)
6851 {
6852         ASSERT_RTNL();
6853
6854         return !list_empty(&dev->adj_list.lower);
6855 }
6856
6857 void *netdev_adjacent_get_private(struct list_head *adj_list)
6858 {
6859         struct netdev_adjacent *adj;
6860
6861         adj = list_entry(adj_list, struct netdev_adjacent, list);
6862
6863         return adj->private;
6864 }
6865 EXPORT_SYMBOL(netdev_adjacent_get_private);
6866
6867 /**
6868  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6869  * @dev: device
6870  * @iter: list_head ** of the current position
6871  *
6872  * Gets the next device from the dev's upper list, starting from iter
6873  * position. The caller must hold RCU read lock.
6874  */
6875 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6876                                                  struct list_head **iter)
6877 {
6878         struct netdev_adjacent *upper;
6879
6880         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6881
6882         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6883
6884         if (&upper->list == &dev->adj_list.upper)
6885                 return NULL;
6886
6887         *iter = &upper->list;
6888
6889         return upper->dev;
6890 }
6891 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6892
6893 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6894                                                   struct list_head **iter,
6895                                                   bool *ignore)
6896 {
6897         struct netdev_adjacent *upper;
6898
6899         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6900
6901         if (&upper->list == &dev->adj_list.upper)
6902                 return NULL;
6903
6904         *iter = &upper->list;
6905         *ignore = upper->ignore;
6906
6907         return upper->dev;
6908 }
6909
6910 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6911                                                     struct list_head **iter)
6912 {
6913         struct netdev_adjacent *upper;
6914
6915         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6916
6917         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6918
6919         if (&upper->list == &dev->adj_list.upper)
6920                 return NULL;
6921
6922         *iter = &upper->list;
6923
6924         return upper->dev;
6925 }
6926
6927 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6928                                        int (*fn)(struct net_device *dev,
6929                                          struct netdev_nested_priv *priv),
6930                                        struct netdev_nested_priv *priv)
6931 {
6932         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6933         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6934         int ret, cur = 0;
6935         bool ignore;
6936
6937         now = dev;
6938         iter = &dev->adj_list.upper;
6939
6940         while (1) {
6941                 if (now != dev) {
6942                         ret = fn(now, priv);
6943                         if (ret)
6944                                 return ret;
6945                 }
6946
6947                 next = NULL;
6948                 while (1) {
6949                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6950                         if (!udev)
6951                                 break;
6952                         if (ignore)
6953                                 continue;
6954
6955                         next = udev;
6956                         niter = &udev->adj_list.upper;
6957                         dev_stack[cur] = now;
6958                         iter_stack[cur++] = iter;
6959                         break;
6960                 }
6961
6962                 if (!next) {
6963                         if (!cur)
6964                                 return 0;
6965                         next = dev_stack[--cur];
6966                         niter = iter_stack[cur];
6967                 }
6968
6969                 now = next;
6970                 iter = niter;
6971         }
6972
6973         return 0;
6974 }
6975
6976 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6977                                   int (*fn)(struct net_device *dev,
6978                                             struct netdev_nested_priv *priv),
6979                                   struct netdev_nested_priv *priv)
6980 {
6981         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6982         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6983         int ret, cur = 0;
6984
6985         now = dev;
6986         iter = &dev->adj_list.upper;
6987
6988         while (1) {
6989                 if (now != dev) {
6990                         ret = fn(now, priv);
6991                         if (ret)
6992                                 return ret;
6993                 }
6994
6995                 next = NULL;
6996                 while (1) {
6997                         udev = netdev_next_upper_dev_rcu(now, &iter);
6998                         if (!udev)
6999                                 break;
7000
7001                         next = udev;
7002                         niter = &udev->adj_list.upper;
7003                         dev_stack[cur] = now;
7004                         iter_stack[cur++] = iter;
7005                         break;
7006                 }
7007
7008                 if (!next) {
7009                         if (!cur)
7010                                 return 0;
7011                         next = dev_stack[--cur];
7012                         niter = iter_stack[cur];
7013                 }
7014
7015                 now = next;
7016                 iter = niter;
7017         }
7018
7019         return 0;
7020 }
7021 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7022
7023 static bool __netdev_has_upper_dev(struct net_device *dev,
7024                                    struct net_device *upper_dev)
7025 {
7026         struct netdev_nested_priv priv = {
7027                 .flags = 0,
7028                 .data = (void *)upper_dev,
7029         };
7030
7031         ASSERT_RTNL();
7032
7033         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7034                                            &priv);
7035 }
7036
7037 /**
7038  * netdev_lower_get_next_private - Get the next ->private from the
7039  *                                 lower neighbour list
7040  * @dev: device
7041  * @iter: list_head ** of the current position
7042  *
7043  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7044  * list, starting from iter position. The caller must hold either hold the
7045  * RTNL lock or its own locking that guarantees that the neighbour lower
7046  * list will remain unchanged.
7047  */
7048 void *netdev_lower_get_next_private(struct net_device *dev,
7049                                     struct list_head **iter)
7050 {
7051         struct netdev_adjacent *lower;
7052
7053         lower = list_entry(*iter, struct netdev_adjacent, list);
7054
7055         if (&lower->list == &dev->adj_list.lower)
7056                 return NULL;
7057
7058         *iter = lower->list.next;
7059
7060         return lower->private;
7061 }
7062 EXPORT_SYMBOL(netdev_lower_get_next_private);
7063
7064 /**
7065  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7066  *                                     lower neighbour list, RCU
7067  *                                     variant
7068  * @dev: device
7069  * @iter: list_head ** of the current position
7070  *
7071  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7072  * list, starting from iter position. The caller must hold RCU read lock.
7073  */
7074 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7075                                         struct list_head **iter)
7076 {
7077         struct netdev_adjacent *lower;
7078
7079         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7080
7081         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7082
7083         if (&lower->list == &dev->adj_list.lower)
7084                 return NULL;
7085
7086         *iter = &lower->list;
7087
7088         return lower->private;
7089 }
7090 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7091
7092 /**
7093  * netdev_lower_get_next - Get the next device from the lower neighbour
7094  *                         list
7095  * @dev: device
7096  * @iter: list_head ** of the current position
7097  *
7098  * Gets the next netdev_adjacent from the dev's lower neighbour
7099  * list, starting from iter position. The caller must hold RTNL lock or
7100  * its own locking that guarantees that the neighbour lower
7101  * list will remain unchanged.
7102  */
7103 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7104 {
7105         struct netdev_adjacent *lower;
7106
7107         lower = list_entry(*iter, struct netdev_adjacent, list);
7108
7109         if (&lower->list == &dev->adj_list.lower)
7110                 return NULL;
7111
7112         *iter = lower->list.next;
7113
7114         return lower->dev;
7115 }
7116 EXPORT_SYMBOL(netdev_lower_get_next);
7117
7118 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7119                                                 struct list_head **iter)
7120 {
7121         struct netdev_adjacent *lower;
7122
7123         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7124
7125         if (&lower->list == &dev->adj_list.lower)
7126                 return NULL;
7127
7128         *iter = &lower->list;
7129
7130         return lower->dev;
7131 }
7132
7133 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7134                                                   struct list_head **iter,
7135                                                   bool *ignore)
7136 {
7137         struct netdev_adjacent *lower;
7138
7139         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7140
7141         if (&lower->list == &dev->adj_list.lower)
7142                 return NULL;
7143
7144         *iter = &lower->list;
7145         *ignore = lower->ignore;
7146
7147         return lower->dev;
7148 }
7149
7150 int netdev_walk_all_lower_dev(struct net_device *dev,
7151                               int (*fn)(struct net_device *dev,
7152                                         struct netdev_nested_priv *priv),
7153                               struct netdev_nested_priv *priv)
7154 {
7155         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7156         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7157         int ret, cur = 0;
7158
7159         now = dev;
7160         iter = &dev->adj_list.lower;
7161
7162         while (1) {
7163                 if (now != dev) {
7164                         ret = fn(now, priv);
7165                         if (ret)
7166                                 return ret;
7167                 }
7168
7169                 next = NULL;
7170                 while (1) {
7171                         ldev = netdev_next_lower_dev(now, &iter);
7172                         if (!ldev)
7173                                 break;
7174
7175                         next = ldev;
7176                         niter = &ldev->adj_list.lower;
7177                         dev_stack[cur] = now;
7178                         iter_stack[cur++] = iter;
7179                         break;
7180                 }
7181
7182                 if (!next) {
7183                         if (!cur)
7184                                 return 0;
7185                         next = dev_stack[--cur];
7186                         niter = iter_stack[cur];
7187                 }
7188
7189                 now = next;
7190                 iter = niter;
7191         }
7192
7193         return 0;
7194 }
7195 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7196
7197 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7198                                        int (*fn)(struct net_device *dev,
7199                                          struct netdev_nested_priv *priv),
7200                                        struct netdev_nested_priv *priv)
7201 {
7202         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7203         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7204         int ret, cur = 0;
7205         bool ignore;
7206
7207         now = dev;
7208         iter = &dev->adj_list.lower;
7209
7210         while (1) {
7211                 if (now != dev) {
7212                         ret = fn(now, priv);
7213                         if (ret)
7214                                 return ret;
7215                 }
7216
7217                 next = NULL;
7218                 while (1) {
7219                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7220                         if (!ldev)
7221                                 break;
7222                         if (ignore)
7223                                 continue;
7224
7225                         next = ldev;
7226                         niter = &ldev->adj_list.lower;
7227                         dev_stack[cur] = now;
7228                         iter_stack[cur++] = iter;
7229                         break;
7230                 }
7231
7232                 if (!next) {
7233                         if (!cur)
7234                                 return 0;
7235                         next = dev_stack[--cur];
7236                         niter = iter_stack[cur];
7237                 }
7238
7239                 now = next;
7240                 iter = niter;
7241         }
7242
7243         return 0;
7244 }
7245
7246 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7247                                              struct list_head **iter)
7248 {
7249         struct netdev_adjacent *lower;
7250
7251         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7252         if (&lower->list == &dev->adj_list.lower)
7253                 return NULL;
7254
7255         *iter = &lower->list;
7256
7257         return lower->dev;
7258 }
7259 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7260
7261 static u8 __netdev_upper_depth(struct net_device *dev)
7262 {
7263         struct net_device *udev;
7264         struct list_head *iter;
7265         u8 max_depth = 0;
7266         bool ignore;
7267
7268         for (iter = &dev->adj_list.upper,
7269              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7270              udev;
7271              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7272                 if (ignore)
7273                         continue;
7274                 if (max_depth < udev->upper_level)
7275                         max_depth = udev->upper_level;
7276         }
7277
7278         return max_depth;
7279 }
7280
7281 static u8 __netdev_lower_depth(struct net_device *dev)
7282 {
7283         struct net_device *ldev;
7284         struct list_head *iter;
7285         u8 max_depth = 0;
7286         bool ignore;
7287
7288         for (iter = &dev->adj_list.lower,
7289              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7290              ldev;
7291              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7292                 if (ignore)
7293                         continue;
7294                 if (max_depth < ldev->lower_level)
7295                         max_depth = ldev->lower_level;
7296         }
7297
7298         return max_depth;
7299 }
7300
7301 static int __netdev_update_upper_level(struct net_device *dev,
7302                                        struct netdev_nested_priv *__unused)
7303 {
7304         dev->upper_level = __netdev_upper_depth(dev) + 1;
7305         return 0;
7306 }
7307
7308 #ifdef CONFIG_LOCKDEP
7309 static LIST_HEAD(net_unlink_list);
7310
7311 static void net_unlink_todo(struct net_device *dev)
7312 {
7313         if (list_empty(&dev->unlink_list))
7314                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7315 }
7316 #endif
7317
7318 static int __netdev_update_lower_level(struct net_device *dev,
7319                                        struct netdev_nested_priv *priv)
7320 {
7321         dev->lower_level = __netdev_lower_depth(dev) + 1;
7322
7323 #ifdef CONFIG_LOCKDEP
7324         if (!priv)
7325                 return 0;
7326
7327         if (priv->flags & NESTED_SYNC_IMM)
7328                 dev->nested_level = dev->lower_level - 1;
7329         if (priv->flags & NESTED_SYNC_TODO)
7330                 net_unlink_todo(dev);
7331 #endif
7332         return 0;
7333 }
7334
7335 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7336                                   int (*fn)(struct net_device *dev,
7337                                             struct netdev_nested_priv *priv),
7338                                   struct netdev_nested_priv *priv)
7339 {
7340         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7341         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7342         int ret, cur = 0;
7343
7344         now = dev;
7345         iter = &dev->adj_list.lower;
7346
7347         while (1) {
7348                 if (now != dev) {
7349                         ret = fn(now, priv);
7350                         if (ret)
7351                                 return ret;
7352                 }
7353
7354                 next = NULL;
7355                 while (1) {
7356                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7357                         if (!ldev)
7358                                 break;
7359
7360                         next = ldev;
7361                         niter = &ldev->adj_list.lower;
7362                         dev_stack[cur] = now;
7363                         iter_stack[cur++] = iter;
7364                         break;
7365                 }
7366
7367                 if (!next) {
7368                         if (!cur)
7369                                 return 0;
7370                         next = dev_stack[--cur];
7371                         niter = iter_stack[cur];
7372                 }
7373
7374                 now = next;
7375                 iter = niter;
7376         }
7377
7378         return 0;
7379 }
7380 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7381
7382 /**
7383  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7384  *                                     lower neighbour list, RCU
7385  *                                     variant
7386  * @dev: device
7387  *
7388  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7389  * list. The caller must hold RCU read lock.
7390  */
7391 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7392 {
7393         struct netdev_adjacent *lower;
7394
7395         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7396                         struct netdev_adjacent, list);
7397         if (lower)
7398                 return lower->private;
7399         return NULL;
7400 }
7401 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7402
7403 /**
7404  * netdev_master_upper_dev_get_rcu - Get master upper device
7405  * @dev: device
7406  *
7407  * Find a master upper device and return pointer to it or NULL in case
7408  * it's not there. The caller must hold the RCU read lock.
7409  */
7410 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7411 {
7412         struct netdev_adjacent *upper;
7413
7414         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7415                                        struct netdev_adjacent, list);
7416         if (upper && likely(upper->master))
7417                 return upper->dev;
7418         return NULL;
7419 }
7420 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7421
7422 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7423                               struct net_device *adj_dev,
7424                               struct list_head *dev_list)
7425 {
7426         char linkname[IFNAMSIZ+7];
7427
7428         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7429                 "upper_%s" : "lower_%s", adj_dev->name);
7430         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7431                                  linkname);
7432 }
7433 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7434                                char *name,
7435                                struct list_head *dev_list)
7436 {
7437         char linkname[IFNAMSIZ+7];
7438
7439         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7440                 "upper_%s" : "lower_%s", name);
7441         sysfs_remove_link(&(dev->dev.kobj), linkname);
7442 }
7443
7444 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7445                                                  struct net_device *adj_dev,
7446                                                  struct list_head *dev_list)
7447 {
7448         return (dev_list == &dev->adj_list.upper ||
7449                 dev_list == &dev->adj_list.lower) &&
7450                 net_eq(dev_net(dev), dev_net(adj_dev));
7451 }
7452
7453 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7454                                         struct net_device *adj_dev,
7455                                         struct list_head *dev_list,
7456                                         void *private, bool master)
7457 {
7458         struct netdev_adjacent *adj;
7459         int ret;
7460
7461         adj = __netdev_find_adj(adj_dev, dev_list);
7462
7463         if (adj) {
7464                 adj->ref_nr += 1;
7465                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7466                          dev->name, adj_dev->name, adj->ref_nr);
7467
7468                 return 0;
7469         }
7470
7471         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7472         if (!adj)
7473                 return -ENOMEM;
7474
7475         adj->dev = adj_dev;
7476         adj->master = master;
7477         adj->ref_nr = 1;
7478         adj->private = private;
7479         adj->ignore = false;
7480         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7481
7482         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7483                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7484
7485         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7486                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7487                 if (ret)
7488                         goto free_adj;
7489         }
7490
7491         /* Ensure that master link is always the first item in list. */
7492         if (master) {
7493                 ret = sysfs_create_link(&(dev->dev.kobj),
7494                                         &(adj_dev->dev.kobj), "master");
7495                 if (ret)
7496                         goto remove_symlinks;
7497
7498                 list_add_rcu(&adj->list, dev_list);
7499         } else {
7500                 list_add_tail_rcu(&adj->list, dev_list);
7501         }
7502
7503         return 0;
7504
7505 remove_symlinks:
7506         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7507                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7508 free_adj:
7509         netdev_put(adj_dev, &adj->dev_tracker);
7510         kfree(adj);
7511
7512         return ret;
7513 }
7514
7515 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7516                                          struct net_device *adj_dev,
7517                                          u16 ref_nr,
7518                                          struct list_head *dev_list)
7519 {
7520         struct netdev_adjacent *adj;
7521
7522         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7523                  dev->name, adj_dev->name, ref_nr);
7524
7525         adj = __netdev_find_adj(adj_dev, dev_list);
7526
7527         if (!adj) {
7528                 pr_err("Adjacency does not exist for device %s from %s\n",
7529                        dev->name, adj_dev->name);
7530                 WARN_ON(1);
7531                 return;
7532         }
7533
7534         if (adj->ref_nr > ref_nr) {
7535                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7536                          dev->name, adj_dev->name, ref_nr,
7537                          adj->ref_nr - ref_nr);
7538                 adj->ref_nr -= ref_nr;
7539                 return;
7540         }
7541
7542         if (adj->master)
7543                 sysfs_remove_link(&(dev->dev.kobj), "master");
7544
7545         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7546                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7547
7548         list_del_rcu(&adj->list);
7549         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7550                  adj_dev->name, dev->name, adj_dev->name);
7551         netdev_put(adj_dev, &adj->dev_tracker);
7552         kfree_rcu(adj, rcu);
7553 }
7554
7555 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7556                                             struct net_device *upper_dev,
7557                                             struct list_head *up_list,
7558                                             struct list_head *down_list,
7559                                             void *private, bool master)
7560 {
7561         int ret;
7562
7563         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7564                                            private, master);
7565         if (ret)
7566                 return ret;
7567
7568         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7569                                            private, false);
7570         if (ret) {
7571                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7572                 return ret;
7573         }
7574
7575         return 0;
7576 }
7577
7578 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7579                                                struct net_device *upper_dev,
7580                                                u16 ref_nr,
7581                                                struct list_head *up_list,
7582                                                struct list_head *down_list)
7583 {
7584         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7585         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7586 }
7587
7588 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7589                                                 struct net_device *upper_dev,
7590                                                 void *private, bool master)
7591 {
7592         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7593                                                 &dev->adj_list.upper,
7594                                                 &upper_dev->adj_list.lower,
7595                                                 private, master);
7596 }
7597
7598 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7599                                                    struct net_device *upper_dev)
7600 {
7601         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7602                                            &dev->adj_list.upper,
7603                                            &upper_dev->adj_list.lower);
7604 }
7605
7606 static int __netdev_upper_dev_link(struct net_device *dev,
7607                                    struct net_device *upper_dev, bool master,
7608                                    void *upper_priv, void *upper_info,
7609                                    struct netdev_nested_priv *priv,
7610                                    struct netlink_ext_ack *extack)
7611 {
7612         struct netdev_notifier_changeupper_info changeupper_info = {
7613                 .info = {
7614                         .dev = dev,
7615                         .extack = extack,
7616                 },
7617                 .upper_dev = upper_dev,
7618                 .master = master,
7619                 .linking = true,
7620                 .upper_info = upper_info,
7621         };
7622         struct net_device *master_dev;
7623         int ret = 0;
7624
7625         ASSERT_RTNL();
7626
7627         if (dev == upper_dev)
7628                 return -EBUSY;
7629
7630         /* To prevent loops, check if dev is not upper device to upper_dev. */
7631         if (__netdev_has_upper_dev(upper_dev, dev))
7632                 return -EBUSY;
7633
7634         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7635                 return -EMLINK;
7636
7637         if (!master) {
7638                 if (__netdev_has_upper_dev(dev, upper_dev))
7639                         return -EEXIST;
7640         } else {
7641                 master_dev = __netdev_master_upper_dev_get(dev);
7642                 if (master_dev)
7643                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7644         }
7645
7646         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7647                                             &changeupper_info.info);
7648         ret = notifier_to_errno(ret);
7649         if (ret)
7650                 return ret;
7651
7652         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7653                                                    master);
7654         if (ret)
7655                 return ret;
7656
7657         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7658                                             &changeupper_info.info);
7659         ret = notifier_to_errno(ret);
7660         if (ret)
7661                 goto rollback;
7662
7663         __netdev_update_upper_level(dev, NULL);
7664         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7665
7666         __netdev_update_lower_level(upper_dev, priv);
7667         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7668                                     priv);
7669
7670         return 0;
7671
7672 rollback:
7673         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7674
7675         return ret;
7676 }
7677
7678 /**
7679  * netdev_upper_dev_link - Add a link to the upper device
7680  * @dev: device
7681  * @upper_dev: new upper device
7682  * @extack: netlink extended ack
7683  *
7684  * Adds a link to device which is upper to this one. The caller must hold
7685  * the RTNL lock. On a failure a negative errno code is returned.
7686  * On success the reference counts are adjusted and the function
7687  * returns zero.
7688  */
7689 int netdev_upper_dev_link(struct net_device *dev,
7690                           struct net_device *upper_dev,
7691                           struct netlink_ext_ack *extack)
7692 {
7693         struct netdev_nested_priv priv = {
7694                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7695                 .data = NULL,
7696         };
7697
7698         return __netdev_upper_dev_link(dev, upper_dev, false,
7699                                        NULL, NULL, &priv, extack);
7700 }
7701 EXPORT_SYMBOL(netdev_upper_dev_link);
7702
7703 /**
7704  * netdev_master_upper_dev_link - Add a master link to the upper device
7705  * @dev: device
7706  * @upper_dev: new upper device
7707  * @upper_priv: upper device private
7708  * @upper_info: upper info to be passed down via notifier
7709  * @extack: netlink extended ack
7710  *
7711  * Adds a link to device which is upper to this one. In this case, only
7712  * one master upper device can be linked, although other non-master devices
7713  * might be linked as well. The caller must hold the RTNL lock.
7714  * On a failure a negative errno code is returned. On success the reference
7715  * counts are adjusted and the function returns zero.
7716  */
7717 int netdev_master_upper_dev_link(struct net_device *dev,
7718                                  struct net_device *upper_dev,
7719                                  void *upper_priv, void *upper_info,
7720                                  struct netlink_ext_ack *extack)
7721 {
7722         struct netdev_nested_priv priv = {
7723                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7724                 .data = NULL,
7725         };
7726
7727         return __netdev_upper_dev_link(dev, upper_dev, true,
7728                                        upper_priv, upper_info, &priv, extack);
7729 }
7730 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7731
7732 static void __netdev_upper_dev_unlink(struct net_device *dev,
7733                                       struct net_device *upper_dev,
7734                                       struct netdev_nested_priv *priv)
7735 {
7736         struct netdev_notifier_changeupper_info changeupper_info = {
7737                 .info = {
7738                         .dev = dev,
7739                 },
7740                 .upper_dev = upper_dev,
7741                 .linking = false,
7742         };
7743
7744         ASSERT_RTNL();
7745
7746         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7747
7748         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7749                                       &changeupper_info.info);
7750
7751         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7752
7753         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7754                                       &changeupper_info.info);
7755
7756         __netdev_update_upper_level(dev, NULL);
7757         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7758
7759         __netdev_update_lower_level(upper_dev, priv);
7760         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7761                                     priv);
7762 }
7763
7764 /**
7765  * netdev_upper_dev_unlink - Removes a link to upper device
7766  * @dev: device
7767  * @upper_dev: new upper device
7768  *
7769  * Removes a link to device which is upper to this one. The caller must hold
7770  * the RTNL lock.
7771  */
7772 void netdev_upper_dev_unlink(struct net_device *dev,
7773                              struct net_device *upper_dev)
7774 {
7775         struct netdev_nested_priv priv = {
7776                 .flags = NESTED_SYNC_TODO,
7777                 .data = NULL,
7778         };
7779
7780         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7781 }
7782 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7783
7784 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7785                                       struct net_device *lower_dev,
7786                                       bool val)
7787 {
7788         struct netdev_adjacent *adj;
7789
7790         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7791         if (adj)
7792                 adj->ignore = val;
7793
7794         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7795         if (adj)
7796                 adj->ignore = val;
7797 }
7798
7799 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7800                                         struct net_device *lower_dev)
7801 {
7802         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7803 }
7804
7805 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7806                                        struct net_device *lower_dev)
7807 {
7808         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7809 }
7810
7811 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7812                                    struct net_device *new_dev,
7813                                    struct net_device *dev,
7814                                    struct netlink_ext_ack *extack)
7815 {
7816         struct netdev_nested_priv priv = {
7817                 .flags = 0,
7818                 .data = NULL,
7819         };
7820         int err;
7821
7822         if (!new_dev)
7823                 return 0;
7824
7825         if (old_dev && new_dev != old_dev)
7826                 netdev_adjacent_dev_disable(dev, old_dev);
7827         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7828                                       extack);
7829         if (err) {
7830                 if (old_dev && new_dev != old_dev)
7831                         netdev_adjacent_dev_enable(dev, old_dev);
7832                 return err;
7833         }
7834
7835         return 0;
7836 }
7837 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7838
7839 void netdev_adjacent_change_commit(struct net_device *old_dev,
7840                                    struct net_device *new_dev,
7841                                    struct net_device *dev)
7842 {
7843         struct netdev_nested_priv priv = {
7844                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7845                 .data = NULL,
7846         };
7847
7848         if (!new_dev || !old_dev)
7849                 return;
7850
7851         if (new_dev == old_dev)
7852                 return;
7853
7854         netdev_adjacent_dev_enable(dev, old_dev);
7855         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7856 }
7857 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7858
7859 void netdev_adjacent_change_abort(struct net_device *old_dev,
7860                                   struct net_device *new_dev,
7861                                   struct net_device *dev)
7862 {
7863         struct netdev_nested_priv priv = {
7864                 .flags = 0,
7865                 .data = NULL,
7866         };
7867
7868         if (!new_dev)
7869                 return;
7870
7871         if (old_dev && new_dev != old_dev)
7872                 netdev_adjacent_dev_enable(dev, old_dev);
7873
7874         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7875 }
7876 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7877
7878 /**
7879  * netdev_bonding_info_change - Dispatch event about slave change
7880  * @dev: device
7881  * @bonding_info: info to dispatch
7882  *
7883  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7884  * The caller must hold the RTNL lock.
7885  */
7886 void netdev_bonding_info_change(struct net_device *dev,
7887                                 struct netdev_bonding_info *bonding_info)
7888 {
7889         struct netdev_notifier_bonding_info info = {
7890                 .info.dev = dev,
7891         };
7892
7893         memcpy(&info.bonding_info, bonding_info,
7894                sizeof(struct netdev_bonding_info));
7895         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7896                                       &info.info);
7897 }
7898 EXPORT_SYMBOL(netdev_bonding_info_change);
7899
7900 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7901                                            struct netlink_ext_ack *extack)
7902 {
7903         struct netdev_notifier_offload_xstats_info info = {
7904                 .info.dev = dev,
7905                 .info.extack = extack,
7906                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7907         };
7908         int err;
7909         int rc;
7910
7911         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7912                                          GFP_KERNEL);
7913         if (!dev->offload_xstats_l3)
7914                 return -ENOMEM;
7915
7916         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7917                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7918                                                   &info.info);
7919         err = notifier_to_errno(rc);
7920         if (err)
7921                 goto free_stats;
7922
7923         return 0;
7924
7925 free_stats:
7926         kfree(dev->offload_xstats_l3);
7927         dev->offload_xstats_l3 = NULL;
7928         return err;
7929 }
7930
7931 int netdev_offload_xstats_enable(struct net_device *dev,
7932                                  enum netdev_offload_xstats_type type,
7933                                  struct netlink_ext_ack *extack)
7934 {
7935         ASSERT_RTNL();
7936
7937         if (netdev_offload_xstats_enabled(dev, type))
7938                 return -EALREADY;
7939
7940         switch (type) {
7941         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7942                 return netdev_offload_xstats_enable_l3(dev, extack);
7943         }
7944
7945         WARN_ON(1);
7946         return -EINVAL;
7947 }
7948 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7949
7950 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7951 {
7952         struct netdev_notifier_offload_xstats_info info = {
7953                 .info.dev = dev,
7954                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7955         };
7956
7957         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7958                                       &info.info);
7959         kfree(dev->offload_xstats_l3);
7960         dev->offload_xstats_l3 = NULL;
7961 }
7962
7963 int netdev_offload_xstats_disable(struct net_device *dev,
7964                                   enum netdev_offload_xstats_type type)
7965 {
7966         ASSERT_RTNL();
7967
7968         if (!netdev_offload_xstats_enabled(dev, type))
7969                 return -EALREADY;
7970
7971         switch (type) {
7972         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7973                 netdev_offload_xstats_disable_l3(dev);
7974                 return 0;
7975         }
7976
7977         WARN_ON(1);
7978         return -EINVAL;
7979 }
7980 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7981
7982 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7983 {
7984         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7985 }
7986
7987 static struct rtnl_hw_stats64 *
7988 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7989                               enum netdev_offload_xstats_type type)
7990 {
7991         switch (type) {
7992         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7993                 return dev->offload_xstats_l3;
7994         }
7995
7996         WARN_ON(1);
7997         return NULL;
7998 }
7999
8000 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8001                                    enum netdev_offload_xstats_type type)
8002 {
8003         ASSERT_RTNL();
8004
8005         return netdev_offload_xstats_get_ptr(dev, type);
8006 }
8007 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8008
8009 struct netdev_notifier_offload_xstats_ru {
8010         bool used;
8011 };
8012
8013 struct netdev_notifier_offload_xstats_rd {
8014         struct rtnl_hw_stats64 stats;
8015         bool used;
8016 };
8017
8018 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8019                                   const struct rtnl_hw_stats64 *src)
8020 {
8021         dest->rx_packets          += src->rx_packets;
8022         dest->tx_packets          += src->tx_packets;
8023         dest->rx_bytes            += src->rx_bytes;
8024         dest->tx_bytes            += src->tx_bytes;
8025         dest->rx_errors           += src->rx_errors;
8026         dest->tx_errors           += src->tx_errors;
8027         dest->rx_dropped          += src->rx_dropped;
8028         dest->tx_dropped          += src->tx_dropped;
8029         dest->multicast           += src->multicast;
8030 }
8031
8032 static int netdev_offload_xstats_get_used(struct net_device *dev,
8033                                           enum netdev_offload_xstats_type type,
8034                                           bool *p_used,
8035                                           struct netlink_ext_ack *extack)
8036 {
8037         struct netdev_notifier_offload_xstats_ru report_used = {};
8038         struct netdev_notifier_offload_xstats_info info = {
8039                 .info.dev = dev,
8040                 .info.extack = extack,
8041                 .type = type,
8042                 .report_used = &report_used,
8043         };
8044         int rc;
8045
8046         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8047         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8048                                            &info.info);
8049         *p_used = report_used.used;
8050         return notifier_to_errno(rc);
8051 }
8052
8053 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8054                                            enum netdev_offload_xstats_type type,
8055                                            struct rtnl_hw_stats64 *p_stats,
8056                                            bool *p_used,
8057                                            struct netlink_ext_ack *extack)
8058 {
8059         struct netdev_notifier_offload_xstats_rd report_delta = {};
8060         struct netdev_notifier_offload_xstats_info info = {
8061                 .info.dev = dev,
8062                 .info.extack = extack,
8063                 .type = type,
8064                 .report_delta = &report_delta,
8065         };
8066         struct rtnl_hw_stats64 *stats;
8067         int rc;
8068
8069         stats = netdev_offload_xstats_get_ptr(dev, type);
8070         if (WARN_ON(!stats))
8071                 return -EINVAL;
8072
8073         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8074                                            &info.info);
8075
8076         /* Cache whatever we got, even if there was an error, otherwise the
8077          * successful stats retrievals would get lost.
8078          */
8079         netdev_hw_stats64_add(stats, &report_delta.stats);
8080
8081         if (p_stats)
8082                 *p_stats = *stats;
8083         *p_used = report_delta.used;
8084
8085         return notifier_to_errno(rc);
8086 }
8087
8088 int netdev_offload_xstats_get(struct net_device *dev,
8089                               enum netdev_offload_xstats_type type,
8090                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8091                               struct netlink_ext_ack *extack)
8092 {
8093         ASSERT_RTNL();
8094
8095         if (p_stats)
8096                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8097                                                        p_used, extack);
8098         else
8099                 return netdev_offload_xstats_get_used(dev, type, p_used,
8100                                                       extack);
8101 }
8102 EXPORT_SYMBOL(netdev_offload_xstats_get);
8103
8104 void
8105 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8106                                    const struct rtnl_hw_stats64 *stats)
8107 {
8108         report_delta->used = true;
8109         netdev_hw_stats64_add(&report_delta->stats, stats);
8110 }
8111 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8112
8113 void
8114 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8115 {
8116         report_used->used = true;
8117 }
8118 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8119
8120 void netdev_offload_xstats_push_delta(struct net_device *dev,
8121                                       enum netdev_offload_xstats_type type,
8122                                       const struct rtnl_hw_stats64 *p_stats)
8123 {
8124         struct rtnl_hw_stats64 *stats;
8125
8126         ASSERT_RTNL();
8127
8128         stats = netdev_offload_xstats_get_ptr(dev, type);
8129         if (WARN_ON(!stats))
8130                 return;
8131
8132         netdev_hw_stats64_add(stats, p_stats);
8133 }
8134 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8135
8136 /**
8137  * netdev_get_xmit_slave - Get the xmit slave of master device
8138  * @dev: device
8139  * @skb: The packet
8140  * @all_slaves: assume all the slaves are active
8141  *
8142  * The reference counters are not incremented so the caller must be
8143  * careful with locks. The caller must hold RCU lock.
8144  * %NULL is returned if no slave is found.
8145  */
8146
8147 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8148                                          struct sk_buff *skb,
8149                                          bool all_slaves)
8150 {
8151         const struct net_device_ops *ops = dev->netdev_ops;
8152
8153         if (!ops->ndo_get_xmit_slave)
8154                 return NULL;
8155         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8156 }
8157 EXPORT_SYMBOL(netdev_get_xmit_slave);
8158
8159 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8160                                                   struct sock *sk)
8161 {
8162         const struct net_device_ops *ops = dev->netdev_ops;
8163
8164         if (!ops->ndo_sk_get_lower_dev)
8165                 return NULL;
8166         return ops->ndo_sk_get_lower_dev(dev, sk);
8167 }
8168
8169 /**
8170  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8171  * @dev: device
8172  * @sk: the socket
8173  *
8174  * %NULL is returned if no lower device is found.
8175  */
8176
8177 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8178                                             struct sock *sk)
8179 {
8180         struct net_device *lower;
8181
8182         lower = netdev_sk_get_lower_dev(dev, sk);
8183         while (lower) {
8184                 dev = lower;
8185                 lower = netdev_sk_get_lower_dev(dev, sk);
8186         }
8187
8188         return dev;
8189 }
8190 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8191
8192 static void netdev_adjacent_add_links(struct net_device *dev)
8193 {
8194         struct netdev_adjacent *iter;
8195
8196         struct net *net = dev_net(dev);
8197
8198         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8199                 if (!net_eq(net, dev_net(iter->dev)))
8200                         continue;
8201                 netdev_adjacent_sysfs_add(iter->dev, dev,
8202                                           &iter->dev->adj_list.lower);
8203                 netdev_adjacent_sysfs_add(dev, iter->dev,
8204                                           &dev->adj_list.upper);
8205         }
8206
8207         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8208                 if (!net_eq(net, dev_net(iter->dev)))
8209                         continue;
8210                 netdev_adjacent_sysfs_add(iter->dev, dev,
8211                                           &iter->dev->adj_list.upper);
8212                 netdev_adjacent_sysfs_add(dev, iter->dev,
8213                                           &dev->adj_list.lower);
8214         }
8215 }
8216
8217 static void netdev_adjacent_del_links(struct net_device *dev)
8218 {
8219         struct netdev_adjacent *iter;
8220
8221         struct net *net = dev_net(dev);
8222
8223         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8224                 if (!net_eq(net, dev_net(iter->dev)))
8225                         continue;
8226                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8227                                           &iter->dev->adj_list.lower);
8228                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8229                                           &dev->adj_list.upper);
8230         }
8231
8232         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8233                 if (!net_eq(net, dev_net(iter->dev)))
8234                         continue;
8235                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8236                                           &iter->dev->adj_list.upper);
8237                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8238                                           &dev->adj_list.lower);
8239         }
8240 }
8241
8242 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8243 {
8244         struct netdev_adjacent *iter;
8245
8246         struct net *net = dev_net(dev);
8247
8248         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8249                 if (!net_eq(net, dev_net(iter->dev)))
8250                         continue;
8251                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8252                                           &iter->dev->adj_list.lower);
8253                 netdev_adjacent_sysfs_add(iter->dev, dev,
8254                                           &iter->dev->adj_list.lower);
8255         }
8256
8257         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8258                 if (!net_eq(net, dev_net(iter->dev)))
8259                         continue;
8260                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8261                                           &iter->dev->adj_list.upper);
8262                 netdev_adjacent_sysfs_add(iter->dev, dev,
8263                                           &iter->dev->adj_list.upper);
8264         }
8265 }
8266
8267 void *netdev_lower_dev_get_private(struct net_device *dev,
8268                                    struct net_device *lower_dev)
8269 {
8270         struct netdev_adjacent *lower;
8271
8272         if (!lower_dev)
8273                 return NULL;
8274         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8275         if (!lower)
8276                 return NULL;
8277
8278         return lower->private;
8279 }
8280 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8281
8282
8283 /**
8284  * netdev_lower_state_changed - Dispatch event about lower device state change
8285  * @lower_dev: device
8286  * @lower_state_info: state to dispatch
8287  *
8288  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8289  * The caller must hold the RTNL lock.
8290  */
8291 void netdev_lower_state_changed(struct net_device *lower_dev,
8292                                 void *lower_state_info)
8293 {
8294         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8295                 .info.dev = lower_dev,
8296         };
8297
8298         ASSERT_RTNL();
8299         changelowerstate_info.lower_state_info = lower_state_info;
8300         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8301                                       &changelowerstate_info.info);
8302 }
8303 EXPORT_SYMBOL(netdev_lower_state_changed);
8304
8305 static void dev_change_rx_flags(struct net_device *dev, int flags)
8306 {
8307         const struct net_device_ops *ops = dev->netdev_ops;
8308
8309         if (ops->ndo_change_rx_flags)
8310                 ops->ndo_change_rx_flags(dev, flags);
8311 }
8312
8313 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8314 {
8315         unsigned int old_flags = dev->flags;
8316         kuid_t uid;
8317         kgid_t gid;
8318
8319         ASSERT_RTNL();
8320
8321         dev->flags |= IFF_PROMISC;
8322         dev->promiscuity += inc;
8323         if (dev->promiscuity == 0) {
8324                 /*
8325                  * Avoid overflow.
8326                  * If inc causes overflow, untouch promisc and return error.
8327                  */
8328                 if (inc < 0)
8329                         dev->flags &= ~IFF_PROMISC;
8330                 else {
8331                         dev->promiscuity -= inc;
8332                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8333                         return -EOVERFLOW;
8334                 }
8335         }
8336         if (dev->flags != old_flags) {
8337                 pr_info("device %s %s promiscuous mode\n",
8338                         dev->name,
8339                         dev->flags & IFF_PROMISC ? "entered" : "left");
8340                 if (audit_enabled) {
8341                         current_uid_gid(&uid, &gid);
8342                         audit_log(audit_context(), GFP_ATOMIC,
8343                                   AUDIT_ANOM_PROMISCUOUS,
8344                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8345                                   dev->name, (dev->flags & IFF_PROMISC),
8346                                   (old_flags & IFF_PROMISC),
8347                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8348                                   from_kuid(&init_user_ns, uid),
8349                                   from_kgid(&init_user_ns, gid),
8350                                   audit_get_sessionid(current));
8351                 }
8352
8353                 dev_change_rx_flags(dev, IFF_PROMISC);
8354         }
8355         if (notify)
8356                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8357         return 0;
8358 }
8359
8360 /**
8361  *      dev_set_promiscuity     - update promiscuity count on a device
8362  *      @dev: device
8363  *      @inc: modifier
8364  *
8365  *      Add or remove promiscuity from a device. While the count in the device
8366  *      remains above zero the interface remains promiscuous. Once it hits zero
8367  *      the device reverts back to normal filtering operation. A negative inc
8368  *      value is used to drop promiscuity on the device.
8369  *      Return 0 if successful or a negative errno code on error.
8370  */
8371 int dev_set_promiscuity(struct net_device *dev, int inc)
8372 {
8373         unsigned int old_flags = dev->flags;
8374         int err;
8375
8376         err = __dev_set_promiscuity(dev, inc, true);
8377         if (err < 0)
8378                 return err;
8379         if (dev->flags != old_flags)
8380                 dev_set_rx_mode(dev);
8381         return err;
8382 }
8383 EXPORT_SYMBOL(dev_set_promiscuity);
8384
8385 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8386 {
8387         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8388
8389         ASSERT_RTNL();
8390
8391         dev->flags |= IFF_ALLMULTI;
8392         dev->allmulti += inc;
8393         if (dev->allmulti == 0) {
8394                 /*
8395                  * Avoid overflow.
8396                  * If inc causes overflow, untouch allmulti and return error.
8397                  */
8398                 if (inc < 0)
8399                         dev->flags &= ~IFF_ALLMULTI;
8400                 else {
8401                         dev->allmulti -= inc;
8402                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8403                         return -EOVERFLOW;
8404                 }
8405         }
8406         if (dev->flags ^ old_flags) {
8407                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8408                 dev_set_rx_mode(dev);
8409                 if (notify)
8410                         __dev_notify_flags(dev, old_flags,
8411                                            dev->gflags ^ old_gflags);
8412         }
8413         return 0;
8414 }
8415
8416 /**
8417  *      dev_set_allmulti        - update allmulti count on a device
8418  *      @dev: device
8419  *      @inc: modifier
8420  *
8421  *      Add or remove reception of all multicast frames to a device. While the
8422  *      count in the device remains above zero the interface remains listening
8423  *      to all interfaces. Once it hits zero the device reverts back to normal
8424  *      filtering operation. A negative @inc value is used to drop the counter
8425  *      when releasing a resource needing all multicasts.
8426  *      Return 0 if successful or a negative errno code on error.
8427  */
8428
8429 int dev_set_allmulti(struct net_device *dev, int inc)
8430 {
8431         return __dev_set_allmulti(dev, inc, true);
8432 }
8433 EXPORT_SYMBOL(dev_set_allmulti);
8434
8435 /*
8436  *      Upload unicast and multicast address lists to device and
8437  *      configure RX filtering. When the device doesn't support unicast
8438  *      filtering it is put in promiscuous mode while unicast addresses
8439  *      are present.
8440  */
8441 void __dev_set_rx_mode(struct net_device *dev)
8442 {
8443         const struct net_device_ops *ops = dev->netdev_ops;
8444
8445         /* dev_open will call this function so the list will stay sane. */
8446         if (!(dev->flags&IFF_UP))
8447                 return;
8448
8449         if (!netif_device_present(dev))
8450                 return;
8451
8452         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8453                 /* Unicast addresses changes may only happen under the rtnl,
8454                  * therefore calling __dev_set_promiscuity here is safe.
8455                  */
8456                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8457                         __dev_set_promiscuity(dev, 1, false);
8458                         dev->uc_promisc = true;
8459                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8460                         __dev_set_promiscuity(dev, -1, false);
8461                         dev->uc_promisc = false;
8462                 }
8463         }
8464
8465         if (ops->ndo_set_rx_mode)
8466                 ops->ndo_set_rx_mode(dev);
8467 }
8468
8469 void dev_set_rx_mode(struct net_device *dev)
8470 {
8471         netif_addr_lock_bh(dev);
8472         __dev_set_rx_mode(dev);
8473         netif_addr_unlock_bh(dev);
8474 }
8475
8476 /**
8477  *      dev_get_flags - get flags reported to userspace
8478  *      @dev: device
8479  *
8480  *      Get the combination of flag bits exported through APIs to userspace.
8481  */
8482 unsigned int dev_get_flags(const struct net_device *dev)
8483 {
8484         unsigned int flags;
8485
8486         flags = (dev->flags & ~(IFF_PROMISC |
8487                                 IFF_ALLMULTI |
8488                                 IFF_RUNNING |
8489                                 IFF_LOWER_UP |
8490                                 IFF_DORMANT)) |
8491                 (dev->gflags & (IFF_PROMISC |
8492                                 IFF_ALLMULTI));
8493
8494         if (netif_running(dev)) {
8495                 if (netif_oper_up(dev))
8496                         flags |= IFF_RUNNING;
8497                 if (netif_carrier_ok(dev))
8498                         flags |= IFF_LOWER_UP;
8499                 if (netif_dormant(dev))
8500                         flags |= IFF_DORMANT;
8501         }
8502
8503         return flags;
8504 }
8505 EXPORT_SYMBOL(dev_get_flags);
8506
8507 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8508                        struct netlink_ext_ack *extack)
8509 {
8510         unsigned int old_flags = dev->flags;
8511         int ret;
8512
8513         ASSERT_RTNL();
8514
8515         /*
8516          *      Set the flags on our device.
8517          */
8518
8519         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8520                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8521                                IFF_AUTOMEDIA)) |
8522                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8523                                     IFF_ALLMULTI));
8524
8525         /*
8526          *      Load in the correct multicast list now the flags have changed.
8527          */
8528
8529         if ((old_flags ^ flags) & IFF_MULTICAST)
8530                 dev_change_rx_flags(dev, IFF_MULTICAST);
8531
8532         dev_set_rx_mode(dev);
8533
8534         /*
8535          *      Have we downed the interface. We handle IFF_UP ourselves
8536          *      according to user attempts to set it, rather than blindly
8537          *      setting it.
8538          */
8539
8540         ret = 0;
8541         if ((old_flags ^ flags) & IFF_UP) {
8542                 if (old_flags & IFF_UP)
8543                         __dev_close(dev);
8544                 else
8545                         ret = __dev_open(dev, extack);
8546         }
8547
8548         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8549                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8550                 unsigned int old_flags = dev->flags;
8551
8552                 dev->gflags ^= IFF_PROMISC;
8553
8554                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8555                         if (dev->flags != old_flags)
8556                                 dev_set_rx_mode(dev);
8557         }
8558
8559         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8560          * is important. Some (broken) drivers set IFF_PROMISC, when
8561          * IFF_ALLMULTI is requested not asking us and not reporting.
8562          */
8563         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8564                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8565
8566                 dev->gflags ^= IFF_ALLMULTI;
8567                 __dev_set_allmulti(dev, inc, false);
8568         }
8569
8570         return ret;
8571 }
8572
8573 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8574                         unsigned int gchanges)
8575 {
8576         unsigned int changes = dev->flags ^ old_flags;
8577
8578         if (gchanges)
8579                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8580
8581         if (changes & IFF_UP) {
8582                 if (dev->flags & IFF_UP)
8583                         call_netdevice_notifiers(NETDEV_UP, dev);
8584                 else
8585                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8586         }
8587
8588         if (dev->flags & IFF_UP &&
8589             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8590                 struct netdev_notifier_change_info change_info = {
8591                         .info = {
8592                                 .dev = dev,
8593                         },
8594                         .flags_changed = changes,
8595                 };
8596
8597                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8598         }
8599 }
8600
8601 /**
8602  *      dev_change_flags - change device settings
8603  *      @dev: device
8604  *      @flags: device state flags
8605  *      @extack: netlink extended ack
8606  *
8607  *      Change settings on device based state flags. The flags are
8608  *      in the userspace exported format.
8609  */
8610 int dev_change_flags(struct net_device *dev, unsigned int flags,
8611                      struct netlink_ext_ack *extack)
8612 {
8613         int ret;
8614         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8615
8616         ret = __dev_change_flags(dev, flags, extack);
8617         if (ret < 0)
8618                 return ret;
8619
8620         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8621         __dev_notify_flags(dev, old_flags, changes);
8622         return ret;
8623 }
8624 EXPORT_SYMBOL(dev_change_flags);
8625
8626 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8627 {
8628         const struct net_device_ops *ops = dev->netdev_ops;
8629
8630         if (ops->ndo_change_mtu)
8631                 return ops->ndo_change_mtu(dev, new_mtu);
8632
8633         /* Pairs with all the lockless reads of dev->mtu in the stack */
8634         WRITE_ONCE(dev->mtu, new_mtu);
8635         return 0;
8636 }
8637 EXPORT_SYMBOL(__dev_set_mtu);
8638
8639 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8640                      struct netlink_ext_ack *extack)
8641 {
8642         /* MTU must be positive, and in range */
8643         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8644                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8645                 return -EINVAL;
8646         }
8647
8648         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8649                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8650                 return -EINVAL;
8651         }
8652         return 0;
8653 }
8654
8655 /**
8656  *      dev_set_mtu_ext - Change maximum transfer unit
8657  *      @dev: device
8658  *      @new_mtu: new transfer unit
8659  *      @extack: netlink extended ack
8660  *
8661  *      Change the maximum transfer size of the network device.
8662  */
8663 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8664                     struct netlink_ext_ack *extack)
8665 {
8666         int err, orig_mtu;
8667
8668         if (new_mtu == dev->mtu)
8669                 return 0;
8670
8671         err = dev_validate_mtu(dev, new_mtu, extack);
8672         if (err)
8673                 return err;
8674
8675         if (!netif_device_present(dev))
8676                 return -ENODEV;
8677
8678         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8679         err = notifier_to_errno(err);
8680         if (err)
8681                 return err;
8682
8683         orig_mtu = dev->mtu;
8684         err = __dev_set_mtu(dev, new_mtu);
8685
8686         if (!err) {
8687                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8688                                                    orig_mtu);
8689                 err = notifier_to_errno(err);
8690                 if (err) {
8691                         /* setting mtu back and notifying everyone again,
8692                          * so that they have a chance to revert changes.
8693                          */
8694                         __dev_set_mtu(dev, orig_mtu);
8695                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8696                                                      new_mtu);
8697                 }
8698         }
8699         return err;
8700 }
8701
8702 int dev_set_mtu(struct net_device *dev, int new_mtu)
8703 {
8704         struct netlink_ext_ack extack;
8705         int err;
8706
8707         memset(&extack, 0, sizeof(extack));
8708         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8709         if (err && extack._msg)
8710                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8711         return err;
8712 }
8713 EXPORT_SYMBOL(dev_set_mtu);
8714
8715 /**
8716  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8717  *      @dev: device
8718  *      @new_len: new tx queue length
8719  */
8720 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8721 {
8722         unsigned int orig_len = dev->tx_queue_len;
8723         int res;
8724
8725         if (new_len != (unsigned int)new_len)
8726                 return -ERANGE;
8727
8728         if (new_len != orig_len) {
8729                 dev->tx_queue_len = new_len;
8730                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8731                 res = notifier_to_errno(res);
8732                 if (res)
8733                         goto err_rollback;
8734                 res = dev_qdisc_change_tx_queue_len(dev);
8735                 if (res)
8736                         goto err_rollback;
8737         }
8738
8739         return 0;
8740
8741 err_rollback:
8742         netdev_err(dev, "refused to change device tx_queue_len\n");
8743         dev->tx_queue_len = orig_len;
8744         return res;
8745 }
8746
8747 /**
8748  *      dev_set_group - Change group this device belongs to
8749  *      @dev: device
8750  *      @new_group: group this device should belong to
8751  */
8752 void dev_set_group(struct net_device *dev, int new_group)
8753 {
8754         dev->group = new_group;
8755 }
8756
8757 /**
8758  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8759  *      @dev: device
8760  *      @addr: new address
8761  *      @extack: netlink extended ack
8762  */
8763 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8764                               struct netlink_ext_ack *extack)
8765 {
8766         struct netdev_notifier_pre_changeaddr_info info = {
8767                 .info.dev = dev,
8768                 .info.extack = extack,
8769                 .dev_addr = addr,
8770         };
8771         int rc;
8772
8773         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8774         return notifier_to_errno(rc);
8775 }
8776 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8777
8778 /**
8779  *      dev_set_mac_address - Change Media Access Control Address
8780  *      @dev: device
8781  *      @sa: new address
8782  *      @extack: netlink extended ack
8783  *
8784  *      Change the hardware (MAC) address of the device
8785  */
8786 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8787                         struct netlink_ext_ack *extack)
8788 {
8789         const struct net_device_ops *ops = dev->netdev_ops;
8790         int err;
8791
8792         if (!ops->ndo_set_mac_address)
8793                 return -EOPNOTSUPP;
8794         if (sa->sa_family != dev->type)
8795                 return -EINVAL;
8796         if (!netif_device_present(dev))
8797                 return -ENODEV;
8798         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8799         if (err)
8800                 return err;
8801         err = ops->ndo_set_mac_address(dev, sa);
8802         if (err)
8803                 return err;
8804         dev->addr_assign_type = NET_ADDR_SET;
8805         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8806         add_device_randomness(dev->dev_addr, dev->addr_len);
8807         return 0;
8808 }
8809 EXPORT_SYMBOL(dev_set_mac_address);
8810
8811 static DECLARE_RWSEM(dev_addr_sem);
8812
8813 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8814                              struct netlink_ext_ack *extack)
8815 {
8816         int ret;
8817
8818         down_write(&dev_addr_sem);
8819         ret = dev_set_mac_address(dev, sa, extack);
8820         up_write(&dev_addr_sem);
8821         return ret;
8822 }
8823 EXPORT_SYMBOL(dev_set_mac_address_user);
8824
8825 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8826 {
8827         size_t size = sizeof(sa->sa_data);
8828         struct net_device *dev;
8829         int ret = 0;
8830
8831         down_read(&dev_addr_sem);
8832         rcu_read_lock();
8833
8834         dev = dev_get_by_name_rcu(net, dev_name);
8835         if (!dev) {
8836                 ret = -ENODEV;
8837                 goto unlock;
8838         }
8839         if (!dev->addr_len)
8840                 memset(sa->sa_data, 0, size);
8841         else
8842                 memcpy(sa->sa_data, dev->dev_addr,
8843                        min_t(size_t, size, dev->addr_len));
8844         sa->sa_family = dev->type;
8845
8846 unlock:
8847         rcu_read_unlock();
8848         up_read(&dev_addr_sem);
8849         return ret;
8850 }
8851 EXPORT_SYMBOL(dev_get_mac_address);
8852
8853 /**
8854  *      dev_change_carrier - Change device carrier
8855  *      @dev: device
8856  *      @new_carrier: new value
8857  *
8858  *      Change device carrier
8859  */
8860 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8861 {
8862         const struct net_device_ops *ops = dev->netdev_ops;
8863
8864         if (!ops->ndo_change_carrier)
8865                 return -EOPNOTSUPP;
8866         if (!netif_device_present(dev))
8867                 return -ENODEV;
8868         return ops->ndo_change_carrier(dev, new_carrier);
8869 }
8870
8871 /**
8872  *      dev_get_phys_port_id - Get device physical port ID
8873  *      @dev: device
8874  *      @ppid: port ID
8875  *
8876  *      Get device physical port ID
8877  */
8878 int dev_get_phys_port_id(struct net_device *dev,
8879                          struct netdev_phys_item_id *ppid)
8880 {
8881         const struct net_device_ops *ops = dev->netdev_ops;
8882
8883         if (!ops->ndo_get_phys_port_id)
8884                 return -EOPNOTSUPP;
8885         return ops->ndo_get_phys_port_id(dev, ppid);
8886 }
8887
8888 /**
8889  *      dev_get_phys_port_name - Get device physical port name
8890  *      @dev: device
8891  *      @name: port name
8892  *      @len: limit of bytes to copy to name
8893  *
8894  *      Get device physical port name
8895  */
8896 int dev_get_phys_port_name(struct net_device *dev,
8897                            char *name, size_t len)
8898 {
8899         const struct net_device_ops *ops = dev->netdev_ops;
8900         int err;
8901
8902         if (ops->ndo_get_phys_port_name) {
8903                 err = ops->ndo_get_phys_port_name(dev, name, len);
8904                 if (err != -EOPNOTSUPP)
8905                         return err;
8906         }
8907         return devlink_compat_phys_port_name_get(dev, name, len);
8908 }
8909
8910 /**
8911  *      dev_get_port_parent_id - Get the device's port parent identifier
8912  *      @dev: network device
8913  *      @ppid: pointer to a storage for the port's parent identifier
8914  *      @recurse: allow/disallow recursion to lower devices
8915  *
8916  *      Get the devices's port parent identifier
8917  */
8918 int dev_get_port_parent_id(struct net_device *dev,
8919                            struct netdev_phys_item_id *ppid,
8920                            bool recurse)
8921 {
8922         const struct net_device_ops *ops = dev->netdev_ops;
8923         struct netdev_phys_item_id first = { };
8924         struct net_device *lower_dev;
8925         struct list_head *iter;
8926         int err;
8927
8928         if (ops->ndo_get_port_parent_id) {
8929                 err = ops->ndo_get_port_parent_id(dev, ppid);
8930                 if (err != -EOPNOTSUPP)
8931                         return err;
8932         }
8933
8934         err = devlink_compat_switch_id_get(dev, ppid);
8935         if (!recurse || err != -EOPNOTSUPP)
8936                 return err;
8937
8938         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8939                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8940                 if (err)
8941                         break;
8942                 if (!first.id_len)
8943                         first = *ppid;
8944                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8945                         return -EOPNOTSUPP;
8946         }
8947
8948         return err;
8949 }
8950 EXPORT_SYMBOL(dev_get_port_parent_id);
8951
8952 /**
8953  *      netdev_port_same_parent_id - Indicate if two network devices have
8954  *      the same port parent identifier
8955  *      @a: first network device
8956  *      @b: second network device
8957  */
8958 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8959 {
8960         struct netdev_phys_item_id a_id = { };
8961         struct netdev_phys_item_id b_id = { };
8962
8963         if (dev_get_port_parent_id(a, &a_id, true) ||
8964             dev_get_port_parent_id(b, &b_id, true))
8965                 return false;
8966
8967         return netdev_phys_item_id_same(&a_id, &b_id);
8968 }
8969 EXPORT_SYMBOL(netdev_port_same_parent_id);
8970
8971 /**
8972  *      dev_change_proto_down - set carrier according to proto_down.
8973  *
8974  *      @dev: device
8975  *      @proto_down: new value
8976  */
8977 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8978 {
8979         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8980                 return -EOPNOTSUPP;
8981         if (!netif_device_present(dev))
8982                 return -ENODEV;
8983         if (proto_down)
8984                 netif_carrier_off(dev);
8985         else
8986                 netif_carrier_on(dev);
8987         dev->proto_down = proto_down;
8988         return 0;
8989 }
8990
8991 /**
8992  *      dev_change_proto_down_reason - proto down reason
8993  *
8994  *      @dev: device
8995  *      @mask: proto down mask
8996  *      @value: proto down value
8997  */
8998 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8999                                   u32 value)
9000 {
9001         int b;
9002
9003         if (!mask) {
9004                 dev->proto_down_reason = value;
9005         } else {
9006                 for_each_set_bit(b, &mask, 32) {
9007                         if (value & (1 << b))
9008                                 dev->proto_down_reason |= BIT(b);
9009                         else
9010                                 dev->proto_down_reason &= ~BIT(b);
9011                 }
9012         }
9013 }
9014
9015 struct bpf_xdp_link {
9016         struct bpf_link link;
9017         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9018         int flags;
9019 };
9020
9021 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9022 {
9023         if (flags & XDP_FLAGS_HW_MODE)
9024                 return XDP_MODE_HW;
9025         if (flags & XDP_FLAGS_DRV_MODE)
9026                 return XDP_MODE_DRV;
9027         if (flags & XDP_FLAGS_SKB_MODE)
9028                 return XDP_MODE_SKB;
9029         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9030 }
9031
9032 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9033 {
9034         switch (mode) {
9035         case XDP_MODE_SKB:
9036                 return generic_xdp_install;
9037         case XDP_MODE_DRV:
9038         case XDP_MODE_HW:
9039                 return dev->netdev_ops->ndo_bpf;
9040         default:
9041                 return NULL;
9042         }
9043 }
9044
9045 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9046                                          enum bpf_xdp_mode mode)
9047 {
9048         return dev->xdp_state[mode].link;
9049 }
9050
9051 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9052                                      enum bpf_xdp_mode mode)
9053 {
9054         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9055
9056         if (link)
9057                 return link->link.prog;
9058         return dev->xdp_state[mode].prog;
9059 }
9060
9061 u8 dev_xdp_prog_count(struct net_device *dev)
9062 {
9063         u8 count = 0;
9064         int i;
9065
9066         for (i = 0; i < __MAX_XDP_MODE; i++)
9067                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9068                         count++;
9069         return count;
9070 }
9071 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9072
9073 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9074 {
9075         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9076
9077         return prog ? prog->aux->id : 0;
9078 }
9079
9080 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9081                              struct bpf_xdp_link *link)
9082 {
9083         dev->xdp_state[mode].link = link;
9084         dev->xdp_state[mode].prog = NULL;
9085 }
9086
9087 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9088                              struct bpf_prog *prog)
9089 {
9090         dev->xdp_state[mode].link = NULL;
9091         dev->xdp_state[mode].prog = prog;
9092 }
9093
9094 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9095                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9096                            u32 flags, struct bpf_prog *prog)
9097 {
9098         struct netdev_bpf xdp;
9099         int err;
9100
9101         memset(&xdp, 0, sizeof(xdp));
9102         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9103         xdp.extack = extack;
9104         xdp.flags = flags;
9105         xdp.prog = prog;
9106
9107         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9108          * "moved" into driver), so they don't increment it on their own, but
9109          * they do decrement refcnt when program is detached or replaced.
9110          * Given net_device also owns link/prog, we need to bump refcnt here
9111          * to prevent drivers from underflowing it.
9112          */
9113         if (prog)
9114                 bpf_prog_inc(prog);
9115         err = bpf_op(dev, &xdp);
9116         if (err) {
9117                 if (prog)
9118                         bpf_prog_put(prog);
9119                 return err;
9120         }
9121
9122         if (mode != XDP_MODE_HW)
9123                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9124
9125         return 0;
9126 }
9127
9128 static void dev_xdp_uninstall(struct net_device *dev)
9129 {
9130         struct bpf_xdp_link *link;
9131         struct bpf_prog *prog;
9132         enum bpf_xdp_mode mode;
9133         bpf_op_t bpf_op;
9134
9135         ASSERT_RTNL();
9136
9137         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9138                 prog = dev_xdp_prog(dev, mode);
9139                 if (!prog)
9140                         continue;
9141
9142                 bpf_op = dev_xdp_bpf_op(dev, mode);
9143                 if (!bpf_op)
9144                         continue;
9145
9146                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9147
9148                 /* auto-detach link from net device */
9149                 link = dev_xdp_link(dev, mode);
9150                 if (link)
9151                         link->dev = NULL;
9152                 else
9153                         bpf_prog_put(prog);
9154
9155                 dev_xdp_set_link(dev, mode, NULL);
9156         }
9157 }
9158
9159 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9160                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9161                           struct bpf_prog *old_prog, u32 flags)
9162 {
9163         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9164         struct bpf_prog *cur_prog;
9165         struct net_device *upper;
9166         struct list_head *iter;
9167         enum bpf_xdp_mode mode;
9168         bpf_op_t bpf_op;
9169         int err;
9170
9171         ASSERT_RTNL();
9172
9173         /* either link or prog attachment, never both */
9174         if (link && (new_prog || old_prog))
9175                 return -EINVAL;
9176         /* link supports only XDP mode flags */
9177         if (link && (flags & ~XDP_FLAGS_MODES)) {
9178                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9179                 return -EINVAL;
9180         }
9181         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9182         if (num_modes > 1) {
9183                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9184                 return -EINVAL;
9185         }
9186         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9187         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9188                 NL_SET_ERR_MSG(extack,
9189                                "More than one program loaded, unset mode is ambiguous");
9190                 return -EINVAL;
9191         }
9192         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9193         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9194                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9195                 return -EINVAL;
9196         }
9197
9198         mode = dev_xdp_mode(dev, flags);
9199         /* can't replace attached link */
9200         if (dev_xdp_link(dev, mode)) {
9201                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9202                 return -EBUSY;
9203         }
9204
9205         /* don't allow if an upper device already has a program */
9206         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9207                 if (dev_xdp_prog_count(upper) > 0) {
9208                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9209                         return -EEXIST;
9210                 }
9211         }
9212
9213         cur_prog = dev_xdp_prog(dev, mode);
9214         /* can't replace attached prog with link */
9215         if (link && cur_prog) {
9216                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9217                 return -EBUSY;
9218         }
9219         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9220                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9221                 return -EEXIST;
9222         }
9223
9224         /* put effective new program into new_prog */
9225         if (link)
9226                 new_prog = link->link.prog;
9227
9228         if (new_prog) {
9229                 bool offload = mode == XDP_MODE_HW;
9230                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9231                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9232
9233                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9234                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9235                         return -EBUSY;
9236                 }
9237                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9238                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9239                         return -EEXIST;
9240                 }
9241                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9242                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9243                         return -EINVAL;
9244                 }
9245                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9246                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9247                         return -EINVAL;
9248                 }
9249                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9250                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9251                         return -EINVAL;
9252                 }
9253         }
9254
9255         /* don't call drivers if the effective program didn't change */
9256         if (new_prog != cur_prog) {
9257                 bpf_op = dev_xdp_bpf_op(dev, mode);
9258                 if (!bpf_op) {
9259                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9260                         return -EOPNOTSUPP;
9261                 }
9262
9263                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9264                 if (err)
9265                         return err;
9266         }
9267
9268         if (link)
9269                 dev_xdp_set_link(dev, mode, link);
9270         else
9271                 dev_xdp_set_prog(dev, mode, new_prog);
9272         if (cur_prog)
9273                 bpf_prog_put(cur_prog);
9274
9275         return 0;
9276 }
9277
9278 static int dev_xdp_attach_link(struct net_device *dev,
9279                                struct netlink_ext_ack *extack,
9280                                struct bpf_xdp_link *link)
9281 {
9282         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9283 }
9284
9285 static int dev_xdp_detach_link(struct net_device *dev,
9286                                struct netlink_ext_ack *extack,
9287                                struct bpf_xdp_link *link)
9288 {
9289         enum bpf_xdp_mode mode;
9290         bpf_op_t bpf_op;
9291
9292         ASSERT_RTNL();
9293
9294         mode = dev_xdp_mode(dev, link->flags);
9295         if (dev_xdp_link(dev, mode) != link)
9296                 return -EINVAL;
9297
9298         bpf_op = dev_xdp_bpf_op(dev, mode);
9299         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9300         dev_xdp_set_link(dev, mode, NULL);
9301         return 0;
9302 }
9303
9304 static void bpf_xdp_link_release(struct bpf_link *link)
9305 {
9306         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9307
9308         rtnl_lock();
9309
9310         /* if racing with net_device's tear down, xdp_link->dev might be
9311          * already NULL, in which case link was already auto-detached
9312          */
9313         if (xdp_link->dev) {
9314                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9315                 xdp_link->dev = NULL;
9316         }
9317
9318         rtnl_unlock();
9319 }
9320
9321 static int bpf_xdp_link_detach(struct bpf_link *link)
9322 {
9323         bpf_xdp_link_release(link);
9324         return 0;
9325 }
9326
9327 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9328 {
9329         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9330
9331         kfree(xdp_link);
9332 }
9333
9334 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9335                                      struct seq_file *seq)
9336 {
9337         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9338         u32 ifindex = 0;
9339
9340         rtnl_lock();
9341         if (xdp_link->dev)
9342                 ifindex = xdp_link->dev->ifindex;
9343         rtnl_unlock();
9344
9345         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9346 }
9347
9348 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9349                                        struct bpf_link_info *info)
9350 {
9351         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9352         u32 ifindex = 0;
9353
9354         rtnl_lock();
9355         if (xdp_link->dev)
9356                 ifindex = xdp_link->dev->ifindex;
9357         rtnl_unlock();
9358
9359         info->xdp.ifindex = ifindex;
9360         return 0;
9361 }
9362
9363 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9364                                struct bpf_prog *old_prog)
9365 {
9366         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9367         enum bpf_xdp_mode mode;
9368         bpf_op_t bpf_op;
9369         int err = 0;
9370
9371         rtnl_lock();
9372
9373         /* link might have been auto-released already, so fail */
9374         if (!xdp_link->dev) {
9375                 err = -ENOLINK;
9376                 goto out_unlock;
9377         }
9378
9379         if (old_prog && link->prog != old_prog) {
9380                 err = -EPERM;
9381                 goto out_unlock;
9382         }
9383         old_prog = link->prog;
9384         if (old_prog->type != new_prog->type ||
9385             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9386                 err = -EINVAL;
9387                 goto out_unlock;
9388         }
9389
9390         if (old_prog == new_prog) {
9391                 /* no-op, don't disturb drivers */
9392                 bpf_prog_put(new_prog);
9393                 goto out_unlock;
9394         }
9395
9396         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9397         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9398         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9399                               xdp_link->flags, new_prog);
9400         if (err)
9401                 goto out_unlock;
9402
9403         old_prog = xchg(&link->prog, new_prog);
9404         bpf_prog_put(old_prog);
9405
9406 out_unlock:
9407         rtnl_unlock();
9408         return err;
9409 }
9410
9411 static const struct bpf_link_ops bpf_xdp_link_lops = {
9412         .release = bpf_xdp_link_release,
9413         .dealloc = bpf_xdp_link_dealloc,
9414         .detach = bpf_xdp_link_detach,
9415         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9416         .fill_link_info = bpf_xdp_link_fill_link_info,
9417         .update_prog = bpf_xdp_link_update,
9418 };
9419
9420 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9421 {
9422         struct net *net = current->nsproxy->net_ns;
9423         struct bpf_link_primer link_primer;
9424         struct bpf_xdp_link *link;
9425         struct net_device *dev;
9426         int err, fd;
9427
9428         rtnl_lock();
9429         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9430         if (!dev) {
9431                 rtnl_unlock();
9432                 return -EINVAL;
9433         }
9434
9435         link = kzalloc(sizeof(*link), GFP_USER);
9436         if (!link) {
9437                 err = -ENOMEM;
9438                 goto unlock;
9439         }
9440
9441         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9442         link->dev = dev;
9443         link->flags = attr->link_create.flags;
9444
9445         err = bpf_link_prime(&link->link, &link_primer);
9446         if (err) {
9447                 kfree(link);
9448                 goto unlock;
9449         }
9450
9451         err = dev_xdp_attach_link(dev, NULL, link);
9452         rtnl_unlock();
9453
9454         if (err) {
9455                 link->dev = NULL;
9456                 bpf_link_cleanup(&link_primer);
9457                 goto out_put_dev;
9458         }
9459
9460         fd = bpf_link_settle(&link_primer);
9461         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9462         dev_put(dev);
9463         return fd;
9464
9465 unlock:
9466         rtnl_unlock();
9467
9468 out_put_dev:
9469         dev_put(dev);
9470         return err;
9471 }
9472
9473 /**
9474  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9475  *      @dev: device
9476  *      @extack: netlink extended ack
9477  *      @fd: new program fd or negative value to clear
9478  *      @expected_fd: old program fd that userspace expects to replace or clear
9479  *      @flags: xdp-related flags
9480  *
9481  *      Set or clear a bpf program for a device
9482  */
9483 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9484                       int fd, int expected_fd, u32 flags)
9485 {
9486         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9487         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9488         int err;
9489
9490         ASSERT_RTNL();
9491
9492         if (fd >= 0) {
9493                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9494                                                  mode != XDP_MODE_SKB);
9495                 if (IS_ERR(new_prog))
9496                         return PTR_ERR(new_prog);
9497         }
9498
9499         if (expected_fd >= 0) {
9500                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9501                                                  mode != XDP_MODE_SKB);
9502                 if (IS_ERR(old_prog)) {
9503                         err = PTR_ERR(old_prog);
9504                         old_prog = NULL;
9505                         goto err_out;
9506                 }
9507         }
9508
9509         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9510
9511 err_out:
9512         if (err && new_prog)
9513                 bpf_prog_put(new_prog);
9514         if (old_prog)
9515                 bpf_prog_put(old_prog);
9516         return err;
9517 }
9518
9519 /**
9520  *      dev_new_index   -       allocate an ifindex
9521  *      @net: the applicable net namespace
9522  *
9523  *      Returns a suitable unique value for a new device interface
9524  *      number.  The caller must hold the rtnl semaphore or the
9525  *      dev_base_lock to be sure it remains unique.
9526  */
9527 static int dev_new_index(struct net *net)
9528 {
9529         int ifindex = net->ifindex;
9530
9531         for (;;) {
9532                 if (++ifindex <= 0)
9533                         ifindex = 1;
9534                 if (!__dev_get_by_index(net, ifindex))
9535                         return net->ifindex = ifindex;
9536         }
9537 }
9538
9539 /* Delayed registration/unregisteration */
9540 LIST_HEAD(net_todo_list);
9541 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9542
9543 static void net_set_todo(struct net_device *dev)
9544 {
9545         list_add_tail(&dev->todo_list, &net_todo_list);
9546         atomic_inc(&dev_net(dev)->dev_unreg_count);
9547 }
9548
9549 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9550         struct net_device *upper, netdev_features_t features)
9551 {
9552         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9553         netdev_features_t feature;
9554         int feature_bit;
9555
9556         for_each_netdev_feature(upper_disables, feature_bit) {
9557                 feature = __NETIF_F_BIT(feature_bit);
9558                 if (!(upper->wanted_features & feature)
9559                     && (features & feature)) {
9560                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9561                                    &feature, upper->name);
9562                         features &= ~feature;
9563                 }
9564         }
9565
9566         return features;
9567 }
9568
9569 static void netdev_sync_lower_features(struct net_device *upper,
9570         struct net_device *lower, netdev_features_t features)
9571 {
9572         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9573         netdev_features_t feature;
9574         int feature_bit;
9575
9576         for_each_netdev_feature(upper_disables, feature_bit) {
9577                 feature = __NETIF_F_BIT(feature_bit);
9578                 if (!(features & feature) && (lower->features & feature)) {
9579                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9580                                    &feature, lower->name);
9581                         lower->wanted_features &= ~feature;
9582                         __netdev_update_features(lower);
9583
9584                         if (unlikely(lower->features & feature))
9585                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9586                                             &feature, lower->name);
9587                         else
9588                                 netdev_features_change(lower);
9589                 }
9590         }
9591 }
9592
9593 static netdev_features_t netdev_fix_features(struct net_device *dev,
9594         netdev_features_t features)
9595 {
9596         /* Fix illegal checksum combinations */
9597         if ((features & NETIF_F_HW_CSUM) &&
9598             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9599                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9600                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9601         }
9602
9603         /* TSO requires that SG is present as well. */
9604         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9605                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9606                 features &= ~NETIF_F_ALL_TSO;
9607         }
9608
9609         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9610                                         !(features & NETIF_F_IP_CSUM)) {
9611                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9612                 features &= ~NETIF_F_TSO;
9613                 features &= ~NETIF_F_TSO_ECN;
9614         }
9615
9616         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9617                                          !(features & NETIF_F_IPV6_CSUM)) {
9618                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9619                 features &= ~NETIF_F_TSO6;
9620         }
9621
9622         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9623         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9624                 features &= ~NETIF_F_TSO_MANGLEID;
9625
9626         /* TSO ECN requires that TSO is present as well. */
9627         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9628                 features &= ~NETIF_F_TSO_ECN;
9629
9630         /* Software GSO depends on SG. */
9631         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9632                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9633                 features &= ~NETIF_F_GSO;
9634         }
9635
9636         /* GSO partial features require GSO partial be set */
9637         if ((features & dev->gso_partial_features) &&
9638             !(features & NETIF_F_GSO_PARTIAL)) {
9639                 netdev_dbg(dev,
9640                            "Dropping partially supported GSO features since no GSO partial.\n");
9641                 features &= ~dev->gso_partial_features;
9642         }
9643
9644         if (!(features & NETIF_F_RXCSUM)) {
9645                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9646                  * successfully merged by hardware must also have the
9647                  * checksum verified by hardware.  If the user does not
9648                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9649                  */
9650                 if (features & NETIF_F_GRO_HW) {
9651                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9652                         features &= ~NETIF_F_GRO_HW;
9653                 }
9654         }
9655
9656         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9657         if (features & NETIF_F_RXFCS) {
9658                 if (features & NETIF_F_LRO) {
9659                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9660                         features &= ~NETIF_F_LRO;
9661                 }
9662
9663                 if (features & NETIF_F_GRO_HW) {
9664                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9665                         features &= ~NETIF_F_GRO_HW;
9666                 }
9667         }
9668
9669         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9670                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9671                 features &= ~NETIF_F_LRO;
9672         }
9673
9674         if (features & NETIF_F_HW_TLS_TX) {
9675                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9676                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9677                 bool hw_csum = features & NETIF_F_HW_CSUM;
9678
9679                 if (!ip_csum && !hw_csum) {
9680                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9681                         features &= ~NETIF_F_HW_TLS_TX;
9682                 }
9683         }
9684
9685         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9686                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9687                 features &= ~NETIF_F_HW_TLS_RX;
9688         }
9689
9690         return features;
9691 }
9692
9693 int __netdev_update_features(struct net_device *dev)
9694 {
9695         struct net_device *upper, *lower;
9696         netdev_features_t features;
9697         struct list_head *iter;
9698         int err = -1;
9699
9700         ASSERT_RTNL();
9701
9702         features = netdev_get_wanted_features(dev);
9703
9704         if (dev->netdev_ops->ndo_fix_features)
9705                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9706
9707         /* driver might be less strict about feature dependencies */
9708         features = netdev_fix_features(dev, features);
9709
9710         /* some features can't be enabled if they're off on an upper device */
9711         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9712                 features = netdev_sync_upper_features(dev, upper, features);
9713
9714         if (dev->features == features)
9715                 goto sync_lower;
9716
9717         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9718                 &dev->features, &features);
9719
9720         if (dev->netdev_ops->ndo_set_features)
9721                 err = dev->netdev_ops->ndo_set_features(dev, features);
9722         else
9723                 err = 0;
9724
9725         if (unlikely(err < 0)) {
9726                 netdev_err(dev,
9727                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9728                         err, &features, &dev->features);
9729                 /* return non-0 since some features might have changed and
9730                  * it's better to fire a spurious notification than miss it
9731                  */
9732                 return -1;
9733         }
9734
9735 sync_lower:
9736         /* some features must be disabled on lower devices when disabled
9737          * on an upper device (think: bonding master or bridge)
9738          */
9739         netdev_for_each_lower_dev(dev, lower, iter)
9740                 netdev_sync_lower_features(dev, lower, features);
9741
9742         if (!err) {
9743                 netdev_features_t diff = features ^ dev->features;
9744
9745                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9746                         /* udp_tunnel_{get,drop}_rx_info both need
9747                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9748                          * device, or they won't do anything.
9749                          * Thus we need to update dev->features
9750                          * *before* calling udp_tunnel_get_rx_info,
9751                          * but *after* calling udp_tunnel_drop_rx_info.
9752                          */
9753                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9754                                 dev->features = features;
9755                                 udp_tunnel_get_rx_info(dev);
9756                         } else {
9757                                 udp_tunnel_drop_rx_info(dev);
9758                         }
9759                 }
9760
9761                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9762                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9763                                 dev->features = features;
9764                                 err |= vlan_get_rx_ctag_filter_info(dev);
9765                         } else {
9766                                 vlan_drop_rx_ctag_filter_info(dev);
9767                         }
9768                 }
9769
9770                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9771                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9772                                 dev->features = features;
9773                                 err |= vlan_get_rx_stag_filter_info(dev);
9774                         } else {
9775                                 vlan_drop_rx_stag_filter_info(dev);
9776                         }
9777                 }
9778
9779                 dev->features = features;
9780         }
9781
9782         return err < 0 ? 0 : 1;
9783 }
9784
9785 /**
9786  *      netdev_update_features - recalculate device features
9787  *      @dev: the device to check
9788  *
9789  *      Recalculate dev->features set and send notifications if it
9790  *      has changed. Should be called after driver or hardware dependent
9791  *      conditions might have changed that influence the features.
9792  */
9793 void netdev_update_features(struct net_device *dev)
9794 {
9795         if (__netdev_update_features(dev))
9796                 netdev_features_change(dev);
9797 }
9798 EXPORT_SYMBOL(netdev_update_features);
9799
9800 /**
9801  *      netdev_change_features - recalculate device features
9802  *      @dev: the device to check
9803  *
9804  *      Recalculate dev->features set and send notifications even
9805  *      if they have not changed. Should be called instead of
9806  *      netdev_update_features() if also dev->vlan_features might
9807  *      have changed to allow the changes to be propagated to stacked
9808  *      VLAN devices.
9809  */
9810 void netdev_change_features(struct net_device *dev)
9811 {
9812         __netdev_update_features(dev);
9813         netdev_features_change(dev);
9814 }
9815 EXPORT_SYMBOL(netdev_change_features);
9816
9817 /**
9818  *      netif_stacked_transfer_operstate -      transfer operstate
9819  *      @rootdev: the root or lower level device to transfer state from
9820  *      @dev: the device to transfer operstate to
9821  *
9822  *      Transfer operational state from root to device. This is normally
9823  *      called when a stacking relationship exists between the root
9824  *      device and the device(a leaf device).
9825  */
9826 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9827                                         struct net_device *dev)
9828 {
9829         if (rootdev->operstate == IF_OPER_DORMANT)
9830                 netif_dormant_on(dev);
9831         else
9832                 netif_dormant_off(dev);
9833
9834         if (rootdev->operstate == IF_OPER_TESTING)
9835                 netif_testing_on(dev);
9836         else
9837                 netif_testing_off(dev);
9838
9839         if (netif_carrier_ok(rootdev))
9840                 netif_carrier_on(dev);
9841         else
9842                 netif_carrier_off(dev);
9843 }
9844 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9845
9846 static int netif_alloc_rx_queues(struct net_device *dev)
9847 {
9848         unsigned int i, count = dev->num_rx_queues;
9849         struct netdev_rx_queue *rx;
9850         size_t sz = count * sizeof(*rx);
9851         int err = 0;
9852
9853         BUG_ON(count < 1);
9854
9855         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9856         if (!rx)
9857                 return -ENOMEM;
9858
9859         dev->_rx = rx;
9860
9861         for (i = 0; i < count; i++) {
9862                 rx[i].dev = dev;
9863
9864                 /* XDP RX-queue setup */
9865                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9866                 if (err < 0)
9867                         goto err_rxq_info;
9868         }
9869         return 0;
9870
9871 err_rxq_info:
9872         /* Rollback successful reg's and free other resources */
9873         while (i--)
9874                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9875         kvfree(dev->_rx);
9876         dev->_rx = NULL;
9877         return err;
9878 }
9879
9880 static void netif_free_rx_queues(struct net_device *dev)
9881 {
9882         unsigned int i, count = dev->num_rx_queues;
9883
9884         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9885         if (!dev->_rx)
9886                 return;
9887
9888         for (i = 0; i < count; i++)
9889                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9890
9891         kvfree(dev->_rx);
9892 }
9893
9894 static void netdev_init_one_queue(struct net_device *dev,
9895                                   struct netdev_queue *queue, void *_unused)
9896 {
9897         /* Initialize queue lock */
9898         spin_lock_init(&queue->_xmit_lock);
9899         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9900         queue->xmit_lock_owner = -1;
9901         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9902         queue->dev = dev;
9903 #ifdef CONFIG_BQL
9904         dql_init(&queue->dql, HZ);
9905 #endif
9906 }
9907
9908 static void netif_free_tx_queues(struct net_device *dev)
9909 {
9910         kvfree(dev->_tx);
9911 }
9912
9913 static int netif_alloc_netdev_queues(struct net_device *dev)
9914 {
9915         unsigned int count = dev->num_tx_queues;
9916         struct netdev_queue *tx;
9917         size_t sz = count * sizeof(*tx);
9918
9919         if (count < 1 || count > 0xffff)
9920                 return -EINVAL;
9921
9922         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9923         if (!tx)
9924                 return -ENOMEM;
9925
9926         dev->_tx = tx;
9927
9928         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9929         spin_lock_init(&dev->tx_global_lock);
9930
9931         return 0;
9932 }
9933
9934 void netif_tx_stop_all_queues(struct net_device *dev)
9935 {
9936         unsigned int i;
9937
9938         for (i = 0; i < dev->num_tx_queues; i++) {
9939                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9940
9941                 netif_tx_stop_queue(txq);
9942         }
9943 }
9944 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9945
9946 /**
9947  * register_netdevice() - register a network device
9948  * @dev: device to register
9949  *
9950  * Take a prepared network device structure and make it externally accessible.
9951  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9952  * Callers must hold the rtnl lock - you may want register_netdev()
9953  * instead of this.
9954  */
9955 int register_netdevice(struct net_device *dev)
9956 {
9957         int ret;
9958         struct net *net = dev_net(dev);
9959
9960         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9961                      NETDEV_FEATURE_COUNT);
9962         BUG_ON(dev_boot_phase);
9963         ASSERT_RTNL();
9964
9965         might_sleep();
9966
9967         /* When net_device's are persistent, this will be fatal. */
9968         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9969         BUG_ON(!net);
9970
9971         ret = ethtool_check_ops(dev->ethtool_ops);
9972         if (ret)
9973                 return ret;
9974
9975         spin_lock_init(&dev->addr_list_lock);
9976         netdev_set_addr_lockdep_class(dev);
9977
9978         ret = dev_get_valid_name(net, dev, dev->name);
9979         if (ret < 0)
9980                 goto out;
9981
9982         ret = -ENOMEM;
9983         dev->name_node = netdev_name_node_head_alloc(dev);
9984         if (!dev->name_node)
9985                 goto out;
9986
9987         /* Init, if this function is available */
9988         if (dev->netdev_ops->ndo_init) {
9989                 ret = dev->netdev_ops->ndo_init(dev);
9990                 if (ret) {
9991                         if (ret > 0)
9992                                 ret = -EIO;
9993                         goto err_free_name;
9994                 }
9995         }
9996
9997         if (((dev->hw_features | dev->features) &
9998              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9999             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10000              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10001                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10002                 ret = -EINVAL;
10003                 goto err_uninit;
10004         }
10005
10006         ret = -EBUSY;
10007         if (!dev->ifindex)
10008                 dev->ifindex = dev_new_index(net);
10009         else if (__dev_get_by_index(net, dev->ifindex))
10010                 goto err_uninit;
10011
10012         /* Transfer changeable features to wanted_features and enable
10013          * software offloads (GSO and GRO).
10014          */
10015         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10016         dev->features |= NETIF_F_SOFT_FEATURES;
10017
10018         if (dev->udp_tunnel_nic_info) {
10019                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10020                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10021         }
10022
10023         dev->wanted_features = dev->features & dev->hw_features;
10024
10025         if (!(dev->flags & IFF_LOOPBACK))
10026                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10027
10028         /* If IPv4 TCP segmentation offload is supported we should also
10029          * allow the device to enable segmenting the frame with the option
10030          * of ignoring a static IP ID value.  This doesn't enable the
10031          * feature itself but allows the user to enable it later.
10032          */
10033         if (dev->hw_features & NETIF_F_TSO)
10034                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10035         if (dev->vlan_features & NETIF_F_TSO)
10036                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10037         if (dev->mpls_features & NETIF_F_TSO)
10038                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10039         if (dev->hw_enc_features & NETIF_F_TSO)
10040                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10041
10042         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10043          */
10044         dev->vlan_features |= NETIF_F_HIGHDMA;
10045
10046         /* Make NETIF_F_SG inheritable to tunnel devices.
10047          */
10048         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10049
10050         /* Make NETIF_F_SG inheritable to MPLS.
10051          */
10052         dev->mpls_features |= NETIF_F_SG;
10053
10054         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10055         ret = notifier_to_errno(ret);
10056         if (ret)
10057                 goto err_uninit;
10058
10059         ret = netdev_register_kobject(dev);
10060         write_lock(&dev_base_lock);
10061         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10062         write_unlock(&dev_base_lock);
10063         if (ret)
10064                 goto err_uninit;
10065
10066         __netdev_update_features(dev);
10067
10068         /*
10069          *      Default initial state at registry is that the
10070          *      device is present.
10071          */
10072
10073         set_bit(__LINK_STATE_PRESENT, &dev->state);
10074
10075         linkwatch_init_dev(dev);
10076
10077         dev_init_scheduler(dev);
10078
10079         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10080         list_netdevice(dev);
10081
10082         add_device_randomness(dev->dev_addr, dev->addr_len);
10083
10084         /* If the device has permanent device address, driver should
10085          * set dev_addr and also addr_assign_type should be set to
10086          * NET_ADDR_PERM (default value).
10087          */
10088         if (dev->addr_assign_type == NET_ADDR_PERM)
10089                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10090
10091         /* Notify protocols, that a new device appeared. */
10092         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10093         ret = notifier_to_errno(ret);
10094         if (ret) {
10095                 /* Expect explicit free_netdev() on failure */
10096                 dev->needs_free_netdev = false;
10097                 unregister_netdevice_queue(dev, NULL);
10098                 goto out;
10099         }
10100         /*
10101          *      Prevent userspace races by waiting until the network
10102          *      device is fully setup before sending notifications.
10103          */
10104         if (!dev->rtnl_link_ops ||
10105             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10106                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10107
10108 out:
10109         return ret;
10110
10111 err_uninit:
10112         if (dev->netdev_ops->ndo_uninit)
10113                 dev->netdev_ops->ndo_uninit(dev);
10114         if (dev->priv_destructor)
10115                 dev->priv_destructor(dev);
10116 err_free_name:
10117         netdev_name_node_free(dev->name_node);
10118         goto out;
10119 }
10120 EXPORT_SYMBOL(register_netdevice);
10121
10122 /**
10123  *      init_dummy_netdev       - init a dummy network device for NAPI
10124  *      @dev: device to init
10125  *
10126  *      This takes a network device structure and initialize the minimum
10127  *      amount of fields so it can be used to schedule NAPI polls without
10128  *      registering a full blown interface. This is to be used by drivers
10129  *      that need to tie several hardware interfaces to a single NAPI
10130  *      poll scheduler due to HW limitations.
10131  */
10132 int init_dummy_netdev(struct net_device *dev)
10133 {
10134         /* Clear everything. Note we don't initialize spinlocks
10135          * are they aren't supposed to be taken by any of the
10136          * NAPI code and this dummy netdev is supposed to be
10137          * only ever used for NAPI polls
10138          */
10139         memset(dev, 0, sizeof(struct net_device));
10140
10141         /* make sure we BUG if trying to hit standard
10142          * register/unregister code path
10143          */
10144         dev->reg_state = NETREG_DUMMY;
10145
10146         /* NAPI wants this */
10147         INIT_LIST_HEAD(&dev->napi_list);
10148
10149         /* a dummy interface is started by default */
10150         set_bit(__LINK_STATE_PRESENT, &dev->state);
10151         set_bit(__LINK_STATE_START, &dev->state);
10152
10153         /* napi_busy_loop stats accounting wants this */
10154         dev_net_set(dev, &init_net);
10155
10156         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10157          * because users of this 'device' dont need to change
10158          * its refcount.
10159          */
10160
10161         return 0;
10162 }
10163 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10164
10165
10166 /**
10167  *      register_netdev - register a network device
10168  *      @dev: device to register
10169  *
10170  *      Take a completed network device structure and add it to the kernel
10171  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10172  *      chain. 0 is returned on success. A negative errno code is returned
10173  *      on a failure to set up the device, or if the name is a duplicate.
10174  *
10175  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10176  *      and expands the device name if you passed a format string to
10177  *      alloc_netdev.
10178  */
10179 int register_netdev(struct net_device *dev)
10180 {
10181         int err;
10182
10183         if (rtnl_lock_killable())
10184                 return -EINTR;
10185         err = register_netdevice(dev);
10186         rtnl_unlock();
10187         return err;
10188 }
10189 EXPORT_SYMBOL(register_netdev);
10190
10191 int netdev_refcnt_read(const struct net_device *dev)
10192 {
10193 #ifdef CONFIG_PCPU_DEV_REFCNT
10194         int i, refcnt = 0;
10195
10196         for_each_possible_cpu(i)
10197                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10198         return refcnt;
10199 #else
10200         return refcount_read(&dev->dev_refcnt);
10201 #endif
10202 }
10203 EXPORT_SYMBOL(netdev_refcnt_read);
10204
10205 int netdev_unregister_timeout_secs __read_mostly = 10;
10206
10207 #define WAIT_REFS_MIN_MSECS 1
10208 #define WAIT_REFS_MAX_MSECS 250
10209 /**
10210  * netdev_wait_allrefs_any - wait until all references are gone.
10211  * @list: list of net_devices to wait on
10212  *
10213  * This is called when unregistering network devices.
10214  *
10215  * Any protocol or device that holds a reference should register
10216  * for netdevice notification, and cleanup and put back the
10217  * reference if they receive an UNREGISTER event.
10218  * We can get stuck here if buggy protocols don't correctly
10219  * call dev_put.
10220  */
10221 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10222 {
10223         unsigned long rebroadcast_time, warning_time;
10224         struct net_device *dev;
10225         int wait = 0;
10226
10227         rebroadcast_time = warning_time = jiffies;
10228
10229         list_for_each_entry(dev, list, todo_list)
10230                 if (netdev_refcnt_read(dev) == 1)
10231                         return dev;
10232
10233         while (true) {
10234                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10235                         rtnl_lock();
10236
10237                         /* Rebroadcast unregister notification */
10238                         list_for_each_entry(dev, list, todo_list)
10239                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10240
10241                         __rtnl_unlock();
10242                         rcu_barrier();
10243                         rtnl_lock();
10244
10245                         list_for_each_entry(dev, list, todo_list)
10246                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10247                                              &dev->state)) {
10248                                         /* We must not have linkwatch events
10249                                          * pending on unregister. If this
10250                                          * happens, we simply run the queue
10251                                          * unscheduled, resulting in a noop
10252                                          * for this device.
10253                                          */
10254                                         linkwatch_run_queue();
10255                                         break;
10256                                 }
10257
10258                         __rtnl_unlock();
10259
10260                         rebroadcast_time = jiffies;
10261                 }
10262
10263                 if (!wait) {
10264                         rcu_barrier();
10265                         wait = WAIT_REFS_MIN_MSECS;
10266                 } else {
10267                         msleep(wait);
10268                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10269                 }
10270
10271                 list_for_each_entry(dev, list, todo_list)
10272                         if (netdev_refcnt_read(dev) == 1)
10273                                 return dev;
10274
10275                 if (time_after(jiffies, warning_time +
10276                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10277                         list_for_each_entry(dev, list, todo_list) {
10278                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10279                                          dev->name, netdev_refcnt_read(dev));
10280                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10281                         }
10282
10283                         warning_time = jiffies;
10284                 }
10285         }
10286 }
10287
10288 /* The sequence is:
10289  *
10290  *      rtnl_lock();
10291  *      ...
10292  *      register_netdevice(x1);
10293  *      register_netdevice(x2);
10294  *      ...
10295  *      unregister_netdevice(y1);
10296  *      unregister_netdevice(y2);
10297  *      ...
10298  *      rtnl_unlock();
10299  *      free_netdev(y1);
10300  *      free_netdev(y2);
10301  *
10302  * We are invoked by rtnl_unlock().
10303  * This allows us to deal with problems:
10304  * 1) We can delete sysfs objects which invoke hotplug
10305  *    without deadlocking with linkwatch via keventd.
10306  * 2) Since we run with the RTNL semaphore not held, we can sleep
10307  *    safely in order to wait for the netdev refcnt to drop to zero.
10308  *
10309  * We must not return until all unregister events added during
10310  * the interval the lock was held have been completed.
10311  */
10312 void netdev_run_todo(void)
10313 {
10314         struct net_device *dev, *tmp;
10315         struct list_head list;
10316 #ifdef CONFIG_LOCKDEP
10317         struct list_head unlink_list;
10318
10319         list_replace_init(&net_unlink_list, &unlink_list);
10320
10321         while (!list_empty(&unlink_list)) {
10322                 struct net_device *dev = list_first_entry(&unlink_list,
10323                                                           struct net_device,
10324                                                           unlink_list);
10325                 list_del_init(&dev->unlink_list);
10326                 dev->nested_level = dev->lower_level - 1;
10327         }
10328 #endif
10329
10330         /* Snapshot list, allow later requests */
10331         list_replace_init(&net_todo_list, &list);
10332
10333         __rtnl_unlock();
10334
10335         /* Wait for rcu callbacks to finish before next phase */
10336         if (!list_empty(&list))
10337                 rcu_barrier();
10338
10339         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10340                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10341                         netdev_WARN(dev, "run_todo but not unregistering\n");
10342                         list_del(&dev->todo_list);
10343                         continue;
10344                 }
10345
10346                 write_lock(&dev_base_lock);
10347                 dev->reg_state = NETREG_UNREGISTERED;
10348                 write_unlock(&dev_base_lock);
10349                 linkwatch_forget_dev(dev);
10350         }
10351
10352         while (!list_empty(&list)) {
10353                 dev = netdev_wait_allrefs_any(&list);
10354                 list_del(&dev->todo_list);
10355
10356                 /* paranoia */
10357                 BUG_ON(netdev_refcnt_read(dev) != 1);
10358                 BUG_ON(!list_empty(&dev->ptype_all));
10359                 BUG_ON(!list_empty(&dev->ptype_specific));
10360                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10361                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10362
10363                 if (dev->priv_destructor)
10364                         dev->priv_destructor(dev);
10365                 if (dev->needs_free_netdev)
10366                         free_netdev(dev);
10367
10368                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10369                         wake_up(&netdev_unregistering_wq);
10370
10371                 /* Free network device */
10372                 kobject_put(&dev->dev.kobj);
10373         }
10374 }
10375
10376 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10377  * all the same fields in the same order as net_device_stats, with only
10378  * the type differing, but rtnl_link_stats64 may have additional fields
10379  * at the end for newer counters.
10380  */
10381 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10382                              const struct net_device_stats *netdev_stats)
10383 {
10384         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10385         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10386         u64 *dst = (u64 *)stats64;
10387
10388         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10389         for (i = 0; i < n; i++)
10390                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10391         /* zero out counters that only exist in rtnl_link_stats64 */
10392         memset((char *)stats64 + n * sizeof(u64), 0,
10393                sizeof(*stats64) - n * sizeof(u64));
10394 }
10395 EXPORT_SYMBOL(netdev_stats_to_stats64);
10396
10397 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10398 {
10399         struct net_device_core_stats __percpu *p;
10400
10401         p = alloc_percpu_gfp(struct net_device_core_stats,
10402                              GFP_ATOMIC | __GFP_NOWARN);
10403
10404         if (p && cmpxchg(&dev->core_stats, NULL, p))
10405                 free_percpu(p);
10406
10407         /* This READ_ONCE() pairs with the cmpxchg() above */
10408         return READ_ONCE(dev->core_stats);
10409 }
10410 EXPORT_SYMBOL(netdev_core_stats_alloc);
10411
10412 /**
10413  *      dev_get_stats   - get network device statistics
10414  *      @dev: device to get statistics from
10415  *      @storage: place to store stats
10416  *
10417  *      Get network statistics from device. Return @storage.
10418  *      The device driver may provide its own method by setting
10419  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10420  *      otherwise the internal statistics structure is used.
10421  */
10422 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10423                                         struct rtnl_link_stats64 *storage)
10424 {
10425         const struct net_device_ops *ops = dev->netdev_ops;
10426         const struct net_device_core_stats __percpu *p;
10427
10428         if (ops->ndo_get_stats64) {
10429                 memset(storage, 0, sizeof(*storage));
10430                 ops->ndo_get_stats64(dev, storage);
10431         } else if (ops->ndo_get_stats) {
10432                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10433         } else {
10434                 netdev_stats_to_stats64(storage, &dev->stats);
10435         }
10436
10437         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10438         p = READ_ONCE(dev->core_stats);
10439         if (p) {
10440                 const struct net_device_core_stats *core_stats;
10441                 int i;
10442
10443                 for_each_possible_cpu(i) {
10444                         core_stats = per_cpu_ptr(p, i);
10445                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10446                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10447                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10448                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10449                 }
10450         }
10451         return storage;
10452 }
10453 EXPORT_SYMBOL(dev_get_stats);
10454
10455 /**
10456  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10457  *      @s: place to store stats
10458  *      @netstats: per-cpu network stats to read from
10459  *
10460  *      Read per-cpu network statistics and populate the related fields in @s.
10461  */
10462 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10463                            const struct pcpu_sw_netstats __percpu *netstats)
10464 {
10465         int cpu;
10466
10467         for_each_possible_cpu(cpu) {
10468                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10469                 const struct pcpu_sw_netstats *stats;
10470                 unsigned int start;
10471
10472                 stats = per_cpu_ptr(netstats, cpu);
10473                 do {
10474                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10475                         rx_packets = u64_stats_read(&stats->rx_packets);
10476                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10477                         tx_packets = u64_stats_read(&stats->tx_packets);
10478                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10479                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10480
10481                 s->rx_packets += rx_packets;
10482                 s->rx_bytes   += rx_bytes;
10483                 s->tx_packets += tx_packets;
10484                 s->tx_bytes   += tx_bytes;
10485         }
10486 }
10487 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10488
10489 /**
10490  *      dev_get_tstats64 - ndo_get_stats64 implementation
10491  *      @dev: device to get statistics from
10492  *      @s: place to store stats
10493  *
10494  *      Populate @s from dev->stats and dev->tstats. Can be used as
10495  *      ndo_get_stats64() callback.
10496  */
10497 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10498 {
10499         netdev_stats_to_stats64(s, &dev->stats);
10500         dev_fetch_sw_netstats(s, dev->tstats);
10501 }
10502 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10503
10504 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10505 {
10506         struct netdev_queue *queue = dev_ingress_queue(dev);
10507
10508 #ifdef CONFIG_NET_CLS_ACT
10509         if (queue)
10510                 return queue;
10511         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10512         if (!queue)
10513                 return NULL;
10514         netdev_init_one_queue(dev, queue, NULL);
10515         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10516         queue->qdisc_sleeping = &noop_qdisc;
10517         rcu_assign_pointer(dev->ingress_queue, queue);
10518 #endif
10519         return queue;
10520 }
10521
10522 static const struct ethtool_ops default_ethtool_ops;
10523
10524 void netdev_set_default_ethtool_ops(struct net_device *dev,
10525                                     const struct ethtool_ops *ops)
10526 {
10527         if (dev->ethtool_ops == &default_ethtool_ops)
10528                 dev->ethtool_ops = ops;
10529 }
10530 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10531
10532 void netdev_freemem(struct net_device *dev)
10533 {
10534         char *addr = (char *)dev - dev->padded;
10535
10536         kvfree(addr);
10537 }
10538
10539 /**
10540  * alloc_netdev_mqs - allocate network device
10541  * @sizeof_priv: size of private data to allocate space for
10542  * @name: device name format string
10543  * @name_assign_type: origin of device name
10544  * @setup: callback to initialize device
10545  * @txqs: the number of TX subqueues to allocate
10546  * @rxqs: the number of RX subqueues to allocate
10547  *
10548  * Allocates a struct net_device with private data area for driver use
10549  * and performs basic initialization.  Also allocates subqueue structs
10550  * for each queue on the device.
10551  */
10552 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10553                 unsigned char name_assign_type,
10554                 void (*setup)(struct net_device *),
10555                 unsigned int txqs, unsigned int rxqs)
10556 {
10557         struct net_device *dev;
10558         unsigned int alloc_size;
10559         struct net_device *p;
10560
10561         BUG_ON(strlen(name) >= sizeof(dev->name));
10562
10563         if (txqs < 1) {
10564                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10565                 return NULL;
10566         }
10567
10568         if (rxqs < 1) {
10569                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10570                 return NULL;
10571         }
10572
10573         alloc_size = sizeof(struct net_device);
10574         if (sizeof_priv) {
10575                 /* ensure 32-byte alignment of private area */
10576                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10577                 alloc_size += sizeof_priv;
10578         }
10579         /* ensure 32-byte alignment of whole construct */
10580         alloc_size += NETDEV_ALIGN - 1;
10581
10582         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10583         if (!p)
10584                 return NULL;
10585
10586         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10587         dev->padded = (char *)dev - (char *)p;
10588
10589         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10590 #ifdef CONFIG_PCPU_DEV_REFCNT
10591         dev->pcpu_refcnt = alloc_percpu(int);
10592         if (!dev->pcpu_refcnt)
10593                 goto free_dev;
10594         __dev_hold(dev);
10595 #else
10596         refcount_set(&dev->dev_refcnt, 1);
10597 #endif
10598
10599         if (dev_addr_init(dev))
10600                 goto free_pcpu;
10601
10602         dev_mc_init(dev);
10603         dev_uc_init(dev);
10604
10605         dev_net_set(dev, &init_net);
10606
10607         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10608         dev->gso_max_segs = GSO_MAX_SEGS;
10609         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10610         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10611         dev->tso_max_segs = TSO_MAX_SEGS;
10612         dev->upper_level = 1;
10613         dev->lower_level = 1;
10614 #ifdef CONFIG_LOCKDEP
10615         dev->nested_level = 0;
10616         INIT_LIST_HEAD(&dev->unlink_list);
10617 #endif
10618
10619         INIT_LIST_HEAD(&dev->napi_list);
10620         INIT_LIST_HEAD(&dev->unreg_list);
10621         INIT_LIST_HEAD(&dev->close_list);
10622         INIT_LIST_HEAD(&dev->link_watch_list);
10623         INIT_LIST_HEAD(&dev->adj_list.upper);
10624         INIT_LIST_HEAD(&dev->adj_list.lower);
10625         INIT_LIST_HEAD(&dev->ptype_all);
10626         INIT_LIST_HEAD(&dev->ptype_specific);
10627         INIT_LIST_HEAD(&dev->net_notifier_list);
10628 #ifdef CONFIG_NET_SCHED
10629         hash_init(dev->qdisc_hash);
10630 #endif
10631         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10632         setup(dev);
10633
10634         if (!dev->tx_queue_len) {
10635                 dev->priv_flags |= IFF_NO_QUEUE;
10636                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10637         }
10638
10639         dev->num_tx_queues = txqs;
10640         dev->real_num_tx_queues = txqs;
10641         if (netif_alloc_netdev_queues(dev))
10642                 goto free_all;
10643
10644         dev->num_rx_queues = rxqs;
10645         dev->real_num_rx_queues = rxqs;
10646         if (netif_alloc_rx_queues(dev))
10647                 goto free_all;
10648
10649         strcpy(dev->name, name);
10650         dev->name_assign_type = name_assign_type;
10651         dev->group = INIT_NETDEV_GROUP;
10652         if (!dev->ethtool_ops)
10653                 dev->ethtool_ops = &default_ethtool_ops;
10654
10655         nf_hook_netdev_init(dev);
10656
10657         return dev;
10658
10659 free_all:
10660         free_netdev(dev);
10661         return NULL;
10662
10663 free_pcpu:
10664 #ifdef CONFIG_PCPU_DEV_REFCNT
10665         free_percpu(dev->pcpu_refcnt);
10666 free_dev:
10667 #endif
10668         netdev_freemem(dev);
10669         return NULL;
10670 }
10671 EXPORT_SYMBOL(alloc_netdev_mqs);
10672
10673 /**
10674  * free_netdev - free network device
10675  * @dev: device
10676  *
10677  * This function does the last stage of destroying an allocated device
10678  * interface. The reference to the device object is released. If this
10679  * is the last reference then it will be freed.Must be called in process
10680  * context.
10681  */
10682 void free_netdev(struct net_device *dev)
10683 {
10684         struct napi_struct *p, *n;
10685
10686         might_sleep();
10687
10688         /* When called immediately after register_netdevice() failed the unwind
10689          * handling may still be dismantling the device. Handle that case by
10690          * deferring the free.
10691          */
10692         if (dev->reg_state == NETREG_UNREGISTERING) {
10693                 ASSERT_RTNL();
10694                 dev->needs_free_netdev = true;
10695                 return;
10696         }
10697
10698         netif_free_tx_queues(dev);
10699         netif_free_rx_queues(dev);
10700
10701         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10702
10703         /* Flush device addresses */
10704         dev_addr_flush(dev);
10705
10706         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10707                 netif_napi_del(p);
10708
10709         ref_tracker_dir_exit(&dev->refcnt_tracker);
10710 #ifdef CONFIG_PCPU_DEV_REFCNT
10711         free_percpu(dev->pcpu_refcnt);
10712         dev->pcpu_refcnt = NULL;
10713 #endif
10714         free_percpu(dev->core_stats);
10715         dev->core_stats = NULL;
10716         free_percpu(dev->xdp_bulkq);
10717         dev->xdp_bulkq = NULL;
10718
10719         /*  Compatibility with error handling in drivers */
10720         if (dev->reg_state == NETREG_UNINITIALIZED) {
10721                 netdev_freemem(dev);
10722                 return;
10723         }
10724
10725         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10726         dev->reg_state = NETREG_RELEASED;
10727
10728         /* will free via device release */
10729         put_device(&dev->dev);
10730 }
10731 EXPORT_SYMBOL(free_netdev);
10732
10733 /**
10734  *      synchronize_net -  Synchronize with packet receive processing
10735  *
10736  *      Wait for packets currently being received to be done.
10737  *      Does not block later packets from starting.
10738  */
10739 void synchronize_net(void)
10740 {
10741         might_sleep();
10742         if (rtnl_is_locked())
10743                 synchronize_rcu_expedited();
10744         else
10745                 synchronize_rcu();
10746 }
10747 EXPORT_SYMBOL(synchronize_net);
10748
10749 /**
10750  *      unregister_netdevice_queue - remove device from the kernel
10751  *      @dev: device
10752  *      @head: list
10753  *
10754  *      This function shuts down a device interface and removes it
10755  *      from the kernel tables.
10756  *      If head not NULL, device is queued to be unregistered later.
10757  *
10758  *      Callers must hold the rtnl semaphore.  You may want
10759  *      unregister_netdev() instead of this.
10760  */
10761
10762 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10763 {
10764         ASSERT_RTNL();
10765
10766         if (head) {
10767                 list_move_tail(&dev->unreg_list, head);
10768         } else {
10769                 LIST_HEAD(single);
10770
10771                 list_add(&dev->unreg_list, &single);
10772                 unregister_netdevice_many(&single);
10773         }
10774 }
10775 EXPORT_SYMBOL(unregister_netdevice_queue);
10776
10777 /**
10778  *      unregister_netdevice_many - unregister many devices
10779  *      @head: list of devices
10780  *
10781  *  Note: As most callers use a stack allocated list_head,
10782  *  we force a list_del() to make sure stack wont be corrupted later.
10783  */
10784 void unregister_netdevice_many(struct list_head *head)
10785 {
10786         struct net_device *dev, *tmp;
10787         LIST_HEAD(close_head);
10788
10789         BUG_ON(dev_boot_phase);
10790         ASSERT_RTNL();
10791
10792         if (list_empty(head))
10793                 return;
10794
10795         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10796                 /* Some devices call without registering
10797                  * for initialization unwind. Remove those
10798                  * devices and proceed with the remaining.
10799                  */
10800                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10801                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10802                                  dev->name, dev);
10803
10804                         WARN_ON(1);
10805                         list_del(&dev->unreg_list);
10806                         continue;
10807                 }
10808                 dev->dismantle = true;
10809                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10810         }
10811
10812         /* If device is running, close it first. */
10813         list_for_each_entry(dev, head, unreg_list)
10814                 list_add_tail(&dev->close_list, &close_head);
10815         dev_close_many(&close_head, true);
10816
10817         list_for_each_entry(dev, head, unreg_list) {
10818                 /* And unlink it from device chain. */
10819                 write_lock(&dev_base_lock);
10820                 unlist_netdevice(dev, false);
10821                 dev->reg_state = NETREG_UNREGISTERING;
10822                 write_unlock(&dev_base_lock);
10823         }
10824         flush_all_backlogs();
10825
10826         synchronize_net();
10827
10828         list_for_each_entry(dev, head, unreg_list) {
10829                 struct sk_buff *skb = NULL;
10830
10831                 /* Shutdown queueing discipline. */
10832                 dev_shutdown(dev);
10833
10834                 dev_xdp_uninstall(dev);
10835
10836                 netdev_offload_xstats_disable_all(dev);
10837
10838                 /* Notify protocols, that we are about to destroy
10839                  * this device. They should clean all the things.
10840                  */
10841                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10842
10843                 if (!dev->rtnl_link_ops ||
10844                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10845                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10846                                                      GFP_KERNEL, NULL, 0);
10847
10848                 /*
10849                  *      Flush the unicast and multicast chains
10850                  */
10851                 dev_uc_flush(dev);
10852                 dev_mc_flush(dev);
10853
10854                 netdev_name_node_alt_flush(dev);
10855                 netdev_name_node_free(dev->name_node);
10856
10857                 if (dev->netdev_ops->ndo_uninit)
10858                         dev->netdev_ops->ndo_uninit(dev);
10859
10860                 if (skb)
10861                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10862
10863                 /* Notifier chain MUST detach us all upper devices. */
10864                 WARN_ON(netdev_has_any_upper_dev(dev));
10865                 WARN_ON(netdev_has_any_lower_dev(dev));
10866
10867                 /* Remove entries from kobject tree */
10868                 netdev_unregister_kobject(dev);
10869 #ifdef CONFIG_XPS
10870                 /* Remove XPS queueing entries */
10871                 netif_reset_xps_queues_gt(dev, 0);
10872 #endif
10873         }
10874
10875         synchronize_net();
10876
10877         list_for_each_entry(dev, head, unreg_list) {
10878                 netdev_put(dev, &dev->dev_registered_tracker);
10879                 net_set_todo(dev);
10880         }
10881
10882         list_del(head);
10883 }
10884 EXPORT_SYMBOL(unregister_netdevice_many);
10885
10886 /**
10887  *      unregister_netdev - remove device from the kernel
10888  *      @dev: device
10889  *
10890  *      This function shuts down a device interface and removes it
10891  *      from the kernel tables.
10892  *
10893  *      This is just a wrapper for unregister_netdevice that takes
10894  *      the rtnl semaphore.  In general you want to use this and not
10895  *      unregister_netdevice.
10896  */
10897 void unregister_netdev(struct net_device *dev)
10898 {
10899         rtnl_lock();
10900         unregister_netdevice(dev);
10901         rtnl_unlock();
10902 }
10903 EXPORT_SYMBOL(unregister_netdev);
10904
10905 /**
10906  *      __dev_change_net_namespace - move device to different nethost namespace
10907  *      @dev: device
10908  *      @net: network namespace
10909  *      @pat: If not NULL name pattern to try if the current device name
10910  *            is already taken in the destination network namespace.
10911  *      @new_ifindex: If not zero, specifies device index in the target
10912  *                    namespace.
10913  *
10914  *      This function shuts down a device interface and moves it
10915  *      to a new network namespace. On success 0 is returned, on
10916  *      a failure a netagive errno code is returned.
10917  *
10918  *      Callers must hold the rtnl semaphore.
10919  */
10920
10921 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10922                                const char *pat, int new_ifindex)
10923 {
10924         struct net *net_old = dev_net(dev);
10925         int err, new_nsid;
10926
10927         ASSERT_RTNL();
10928
10929         /* Don't allow namespace local devices to be moved. */
10930         err = -EINVAL;
10931         if (dev->features & NETIF_F_NETNS_LOCAL)
10932                 goto out;
10933
10934         /* Ensure the device has been registrered */
10935         if (dev->reg_state != NETREG_REGISTERED)
10936                 goto out;
10937
10938         /* Get out if there is nothing todo */
10939         err = 0;
10940         if (net_eq(net_old, net))
10941                 goto out;
10942
10943         /* Pick the destination device name, and ensure
10944          * we can use it in the destination network namespace.
10945          */
10946         err = -EEXIST;
10947         if (netdev_name_in_use(net, dev->name)) {
10948                 /* We get here if we can't use the current device name */
10949                 if (!pat)
10950                         goto out;
10951                 err = dev_get_valid_name(net, dev, pat);
10952                 if (err < 0)
10953                         goto out;
10954         }
10955
10956         /* Check that new_ifindex isn't used yet. */
10957         err = -EBUSY;
10958         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10959                 goto out;
10960
10961         /*
10962          * And now a mini version of register_netdevice unregister_netdevice.
10963          */
10964
10965         /* If device is running close it first. */
10966         dev_close(dev);
10967
10968         /* And unlink it from device chain */
10969         unlist_netdevice(dev, true);
10970
10971         synchronize_net();
10972
10973         /* Shutdown queueing discipline. */
10974         dev_shutdown(dev);
10975
10976         /* Notify protocols, that we are about to destroy
10977          * this device. They should clean all the things.
10978          *
10979          * Note that dev->reg_state stays at NETREG_REGISTERED.
10980          * This is wanted because this way 8021q and macvlan know
10981          * the device is just moving and can keep their slaves up.
10982          */
10983         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10984         rcu_barrier();
10985
10986         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10987         /* If there is an ifindex conflict assign a new one */
10988         if (!new_ifindex) {
10989                 if (__dev_get_by_index(net, dev->ifindex))
10990                         new_ifindex = dev_new_index(net);
10991                 else
10992                         new_ifindex = dev->ifindex;
10993         }
10994
10995         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10996                             new_ifindex);
10997
10998         /*
10999          *      Flush the unicast and multicast chains
11000          */
11001         dev_uc_flush(dev);
11002         dev_mc_flush(dev);
11003
11004         /* Send a netdev-removed uevent to the old namespace */
11005         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11006         netdev_adjacent_del_links(dev);
11007
11008         /* Move per-net netdevice notifiers that are following the netdevice */
11009         move_netdevice_notifiers_dev_net(dev, net);
11010
11011         /* Actually switch the network namespace */
11012         dev_net_set(dev, net);
11013         dev->ifindex = new_ifindex;
11014
11015         /* Send a netdev-add uevent to the new namespace */
11016         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11017         netdev_adjacent_add_links(dev);
11018
11019         /* Fixup kobjects */
11020         err = device_rename(&dev->dev, dev->name);
11021         WARN_ON(err);
11022
11023         /* Adapt owner in case owning user namespace of target network
11024          * namespace is different from the original one.
11025          */
11026         err = netdev_change_owner(dev, net_old, net);
11027         WARN_ON(err);
11028
11029         /* Add the device back in the hashes */
11030         list_netdevice(dev);
11031
11032         /* Notify protocols, that a new device appeared. */
11033         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11034
11035         /*
11036          *      Prevent userspace races by waiting until the network
11037          *      device is fully setup before sending notifications.
11038          */
11039         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11040
11041         synchronize_net();
11042         err = 0;
11043 out:
11044         return err;
11045 }
11046 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11047
11048 static int dev_cpu_dead(unsigned int oldcpu)
11049 {
11050         struct sk_buff **list_skb;
11051         struct sk_buff *skb;
11052         unsigned int cpu;
11053         struct softnet_data *sd, *oldsd, *remsd = NULL;
11054
11055         local_irq_disable();
11056         cpu = smp_processor_id();
11057         sd = &per_cpu(softnet_data, cpu);
11058         oldsd = &per_cpu(softnet_data, oldcpu);
11059
11060         /* Find end of our completion_queue. */
11061         list_skb = &sd->completion_queue;
11062         while (*list_skb)
11063                 list_skb = &(*list_skb)->next;
11064         /* Append completion queue from offline CPU. */
11065         *list_skb = oldsd->completion_queue;
11066         oldsd->completion_queue = NULL;
11067
11068         /* Append output queue from offline CPU. */
11069         if (oldsd->output_queue) {
11070                 *sd->output_queue_tailp = oldsd->output_queue;
11071                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11072                 oldsd->output_queue = NULL;
11073                 oldsd->output_queue_tailp = &oldsd->output_queue;
11074         }
11075         /* Append NAPI poll list from offline CPU, with one exception :
11076          * process_backlog() must be called by cpu owning percpu backlog.
11077          * We properly handle process_queue & input_pkt_queue later.
11078          */
11079         while (!list_empty(&oldsd->poll_list)) {
11080                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11081                                                             struct napi_struct,
11082                                                             poll_list);
11083
11084                 list_del_init(&napi->poll_list);
11085                 if (napi->poll == process_backlog)
11086                         napi->state = 0;
11087                 else
11088                         ____napi_schedule(sd, napi);
11089         }
11090
11091         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11092         local_irq_enable();
11093
11094 #ifdef CONFIG_RPS
11095         remsd = oldsd->rps_ipi_list;
11096         oldsd->rps_ipi_list = NULL;
11097 #endif
11098         /* send out pending IPI's on offline CPU */
11099         net_rps_send_ipi(remsd);
11100
11101         /* Process offline CPU's input_pkt_queue */
11102         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11103                 netif_rx(skb);
11104                 input_queue_head_incr(oldsd);
11105         }
11106         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11107                 netif_rx(skb);
11108                 input_queue_head_incr(oldsd);
11109         }
11110
11111         return 0;
11112 }
11113
11114 /**
11115  *      netdev_increment_features - increment feature set by one
11116  *      @all: current feature set
11117  *      @one: new feature set
11118  *      @mask: mask feature set
11119  *
11120  *      Computes a new feature set after adding a device with feature set
11121  *      @one to the master device with current feature set @all.  Will not
11122  *      enable anything that is off in @mask. Returns the new feature set.
11123  */
11124 netdev_features_t netdev_increment_features(netdev_features_t all,
11125         netdev_features_t one, netdev_features_t mask)
11126 {
11127         if (mask & NETIF_F_HW_CSUM)
11128                 mask |= NETIF_F_CSUM_MASK;
11129         mask |= NETIF_F_VLAN_CHALLENGED;
11130
11131         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11132         all &= one | ~NETIF_F_ALL_FOR_ALL;
11133
11134         /* If one device supports hw checksumming, set for all. */
11135         if (all & NETIF_F_HW_CSUM)
11136                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11137
11138         return all;
11139 }
11140 EXPORT_SYMBOL(netdev_increment_features);
11141
11142 static struct hlist_head * __net_init netdev_create_hash(void)
11143 {
11144         int i;
11145         struct hlist_head *hash;
11146
11147         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11148         if (hash != NULL)
11149                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11150                         INIT_HLIST_HEAD(&hash[i]);
11151
11152         return hash;
11153 }
11154
11155 /* Initialize per network namespace state */
11156 static int __net_init netdev_init(struct net *net)
11157 {
11158         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11159                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11160
11161         INIT_LIST_HEAD(&net->dev_base_head);
11162
11163         net->dev_name_head = netdev_create_hash();
11164         if (net->dev_name_head == NULL)
11165                 goto err_name;
11166
11167         net->dev_index_head = netdev_create_hash();
11168         if (net->dev_index_head == NULL)
11169                 goto err_idx;
11170
11171         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11172
11173         return 0;
11174
11175 err_idx:
11176         kfree(net->dev_name_head);
11177 err_name:
11178         return -ENOMEM;
11179 }
11180
11181 /**
11182  *      netdev_drivername - network driver for the device
11183  *      @dev: network device
11184  *
11185  *      Determine network driver for device.
11186  */
11187 const char *netdev_drivername(const struct net_device *dev)
11188 {
11189         const struct device_driver *driver;
11190         const struct device *parent;
11191         const char *empty = "";
11192
11193         parent = dev->dev.parent;
11194         if (!parent)
11195                 return empty;
11196
11197         driver = parent->driver;
11198         if (driver && driver->name)
11199                 return driver->name;
11200         return empty;
11201 }
11202
11203 static void __netdev_printk(const char *level, const struct net_device *dev,
11204                             struct va_format *vaf)
11205 {
11206         if (dev && dev->dev.parent) {
11207                 dev_printk_emit(level[1] - '0',
11208                                 dev->dev.parent,
11209                                 "%s %s %s%s: %pV",
11210                                 dev_driver_string(dev->dev.parent),
11211                                 dev_name(dev->dev.parent),
11212                                 netdev_name(dev), netdev_reg_state(dev),
11213                                 vaf);
11214         } else if (dev) {
11215                 printk("%s%s%s: %pV",
11216                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11217         } else {
11218                 printk("%s(NULL net_device): %pV", level, vaf);
11219         }
11220 }
11221
11222 void netdev_printk(const char *level, const struct net_device *dev,
11223                    const char *format, ...)
11224 {
11225         struct va_format vaf;
11226         va_list args;
11227
11228         va_start(args, format);
11229
11230         vaf.fmt = format;
11231         vaf.va = &args;
11232
11233         __netdev_printk(level, dev, &vaf);
11234
11235         va_end(args);
11236 }
11237 EXPORT_SYMBOL(netdev_printk);
11238
11239 #define define_netdev_printk_level(func, level)                 \
11240 void func(const struct net_device *dev, const char *fmt, ...)   \
11241 {                                                               \
11242         struct va_format vaf;                                   \
11243         va_list args;                                           \
11244                                                                 \
11245         va_start(args, fmt);                                    \
11246                                                                 \
11247         vaf.fmt = fmt;                                          \
11248         vaf.va = &args;                                         \
11249                                                                 \
11250         __netdev_printk(level, dev, &vaf);                      \
11251                                                                 \
11252         va_end(args);                                           \
11253 }                                                               \
11254 EXPORT_SYMBOL(func);
11255
11256 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11257 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11258 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11259 define_netdev_printk_level(netdev_err, KERN_ERR);
11260 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11261 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11262 define_netdev_printk_level(netdev_info, KERN_INFO);
11263
11264 static void __net_exit netdev_exit(struct net *net)
11265 {
11266         kfree(net->dev_name_head);
11267         kfree(net->dev_index_head);
11268         if (net != &init_net)
11269                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11270 }
11271
11272 static struct pernet_operations __net_initdata netdev_net_ops = {
11273         .init = netdev_init,
11274         .exit = netdev_exit,
11275 };
11276
11277 static void __net_exit default_device_exit_net(struct net *net)
11278 {
11279         struct net_device *dev, *aux;
11280         /*
11281          * Push all migratable network devices back to the
11282          * initial network namespace
11283          */
11284         ASSERT_RTNL();
11285         for_each_netdev_safe(net, dev, aux) {
11286                 int err;
11287                 char fb_name[IFNAMSIZ];
11288
11289                 /* Ignore unmoveable devices (i.e. loopback) */
11290                 if (dev->features & NETIF_F_NETNS_LOCAL)
11291                         continue;
11292
11293                 /* Leave virtual devices for the generic cleanup */
11294                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11295                         continue;
11296
11297                 /* Push remaining network devices to init_net */
11298                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11299                 if (netdev_name_in_use(&init_net, fb_name))
11300                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11301                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11302                 if (err) {
11303                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11304                                  __func__, dev->name, err);
11305                         BUG();
11306                 }
11307         }
11308 }
11309
11310 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11311 {
11312         /* At exit all network devices most be removed from a network
11313          * namespace.  Do this in the reverse order of registration.
11314          * Do this across as many network namespaces as possible to
11315          * improve batching efficiency.
11316          */
11317         struct net_device *dev;
11318         struct net *net;
11319         LIST_HEAD(dev_kill_list);
11320
11321         rtnl_lock();
11322         list_for_each_entry(net, net_list, exit_list) {
11323                 default_device_exit_net(net);
11324                 cond_resched();
11325         }
11326
11327         list_for_each_entry(net, net_list, exit_list) {
11328                 for_each_netdev_reverse(net, dev) {
11329                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11330                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11331                         else
11332                                 unregister_netdevice_queue(dev, &dev_kill_list);
11333                 }
11334         }
11335         unregister_netdevice_many(&dev_kill_list);
11336         rtnl_unlock();
11337 }
11338
11339 static struct pernet_operations __net_initdata default_device_ops = {
11340         .exit_batch = default_device_exit_batch,
11341 };
11342
11343 /*
11344  *      Initialize the DEV module. At boot time this walks the device list and
11345  *      unhooks any devices that fail to initialise (normally hardware not
11346  *      present) and leaves us with a valid list of present and active devices.
11347  *
11348  */
11349
11350 /*
11351  *       This is called single threaded during boot, so no need
11352  *       to take the rtnl semaphore.
11353  */
11354 static int __init net_dev_init(void)
11355 {
11356         int i, rc = -ENOMEM;
11357
11358         BUG_ON(!dev_boot_phase);
11359
11360         if (dev_proc_init())
11361                 goto out;
11362
11363         if (netdev_kobject_init())
11364                 goto out;
11365
11366         INIT_LIST_HEAD(&ptype_all);
11367         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11368                 INIT_LIST_HEAD(&ptype_base[i]);
11369
11370         if (register_pernet_subsys(&netdev_net_ops))
11371                 goto out;
11372
11373         /*
11374          *      Initialise the packet receive queues.
11375          */
11376
11377         for_each_possible_cpu(i) {
11378                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11379                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11380
11381                 INIT_WORK(flush, flush_backlog);
11382
11383                 skb_queue_head_init(&sd->input_pkt_queue);
11384                 skb_queue_head_init(&sd->process_queue);
11385 #ifdef CONFIG_XFRM_OFFLOAD
11386                 skb_queue_head_init(&sd->xfrm_backlog);
11387 #endif
11388                 INIT_LIST_HEAD(&sd->poll_list);
11389                 sd->output_queue_tailp = &sd->output_queue;
11390 #ifdef CONFIG_RPS
11391                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11392                 sd->cpu = i;
11393 #endif
11394                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11395                 spin_lock_init(&sd->defer_lock);
11396
11397                 init_gro_hash(&sd->backlog);
11398                 sd->backlog.poll = process_backlog;
11399                 sd->backlog.weight = weight_p;
11400         }
11401
11402         dev_boot_phase = 0;
11403
11404         /* The loopback device is special if any other network devices
11405          * is present in a network namespace the loopback device must
11406          * be present. Since we now dynamically allocate and free the
11407          * loopback device ensure this invariant is maintained by
11408          * keeping the loopback device as the first device on the
11409          * list of network devices.  Ensuring the loopback devices
11410          * is the first device that appears and the last network device
11411          * that disappears.
11412          */
11413         if (register_pernet_device(&loopback_net_ops))
11414                 goto out;
11415
11416         if (register_pernet_device(&default_device_ops))
11417                 goto out;
11418
11419         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11420         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11421
11422         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11423                                        NULL, dev_cpu_dead);
11424         WARN_ON(rc < 0);
11425         rc = 0;
11426 out:
11427         return rc;
11428 }
11429
11430 subsys_initcall(net_dev_init);