GNU Linux-libre 5.13.14-gnu1
[releases.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151
152 #include "net-sysfs.h"
153
154 #define MAX_GRO_SKBS 8
155
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163 static struct list_head offload_base __read_mostly;
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167                                          struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169                                            struct net_device *dev,
170                                            struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194
195 static DEFINE_MUTEX(ifalias_mutex);
196
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203 static DECLARE_RWSEM(devnet_rename_sem);
204
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207         while (++net->dev_base_seq == 0)
208                 ;
209 }
210
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233         spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238                                                        const char *name)
239 {
240         struct netdev_name_node *name_node;
241
242         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243         if (!name_node)
244                 return NULL;
245         INIT_HLIST_NODE(&name_node->hlist);
246         name_node->dev = dev;
247         name_node->name = name;
248         return name_node;
249 }
250
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254         struct netdev_name_node *name_node;
255
256         name_node = netdev_name_node_alloc(dev, dev->name);
257         if (!name_node)
258                 return NULL;
259         INIT_LIST_HEAD(&name_node->list);
260         return name_node;
261 }
262
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265         kfree(name_node);
266 }
267
268 static void netdev_name_node_add(struct net *net,
269                                  struct netdev_name_node *name_node)
270 {
271         hlist_add_head_rcu(&name_node->hlist,
272                            dev_name_hash(net, name_node->name));
273 }
274
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277         hlist_del_rcu(&name_node->hlist);
278 }
279
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281                                                         const char *name)
282 {
283         struct hlist_head *head = dev_name_hash(net, name);
284         struct netdev_name_node *name_node;
285
286         hlist_for_each_entry(name_node, head, hlist)
287                 if (!strcmp(name_node->name, name))
288                         return name_node;
289         return NULL;
290 }
291
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293                                                             const char *name)
294 {
295         struct hlist_head *head = dev_name_hash(net, name);
296         struct netdev_name_node *name_node;
297
298         hlist_for_each_entry_rcu(name_node, head, hlist)
299                 if (!strcmp(name_node->name, name))
300                         return name_node;
301         return NULL;
302 }
303
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306         struct netdev_name_node *name_node;
307         struct net *net = dev_net(dev);
308
309         name_node = netdev_name_node_lookup(net, name);
310         if (name_node)
311                 return -EEXIST;
312         name_node = netdev_name_node_alloc(dev, name);
313         if (!name_node)
314                 return -ENOMEM;
315         netdev_name_node_add(net, name_node);
316         /* The node that holds dev->name acts as a head of per-device list. */
317         list_add_tail(&name_node->list, &dev->name_node->list);
318
319         return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325         list_del(&name_node->list);
326         netdev_name_node_del(name_node);
327         kfree(name_node->name);
328         netdev_name_node_free(name_node);
329 }
330
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333         struct netdev_name_node *name_node;
334         struct net *net = dev_net(dev);
335
336         name_node = netdev_name_node_lookup(net, name);
337         if (!name_node)
338                 return -ENOENT;
339         /* lookup might have found our primary name or a name belonging
340          * to another device.
341          */
342         if (name_node == dev->name_node || name_node->dev != dev)
343                 return -EINVAL;
344
345         __netdev_name_node_alt_destroy(name_node);
346
347         return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353         struct netdev_name_node *name_node, *tmp;
354
355         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356                 __netdev_name_node_alt_destroy(name_node);
357 }
358
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362         struct net *net = dev_net(dev);
363
364         ASSERT_RTNL();
365
366         write_lock_bh(&dev_base_lock);
367         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368         netdev_name_node_add(net, dev->name_node);
369         hlist_add_head_rcu(&dev->index_hlist,
370                            dev_index_hash(net, dev->ifindex));
371         write_unlock_bh(&dev_base_lock);
372
373         dev_base_seq_inc(net);
374 }
375
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381         ASSERT_RTNL();
382
383         /* Unlink dev from the device chain */
384         write_lock_bh(&dev_base_lock);
385         list_del_rcu(&dev->dev_list);
386         netdev_name_node_del(dev->name_node);
387         hlist_del_rcu(&dev->index_hlist);
388         write_unlock_bh(&dev_base_lock);
389
390         dev_base_seq_inc(dev_net(dev));
391 }
392
393 /*
394  *      Our notifier list
395  */
396
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398
399 /*
400  *      Device drivers call our routines to queue packets here. We empty the
401  *      queue in the local softnet handler.
402  */
403
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429 static const char *const netdev_lock_name[] = {
430         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451         int i;
452
453         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454                 if (netdev_lock_type[i] == dev_type)
455                         return i;
456         /* the last key is used by default */
457         return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461                                                  unsigned short dev_type)
462 {
463         int i;
464
465         i = netdev_lock_pos(dev_type);
466         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467                                    netdev_lock_name[i]);
468 }
469
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472         int i;
473
474         i = netdev_lock_pos(dev->type);
475         lockdep_set_class_and_name(&dev->addr_list_lock,
476                                    &netdev_addr_lock_key[i],
477                                    netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481                                                  unsigned short dev_type)
482 {
483 }
484
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489
490 /*******************************************************************************
491  *
492  *              Protocol management and registration routines
493  *
494  *******************************************************************************/
495
496
497 /*
498  *      Add a protocol ID to the list. Now that the input handler is
499  *      smarter we can dispense with all the messy stuff that used to be
500  *      here.
501  *
502  *      BEWARE!!! Protocol handlers, mangling input packets,
503  *      MUST BE last in hash buckets and checking protocol handlers
504  *      MUST start from promiscuous ptype_all chain in net_bh.
505  *      It is true now, do not change it.
506  *      Explanation follows: if protocol handler, mangling packet, will
507  *      be the first on list, it is not able to sense, that packet
508  *      is cloned and should be copied-on-write, so that it will
509  *      change it and subsequent readers will get broken packet.
510  *                                                      --ANK (980803)
511  */
512
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515         if (pt->type == htons(ETH_P_ALL))
516                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517         else
518                 return pt->dev ? &pt->dev->ptype_specific :
519                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521
522 /**
523  *      dev_add_pack - add packet handler
524  *      @pt: packet type declaration
525  *
526  *      Add a protocol handler to the networking stack. The passed &packet_type
527  *      is linked into kernel lists and may not be freed until it has been
528  *      removed from the kernel lists.
529  *
530  *      This call does not sleep therefore it can not
531  *      guarantee all CPU's that are in middle of receiving packets
532  *      will see the new packet type (until the next received packet).
533  */
534
535 void dev_add_pack(struct packet_type *pt)
536 {
537         struct list_head *head = ptype_head(pt);
538
539         spin_lock(&ptype_lock);
540         list_add_rcu(&pt->list, head);
541         spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544
545 /**
546  *      __dev_remove_pack        - remove packet handler
547  *      @pt: packet type declaration
548  *
549  *      Remove a protocol handler that was previously added to the kernel
550  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *      from the kernel lists and can be freed or reused once this function
552  *      returns.
553  *
554  *      The packet type might still be in use by receivers
555  *      and must not be freed until after all the CPU's have gone
556  *      through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561         struct packet_type *pt1;
562
563         spin_lock(&ptype_lock);
564
565         list_for_each_entry(pt1, head, list) {
566                 if (pt == pt1) {
567                         list_del_rcu(&pt->list);
568                         goto out;
569                 }
570         }
571
572         pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574         spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577
578 /**
579  *      dev_remove_pack  - remove packet handler
580  *      @pt: packet type declaration
581  *
582  *      Remove a protocol handler that was previously added to the kernel
583  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *      from the kernel lists and can be freed or reused once this function
585  *      returns.
586  *
587  *      This call sleeps to guarantee that no CPU is looking at the packet
588  *      type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592         __dev_remove_pack(pt);
593
594         synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597
598
599 /**
600  *      dev_add_offload - register offload handlers
601  *      @po: protocol offload declaration
602  *
603  *      Add protocol offload handlers to the networking stack. The passed
604  *      &proto_offload is linked into kernel lists and may not be freed until
605  *      it has been removed from the kernel lists.
606  *
607  *      This call does not sleep therefore it can not
608  *      guarantee all CPU's that are in middle of receiving packets
609  *      will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613         struct packet_offload *elem;
614
615         spin_lock(&offload_lock);
616         list_for_each_entry(elem, &offload_base, list) {
617                 if (po->priority < elem->priority)
618                         break;
619         }
620         list_add_rcu(&po->list, elem->list.prev);
621         spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624
625 /**
626  *      __dev_remove_offload     - remove offload handler
627  *      @po: packet offload declaration
628  *
629  *      Remove a protocol offload handler that was previously added to the
630  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *      is removed from the kernel lists and can be freed or reused once this
632  *      function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *      and must not be freed until after all the CPU's have gone
636  *      through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640         struct list_head *head = &offload_base;
641         struct packet_offload *po1;
642
643         spin_lock(&offload_lock);
644
645         list_for_each_entry(po1, head, list) {
646                 if (po == po1) {
647                         list_del_rcu(&po->list);
648                         goto out;
649                 }
650         }
651
652         pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654         spin_unlock(&offload_lock);
655 }
656
657 /**
658  *      dev_remove_offload       - remove packet offload handler
659  *      @po: packet offload declaration
660  *
661  *      Remove a packet offload handler that was previously added to the kernel
662  *      offload handlers by dev_add_offload(). The passed &offload_type is
663  *      removed from the kernel lists and can be freed or reused once this
664  *      function returns.
665  *
666  *      This call sleeps to guarantee that no CPU is looking at the packet
667  *      type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671         __dev_remove_offload(po);
672
673         synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676
677 /******************************************************************************
678  *
679  *                    Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686 /**
687  *      netdev_boot_setup_add   - add new setup entry
688  *      @name: name of the device
689  *      @map: configured settings for the device
690  *
691  *      Adds new setup entry to the dev_boot_setup list.  The function
692  *      returns 0 on error and 1 on success.  This is a generic routine to
693  *      all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697         struct netdev_boot_setup *s;
698         int i;
699
700         s = dev_boot_setup;
701         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703                         memset(s[i].name, 0, sizeof(s[i].name));
704                         strlcpy(s[i].name, name, IFNAMSIZ);
705                         memcpy(&s[i].map, map, sizeof(s[i].map));
706                         break;
707                 }
708         }
709
710         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712
713 /**
714  * netdev_boot_setup_check      - check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724         struct netdev_boot_setup *s = dev_boot_setup;
725         int i;
726
727         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729                     !strcmp(dev->name, s[i].name)) {
730                         dev->irq = s[i].map.irq;
731                         dev->base_addr = s[i].map.base_addr;
732                         dev->mem_start = s[i].map.mem_start;
733                         dev->mem_end = s[i].map.mem_end;
734                         return 1;
735                 }
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742 /**
743  * netdev_boot_base     - get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754         const struct netdev_boot_setup *s = dev_boot_setup;
755         char name[IFNAMSIZ];
756         int i;
757
758         sprintf(name, "%s%d", prefix, unit);
759
760         /*
761          * If device already registered then return base of 1
762          * to indicate not to probe for this interface
763          */
764         if (__dev_get_by_name(&init_net, name))
765                 return 1;
766
767         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768                 if (!strcmp(name, s[i].name))
769                         return s[i].map.base_addr;
770         return 0;
771 }
772
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778         int ints[5];
779         struct ifmap map;
780
781         str = get_options(str, ARRAY_SIZE(ints), ints);
782         if (!str || !*str)
783                 return 0;
784
785         /* Save settings */
786         memset(&map, 0, sizeof(map));
787         if (ints[0] > 0)
788                 map.irq = ints[1];
789         if (ints[0] > 1)
790                 map.base_addr = ints[2];
791         if (ints[0] > 2)
792                 map.mem_start = ints[3];
793         if (ints[0] > 3)
794                 map.mem_end = ints[4];
795
796         /* Add new entry to the list */
797         return netdev_boot_setup_add(str, &map);
798 }
799
800 __setup("netdev=", netdev_boot_setup);
801
802 /*******************************************************************************
803  *
804  *                          Device Interface Subroutines
805  *
806  *******************************************************************************/
807
808 /**
809  *      dev_get_iflink  - get 'iflink' value of a interface
810  *      @dev: targeted interface
811  *
812  *      Indicates the ifindex the interface is linked to.
813  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815
816 int dev_get_iflink(const struct net_device *dev)
817 {
818         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819                 return dev->netdev_ops->ndo_get_iflink(dev);
820
821         return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824
825 /**
826  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *      @dev: targeted interface
828  *      @skb: The packet.
829  *
830  *      For better visibility of tunnel traffic OVS needs to retrieve
831  *      egress tunnel information for a packet. Following API allows
832  *      user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836         struct ip_tunnel_info *info;
837
838         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839                 return -EINVAL;
840
841         info = skb_tunnel_info_unclone(skb);
842         if (!info)
843                 return -ENOMEM;
844         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845                 return -EINVAL;
846
847         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852 {
853         int k = stack->num_paths++;
854
855         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856                 return NULL;
857
858         return &stack->path[k];
859 }
860
861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862                           struct net_device_path_stack *stack)
863 {
864         const struct net_device *last_dev;
865         struct net_device_path_ctx ctx = {
866                 .dev    = dev,
867                 .daddr  = daddr,
868         };
869         struct net_device_path *path;
870         int ret = 0;
871
872         stack->num_paths = 0;
873         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874                 last_dev = ctx.dev;
875                 path = dev_fwd_path(stack);
876                 if (!path)
877                         return -1;
878
879                 memset(path, 0, sizeof(struct net_device_path));
880                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881                 if (ret < 0)
882                         return -1;
883
884                 if (WARN_ON_ONCE(last_dev == ctx.dev))
885                         return -1;
886         }
887         path = dev_fwd_path(stack);
888         if (!path)
889                 return -1;
890         path->type = DEV_PATH_ETHERNET;
891         path->dev = ctx.dev;
892
893         return ret;
894 }
895 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896
897 /**
898  *      __dev_get_by_name       - find a device by its name
899  *      @net: the applicable net namespace
900  *      @name: name to find
901  *
902  *      Find an interface by name. Must be called under RTNL semaphore
903  *      or @dev_base_lock. If the name is found a pointer to the device
904  *      is returned. If the name is not found then %NULL is returned. The
905  *      reference counters are not incremented so the caller must be
906  *      careful with locks.
907  */
908
909 struct net_device *__dev_get_by_name(struct net *net, const char *name)
910 {
911         struct netdev_name_node *node_name;
912
913         node_name = netdev_name_node_lookup(net, name);
914         return node_name ? node_name->dev : NULL;
915 }
916 EXPORT_SYMBOL(__dev_get_by_name);
917
918 /**
919  * dev_get_by_name_rcu  - find a device by its name
920  * @net: the applicable net namespace
921  * @name: name to find
922  *
923  * Find an interface by name.
924  * If the name is found a pointer to the device is returned.
925  * If the name is not found then %NULL is returned.
926  * The reference counters are not incremented so the caller must be
927  * careful with locks. The caller must hold RCU lock.
928  */
929
930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931 {
932         struct netdev_name_node *node_name;
933
934         node_name = netdev_name_node_lookup_rcu(net, name);
935         return node_name ? node_name->dev : NULL;
936 }
937 EXPORT_SYMBOL(dev_get_by_name_rcu);
938
939 /**
940  *      dev_get_by_name         - find a device by its name
941  *      @net: the applicable net namespace
942  *      @name: name to find
943  *
944  *      Find an interface by name. This can be called from any
945  *      context and does its own locking. The returned handle has
946  *      the usage count incremented and the caller must use dev_put() to
947  *      release it when it is no longer needed. %NULL is returned if no
948  *      matching device is found.
949  */
950
951 struct net_device *dev_get_by_name(struct net *net, const char *name)
952 {
953         struct net_device *dev;
954
955         rcu_read_lock();
956         dev = dev_get_by_name_rcu(net, name);
957         if (dev)
958                 dev_hold(dev);
959         rcu_read_unlock();
960         return dev;
961 }
962 EXPORT_SYMBOL(dev_get_by_name);
963
964 /**
965  *      __dev_get_by_index - find a device by its ifindex
966  *      @net: the applicable net namespace
967  *      @ifindex: index of device
968  *
969  *      Search for an interface by index. Returns %NULL if the device
970  *      is not found or a pointer to the device. The device has not
971  *      had its reference counter increased so the caller must be careful
972  *      about locking. The caller must hold either the RTNL semaphore
973  *      or @dev_base_lock.
974  */
975
976 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
977 {
978         struct net_device *dev;
979         struct hlist_head *head = dev_index_hash(net, ifindex);
980
981         hlist_for_each_entry(dev, head, index_hlist)
982                 if (dev->ifindex == ifindex)
983                         return dev;
984
985         return NULL;
986 }
987 EXPORT_SYMBOL(__dev_get_by_index);
988
989 /**
990  *      dev_get_by_index_rcu - find a device by its ifindex
991  *      @net: the applicable net namespace
992  *      @ifindex: index of device
993  *
994  *      Search for an interface by index. Returns %NULL if the device
995  *      is not found or a pointer to the device. The device has not
996  *      had its reference counter increased so the caller must be careful
997  *      about locking. The caller must hold RCU lock.
998  */
999
1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001 {
1002         struct net_device *dev;
1003         struct hlist_head *head = dev_index_hash(net, ifindex);
1004
1005         hlist_for_each_entry_rcu(dev, head, index_hlist)
1006                 if (dev->ifindex == ifindex)
1007                         return dev;
1008
1009         return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_index_rcu);
1012
1013
1014 /**
1015  *      dev_get_by_index - find a device by its ifindex
1016  *      @net: the applicable net namespace
1017  *      @ifindex: index of device
1018  *
1019  *      Search for an interface by index. Returns NULL if the device
1020  *      is not found or a pointer to the device. The device returned has
1021  *      had a reference added and the pointer is safe until the user calls
1022  *      dev_put to indicate they have finished with it.
1023  */
1024
1025 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026 {
1027         struct net_device *dev;
1028
1029         rcu_read_lock();
1030         dev = dev_get_by_index_rcu(net, ifindex);
1031         if (dev)
1032                 dev_hold(dev);
1033         rcu_read_unlock();
1034         return dev;
1035 }
1036 EXPORT_SYMBOL(dev_get_by_index);
1037
1038 /**
1039  *      dev_get_by_napi_id - find a device by napi_id
1040  *      @napi_id: ID of the NAPI struct
1041  *
1042  *      Search for an interface by NAPI ID. Returns %NULL if the device
1043  *      is not found or a pointer to the device. The device has not had
1044  *      its reference counter increased so the caller must be careful
1045  *      about locking. The caller must hold RCU lock.
1046  */
1047
1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049 {
1050         struct napi_struct *napi;
1051
1052         WARN_ON_ONCE(!rcu_read_lock_held());
1053
1054         if (napi_id < MIN_NAPI_ID)
1055                 return NULL;
1056
1057         napi = napi_by_id(napi_id);
1058
1059         return napi ? napi->dev : NULL;
1060 }
1061 EXPORT_SYMBOL(dev_get_by_napi_id);
1062
1063 /**
1064  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1065  *      @net: network namespace
1066  *      @name: a pointer to the buffer where the name will be stored.
1067  *      @ifindex: the ifindex of the interface to get the name from.
1068  */
1069 int netdev_get_name(struct net *net, char *name, int ifindex)
1070 {
1071         struct net_device *dev;
1072         int ret;
1073
1074         down_read(&devnet_rename_sem);
1075         rcu_read_lock();
1076
1077         dev = dev_get_by_index_rcu(net, ifindex);
1078         if (!dev) {
1079                 ret = -ENODEV;
1080                 goto out;
1081         }
1082
1083         strcpy(name, dev->name);
1084
1085         ret = 0;
1086 out:
1087         rcu_read_unlock();
1088         up_read(&devnet_rename_sem);
1089         return ret;
1090 }
1091
1092 /**
1093  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1094  *      @net: the applicable net namespace
1095  *      @type: media type of device
1096  *      @ha: hardware address
1097  *
1098  *      Search for an interface by MAC address. Returns NULL if the device
1099  *      is not found or a pointer to the device.
1100  *      The caller must hold RCU or RTNL.
1101  *      The returned device has not had its ref count increased
1102  *      and the caller must therefore be careful about locking
1103  *
1104  */
1105
1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107                                        const char *ha)
1108 {
1109         struct net_device *dev;
1110
1111         for_each_netdev_rcu(net, dev)
1112                 if (dev->type == type &&
1113                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1114                         return dev;
1115
1116         return NULL;
1117 }
1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119
1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121 {
1122         struct net_device *dev, *ret = NULL;
1123
1124         rcu_read_lock();
1125         for_each_netdev_rcu(net, dev)
1126                 if (dev->type == type) {
1127                         dev_hold(dev);
1128                         ret = dev;
1129                         break;
1130                 }
1131         rcu_read_unlock();
1132         return ret;
1133 }
1134 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135
1136 /**
1137  *      __dev_get_by_flags - find any device with given flags
1138  *      @net: the applicable net namespace
1139  *      @if_flags: IFF_* values
1140  *      @mask: bitmask of bits in if_flags to check
1141  *
1142  *      Search for any interface with the given flags. Returns NULL if a device
1143  *      is not found or a pointer to the device. Must be called inside
1144  *      rtnl_lock(), and result refcount is unchanged.
1145  */
1146
1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148                                       unsigned short mask)
1149 {
1150         struct net_device *dev, *ret;
1151
1152         ASSERT_RTNL();
1153
1154         ret = NULL;
1155         for_each_netdev(net, dev) {
1156                 if (((dev->flags ^ if_flags) & mask) == 0) {
1157                         ret = dev;
1158                         break;
1159                 }
1160         }
1161         return ret;
1162 }
1163 EXPORT_SYMBOL(__dev_get_by_flags);
1164
1165 /**
1166  *      dev_valid_name - check if name is okay for network device
1167  *      @name: name string
1168  *
1169  *      Network device names need to be valid file names to
1170  *      allow sysfs to work.  We also disallow any kind of
1171  *      whitespace.
1172  */
1173 bool dev_valid_name(const char *name)
1174 {
1175         if (*name == '\0')
1176                 return false;
1177         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178                 return false;
1179         if (!strcmp(name, ".") || !strcmp(name, ".."))
1180                 return false;
1181
1182         while (*name) {
1183                 if (*name == '/' || *name == ':' || isspace(*name))
1184                         return false;
1185                 name++;
1186         }
1187         return true;
1188 }
1189 EXPORT_SYMBOL(dev_valid_name);
1190
1191 /**
1192  *      __dev_alloc_name - allocate a name for a device
1193  *      @net: network namespace to allocate the device name in
1194  *      @name: name format string
1195  *      @buf:  scratch buffer and result name string
1196  *
1197  *      Passed a format string - eg "lt%d" it will try and find a suitable
1198  *      id. It scans list of devices to build up a free map, then chooses
1199  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1200  *      while allocating the name and adding the device in order to avoid
1201  *      duplicates.
1202  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203  *      Returns the number of the unit assigned or a negative errno code.
1204  */
1205
1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207 {
1208         int i = 0;
1209         const char *p;
1210         const int max_netdevices = 8*PAGE_SIZE;
1211         unsigned long *inuse;
1212         struct net_device *d;
1213
1214         if (!dev_valid_name(name))
1215                 return -EINVAL;
1216
1217         p = strchr(name, '%');
1218         if (p) {
1219                 /*
1220                  * Verify the string as this thing may have come from
1221                  * the user.  There must be either one "%d" and no other "%"
1222                  * characters.
1223                  */
1224                 if (p[1] != 'd' || strchr(p + 2, '%'))
1225                         return -EINVAL;
1226
1227                 /* Use one page as a bit array of possible slots */
1228                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229                 if (!inuse)
1230                         return -ENOMEM;
1231
1232                 for_each_netdev(net, d) {
1233                         struct netdev_name_node *name_node;
1234                         list_for_each_entry(name_node, &d->name_node->list, list) {
1235                                 if (!sscanf(name_node->name, name, &i))
1236                                         continue;
1237                                 if (i < 0 || i >= max_netdevices)
1238                                         continue;
1239
1240                                 /*  avoid cases where sscanf is not exact inverse of printf */
1241                                 snprintf(buf, IFNAMSIZ, name, i);
1242                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243                                         set_bit(i, inuse);
1244                         }
1245                         if (!sscanf(d->name, name, &i))
1246                                 continue;
1247                         if (i < 0 || i >= max_netdevices)
1248                                 continue;
1249
1250                         /*  avoid cases where sscanf is not exact inverse of printf */
1251                         snprintf(buf, IFNAMSIZ, name, i);
1252                         if (!strncmp(buf, d->name, IFNAMSIZ))
1253                                 set_bit(i, inuse);
1254                 }
1255
1256                 i = find_first_zero_bit(inuse, max_netdevices);
1257                 free_page((unsigned long) inuse);
1258         }
1259
1260         snprintf(buf, IFNAMSIZ, name, i);
1261         if (!__dev_get_by_name(net, buf))
1262                 return i;
1263
1264         /* It is possible to run out of possible slots
1265          * when the name is long and there isn't enough space left
1266          * for the digits, or if all bits are used.
1267          */
1268         return -ENFILE;
1269 }
1270
1271 static int dev_alloc_name_ns(struct net *net,
1272                              struct net_device *dev,
1273                              const char *name)
1274 {
1275         char buf[IFNAMSIZ];
1276         int ret;
1277
1278         BUG_ON(!net);
1279         ret = __dev_alloc_name(net, name, buf);
1280         if (ret >= 0)
1281                 strlcpy(dev->name, buf, IFNAMSIZ);
1282         return ret;
1283 }
1284
1285 /**
1286  *      dev_alloc_name - allocate a name for a device
1287  *      @dev: device
1288  *      @name: name format string
1289  *
1290  *      Passed a format string - eg "lt%d" it will try and find a suitable
1291  *      id. It scans list of devices to build up a free map, then chooses
1292  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1293  *      while allocating the name and adding the device in order to avoid
1294  *      duplicates.
1295  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296  *      Returns the number of the unit assigned or a negative errno code.
1297  */
1298
1299 int dev_alloc_name(struct net_device *dev, const char *name)
1300 {
1301         return dev_alloc_name_ns(dev_net(dev), dev, name);
1302 }
1303 EXPORT_SYMBOL(dev_alloc_name);
1304
1305 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306                               const char *name)
1307 {
1308         BUG_ON(!net);
1309
1310         if (!dev_valid_name(name))
1311                 return -EINVAL;
1312
1313         if (strchr(name, '%'))
1314                 return dev_alloc_name_ns(net, dev, name);
1315         else if (__dev_get_by_name(net, name))
1316                 return -EEXIST;
1317         else if (dev->name != name)
1318                 strlcpy(dev->name, name, IFNAMSIZ);
1319
1320         return 0;
1321 }
1322
1323 /**
1324  *      dev_change_name - change name of a device
1325  *      @dev: device
1326  *      @newname: name (or format string) must be at least IFNAMSIZ
1327  *
1328  *      Change name of a device, can pass format strings "eth%d".
1329  *      for wildcarding.
1330  */
1331 int dev_change_name(struct net_device *dev, const char *newname)
1332 {
1333         unsigned char old_assign_type;
1334         char oldname[IFNAMSIZ];
1335         int err = 0;
1336         int ret;
1337         struct net *net;
1338
1339         ASSERT_RTNL();
1340         BUG_ON(!dev_net(dev));
1341
1342         net = dev_net(dev);
1343
1344         /* Some auto-enslaved devices e.g. failover slaves are
1345          * special, as userspace might rename the device after
1346          * the interface had been brought up and running since
1347          * the point kernel initiated auto-enslavement. Allow
1348          * live name change even when these slave devices are
1349          * up and running.
1350          *
1351          * Typically, users of these auto-enslaving devices
1352          * don't actually care about slave name change, as
1353          * they are supposed to operate on master interface
1354          * directly.
1355          */
1356         if (dev->flags & IFF_UP &&
1357             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358                 return -EBUSY;
1359
1360         down_write(&devnet_rename_sem);
1361
1362         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363                 up_write(&devnet_rename_sem);
1364                 return 0;
1365         }
1366
1367         memcpy(oldname, dev->name, IFNAMSIZ);
1368
1369         err = dev_get_valid_name(net, dev, newname);
1370         if (err < 0) {
1371                 up_write(&devnet_rename_sem);
1372                 return err;
1373         }
1374
1375         if (oldname[0] && !strchr(oldname, '%'))
1376                 netdev_info(dev, "renamed from %s\n", oldname);
1377
1378         old_assign_type = dev->name_assign_type;
1379         dev->name_assign_type = NET_NAME_RENAMED;
1380
1381 rollback:
1382         ret = device_rename(&dev->dev, dev->name);
1383         if (ret) {
1384                 memcpy(dev->name, oldname, IFNAMSIZ);
1385                 dev->name_assign_type = old_assign_type;
1386                 up_write(&devnet_rename_sem);
1387                 return ret;
1388         }
1389
1390         up_write(&devnet_rename_sem);
1391
1392         netdev_adjacent_rename_links(dev, oldname);
1393
1394         write_lock_bh(&dev_base_lock);
1395         netdev_name_node_del(dev->name_node);
1396         write_unlock_bh(&dev_base_lock);
1397
1398         synchronize_rcu();
1399
1400         write_lock_bh(&dev_base_lock);
1401         netdev_name_node_add(net, dev->name_node);
1402         write_unlock_bh(&dev_base_lock);
1403
1404         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405         ret = notifier_to_errno(ret);
1406
1407         if (ret) {
1408                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1409                 if (err >= 0) {
1410                         err = ret;
1411                         down_write(&devnet_rename_sem);
1412                         memcpy(dev->name, oldname, IFNAMSIZ);
1413                         memcpy(oldname, newname, IFNAMSIZ);
1414                         dev->name_assign_type = old_assign_type;
1415                         old_assign_type = NET_NAME_RENAMED;
1416                         goto rollback;
1417                 } else {
1418                         pr_err("%s: name change rollback failed: %d\n",
1419                                dev->name, ret);
1420                 }
1421         }
1422
1423         return err;
1424 }
1425
1426 /**
1427  *      dev_set_alias - change ifalias of a device
1428  *      @dev: device
1429  *      @alias: name up to IFALIASZ
1430  *      @len: limit of bytes to copy from info
1431  *
1432  *      Set ifalias for a device,
1433  */
1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435 {
1436         struct dev_ifalias *new_alias = NULL;
1437
1438         if (len >= IFALIASZ)
1439                 return -EINVAL;
1440
1441         if (len) {
1442                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443                 if (!new_alias)
1444                         return -ENOMEM;
1445
1446                 memcpy(new_alias->ifalias, alias, len);
1447                 new_alias->ifalias[len] = 0;
1448         }
1449
1450         mutex_lock(&ifalias_mutex);
1451         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452                                         mutex_is_locked(&ifalias_mutex));
1453         mutex_unlock(&ifalias_mutex);
1454
1455         if (new_alias)
1456                 kfree_rcu(new_alias, rcuhead);
1457
1458         return len;
1459 }
1460 EXPORT_SYMBOL(dev_set_alias);
1461
1462 /**
1463  *      dev_get_alias - get ifalias of a device
1464  *      @dev: device
1465  *      @name: buffer to store name of ifalias
1466  *      @len: size of buffer
1467  *
1468  *      get ifalias for a device.  Caller must make sure dev cannot go
1469  *      away,  e.g. rcu read lock or own a reference count to device.
1470  */
1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472 {
1473         const struct dev_ifalias *alias;
1474         int ret = 0;
1475
1476         rcu_read_lock();
1477         alias = rcu_dereference(dev->ifalias);
1478         if (alias)
1479                 ret = snprintf(name, len, "%s", alias->ifalias);
1480         rcu_read_unlock();
1481
1482         return ret;
1483 }
1484
1485 /**
1486  *      netdev_features_change - device changes features
1487  *      @dev: device to cause notification
1488  *
1489  *      Called to indicate a device has changed features.
1490  */
1491 void netdev_features_change(struct net_device *dev)
1492 {
1493         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494 }
1495 EXPORT_SYMBOL(netdev_features_change);
1496
1497 /**
1498  *      netdev_state_change - device changes state
1499  *      @dev: device to cause notification
1500  *
1501  *      Called to indicate a device has changed state. This function calls
1502  *      the notifier chains for netdev_chain and sends a NEWLINK message
1503  *      to the routing socket.
1504  */
1505 void netdev_state_change(struct net_device *dev)
1506 {
1507         if (dev->flags & IFF_UP) {
1508                 struct netdev_notifier_change_info change_info = {
1509                         .info.dev = dev,
1510                 };
1511
1512                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1513                                               &change_info.info);
1514                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515         }
1516 }
1517 EXPORT_SYMBOL(netdev_state_change);
1518
1519 /**
1520  * __netdev_notify_peers - notify network peers about existence of @dev,
1521  * to be called when rtnl lock is already held.
1522  * @dev: network device
1523  *
1524  * Generate traffic such that interested network peers are aware of
1525  * @dev, such as by generating a gratuitous ARP. This may be used when
1526  * a device wants to inform the rest of the network about some sort of
1527  * reconfiguration such as a failover event or virtual machine
1528  * migration.
1529  */
1530 void __netdev_notify_peers(struct net_device *dev)
1531 {
1532         ASSERT_RTNL();
1533         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535 }
1536 EXPORT_SYMBOL(__netdev_notify_peers);
1537
1538 /**
1539  * netdev_notify_peers - notify network peers about existence of @dev
1540  * @dev: network device
1541  *
1542  * Generate traffic such that interested network peers are aware of
1543  * @dev, such as by generating a gratuitous ARP. This may be used when
1544  * a device wants to inform the rest of the network about some sort of
1545  * reconfiguration such as a failover event or virtual machine
1546  * migration.
1547  */
1548 void netdev_notify_peers(struct net_device *dev)
1549 {
1550         rtnl_lock();
1551         __netdev_notify_peers(dev);
1552         rtnl_unlock();
1553 }
1554 EXPORT_SYMBOL(netdev_notify_peers);
1555
1556 static int napi_threaded_poll(void *data);
1557
1558 static int napi_kthread_create(struct napi_struct *n)
1559 {
1560         int err = 0;
1561
1562         /* Create and wake up the kthread once to put it in
1563          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564          * warning and work with loadavg.
1565          */
1566         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567                                 n->dev->name, n->napi_id);
1568         if (IS_ERR(n->thread)) {
1569                 err = PTR_ERR(n->thread);
1570                 pr_err("kthread_run failed with err %d\n", err);
1571                 n->thread = NULL;
1572         }
1573
1574         return err;
1575 }
1576
1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578 {
1579         const struct net_device_ops *ops = dev->netdev_ops;
1580         int ret;
1581
1582         ASSERT_RTNL();
1583
1584         if (!netif_device_present(dev)) {
1585                 /* may be detached because parent is runtime-suspended */
1586                 if (dev->dev.parent)
1587                         pm_runtime_resume(dev->dev.parent);
1588                 if (!netif_device_present(dev))
1589                         return -ENODEV;
1590         }
1591
1592         /* Block netpoll from trying to do any rx path servicing.
1593          * If we don't do this there is a chance ndo_poll_controller
1594          * or ndo_poll may be running while we open the device
1595          */
1596         netpoll_poll_disable(dev);
1597
1598         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599         ret = notifier_to_errno(ret);
1600         if (ret)
1601                 return ret;
1602
1603         set_bit(__LINK_STATE_START, &dev->state);
1604
1605         if (ops->ndo_validate_addr)
1606                 ret = ops->ndo_validate_addr(dev);
1607
1608         if (!ret && ops->ndo_open)
1609                 ret = ops->ndo_open(dev);
1610
1611         netpoll_poll_enable(dev);
1612
1613         if (ret)
1614                 clear_bit(__LINK_STATE_START, &dev->state);
1615         else {
1616                 dev->flags |= IFF_UP;
1617                 dev_set_rx_mode(dev);
1618                 dev_activate(dev);
1619                 add_device_randomness(dev->dev_addr, dev->addr_len);
1620         }
1621
1622         return ret;
1623 }
1624
1625 /**
1626  *      dev_open        - prepare an interface for use.
1627  *      @dev: device to open
1628  *      @extack: netlink extended ack
1629  *
1630  *      Takes a device from down to up state. The device's private open
1631  *      function is invoked and then the multicast lists are loaded. Finally
1632  *      the device is moved into the up state and a %NETDEV_UP message is
1633  *      sent to the netdev notifier chain.
1634  *
1635  *      Calling this function on an active interface is a nop. On a failure
1636  *      a negative errno code is returned.
1637  */
1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639 {
1640         int ret;
1641
1642         if (dev->flags & IFF_UP)
1643                 return 0;
1644
1645         ret = __dev_open(dev, extack);
1646         if (ret < 0)
1647                 return ret;
1648
1649         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650         call_netdevice_notifiers(NETDEV_UP, dev);
1651
1652         return ret;
1653 }
1654 EXPORT_SYMBOL(dev_open);
1655
1656 static void __dev_close_many(struct list_head *head)
1657 {
1658         struct net_device *dev;
1659
1660         ASSERT_RTNL();
1661         might_sleep();
1662
1663         list_for_each_entry(dev, head, close_list) {
1664                 /* Temporarily disable netpoll until the interface is down */
1665                 netpoll_poll_disable(dev);
1666
1667                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668
1669                 clear_bit(__LINK_STATE_START, &dev->state);
1670
1671                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1672                  * can be even on different cpu. So just clear netif_running().
1673                  *
1674                  * dev->stop() will invoke napi_disable() on all of it's
1675                  * napi_struct instances on this device.
1676                  */
1677                 smp_mb__after_atomic(); /* Commit netif_running(). */
1678         }
1679
1680         dev_deactivate_many(head);
1681
1682         list_for_each_entry(dev, head, close_list) {
1683                 const struct net_device_ops *ops = dev->netdev_ops;
1684
1685                 /*
1686                  *      Call the device specific close. This cannot fail.
1687                  *      Only if device is UP
1688                  *
1689                  *      We allow it to be called even after a DETACH hot-plug
1690                  *      event.
1691                  */
1692                 if (ops->ndo_stop)
1693                         ops->ndo_stop(dev);
1694
1695                 dev->flags &= ~IFF_UP;
1696                 netpoll_poll_enable(dev);
1697         }
1698 }
1699
1700 static void __dev_close(struct net_device *dev)
1701 {
1702         LIST_HEAD(single);
1703
1704         list_add(&dev->close_list, &single);
1705         __dev_close_many(&single);
1706         list_del(&single);
1707 }
1708
1709 void dev_close_many(struct list_head *head, bool unlink)
1710 {
1711         struct net_device *dev, *tmp;
1712
1713         /* Remove the devices that don't need to be closed */
1714         list_for_each_entry_safe(dev, tmp, head, close_list)
1715                 if (!(dev->flags & IFF_UP))
1716                         list_del_init(&dev->close_list);
1717
1718         __dev_close_many(head);
1719
1720         list_for_each_entry_safe(dev, tmp, head, close_list) {
1721                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1723                 if (unlink)
1724                         list_del_init(&dev->close_list);
1725         }
1726 }
1727 EXPORT_SYMBOL(dev_close_many);
1728
1729 /**
1730  *      dev_close - shutdown an interface.
1731  *      @dev: device to shutdown
1732  *
1733  *      This function moves an active device into down state. A
1734  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736  *      chain.
1737  */
1738 void dev_close(struct net_device *dev)
1739 {
1740         if (dev->flags & IFF_UP) {
1741                 LIST_HEAD(single);
1742
1743                 list_add(&dev->close_list, &single);
1744                 dev_close_many(&single, true);
1745                 list_del(&single);
1746         }
1747 }
1748 EXPORT_SYMBOL(dev_close);
1749
1750
1751 /**
1752  *      dev_disable_lro - disable Large Receive Offload on a device
1753  *      @dev: device
1754  *
1755  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1756  *      called under RTNL.  This is needed if received packets may be
1757  *      forwarded to another interface.
1758  */
1759 void dev_disable_lro(struct net_device *dev)
1760 {
1761         struct net_device *lower_dev;
1762         struct list_head *iter;
1763
1764         dev->wanted_features &= ~NETIF_F_LRO;
1765         netdev_update_features(dev);
1766
1767         if (unlikely(dev->features & NETIF_F_LRO))
1768                 netdev_WARN(dev, "failed to disable LRO!\n");
1769
1770         netdev_for_each_lower_dev(dev, lower_dev, iter)
1771                 dev_disable_lro(lower_dev);
1772 }
1773 EXPORT_SYMBOL(dev_disable_lro);
1774
1775 /**
1776  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777  *      @dev: device
1778  *
1779  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780  *      called under RTNL.  This is needed if Generic XDP is installed on
1781  *      the device.
1782  */
1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785         dev->wanted_features &= ~NETIF_F_GRO_HW;
1786         netdev_update_features(dev);
1787
1788         if (unlikely(dev->features & NETIF_F_GRO_HW))
1789                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791
1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val)                                          \
1795         case NETDEV_##val:                              \
1796                 return "NETDEV_" __stringify(val);
1797         switch (cmd) {
1798         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807         N(PRE_CHANGEADDR)
1808         }
1809 #undef N
1810         return "UNKNOWN_NETDEV_EVENT";
1811 }
1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813
1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815                                    struct net_device *dev)
1816 {
1817         struct netdev_notifier_info info = {
1818                 .dev = dev,
1819         };
1820
1821         return nb->notifier_call(nb, val, &info);
1822 }
1823
1824 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825                                              struct net_device *dev)
1826 {
1827         int err;
1828
1829         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830         err = notifier_to_errno(err);
1831         if (err)
1832                 return err;
1833
1834         if (!(dev->flags & IFF_UP))
1835                 return 0;
1836
1837         call_netdevice_notifier(nb, NETDEV_UP, dev);
1838         return 0;
1839 }
1840
1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842                                                 struct net_device *dev)
1843 {
1844         if (dev->flags & IFF_UP) {
1845                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846                                         dev);
1847                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848         }
1849         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850 }
1851
1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853                                                  struct net *net)
1854 {
1855         struct net_device *dev;
1856         int err;
1857
1858         for_each_netdev(net, dev) {
1859                 err = call_netdevice_register_notifiers(nb, dev);
1860                 if (err)
1861                         goto rollback;
1862         }
1863         return 0;
1864
1865 rollback:
1866         for_each_netdev_continue_reverse(net, dev)
1867                 call_netdevice_unregister_notifiers(nb, dev);
1868         return err;
1869 }
1870
1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872                                                     struct net *net)
1873 {
1874         struct net_device *dev;
1875
1876         for_each_netdev(net, dev)
1877                 call_netdevice_unregister_notifiers(nb, dev);
1878 }
1879
1880 static int dev_boot_phase = 1;
1881
1882 /**
1883  * register_netdevice_notifier - register a network notifier block
1884  * @nb: notifier
1885  *
1886  * Register a notifier to be called when network device events occur.
1887  * The notifier passed is linked into the kernel structures and must
1888  * not be reused until it has been unregistered. A negative errno code
1889  * is returned on a failure.
1890  *
1891  * When registered all registration and up events are replayed
1892  * to the new notifier to allow device to have a race free
1893  * view of the network device list.
1894  */
1895
1896 int register_netdevice_notifier(struct notifier_block *nb)
1897 {
1898         struct net *net;
1899         int err;
1900
1901         /* Close race with setup_net() and cleanup_net() */
1902         down_write(&pernet_ops_rwsem);
1903         rtnl_lock();
1904         err = raw_notifier_chain_register(&netdev_chain, nb);
1905         if (err)
1906                 goto unlock;
1907         if (dev_boot_phase)
1908                 goto unlock;
1909         for_each_net(net) {
1910                 err = call_netdevice_register_net_notifiers(nb, net);
1911                 if (err)
1912                         goto rollback;
1913         }
1914
1915 unlock:
1916         rtnl_unlock();
1917         up_write(&pernet_ops_rwsem);
1918         return err;
1919
1920 rollback:
1921         for_each_net_continue_reverse(net)
1922                 call_netdevice_unregister_net_notifiers(nb, net);
1923
1924         raw_notifier_chain_unregister(&netdev_chain, nb);
1925         goto unlock;
1926 }
1927 EXPORT_SYMBOL(register_netdevice_notifier);
1928
1929 /**
1930  * unregister_netdevice_notifier - unregister a network notifier block
1931  * @nb: notifier
1932  *
1933  * Unregister a notifier previously registered by
1934  * register_netdevice_notifier(). The notifier is unlinked into the
1935  * kernel structures and may then be reused. A negative errno code
1936  * is returned on a failure.
1937  *
1938  * After unregistering unregister and down device events are synthesized
1939  * for all devices on the device list to the removed notifier to remove
1940  * the need for special case cleanup code.
1941  */
1942
1943 int unregister_netdevice_notifier(struct notifier_block *nb)
1944 {
1945         struct net *net;
1946         int err;
1947
1948         /* Close race with setup_net() and cleanup_net() */
1949         down_write(&pernet_ops_rwsem);
1950         rtnl_lock();
1951         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952         if (err)
1953                 goto unlock;
1954
1955         for_each_net(net)
1956                 call_netdevice_unregister_net_notifiers(nb, net);
1957
1958 unlock:
1959         rtnl_unlock();
1960         up_write(&pernet_ops_rwsem);
1961         return err;
1962 }
1963 EXPORT_SYMBOL(unregister_netdevice_notifier);
1964
1965 static int __register_netdevice_notifier_net(struct net *net,
1966                                              struct notifier_block *nb,
1967                                              bool ignore_call_fail)
1968 {
1969         int err;
1970
1971         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972         if (err)
1973                 return err;
1974         if (dev_boot_phase)
1975                 return 0;
1976
1977         err = call_netdevice_register_net_notifiers(nb, net);
1978         if (err && !ignore_call_fail)
1979                 goto chain_unregister;
1980
1981         return 0;
1982
1983 chain_unregister:
1984         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985         return err;
1986 }
1987
1988 static int __unregister_netdevice_notifier_net(struct net *net,
1989                                                struct notifier_block *nb)
1990 {
1991         int err;
1992
1993         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994         if (err)
1995                 return err;
1996
1997         call_netdevice_unregister_net_notifiers(nb, net);
1998         return 0;
1999 }
2000
2001 /**
2002  * register_netdevice_notifier_net - register a per-netns network notifier block
2003  * @net: network namespace
2004  * @nb: notifier
2005  *
2006  * Register a notifier to be called when network device events occur.
2007  * The notifier passed is linked into the kernel structures and must
2008  * not be reused until it has been unregistered. A negative errno code
2009  * is returned on a failure.
2010  *
2011  * When registered all registration and up events are replayed
2012  * to the new notifier to allow device to have a race free
2013  * view of the network device list.
2014  */
2015
2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017 {
2018         int err;
2019
2020         rtnl_lock();
2021         err = __register_netdevice_notifier_net(net, nb, false);
2022         rtnl_unlock();
2023         return err;
2024 }
2025 EXPORT_SYMBOL(register_netdevice_notifier_net);
2026
2027 /**
2028  * unregister_netdevice_notifier_net - unregister a per-netns
2029  *                                     network notifier block
2030  * @net: network namespace
2031  * @nb: notifier
2032  *
2033  * Unregister a notifier previously registered by
2034  * register_netdevice_notifier(). The notifier is unlinked into the
2035  * kernel structures and may then be reused. A negative errno code
2036  * is returned on a failure.
2037  *
2038  * After unregistering unregister and down device events are synthesized
2039  * for all devices on the device list to the removed notifier to remove
2040  * the need for special case cleanup code.
2041  */
2042
2043 int unregister_netdevice_notifier_net(struct net *net,
2044                                       struct notifier_block *nb)
2045 {
2046         int err;
2047
2048         rtnl_lock();
2049         err = __unregister_netdevice_notifier_net(net, nb);
2050         rtnl_unlock();
2051         return err;
2052 }
2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054
2055 int register_netdevice_notifier_dev_net(struct net_device *dev,
2056                                         struct notifier_block *nb,
2057                                         struct netdev_net_notifier *nn)
2058 {
2059         int err;
2060
2061         rtnl_lock();
2062         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063         if (!err) {
2064                 nn->nb = nb;
2065                 list_add(&nn->list, &dev->net_notifier_list);
2066         }
2067         rtnl_unlock();
2068         return err;
2069 }
2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071
2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073                                           struct notifier_block *nb,
2074                                           struct netdev_net_notifier *nn)
2075 {
2076         int err;
2077
2078         rtnl_lock();
2079         list_del(&nn->list);
2080         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081         rtnl_unlock();
2082         return err;
2083 }
2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085
2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087                                              struct net *net)
2088 {
2089         struct netdev_net_notifier *nn;
2090
2091         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093                 __register_netdevice_notifier_net(net, nn->nb, true);
2094         }
2095 }
2096
2097 /**
2098  *      call_netdevice_notifiers_info - call all network notifier blocks
2099  *      @val: value passed unmodified to notifier function
2100  *      @info: notifier information data
2101  *
2102  *      Call all network notifier blocks.  Parameters and return value
2103  *      are as for raw_notifier_call_chain().
2104  */
2105
2106 static int call_netdevice_notifiers_info(unsigned long val,
2107                                          struct netdev_notifier_info *info)
2108 {
2109         struct net *net = dev_net(info->dev);
2110         int ret;
2111
2112         ASSERT_RTNL();
2113
2114         /* Run per-netns notifier block chain first, then run the global one.
2115          * Hopefully, one day, the global one is going to be removed after
2116          * all notifier block registrators get converted to be per-netns.
2117          */
2118         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119         if (ret & NOTIFY_STOP_MASK)
2120                 return ret;
2121         return raw_notifier_call_chain(&netdev_chain, val, info);
2122 }
2123
2124 static int call_netdevice_notifiers_extack(unsigned long val,
2125                                            struct net_device *dev,
2126                                            struct netlink_ext_ack *extack)
2127 {
2128         struct netdev_notifier_info info = {
2129                 .dev = dev,
2130                 .extack = extack,
2131         };
2132
2133         return call_netdevice_notifiers_info(val, &info);
2134 }
2135
2136 /**
2137  *      call_netdevice_notifiers - call all network notifier blocks
2138  *      @val: value passed unmodified to notifier function
2139  *      @dev: net_device pointer passed unmodified to notifier function
2140  *
2141  *      Call all network notifier blocks.  Parameters and return value
2142  *      are as for raw_notifier_call_chain().
2143  */
2144
2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146 {
2147         return call_netdevice_notifiers_extack(val, dev, NULL);
2148 }
2149 EXPORT_SYMBOL(call_netdevice_notifiers);
2150
2151 /**
2152  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2153  *      @val: value passed unmodified to notifier function
2154  *      @dev: net_device pointer passed unmodified to notifier function
2155  *      @arg: additional u32 argument passed to the notifier function
2156  *
2157  *      Call all network notifier blocks.  Parameters and return value
2158  *      are as for raw_notifier_call_chain().
2159  */
2160 static int call_netdevice_notifiers_mtu(unsigned long val,
2161                                         struct net_device *dev, u32 arg)
2162 {
2163         struct netdev_notifier_info_ext info = {
2164                 .info.dev = dev,
2165                 .ext.mtu = arg,
2166         };
2167
2168         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169
2170         return call_netdevice_notifiers_info(val, &info.info);
2171 }
2172
2173 #ifdef CONFIG_NET_INGRESS
2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175
2176 void net_inc_ingress_queue(void)
2177 {
2178         static_branch_inc(&ingress_needed_key);
2179 }
2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181
2182 void net_dec_ingress_queue(void)
2183 {
2184         static_branch_dec(&ingress_needed_key);
2185 }
2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187 #endif
2188
2189 #ifdef CONFIG_NET_EGRESS
2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191
2192 void net_inc_egress_queue(void)
2193 {
2194         static_branch_inc(&egress_needed_key);
2195 }
2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197
2198 void net_dec_egress_queue(void)
2199 {
2200         static_branch_dec(&egress_needed_key);
2201 }
2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203 #endif
2204
2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206 #ifdef CONFIG_JUMP_LABEL
2207 static atomic_t netstamp_needed_deferred;
2208 static atomic_t netstamp_wanted;
2209 static void netstamp_clear(struct work_struct *work)
2210 {
2211         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212         int wanted;
2213
2214         wanted = atomic_add_return(deferred, &netstamp_wanted);
2215         if (wanted > 0)
2216                 static_branch_enable(&netstamp_needed_key);
2217         else
2218                 static_branch_disable(&netstamp_needed_key);
2219 }
2220 static DECLARE_WORK(netstamp_work, netstamp_clear);
2221 #endif
2222
2223 void net_enable_timestamp(void)
2224 {
2225 #ifdef CONFIG_JUMP_LABEL
2226         int wanted;
2227
2228         while (1) {
2229                 wanted = atomic_read(&netstamp_wanted);
2230                 if (wanted <= 0)
2231                         break;
2232                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233                         return;
2234         }
2235         atomic_inc(&netstamp_needed_deferred);
2236         schedule_work(&netstamp_work);
2237 #else
2238         static_branch_inc(&netstamp_needed_key);
2239 #endif
2240 }
2241 EXPORT_SYMBOL(net_enable_timestamp);
2242
2243 void net_disable_timestamp(void)
2244 {
2245 #ifdef CONFIG_JUMP_LABEL
2246         int wanted;
2247
2248         while (1) {
2249                 wanted = atomic_read(&netstamp_wanted);
2250                 if (wanted <= 1)
2251                         break;
2252                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253                         return;
2254         }
2255         atomic_dec(&netstamp_needed_deferred);
2256         schedule_work(&netstamp_work);
2257 #else
2258         static_branch_dec(&netstamp_needed_key);
2259 #endif
2260 }
2261 EXPORT_SYMBOL(net_disable_timestamp);
2262
2263 static inline void net_timestamp_set(struct sk_buff *skb)
2264 {
2265         skb->tstamp = 0;
2266         if (static_branch_unlikely(&netstamp_needed_key))
2267                 __net_timestamp(skb);
2268 }
2269
2270 #define net_timestamp_check(COND, SKB)                          \
2271         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2272                 if ((COND) && !(SKB)->tstamp)                   \
2273                         __net_timestamp(SKB);                   \
2274         }                                                       \
2275
2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277 {
2278         return __is_skb_forwardable(dev, skb, true);
2279 }
2280 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281
2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283                               bool check_mtu)
2284 {
2285         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286
2287         if (likely(!ret)) {
2288                 skb->protocol = eth_type_trans(skb, dev);
2289                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290         }
2291
2292         return ret;
2293 }
2294
2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296 {
2297         return __dev_forward_skb2(dev, skb, true);
2298 }
2299 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300
2301 /**
2302  * dev_forward_skb - loopback an skb to another netif
2303  *
2304  * @dev: destination network device
2305  * @skb: buffer to forward
2306  *
2307  * return values:
2308  *      NET_RX_SUCCESS  (no congestion)
2309  *      NET_RX_DROP     (packet was dropped, but freed)
2310  *
2311  * dev_forward_skb can be used for injecting an skb from the
2312  * start_xmit function of one device into the receive queue
2313  * of another device.
2314  *
2315  * The receiving device may be in another namespace, so
2316  * we have to clear all information in the skb that could
2317  * impact namespace isolation.
2318  */
2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320 {
2321         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322 }
2323 EXPORT_SYMBOL_GPL(dev_forward_skb);
2324
2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326 {
2327         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328 }
2329
2330 static inline int deliver_skb(struct sk_buff *skb,
2331                               struct packet_type *pt_prev,
2332                               struct net_device *orig_dev)
2333 {
2334         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335                 return -ENOMEM;
2336         refcount_inc(&skb->users);
2337         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338 }
2339
2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341                                           struct packet_type **pt,
2342                                           struct net_device *orig_dev,
2343                                           __be16 type,
2344                                           struct list_head *ptype_list)
2345 {
2346         struct packet_type *ptype, *pt_prev = *pt;
2347
2348         list_for_each_entry_rcu(ptype, ptype_list, list) {
2349                 if (ptype->type != type)
2350                         continue;
2351                 if (pt_prev)
2352                         deliver_skb(skb, pt_prev, orig_dev);
2353                 pt_prev = ptype;
2354         }
2355         *pt = pt_prev;
2356 }
2357
2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359 {
2360         if (!ptype->af_packet_priv || !skb->sk)
2361                 return false;
2362
2363         if (ptype->id_match)
2364                 return ptype->id_match(ptype, skb->sk);
2365         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366                 return true;
2367
2368         return false;
2369 }
2370
2371 /**
2372  * dev_nit_active - return true if any network interface taps are in use
2373  *
2374  * @dev: network device to check for the presence of taps
2375  */
2376 bool dev_nit_active(struct net_device *dev)
2377 {
2378         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379 }
2380 EXPORT_SYMBOL_GPL(dev_nit_active);
2381
2382 /*
2383  *      Support routine. Sends outgoing frames to any network
2384  *      taps currently in use.
2385  */
2386
2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388 {
2389         struct packet_type *ptype;
2390         struct sk_buff *skb2 = NULL;
2391         struct packet_type *pt_prev = NULL;
2392         struct list_head *ptype_list = &ptype_all;
2393
2394         rcu_read_lock();
2395 again:
2396         list_for_each_entry_rcu(ptype, ptype_list, list) {
2397                 if (ptype->ignore_outgoing)
2398                         continue;
2399
2400                 /* Never send packets back to the socket
2401                  * they originated from - MvS (miquels@drinkel.ow.org)
2402                  */
2403                 if (skb_loop_sk(ptype, skb))
2404                         continue;
2405
2406                 if (pt_prev) {
2407                         deliver_skb(skb2, pt_prev, skb->dev);
2408                         pt_prev = ptype;
2409                         continue;
2410                 }
2411
2412                 /* need to clone skb, done only once */
2413                 skb2 = skb_clone(skb, GFP_ATOMIC);
2414                 if (!skb2)
2415                         goto out_unlock;
2416
2417                 net_timestamp_set(skb2);
2418
2419                 /* skb->nh should be correctly
2420                  * set by sender, so that the second statement is
2421                  * just protection against buggy protocols.
2422                  */
2423                 skb_reset_mac_header(skb2);
2424
2425                 if (skb_network_header(skb2) < skb2->data ||
2426                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428                                              ntohs(skb2->protocol),
2429                                              dev->name);
2430                         skb_reset_network_header(skb2);
2431                 }
2432
2433                 skb2->transport_header = skb2->network_header;
2434                 skb2->pkt_type = PACKET_OUTGOING;
2435                 pt_prev = ptype;
2436         }
2437
2438         if (ptype_list == &ptype_all) {
2439                 ptype_list = &dev->ptype_all;
2440                 goto again;
2441         }
2442 out_unlock:
2443         if (pt_prev) {
2444                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446                 else
2447                         kfree_skb(skb2);
2448         }
2449         rcu_read_unlock();
2450 }
2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452
2453 /**
2454  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455  * @dev: Network device
2456  * @txq: number of queues available
2457  *
2458  * If real_num_tx_queues is changed the tc mappings may no longer be
2459  * valid. To resolve this verify the tc mapping remains valid and if
2460  * not NULL the mapping. With no priorities mapping to this
2461  * offset/count pair it will no longer be used. In the worst case TC0
2462  * is invalid nothing can be done so disable priority mappings. If is
2463  * expected that drivers will fix this mapping if they can before
2464  * calling netif_set_real_num_tx_queues.
2465  */
2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467 {
2468         int i;
2469         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470
2471         /* If TC0 is invalidated disable TC mapping */
2472         if (tc->offset + tc->count > txq) {
2473                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474                 dev->num_tc = 0;
2475                 return;
2476         }
2477
2478         /* Invalidated prio to tc mappings set to TC0 */
2479         for (i = 1; i < TC_BITMASK + 1; i++) {
2480                 int q = netdev_get_prio_tc_map(dev, i);
2481
2482                 tc = &dev->tc_to_txq[q];
2483                 if (tc->offset + tc->count > txq) {
2484                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485                                 i, q);
2486                         netdev_set_prio_tc_map(dev, i, 0);
2487                 }
2488         }
2489 }
2490
2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492 {
2493         if (dev->num_tc) {
2494                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495                 int i;
2496
2497                 /* walk through the TCs and see if it falls into any of them */
2498                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499                         if ((txq - tc->offset) < tc->count)
2500                                 return i;
2501                 }
2502
2503                 /* didn't find it, just return -1 to indicate no match */
2504                 return -1;
2505         }
2506
2507         return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_txq_to_tc);
2510
2511 #ifdef CONFIG_XPS
2512 static struct static_key xps_needed __read_mostly;
2513 static struct static_key xps_rxqs_needed __read_mostly;
2514 static DEFINE_MUTEX(xps_map_mutex);
2515 #define xmap_dereference(P)             \
2516         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517
2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519                              struct xps_dev_maps *old_maps, int tci, u16 index)
2520 {
2521         struct xps_map *map = NULL;
2522         int pos;
2523
2524         if (dev_maps)
2525                 map = xmap_dereference(dev_maps->attr_map[tci]);
2526         if (!map)
2527                 return false;
2528
2529         for (pos = map->len; pos--;) {
2530                 if (map->queues[pos] != index)
2531                         continue;
2532
2533                 if (map->len > 1) {
2534                         map->queues[pos] = map->queues[--map->len];
2535                         break;
2536                 }
2537
2538                 if (old_maps)
2539                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541                 kfree_rcu(map, rcu);
2542                 return false;
2543         }
2544
2545         return true;
2546 }
2547
2548 static bool remove_xps_queue_cpu(struct net_device *dev,
2549                                  struct xps_dev_maps *dev_maps,
2550                                  int cpu, u16 offset, u16 count)
2551 {
2552         int num_tc = dev_maps->num_tc;
2553         bool active = false;
2554         int tci;
2555
2556         for (tci = cpu * num_tc; num_tc--; tci++) {
2557                 int i, j;
2558
2559                 for (i = count, j = offset; i--; j++) {
2560                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561                                 break;
2562                 }
2563
2564                 active |= i < 0;
2565         }
2566
2567         return active;
2568 }
2569
2570 static void reset_xps_maps(struct net_device *dev,
2571                            struct xps_dev_maps *dev_maps,
2572                            enum xps_map_type type)
2573 {
2574         static_key_slow_dec_cpuslocked(&xps_needed);
2575         if (type == XPS_RXQS)
2576                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577
2578         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579
2580         kfree_rcu(dev_maps, rcu);
2581 }
2582
2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584                            u16 offset, u16 count)
2585 {
2586         struct xps_dev_maps *dev_maps;
2587         bool active = false;
2588         int i, j;
2589
2590         dev_maps = xmap_dereference(dev->xps_maps[type]);
2591         if (!dev_maps)
2592                 return;
2593
2594         for (j = 0; j < dev_maps->nr_ids; j++)
2595                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596         if (!active)
2597                 reset_xps_maps(dev, dev_maps, type);
2598
2599         if (type == XPS_CPUS) {
2600                 for (i = offset + (count - 1); count--; i--)
2601                         netdev_queue_numa_node_write(
2602                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603         }
2604 }
2605
2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607                                    u16 count)
2608 {
2609         if (!static_key_false(&xps_needed))
2610                 return;
2611
2612         cpus_read_lock();
2613         mutex_lock(&xps_map_mutex);
2614
2615         if (static_key_false(&xps_rxqs_needed))
2616                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2617
2618         clean_xps_maps(dev, XPS_CPUS, offset, count);
2619
2620         mutex_unlock(&xps_map_mutex);
2621         cpus_read_unlock();
2622 }
2623
2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625 {
2626         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627 }
2628
2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630                                       u16 index, bool is_rxqs_map)
2631 {
2632         struct xps_map *new_map;
2633         int alloc_len = XPS_MIN_MAP_ALLOC;
2634         int i, pos;
2635
2636         for (pos = 0; map && pos < map->len; pos++) {
2637                 if (map->queues[pos] != index)
2638                         continue;
2639                 return map;
2640         }
2641
2642         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643         if (map) {
2644                 if (pos < map->alloc_len)
2645                         return map;
2646
2647                 alloc_len = map->alloc_len * 2;
2648         }
2649
2650         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651          *  map
2652          */
2653         if (is_rxqs_map)
2654                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655         else
2656                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657                                        cpu_to_node(attr_index));
2658         if (!new_map)
2659                 return NULL;
2660
2661         for (i = 0; i < pos; i++)
2662                 new_map->queues[i] = map->queues[i];
2663         new_map->alloc_len = alloc_len;
2664         new_map->len = pos;
2665
2666         return new_map;
2667 }
2668
2669 /* Copy xps maps at a given index */
2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671                               struct xps_dev_maps *new_dev_maps, int index,
2672                               int tc, bool skip_tc)
2673 {
2674         int i, tci = index * dev_maps->num_tc;
2675         struct xps_map *map;
2676
2677         /* copy maps belonging to foreign traffic classes */
2678         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679                 if (i == tc && skip_tc)
2680                         continue;
2681
2682                 /* fill in the new device map from the old device map */
2683                 map = xmap_dereference(dev_maps->attr_map[tci]);
2684                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685         }
2686 }
2687
2688 /* Must be called under cpus_read_lock */
2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690                           u16 index, enum xps_map_type type)
2691 {
2692         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693         const unsigned long *online_mask = NULL;
2694         bool active = false, copy = false;
2695         int i, j, tci, numa_node_id = -2;
2696         int maps_sz, num_tc = 1, tc = 0;
2697         struct xps_map *map, *new_map;
2698         unsigned int nr_ids;
2699
2700         if (dev->num_tc) {
2701                 /* Do not allow XPS on subordinate device directly */
2702                 num_tc = dev->num_tc;
2703                 if (num_tc < 0)
2704                         return -EINVAL;
2705
2706                 /* If queue belongs to subordinate dev use its map */
2707                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708
2709                 tc = netdev_txq_to_tc(dev, index);
2710                 if (tc < 0)
2711                         return -EINVAL;
2712         }
2713
2714         mutex_lock(&xps_map_mutex);
2715
2716         dev_maps = xmap_dereference(dev->xps_maps[type]);
2717         if (type == XPS_RXQS) {
2718                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719                 nr_ids = dev->num_rx_queues;
2720         } else {
2721                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722                 if (num_possible_cpus() > 1)
2723                         online_mask = cpumask_bits(cpu_online_mask);
2724                 nr_ids = nr_cpu_ids;
2725         }
2726
2727         if (maps_sz < L1_CACHE_BYTES)
2728                 maps_sz = L1_CACHE_BYTES;
2729
2730         /* The old dev_maps could be larger or smaller than the one we're
2731          * setting up now, as dev->num_tc or nr_ids could have been updated in
2732          * between. We could try to be smart, but let's be safe instead and only
2733          * copy foreign traffic classes if the two map sizes match.
2734          */
2735         if (dev_maps &&
2736             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737                 copy = true;
2738
2739         /* allocate memory for queue storage */
2740         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741              j < nr_ids;) {
2742                 if (!new_dev_maps) {
2743                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744                         if (!new_dev_maps) {
2745                                 mutex_unlock(&xps_map_mutex);
2746                                 return -ENOMEM;
2747                         }
2748
2749                         new_dev_maps->nr_ids = nr_ids;
2750                         new_dev_maps->num_tc = num_tc;
2751                 }
2752
2753                 tci = j * num_tc + tc;
2754                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755
2756                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757                 if (!map)
2758                         goto error;
2759
2760                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761         }
2762
2763         if (!new_dev_maps)
2764                 goto out_no_new_maps;
2765
2766         if (!dev_maps) {
2767                 /* Increment static keys at most once per type */
2768                 static_key_slow_inc_cpuslocked(&xps_needed);
2769                 if (type == XPS_RXQS)
2770                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771         }
2772
2773         for (j = 0; j < nr_ids; j++) {
2774                 bool skip_tc = false;
2775
2776                 tci = j * num_tc + tc;
2777                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2778                     netif_attr_test_online(j, online_mask, nr_ids)) {
2779                         /* add tx-queue to CPU/rx-queue maps */
2780                         int pos = 0;
2781
2782                         skip_tc = true;
2783
2784                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785                         while ((pos < map->len) && (map->queues[pos] != index))
2786                                 pos++;
2787
2788                         if (pos == map->len)
2789                                 map->queues[map->len++] = index;
2790 #ifdef CONFIG_NUMA
2791                         if (type == XPS_CPUS) {
2792                                 if (numa_node_id == -2)
2793                                         numa_node_id = cpu_to_node(j);
2794                                 else if (numa_node_id != cpu_to_node(j))
2795                                         numa_node_id = -1;
2796                         }
2797 #endif
2798                 }
2799
2800                 if (copy)
2801                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802                                           skip_tc);
2803         }
2804
2805         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806
2807         /* Cleanup old maps */
2808         if (!dev_maps)
2809                 goto out_no_old_maps;
2810
2811         for (j = 0; j < dev_maps->nr_ids; j++) {
2812                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813                         map = xmap_dereference(dev_maps->attr_map[tci]);
2814                         if (!map)
2815                                 continue;
2816
2817                         if (copy) {
2818                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819                                 if (map == new_map)
2820                                         continue;
2821                         }
2822
2823                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824                         kfree_rcu(map, rcu);
2825                 }
2826         }
2827
2828         old_dev_maps = dev_maps;
2829
2830 out_no_old_maps:
2831         dev_maps = new_dev_maps;
2832         active = true;
2833
2834 out_no_new_maps:
2835         if (type == XPS_CPUS)
2836                 /* update Tx queue numa node */
2837                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838                                              (numa_node_id >= 0) ?
2839                                              numa_node_id : NUMA_NO_NODE);
2840
2841         if (!dev_maps)
2842                 goto out_no_maps;
2843
2844         /* removes tx-queue from unused CPUs/rx-queues */
2845         for (j = 0; j < dev_maps->nr_ids; j++) {
2846                 tci = j * dev_maps->num_tc;
2847
2848                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849                         if (i == tc &&
2850                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852                                 continue;
2853
2854                         active |= remove_xps_queue(dev_maps,
2855                                                    copy ? old_dev_maps : NULL,
2856                                                    tci, index);
2857                 }
2858         }
2859
2860         if (old_dev_maps)
2861                 kfree_rcu(old_dev_maps, rcu);
2862
2863         /* free map if not active */
2864         if (!active)
2865                 reset_xps_maps(dev, dev_maps, type);
2866
2867 out_no_maps:
2868         mutex_unlock(&xps_map_mutex);
2869
2870         return 0;
2871 error:
2872         /* remove any maps that we added */
2873         for (j = 0; j < nr_ids; j++) {
2874                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876                         map = copy ?
2877                               xmap_dereference(dev_maps->attr_map[tci]) :
2878                               NULL;
2879                         if (new_map && new_map != map)
2880                                 kfree(new_map);
2881                 }
2882         }
2883
2884         mutex_unlock(&xps_map_mutex);
2885
2886         kfree(new_dev_maps);
2887         return -ENOMEM;
2888 }
2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890
2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892                         u16 index)
2893 {
2894         int ret;
2895
2896         cpus_read_lock();
2897         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898         cpus_read_unlock();
2899
2900         return ret;
2901 }
2902 EXPORT_SYMBOL(netif_set_xps_queue);
2903
2904 #endif
2905 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906 {
2907         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908
2909         /* Unbind any subordinate channels */
2910         while (txq-- != &dev->_tx[0]) {
2911                 if (txq->sb_dev)
2912                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2913         }
2914 }
2915
2916 void netdev_reset_tc(struct net_device *dev)
2917 {
2918 #ifdef CONFIG_XPS
2919         netif_reset_xps_queues_gt(dev, 0);
2920 #endif
2921         netdev_unbind_all_sb_channels(dev);
2922
2923         /* Reset TC configuration of device */
2924         dev->num_tc = 0;
2925         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927 }
2928 EXPORT_SYMBOL(netdev_reset_tc);
2929
2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931 {
2932         if (tc >= dev->num_tc)
2933                 return -EINVAL;
2934
2935 #ifdef CONFIG_XPS
2936         netif_reset_xps_queues(dev, offset, count);
2937 #endif
2938         dev->tc_to_txq[tc].count = count;
2939         dev->tc_to_txq[tc].offset = offset;
2940         return 0;
2941 }
2942 EXPORT_SYMBOL(netdev_set_tc_queue);
2943
2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945 {
2946         if (num_tc > TC_MAX_QUEUE)
2947                 return -EINVAL;
2948
2949 #ifdef CONFIG_XPS
2950         netif_reset_xps_queues_gt(dev, 0);
2951 #endif
2952         netdev_unbind_all_sb_channels(dev);
2953
2954         dev->num_tc = num_tc;
2955         return 0;
2956 }
2957 EXPORT_SYMBOL(netdev_set_num_tc);
2958
2959 void netdev_unbind_sb_channel(struct net_device *dev,
2960                               struct net_device *sb_dev)
2961 {
2962         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963
2964 #ifdef CONFIG_XPS
2965         netif_reset_xps_queues_gt(sb_dev, 0);
2966 #endif
2967         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969
2970         while (txq-- != &dev->_tx[0]) {
2971                 if (txq->sb_dev == sb_dev)
2972                         txq->sb_dev = NULL;
2973         }
2974 }
2975 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976
2977 int netdev_bind_sb_channel_queue(struct net_device *dev,
2978                                  struct net_device *sb_dev,
2979                                  u8 tc, u16 count, u16 offset)
2980 {
2981         /* Make certain the sb_dev and dev are already configured */
2982         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983                 return -EINVAL;
2984
2985         /* We cannot hand out queues we don't have */
2986         if ((offset + count) > dev->real_num_tx_queues)
2987                 return -EINVAL;
2988
2989         /* Record the mapping */
2990         sb_dev->tc_to_txq[tc].count = count;
2991         sb_dev->tc_to_txq[tc].offset = offset;
2992
2993         /* Provide a way for Tx queue to find the tc_to_txq map or
2994          * XPS map for itself.
2995          */
2996         while (count--)
2997                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998
2999         return 0;
3000 }
3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002
3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004 {
3005         /* Do not use a multiqueue device to represent a subordinate channel */
3006         if (netif_is_multiqueue(dev))
3007                 return -ENODEV;
3008
3009         /* We allow channels 1 - 32767 to be used for subordinate channels.
3010          * Channel 0 is meant to be "native" mode and used only to represent
3011          * the main root device. We allow writing 0 to reset the device back
3012          * to normal mode after being used as a subordinate channel.
3013          */
3014         if (channel > S16_MAX)
3015                 return -EINVAL;
3016
3017         dev->num_tc = -channel;
3018
3019         return 0;
3020 }
3021 EXPORT_SYMBOL(netdev_set_sb_channel);
3022
3023 /*
3024  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026  */
3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028 {
3029         bool disabling;
3030         int rc;
3031
3032         disabling = txq < dev->real_num_tx_queues;
3033
3034         if (txq < 1 || txq > dev->num_tx_queues)
3035                 return -EINVAL;
3036
3037         if (dev->reg_state == NETREG_REGISTERED ||
3038             dev->reg_state == NETREG_UNREGISTERING) {
3039                 ASSERT_RTNL();
3040
3041                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042                                                   txq);
3043                 if (rc)
3044                         return rc;
3045
3046                 if (dev->num_tc)
3047                         netif_setup_tc(dev, txq);
3048
3049                 dev->real_num_tx_queues = txq;
3050
3051                 if (disabling) {
3052                         synchronize_net();
3053                         qdisc_reset_all_tx_gt(dev, txq);
3054 #ifdef CONFIG_XPS
3055                         netif_reset_xps_queues_gt(dev, txq);
3056 #endif
3057                 }
3058         } else {
3059                 dev->real_num_tx_queues = txq;
3060         }
3061
3062         return 0;
3063 }
3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065
3066 #ifdef CONFIG_SYSFS
3067 /**
3068  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3069  *      @dev: Network device
3070  *      @rxq: Actual number of RX queues
3071  *
3072  *      This must be called either with the rtnl_lock held or before
3073  *      registration of the net device.  Returns 0 on success, or a
3074  *      negative error code.  If called before registration, it always
3075  *      succeeds.
3076  */
3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078 {
3079         int rc;
3080
3081         if (rxq < 1 || rxq > dev->num_rx_queues)
3082                 return -EINVAL;
3083
3084         if (dev->reg_state == NETREG_REGISTERED) {
3085                 ASSERT_RTNL();
3086
3087                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088                                                   rxq);
3089                 if (rc)
3090                         return rc;
3091         }
3092
3093         dev->real_num_rx_queues = rxq;
3094         return 0;
3095 }
3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097 #endif
3098
3099 /**
3100  * netif_get_num_default_rss_queues - default number of RSS queues
3101  *
3102  * This routine should set an upper limit on the number of RSS queues
3103  * used by default by multiqueue devices.
3104  */
3105 int netif_get_num_default_rss_queues(void)
3106 {
3107         return is_kdump_kernel() ?
3108                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109 }
3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111
3112 static void __netif_reschedule(struct Qdisc *q)
3113 {
3114         struct softnet_data *sd;
3115         unsigned long flags;
3116
3117         local_irq_save(flags);
3118         sd = this_cpu_ptr(&softnet_data);
3119         q->next_sched = NULL;
3120         *sd->output_queue_tailp = q;
3121         sd->output_queue_tailp = &q->next_sched;
3122         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123         local_irq_restore(flags);
3124 }
3125
3126 void __netif_schedule(struct Qdisc *q)
3127 {
3128         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129                 __netif_reschedule(q);
3130 }
3131 EXPORT_SYMBOL(__netif_schedule);
3132
3133 struct dev_kfree_skb_cb {
3134         enum skb_free_reason reason;
3135 };
3136
3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138 {
3139         return (struct dev_kfree_skb_cb *)skb->cb;
3140 }
3141
3142 void netif_schedule_queue(struct netdev_queue *txq)
3143 {
3144         rcu_read_lock();
3145         if (!netif_xmit_stopped(txq)) {
3146                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3147
3148                 __netif_schedule(q);
3149         }
3150         rcu_read_unlock();
3151 }
3152 EXPORT_SYMBOL(netif_schedule_queue);
3153
3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155 {
3156         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157                 struct Qdisc *q;
3158
3159                 rcu_read_lock();
3160                 q = rcu_dereference(dev_queue->qdisc);
3161                 __netif_schedule(q);
3162                 rcu_read_unlock();
3163         }
3164 }
3165 EXPORT_SYMBOL(netif_tx_wake_queue);
3166
3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168 {
3169         unsigned long flags;
3170
3171         if (unlikely(!skb))
3172                 return;
3173
3174         if (likely(refcount_read(&skb->users) == 1)) {
3175                 smp_rmb();
3176                 refcount_set(&skb->users, 0);
3177         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3178                 return;
3179         }
3180         get_kfree_skb_cb(skb)->reason = reason;
3181         local_irq_save(flags);
3182         skb->next = __this_cpu_read(softnet_data.completion_queue);
3183         __this_cpu_write(softnet_data.completion_queue, skb);
3184         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185         local_irq_restore(flags);
3186 }
3187 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190 {
3191         if (in_irq() || irqs_disabled())
3192                 __dev_kfree_skb_irq(skb, reason);
3193         else
3194                 dev_kfree_skb(skb);
3195 }
3196 EXPORT_SYMBOL(__dev_kfree_skb_any);
3197
3198
3199 /**
3200  * netif_device_detach - mark device as removed
3201  * @dev: network device
3202  *
3203  * Mark device as removed from system and therefore no longer available.
3204  */
3205 void netif_device_detach(struct net_device *dev)
3206 {
3207         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208             netif_running(dev)) {
3209                 netif_tx_stop_all_queues(dev);
3210         }
3211 }
3212 EXPORT_SYMBOL(netif_device_detach);
3213
3214 /**
3215  * netif_device_attach - mark device as attached
3216  * @dev: network device
3217  *
3218  * Mark device as attached from system and restart if needed.
3219  */
3220 void netif_device_attach(struct net_device *dev)
3221 {
3222         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223             netif_running(dev)) {
3224                 netif_tx_wake_all_queues(dev);
3225                 __netdev_watchdog_up(dev);
3226         }
3227 }
3228 EXPORT_SYMBOL(netif_device_attach);
3229
3230 /*
3231  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232  * to be used as a distribution range.
3233  */
3234 static u16 skb_tx_hash(const struct net_device *dev,
3235                        const struct net_device *sb_dev,
3236                        struct sk_buff *skb)
3237 {
3238         u32 hash;
3239         u16 qoffset = 0;
3240         u16 qcount = dev->real_num_tx_queues;
3241
3242         if (dev->num_tc) {
3243                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244
3245                 qoffset = sb_dev->tc_to_txq[tc].offset;
3246                 qcount = sb_dev->tc_to_txq[tc].count;
3247         }
3248
3249         if (skb_rx_queue_recorded(skb)) {
3250                 hash = skb_get_rx_queue(skb);
3251                 if (hash >= qoffset)
3252                         hash -= qoffset;
3253                 while (unlikely(hash >= qcount))
3254                         hash -= qcount;
3255                 return hash + qoffset;
3256         }
3257
3258         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259 }
3260
3261 static void skb_warn_bad_offload(const struct sk_buff *skb)
3262 {
3263         static const netdev_features_t null_features;
3264         struct net_device *dev = skb->dev;
3265         const char *name = "";
3266
3267         if (!net_ratelimit())
3268                 return;
3269
3270         if (dev) {
3271                 if (dev->dev.parent)
3272                         name = dev_driver_string(dev->dev.parent);
3273                 else
3274                         name = netdev_name(dev);
3275         }
3276         skb_dump(KERN_WARNING, skb, false);
3277         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278              name, dev ? &dev->features : &null_features,
3279              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280 }
3281
3282 /*
3283  * Invalidate hardware checksum when packet is to be mangled, and
3284  * complete checksum manually on outgoing path.
3285  */
3286 int skb_checksum_help(struct sk_buff *skb)
3287 {
3288         __wsum csum;
3289         int ret = 0, offset;
3290
3291         if (skb->ip_summed == CHECKSUM_COMPLETE)
3292                 goto out_set_summed;
3293
3294         if (unlikely(skb_is_gso(skb))) {
3295                 skb_warn_bad_offload(skb);
3296                 return -EINVAL;
3297         }
3298
3299         /* Before computing a checksum, we should make sure no frag could
3300          * be modified by an external entity : checksum could be wrong.
3301          */
3302         if (skb_has_shared_frag(skb)) {
3303                 ret = __skb_linearize(skb);
3304                 if (ret)
3305                         goto out;
3306         }
3307
3308         offset = skb_checksum_start_offset(skb);
3309         BUG_ON(offset >= skb_headlen(skb));
3310         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311
3312         offset += skb->csum_offset;
3313         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314
3315         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316         if (ret)
3317                 goto out;
3318
3319         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320 out_set_summed:
3321         skb->ip_summed = CHECKSUM_NONE;
3322 out:
3323         return ret;
3324 }
3325 EXPORT_SYMBOL(skb_checksum_help);
3326
3327 int skb_crc32c_csum_help(struct sk_buff *skb)
3328 {
3329         __le32 crc32c_csum;
3330         int ret = 0, offset, start;
3331
3332         if (skb->ip_summed != CHECKSUM_PARTIAL)
3333                 goto out;
3334
3335         if (unlikely(skb_is_gso(skb)))
3336                 goto out;
3337
3338         /* Before computing a checksum, we should make sure no frag could
3339          * be modified by an external entity : checksum could be wrong.
3340          */
3341         if (unlikely(skb_has_shared_frag(skb))) {
3342                 ret = __skb_linearize(skb);
3343                 if (ret)
3344                         goto out;
3345         }
3346         start = skb_checksum_start_offset(skb);
3347         offset = start + offsetof(struct sctphdr, checksum);
3348         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349                 ret = -EINVAL;
3350                 goto out;
3351         }
3352
3353         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354         if (ret)
3355                 goto out;
3356
3357         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358                                                   skb->len - start, ~(__u32)0,
3359                                                   crc32c_csum_stub));
3360         *(__le32 *)(skb->data + offset) = crc32c_csum;
3361         skb->ip_summed = CHECKSUM_NONE;
3362         skb->csum_not_inet = 0;
3363 out:
3364         return ret;
3365 }
3366
3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368 {
3369         __be16 type = skb->protocol;
3370
3371         /* Tunnel gso handlers can set protocol to ethernet. */
3372         if (type == htons(ETH_P_TEB)) {
3373                 struct ethhdr *eth;
3374
3375                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376                         return 0;
3377
3378                 eth = (struct ethhdr *)skb->data;
3379                 type = eth->h_proto;
3380         }
3381
3382         return __vlan_get_protocol(skb, type, depth);
3383 }
3384
3385 /**
3386  *      skb_mac_gso_segment - mac layer segmentation handler.
3387  *      @skb: buffer to segment
3388  *      @features: features for the output path (see dev->features)
3389  */
3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391                                     netdev_features_t features)
3392 {
3393         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394         struct packet_offload *ptype;
3395         int vlan_depth = skb->mac_len;
3396         __be16 type = skb_network_protocol(skb, &vlan_depth);
3397
3398         if (unlikely(!type))
3399                 return ERR_PTR(-EINVAL);
3400
3401         __skb_pull(skb, vlan_depth);
3402
3403         rcu_read_lock();
3404         list_for_each_entry_rcu(ptype, &offload_base, list) {
3405                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3406                         segs = ptype->callbacks.gso_segment(skb, features);
3407                         break;
3408                 }
3409         }
3410         rcu_read_unlock();
3411
3412         __skb_push(skb, skb->data - skb_mac_header(skb));
3413
3414         return segs;
3415 }
3416 EXPORT_SYMBOL(skb_mac_gso_segment);
3417
3418
3419 /* openvswitch calls this on rx path, so we need a different check.
3420  */
3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422 {
3423         if (tx_path)
3424                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3425                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3426
3427         return skb->ip_summed == CHECKSUM_NONE;
3428 }
3429
3430 /**
3431  *      __skb_gso_segment - Perform segmentation on skb.
3432  *      @skb: buffer to segment
3433  *      @features: features for the output path (see dev->features)
3434  *      @tx_path: whether it is called in TX path
3435  *
3436  *      This function segments the given skb and returns a list of segments.
3437  *
3438  *      It may return NULL if the skb requires no segmentation.  This is
3439  *      only possible when GSO is used for verifying header integrity.
3440  *
3441  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442  */
3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444                                   netdev_features_t features, bool tx_path)
3445 {
3446         struct sk_buff *segs;
3447
3448         if (unlikely(skb_needs_check(skb, tx_path))) {
3449                 int err;
3450
3451                 /* We're going to init ->check field in TCP or UDP header */
3452                 err = skb_cow_head(skb, 0);
3453                 if (err < 0)
3454                         return ERR_PTR(err);
3455         }
3456
3457         /* Only report GSO partial support if it will enable us to
3458          * support segmentation on this frame without needing additional
3459          * work.
3460          */
3461         if (features & NETIF_F_GSO_PARTIAL) {
3462                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463                 struct net_device *dev = skb->dev;
3464
3465                 partial_features |= dev->features & dev->gso_partial_features;
3466                 if (!skb_gso_ok(skb, features | partial_features))
3467                         features &= ~NETIF_F_GSO_PARTIAL;
3468         }
3469
3470         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472
3473         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474         SKB_GSO_CB(skb)->encap_level = 0;
3475
3476         skb_reset_mac_header(skb);
3477         skb_reset_mac_len(skb);
3478
3479         segs = skb_mac_gso_segment(skb, features);
3480
3481         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482                 skb_warn_bad_offload(skb);
3483
3484         return segs;
3485 }
3486 EXPORT_SYMBOL(__skb_gso_segment);
3487
3488 /* Take action when hardware reception checksum errors are detected. */
3489 #ifdef CONFIG_BUG
3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491 {
3492         if (net_ratelimit()) {
3493                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494                 skb_dump(KERN_ERR, skb, true);
3495                 dump_stack();
3496         }
3497 }
3498 EXPORT_SYMBOL(netdev_rx_csum_fault);
3499 #endif
3500
3501 /* XXX: check that highmem exists at all on the given machine. */
3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503 {
3504 #ifdef CONFIG_HIGHMEM
3505         int i;
3506
3507         if (!(dev->features & NETIF_F_HIGHDMA)) {
3508                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510
3511                         if (PageHighMem(skb_frag_page(frag)))
3512                                 return 1;
3513                 }
3514         }
3515 #endif
3516         return 0;
3517 }
3518
3519 /* If MPLS offload request, verify we are testing hardware MPLS features
3520  * instead of standard features for the netdev.
3521  */
3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524                                            netdev_features_t features,
3525                                            __be16 type)
3526 {
3527         if (eth_p_mpls(type))
3528                 features &= skb->dev->mpls_features;
3529
3530         return features;
3531 }
3532 #else
3533 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534                                            netdev_features_t features,
3535                                            __be16 type)
3536 {
3537         return features;
3538 }
3539 #endif
3540
3541 static netdev_features_t harmonize_features(struct sk_buff *skb,
3542         netdev_features_t features)
3543 {
3544         __be16 type;
3545
3546         type = skb_network_protocol(skb, NULL);
3547         features = net_mpls_features(skb, features, type);
3548
3549         if (skb->ip_summed != CHECKSUM_NONE &&
3550             !can_checksum_protocol(features, type)) {
3551                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552         }
3553         if (illegal_highdma(skb->dev, skb))
3554                 features &= ~NETIF_F_SG;
3555
3556         return features;
3557 }
3558
3559 netdev_features_t passthru_features_check(struct sk_buff *skb,
3560                                           struct net_device *dev,
3561                                           netdev_features_t features)
3562 {
3563         return features;
3564 }
3565 EXPORT_SYMBOL(passthru_features_check);
3566
3567 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568                                              struct net_device *dev,
3569                                              netdev_features_t features)
3570 {
3571         return vlan_features_check(skb, features);
3572 }
3573
3574 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575                                             struct net_device *dev,
3576                                             netdev_features_t features)
3577 {
3578         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579
3580         if (gso_segs > dev->gso_max_segs)
3581                 return features & ~NETIF_F_GSO_MASK;
3582
3583         if (!skb_shinfo(skb)->gso_type) {
3584                 skb_warn_bad_offload(skb);
3585                 return features & ~NETIF_F_GSO_MASK;
3586         }
3587
3588         /* Support for GSO partial features requires software
3589          * intervention before we can actually process the packets
3590          * so we need to strip support for any partial features now
3591          * and we can pull them back in after we have partially
3592          * segmented the frame.
3593          */
3594         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595                 features &= ~dev->gso_partial_features;
3596
3597         /* Make sure to clear the IPv4 ID mangling feature if the
3598          * IPv4 header has the potential to be fragmented.
3599          */
3600         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601                 struct iphdr *iph = skb->encapsulation ?
3602                                     inner_ip_hdr(skb) : ip_hdr(skb);
3603
3604                 if (!(iph->frag_off & htons(IP_DF)))
3605                         features &= ~NETIF_F_TSO_MANGLEID;
3606         }
3607
3608         return features;
3609 }
3610
3611 netdev_features_t netif_skb_features(struct sk_buff *skb)
3612 {
3613         struct net_device *dev = skb->dev;
3614         netdev_features_t features = dev->features;
3615
3616         if (skb_is_gso(skb))
3617                 features = gso_features_check(skb, dev, features);
3618
3619         /* If encapsulation offload request, verify we are testing
3620          * hardware encapsulation features instead of standard
3621          * features for the netdev
3622          */
3623         if (skb->encapsulation)
3624                 features &= dev->hw_enc_features;
3625
3626         if (skb_vlan_tagged(skb))
3627                 features = netdev_intersect_features(features,
3628                                                      dev->vlan_features |
3629                                                      NETIF_F_HW_VLAN_CTAG_TX |
3630                                                      NETIF_F_HW_VLAN_STAG_TX);
3631
3632         if (dev->netdev_ops->ndo_features_check)
3633                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634                                                                 features);
3635         else
3636                 features &= dflt_features_check(skb, dev, features);
3637
3638         return harmonize_features(skb, features);
3639 }
3640 EXPORT_SYMBOL(netif_skb_features);
3641
3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643                     struct netdev_queue *txq, bool more)
3644 {
3645         unsigned int len;
3646         int rc;
3647
3648         if (dev_nit_active(dev))
3649                 dev_queue_xmit_nit(skb, dev);
3650
3651         len = skb->len;
3652         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653         trace_net_dev_start_xmit(skb, dev);
3654         rc = netdev_start_xmit(skb, dev, txq, more);
3655         trace_net_dev_xmit(skb, rc, dev, len);
3656
3657         return rc;
3658 }
3659
3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661                                     struct netdev_queue *txq, int *ret)
3662 {
3663         struct sk_buff *skb = first;
3664         int rc = NETDEV_TX_OK;
3665
3666         while (skb) {
3667                 struct sk_buff *next = skb->next;
3668
3669                 skb_mark_not_on_list(skb);
3670                 rc = xmit_one(skb, dev, txq, next != NULL);
3671                 if (unlikely(!dev_xmit_complete(rc))) {
3672                         skb->next = next;
3673                         goto out;
3674                 }
3675
3676                 skb = next;
3677                 if (netif_tx_queue_stopped(txq) && skb) {
3678                         rc = NETDEV_TX_BUSY;
3679                         break;
3680                 }
3681         }
3682
3683 out:
3684         *ret = rc;
3685         return skb;
3686 }
3687
3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689                                           netdev_features_t features)
3690 {
3691         if (skb_vlan_tag_present(skb) &&
3692             !vlan_hw_offload_capable(features, skb->vlan_proto))
3693                 skb = __vlan_hwaccel_push_inside(skb);
3694         return skb;
3695 }
3696
3697 int skb_csum_hwoffload_help(struct sk_buff *skb,
3698                             const netdev_features_t features)
3699 {
3700         if (unlikely(skb_csum_is_sctp(skb)))
3701                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702                         skb_crc32c_csum_help(skb);
3703
3704         if (features & NETIF_F_HW_CSUM)
3705                 return 0;
3706
3707         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708                 switch (skb->csum_offset) {
3709                 case offsetof(struct tcphdr, check):
3710                 case offsetof(struct udphdr, check):
3711                         return 0;
3712                 }
3713         }
3714
3715         return skb_checksum_help(skb);
3716 }
3717 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718
3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720 {
3721         netdev_features_t features;
3722
3723         features = netif_skb_features(skb);
3724         skb = validate_xmit_vlan(skb, features);
3725         if (unlikely(!skb))
3726                 goto out_null;
3727
3728         skb = sk_validate_xmit_skb(skb, dev);
3729         if (unlikely(!skb))
3730                 goto out_null;
3731
3732         if (netif_needs_gso(skb, features)) {
3733                 struct sk_buff *segs;
3734
3735                 segs = skb_gso_segment(skb, features);
3736                 if (IS_ERR(segs)) {
3737                         goto out_kfree_skb;
3738                 } else if (segs) {
3739                         consume_skb(skb);
3740                         skb = segs;
3741                 }
3742         } else {
3743                 if (skb_needs_linearize(skb, features) &&
3744                     __skb_linearize(skb))
3745                         goto out_kfree_skb;
3746
3747                 /* If packet is not checksummed and device does not
3748                  * support checksumming for this protocol, complete
3749                  * checksumming here.
3750                  */
3751                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752                         if (skb->encapsulation)
3753                                 skb_set_inner_transport_header(skb,
3754                                                                skb_checksum_start_offset(skb));
3755                         else
3756                                 skb_set_transport_header(skb,
3757                                                          skb_checksum_start_offset(skb));
3758                         if (skb_csum_hwoffload_help(skb, features))
3759                                 goto out_kfree_skb;
3760                 }
3761         }
3762
3763         skb = validate_xmit_xfrm(skb, features, again);
3764
3765         return skb;
3766
3767 out_kfree_skb:
3768         kfree_skb(skb);
3769 out_null:
3770         atomic_long_inc(&dev->tx_dropped);
3771         return NULL;
3772 }
3773
3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775 {
3776         struct sk_buff *next, *head = NULL, *tail;
3777
3778         for (; skb != NULL; skb = next) {
3779                 next = skb->next;
3780                 skb_mark_not_on_list(skb);
3781
3782                 /* in case skb wont be segmented, point to itself */
3783                 skb->prev = skb;
3784
3785                 skb = validate_xmit_skb(skb, dev, again);
3786                 if (!skb)
3787                         continue;
3788
3789                 if (!head)
3790                         head = skb;
3791                 else
3792                         tail->next = skb;
3793                 /* If skb was segmented, skb->prev points to
3794                  * the last segment. If not, it still contains skb.
3795                  */
3796                 tail = skb->prev;
3797         }
3798         return head;
3799 }
3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801
3802 static void qdisc_pkt_len_init(struct sk_buff *skb)
3803 {
3804         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805
3806         qdisc_skb_cb(skb)->pkt_len = skb->len;
3807
3808         /* To get more precise estimation of bytes sent on wire,
3809          * we add to pkt_len the headers size of all segments
3810          */
3811         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812                 unsigned int hdr_len;
3813                 u16 gso_segs = shinfo->gso_segs;
3814
3815                 /* mac layer + network layer */
3816                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817
3818                 /* + transport layer */
3819                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820                         const struct tcphdr *th;
3821                         struct tcphdr _tcphdr;
3822
3823                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3824                                                 sizeof(_tcphdr), &_tcphdr);
3825                         if (likely(th))
3826                                 hdr_len += __tcp_hdrlen(th);
3827                 } else {
3828                         struct udphdr _udphdr;
3829
3830                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3831                                                sizeof(_udphdr), &_udphdr))
3832                                 hdr_len += sizeof(struct udphdr);
3833                 }
3834
3835                 if (shinfo->gso_type & SKB_GSO_DODGY)
3836                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837                                                 shinfo->gso_size);
3838
3839                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840         }
3841 }
3842
3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844                                  struct net_device *dev,
3845                                  struct netdev_queue *txq)
3846 {
3847         spinlock_t *root_lock = qdisc_lock(q);
3848         struct sk_buff *to_free = NULL;
3849         bool contended;
3850         int rc;
3851
3852         qdisc_calculate_pkt_len(skb, q);
3853
3854         if (q->flags & TCQ_F_NOLOCK) {
3855                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856                 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3857                         qdisc_run(q);
3858
3859                 if (unlikely(to_free))
3860                         kfree_skb_list(to_free);
3861                 return rc;
3862         }
3863
3864         /*
3865          * Heuristic to force contended enqueues to serialize on a
3866          * separate lock before trying to get qdisc main lock.
3867          * This permits qdisc->running owner to get the lock more
3868          * often and dequeue packets faster.
3869          */
3870         contended = qdisc_is_running(q);
3871         if (unlikely(contended))
3872                 spin_lock(&q->busylock);
3873
3874         spin_lock(root_lock);
3875         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3876                 __qdisc_drop(skb, &to_free);
3877                 rc = NET_XMIT_DROP;
3878         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3879                    qdisc_run_begin(q)) {
3880                 /*
3881                  * This is a work-conserving queue; there are no old skbs
3882                  * waiting to be sent out; and the qdisc is not running -
3883                  * xmit the skb directly.
3884                  */
3885
3886                 qdisc_bstats_update(q, skb);
3887
3888                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3889                         if (unlikely(contended)) {
3890                                 spin_unlock(&q->busylock);
3891                                 contended = false;
3892                         }
3893                         __qdisc_run(q);
3894                 }
3895
3896                 qdisc_run_end(q);
3897                 rc = NET_XMIT_SUCCESS;
3898         } else {
3899                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3900                 if (qdisc_run_begin(q)) {
3901                         if (unlikely(contended)) {
3902                                 spin_unlock(&q->busylock);
3903                                 contended = false;
3904                         }
3905                         __qdisc_run(q);
3906                         qdisc_run_end(q);
3907                 }
3908         }
3909         spin_unlock(root_lock);
3910         if (unlikely(to_free))
3911                 kfree_skb_list(to_free);
3912         if (unlikely(contended))
3913                 spin_unlock(&q->busylock);
3914         return rc;
3915 }
3916
3917 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3918 static void skb_update_prio(struct sk_buff *skb)
3919 {
3920         const struct netprio_map *map;
3921         const struct sock *sk;
3922         unsigned int prioidx;
3923
3924         if (skb->priority)
3925                 return;
3926         map = rcu_dereference_bh(skb->dev->priomap);
3927         if (!map)
3928                 return;
3929         sk = skb_to_full_sk(skb);
3930         if (!sk)
3931                 return;
3932
3933         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3934
3935         if (prioidx < map->priomap_len)
3936                 skb->priority = map->priomap[prioidx];
3937 }
3938 #else
3939 #define skb_update_prio(skb)
3940 #endif
3941
3942 /**
3943  *      dev_loopback_xmit - loop back @skb
3944  *      @net: network namespace this loopback is happening in
3945  *      @sk:  sk needed to be a netfilter okfn
3946  *      @skb: buffer to transmit
3947  */
3948 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3949 {
3950         skb_reset_mac_header(skb);
3951         __skb_pull(skb, skb_network_offset(skb));
3952         skb->pkt_type = PACKET_LOOPBACK;
3953         skb->ip_summed = CHECKSUM_UNNECESSARY;
3954         WARN_ON(!skb_dst(skb));
3955         skb_dst_force(skb);
3956         netif_rx_ni(skb);
3957         return 0;
3958 }
3959 EXPORT_SYMBOL(dev_loopback_xmit);
3960
3961 #ifdef CONFIG_NET_EGRESS
3962 static struct sk_buff *
3963 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3964 {
3965         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3966         struct tcf_result cl_res;
3967
3968         if (!miniq)
3969                 return skb;
3970
3971         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3972         qdisc_skb_cb(skb)->mru = 0;
3973         qdisc_skb_cb(skb)->post_ct = false;
3974         mini_qdisc_bstats_cpu_update(miniq, skb);
3975
3976         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3977         case TC_ACT_OK:
3978         case TC_ACT_RECLASSIFY:
3979                 skb->tc_index = TC_H_MIN(cl_res.classid);
3980                 break;
3981         case TC_ACT_SHOT:
3982                 mini_qdisc_qstats_cpu_drop(miniq);
3983                 *ret = NET_XMIT_DROP;
3984                 kfree_skb(skb);
3985                 return NULL;
3986         case TC_ACT_STOLEN:
3987         case TC_ACT_QUEUED:
3988         case TC_ACT_TRAP:
3989                 *ret = NET_XMIT_SUCCESS;
3990                 consume_skb(skb);
3991                 return NULL;
3992         case TC_ACT_REDIRECT:
3993                 /* No need to push/pop skb's mac_header here on egress! */
3994                 skb_do_redirect(skb);
3995                 *ret = NET_XMIT_SUCCESS;
3996                 return NULL;
3997         default:
3998                 break;
3999         }
4000
4001         return skb;
4002 }
4003 #endif /* CONFIG_NET_EGRESS */
4004
4005 #ifdef CONFIG_XPS
4006 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4007                                struct xps_dev_maps *dev_maps, unsigned int tci)
4008 {
4009         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4010         struct xps_map *map;
4011         int queue_index = -1;
4012
4013         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4014                 return queue_index;
4015
4016         tci *= dev_maps->num_tc;
4017         tci += tc;
4018
4019         map = rcu_dereference(dev_maps->attr_map[tci]);
4020         if (map) {
4021                 if (map->len == 1)
4022                         queue_index = map->queues[0];
4023                 else
4024                         queue_index = map->queues[reciprocal_scale(
4025                                                 skb_get_hash(skb), map->len)];
4026                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4027                         queue_index = -1;
4028         }
4029         return queue_index;
4030 }
4031 #endif
4032
4033 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4034                          struct sk_buff *skb)
4035 {
4036 #ifdef CONFIG_XPS
4037         struct xps_dev_maps *dev_maps;
4038         struct sock *sk = skb->sk;
4039         int queue_index = -1;
4040
4041         if (!static_key_false(&xps_needed))
4042                 return -1;
4043
4044         rcu_read_lock();
4045         if (!static_key_false(&xps_rxqs_needed))
4046                 goto get_cpus_map;
4047
4048         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4049         if (dev_maps) {
4050                 int tci = sk_rx_queue_get(sk);
4051
4052                 if (tci >= 0)
4053                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4054                                                           tci);
4055         }
4056
4057 get_cpus_map:
4058         if (queue_index < 0) {
4059                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4060                 if (dev_maps) {
4061                         unsigned int tci = skb->sender_cpu - 1;
4062
4063                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4064                                                           tci);
4065                 }
4066         }
4067         rcu_read_unlock();
4068
4069         return queue_index;
4070 #else
4071         return -1;
4072 #endif
4073 }
4074
4075 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4076                      struct net_device *sb_dev)
4077 {
4078         return 0;
4079 }
4080 EXPORT_SYMBOL(dev_pick_tx_zero);
4081
4082 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4083                        struct net_device *sb_dev)
4084 {
4085         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4086 }
4087 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4088
4089 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4090                      struct net_device *sb_dev)
4091 {
4092         struct sock *sk = skb->sk;
4093         int queue_index = sk_tx_queue_get(sk);
4094
4095         sb_dev = sb_dev ? : dev;
4096
4097         if (queue_index < 0 || skb->ooo_okay ||
4098             queue_index >= dev->real_num_tx_queues) {
4099                 int new_index = get_xps_queue(dev, sb_dev, skb);
4100
4101                 if (new_index < 0)
4102                         new_index = skb_tx_hash(dev, sb_dev, skb);
4103
4104                 if (queue_index != new_index && sk &&
4105                     sk_fullsock(sk) &&
4106                     rcu_access_pointer(sk->sk_dst_cache))
4107                         sk_tx_queue_set(sk, new_index);
4108
4109                 queue_index = new_index;
4110         }
4111
4112         return queue_index;
4113 }
4114 EXPORT_SYMBOL(netdev_pick_tx);
4115
4116 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4117                                          struct sk_buff *skb,
4118                                          struct net_device *sb_dev)
4119 {
4120         int queue_index = 0;
4121
4122 #ifdef CONFIG_XPS
4123         u32 sender_cpu = skb->sender_cpu - 1;
4124
4125         if (sender_cpu >= (u32)NR_CPUS)
4126                 skb->sender_cpu = raw_smp_processor_id() + 1;
4127 #endif
4128
4129         if (dev->real_num_tx_queues != 1) {
4130                 const struct net_device_ops *ops = dev->netdev_ops;
4131
4132                 if (ops->ndo_select_queue)
4133                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4134                 else
4135                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4136
4137                 queue_index = netdev_cap_txqueue(dev, queue_index);
4138         }
4139
4140         skb_set_queue_mapping(skb, queue_index);
4141         return netdev_get_tx_queue(dev, queue_index);
4142 }
4143
4144 /**
4145  *      __dev_queue_xmit - transmit a buffer
4146  *      @skb: buffer to transmit
4147  *      @sb_dev: suboordinate device used for L2 forwarding offload
4148  *
4149  *      Queue a buffer for transmission to a network device. The caller must
4150  *      have set the device and priority and built the buffer before calling
4151  *      this function. The function can be called from an interrupt.
4152  *
4153  *      A negative errno code is returned on a failure. A success does not
4154  *      guarantee the frame will be transmitted as it may be dropped due
4155  *      to congestion or traffic shaping.
4156  *
4157  * -----------------------------------------------------------------------------------
4158  *      I notice this method can also return errors from the queue disciplines,
4159  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4160  *      be positive.
4161  *
4162  *      Regardless of the return value, the skb is consumed, so it is currently
4163  *      difficult to retry a send to this method.  (You can bump the ref count
4164  *      before sending to hold a reference for retry if you are careful.)
4165  *
4166  *      When calling this method, interrupts MUST be enabled.  This is because
4167  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4168  *          --BLG
4169  */
4170 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4171 {
4172         struct net_device *dev = skb->dev;
4173         struct netdev_queue *txq;
4174         struct Qdisc *q;
4175         int rc = -ENOMEM;
4176         bool again = false;
4177
4178         skb_reset_mac_header(skb);
4179
4180         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4181                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4182
4183         /* Disable soft irqs for various locks below. Also
4184          * stops preemption for RCU.
4185          */
4186         rcu_read_lock_bh();
4187
4188         skb_update_prio(skb);
4189
4190         qdisc_pkt_len_init(skb);
4191 #ifdef CONFIG_NET_CLS_ACT
4192         skb->tc_at_ingress = 0;
4193 # ifdef CONFIG_NET_EGRESS
4194         if (static_branch_unlikely(&egress_needed_key)) {
4195                 skb = sch_handle_egress(skb, &rc, dev);
4196                 if (!skb)
4197                         goto out;
4198         }
4199 # endif
4200 #endif
4201         /* If device/qdisc don't need skb->dst, release it right now while
4202          * its hot in this cpu cache.
4203          */
4204         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4205                 skb_dst_drop(skb);
4206         else
4207                 skb_dst_force(skb);
4208
4209         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4210         q = rcu_dereference_bh(txq->qdisc);
4211
4212         trace_net_dev_queue(skb);
4213         if (q->enqueue) {
4214                 rc = __dev_xmit_skb(skb, q, dev, txq);
4215                 goto out;
4216         }
4217
4218         /* The device has no queue. Common case for software devices:
4219          * loopback, all the sorts of tunnels...
4220
4221          * Really, it is unlikely that netif_tx_lock protection is necessary
4222          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4223          * counters.)
4224          * However, it is possible, that they rely on protection
4225          * made by us here.
4226
4227          * Check this and shot the lock. It is not prone from deadlocks.
4228          *Either shot noqueue qdisc, it is even simpler 8)
4229          */
4230         if (dev->flags & IFF_UP) {
4231                 int cpu = smp_processor_id(); /* ok because BHs are off */
4232
4233                 if (txq->xmit_lock_owner != cpu) {
4234                         if (dev_xmit_recursion())
4235                                 goto recursion_alert;
4236
4237                         skb = validate_xmit_skb(skb, dev, &again);
4238                         if (!skb)
4239                                 goto out;
4240
4241                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4242                         HARD_TX_LOCK(dev, txq, cpu);
4243
4244                         if (!netif_xmit_stopped(txq)) {
4245                                 dev_xmit_recursion_inc();
4246                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4247                                 dev_xmit_recursion_dec();
4248                                 if (dev_xmit_complete(rc)) {
4249                                         HARD_TX_UNLOCK(dev, txq);
4250                                         goto out;
4251                                 }
4252                         }
4253                         HARD_TX_UNLOCK(dev, txq);
4254                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4255                                              dev->name);
4256                 } else {
4257                         /* Recursion is detected! It is possible,
4258                          * unfortunately
4259                          */
4260 recursion_alert:
4261                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4262                                              dev->name);
4263                 }
4264         }
4265
4266         rc = -ENETDOWN;
4267         rcu_read_unlock_bh();
4268
4269         atomic_long_inc(&dev->tx_dropped);
4270         kfree_skb_list(skb);
4271         return rc;
4272 out:
4273         rcu_read_unlock_bh();
4274         return rc;
4275 }
4276
4277 int dev_queue_xmit(struct sk_buff *skb)
4278 {
4279         return __dev_queue_xmit(skb, NULL);
4280 }
4281 EXPORT_SYMBOL(dev_queue_xmit);
4282
4283 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4284 {
4285         return __dev_queue_xmit(skb, sb_dev);
4286 }
4287 EXPORT_SYMBOL(dev_queue_xmit_accel);
4288
4289 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4290 {
4291         struct net_device *dev = skb->dev;
4292         struct sk_buff *orig_skb = skb;
4293         struct netdev_queue *txq;
4294         int ret = NETDEV_TX_BUSY;
4295         bool again = false;
4296
4297         if (unlikely(!netif_running(dev) ||
4298                      !netif_carrier_ok(dev)))
4299                 goto drop;
4300
4301         skb = validate_xmit_skb_list(skb, dev, &again);
4302         if (skb != orig_skb)
4303                 goto drop;
4304
4305         skb_set_queue_mapping(skb, queue_id);
4306         txq = skb_get_tx_queue(dev, skb);
4307         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4308
4309         local_bh_disable();
4310
4311         dev_xmit_recursion_inc();
4312         HARD_TX_LOCK(dev, txq, smp_processor_id());
4313         if (!netif_xmit_frozen_or_drv_stopped(txq))
4314                 ret = netdev_start_xmit(skb, dev, txq, false);
4315         HARD_TX_UNLOCK(dev, txq);
4316         dev_xmit_recursion_dec();
4317
4318         local_bh_enable();
4319         return ret;
4320 drop:
4321         atomic_long_inc(&dev->tx_dropped);
4322         kfree_skb_list(skb);
4323         return NET_XMIT_DROP;
4324 }
4325 EXPORT_SYMBOL(__dev_direct_xmit);
4326
4327 /*************************************************************************
4328  *                      Receiver routines
4329  *************************************************************************/
4330
4331 int netdev_max_backlog __read_mostly = 1000;
4332 EXPORT_SYMBOL(netdev_max_backlog);
4333
4334 int netdev_tstamp_prequeue __read_mostly = 1;
4335 int netdev_budget __read_mostly = 300;
4336 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4337 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4338 int weight_p __read_mostly = 64;           /* old backlog weight */
4339 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4340 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4341 int dev_rx_weight __read_mostly = 64;
4342 int dev_tx_weight __read_mostly = 64;
4343 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4344 int gro_normal_batch __read_mostly = 8;
4345
4346 /* Called with irq disabled */
4347 static inline void ____napi_schedule(struct softnet_data *sd,
4348                                      struct napi_struct *napi)
4349 {
4350         struct task_struct *thread;
4351
4352         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4353                 /* Paired with smp_mb__before_atomic() in
4354                  * napi_enable()/dev_set_threaded().
4355                  * Use READ_ONCE() to guarantee a complete
4356                  * read on napi->thread. Only call
4357                  * wake_up_process() when it's not NULL.
4358                  */
4359                 thread = READ_ONCE(napi->thread);
4360                 if (thread) {
4361                         /* Avoid doing set_bit() if the thread is in
4362                          * INTERRUPTIBLE state, cause napi_thread_wait()
4363                          * makes sure to proceed with napi polling
4364                          * if the thread is explicitly woken from here.
4365                          */
4366                         if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4367                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4368                         wake_up_process(thread);
4369                         return;
4370                 }
4371         }
4372
4373         list_add_tail(&napi->poll_list, &sd->poll_list);
4374         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4375 }
4376
4377 #ifdef CONFIG_RPS
4378
4379 /* One global table that all flow-based protocols share. */
4380 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4381 EXPORT_SYMBOL(rps_sock_flow_table);
4382 u32 rps_cpu_mask __read_mostly;
4383 EXPORT_SYMBOL(rps_cpu_mask);
4384
4385 struct static_key_false rps_needed __read_mostly;
4386 EXPORT_SYMBOL(rps_needed);
4387 struct static_key_false rfs_needed __read_mostly;
4388 EXPORT_SYMBOL(rfs_needed);
4389
4390 static struct rps_dev_flow *
4391 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4392             struct rps_dev_flow *rflow, u16 next_cpu)
4393 {
4394         if (next_cpu < nr_cpu_ids) {
4395 #ifdef CONFIG_RFS_ACCEL
4396                 struct netdev_rx_queue *rxqueue;
4397                 struct rps_dev_flow_table *flow_table;
4398                 struct rps_dev_flow *old_rflow;
4399                 u32 flow_id;
4400                 u16 rxq_index;
4401                 int rc;
4402
4403                 /* Should we steer this flow to a different hardware queue? */
4404                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4405                     !(dev->features & NETIF_F_NTUPLE))
4406                         goto out;
4407                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4408                 if (rxq_index == skb_get_rx_queue(skb))
4409                         goto out;
4410
4411                 rxqueue = dev->_rx + rxq_index;
4412                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4413                 if (!flow_table)
4414                         goto out;
4415                 flow_id = skb_get_hash(skb) & flow_table->mask;
4416                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4417                                                         rxq_index, flow_id);
4418                 if (rc < 0)
4419                         goto out;
4420                 old_rflow = rflow;
4421                 rflow = &flow_table->flows[flow_id];
4422                 rflow->filter = rc;
4423                 if (old_rflow->filter == rflow->filter)
4424                         old_rflow->filter = RPS_NO_FILTER;
4425         out:
4426 #endif
4427                 rflow->last_qtail =
4428                         per_cpu(softnet_data, next_cpu).input_queue_head;
4429         }
4430
4431         rflow->cpu = next_cpu;
4432         return rflow;
4433 }
4434
4435 /*
4436  * get_rps_cpu is called from netif_receive_skb and returns the target
4437  * CPU from the RPS map of the receiving queue for a given skb.
4438  * rcu_read_lock must be held on entry.
4439  */
4440 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4441                        struct rps_dev_flow **rflowp)
4442 {
4443         const struct rps_sock_flow_table *sock_flow_table;
4444         struct netdev_rx_queue *rxqueue = dev->_rx;
4445         struct rps_dev_flow_table *flow_table;
4446         struct rps_map *map;
4447         int cpu = -1;
4448         u32 tcpu;
4449         u32 hash;
4450
4451         if (skb_rx_queue_recorded(skb)) {
4452                 u16 index = skb_get_rx_queue(skb);
4453
4454                 if (unlikely(index >= dev->real_num_rx_queues)) {
4455                         WARN_ONCE(dev->real_num_rx_queues > 1,
4456                                   "%s received packet on queue %u, but number "
4457                                   "of RX queues is %u\n",
4458                                   dev->name, index, dev->real_num_rx_queues);
4459                         goto done;
4460                 }
4461                 rxqueue += index;
4462         }
4463
4464         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4465
4466         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4467         map = rcu_dereference(rxqueue->rps_map);
4468         if (!flow_table && !map)
4469                 goto done;
4470
4471         skb_reset_network_header(skb);
4472         hash = skb_get_hash(skb);
4473         if (!hash)
4474                 goto done;
4475
4476         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4477         if (flow_table && sock_flow_table) {
4478                 struct rps_dev_flow *rflow;
4479                 u32 next_cpu;
4480                 u32 ident;
4481
4482                 /* First check into global flow table if there is a match */
4483                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4484                 if ((ident ^ hash) & ~rps_cpu_mask)
4485                         goto try_rps;
4486
4487                 next_cpu = ident & rps_cpu_mask;
4488
4489                 /* OK, now we know there is a match,
4490                  * we can look at the local (per receive queue) flow table
4491                  */
4492                 rflow = &flow_table->flows[hash & flow_table->mask];
4493                 tcpu = rflow->cpu;
4494
4495                 /*
4496                  * If the desired CPU (where last recvmsg was done) is
4497                  * different from current CPU (one in the rx-queue flow
4498                  * table entry), switch if one of the following holds:
4499                  *   - Current CPU is unset (>= nr_cpu_ids).
4500                  *   - Current CPU is offline.
4501                  *   - The current CPU's queue tail has advanced beyond the
4502                  *     last packet that was enqueued using this table entry.
4503                  *     This guarantees that all previous packets for the flow
4504                  *     have been dequeued, thus preserving in order delivery.
4505                  */
4506                 if (unlikely(tcpu != next_cpu) &&
4507                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4508                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4509                       rflow->last_qtail)) >= 0)) {
4510                         tcpu = next_cpu;
4511                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4512                 }
4513
4514                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4515                         *rflowp = rflow;
4516                         cpu = tcpu;
4517                         goto done;
4518                 }
4519         }
4520
4521 try_rps:
4522
4523         if (map) {
4524                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4525                 if (cpu_online(tcpu)) {
4526                         cpu = tcpu;
4527                         goto done;
4528                 }
4529         }
4530
4531 done:
4532         return cpu;
4533 }
4534
4535 #ifdef CONFIG_RFS_ACCEL
4536
4537 /**
4538  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4539  * @dev: Device on which the filter was set
4540  * @rxq_index: RX queue index
4541  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4542  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4543  *
4544  * Drivers that implement ndo_rx_flow_steer() should periodically call
4545  * this function for each installed filter and remove the filters for
4546  * which it returns %true.
4547  */
4548 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4549                          u32 flow_id, u16 filter_id)
4550 {
4551         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4552         struct rps_dev_flow_table *flow_table;
4553         struct rps_dev_flow *rflow;
4554         bool expire = true;
4555         unsigned int cpu;
4556
4557         rcu_read_lock();
4558         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559         if (flow_table && flow_id <= flow_table->mask) {
4560                 rflow = &flow_table->flows[flow_id];
4561                 cpu = READ_ONCE(rflow->cpu);
4562                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4563                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4564                            rflow->last_qtail) <
4565                      (int)(10 * flow_table->mask)))
4566                         expire = false;
4567         }
4568         rcu_read_unlock();
4569         return expire;
4570 }
4571 EXPORT_SYMBOL(rps_may_expire_flow);
4572
4573 #endif /* CONFIG_RFS_ACCEL */
4574
4575 /* Called from hardirq (IPI) context */
4576 static void rps_trigger_softirq(void *data)
4577 {
4578         struct softnet_data *sd = data;
4579
4580         ____napi_schedule(sd, &sd->backlog);
4581         sd->received_rps++;
4582 }
4583
4584 #endif /* CONFIG_RPS */
4585
4586 /*
4587  * Check if this softnet_data structure is another cpu one
4588  * If yes, queue it to our IPI list and return 1
4589  * If no, return 0
4590  */
4591 static int rps_ipi_queued(struct softnet_data *sd)
4592 {
4593 #ifdef CONFIG_RPS
4594         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4595
4596         if (sd != mysd) {
4597                 sd->rps_ipi_next = mysd->rps_ipi_list;
4598                 mysd->rps_ipi_list = sd;
4599
4600                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4601                 return 1;
4602         }
4603 #endif /* CONFIG_RPS */
4604         return 0;
4605 }
4606
4607 #ifdef CONFIG_NET_FLOW_LIMIT
4608 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4609 #endif
4610
4611 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4612 {
4613 #ifdef CONFIG_NET_FLOW_LIMIT
4614         struct sd_flow_limit *fl;
4615         struct softnet_data *sd;
4616         unsigned int old_flow, new_flow;
4617
4618         if (qlen < (netdev_max_backlog >> 1))
4619                 return false;
4620
4621         sd = this_cpu_ptr(&softnet_data);
4622
4623         rcu_read_lock();
4624         fl = rcu_dereference(sd->flow_limit);
4625         if (fl) {
4626                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4627                 old_flow = fl->history[fl->history_head];
4628                 fl->history[fl->history_head] = new_flow;
4629
4630                 fl->history_head++;
4631                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4632
4633                 if (likely(fl->buckets[old_flow]))
4634                         fl->buckets[old_flow]--;
4635
4636                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4637                         fl->count++;
4638                         rcu_read_unlock();
4639                         return true;
4640                 }
4641         }
4642         rcu_read_unlock();
4643 #endif
4644         return false;
4645 }
4646
4647 /*
4648  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4649  * queue (may be a remote CPU queue).
4650  */
4651 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4652                               unsigned int *qtail)
4653 {
4654         struct softnet_data *sd;
4655         unsigned long flags;
4656         unsigned int qlen;
4657
4658         sd = &per_cpu(softnet_data, cpu);
4659
4660         local_irq_save(flags);
4661
4662         rps_lock(sd);
4663         if (!netif_running(skb->dev))
4664                 goto drop;
4665         qlen = skb_queue_len(&sd->input_pkt_queue);
4666         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4667                 if (qlen) {
4668 enqueue:
4669                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4670                         input_queue_tail_incr_save(sd, qtail);
4671                         rps_unlock(sd);
4672                         local_irq_restore(flags);
4673                         return NET_RX_SUCCESS;
4674                 }
4675
4676                 /* Schedule NAPI for backlog device
4677                  * We can use non atomic operation since we own the queue lock
4678                  */
4679                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4680                         if (!rps_ipi_queued(sd))
4681                                 ____napi_schedule(sd, &sd->backlog);
4682                 }
4683                 goto enqueue;
4684         }
4685
4686 drop:
4687         sd->dropped++;
4688         rps_unlock(sd);
4689
4690         local_irq_restore(flags);
4691
4692         atomic_long_inc(&skb->dev->rx_dropped);
4693         kfree_skb(skb);
4694         return NET_RX_DROP;
4695 }
4696
4697 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4698 {
4699         struct net_device *dev = skb->dev;
4700         struct netdev_rx_queue *rxqueue;
4701
4702         rxqueue = dev->_rx;
4703
4704         if (skb_rx_queue_recorded(skb)) {
4705                 u16 index = skb_get_rx_queue(skb);
4706
4707                 if (unlikely(index >= dev->real_num_rx_queues)) {
4708                         WARN_ONCE(dev->real_num_rx_queues > 1,
4709                                   "%s received packet on queue %u, but number "
4710                                   "of RX queues is %u\n",
4711                                   dev->name, index, dev->real_num_rx_queues);
4712
4713                         return rxqueue; /* Return first rxqueue */
4714                 }
4715                 rxqueue += index;
4716         }
4717         return rxqueue;
4718 }
4719
4720 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4721                                      struct xdp_buff *xdp,
4722                                      struct bpf_prog *xdp_prog)
4723 {
4724         void *orig_data, *orig_data_end, *hard_start;
4725         struct netdev_rx_queue *rxqueue;
4726         u32 metalen, act = XDP_DROP;
4727         bool orig_bcast, orig_host;
4728         u32 mac_len, frame_sz;
4729         __be16 orig_eth_type;
4730         struct ethhdr *eth;
4731         int off;
4732
4733         /* Reinjected packets coming from act_mirred or similar should
4734          * not get XDP generic processing.
4735          */
4736         if (skb_is_redirected(skb))
4737                 return XDP_PASS;
4738
4739         /* XDP packets must be linear and must have sufficient headroom
4740          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4741          * native XDP provides, thus we need to do it here as well.
4742          */
4743         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4744             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4745                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4746                 int troom = skb->tail + skb->data_len - skb->end;
4747
4748                 /* In case we have to go down the path and also linearize,
4749                  * then lets do the pskb_expand_head() work just once here.
4750                  */
4751                 if (pskb_expand_head(skb,
4752                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4753                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4754                         goto do_drop;
4755                 if (skb_linearize(skb))
4756                         goto do_drop;
4757         }
4758
4759         /* The XDP program wants to see the packet starting at the MAC
4760          * header.
4761          */
4762         mac_len = skb->data - skb_mac_header(skb);
4763         hard_start = skb->data - skb_headroom(skb);
4764
4765         /* SKB "head" area always have tailroom for skb_shared_info */
4766         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4767         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4768
4769         rxqueue = netif_get_rxqueue(skb);
4770         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4771         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4772                          skb_headlen(skb) + mac_len, true);
4773
4774         orig_data_end = xdp->data_end;
4775         orig_data = xdp->data;
4776         eth = (struct ethhdr *)xdp->data;
4777         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4778         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4779         orig_eth_type = eth->h_proto;
4780
4781         act = bpf_prog_run_xdp(xdp_prog, xdp);
4782
4783         /* check if bpf_xdp_adjust_head was used */
4784         off = xdp->data - orig_data;
4785         if (off) {
4786                 if (off > 0)
4787                         __skb_pull(skb, off);
4788                 else if (off < 0)
4789                         __skb_push(skb, -off);
4790
4791                 skb->mac_header += off;
4792                 skb_reset_network_header(skb);
4793         }
4794
4795         /* check if bpf_xdp_adjust_tail was used */
4796         off = xdp->data_end - orig_data_end;
4797         if (off != 0) {
4798                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4799                 skb->len += off; /* positive on grow, negative on shrink */
4800         }
4801
4802         /* check if XDP changed eth hdr such SKB needs update */
4803         eth = (struct ethhdr *)xdp->data;
4804         if ((orig_eth_type != eth->h_proto) ||
4805             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4806                                                   skb->dev->dev_addr)) ||
4807             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4808                 __skb_push(skb, ETH_HLEN);
4809                 skb->pkt_type = PACKET_HOST;
4810                 skb->protocol = eth_type_trans(skb, skb->dev);
4811         }
4812
4813         switch (act) {
4814         case XDP_REDIRECT:
4815         case XDP_TX:
4816                 __skb_push(skb, mac_len);
4817                 break;
4818         case XDP_PASS:
4819                 metalen = xdp->data - xdp->data_meta;
4820                 if (metalen)
4821                         skb_metadata_set(skb, metalen);
4822                 break;
4823         default:
4824                 bpf_warn_invalid_xdp_action(act);
4825                 fallthrough;
4826         case XDP_ABORTED:
4827                 trace_xdp_exception(skb->dev, xdp_prog, act);
4828                 fallthrough;
4829         case XDP_DROP:
4830         do_drop:
4831                 kfree_skb(skb);
4832                 break;
4833         }
4834
4835         return act;
4836 }
4837
4838 /* When doing generic XDP we have to bypass the qdisc layer and the
4839  * network taps in order to match in-driver-XDP behavior.
4840  */
4841 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4842 {
4843         struct net_device *dev = skb->dev;
4844         struct netdev_queue *txq;
4845         bool free_skb = true;
4846         int cpu, rc;
4847
4848         txq = netdev_core_pick_tx(dev, skb, NULL);
4849         cpu = smp_processor_id();
4850         HARD_TX_LOCK(dev, txq, cpu);
4851         if (!netif_xmit_stopped(txq)) {
4852                 rc = netdev_start_xmit(skb, dev, txq, 0);
4853                 if (dev_xmit_complete(rc))
4854                         free_skb = false;
4855         }
4856         HARD_TX_UNLOCK(dev, txq);
4857         if (free_skb) {
4858                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4859                 kfree_skb(skb);
4860         }
4861 }
4862
4863 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4864
4865 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4866 {
4867         if (xdp_prog) {
4868                 struct xdp_buff xdp;
4869                 u32 act;
4870                 int err;
4871
4872                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4873                 if (act != XDP_PASS) {
4874                         switch (act) {
4875                         case XDP_REDIRECT:
4876                                 err = xdp_do_generic_redirect(skb->dev, skb,
4877                                                               &xdp, xdp_prog);
4878                                 if (err)
4879                                         goto out_redir;
4880                                 break;
4881                         case XDP_TX:
4882                                 generic_xdp_tx(skb, xdp_prog);
4883                                 break;
4884                         }
4885                         return XDP_DROP;
4886                 }
4887         }
4888         return XDP_PASS;
4889 out_redir:
4890         kfree_skb(skb);
4891         return XDP_DROP;
4892 }
4893 EXPORT_SYMBOL_GPL(do_xdp_generic);
4894
4895 static int netif_rx_internal(struct sk_buff *skb)
4896 {
4897         int ret;
4898
4899         net_timestamp_check(netdev_tstamp_prequeue, skb);
4900
4901         trace_netif_rx(skb);
4902
4903 #ifdef CONFIG_RPS
4904         if (static_branch_unlikely(&rps_needed)) {
4905                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4906                 int cpu;
4907
4908                 preempt_disable();
4909                 rcu_read_lock();
4910
4911                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4912                 if (cpu < 0)
4913                         cpu = smp_processor_id();
4914
4915                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4916
4917                 rcu_read_unlock();
4918                 preempt_enable();
4919         } else
4920 #endif
4921         {
4922                 unsigned int qtail;
4923
4924                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4925                 put_cpu();
4926         }
4927         return ret;
4928 }
4929
4930 /**
4931  *      netif_rx        -       post buffer to the network code
4932  *      @skb: buffer to post
4933  *
4934  *      This function receives a packet from a device driver and queues it for
4935  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4936  *      may be dropped during processing for congestion control or by the
4937  *      protocol layers.
4938  *
4939  *      return values:
4940  *      NET_RX_SUCCESS  (no congestion)
4941  *      NET_RX_DROP     (packet was dropped)
4942  *
4943  */
4944
4945 int netif_rx(struct sk_buff *skb)
4946 {
4947         int ret;
4948
4949         trace_netif_rx_entry(skb);
4950
4951         ret = netif_rx_internal(skb);
4952         trace_netif_rx_exit(ret);
4953
4954         return ret;
4955 }
4956 EXPORT_SYMBOL(netif_rx);
4957
4958 int netif_rx_ni(struct sk_buff *skb)
4959 {
4960         int err;
4961
4962         trace_netif_rx_ni_entry(skb);
4963
4964         preempt_disable();
4965         err = netif_rx_internal(skb);
4966         if (local_softirq_pending())
4967                 do_softirq();
4968         preempt_enable();
4969         trace_netif_rx_ni_exit(err);
4970
4971         return err;
4972 }
4973 EXPORT_SYMBOL(netif_rx_ni);
4974
4975 int netif_rx_any_context(struct sk_buff *skb)
4976 {
4977         /*
4978          * If invoked from contexts which do not invoke bottom half
4979          * processing either at return from interrupt or when softrqs are
4980          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4981          * directly.
4982          */
4983         if (in_interrupt())
4984                 return netif_rx(skb);
4985         else
4986                 return netif_rx_ni(skb);
4987 }
4988 EXPORT_SYMBOL(netif_rx_any_context);
4989
4990 static __latent_entropy void net_tx_action(struct softirq_action *h)
4991 {
4992         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4993
4994         if (sd->completion_queue) {
4995                 struct sk_buff *clist;
4996
4997                 local_irq_disable();
4998                 clist = sd->completion_queue;
4999                 sd->completion_queue = NULL;
5000                 local_irq_enable();
5001
5002                 while (clist) {
5003                         struct sk_buff *skb = clist;
5004
5005                         clist = clist->next;
5006
5007                         WARN_ON(refcount_read(&skb->users));
5008                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5009                                 trace_consume_skb(skb);
5010                         else
5011                                 trace_kfree_skb(skb, net_tx_action);
5012
5013                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5014                                 __kfree_skb(skb);
5015                         else
5016                                 __kfree_skb_defer(skb);
5017                 }
5018         }
5019
5020         if (sd->output_queue) {
5021                 struct Qdisc *head;
5022
5023                 local_irq_disable();
5024                 head = sd->output_queue;
5025                 sd->output_queue = NULL;
5026                 sd->output_queue_tailp = &sd->output_queue;
5027                 local_irq_enable();
5028
5029                 rcu_read_lock();
5030
5031                 while (head) {
5032                         struct Qdisc *q = head;
5033                         spinlock_t *root_lock = NULL;
5034
5035                         head = head->next_sched;
5036
5037                         /* We need to make sure head->next_sched is read
5038                          * before clearing __QDISC_STATE_SCHED
5039                          */
5040                         smp_mb__before_atomic();
5041
5042                         if (!(q->flags & TCQ_F_NOLOCK)) {
5043                                 root_lock = qdisc_lock(q);
5044                                 spin_lock(root_lock);
5045                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5046                                                      &q->state))) {
5047                                 /* There is a synchronize_net() between
5048                                  * STATE_DEACTIVATED flag being set and
5049                                  * qdisc_reset()/some_qdisc_is_busy() in
5050                                  * dev_deactivate(), so we can safely bail out
5051                                  * early here to avoid data race between
5052                                  * qdisc_deactivate() and some_qdisc_is_busy()
5053                                  * for lockless qdisc.
5054                                  */
5055                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5056                                 continue;
5057                         }
5058
5059                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5060                         qdisc_run(q);
5061                         if (root_lock)
5062                                 spin_unlock(root_lock);
5063                 }
5064
5065                 rcu_read_unlock();
5066         }
5067
5068         xfrm_dev_backlog(sd);
5069 }
5070
5071 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5072 /* This hook is defined here for ATM LANE */
5073 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5074                              unsigned char *addr) __read_mostly;
5075 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5076 #endif
5077
5078 static inline struct sk_buff *
5079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5080                    struct net_device *orig_dev, bool *another)
5081 {
5082 #ifdef CONFIG_NET_CLS_ACT
5083         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5084         struct tcf_result cl_res;
5085
5086         /* If there's at least one ingress present somewhere (so
5087          * we get here via enabled static key), remaining devices
5088          * that are not configured with an ingress qdisc will bail
5089          * out here.
5090          */
5091         if (!miniq)
5092                 return skb;
5093
5094         if (*pt_prev) {
5095                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5096                 *pt_prev = NULL;
5097         }
5098
5099         qdisc_skb_cb(skb)->pkt_len = skb->len;
5100         qdisc_skb_cb(skb)->mru = 0;
5101         qdisc_skb_cb(skb)->post_ct = false;
5102         skb->tc_at_ingress = 1;
5103         mini_qdisc_bstats_cpu_update(miniq, skb);
5104
5105         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5106                                      &cl_res, false)) {
5107         case TC_ACT_OK:
5108         case TC_ACT_RECLASSIFY:
5109                 skb->tc_index = TC_H_MIN(cl_res.classid);
5110                 break;
5111         case TC_ACT_SHOT:
5112                 mini_qdisc_qstats_cpu_drop(miniq);
5113                 kfree_skb(skb);
5114                 return NULL;
5115         case TC_ACT_STOLEN:
5116         case TC_ACT_QUEUED:
5117         case TC_ACT_TRAP:
5118                 consume_skb(skb);
5119                 return NULL;
5120         case TC_ACT_REDIRECT:
5121                 /* skb_mac_header check was done by cls/act_bpf, so
5122                  * we can safely push the L2 header back before
5123                  * redirecting to another netdev
5124                  */
5125                 __skb_push(skb, skb->mac_len);
5126                 if (skb_do_redirect(skb) == -EAGAIN) {
5127                         __skb_pull(skb, skb->mac_len);
5128                         *another = true;
5129                         break;
5130                 }
5131                 return NULL;
5132         case TC_ACT_CONSUMED:
5133                 return NULL;
5134         default:
5135                 break;
5136         }
5137 #endif /* CONFIG_NET_CLS_ACT */
5138         return skb;
5139 }
5140
5141 /**
5142  *      netdev_is_rx_handler_busy - check if receive handler is registered
5143  *      @dev: device to check
5144  *
5145  *      Check if a receive handler is already registered for a given device.
5146  *      Return true if there one.
5147  *
5148  *      The caller must hold the rtnl_mutex.
5149  */
5150 bool netdev_is_rx_handler_busy(struct net_device *dev)
5151 {
5152         ASSERT_RTNL();
5153         return dev && rtnl_dereference(dev->rx_handler);
5154 }
5155 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5156
5157 /**
5158  *      netdev_rx_handler_register - register receive handler
5159  *      @dev: device to register a handler for
5160  *      @rx_handler: receive handler to register
5161  *      @rx_handler_data: data pointer that is used by rx handler
5162  *
5163  *      Register a receive handler for a device. This handler will then be
5164  *      called from __netif_receive_skb. A negative errno code is returned
5165  *      on a failure.
5166  *
5167  *      The caller must hold the rtnl_mutex.
5168  *
5169  *      For a general description of rx_handler, see enum rx_handler_result.
5170  */
5171 int netdev_rx_handler_register(struct net_device *dev,
5172                                rx_handler_func_t *rx_handler,
5173                                void *rx_handler_data)
5174 {
5175         if (netdev_is_rx_handler_busy(dev))
5176                 return -EBUSY;
5177
5178         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5179                 return -EINVAL;
5180
5181         /* Note: rx_handler_data must be set before rx_handler */
5182         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5183         rcu_assign_pointer(dev->rx_handler, rx_handler);
5184
5185         return 0;
5186 }
5187 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5188
5189 /**
5190  *      netdev_rx_handler_unregister - unregister receive handler
5191  *      @dev: device to unregister a handler from
5192  *
5193  *      Unregister a receive handler from a device.
5194  *
5195  *      The caller must hold the rtnl_mutex.
5196  */
5197 void netdev_rx_handler_unregister(struct net_device *dev)
5198 {
5199
5200         ASSERT_RTNL();
5201         RCU_INIT_POINTER(dev->rx_handler, NULL);
5202         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5203          * section has a guarantee to see a non NULL rx_handler_data
5204          * as well.
5205          */
5206         synchronize_net();
5207         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5208 }
5209 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5210
5211 /*
5212  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5213  * the special handling of PFMEMALLOC skbs.
5214  */
5215 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5216 {
5217         switch (skb->protocol) {
5218         case htons(ETH_P_ARP):
5219         case htons(ETH_P_IP):
5220         case htons(ETH_P_IPV6):
5221         case htons(ETH_P_8021Q):
5222         case htons(ETH_P_8021AD):
5223                 return true;
5224         default:
5225                 return false;
5226         }
5227 }
5228
5229 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5230                              int *ret, struct net_device *orig_dev)
5231 {
5232         if (nf_hook_ingress_active(skb)) {
5233                 int ingress_retval;
5234
5235                 if (*pt_prev) {
5236                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5237                         *pt_prev = NULL;
5238                 }
5239
5240                 rcu_read_lock();
5241                 ingress_retval = nf_hook_ingress(skb);
5242                 rcu_read_unlock();
5243                 return ingress_retval;
5244         }
5245         return 0;
5246 }
5247
5248 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5249                                     struct packet_type **ppt_prev)
5250 {
5251         struct packet_type *ptype, *pt_prev;
5252         rx_handler_func_t *rx_handler;
5253         struct sk_buff *skb = *pskb;
5254         struct net_device *orig_dev;
5255         bool deliver_exact = false;
5256         int ret = NET_RX_DROP;
5257         __be16 type;
5258
5259         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5260
5261         trace_netif_receive_skb(skb);
5262
5263         orig_dev = skb->dev;
5264
5265         skb_reset_network_header(skb);
5266         if (!skb_transport_header_was_set(skb))
5267                 skb_reset_transport_header(skb);
5268         skb_reset_mac_len(skb);
5269
5270         pt_prev = NULL;
5271
5272 another_round:
5273         skb->skb_iif = skb->dev->ifindex;
5274
5275         __this_cpu_inc(softnet_data.processed);
5276
5277         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5278                 int ret2;
5279
5280                 preempt_disable();
5281                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5282                 preempt_enable();
5283
5284                 if (ret2 != XDP_PASS) {
5285                         ret = NET_RX_DROP;
5286                         goto out;
5287                 }
5288                 skb_reset_mac_len(skb);
5289         }
5290
5291         if (eth_type_vlan(skb->protocol)) {
5292                 skb = skb_vlan_untag(skb);
5293                 if (unlikely(!skb))
5294                         goto out;
5295         }
5296
5297         if (skb_skip_tc_classify(skb))
5298                 goto skip_classify;
5299
5300         if (pfmemalloc)
5301                 goto skip_taps;
5302
5303         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5304                 if (pt_prev)
5305                         ret = deliver_skb(skb, pt_prev, orig_dev);
5306                 pt_prev = ptype;
5307         }
5308
5309         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5310                 if (pt_prev)
5311                         ret = deliver_skb(skb, pt_prev, orig_dev);
5312                 pt_prev = ptype;
5313         }
5314
5315 skip_taps:
5316 #ifdef CONFIG_NET_INGRESS
5317         if (static_branch_unlikely(&ingress_needed_key)) {
5318                 bool another = false;
5319
5320                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5321                                          &another);
5322                 if (another)
5323                         goto another_round;
5324                 if (!skb)
5325                         goto out;
5326
5327                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5328                         goto out;
5329         }
5330 #endif
5331         skb_reset_redirect(skb);
5332 skip_classify:
5333         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5334                 goto drop;
5335
5336         if (skb_vlan_tag_present(skb)) {
5337                 if (pt_prev) {
5338                         ret = deliver_skb(skb, pt_prev, orig_dev);
5339                         pt_prev = NULL;
5340                 }
5341                 if (vlan_do_receive(&skb))
5342                         goto another_round;
5343                 else if (unlikely(!skb))
5344                         goto out;
5345         }
5346
5347         rx_handler = rcu_dereference(skb->dev->rx_handler);
5348         if (rx_handler) {
5349                 if (pt_prev) {
5350                         ret = deliver_skb(skb, pt_prev, orig_dev);
5351                         pt_prev = NULL;
5352                 }
5353                 switch (rx_handler(&skb)) {
5354                 case RX_HANDLER_CONSUMED:
5355                         ret = NET_RX_SUCCESS;
5356                         goto out;
5357                 case RX_HANDLER_ANOTHER:
5358                         goto another_round;
5359                 case RX_HANDLER_EXACT:
5360                         deliver_exact = true;
5361                         break;
5362                 case RX_HANDLER_PASS:
5363                         break;
5364                 default:
5365                         BUG();
5366                 }
5367         }
5368
5369         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5370 check_vlan_id:
5371                 if (skb_vlan_tag_get_id(skb)) {
5372                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5373                          * find vlan device.
5374                          */
5375                         skb->pkt_type = PACKET_OTHERHOST;
5376                 } else if (eth_type_vlan(skb->protocol)) {
5377                         /* Outer header is 802.1P with vlan 0, inner header is
5378                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5379                          * not find vlan dev for vlan id 0.
5380                          */
5381                         __vlan_hwaccel_clear_tag(skb);
5382                         skb = skb_vlan_untag(skb);
5383                         if (unlikely(!skb))
5384                                 goto out;
5385                         if (vlan_do_receive(&skb))
5386                                 /* After stripping off 802.1P header with vlan 0
5387                                  * vlan dev is found for inner header.
5388                                  */
5389                                 goto another_round;
5390                         else if (unlikely(!skb))
5391                                 goto out;
5392                         else
5393                                 /* We have stripped outer 802.1P vlan 0 header.
5394                                  * But could not find vlan dev.
5395                                  * check again for vlan id to set OTHERHOST.
5396                                  */
5397                                 goto check_vlan_id;
5398                 }
5399                 /* Note: we might in the future use prio bits
5400                  * and set skb->priority like in vlan_do_receive()
5401                  * For the time being, just ignore Priority Code Point
5402                  */
5403                 __vlan_hwaccel_clear_tag(skb);
5404         }
5405
5406         type = skb->protocol;
5407
5408         /* deliver only exact match when indicated */
5409         if (likely(!deliver_exact)) {
5410                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5411                                        &ptype_base[ntohs(type) &
5412                                                    PTYPE_HASH_MASK]);
5413         }
5414
5415         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5416                                &orig_dev->ptype_specific);
5417
5418         if (unlikely(skb->dev != orig_dev)) {
5419                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5420                                        &skb->dev->ptype_specific);
5421         }
5422
5423         if (pt_prev) {
5424                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5425                         goto drop;
5426                 *ppt_prev = pt_prev;
5427         } else {
5428 drop:
5429                 if (!deliver_exact)
5430                         atomic_long_inc(&skb->dev->rx_dropped);
5431                 else
5432                         atomic_long_inc(&skb->dev->rx_nohandler);
5433                 kfree_skb(skb);
5434                 /* Jamal, now you will not able to escape explaining
5435                  * me how you were going to use this. :-)
5436                  */
5437                 ret = NET_RX_DROP;
5438         }
5439
5440 out:
5441         /* The invariant here is that if *ppt_prev is not NULL
5442          * then skb should also be non-NULL.
5443          *
5444          * Apparently *ppt_prev assignment above holds this invariant due to
5445          * skb dereferencing near it.
5446          */
5447         *pskb = skb;
5448         return ret;
5449 }
5450
5451 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5452 {
5453         struct net_device *orig_dev = skb->dev;
5454         struct packet_type *pt_prev = NULL;
5455         int ret;
5456
5457         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5458         if (pt_prev)
5459                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5460                                          skb->dev, pt_prev, orig_dev);
5461         return ret;
5462 }
5463
5464 /**
5465  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5466  *      @skb: buffer to process
5467  *
5468  *      More direct receive version of netif_receive_skb().  It should
5469  *      only be used by callers that have a need to skip RPS and Generic XDP.
5470  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5471  *
5472  *      This function may only be called from softirq context and interrupts
5473  *      should be enabled.
5474  *
5475  *      Return values (usually ignored):
5476  *      NET_RX_SUCCESS: no congestion
5477  *      NET_RX_DROP: packet was dropped
5478  */
5479 int netif_receive_skb_core(struct sk_buff *skb)
5480 {
5481         int ret;
5482
5483         rcu_read_lock();
5484         ret = __netif_receive_skb_one_core(skb, false);
5485         rcu_read_unlock();
5486
5487         return ret;
5488 }
5489 EXPORT_SYMBOL(netif_receive_skb_core);
5490
5491 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5492                                                   struct packet_type *pt_prev,
5493                                                   struct net_device *orig_dev)
5494 {
5495         struct sk_buff *skb, *next;
5496
5497         if (!pt_prev)
5498                 return;
5499         if (list_empty(head))
5500                 return;
5501         if (pt_prev->list_func != NULL)
5502                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5503                                    ip_list_rcv, head, pt_prev, orig_dev);
5504         else
5505                 list_for_each_entry_safe(skb, next, head, list) {
5506                         skb_list_del_init(skb);
5507                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5508                 }
5509 }
5510
5511 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5512 {
5513         /* Fast-path assumptions:
5514          * - There is no RX handler.
5515          * - Only one packet_type matches.
5516          * If either of these fails, we will end up doing some per-packet
5517          * processing in-line, then handling the 'last ptype' for the whole
5518          * sublist.  This can't cause out-of-order delivery to any single ptype,
5519          * because the 'last ptype' must be constant across the sublist, and all
5520          * other ptypes are handled per-packet.
5521          */
5522         /* Current (common) ptype of sublist */
5523         struct packet_type *pt_curr = NULL;
5524         /* Current (common) orig_dev of sublist */
5525         struct net_device *od_curr = NULL;
5526         struct list_head sublist;
5527         struct sk_buff *skb, *next;
5528
5529         INIT_LIST_HEAD(&sublist);
5530         list_for_each_entry_safe(skb, next, head, list) {
5531                 struct net_device *orig_dev = skb->dev;
5532                 struct packet_type *pt_prev = NULL;
5533
5534                 skb_list_del_init(skb);
5535                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5536                 if (!pt_prev)
5537                         continue;
5538                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5539                         /* dispatch old sublist */
5540                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5541                         /* start new sublist */
5542                         INIT_LIST_HEAD(&sublist);
5543                         pt_curr = pt_prev;
5544                         od_curr = orig_dev;
5545                 }
5546                 list_add_tail(&skb->list, &sublist);
5547         }
5548
5549         /* dispatch final sublist */
5550         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5551 }
5552
5553 static int __netif_receive_skb(struct sk_buff *skb)
5554 {
5555         int ret;
5556
5557         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5558                 unsigned int noreclaim_flag;
5559
5560                 /*
5561                  * PFMEMALLOC skbs are special, they should
5562                  * - be delivered to SOCK_MEMALLOC sockets only
5563                  * - stay away from userspace
5564                  * - have bounded memory usage
5565                  *
5566                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5567                  * context down to all allocation sites.
5568                  */
5569                 noreclaim_flag = memalloc_noreclaim_save();
5570                 ret = __netif_receive_skb_one_core(skb, true);
5571                 memalloc_noreclaim_restore(noreclaim_flag);
5572         } else
5573                 ret = __netif_receive_skb_one_core(skb, false);
5574
5575         return ret;
5576 }
5577
5578 static void __netif_receive_skb_list(struct list_head *head)
5579 {
5580         unsigned long noreclaim_flag = 0;
5581         struct sk_buff *skb, *next;
5582         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5583
5584         list_for_each_entry_safe(skb, next, head, list) {
5585                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5586                         struct list_head sublist;
5587
5588                         /* Handle the previous sublist */
5589                         list_cut_before(&sublist, head, &skb->list);
5590                         if (!list_empty(&sublist))
5591                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5592                         pfmemalloc = !pfmemalloc;
5593                         /* See comments in __netif_receive_skb */
5594                         if (pfmemalloc)
5595                                 noreclaim_flag = memalloc_noreclaim_save();
5596                         else
5597                                 memalloc_noreclaim_restore(noreclaim_flag);
5598                 }
5599         }
5600         /* Handle the remaining sublist */
5601         if (!list_empty(head))
5602                 __netif_receive_skb_list_core(head, pfmemalloc);
5603         /* Restore pflags */
5604         if (pfmemalloc)
5605                 memalloc_noreclaim_restore(noreclaim_flag);
5606 }
5607
5608 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5609 {
5610         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5611         struct bpf_prog *new = xdp->prog;
5612         int ret = 0;
5613
5614         if (new) {
5615                 u32 i;
5616
5617                 mutex_lock(&new->aux->used_maps_mutex);
5618
5619                 /* generic XDP does not work with DEVMAPs that can
5620                  * have a bpf_prog installed on an entry
5621                  */
5622                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5623                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5624                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5625                                 mutex_unlock(&new->aux->used_maps_mutex);
5626                                 return -EINVAL;
5627                         }
5628                 }
5629
5630                 mutex_unlock(&new->aux->used_maps_mutex);
5631         }
5632
5633         switch (xdp->command) {
5634         case XDP_SETUP_PROG:
5635                 rcu_assign_pointer(dev->xdp_prog, new);
5636                 if (old)
5637                         bpf_prog_put(old);
5638
5639                 if (old && !new) {
5640                         static_branch_dec(&generic_xdp_needed_key);
5641                 } else if (new && !old) {
5642                         static_branch_inc(&generic_xdp_needed_key);
5643                         dev_disable_lro(dev);
5644                         dev_disable_gro_hw(dev);
5645                 }
5646                 break;
5647
5648         default:
5649                 ret = -EINVAL;
5650                 break;
5651         }
5652
5653         return ret;
5654 }
5655
5656 static int netif_receive_skb_internal(struct sk_buff *skb)
5657 {
5658         int ret;
5659
5660         net_timestamp_check(netdev_tstamp_prequeue, skb);
5661
5662         if (skb_defer_rx_timestamp(skb))
5663                 return NET_RX_SUCCESS;
5664
5665         rcu_read_lock();
5666 #ifdef CONFIG_RPS
5667         if (static_branch_unlikely(&rps_needed)) {
5668                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5669                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5670
5671                 if (cpu >= 0) {
5672                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5673                         rcu_read_unlock();
5674                         return ret;
5675                 }
5676         }
5677 #endif
5678         ret = __netif_receive_skb(skb);
5679         rcu_read_unlock();
5680         return ret;
5681 }
5682
5683 static void netif_receive_skb_list_internal(struct list_head *head)
5684 {
5685         struct sk_buff *skb, *next;
5686         struct list_head sublist;
5687
5688         INIT_LIST_HEAD(&sublist);
5689         list_for_each_entry_safe(skb, next, head, list) {
5690                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5691                 skb_list_del_init(skb);
5692                 if (!skb_defer_rx_timestamp(skb))
5693                         list_add_tail(&skb->list, &sublist);
5694         }
5695         list_splice_init(&sublist, head);
5696
5697         rcu_read_lock();
5698 #ifdef CONFIG_RPS
5699         if (static_branch_unlikely(&rps_needed)) {
5700                 list_for_each_entry_safe(skb, next, head, list) {
5701                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5702                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5703
5704                         if (cpu >= 0) {
5705                                 /* Will be handled, remove from list */
5706                                 skb_list_del_init(skb);
5707                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5708                         }
5709                 }
5710         }
5711 #endif
5712         __netif_receive_skb_list(head);
5713         rcu_read_unlock();
5714 }
5715
5716 /**
5717  *      netif_receive_skb - process receive buffer from network
5718  *      @skb: buffer to process
5719  *
5720  *      netif_receive_skb() is the main receive data processing function.
5721  *      It always succeeds. The buffer may be dropped during processing
5722  *      for congestion control or by the protocol layers.
5723  *
5724  *      This function may only be called from softirq context and interrupts
5725  *      should be enabled.
5726  *
5727  *      Return values (usually ignored):
5728  *      NET_RX_SUCCESS: no congestion
5729  *      NET_RX_DROP: packet was dropped
5730  */
5731 int netif_receive_skb(struct sk_buff *skb)
5732 {
5733         int ret;
5734
5735         trace_netif_receive_skb_entry(skb);
5736
5737         ret = netif_receive_skb_internal(skb);
5738         trace_netif_receive_skb_exit(ret);
5739
5740         return ret;
5741 }
5742 EXPORT_SYMBOL(netif_receive_skb);
5743
5744 /**
5745  *      netif_receive_skb_list - process many receive buffers from network
5746  *      @head: list of skbs to process.
5747  *
5748  *      Since return value of netif_receive_skb() is normally ignored, and
5749  *      wouldn't be meaningful for a list, this function returns void.
5750  *
5751  *      This function may only be called from softirq context and interrupts
5752  *      should be enabled.
5753  */
5754 void netif_receive_skb_list(struct list_head *head)
5755 {
5756         struct sk_buff *skb;
5757
5758         if (list_empty(head))
5759                 return;
5760         if (trace_netif_receive_skb_list_entry_enabled()) {
5761                 list_for_each_entry(skb, head, list)
5762                         trace_netif_receive_skb_list_entry(skb);
5763         }
5764         netif_receive_skb_list_internal(head);
5765         trace_netif_receive_skb_list_exit(0);
5766 }
5767 EXPORT_SYMBOL(netif_receive_skb_list);
5768
5769 static DEFINE_PER_CPU(struct work_struct, flush_works);
5770
5771 /* Network device is going away, flush any packets still pending */
5772 static void flush_backlog(struct work_struct *work)
5773 {
5774         struct sk_buff *skb, *tmp;
5775         struct softnet_data *sd;
5776
5777         local_bh_disable();
5778         sd = this_cpu_ptr(&softnet_data);
5779
5780         local_irq_disable();
5781         rps_lock(sd);
5782         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5783                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5784                         __skb_unlink(skb, &sd->input_pkt_queue);
5785                         dev_kfree_skb_irq(skb);
5786                         input_queue_head_incr(sd);
5787                 }
5788         }
5789         rps_unlock(sd);
5790         local_irq_enable();
5791
5792         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5793                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794                         __skb_unlink(skb, &sd->process_queue);
5795                         kfree_skb(skb);
5796                         input_queue_head_incr(sd);
5797                 }
5798         }
5799         local_bh_enable();
5800 }
5801
5802 static bool flush_required(int cpu)
5803 {
5804 #if IS_ENABLED(CONFIG_RPS)
5805         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5806         bool do_flush;
5807
5808         local_irq_disable();
5809         rps_lock(sd);
5810
5811         /* as insertion into process_queue happens with the rps lock held,
5812          * process_queue access may race only with dequeue
5813          */
5814         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5815                    !skb_queue_empty_lockless(&sd->process_queue);
5816         rps_unlock(sd);
5817         local_irq_enable();
5818
5819         return do_flush;
5820 #endif
5821         /* without RPS we can't safely check input_pkt_queue: during a
5822          * concurrent remote skb_queue_splice() we can detect as empty both
5823          * input_pkt_queue and process_queue even if the latter could end-up
5824          * containing a lot of packets.
5825          */
5826         return true;
5827 }
5828
5829 static void flush_all_backlogs(void)
5830 {
5831         static cpumask_t flush_cpus;
5832         unsigned int cpu;
5833
5834         /* since we are under rtnl lock protection we can use static data
5835          * for the cpumask and avoid allocating on stack the possibly
5836          * large mask
5837          */
5838         ASSERT_RTNL();
5839
5840         get_online_cpus();
5841
5842         cpumask_clear(&flush_cpus);
5843         for_each_online_cpu(cpu) {
5844                 if (flush_required(cpu)) {
5845                         queue_work_on(cpu, system_highpri_wq,
5846                                       per_cpu_ptr(&flush_works, cpu));
5847                         cpumask_set_cpu(cpu, &flush_cpus);
5848                 }
5849         }
5850
5851         /* we can have in flight packet[s] on the cpus we are not flushing,
5852          * synchronize_net() in unregister_netdevice_many() will take care of
5853          * them
5854          */
5855         for_each_cpu(cpu, &flush_cpus)
5856                 flush_work(per_cpu_ptr(&flush_works, cpu));
5857
5858         put_online_cpus();
5859 }
5860
5861 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5862 static void gro_normal_list(struct napi_struct *napi)
5863 {
5864         if (!napi->rx_count)
5865                 return;
5866         netif_receive_skb_list_internal(&napi->rx_list);
5867         INIT_LIST_HEAD(&napi->rx_list);
5868         napi->rx_count = 0;
5869 }
5870
5871 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5872  * pass the whole batch up to the stack.
5873  */
5874 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5875 {
5876         list_add_tail(&skb->list, &napi->rx_list);
5877         napi->rx_count += segs;
5878         if (napi->rx_count >= gro_normal_batch)
5879                 gro_normal_list(napi);
5880 }
5881
5882 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5883 {
5884         struct packet_offload *ptype;
5885         __be16 type = skb->protocol;
5886         struct list_head *head = &offload_base;
5887         int err = -ENOENT;
5888
5889         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5890
5891         if (NAPI_GRO_CB(skb)->count == 1) {
5892                 skb_shinfo(skb)->gso_size = 0;
5893                 goto out;
5894         }
5895
5896         rcu_read_lock();
5897         list_for_each_entry_rcu(ptype, head, list) {
5898                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5899                         continue;
5900
5901                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5902                                          ipv6_gro_complete, inet_gro_complete,
5903                                          skb, 0);
5904                 break;
5905         }
5906         rcu_read_unlock();
5907
5908         if (err) {
5909                 WARN_ON(&ptype->list == head);
5910                 kfree_skb(skb);
5911                 return NET_RX_SUCCESS;
5912         }
5913
5914 out:
5915         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5916         return NET_RX_SUCCESS;
5917 }
5918
5919 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5920                                    bool flush_old)
5921 {
5922         struct list_head *head = &napi->gro_hash[index].list;
5923         struct sk_buff *skb, *p;
5924
5925         list_for_each_entry_safe_reverse(skb, p, head, list) {
5926                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5927                         return;
5928                 skb_list_del_init(skb);
5929                 napi_gro_complete(napi, skb);
5930                 napi->gro_hash[index].count--;
5931         }
5932
5933         if (!napi->gro_hash[index].count)
5934                 __clear_bit(index, &napi->gro_bitmask);
5935 }
5936
5937 /* napi->gro_hash[].list contains packets ordered by age.
5938  * youngest packets at the head of it.
5939  * Complete skbs in reverse order to reduce latencies.
5940  */
5941 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5942 {
5943         unsigned long bitmask = napi->gro_bitmask;
5944         unsigned int i, base = ~0U;
5945
5946         while ((i = ffs(bitmask)) != 0) {
5947                 bitmask >>= i;
5948                 base += i;
5949                 __napi_gro_flush_chain(napi, base, flush_old);
5950         }
5951 }
5952 EXPORT_SYMBOL(napi_gro_flush);
5953
5954 static void gro_list_prepare(const struct list_head *head,
5955                              const struct sk_buff *skb)
5956 {
5957         unsigned int maclen = skb->dev->hard_header_len;
5958         u32 hash = skb_get_hash_raw(skb);
5959         struct sk_buff *p;
5960
5961         list_for_each_entry(p, head, list) {
5962                 unsigned long diffs;
5963
5964                 NAPI_GRO_CB(p)->flush = 0;
5965
5966                 if (hash != skb_get_hash_raw(p)) {
5967                         NAPI_GRO_CB(p)->same_flow = 0;
5968                         continue;
5969                 }
5970
5971                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5972                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5973                 if (skb_vlan_tag_present(p))
5974                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5975                 diffs |= skb_metadata_dst_cmp(p, skb);
5976                 diffs |= skb_metadata_differs(p, skb);
5977                 if (maclen == ETH_HLEN)
5978                         diffs |= compare_ether_header(skb_mac_header(p),
5979                                                       skb_mac_header(skb));
5980                 else if (!diffs)
5981                         diffs = memcmp(skb_mac_header(p),
5982                                        skb_mac_header(skb),
5983                                        maclen);
5984
5985                 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5986 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5987                 if (!diffs) {
5988                         struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5989                         struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5990
5991                         diffs |= (!!p_ext) ^ (!!skb_ext);
5992                         if (!diffs && unlikely(skb_ext))
5993                                 diffs |= p_ext->chain ^ skb_ext->chain;
5994                 }
5995 #endif
5996
5997                 NAPI_GRO_CB(p)->same_flow = !diffs;
5998         }
5999 }
6000
6001 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6002 {
6003         const struct skb_shared_info *pinfo = skb_shinfo(skb);
6004         const skb_frag_t *frag0 = &pinfo->frags[0];
6005
6006         NAPI_GRO_CB(skb)->data_offset = 0;
6007         NAPI_GRO_CB(skb)->frag0 = NULL;
6008         NAPI_GRO_CB(skb)->frag0_len = 0;
6009
6010         if (!skb_headlen(skb) && pinfo->nr_frags &&
6011             !PageHighMem(skb_frag_page(frag0)) &&
6012             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6013                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6014                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6015                                                     skb_frag_size(frag0),
6016                                                     skb->end - skb->tail);
6017         }
6018 }
6019
6020 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6021 {
6022         struct skb_shared_info *pinfo = skb_shinfo(skb);
6023
6024         BUG_ON(skb->end - skb->tail < grow);
6025
6026         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6027
6028         skb->data_len -= grow;
6029         skb->tail += grow;
6030
6031         skb_frag_off_add(&pinfo->frags[0], grow);
6032         skb_frag_size_sub(&pinfo->frags[0], grow);
6033
6034         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6035                 skb_frag_unref(skb, 0);
6036                 memmove(pinfo->frags, pinfo->frags + 1,
6037                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6038         }
6039 }
6040
6041 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6042 {
6043         struct sk_buff *oldest;
6044
6045         oldest = list_last_entry(head, struct sk_buff, list);
6046
6047         /* We are called with head length >= MAX_GRO_SKBS, so this is
6048          * impossible.
6049          */
6050         if (WARN_ON_ONCE(!oldest))
6051                 return;
6052
6053         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6054          * SKB to the chain.
6055          */
6056         skb_list_del_init(oldest);
6057         napi_gro_complete(napi, oldest);
6058 }
6059
6060 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6061 {
6062         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6063         struct gro_list *gro_list = &napi->gro_hash[bucket];
6064         struct list_head *head = &offload_base;
6065         struct packet_offload *ptype;
6066         __be16 type = skb->protocol;
6067         struct sk_buff *pp = NULL;
6068         enum gro_result ret;
6069         int same_flow;
6070         int grow;
6071
6072         if (netif_elide_gro(skb->dev))
6073                 goto normal;
6074
6075         gro_list_prepare(&gro_list->list, skb);
6076
6077         rcu_read_lock();
6078         list_for_each_entry_rcu(ptype, head, list) {
6079                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6080                         continue;
6081
6082                 skb_set_network_header(skb, skb_gro_offset(skb));
6083                 skb_reset_mac_len(skb);
6084                 NAPI_GRO_CB(skb)->same_flow = 0;
6085                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6086                 NAPI_GRO_CB(skb)->free = 0;
6087                 NAPI_GRO_CB(skb)->encap_mark = 0;
6088                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6089                 NAPI_GRO_CB(skb)->is_fou = 0;
6090                 NAPI_GRO_CB(skb)->is_atomic = 1;
6091                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6092
6093                 /* Setup for GRO checksum validation */
6094                 switch (skb->ip_summed) {
6095                 case CHECKSUM_COMPLETE:
6096                         NAPI_GRO_CB(skb)->csum = skb->csum;
6097                         NAPI_GRO_CB(skb)->csum_valid = 1;
6098                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6099                         break;
6100                 case CHECKSUM_UNNECESSARY:
6101                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6102                         NAPI_GRO_CB(skb)->csum_valid = 0;
6103                         break;
6104                 default:
6105                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6106                         NAPI_GRO_CB(skb)->csum_valid = 0;
6107                 }
6108
6109                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6110                                         ipv6_gro_receive, inet_gro_receive,
6111                                         &gro_list->list, skb);
6112                 break;
6113         }
6114         rcu_read_unlock();
6115
6116         if (&ptype->list == head)
6117                 goto normal;
6118
6119         if (PTR_ERR(pp) == -EINPROGRESS) {
6120                 ret = GRO_CONSUMED;
6121                 goto ok;
6122         }
6123
6124         same_flow = NAPI_GRO_CB(skb)->same_flow;
6125         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6126
6127         if (pp) {
6128                 skb_list_del_init(pp);
6129                 napi_gro_complete(napi, pp);
6130                 gro_list->count--;
6131         }
6132
6133         if (same_flow)
6134                 goto ok;
6135
6136         if (NAPI_GRO_CB(skb)->flush)
6137                 goto normal;
6138
6139         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6140                 gro_flush_oldest(napi, &gro_list->list);
6141         else
6142                 gro_list->count++;
6143
6144         NAPI_GRO_CB(skb)->count = 1;
6145         NAPI_GRO_CB(skb)->age = jiffies;
6146         NAPI_GRO_CB(skb)->last = skb;
6147         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6148         list_add(&skb->list, &gro_list->list);
6149         ret = GRO_HELD;
6150
6151 pull:
6152         grow = skb_gro_offset(skb) - skb_headlen(skb);
6153         if (grow > 0)
6154                 gro_pull_from_frag0(skb, grow);
6155 ok:
6156         if (gro_list->count) {
6157                 if (!test_bit(bucket, &napi->gro_bitmask))
6158                         __set_bit(bucket, &napi->gro_bitmask);
6159         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6160                 __clear_bit(bucket, &napi->gro_bitmask);
6161         }
6162
6163         return ret;
6164
6165 normal:
6166         ret = GRO_NORMAL;
6167         goto pull;
6168 }
6169
6170 struct packet_offload *gro_find_receive_by_type(__be16 type)
6171 {
6172         struct list_head *offload_head = &offload_base;
6173         struct packet_offload *ptype;
6174
6175         list_for_each_entry_rcu(ptype, offload_head, list) {
6176                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6177                         continue;
6178                 return ptype;
6179         }
6180         return NULL;
6181 }
6182 EXPORT_SYMBOL(gro_find_receive_by_type);
6183
6184 struct packet_offload *gro_find_complete_by_type(__be16 type)
6185 {
6186         struct list_head *offload_head = &offload_base;
6187         struct packet_offload *ptype;
6188
6189         list_for_each_entry_rcu(ptype, offload_head, list) {
6190                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6191                         continue;
6192                 return ptype;
6193         }
6194         return NULL;
6195 }
6196 EXPORT_SYMBOL(gro_find_complete_by_type);
6197
6198 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6199                                     struct sk_buff *skb,
6200                                     gro_result_t ret)
6201 {
6202         switch (ret) {
6203         case GRO_NORMAL:
6204                 gro_normal_one(napi, skb, 1);
6205                 break;
6206
6207         case GRO_MERGED_FREE:
6208                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6209                         napi_skb_free_stolen_head(skb);
6210                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6211                         __kfree_skb(skb);
6212                 else
6213                         __kfree_skb_defer(skb);
6214                 break;
6215
6216         case GRO_HELD:
6217         case GRO_MERGED:
6218         case GRO_CONSUMED:
6219                 break;
6220         }
6221
6222         return ret;
6223 }
6224
6225 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6226 {
6227         gro_result_t ret;
6228
6229         skb_mark_napi_id(skb, napi);
6230         trace_napi_gro_receive_entry(skb);
6231
6232         skb_gro_reset_offset(skb, 0);
6233
6234         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6235         trace_napi_gro_receive_exit(ret);
6236
6237         return ret;
6238 }
6239 EXPORT_SYMBOL(napi_gro_receive);
6240
6241 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6242 {
6243         if (unlikely(skb->pfmemalloc)) {
6244                 consume_skb(skb);
6245                 return;
6246         }
6247         __skb_pull(skb, skb_headlen(skb));
6248         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6249         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6250         __vlan_hwaccel_clear_tag(skb);
6251         skb->dev = napi->dev;
6252         skb->skb_iif = 0;
6253
6254         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6255         skb->pkt_type = PACKET_HOST;
6256
6257         skb->encapsulation = 0;
6258         skb_shinfo(skb)->gso_type = 0;
6259         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6260         skb_ext_reset(skb);
6261         nf_reset_ct(skb);
6262
6263         napi->skb = skb;
6264 }
6265
6266 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6267 {
6268         struct sk_buff *skb = napi->skb;
6269
6270         if (!skb) {
6271                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6272                 if (skb) {
6273                         napi->skb = skb;
6274                         skb_mark_napi_id(skb, napi);
6275                 }
6276         }
6277         return skb;
6278 }
6279 EXPORT_SYMBOL(napi_get_frags);
6280
6281 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6282                                       struct sk_buff *skb,
6283                                       gro_result_t ret)
6284 {
6285         switch (ret) {
6286         case GRO_NORMAL:
6287         case GRO_HELD:
6288                 __skb_push(skb, ETH_HLEN);
6289                 skb->protocol = eth_type_trans(skb, skb->dev);
6290                 if (ret == GRO_NORMAL)
6291                         gro_normal_one(napi, skb, 1);
6292                 break;
6293
6294         case GRO_MERGED_FREE:
6295                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6296                         napi_skb_free_stolen_head(skb);
6297                 else
6298                         napi_reuse_skb(napi, skb);
6299                 break;
6300
6301         case GRO_MERGED:
6302         case GRO_CONSUMED:
6303                 break;
6304         }
6305
6306         return ret;
6307 }
6308
6309 /* Upper GRO stack assumes network header starts at gro_offset=0
6310  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6311  * We copy ethernet header into skb->data to have a common layout.
6312  */
6313 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6314 {
6315         struct sk_buff *skb = napi->skb;
6316         const struct ethhdr *eth;
6317         unsigned int hlen = sizeof(*eth);
6318
6319         napi->skb = NULL;
6320
6321         skb_reset_mac_header(skb);
6322         skb_gro_reset_offset(skb, hlen);
6323
6324         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6325                 eth = skb_gro_header_slow(skb, hlen, 0);
6326                 if (unlikely(!eth)) {
6327                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6328                                              __func__, napi->dev->name);
6329                         napi_reuse_skb(napi, skb);
6330                         return NULL;
6331                 }
6332         } else {
6333                 eth = (const struct ethhdr *)skb->data;
6334                 gro_pull_from_frag0(skb, hlen);
6335                 NAPI_GRO_CB(skb)->frag0 += hlen;
6336                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6337         }
6338         __skb_pull(skb, hlen);
6339
6340         /*
6341          * This works because the only protocols we care about don't require
6342          * special handling.
6343          * We'll fix it up properly in napi_frags_finish()
6344          */
6345         skb->protocol = eth->h_proto;
6346
6347         return skb;
6348 }
6349
6350 gro_result_t napi_gro_frags(struct napi_struct *napi)
6351 {
6352         gro_result_t ret;
6353         struct sk_buff *skb = napi_frags_skb(napi);
6354
6355         trace_napi_gro_frags_entry(skb);
6356
6357         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6358         trace_napi_gro_frags_exit(ret);
6359
6360         return ret;
6361 }
6362 EXPORT_SYMBOL(napi_gro_frags);
6363
6364 /* Compute the checksum from gro_offset and return the folded value
6365  * after adding in any pseudo checksum.
6366  */
6367 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6368 {
6369         __wsum wsum;
6370         __sum16 sum;
6371
6372         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6373
6374         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6375         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6376         /* See comments in __skb_checksum_complete(). */
6377         if (likely(!sum)) {
6378                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6379                     !skb->csum_complete_sw)
6380                         netdev_rx_csum_fault(skb->dev, skb);
6381         }
6382
6383         NAPI_GRO_CB(skb)->csum = wsum;
6384         NAPI_GRO_CB(skb)->csum_valid = 1;
6385
6386         return sum;
6387 }
6388 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6389
6390 static void net_rps_send_ipi(struct softnet_data *remsd)
6391 {
6392 #ifdef CONFIG_RPS
6393         while (remsd) {
6394                 struct softnet_data *next = remsd->rps_ipi_next;
6395
6396                 if (cpu_online(remsd->cpu))
6397                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6398                 remsd = next;
6399         }
6400 #endif
6401 }
6402
6403 /*
6404  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6405  * Note: called with local irq disabled, but exits with local irq enabled.
6406  */
6407 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6408 {
6409 #ifdef CONFIG_RPS
6410         struct softnet_data *remsd = sd->rps_ipi_list;
6411
6412         if (remsd) {
6413                 sd->rps_ipi_list = NULL;
6414
6415                 local_irq_enable();
6416
6417                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6418                 net_rps_send_ipi(remsd);
6419         } else
6420 #endif
6421                 local_irq_enable();
6422 }
6423
6424 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6425 {
6426 #ifdef CONFIG_RPS
6427         return sd->rps_ipi_list != NULL;
6428 #else
6429         return false;
6430 #endif
6431 }
6432
6433 static int process_backlog(struct napi_struct *napi, int quota)
6434 {
6435         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6436         bool again = true;
6437         int work = 0;
6438
6439         /* Check if we have pending ipi, its better to send them now,
6440          * not waiting net_rx_action() end.
6441          */
6442         if (sd_has_rps_ipi_waiting(sd)) {
6443                 local_irq_disable();
6444                 net_rps_action_and_irq_enable(sd);
6445         }
6446
6447         napi->weight = dev_rx_weight;
6448         while (again) {
6449                 struct sk_buff *skb;
6450
6451                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6452                         rcu_read_lock();
6453                         __netif_receive_skb(skb);
6454                         rcu_read_unlock();
6455                         input_queue_head_incr(sd);
6456                         if (++work >= quota)
6457                                 return work;
6458
6459                 }
6460
6461                 local_irq_disable();
6462                 rps_lock(sd);
6463                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6464                         /*
6465                          * Inline a custom version of __napi_complete().
6466                          * only current cpu owns and manipulates this napi,
6467                          * and NAPI_STATE_SCHED is the only possible flag set
6468                          * on backlog.
6469                          * We can use a plain write instead of clear_bit(),
6470                          * and we dont need an smp_mb() memory barrier.
6471                          */
6472                         napi->state = 0;
6473                         again = false;
6474                 } else {
6475                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6476                                                    &sd->process_queue);
6477                 }
6478                 rps_unlock(sd);
6479                 local_irq_enable();
6480         }
6481
6482         return work;
6483 }
6484
6485 /**
6486  * __napi_schedule - schedule for receive
6487  * @n: entry to schedule
6488  *
6489  * The entry's receive function will be scheduled to run.
6490  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6491  */
6492 void __napi_schedule(struct napi_struct *n)
6493 {
6494         unsigned long flags;
6495
6496         local_irq_save(flags);
6497         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6498         local_irq_restore(flags);
6499 }
6500 EXPORT_SYMBOL(__napi_schedule);
6501
6502 /**
6503  *      napi_schedule_prep - check if napi can be scheduled
6504  *      @n: napi context
6505  *
6506  * Test if NAPI routine is already running, and if not mark
6507  * it as running.  This is used as a condition variable to
6508  * insure only one NAPI poll instance runs.  We also make
6509  * sure there is no pending NAPI disable.
6510  */
6511 bool napi_schedule_prep(struct napi_struct *n)
6512 {
6513         unsigned long val, new;
6514
6515         do {
6516                 val = READ_ONCE(n->state);
6517                 if (unlikely(val & NAPIF_STATE_DISABLE))
6518                         return false;
6519                 new = val | NAPIF_STATE_SCHED;
6520
6521                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6522                  * This was suggested by Alexander Duyck, as compiler
6523                  * emits better code than :
6524                  * if (val & NAPIF_STATE_SCHED)
6525                  *     new |= NAPIF_STATE_MISSED;
6526                  */
6527                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6528                                                    NAPIF_STATE_MISSED;
6529         } while (cmpxchg(&n->state, val, new) != val);
6530
6531         return !(val & NAPIF_STATE_SCHED);
6532 }
6533 EXPORT_SYMBOL(napi_schedule_prep);
6534
6535 /**
6536  * __napi_schedule_irqoff - schedule for receive
6537  * @n: entry to schedule
6538  *
6539  * Variant of __napi_schedule() assuming hard irqs are masked.
6540  *
6541  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6542  * because the interrupt disabled assumption might not be true
6543  * due to force-threaded interrupts and spinlock substitution.
6544  */
6545 void __napi_schedule_irqoff(struct napi_struct *n)
6546 {
6547         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6548                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6549         else
6550                 __napi_schedule(n);
6551 }
6552 EXPORT_SYMBOL(__napi_schedule_irqoff);
6553
6554 bool napi_complete_done(struct napi_struct *n, int work_done)
6555 {
6556         unsigned long flags, val, new, timeout = 0;
6557         bool ret = true;
6558
6559         /*
6560          * 1) Don't let napi dequeue from the cpu poll list
6561          *    just in case its running on a different cpu.
6562          * 2) If we are busy polling, do nothing here, we have
6563          *    the guarantee we will be called later.
6564          */
6565         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6566                                  NAPIF_STATE_IN_BUSY_POLL)))
6567                 return false;
6568
6569         if (work_done) {
6570                 if (n->gro_bitmask)
6571                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6572                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6573         }
6574         if (n->defer_hard_irqs_count > 0) {
6575                 n->defer_hard_irqs_count--;
6576                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6577                 if (timeout)
6578                         ret = false;
6579         }
6580         if (n->gro_bitmask) {
6581                 /* When the NAPI instance uses a timeout and keeps postponing
6582                  * it, we need to bound somehow the time packets are kept in
6583                  * the GRO layer
6584                  */
6585                 napi_gro_flush(n, !!timeout);
6586         }
6587
6588         gro_normal_list(n);
6589
6590         if (unlikely(!list_empty(&n->poll_list))) {
6591                 /* If n->poll_list is not empty, we need to mask irqs */
6592                 local_irq_save(flags);
6593                 list_del_init(&n->poll_list);
6594                 local_irq_restore(flags);
6595         }
6596
6597         do {
6598                 val = READ_ONCE(n->state);
6599
6600                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6601
6602                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6603                               NAPIF_STATE_SCHED_THREADED |
6604                               NAPIF_STATE_PREFER_BUSY_POLL);
6605
6606                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6607                  * because we will call napi->poll() one more time.
6608                  * This C code was suggested by Alexander Duyck to help gcc.
6609                  */
6610                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6611                                                     NAPIF_STATE_SCHED;
6612         } while (cmpxchg(&n->state, val, new) != val);
6613
6614         if (unlikely(val & NAPIF_STATE_MISSED)) {
6615                 __napi_schedule(n);
6616                 return false;
6617         }
6618
6619         if (timeout)
6620                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6621                               HRTIMER_MODE_REL_PINNED);
6622         return ret;
6623 }
6624 EXPORT_SYMBOL(napi_complete_done);
6625
6626 /* must be called under rcu_read_lock(), as we dont take a reference */
6627 static struct napi_struct *napi_by_id(unsigned int napi_id)
6628 {
6629         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6630         struct napi_struct *napi;
6631
6632         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6633                 if (napi->napi_id == napi_id)
6634                         return napi;
6635
6636         return NULL;
6637 }
6638
6639 #if defined(CONFIG_NET_RX_BUSY_POLL)
6640
6641 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6642 {
6643         if (!skip_schedule) {
6644                 gro_normal_list(napi);
6645                 __napi_schedule(napi);
6646                 return;
6647         }
6648
6649         if (napi->gro_bitmask) {
6650                 /* flush too old packets
6651                  * If HZ < 1000, flush all packets.
6652                  */
6653                 napi_gro_flush(napi, HZ >= 1000);
6654         }
6655
6656         gro_normal_list(napi);
6657         clear_bit(NAPI_STATE_SCHED, &napi->state);
6658 }
6659
6660 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6661                            u16 budget)
6662 {
6663         bool skip_schedule = false;
6664         unsigned long timeout;
6665         int rc;
6666
6667         /* Busy polling means there is a high chance device driver hard irq
6668          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6669          * set in napi_schedule_prep().
6670          * Since we are about to call napi->poll() once more, we can safely
6671          * clear NAPI_STATE_MISSED.
6672          *
6673          * Note: x86 could use a single "lock and ..." instruction
6674          * to perform these two clear_bit()
6675          */
6676         clear_bit(NAPI_STATE_MISSED, &napi->state);
6677         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6678
6679         local_bh_disable();
6680
6681         if (prefer_busy_poll) {
6682                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6683                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6684                 if (napi->defer_hard_irqs_count && timeout) {
6685                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6686                         skip_schedule = true;
6687                 }
6688         }
6689
6690         /* All we really want here is to re-enable device interrupts.
6691          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6692          */
6693         rc = napi->poll(napi, budget);
6694         /* We can't gro_normal_list() here, because napi->poll() might have
6695          * rearmed the napi (napi_complete_done()) in which case it could
6696          * already be running on another CPU.
6697          */
6698         trace_napi_poll(napi, rc, budget);
6699         netpoll_poll_unlock(have_poll_lock);
6700         if (rc == budget)
6701                 __busy_poll_stop(napi, skip_schedule);
6702         local_bh_enable();
6703 }
6704
6705 void napi_busy_loop(unsigned int napi_id,
6706                     bool (*loop_end)(void *, unsigned long),
6707                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6708 {
6709         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6710         int (*napi_poll)(struct napi_struct *napi, int budget);
6711         void *have_poll_lock = NULL;
6712         struct napi_struct *napi;
6713
6714 restart:
6715         napi_poll = NULL;
6716
6717         rcu_read_lock();
6718
6719         napi = napi_by_id(napi_id);
6720         if (!napi)
6721                 goto out;
6722
6723         preempt_disable();
6724         for (;;) {
6725                 int work = 0;
6726
6727                 local_bh_disable();
6728                 if (!napi_poll) {
6729                         unsigned long val = READ_ONCE(napi->state);
6730
6731                         /* If multiple threads are competing for this napi,
6732                          * we avoid dirtying napi->state as much as we can.
6733                          */
6734                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6735                                    NAPIF_STATE_IN_BUSY_POLL)) {
6736                                 if (prefer_busy_poll)
6737                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6738                                 goto count;
6739                         }
6740                         if (cmpxchg(&napi->state, val,
6741                                     val | NAPIF_STATE_IN_BUSY_POLL |
6742                                           NAPIF_STATE_SCHED) != val) {
6743                                 if (prefer_busy_poll)
6744                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6745                                 goto count;
6746                         }
6747                         have_poll_lock = netpoll_poll_lock(napi);
6748                         napi_poll = napi->poll;
6749                 }
6750                 work = napi_poll(napi, budget);
6751                 trace_napi_poll(napi, work, budget);
6752                 gro_normal_list(napi);
6753 count:
6754                 if (work > 0)
6755                         __NET_ADD_STATS(dev_net(napi->dev),
6756                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6757                 local_bh_enable();
6758
6759                 if (!loop_end || loop_end(loop_end_arg, start_time))
6760                         break;
6761
6762                 if (unlikely(need_resched())) {
6763                         if (napi_poll)
6764                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6765                         preempt_enable();
6766                         rcu_read_unlock();
6767                         cond_resched();
6768                         if (loop_end(loop_end_arg, start_time))
6769                                 return;
6770                         goto restart;
6771                 }
6772                 cpu_relax();
6773         }
6774         if (napi_poll)
6775                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6776         preempt_enable();
6777 out:
6778         rcu_read_unlock();
6779 }
6780 EXPORT_SYMBOL(napi_busy_loop);
6781
6782 #endif /* CONFIG_NET_RX_BUSY_POLL */
6783
6784 static void napi_hash_add(struct napi_struct *napi)
6785 {
6786         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6787                 return;
6788
6789         spin_lock(&napi_hash_lock);
6790
6791         /* 0..NR_CPUS range is reserved for sender_cpu use */
6792         do {
6793                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6794                         napi_gen_id = MIN_NAPI_ID;
6795         } while (napi_by_id(napi_gen_id));
6796         napi->napi_id = napi_gen_id;
6797
6798         hlist_add_head_rcu(&napi->napi_hash_node,
6799                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6800
6801         spin_unlock(&napi_hash_lock);
6802 }
6803
6804 /* Warning : caller is responsible to make sure rcu grace period
6805  * is respected before freeing memory containing @napi
6806  */
6807 static void napi_hash_del(struct napi_struct *napi)
6808 {
6809         spin_lock(&napi_hash_lock);
6810
6811         hlist_del_init_rcu(&napi->napi_hash_node);
6812
6813         spin_unlock(&napi_hash_lock);
6814 }
6815
6816 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6817 {
6818         struct napi_struct *napi;
6819
6820         napi = container_of(timer, struct napi_struct, timer);
6821
6822         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6823          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6824          */
6825         if (!napi_disable_pending(napi) &&
6826             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6827                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6828                 __napi_schedule_irqoff(napi);
6829         }
6830
6831         return HRTIMER_NORESTART;
6832 }
6833
6834 static void init_gro_hash(struct napi_struct *napi)
6835 {
6836         int i;
6837
6838         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6839                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6840                 napi->gro_hash[i].count = 0;
6841         }
6842         napi->gro_bitmask = 0;
6843 }
6844
6845 int dev_set_threaded(struct net_device *dev, bool threaded)
6846 {
6847         struct napi_struct *napi;
6848         int err = 0;
6849
6850         if (dev->threaded == threaded)
6851                 return 0;
6852
6853         if (threaded) {
6854                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6855                         if (!napi->thread) {
6856                                 err = napi_kthread_create(napi);
6857                                 if (err) {
6858                                         threaded = false;
6859                                         break;
6860                                 }
6861                         }
6862                 }
6863         }
6864
6865         dev->threaded = threaded;
6866
6867         /* Make sure kthread is created before THREADED bit
6868          * is set.
6869          */
6870         smp_mb__before_atomic();
6871
6872         /* Setting/unsetting threaded mode on a napi might not immediately
6873          * take effect, if the current napi instance is actively being
6874          * polled. In this case, the switch between threaded mode and
6875          * softirq mode will happen in the next round of napi_schedule().
6876          * This should not cause hiccups/stalls to the live traffic.
6877          */
6878         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6879                 if (threaded)
6880                         set_bit(NAPI_STATE_THREADED, &napi->state);
6881                 else
6882                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6883         }
6884
6885         return err;
6886 }
6887 EXPORT_SYMBOL(dev_set_threaded);
6888
6889 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6890                     int (*poll)(struct napi_struct *, int), int weight)
6891 {
6892         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6893                 return;
6894
6895         INIT_LIST_HEAD(&napi->poll_list);
6896         INIT_HLIST_NODE(&napi->napi_hash_node);
6897         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6898         napi->timer.function = napi_watchdog;
6899         init_gro_hash(napi);
6900         napi->skb = NULL;
6901         INIT_LIST_HEAD(&napi->rx_list);
6902         napi->rx_count = 0;
6903         napi->poll = poll;
6904         if (weight > NAPI_POLL_WEIGHT)
6905                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6906                                 weight);
6907         napi->weight = weight;
6908         napi->dev = dev;
6909 #ifdef CONFIG_NETPOLL
6910         napi->poll_owner = -1;
6911 #endif
6912         set_bit(NAPI_STATE_SCHED, &napi->state);
6913         set_bit(NAPI_STATE_NPSVC, &napi->state);
6914         list_add_rcu(&napi->dev_list, &dev->napi_list);
6915         napi_hash_add(napi);
6916         /* Create kthread for this napi if dev->threaded is set.
6917          * Clear dev->threaded if kthread creation failed so that
6918          * threaded mode will not be enabled in napi_enable().
6919          */
6920         if (dev->threaded && napi_kthread_create(napi))
6921                 dev->threaded = 0;
6922 }
6923 EXPORT_SYMBOL(netif_napi_add);
6924
6925 void napi_disable(struct napi_struct *n)
6926 {
6927         might_sleep();
6928         set_bit(NAPI_STATE_DISABLE, &n->state);
6929
6930         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6931                 msleep(1);
6932         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6933                 msleep(1);
6934
6935         hrtimer_cancel(&n->timer);
6936
6937         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6938         clear_bit(NAPI_STATE_DISABLE, &n->state);
6939         clear_bit(NAPI_STATE_THREADED, &n->state);
6940 }
6941 EXPORT_SYMBOL(napi_disable);
6942
6943 /**
6944  *      napi_enable - enable NAPI scheduling
6945  *      @n: NAPI context
6946  *
6947  * Resume NAPI from being scheduled on this context.
6948  * Must be paired with napi_disable.
6949  */
6950 void napi_enable(struct napi_struct *n)
6951 {
6952         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6953         smp_mb__before_atomic();
6954         clear_bit(NAPI_STATE_SCHED, &n->state);
6955         clear_bit(NAPI_STATE_NPSVC, &n->state);
6956         if (n->dev->threaded && n->thread)
6957                 set_bit(NAPI_STATE_THREADED, &n->state);
6958 }
6959 EXPORT_SYMBOL(napi_enable);
6960
6961 static void flush_gro_hash(struct napi_struct *napi)
6962 {
6963         int i;
6964
6965         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6966                 struct sk_buff *skb, *n;
6967
6968                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6969                         kfree_skb(skb);
6970                 napi->gro_hash[i].count = 0;
6971         }
6972 }
6973
6974 /* Must be called in process context */
6975 void __netif_napi_del(struct napi_struct *napi)
6976 {
6977         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6978                 return;
6979
6980         napi_hash_del(napi);
6981         list_del_rcu(&napi->dev_list);
6982         napi_free_frags(napi);
6983
6984         flush_gro_hash(napi);
6985         napi->gro_bitmask = 0;
6986
6987         if (napi->thread) {
6988                 kthread_stop(napi->thread);
6989                 napi->thread = NULL;
6990         }
6991 }
6992 EXPORT_SYMBOL(__netif_napi_del);
6993
6994 static int __napi_poll(struct napi_struct *n, bool *repoll)
6995 {
6996         int work, weight;
6997
6998         weight = n->weight;
6999
7000         /* This NAPI_STATE_SCHED test is for avoiding a race
7001          * with netpoll's poll_napi().  Only the entity which
7002          * obtains the lock and sees NAPI_STATE_SCHED set will
7003          * actually make the ->poll() call.  Therefore we avoid
7004          * accidentally calling ->poll() when NAPI is not scheduled.
7005          */
7006         work = 0;
7007         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7008                 work = n->poll(n, weight);
7009                 trace_napi_poll(n, work, weight);
7010         }
7011
7012         if (unlikely(work > weight))
7013                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7014                             n->poll, work, weight);
7015
7016         if (likely(work < weight))
7017                 return work;
7018
7019         /* Drivers must not modify the NAPI state if they
7020          * consume the entire weight.  In such cases this code
7021          * still "owns" the NAPI instance and therefore can
7022          * move the instance around on the list at-will.
7023          */
7024         if (unlikely(napi_disable_pending(n))) {
7025                 napi_complete(n);
7026                 return work;
7027         }
7028
7029         /* The NAPI context has more processing work, but busy-polling
7030          * is preferred. Exit early.
7031          */
7032         if (napi_prefer_busy_poll(n)) {
7033                 if (napi_complete_done(n, work)) {
7034                         /* If timeout is not set, we need to make sure
7035                          * that the NAPI is re-scheduled.
7036                          */
7037                         napi_schedule(n);
7038                 }
7039                 return work;
7040         }
7041
7042         if (n->gro_bitmask) {
7043                 /* flush too old packets
7044                  * If HZ < 1000, flush all packets.
7045                  */
7046                 napi_gro_flush(n, HZ >= 1000);
7047         }
7048
7049         gro_normal_list(n);
7050
7051         /* Some drivers may have called napi_schedule
7052          * prior to exhausting their budget.
7053          */
7054         if (unlikely(!list_empty(&n->poll_list))) {
7055                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7056                              n->dev ? n->dev->name : "backlog");
7057                 return work;
7058         }
7059
7060         *repoll = true;
7061
7062         return work;
7063 }
7064
7065 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7066 {
7067         bool do_repoll = false;
7068         void *have;
7069         int work;
7070
7071         list_del_init(&n->poll_list);
7072
7073         have = netpoll_poll_lock(n);
7074
7075         work = __napi_poll(n, &do_repoll);
7076
7077         if (do_repoll)
7078                 list_add_tail(&n->poll_list, repoll);
7079
7080         netpoll_poll_unlock(have);
7081
7082         return work;
7083 }
7084
7085 static int napi_thread_wait(struct napi_struct *napi)
7086 {
7087         bool woken = false;
7088
7089         set_current_state(TASK_INTERRUPTIBLE);
7090
7091         while (!kthread_should_stop()) {
7092                 /* Testing SCHED_THREADED bit here to make sure the current
7093                  * kthread owns this napi and could poll on this napi.
7094                  * Testing SCHED bit is not enough because SCHED bit might be
7095                  * set by some other busy poll thread or by napi_disable().
7096                  */
7097                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7098                         WARN_ON(!list_empty(&napi->poll_list));
7099                         __set_current_state(TASK_RUNNING);
7100                         return 0;
7101                 }
7102
7103                 schedule();
7104                 /* woken being true indicates this thread owns this napi. */
7105                 woken = true;
7106                 set_current_state(TASK_INTERRUPTIBLE);
7107         }
7108         __set_current_state(TASK_RUNNING);
7109
7110         return -1;
7111 }
7112
7113 static int napi_threaded_poll(void *data)
7114 {
7115         struct napi_struct *napi = data;
7116         void *have;
7117
7118         while (!napi_thread_wait(napi)) {
7119                 for (;;) {
7120                         bool repoll = false;
7121
7122                         local_bh_disable();
7123
7124                         have = netpoll_poll_lock(napi);
7125                         __napi_poll(napi, &repoll);
7126                         netpoll_poll_unlock(have);
7127
7128                         local_bh_enable();
7129
7130                         if (!repoll)
7131                                 break;
7132
7133                         cond_resched();
7134                 }
7135         }
7136         return 0;
7137 }
7138
7139 static __latent_entropy void net_rx_action(struct softirq_action *h)
7140 {
7141         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7142         unsigned long time_limit = jiffies +
7143                 usecs_to_jiffies(netdev_budget_usecs);
7144         int budget = netdev_budget;
7145         LIST_HEAD(list);
7146         LIST_HEAD(repoll);
7147
7148         local_irq_disable();
7149         list_splice_init(&sd->poll_list, &list);
7150         local_irq_enable();
7151
7152         for (;;) {
7153                 struct napi_struct *n;
7154
7155                 if (list_empty(&list)) {
7156                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7157                                 return;
7158                         break;
7159                 }
7160
7161                 n = list_first_entry(&list, struct napi_struct, poll_list);
7162                 budget -= napi_poll(n, &repoll);
7163
7164                 /* If softirq window is exhausted then punt.
7165                  * Allow this to run for 2 jiffies since which will allow
7166                  * an average latency of 1.5/HZ.
7167                  */
7168                 if (unlikely(budget <= 0 ||
7169                              time_after_eq(jiffies, time_limit))) {
7170                         sd->time_squeeze++;
7171                         break;
7172                 }
7173         }
7174
7175         local_irq_disable();
7176
7177         list_splice_tail_init(&sd->poll_list, &list);
7178         list_splice_tail(&repoll, &list);
7179         list_splice(&list, &sd->poll_list);
7180         if (!list_empty(&sd->poll_list))
7181                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7182
7183         net_rps_action_and_irq_enable(sd);
7184 }
7185
7186 struct netdev_adjacent {
7187         struct net_device *dev;
7188
7189         /* upper master flag, there can only be one master device per list */
7190         bool master;
7191
7192         /* lookup ignore flag */
7193         bool ignore;
7194
7195         /* counter for the number of times this device was added to us */
7196         u16 ref_nr;
7197
7198         /* private field for the users */
7199         void *private;
7200
7201         struct list_head list;
7202         struct rcu_head rcu;
7203 };
7204
7205 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7206                                                  struct list_head *adj_list)
7207 {
7208         struct netdev_adjacent *adj;
7209
7210         list_for_each_entry(adj, adj_list, list) {
7211                 if (adj->dev == adj_dev)
7212                         return adj;
7213         }
7214         return NULL;
7215 }
7216
7217 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7218                                     struct netdev_nested_priv *priv)
7219 {
7220         struct net_device *dev = (struct net_device *)priv->data;
7221
7222         return upper_dev == dev;
7223 }
7224
7225 /**
7226  * netdev_has_upper_dev - Check if device is linked to an upper device
7227  * @dev: device
7228  * @upper_dev: upper device to check
7229  *
7230  * Find out if a device is linked to specified upper device and return true
7231  * in case it is. Note that this checks only immediate upper device,
7232  * not through a complete stack of devices. The caller must hold the RTNL lock.
7233  */
7234 bool netdev_has_upper_dev(struct net_device *dev,
7235                           struct net_device *upper_dev)
7236 {
7237         struct netdev_nested_priv priv = {
7238                 .data = (void *)upper_dev,
7239         };
7240
7241         ASSERT_RTNL();
7242
7243         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7244                                              &priv);
7245 }
7246 EXPORT_SYMBOL(netdev_has_upper_dev);
7247
7248 /**
7249  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7250  * @dev: device
7251  * @upper_dev: upper device to check
7252  *
7253  * Find out if a device is linked to specified upper device and return true
7254  * in case it is. Note that this checks the entire upper device chain.
7255  * The caller must hold rcu lock.
7256  */
7257
7258 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7259                                   struct net_device *upper_dev)
7260 {
7261         struct netdev_nested_priv priv = {
7262                 .data = (void *)upper_dev,
7263         };
7264
7265         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7266                                                &priv);
7267 }
7268 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7269
7270 /**
7271  * netdev_has_any_upper_dev - Check if device is linked to some device
7272  * @dev: device
7273  *
7274  * Find out if a device is linked to an upper device and return true in case
7275  * it is. The caller must hold the RTNL lock.
7276  */
7277 bool netdev_has_any_upper_dev(struct net_device *dev)
7278 {
7279         ASSERT_RTNL();
7280
7281         return !list_empty(&dev->adj_list.upper);
7282 }
7283 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7284
7285 /**
7286  * netdev_master_upper_dev_get - Get master upper device
7287  * @dev: device
7288  *
7289  * Find a master upper device and return pointer to it or NULL in case
7290  * it's not there. The caller must hold the RTNL lock.
7291  */
7292 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7293 {
7294         struct netdev_adjacent *upper;
7295
7296         ASSERT_RTNL();
7297
7298         if (list_empty(&dev->adj_list.upper))
7299                 return NULL;
7300
7301         upper = list_first_entry(&dev->adj_list.upper,
7302                                  struct netdev_adjacent, list);
7303         if (likely(upper->master))
7304                 return upper->dev;
7305         return NULL;
7306 }
7307 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7308
7309 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7310 {
7311         struct netdev_adjacent *upper;
7312
7313         ASSERT_RTNL();
7314
7315         if (list_empty(&dev->adj_list.upper))
7316                 return NULL;
7317
7318         upper = list_first_entry(&dev->adj_list.upper,
7319                                  struct netdev_adjacent, list);
7320         if (likely(upper->master) && !upper->ignore)
7321                 return upper->dev;
7322         return NULL;
7323 }
7324
7325 /**
7326  * netdev_has_any_lower_dev - Check if device is linked to some device
7327  * @dev: device
7328  *
7329  * Find out if a device is linked to a lower device and return true in case
7330  * it is. The caller must hold the RTNL lock.
7331  */
7332 static bool netdev_has_any_lower_dev(struct net_device *dev)
7333 {
7334         ASSERT_RTNL();
7335
7336         return !list_empty(&dev->adj_list.lower);
7337 }
7338
7339 void *netdev_adjacent_get_private(struct list_head *adj_list)
7340 {
7341         struct netdev_adjacent *adj;
7342
7343         adj = list_entry(adj_list, struct netdev_adjacent, list);
7344
7345         return adj->private;
7346 }
7347 EXPORT_SYMBOL(netdev_adjacent_get_private);
7348
7349 /**
7350  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7351  * @dev: device
7352  * @iter: list_head ** of the current position
7353  *
7354  * Gets the next device from the dev's upper list, starting from iter
7355  * position. The caller must hold RCU read lock.
7356  */
7357 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7358                                                  struct list_head **iter)
7359 {
7360         struct netdev_adjacent *upper;
7361
7362         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7363
7364         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7365
7366         if (&upper->list == &dev->adj_list.upper)
7367                 return NULL;
7368
7369         *iter = &upper->list;
7370
7371         return upper->dev;
7372 }
7373 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7374
7375 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7376                                                   struct list_head **iter,
7377                                                   bool *ignore)
7378 {
7379         struct netdev_adjacent *upper;
7380
7381         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7382
7383         if (&upper->list == &dev->adj_list.upper)
7384                 return NULL;
7385
7386         *iter = &upper->list;
7387         *ignore = upper->ignore;
7388
7389         return upper->dev;
7390 }
7391
7392 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7393                                                     struct list_head **iter)
7394 {
7395         struct netdev_adjacent *upper;
7396
7397         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7398
7399         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7400
7401         if (&upper->list == &dev->adj_list.upper)
7402                 return NULL;
7403
7404         *iter = &upper->list;
7405
7406         return upper->dev;
7407 }
7408
7409 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7410                                        int (*fn)(struct net_device *dev,
7411                                          struct netdev_nested_priv *priv),
7412                                        struct netdev_nested_priv *priv)
7413 {
7414         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7415         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7416         int ret, cur = 0;
7417         bool ignore;
7418
7419         now = dev;
7420         iter = &dev->adj_list.upper;
7421
7422         while (1) {
7423                 if (now != dev) {
7424                         ret = fn(now, priv);
7425                         if (ret)
7426                                 return ret;
7427                 }
7428
7429                 next = NULL;
7430                 while (1) {
7431                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7432                         if (!udev)
7433                                 break;
7434                         if (ignore)
7435                                 continue;
7436
7437                         next = udev;
7438                         niter = &udev->adj_list.upper;
7439                         dev_stack[cur] = now;
7440                         iter_stack[cur++] = iter;
7441                         break;
7442                 }
7443
7444                 if (!next) {
7445                         if (!cur)
7446                                 return 0;
7447                         next = dev_stack[--cur];
7448                         niter = iter_stack[cur];
7449                 }
7450
7451                 now = next;
7452                 iter = niter;
7453         }
7454
7455         return 0;
7456 }
7457
7458 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7459                                   int (*fn)(struct net_device *dev,
7460                                             struct netdev_nested_priv *priv),
7461                                   struct netdev_nested_priv *priv)
7462 {
7463         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7464         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7465         int ret, cur = 0;
7466
7467         now = dev;
7468         iter = &dev->adj_list.upper;
7469
7470         while (1) {
7471                 if (now != dev) {
7472                         ret = fn(now, priv);
7473                         if (ret)
7474                                 return ret;
7475                 }
7476
7477                 next = NULL;
7478                 while (1) {
7479                         udev = netdev_next_upper_dev_rcu(now, &iter);
7480                         if (!udev)
7481                                 break;
7482
7483                         next = udev;
7484                         niter = &udev->adj_list.upper;
7485                         dev_stack[cur] = now;
7486                         iter_stack[cur++] = iter;
7487                         break;
7488                 }
7489
7490                 if (!next) {
7491                         if (!cur)
7492                                 return 0;
7493                         next = dev_stack[--cur];
7494                         niter = iter_stack[cur];
7495                 }
7496
7497                 now = next;
7498                 iter = niter;
7499         }
7500
7501         return 0;
7502 }
7503 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7504
7505 static bool __netdev_has_upper_dev(struct net_device *dev,
7506                                    struct net_device *upper_dev)
7507 {
7508         struct netdev_nested_priv priv = {
7509                 .flags = 0,
7510                 .data = (void *)upper_dev,
7511         };
7512
7513         ASSERT_RTNL();
7514
7515         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7516                                            &priv);
7517 }
7518
7519 /**
7520  * netdev_lower_get_next_private - Get the next ->private from the
7521  *                                 lower neighbour list
7522  * @dev: device
7523  * @iter: list_head ** of the current position
7524  *
7525  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7526  * list, starting from iter position. The caller must hold either hold the
7527  * RTNL lock or its own locking that guarantees that the neighbour lower
7528  * list will remain unchanged.
7529  */
7530 void *netdev_lower_get_next_private(struct net_device *dev,
7531                                     struct list_head **iter)
7532 {
7533         struct netdev_adjacent *lower;
7534
7535         lower = list_entry(*iter, struct netdev_adjacent, list);
7536
7537         if (&lower->list == &dev->adj_list.lower)
7538                 return NULL;
7539
7540         *iter = lower->list.next;
7541
7542         return lower->private;
7543 }
7544 EXPORT_SYMBOL(netdev_lower_get_next_private);
7545
7546 /**
7547  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7548  *                                     lower neighbour list, RCU
7549  *                                     variant
7550  * @dev: device
7551  * @iter: list_head ** of the current position
7552  *
7553  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7554  * list, starting from iter position. The caller must hold RCU read lock.
7555  */
7556 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7557                                         struct list_head **iter)
7558 {
7559         struct netdev_adjacent *lower;
7560
7561         WARN_ON_ONCE(!rcu_read_lock_held());
7562
7563         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7564
7565         if (&lower->list == &dev->adj_list.lower)
7566                 return NULL;
7567
7568         *iter = &lower->list;
7569
7570         return lower->private;
7571 }
7572 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7573
7574 /**
7575  * netdev_lower_get_next - Get the next device from the lower neighbour
7576  *                         list
7577  * @dev: device
7578  * @iter: list_head ** of the current position
7579  *
7580  * Gets the next netdev_adjacent from the dev's lower neighbour
7581  * list, starting from iter position. The caller must hold RTNL lock or
7582  * its own locking that guarantees that the neighbour lower
7583  * list will remain unchanged.
7584  */
7585 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7586 {
7587         struct netdev_adjacent *lower;
7588
7589         lower = list_entry(*iter, struct netdev_adjacent, list);
7590
7591         if (&lower->list == &dev->adj_list.lower)
7592                 return NULL;
7593
7594         *iter = lower->list.next;
7595
7596         return lower->dev;
7597 }
7598 EXPORT_SYMBOL(netdev_lower_get_next);
7599
7600 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7601                                                 struct list_head **iter)
7602 {
7603         struct netdev_adjacent *lower;
7604
7605         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7606
7607         if (&lower->list == &dev->adj_list.lower)
7608                 return NULL;
7609
7610         *iter = &lower->list;
7611
7612         return lower->dev;
7613 }
7614
7615 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7616                                                   struct list_head **iter,
7617                                                   bool *ignore)
7618 {
7619         struct netdev_adjacent *lower;
7620
7621         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7622
7623         if (&lower->list == &dev->adj_list.lower)
7624                 return NULL;
7625
7626         *iter = &lower->list;
7627         *ignore = lower->ignore;
7628
7629         return lower->dev;
7630 }
7631
7632 int netdev_walk_all_lower_dev(struct net_device *dev,
7633                               int (*fn)(struct net_device *dev,
7634                                         struct netdev_nested_priv *priv),
7635                               struct netdev_nested_priv *priv)
7636 {
7637         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7638         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7639         int ret, cur = 0;
7640
7641         now = dev;
7642         iter = &dev->adj_list.lower;
7643
7644         while (1) {
7645                 if (now != dev) {
7646                         ret = fn(now, priv);
7647                         if (ret)
7648                                 return ret;
7649                 }
7650
7651                 next = NULL;
7652                 while (1) {
7653                         ldev = netdev_next_lower_dev(now, &iter);
7654                         if (!ldev)
7655                                 break;
7656
7657                         next = ldev;
7658                         niter = &ldev->adj_list.lower;
7659                         dev_stack[cur] = now;
7660                         iter_stack[cur++] = iter;
7661                         break;
7662                 }
7663
7664                 if (!next) {
7665                         if (!cur)
7666                                 return 0;
7667                         next = dev_stack[--cur];
7668                         niter = iter_stack[cur];
7669                 }
7670
7671                 now = next;
7672                 iter = niter;
7673         }
7674
7675         return 0;
7676 }
7677 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7678
7679 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7680                                        int (*fn)(struct net_device *dev,
7681                                          struct netdev_nested_priv *priv),
7682                                        struct netdev_nested_priv *priv)
7683 {
7684         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7685         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7686         int ret, cur = 0;
7687         bool ignore;
7688
7689         now = dev;
7690         iter = &dev->adj_list.lower;
7691
7692         while (1) {
7693                 if (now != dev) {
7694                         ret = fn(now, priv);
7695                         if (ret)
7696                                 return ret;
7697                 }
7698
7699                 next = NULL;
7700                 while (1) {
7701                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7702                         if (!ldev)
7703                                 break;
7704                         if (ignore)
7705                                 continue;
7706
7707                         next = ldev;
7708                         niter = &ldev->adj_list.lower;
7709                         dev_stack[cur] = now;
7710                         iter_stack[cur++] = iter;
7711                         break;
7712                 }
7713
7714                 if (!next) {
7715                         if (!cur)
7716                                 return 0;
7717                         next = dev_stack[--cur];
7718                         niter = iter_stack[cur];
7719                 }
7720
7721                 now = next;
7722                 iter = niter;
7723         }
7724
7725         return 0;
7726 }
7727
7728 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7729                                              struct list_head **iter)
7730 {
7731         struct netdev_adjacent *lower;
7732
7733         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7734         if (&lower->list == &dev->adj_list.lower)
7735                 return NULL;
7736
7737         *iter = &lower->list;
7738
7739         return lower->dev;
7740 }
7741 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7742
7743 static u8 __netdev_upper_depth(struct net_device *dev)
7744 {
7745         struct net_device *udev;
7746         struct list_head *iter;
7747         u8 max_depth = 0;
7748         bool ignore;
7749
7750         for (iter = &dev->adj_list.upper,
7751              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7752              udev;
7753              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7754                 if (ignore)
7755                         continue;
7756                 if (max_depth < udev->upper_level)
7757                         max_depth = udev->upper_level;
7758         }
7759
7760         return max_depth;
7761 }
7762
7763 static u8 __netdev_lower_depth(struct net_device *dev)
7764 {
7765         struct net_device *ldev;
7766         struct list_head *iter;
7767         u8 max_depth = 0;
7768         bool ignore;
7769
7770         for (iter = &dev->adj_list.lower,
7771              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7772              ldev;
7773              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7774                 if (ignore)
7775                         continue;
7776                 if (max_depth < ldev->lower_level)
7777                         max_depth = ldev->lower_level;
7778         }
7779
7780         return max_depth;
7781 }
7782
7783 static int __netdev_update_upper_level(struct net_device *dev,
7784                                        struct netdev_nested_priv *__unused)
7785 {
7786         dev->upper_level = __netdev_upper_depth(dev) + 1;
7787         return 0;
7788 }
7789
7790 static int __netdev_update_lower_level(struct net_device *dev,
7791                                        struct netdev_nested_priv *priv)
7792 {
7793         dev->lower_level = __netdev_lower_depth(dev) + 1;
7794
7795 #ifdef CONFIG_LOCKDEP
7796         if (!priv)
7797                 return 0;
7798
7799         if (priv->flags & NESTED_SYNC_IMM)
7800                 dev->nested_level = dev->lower_level - 1;
7801         if (priv->flags & NESTED_SYNC_TODO)
7802                 net_unlink_todo(dev);
7803 #endif
7804         return 0;
7805 }
7806
7807 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7808                                   int (*fn)(struct net_device *dev,
7809                                             struct netdev_nested_priv *priv),
7810                                   struct netdev_nested_priv *priv)
7811 {
7812         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7813         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7814         int ret, cur = 0;
7815
7816         now = dev;
7817         iter = &dev->adj_list.lower;
7818
7819         while (1) {
7820                 if (now != dev) {
7821                         ret = fn(now, priv);
7822                         if (ret)
7823                                 return ret;
7824                 }
7825
7826                 next = NULL;
7827                 while (1) {
7828                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7829                         if (!ldev)
7830                                 break;
7831
7832                         next = ldev;
7833                         niter = &ldev->adj_list.lower;
7834                         dev_stack[cur] = now;
7835                         iter_stack[cur++] = iter;
7836                         break;
7837                 }
7838
7839                 if (!next) {
7840                         if (!cur)
7841                                 return 0;
7842                         next = dev_stack[--cur];
7843                         niter = iter_stack[cur];
7844                 }
7845
7846                 now = next;
7847                 iter = niter;
7848         }
7849
7850         return 0;
7851 }
7852 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7853
7854 /**
7855  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7856  *                                     lower neighbour list, RCU
7857  *                                     variant
7858  * @dev: device
7859  *
7860  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7861  * list. The caller must hold RCU read lock.
7862  */
7863 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7864 {
7865         struct netdev_adjacent *lower;
7866
7867         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7868                         struct netdev_adjacent, list);
7869         if (lower)
7870                 return lower->private;
7871         return NULL;
7872 }
7873 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7874
7875 /**
7876  * netdev_master_upper_dev_get_rcu - Get master upper device
7877  * @dev: device
7878  *
7879  * Find a master upper device and return pointer to it or NULL in case
7880  * it's not there. The caller must hold the RCU read lock.
7881  */
7882 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7883 {
7884         struct netdev_adjacent *upper;
7885
7886         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7887                                        struct netdev_adjacent, list);
7888         if (upper && likely(upper->master))
7889                 return upper->dev;
7890         return NULL;
7891 }
7892 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7893
7894 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7895                               struct net_device *adj_dev,
7896                               struct list_head *dev_list)
7897 {
7898         char linkname[IFNAMSIZ+7];
7899
7900         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7901                 "upper_%s" : "lower_%s", adj_dev->name);
7902         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7903                                  linkname);
7904 }
7905 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7906                                char *name,
7907                                struct list_head *dev_list)
7908 {
7909         char linkname[IFNAMSIZ+7];
7910
7911         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7912                 "upper_%s" : "lower_%s", name);
7913         sysfs_remove_link(&(dev->dev.kobj), linkname);
7914 }
7915
7916 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7917                                                  struct net_device *adj_dev,
7918                                                  struct list_head *dev_list)
7919 {
7920         return (dev_list == &dev->adj_list.upper ||
7921                 dev_list == &dev->adj_list.lower) &&
7922                 net_eq(dev_net(dev), dev_net(adj_dev));
7923 }
7924
7925 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7926                                         struct net_device *adj_dev,
7927                                         struct list_head *dev_list,
7928                                         void *private, bool master)
7929 {
7930         struct netdev_adjacent *adj;
7931         int ret;
7932
7933         adj = __netdev_find_adj(adj_dev, dev_list);
7934
7935         if (adj) {
7936                 adj->ref_nr += 1;
7937                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7938                          dev->name, adj_dev->name, adj->ref_nr);
7939
7940                 return 0;
7941         }
7942
7943         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7944         if (!adj)
7945                 return -ENOMEM;
7946
7947         adj->dev = adj_dev;
7948         adj->master = master;
7949         adj->ref_nr = 1;
7950         adj->private = private;
7951         adj->ignore = false;
7952         dev_hold(adj_dev);
7953
7954         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7955                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7956
7957         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7958                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7959                 if (ret)
7960                         goto free_adj;
7961         }
7962
7963         /* Ensure that master link is always the first item in list. */
7964         if (master) {
7965                 ret = sysfs_create_link(&(dev->dev.kobj),
7966                                         &(adj_dev->dev.kobj), "master");
7967                 if (ret)
7968                         goto remove_symlinks;
7969
7970                 list_add_rcu(&adj->list, dev_list);
7971         } else {
7972                 list_add_tail_rcu(&adj->list, dev_list);
7973         }
7974
7975         return 0;
7976
7977 remove_symlinks:
7978         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7979                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7980 free_adj:
7981         kfree(adj);
7982         dev_put(adj_dev);
7983
7984         return ret;
7985 }
7986
7987 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7988                                          struct net_device *adj_dev,
7989                                          u16 ref_nr,
7990                                          struct list_head *dev_list)
7991 {
7992         struct netdev_adjacent *adj;
7993
7994         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7995                  dev->name, adj_dev->name, ref_nr);
7996
7997         adj = __netdev_find_adj(adj_dev, dev_list);
7998
7999         if (!adj) {
8000                 pr_err("Adjacency does not exist for device %s from %s\n",
8001                        dev->name, adj_dev->name);
8002                 WARN_ON(1);
8003                 return;
8004         }
8005
8006         if (adj->ref_nr > ref_nr) {
8007                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8008                          dev->name, adj_dev->name, ref_nr,
8009                          adj->ref_nr - ref_nr);
8010                 adj->ref_nr -= ref_nr;
8011                 return;
8012         }
8013
8014         if (adj->master)
8015                 sysfs_remove_link(&(dev->dev.kobj), "master");
8016
8017         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8018                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8019
8020         list_del_rcu(&adj->list);
8021         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8022                  adj_dev->name, dev->name, adj_dev->name);
8023         dev_put(adj_dev);
8024         kfree_rcu(adj, rcu);
8025 }
8026
8027 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8028                                             struct net_device *upper_dev,
8029                                             struct list_head *up_list,
8030                                             struct list_head *down_list,
8031                                             void *private, bool master)
8032 {
8033         int ret;
8034
8035         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8036                                            private, master);
8037         if (ret)
8038                 return ret;
8039
8040         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8041                                            private, false);
8042         if (ret) {
8043                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8044                 return ret;
8045         }
8046
8047         return 0;
8048 }
8049
8050 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8051                                                struct net_device *upper_dev,
8052                                                u16 ref_nr,
8053                                                struct list_head *up_list,
8054                                                struct list_head *down_list)
8055 {
8056         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8057         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8058 }
8059
8060 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8061                                                 struct net_device *upper_dev,
8062                                                 void *private, bool master)
8063 {
8064         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8065                                                 &dev->adj_list.upper,
8066                                                 &upper_dev->adj_list.lower,
8067                                                 private, master);
8068 }
8069
8070 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8071                                                    struct net_device *upper_dev)
8072 {
8073         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8074                                            &dev->adj_list.upper,
8075                                            &upper_dev->adj_list.lower);
8076 }
8077
8078 static int __netdev_upper_dev_link(struct net_device *dev,
8079                                    struct net_device *upper_dev, bool master,
8080                                    void *upper_priv, void *upper_info,
8081                                    struct netdev_nested_priv *priv,
8082                                    struct netlink_ext_ack *extack)
8083 {
8084         struct netdev_notifier_changeupper_info changeupper_info = {
8085                 .info = {
8086                         .dev = dev,
8087                         .extack = extack,
8088                 },
8089                 .upper_dev = upper_dev,
8090                 .master = master,
8091                 .linking = true,
8092                 .upper_info = upper_info,
8093         };
8094         struct net_device *master_dev;
8095         int ret = 0;
8096
8097         ASSERT_RTNL();
8098
8099         if (dev == upper_dev)
8100                 return -EBUSY;
8101
8102         /* To prevent loops, check if dev is not upper device to upper_dev. */
8103         if (__netdev_has_upper_dev(upper_dev, dev))
8104                 return -EBUSY;
8105
8106         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8107                 return -EMLINK;
8108
8109         if (!master) {
8110                 if (__netdev_has_upper_dev(dev, upper_dev))
8111                         return -EEXIST;
8112         } else {
8113                 master_dev = __netdev_master_upper_dev_get(dev);
8114                 if (master_dev)
8115                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8116         }
8117
8118         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8119                                             &changeupper_info.info);
8120         ret = notifier_to_errno(ret);
8121         if (ret)
8122                 return ret;
8123
8124         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8125                                                    master);
8126         if (ret)
8127                 return ret;
8128
8129         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8130                                             &changeupper_info.info);
8131         ret = notifier_to_errno(ret);
8132         if (ret)
8133                 goto rollback;
8134
8135         __netdev_update_upper_level(dev, NULL);
8136         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8137
8138         __netdev_update_lower_level(upper_dev, priv);
8139         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8140                                     priv);
8141
8142         return 0;
8143
8144 rollback:
8145         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8146
8147         return ret;
8148 }
8149
8150 /**
8151  * netdev_upper_dev_link - Add a link to the upper device
8152  * @dev: device
8153  * @upper_dev: new upper device
8154  * @extack: netlink extended ack
8155  *
8156  * Adds a link to device which is upper to this one. The caller must hold
8157  * the RTNL lock. On a failure a negative errno code is returned.
8158  * On success the reference counts are adjusted and the function
8159  * returns zero.
8160  */
8161 int netdev_upper_dev_link(struct net_device *dev,
8162                           struct net_device *upper_dev,
8163                           struct netlink_ext_ack *extack)
8164 {
8165         struct netdev_nested_priv priv = {
8166                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8167                 .data = NULL,
8168         };
8169
8170         return __netdev_upper_dev_link(dev, upper_dev, false,
8171                                        NULL, NULL, &priv, extack);
8172 }
8173 EXPORT_SYMBOL(netdev_upper_dev_link);
8174
8175 /**
8176  * netdev_master_upper_dev_link - Add a master link to the upper device
8177  * @dev: device
8178  * @upper_dev: new upper device
8179  * @upper_priv: upper device private
8180  * @upper_info: upper info to be passed down via notifier
8181  * @extack: netlink extended ack
8182  *
8183  * Adds a link to device which is upper to this one. In this case, only
8184  * one master upper device can be linked, although other non-master devices
8185  * might be linked as well. The caller must hold the RTNL lock.
8186  * On a failure a negative errno code is returned. On success the reference
8187  * counts are adjusted and the function returns zero.
8188  */
8189 int netdev_master_upper_dev_link(struct net_device *dev,
8190                                  struct net_device *upper_dev,
8191                                  void *upper_priv, void *upper_info,
8192                                  struct netlink_ext_ack *extack)
8193 {
8194         struct netdev_nested_priv priv = {
8195                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8196                 .data = NULL,
8197         };
8198
8199         return __netdev_upper_dev_link(dev, upper_dev, true,
8200                                        upper_priv, upper_info, &priv, extack);
8201 }
8202 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8203
8204 static void __netdev_upper_dev_unlink(struct net_device *dev,
8205                                       struct net_device *upper_dev,
8206                                       struct netdev_nested_priv *priv)
8207 {
8208         struct netdev_notifier_changeupper_info changeupper_info = {
8209                 .info = {
8210                         .dev = dev,
8211                 },
8212                 .upper_dev = upper_dev,
8213                 .linking = false,
8214         };
8215
8216         ASSERT_RTNL();
8217
8218         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8219
8220         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8221                                       &changeupper_info.info);
8222
8223         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8224
8225         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8226                                       &changeupper_info.info);
8227
8228         __netdev_update_upper_level(dev, NULL);
8229         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8230
8231         __netdev_update_lower_level(upper_dev, priv);
8232         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8233                                     priv);
8234 }
8235
8236 /**
8237  * netdev_upper_dev_unlink - Removes a link to upper device
8238  * @dev: device
8239  * @upper_dev: new upper device
8240  *
8241  * Removes a link to device which is upper to this one. The caller must hold
8242  * the RTNL lock.
8243  */
8244 void netdev_upper_dev_unlink(struct net_device *dev,
8245                              struct net_device *upper_dev)
8246 {
8247         struct netdev_nested_priv priv = {
8248                 .flags = NESTED_SYNC_TODO,
8249                 .data = NULL,
8250         };
8251
8252         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8253 }
8254 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8255
8256 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8257                                       struct net_device *lower_dev,
8258                                       bool val)
8259 {
8260         struct netdev_adjacent *adj;
8261
8262         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8263         if (adj)
8264                 adj->ignore = val;
8265
8266         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8267         if (adj)
8268                 adj->ignore = val;
8269 }
8270
8271 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8272                                         struct net_device *lower_dev)
8273 {
8274         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8275 }
8276
8277 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8278                                        struct net_device *lower_dev)
8279 {
8280         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8281 }
8282
8283 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8284                                    struct net_device *new_dev,
8285                                    struct net_device *dev,
8286                                    struct netlink_ext_ack *extack)
8287 {
8288         struct netdev_nested_priv priv = {
8289                 .flags = 0,
8290                 .data = NULL,
8291         };
8292         int err;
8293
8294         if (!new_dev)
8295                 return 0;
8296
8297         if (old_dev && new_dev != old_dev)
8298                 netdev_adjacent_dev_disable(dev, old_dev);
8299         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8300                                       extack);
8301         if (err) {
8302                 if (old_dev && new_dev != old_dev)
8303                         netdev_adjacent_dev_enable(dev, old_dev);
8304                 return err;
8305         }
8306
8307         return 0;
8308 }
8309 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8310
8311 void netdev_adjacent_change_commit(struct net_device *old_dev,
8312                                    struct net_device *new_dev,
8313                                    struct net_device *dev)
8314 {
8315         struct netdev_nested_priv priv = {
8316                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8317                 .data = NULL,
8318         };
8319
8320         if (!new_dev || !old_dev)
8321                 return;
8322
8323         if (new_dev == old_dev)
8324                 return;
8325
8326         netdev_adjacent_dev_enable(dev, old_dev);
8327         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8328 }
8329 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8330
8331 void netdev_adjacent_change_abort(struct net_device *old_dev,
8332                                   struct net_device *new_dev,
8333                                   struct net_device *dev)
8334 {
8335         struct netdev_nested_priv priv = {
8336                 .flags = 0,
8337                 .data = NULL,
8338         };
8339
8340         if (!new_dev)
8341                 return;
8342
8343         if (old_dev && new_dev != old_dev)
8344                 netdev_adjacent_dev_enable(dev, old_dev);
8345
8346         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8347 }
8348 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8349
8350 /**
8351  * netdev_bonding_info_change - Dispatch event about slave change
8352  * @dev: device
8353  * @bonding_info: info to dispatch
8354  *
8355  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8356  * The caller must hold the RTNL lock.
8357  */
8358 void netdev_bonding_info_change(struct net_device *dev,
8359                                 struct netdev_bonding_info *bonding_info)
8360 {
8361         struct netdev_notifier_bonding_info info = {
8362                 .info.dev = dev,
8363         };
8364
8365         memcpy(&info.bonding_info, bonding_info,
8366                sizeof(struct netdev_bonding_info));
8367         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8368                                       &info.info);
8369 }
8370 EXPORT_SYMBOL(netdev_bonding_info_change);
8371
8372 /**
8373  * netdev_get_xmit_slave - Get the xmit slave of master device
8374  * @dev: device
8375  * @skb: The packet
8376  * @all_slaves: assume all the slaves are active
8377  *
8378  * The reference counters are not incremented so the caller must be
8379  * careful with locks. The caller must hold RCU lock.
8380  * %NULL is returned if no slave is found.
8381  */
8382
8383 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8384                                          struct sk_buff *skb,
8385                                          bool all_slaves)
8386 {
8387         const struct net_device_ops *ops = dev->netdev_ops;
8388
8389         if (!ops->ndo_get_xmit_slave)
8390                 return NULL;
8391         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8392 }
8393 EXPORT_SYMBOL(netdev_get_xmit_slave);
8394
8395 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8396                                                   struct sock *sk)
8397 {
8398         const struct net_device_ops *ops = dev->netdev_ops;
8399
8400         if (!ops->ndo_sk_get_lower_dev)
8401                 return NULL;
8402         return ops->ndo_sk_get_lower_dev(dev, sk);
8403 }
8404
8405 /**
8406  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8407  * @dev: device
8408  * @sk: the socket
8409  *
8410  * %NULL is returned if no lower device is found.
8411  */
8412
8413 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8414                                             struct sock *sk)
8415 {
8416         struct net_device *lower;
8417
8418         lower = netdev_sk_get_lower_dev(dev, sk);
8419         while (lower) {
8420                 dev = lower;
8421                 lower = netdev_sk_get_lower_dev(dev, sk);
8422         }
8423
8424         return dev;
8425 }
8426 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8427
8428 static void netdev_adjacent_add_links(struct net_device *dev)
8429 {
8430         struct netdev_adjacent *iter;
8431
8432         struct net *net = dev_net(dev);
8433
8434         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8435                 if (!net_eq(net, dev_net(iter->dev)))
8436                         continue;
8437                 netdev_adjacent_sysfs_add(iter->dev, dev,
8438                                           &iter->dev->adj_list.lower);
8439                 netdev_adjacent_sysfs_add(dev, iter->dev,
8440                                           &dev->adj_list.upper);
8441         }
8442
8443         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8444                 if (!net_eq(net, dev_net(iter->dev)))
8445                         continue;
8446                 netdev_adjacent_sysfs_add(iter->dev, dev,
8447                                           &iter->dev->adj_list.upper);
8448                 netdev_adjacent_sysfs_add(dev, iter->dev,
8449                                           &dev->adj_list.lower);
8450         }
8451 }
8452
8453 static void netdev_adjacent_del_links(struct net_device *dev)
8454 {
8455         struct netdev_adjacent *iter;
8456
8457         struct net *net = dev_net(dev);
8458
8459         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8460                 if (!net_eq(net, dev_net(iter->dev)))
8461                         continue;
8462                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8463                                           &iter->dev->adj_list.lower);
8464                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8465                                           &dev->adj_list.upper);
8466         }
8467
8468         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8469                 if (!net_eq(net, dev_net(iter->dev)))
8470                         continue;
8471                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8472                                           &iter->dev->adj_list.upper);
8473                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8474                                           &dev->adj_list.lower);
8475         }
8476 }
8477
8478 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8479 {
8480         struct netdev_adjacent *iter;
8481
8482         struct net *net = dev_net(dev);
8483
8484         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8485                 if (!net_eq(net, dev_net(iter->dev)))
8486                         continue;
8487                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8488                                           &iter->dev->adj_list.lower);
8489                 netdev_adjacent_sysfs_add(iter->dev, dev,
8490                                           &iter->dev->adj_list.lower);
8491         }
8492
8493         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8494                 if (!net_eq(net, dev_net(iter->dev)))
8495                         continue;
8496                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8497                                           &iter->dev->adj_list.upper);
8498                 netdev_adjacent_sysfs_add(iter->dev, dev,
8499                                           &iter->dev->adj_list.upper);
8500         }
8501 }
8502
8503 void *netdev_lower_dev_get_private(struct net_device *dev,
8504                                    struct net_device *lower_dev)
8505 {
8506         struct netdev_adjacent *lower;
8507
8508         if (!lower_dev)
8509                 return NULL;
8510         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8511         if (!lower)
8512                 return NULL;
8513
8514         return lower->private;
8515 }
8516 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8517
8518
8519 /**
8520  * netdev_lower_state_changed - Dispatch event about lower device state change
8521  * @lower_dev: device
8522  * @lower_state_info: state to dispatch
8523  *
8524  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8525  * The caller must hold the RTNL lock.
8526  */
8527 void netdev_lower_state_changed(struct net_device *lower_dev,
8528                                 void *lower_state_info)
8529 {
8530         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8531                 .info.dev = lower_dev,
8532         };
8533
8534         ASSERT_RTNL();
8535         changelowerstate_info.lower_state_info = lower_state_info;
8536         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8537                                       &changelowerstate_info.info);
8538 }
8539 EXPORT_SYMBOL(netdev_lower_state_changed);
8540
8541 static void dev_change_rx_flags(struct net_device *dev, int flags)
8542 {
8543         const struct net_device_ops *ops = dev->netdev_ops;
8544
8545         if (ops->ndo_change_rx_flags)
8546                 ops->ndo_change_rx_flags(dev, flags);
8547 }
8548
8549 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8550 {
8551         unsigned int old_flags = dev->flags;
8552         kuid_t uid;
8553         kgid_t gid;
8554
8555         ASSERT_RTNL();
8556
8557         dev->flags |= IFF_PROMISC;
8558         dev->promiscuity += inc;
8559         if (dev->promiscuity == 0) {
8560                 /*
8561                  * Avoid overflow.
8562                  * If inc causes overflow, untouch promisc and return error.
8563                  */
8564                 if (inc < 0)
8565                         dev->flags &= ~IFF_PROMISC;
8566                 else {
8567                         dev->promiscuity -= inc;
8568                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8569                                 dev->name);
8570                         return -EOVERFLOW;
8571                 }
8572         }
8573         if (dev->flags != old_flags) {
8574                 pr_info("device %s %s promiscuous mode\n",
8575                         dev->name,
8576                         dev->flags & IFF_PROMISC ? "entered" : "left");
8577                 if (audit_enabled) {
8578                         current_uid_gid(&uid, &gid);
8579                         audit_log(audit_context(), GFP_ATOMIC,
8580                                   AUDIT_ANOM_PROMISCUOUS,
8581                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8582                                   dev->name, (dev->flags & IFF_PROMISC),
8583                                   (old_flags & IFF_PROMISC),
8584                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8585                                   from_kuid(&init_user_ns, uid),
8586                                   from_kgid(&init_user_ns, gid),
8587                                   audit_get_sessionid(current));
8588                 }
8589
8590                 dev_change_rx_flags(dev, IFF_PROMISC);
8591         }
8592         if (notify)
8593                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8594         return 0;
8595 }
8596
8597 /**
8598  *      dev_set_promiscuity     - update promiscuity count on a device
8599  *      @dev: device
8600  *      @inc: modifier
8601  *
8602  *      Add or remove promiscuity from a device. While the count in the device
8603  *      remains above zero the interface remains promiscuous. Once it hits zero
8604  *      the device reverts back to normal filtering operation. A negative inc
8605  *      value is used to drop promiscuity on the device.
8606  *      Return 0 if successful or a negative errno code on error.
8607  */
8608 int dev_set_promiscuity(struct net_device *dev, int inc)
8609 {
8610         unsigned int old_flags = dev->flags;
8611         int err;
8612
8613         err = __dev_set_promiscuity(dev, inc, true);
8614         if (err < 0)
8615                 return err;
8616         if (dev->flags != old_flags)
8617                 dev_set_rx_mode(dev);
8618         return err;
8619 }
8620 EXPORT_SYMBOL(dev_set_promiscuity);
8621
8622 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8623 {
8624         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8625
8626         ASSERT_RTNL();
8627
8628         dev->flags |= IFF_ALLMULTI;
8629         dev->allmulti += inc;
8630         if (dev->allmulti == 0) {
8631                 /*
8632                  * Avoid overflow.
8633                  * If inc causes overflow, untouch allmulti and return error.
8634                  */
8635                 if (inc < 0)
8636                         dev->flags &= ~IFF_ALLMULTI;
8637                 else {
8638                         dev->allmulti -= inc;
8639                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8640                                 dev->name);
8641                         return -EOVERFLOW;
8642                 }
8643         }
8644         if (dev->flags ^ old_flags) {
8645                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8646                 dev_set_rx_mode(dev);
8647                 if (notify)
8648                         __dev_notify_flags(dev, old_flags,
8649                                            dev->gflags ^ old_gflags);
8650         }
8651         return 0;
8652 }
8653
8654 /**
8655  *      dev_set_allmulti        - update allmulti count on a device
8656  *      @dev: device
8657  *      @inc: modifier
8658  *
8659  *      Add or remove reception of all multicast frames to a device. While the
8660  *      count in the device remains above zero the interface remains listening
8661  *      to all interfaces. Once it hits zero the device reverts back to normal
8662  *      filtering operation. A negative @inc value is used to drop the counter
8663  *      when releasing a resource needing all multicasts.
8664  *      Return 0 if successful or a negative errno code on error.
8665  */
8666
8667 int dev_set_allmulti(struct net_device *dev, int inc)
8668 {
8669         return __dev_set_allmulti(dev, inc, true);
8670 }
8671 EXPORT_SYMBOL(dev_set_allmulti);
8672
8673 /*
8674  *      Upload unicast and multicast address lists to device and
8675  *      configure RX filtering. When the device doesn't support unicast
8676  *      filtering it is put in promiscuous mode while unicast addresses
8677  *      are present.
8678  */
8679 void __dev_set_rx_mode(struct net_device *dev)
8680 {
8681         const struct net_device_ops *ops = dev->netdev_ops;
8682
8683         /* dev_open will call this function so the list will stay sane. */
8684         if (!(dev->flags&IFF_UP))
8685                 return;
8686
8687         if (!netif_device_present(dev))
8688                 return;
8689
8690         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8691                 /* Unicast addresses changes may only happen under the rtnl,
8692                  * therefore calling __dev_set_promiscuity here is safe.
8693                  */
8694                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8695                         __dev_set_promiscuity(dev, 1, false);
8696                         dev->uc_promisc = true;
8697                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8698                         __dev_set_promiscuity(dev, -1, false);
8699                         dev->uc_promisc = false;
8700                 }
8701         }
8702
8703         if (ops->ndo_set_rx_mode)
8704                 ops->ndo_set_rx_mode(dev);
8705 }
8706
8707 void dev_set_rx_mode(struct net_device *dev)
8708 {
8709         netif_addr_lock_bh(dev);
8710         __dev_set_rx_mode(dev);
8711         netif_addr_unlock_bh(dev);
8712 }
8713
8714 /**
8715  *      dev_get_flags - get flags reported to userspace
8716  *      @dev: device
8717  *
8718  *      Get the combination of flag bits exported through APIs to userspace.
8719  */
8720 unsigned int dev_get_flags(const struct net_device *dev)
8721 {
8722         unsigned int flags;
8723
8724         flags = (dev->flags & ~(IFF_PROMISC |
8725                                 IFF_ALLMULTI |
8726                                 IFF_RUNNING |
8727                                 IFF_LOWER_UP |
8728                                 IFF_DORMANT)) |
8729                 (dev->gflags & (IFF_PROMISC |
8730                                 IFF_ALLMULTI));
8731
8732         if (netif_running(dev)) {
8733                 if (netif_oper_up(dev))
8734                         flags |= IFF_RUNNING;
8735                 if (netif_carrier_ok(dev))
8736                         flags |= IFF_LOWER_UP;
8737                 if (netif_dormant(dev))
8738                         flags |= IFF_DORMANT;
8739         }
8740
8741         return flags;
8742 }
8743 EXPORT_SYMBOL(dev_get_flags);
8744
8745 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8746                        struct netlink_ext_ack *extack)
8747 {
8748         unsigned int old_flags = dev->flags;
8749         int ret;
8750
8751         ASSERT_RTNL();
8752
8753         /*
8754          *      Set the flags on our device.
8755          */
8756
8757         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8758                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8759                                IFF_AUTOMEDIA)) |
8760                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8761                                     IFF_ALLMULTI));
8762
8763         /*
8764          *      Load in the correct multicast list now the flags have changed.
8765          */
8766
8767         if ((old_flags ^ flags) & IFF_MULTICAST)
8768                 dev_change_rx_flags(dev, IFF_MULTICAST);
8769
8770         dev_set_rx_mode(dev);
8771
8772         /*
8773          *      Have we downed the interface. We handle IFF_UP ourselves
8774          *      according to user attempts to set it, rather than blindly
8775          *      setting it.
8776          */
8777
8778         ret = 0;
8779         if ((old_flags ^ flags) & IFF_UP) {
8780                 if (old_flags & IFF_UP)
8781                         __dev_close(dev);
8782                 else
8783                         ret = __dev_open(dev, extack);
8784         }
8785
8786         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8787                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8788                 unsigned int old_flags = dev->flags;
8789
8790                 dev->gflags ^= IFF_PROMISC;
8791
8792                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8793                         if (dev->flags != old_flags)
8794                                 dev_set_rx_mode(dev);
8795         }
8796
8797         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8798          * is important. Some (broken) drivers set IFF_PROMISC, when
8799          * IFF_ALLMULTI is requested not asking us and not reporting.
8800          */
8801         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8802                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8803
8804                 dev->gflags ^= IFF_ALLMULTI;
8805                 __dev_set_allmulti(dev, inc, false);
8806         }
8807
8808         return ret;
8809 }
8810
8811 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8812                         unsigned int gchanges)
8813 {
8814         unsigned int changes = dev->flags ^ old_flags;
8815
8816         if (gchanges)
8817                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8818
8819         if (changes & IFF_UP) {
8820                 if (dev->flags & IFF_UP)
8821                         call_netdevice_notifiers(NETDEV_UP, dev);
8822                 else
8823                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8824         }
8825
8826         if (dev->flags & IFF_UP &&
8827             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8828                 struct netdev_notifier_change_info change_info = {
8829                         .info = {
8830                                 .dev = dev,
8831                         },
8832                         .flags_changed = changes,
8833                 };
8834
8835                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8836         }
8837 }
8838
8839 /**
8840  *      dev_change_flags - change device settings
8841  *      @dev: device
8842  *      @flags: device state flags
8843  *      @extack: netlink extended ack
8844  *
8845  *      Change settings on device based state flags. The flags are
8846  *      in the userspace exported format.
8847  */
8848 int dev_change_flags(struct net_device *dev, unsigned int flags,
8849                      struct netlink_ext_ack *extack)
8850 {
8851         int ret;
8852         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8853
8854         ret = __dev_change_flags(dev, flags, extack);
8855         if (ret < 0)
8856                 return ret;
8857
8858         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8859         __dev_notify_flags(dev, old_flags, changes);
8860         return ret;
8861 }
8862 EXPORT_SYMBOL(dev_change_flags);
8863
8864 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8865 {
8866         const struct net_device_ops *ops = dev->netdev_ops;
8867
8868         if (ops->ndo_change_mtu)
8869                 return ops->ndo_change_mtu(dev, new_mtu);
8870
8871         /* Pairs with all the lockless reads of dev->mtu in the stack */
8872         WRITE_ONCE(dev->mtu, new_mtu);
8873         return 0;
8874 }
8875 EXPORT_SYMBOL(__dev_set_mtu);
8876
8877 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8878                      struct netlink_ext_ack *extack)
8879 {
8880         /* MTU must be positive, and in range */
8881         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8882                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8883                 return -EINVAL;
8884         }
8885
8886         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8887                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8888                 return -EINVAL;
8889         }
8890         return 0;
8891 }
8892
8893 /**
8894  *      dev_set_mtu_ext - Change maximum transfer unit
8895  *      @dev: device
8896  *      @new_mtu: new transfer unit
8897  *      @extack: netlink extended ack
8898  *
8899  *      Change the maximum transfer size of the network device.
8900  */
8901 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8902                     struct netlink_ext_ack *extack)
8903 {
8904         int err, orig_mtu;
8905
8906         if (new_mtu == dev->mtu)
8907                 return 0;
8908
8909         err = dev_validate_mtu(dev, new_mtu, extack);
8910         if (err)
8911                 return err;
8912
8913         if (!netif_device_present(dev))
8914                 return -ENODEV;
8915
8916         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8917         err = notifier_to_errno(err);
8918         if (err)
8919                 return err;
8920
8921         orig_mtu = dev->mtu;
8922         err = __dev_set_mtu(dev, new_mtu);
8923
8924         if (!err) {
8925                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8926                                                    orig_mtu);
8927                 err = notifier_to_errno(err);
8928                 if (err) {
8929                         /* setting mtu back and notifying everyone again,
8930                          * so that they have a chance to revert changes.
8931                          */
8932                         __dev_set_mtu(dev, orig_mtu);
8933                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8934                                                      new_mtu);
8935                 }
8936         }
8937         return err;
8938 }
8939
8940 int dev_set_mtu(struct net_device *dev, int new_mtu)
8941 {
8942         struct netlink_ext_ack extack;
8943         int err;
8944
8945         memset(&extack, 0, sizeof(extack));
8946         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8947         if (err && extack._msg)
8948                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8949         return err;
8950 }
8951 EXPORT_SYMBOL(dev_set_mtu);
8952
8953 /**
8954  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8955  *      @dev: device
8956  *      @new_len: new tx queue length
8957  */
8958 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8959 {
8960         unsigned int orig_len = dev->tx_queue_len;
8961         int res;
8962
8963         if (new_len != (unsigned int)new_len)
8964                 return -ERANGE;
8965
8966         if (new_len != orig_len) {
8967                 dev->tx_queue_len = new_len;
8968                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8969                 res = notifier_to_errno(res);
8970                 if (res)
8971                         goto err_rollback;
8972                 res = dev_qdisc_change_tx_queue_len(dev);
8973                 if (res)
8974                         goto err_rollback;
8975         }
8976
8977         return 0;
8978
8979 err_rollback:
8980         netdev_err(dev, "refused to change device tx_queue_len\n");
8981         dev->tx_queue_len = orig_len;
8982         return res;
8983 }
8984
8985 /**
8986  *      dev_set_group - Change group this device belongs to
8987  *      @dev: device
8988  *      @new_group: group this device should belong to
8989  */
8990 void dev_set_group(struct net_device *dev, int new_group)
8991 {
8992         dev->group = new_group;
8993 }
8994 EXPORT_SYMBOL(dev_set_group);
8995
8996 /**
8997  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8998  *      @dev: device
8999  *      @addr: new address
9000  *      @extack: netlink extended ack
9001  */
9002 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9003                               struct netlink_ext_ack *extack)
9004 {
9005         struct netdev_notifier_pre_changeaddr_info info = {
9006                 .info.dev = dev,
9007                 .info.extack = extack,
9008                 .dev_addr = addr,
9009         };
9010         int rc;
9011
9012         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9013         return notifier_to_errno(rc);
9014 }
9015 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9016
9017 /**
9018  *      dev_set_mac_address - Change Media Access Control Address
9019  *      @dev: device
9020  *      @sa: new address
9021  *      @extack: netlink extended ack
9022  *
9023  *      Change the hardware (MAC) address of the device
9024  */
9025 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9026                         struct netlink_ext_ack *extack)
9027 {
9028         const struct net_device_ops *ops = dev->netdev_ops;
9029         int err;
9030
9031         if (!ops->ndo_set_mac_address)
9032                 return -EOPNOTSUPP;
9033         if (sa->sa_family != dev->type)
9034                 return -EINVAL;
9035         if (!netif_device_present(dev))
9036                 return -ENODEV;
9037         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9038         if (err)
9039                 return err;
9040         err = ops->ndo_set_mac_address(dev, sa);
9041         if (err)
9042                 return err;
9043         dev->addr_assign_type = NET_ADDR_SET;
9044         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9045         add_device_randomness(dev->dev_addr, dev->addr_len);
9046         return 0;
9047 }
9048 EXPORT_SYMBOL(dev_set_mac_address);
9049
9050 static DECLARE_RWSEM(dev_addr_sem);
9051
9052 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9053                              struct netlink_ext_ack *extack)
9054 {
9055         int ret;
9056
9057         down_write(&dev_addr_sem);
9058         ret = dev_set_mac_address(dev, sa, extack);
9059         up_write(&dev_addr_sem);
9060         return ret;
9061 }
9062 EXPORT_SYMBOL(dev_set_mac_address_user);
9063
9064 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9065 {
9066         size_t size = sizeof(sa->sa_data);
9067         struct net_device *dev;
9068         int ret = 0;
9069
9070         down_read(&dev_addr_sem);
9071         rcu_read_lock();
9072
9073         dev = dev_get_by_name_rcu(net, dev_name);
9074         if (!dev) {
9075                 ret = -ENODEV;
9076                 goto unlock;
9077         }
9078         if (!dev->addr_len)
9079                 memset(sa->sa_data, 0, size);
9080         else
9081                 memcpy(sa->sa_data, dev->dev_addr,
9082                        min_t(size_t, size, dev->addr_len));
9083         sa->sa_family = dev->type;
9084
9085 unlock:
9086         rcu_read_unlock();
9087         up_read(&dev_addr_sem);
9088         return ret;
9089 }
9090 EXPORT_SYMBOL(dev_get_mac_address);
9091
9092 /**
9093  *      dev_change_carrier - Change device carrier
9094  *      @dev: device
9095  *      @new_carrier: new value
9096  *
9097  *      Change device carrier
9098  */
9099 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9100 {
9101         const struct net_device_ops *ops = dev->netdev_ops;
9102
9103         if (!ops->ndo_change_carrier)
9104                 return -EOPNOTSUPP;
9105         if (!netif_device_present(dev))
9106                 return -ENODEV;
9107         return ops->ndo_change_carrier(dev, new_carrier);
9108 }
9109 EXPORT_SYMBOL(dev_change_carrier);
9110
9111 /**
9112  *      dev_get_phys_port_id - Get device physical port ID
9113  *      @dev: device
9114  *      @ppid: port ID
9115  *
9116  *      Get device physical port ID
9117  */
9118 int dev_get_phys_port_id(struct net_device *dev,
9119                          struct netdev_phys_item_id *ppid)
9120 {
9121         const struct net_device_ops *ops = dev->netdev_ops;
9122
9123         if (!ops->ndo_get_phys_port_id)
9124                 return -EOPNOTSUPP;
9125         return ops->ndo_get_phys_port_id(dev, ppid);
9126 }
9127 EXPORT_SYMBOL(dev_get_phys_port_id);
9128
9129 /**
9130  *      dev_get_phys_port_name - Get device physical port name
9131  *      @dev: device
9132  *      @name: port name
9133  *      @len: limit of bytes to copy to name
9134  *
9135  *      Get device physical port name
9136  */
9137 int dev_get_phys_port_name(struct net_device *dev,
9138                            char *name, size_t len)
9139 {
9140         const struct net_device_ops *ops = dev->netdev_ops;
9141         int err;
9142
9143         if (ops->ndo_get_phys_port_name) {
9144                 err = ops->ndo_get_phys_port_name(dev, name, len);
9145                 if (err != -EOPNOTSUPP)
9146                         return err;
9147         }
9148         return devlink_compat_phys_port_name_get(dev, name, len);
9149 }
9150 EXPORT_SYMBOL(dev_get_phys_port_name);
9151
9152 /**
9153  *      dev_get_port_parent_id - Get the device's port parent identifier
9154  *      @dev: network device
9155  *      @ppid: pointer to a storage for the port's parent identifier
9156  *      @recurse: allow/disallow recursion to lower devices
9157  *
9158  *      Get the devices's port parent identifier
9159  */
9160 int dev_get_port_parent_id(struct net_device *dev,
9161                            struct netdev_phys_item_id *ppid,
9162                            bool recurse)
9163 {
9164         const struct net_device_ops *ops = dev->netdev_ops;
9165         struct netdev_phys_item_id first = { };
9166         struct net_device *lower_dev;
9167         struct list_head *iter;
9168         int err;
9169
9170         if (ops->ndo_get_port_parent_id) {
9171                 err = ops->ndo_get_port_parent_id(dev, ppid);
9172                 if (err != -EOPNOTSUPP)
9173                         return err;
9174         }
9175
9176         err = devlink_compat_switch_id_get(dev, ppid);
9177         if (!err || err != -EOPNOTSUPP)
9178                 return err;
9179
9180         if (!recurse)
9181                 return -EOPNOTSUPP;
9182
9183         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9184                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9185                 if (err)
9186                         break;
9187                 if (!first.id_len)
9188                         first = *ppid;
9189                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9190                         return -EOPNOTSUPP;
9191         }
9192
9193         return err;
9194 }
9195 EXPORT_SYMBOL(dev_get_port_parent_id);
9196
9197 /**
9198  *      netdev_port_same_parent_id - Indicate if two network devices have
9199  *      the same port parent identifier
9200  *      @a: first network device
9201  *      @b: second network device
9202  */
9203 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9204 {
9205         struct netdev_phys_item_id a_id = { };
9206         struct netdev_phys_item_id b_id = { };
9207
9208         if (dev_get_port_parent_id(a, &a_id, true) ||
9209             dev_get_port_parent_id(b, &b_id, true))
9210                 return false;
9211
9212         return netdev_phys_item_id_same(&a_id, &b_id);
9213 }
9214 EXPORT_SYMBOL(netdev_port_same_parent_id);
9215
9216 /**
9217  *      dev_change_proto_down - update protocol port state information
9218  *      @dev: device
9219  *      @proto_down: new value
9220  *
9221  *      This info can be used by switch drivers to set the phys state of the
9222  *      port.
9223  */
9224 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9225 {
9226         const struct net_device_ops *ops = dev->netdev_ops;
9227
9228         if (!ops->ndo_change_proto_down)
9229                 return -EOPNOTSUPP;
9230         if (!netif_device_present(dev))
9231                 return -ENODEV;
9232         return ops->ndo_change_proto_down(dev, proto_down);
9233 }
9234 EXPORT_SYMBOL(dev_change_proto_down);
9235
9236 /**
9237  *      dev_change_proto_down_generic - generic implementation for
9238  *      ndo_change_proto_down that sets carrier according to
9239  *      proto_down.
9240  *
9241  *      @dev: device
9242  *      @proto_down: new value
9243  */
9244 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9245 {
9246         if (proto_down)
9247                 netif_carrier_off(dev);
9248         else
9249                 netif_carrier_on(dev);
9250         dev->proto_down = proto_down;
9251         return 0;
9252 }
9253 EXPORT_SYMBOL(dev_change_proto_down_generic);
9254
9255 /**
9256  *      dev_change_proto_down_reason - proto down reason
9257  *
9258  *      @dev: device
9259  *      @mask: proto down mask
9260  *      @value: proto down value
9261  */
9262 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9263                                   u32 value)
9264 {
9265         int b;
9266
9267         if (!mask) {
9268                 dev->proto_down_reason = value;
9269         } else {
9270                 for_each_set_bit(b, &mask, 32) {
9271                         if (value & (1 << b))
9272                                 dev->proto_down_reason |= BIT(b);
9273                         else
9274                                 dev->proto_down_reason &= ~BIT(b);
9275                 }
9276         }
9277 }
9278 EXPORT_SYMBOL(dev_change_proto_down_reason);
9279
9280 struct bpf_xdp_link {
9281         struct bpf_link link;
9282         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9283         int flags;
9284 };
9285
9286 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9287 {
9288         if (flags & XDP_FLAGS_HW_MODE)
9289                 return XDP_MODE_HW;
9290         if (flags & XDP_FLAGS_DRV_MODE)
9291                 return XDP_MODE_DRV;
9292         if (flags & XDP_FLAGS_SKB_MODE)
9293                 return XDP_MODE_SKB;
9294         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9295 }
9296
9297 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9298 {
9299         switch (mode) {
9300         case XDP_MODE_SKB:
9301                 return generic_xdp_install;
9302         case XDP_MODE_DRV:
9303         case XDP_MODE_HW:
9304                 return dev->netdev_ops->ndo_bpf;
9305         default:
9306                 return NULL;
9307         }
9308 }
9309
9310 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9311                                          enum bpf_xdp_mode mode)
9312 {
9313         return dev->xdp_state[mode].link;
9314 }
9315
9316 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9317                                      enum bpf_xdp_mode mode)
9318 {
9319         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9320
9321         if (link)
9322                 return link->link.prog;
9323         return dev->xdp_state[mode].prog;
9324 }
9325
9326 static u8 dev_xdp_prog_count(struct net_device *dev)
9327 {
9328         u8 count = 0;
9329         int i;
9330
9331         for (i = 0; i < __MAX_XDP_MODE; i++)
9332                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9333                         count++;
9334         return count;
9335 }
9336
9337 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9338 {
9339         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9340
9341         return prog ? prog->aux->id : 0;
9342 }
9343
9344 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9345                              struct bpf_xdp_link *link)
9346 {
9347         dev->xdp_state[mode].link = link;
9348         dev->xdp_state[mode].prog = NULL;
9349 }
9350
9351 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9352                              struct bpf_prog *prog)
9353 {
9354         dev->xdp_state[mode].link = NULL;
9355         dev->xdp_state[mode].prog = prog;
9356 }
9357
9358 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9359                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9360                            u32 flags, struct bpf_prog *prog)
9361 {
9362         struct netdev_bpf xdp;
9363         int err;
9364
9365         memset(&xdp, 0, sizeof(xdp));
9366         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9367         xdp.extack = extack;
9368         xdp.flags = flags;
9369         xdp.prog = prog;
9370
9371         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9372          * "moved" into driver), so they don't increment it on their own, but
9373          * they do decrement refcnt when program is detached or replaced.
9374          * Given net_device also owns link/prog, we need to bump refcnt here
9375          * to prevent drivers from underflowing it.
9376          */
9377         if (prog)
9378                 bpf_prog_inc(prog);
9379         err = bpf_op(dev, &xdp);
9380         if (err) {
9381                 if (prog)
9382                         bpf_prog_put(prog);
9383                 return err;
9384         }
9385
9386         if (mode != XDP_MODE_HW)
9387                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9388
9389         return 0;
9390 }
9391
9392 static void dev_xdp_uninstall(struct net_device *dev)
9393 {
9394         struct bpf_xdp_link *link;
9395         struct bpf_prog *prog;
9396         enum bpf_xdp_mode mode;
9397         bpf_op_t bpf_op;
9398
9399         ASSERT_RTNL();
9400
9401         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9402                 prog = dev_xdp_prog(dev, mode);
9403                 if (!prog)
9404                         continue;
9405
9406                 bpf_op = dev_xdp_bpf_op(dev, mode);
9407                 if (!bpf_op)
9408                         continue;
9409
9410                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9411
9412                 /* auto-detach link from net device */
9413                 link = dev_xdp_link(dev, mode);
9414                 if (link)
9415                         link->dev = NULL;
9416                 else
9417                         bpf_prog_put(prog);
9418
9419                 dev_xdp_set_link(dev, mode, NULL);
9420         }
9421 }
9422
9423 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9424                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9425                           struct bpf_prog *old_prog, u32 flags)
9426 {
9427         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9428         struct bpf_prog *cur_prog;
9429         enum bpf_xdp_mode mode;
9430         bpf_op_t bpf_op;
9431         int err;
9432
9433         ASSERT_RTNL();
9434
9435         /* either link or prog attachment, never both */
9436         if (link && (new_prog || old_prog))
9437                 return -EINVAL;
9438         /* link supports only XDP mode flags */
9439         if (link && (flags & ~XDP_FLAGS_MODES)) {
9440                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9441                 return -EINVAL;
9442         }
9443         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9444         if (num_modes > 1) {
9445                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9446                 return -EINVAL;
9447         }
9448         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9449         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9450                 NL_SET_ERR_MSG(extack,
9451                                "More than one program loaded, unset mode is ambiguous");
9452                 return -EINVAL;
9453         }
9454         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9455         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9456                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9457                 return -EINVAL;
9458         }
9459
9460         mode = dev_xdp_mode(dev, flags);
9461         /* can't replace attached link */
9462         if (dev_xdp_link(dev, mode)) {
9463                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9464                 return -EBUSY;
9465         }
9466
9467         cur_prog = dev_xdp_prog(dev, mode);
9468         /* can't replace attached prog with link */
9469         if (link && cur_prog) {
9470                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9471                 return -EBUSY;
9472         }
9473         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9474                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9475                 return -EEXIST;
9476         }
9477
9478         /* put effective new program into new_prog */
9479         if (link)
9480                 new_prog = link->link.prog;
9481
9482         if (new_prog) {
9483                 bool offload = mode == XDP_MODE_HW;
9484                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9485                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9486
9487                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9488                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9489                         return -EBUSY;
9490                 }
9491                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9492                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9493                         return -EEXIST;
9494                 }
9495                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9496                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9497                         return -EINVAL;
9498                 }
9499                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9500                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9501                         return -EINVAL;
9502                 }
9503                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9504                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9505                         return -EINVAL;
9506                 }
9507         }
9508
9509         /* don't call drivers if the effective program didn't change */
9510         if (new_prog != cur_prog) {
9511                 bpf_op = dev_xdp_bpf_op(dev, mode);
9512                 if (!bpf_op) {
9513                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9514                         return -EOPNOTSUPP;
9515                 }
9516
9517                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9518                 if (err)
9519                         return err;
9520         }
9521
9522         if (link)
9523                 dev_xdp_set_link(dev, mode, link);
9524         else
9525                 dev_xdp_set_prog(dev, mode, new_prog);
9526         if (cur_prog)
9527                 bpf_prog_put(cur_prog);
9528
9529         return 0;
9530 }
9531
9532 static int dev_xdp_attach_link(struct net_device *dev,
9533                                struct netlink_ext_ack *extack,
9534                                struct bpf_xdp_link *link)
9535 {
9536         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9537 }
9538
9539 static int dev_xdp_detach_link(struct net_device *dev,
9540                                struct netlink_ext_ack *extack,
9541                                struct bpf_xdp_link *link)
9542 {
9543         enum bpf_xdp_mode mode;
9544         bpf_op_t bpf_op;
9545
9546         ASSERT_RTNL();
9547
9548         mode = dev_xdp_mode(dev, link->flags);
9549         if (dev_xdp_link(dev, mode) != link)
9550                 return -EINVAL;
9551
9552         bpf_op = dev_xdp_bpf_op(dev, mode);
9553         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9554         dev_xdp_set_link(dev, mode, NULL);
9555         return 0;
9556 }
9557
9558 static void bpf_xdp_link_release(struct bpf_link *link)
9559 {
9560         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9561
9562         rtnl_lock();
9563
9564         /* if racing with net_device's tear down, xdp_link->dev might be
9565          * already NULL, in which case link was already auto-detached
9566          */
9567         if (xdp_link->dev) {
9568                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9569                 xdp_link->dev = NULL;
9570         }
9571
9572         rtnl_unlock();
9573 }
9574
9575 static int bpf_xdp_link_detach(struct bpf_link *link)
9576 {
9577         bpf_xdp_link_release(link);
9578         return 0;
9579 }
9580
9581 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9582 {
9583         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9584
9585         kfree(xdp_link);
9586 }
9587
9588 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9589                                      struct seq_file *seq)
9590 {
9591         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9592         u32 ifindex = 0;
9593
9594         rtnl_lock();
9595         if (xdp_link->dev)
9596                 ifindex = xdp_link->dev->ifindex;
9597         rtnl_unlock();
9598
9599         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9600 }
9601
9602 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9603                                        struct bpf_link_info *info)
9604 {
9605         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9606         u32 ifindex = 0;
9607
9608         rtnl_lock();
9609         if (xdp_link->dev)
9610                 ifindex = xdp_link->dev->ifindex;
9611         rtnl_unlock();
9612
9613         info->xdp.ifindex = ifindex;
9614         return 0;
9615 }
9616
9617 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9618                                struct bpf_prog *old_prog)
9619 {
9620         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9621         enum bpf_xdp_mode mode;
9622         bpf_op_t bpf_op;
9623         int err = 0;
9624
9625         rtnl_lock();
9626
9627         /* link might have been auto-released already, so fail */
9628         if (!xdp_link->dev) {
9629                 err = -ENOLINK;
9630                 goto out_unlock;
9631         }
9632
9633         if (old_prog && link->prog != old_prog) {
9634                 err = -EPERM;
9635                 goto out_unlock;
9636         }
9637         old_prog = link->prog;
9638         if (old_prog == new_prog) {
9639                 /* no-op, don't disturb drivers */
9640                 bpf_prog_put(new_prog);
9641                 goto out_unlock;
9642         }
9643
9644         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9645         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9646         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9647                               xdp_link->flags, new_prog);
9648         if (err)
9649                 goto out_unlock;
9650
9651         old_prog = xchg(&link->prog, new_prog);
9652         bpf_prog_put(old_prog);
9653
9654 out_unlock:
9655         rtnl_unlock();
9656         return err;
9657 }
9658
9659 static const struct bpf_link_ops bpf_xdp_link_lops = {
9660         .release = bpf_xdp_link_release,
9661         .dealloc = bpf_xdp_link_dealloc,
9662         .detach = bpf_xdp_link_detach,
9663         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9664         .fill_link_info = bpf_xdp_link_fill_link_info,
9665         .update_prog = bpf_xdp_link_update,
9666 };
9667
9668 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9669 {
9670         struct net *net = current->nsproxy->net_ns;
9671         struct bpf_link_primer link_primer;
9672         struct bpf_xdp_link *link;
9673         struct net_device *dev;
9674         int err, fd;
9675
9676         rtnl_lock();
9677         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9678         if (!dev) {
9679                 rtnl_unlock();
9680                 return -EINVAL;
9681         }
9682
9683         link = kzalloc(sizeof(*link), GFP_USER);
9684         if (!link) {
9685                 err = -ENOMEM;
9686                 goto unlock;
9687         }
9688
9689         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9690         link->dev = dev;
9691         link->flags = attr->link_create.flags;
9692
9693         err = bpf_link_prime(&link->link, &link_primer);
9694         if (err) {
9695                 kfree(link);
9696                 goto unlock;
9697         }
9698
9699         err = dev_xdp_attach_link(dev, NULL, link);
9700         rtnl_unlock();
9701
9702         if (err) {
9703                 link->dev = NULL;
9704                 bpf_link_cleanup(&link_primer);
9705                 goto out_put_dev;
9706         }
9707
9708         fd = bpf_link_settle(&link_primer);
9709         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9710         dev_put(dev);
9711         return fd;
9712
9713 unlock:
9714         rtnl_unlock();
9715
9716 out_put_dev:
9717         dev_put(dev);
9718         return err;
9719 }
9720
9721 /**
9722  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9723  *      @dev: device
9724  *      @extack: netlink extended ack
9725  *      @fd: new program fd or negative value to clear
9726  *      @expected_fd: old program fd that userspace expects to replace or clear
9727  *      @flags: xdp-related flags
9728  *
9729  *      Set or clear a bpf program for a device
9730  */
9731 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9732                       int fd, int expected_fd, u32 flags)
9733 {
9734         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9735         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9736         int err;
9737
9738         ASSERT_RTNL();
9739
9740         if (fd >= 0) {
9741                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9742                                                  mode != XDP_MODE_SKB);
9743                 if (IS_ERR(new_prog))
9744                         return PTR_ERR(new_prog);
9745         }
9746
9747         if (expected_fd >= 0) {
9748                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9749                                                  mode != XDP_MODE_SKB);
9750                 if (IS_ERR(old_prog)) {
9751                         err = PTR_ERR(old_prog);
9752                         old_prog = NULL;
9753                         goto err_out;
9754                 }
9755         }
9756
9757         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9758
9759 err_out:
9760         if (err && new_prog)
9761                 bpf_prog_put(new_prog);
9762         if (old_prog)
9763                 bpf_prog_put(old_prog);
9764         return err;
9765 }
9766
9767 /**
9768  *      dev_new_index   -       allocate an ifindex
9769  *      @net: the applicable net namespace
9770  *
9771  *      Returns a suitable unique value for a new device interface
9772  *      number.  The caller must hold the rtnl semaphore or the
9773  *      dev_base_lock to be sure it remains unique.
9774  */
9775 static int dev_new_index(struct net *net)
9776 {
9777         int ifindex = net->ifindex;
9778
9779         for (;;) {
9780                 if (++ifindex <= 0)
9781                         ifindex = 1;
9782                 if (!__dev_get_by_index(net, ifindex))
9783                         return net->ifindex = ifindex;
9784         }
9785 }
9786
9787 /* Delayed registration/unregisteration */
9788 static LIST_HEAD(net_todo_list);
9789 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9790
9791 static void net_set_todo(struct net_device *dev)
9792 {
9793         list_add_tail(&dev->todo_list, &net_todo_list);
9794         dev_net(dev)->dev_unreg_count++;
9795 }
9796
9797 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9798         struct net_device *upper, netdev_features_t features)
9799 {
9800         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9801         netdev_features_t feature;
9802         int feature_bit;
9803
9804         for_each_netdev_feature(upper_disables, feature_bit) {
9805                 feature = __NETIF_F_BIT(feature_bit);
9806                 if (!(upper->wanted_features & feature)
9807                     && (features & feature)) {
9808                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9809                                    &feature, upper->name);
9810                         features &= ~feature;
9811                 }
9812         }
9813
9814         return features;
9815 }
9816
9817 static void netdev_sync_lower_features(struct net_device *upper,
9818         struct net_device *lower, netdev_features_t features)
9819 {
9820         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9821         netdev_features_t feature;
9822         int feature_bit;
9823
9824         for_each_netdev_feature(upper_disables, feature_bit) {
9825                 feature = __NETIF_F_BIT(feature_bit);
9826                 if (!(features & feature) && (lower->features & feature)) {
9827                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9828                                    &feature, lower->name);
9829                         lower->wanted_features &= ~feature;
9830                         __netdev_update_features(lower);
9831
9832                         if (unlikely(lower->features & feature))
9833                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9834                                             &feature, lower->name);
9835                         else
9836                                 netdev_features_change(lower);
9837                 }
9838         }
9839 }
9840
9841 static netdev_features_t netdev_fix_features(struct net_device *dev,
9842         netdev_features_t features)
9843 {
9844         /* Fix illegal checksum combinations */
9845         if ((features & NETIF_F_HW_CSUM) &&
9846             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9847                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9848                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9849         }
9850
9851         /* TSO requires that SG is present as well. */
9852         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9853                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9854                 features &= ~NETIF_F_ALL_TSO;
9855         }
9856
9857         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9858                                         !(features & NETIF_F_IP_CSUM)) {
9859                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9860                 features &= ~NETIF_F_TSO;
9861                 features &= ~NETIF_F_TSO_ECN;
9862         }
9863
9864         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9865                                          !(features & NETIF_F_IPV6_CSUM)) {
9866                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9867                 features &= ~NETIF_F_TSO6;
9868         }
9869
9870         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9871         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9872                 features &= ~NETIF_F_TSO_MANGLEID;
9873
9874         /* TSO ECN requires that TSO is present as well. */
9875         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9876                 features &= ~NETIF_F_TSO_ECN;
9877
9878         /* Software GSO depends on SG. */
9879         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9880                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9881                 features &= ~NETIF_F_GSO;
9882         }
9883
9884         /* GSO partial features require GSO partial be set */
9885         if ((features & dev->gso_partial_features) &&
9886             !(features & NETIF_F_GSO_PARTIAL)) {
9887                 netdev_dbg(dev,
9888                            "Dropping partially supported GSO features since no GSO partial.\n");
9889                 features &= ~dev->gso_partial_features;
9890         }
9891
9892         if (!(features & NETIF_F_RXCSUM)) {
9893                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9894                  * successfully merged by hardware must also have the
9895                  * checksum verified by hardware.  If the user does not
9896                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9897                  */
9898                 if (features & NETIF_F_GRO_HW) {
9899                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9900                         features &= ~NETIF_F_GRO_HW;
9901                 }
9902         }
9903
9904         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9905         if (features & NETIF_F_RXFCS) {
9906                 if (features & NETIF_F_LRO) {
9907                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9908                         features &= ~NETIF_F_LRO;
9909                 }
9910
9911                 if (features & NETIF_F_GRO_HW) {
9912                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9913                         features &= ~NETIF_F_GRO_HW;
9914                 }
9915         }
9916
9917         if (features & NETIF_F_HW_TLS_TX) {
9918                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9919                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9920                 bool hw_csum = features & NETIF_F_HW_CSUM;
9921
9922                 if (!ip_csum && !hw_csum) {
9923                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9924                         features &= ~NETIF_F_HW_TLS_TX;
9925                 }
9926         }
9927
9928         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9929                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9930                 features &= ~NETIF_F_HW_TLS_RX;
9931         }
9932
9933         return features;
9934 }
9935
9936 int __netdev_update_features(struct net_device *dev)
9937 {
9938         struct net_device *upper, *lower;
9939         netdev_features_t features;
9940         struct list_head *iter;
9941         int err = -1;
9942
9943         ASSERT_RTNL();
9944
9945         features = netdev_get_wanted_features(dev);
9946
9947         if (dev->netdev_ops->ndo_fix_features)
9948                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9949
9950         /* driver might be less strict about feature dependencies */
9951         features = netdev_fix_features(dev, features);
9952
9953         /* some features can't be enabled if they're off on an upper device */
9954         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9955                 features = netdev_sync_upper_features(dev, upper, features);
9956
9957         if (dev->features == features)
9958                 goto sync_lower;
9959
9960         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9961                 &dev->features, &features);
9962
9963         if (dev->netdev_ops->ndo_set_features)
9964                 err = dev->netdev_ops->ndo_set_features(dev, features);
9965         else
9966                 err = 0;
9967
9968         if (unlikely(err < 0)) {
9969                 netdev_err(dev,
9970                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9971                         err, &features, &dev->features);
9972                 /* return non-0 since some features might have changed and
9973                  * it's better to fire a spurious notification than miss it
9974                  */
9975                 return -1;
9976         }
9977
9978 sync_lower:
9979         /* some features must be disabled on lower devices when disabled
9980          * on an upper device (think: bonding master or bridge)
9981          */
9982         netdev_for_each_lower_dev(dev, lower, iter)
9983                 netdev_sync_lower_features(dev, lower, features);
9984
9985         if (!err) {
9986                 netdev_features_t diff = features ^ dev->features;
9987
9988                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9989                         /* udp_tunnel_{get,drop}_rx_info both need
9990                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9991                          * device, or they won't do anything.
9992                          * Thus we need to update dev->features
9993                          * *before* calling udp_tunnel_get_rx_info,
9994                          * but *after* calling udp_tunnel_drop_rx_info.
9995                          */
9996                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9997                                 dev->features = features;
9998                                 udp_tunnel_get_rx_info(dev);
9999                         } else {
10000                                 udp_tunnel_drop_rx_info(dev);
10001                         }
10002                 }
10003
10004                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10005                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10006                                 dev->features = features;
10007                                 err |= vlan_get_rx_ctag_filter_info(dev);
10008                         } else {
10009                                 vlan_drop_rx_ctag_filter_info(dev);
10010                         }
10011                 }
10012
10013                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10014                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10015                                 dev->features = features;
10016                                 err |= vlan_get_rx_stag_filter_info(dev);
10017                         } else {
10018                                 vlan_drop_rx_stag_filter_info(dev);
10019                         }
10020                 }
10021
10022                 dev->features = features;
10023         }
10024
10025         return err < 0 ? 0 : 1;
10026 }
10027
10028 /**
10029  *      netdev_update_features - recalculate device features
10030  *      @dev: the device to check
10031  *
10032  *      Recalculate dev->features set and send notifications if it
10033  *      has changed. Should be called after driver or hardware dependent
10034  *      conditions might have changed that influence the features.
10035  */
10036 void netdev_update_features(struct net_device *dev)
10037 {
10038         if (__netdev_update_features(dev))
10039                 netdev_features_change(dev);
10040 }
10041 EXPORT_SYMBOL(netdev_update_features);
10042
10043 /**
10044  *      netdev_change_features - recalculate device features
10045  *      @dev: the device to check
10046  *
10047  *      Recalculate dev->features set and send notifications even
10048  *      if they have not changed. Should be called instead of
10049  *      netdev_update_features() if also dev->vlan_features might
10050  *      have changed to allow the changes to be propagated to stacked
10051  *      VLAN devices.
10052  */
10053 void netdev_change_features(struct net_device *dev)
10054 {
10055         __netdev_update_features(dev);
10056         netdev_features_change(dev);
10057 }
10058 EXPORT_SYMBOL(netdev_change_features);
10059
10060 /**
10061  *      netif_stacked_transfer_operstate -      transfer operstate
10062  *      @rootdev: the root or lower level device to transfer state from
10063  *      @dev: the device to transfer operstate to
10064  *
10065  *      Transfer operational state from root to device. This is normally
10066  *      called when a stacking relationship exists between the root
10067  *      device and the device(a leaf device).
10068  */
10069 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10070                                         struct net_device *dev)
10071 {
10072         if (rootdev->operstate == IF_OPER_DORMANT)
10073                 netif_dormant_on(dev);
10074         else
10075                 netif_dormant_off(dev);
10076
10077         if (rootdev->operstate == IF_OPER_TESTING)
10078                 netif_testing_on(dev);
10079         else
10080                 netif_testing_off(dev);
10081
10082         if (netif_carrier_ok(rootdev))
10083                 netif_carrier_on(dev);
10084         else
10085                 netif_carrier_off(dev);
10086 }
10087 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10088
10089 static int netif_alloc_rx_queues(struct net_device *dev)
10090 {
10091         unsigned int i, count = dev->num_rx_queues;
10092         struct netdev_rx_queue *rx;
10093         size_t sz = count * sizeof(*rx);
10094         int err = 0;
10095
10096         BUG_ON(count < 1);
10097
10098         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10099         if (!rx)
10100                 return -ENOMEM;
10101
10102         dev->_rx = rx;
10103
10104         for (i = 0; i < count; i++) {
10105                 rx[i].dev = dev;
10106
10107                 /* XDP RX-queue setup */
10108                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10109                 if (err < 0)
10110                         goto err_rxq_info;
10111         }
10112         return 0;
10113
10114 err_rxq_info:
10115         /* Rollback successful reg's and free other resources */
10116         while (i--)
10117                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10118         kvfree(dev->_rx);
10119         dev->_rx = NULL;
10120         return err;
10121 }
10122
10123 static void netif_free_rx_queues(struct net_device *dev)
10124 {
10125         unsigned int i, count = dev->num_rx_queues;
10126
10127         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10128         if (!dev->_rx)
10129                 return;
10130
10131         for (i = 0; i < count; i++)
10132                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10133
10134         kvfree(dev->_rx);
10135 }
10136
10137 static void netdev_init_one_queue(struct net_device *dev,
10138                                   struct netdev_queue *queue, void *_unused)
10139 {
10140         /* Initialize queue lock */
10141         spin_lock_init(&queue->_xmit_lock);
10142         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10143         queue->xmit_lock_owner = -1;
10144         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10145         queue->dev = dev;
10146 #ifdef CONFIG_BQL
10147         dql_init(&queue->dql, HZ);
10148 #endif
10149 }
10150
10151 static void netif_free_tx_queues(struct net_device *dev)
10152 {
10153         kvfree(dev->_tx);
10154 }
10155
10156 static int netif_alloc_netdev_queues(struct net_device *dev)
10157 {
10158         unsigned int count = dev->num_tx_queues;
10159         struct netdev_queue *tx;
10160         size_t sz = count * sizeof(*tx);
10161
10162         if (count < 1 || count > 0xffff)
10163                 return -EINVAL;
10164
10165         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10166         if (!tx)
10167                 return -ENOMEM;
10168
10169         dev->_tx = tx;
10170
10171         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10172         spin_lock_init(&dev->tx_global_lock);
10173
10174         return 0;
10175 }
10176
10177 void netif_tx_stop_all_queues(struct net_device *dev)
10178 {
10179         unsigned int i;
10180
10181         for (i = 0; i < dev->num_tx_queues; i++) {
10182                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10183
10184                 netif_tx_stop_queue(txq);
10185         }
10186 }
10187 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10188
10189 /**
10190  *      register_netdevice      - register a network device
10191  *      @dev: device to register
10192  *
10193  *      Take a completed network device structure and add it to the kernel
10194  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10195  *      chain. 0 is returned on success. A negative errno code is returned
10196  *      on a failure to set up the device, or if the name is a duplicate.
10197  *
10198  *      Callers must hold the rtnl semaphore. You may want
10199  *      register_netdev() instead of this.
10200  *
10201  *      BUGS:
10202  *      The locking appears insufficient to guarantee two parallel registers
10203  *      will not get the same name.
10204  */
10205
10206 int register_netdevice(struct net_device *dev)
10207 {
10208         int ret;
10209         struct net *net = dev_net(dev);
10210
10211         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10212                      NETDEV_FEATURE_COUNT);
10213         BUG_ON(dev_boot_phase);
10214         ASSERT_RTNL();
10215
10216         might_sleep();
10217
10218         /* When net_device's are persistent, this will be fatal. */
10219         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10220         BUG_ON(!net);
10221
10222         ret = ethtool_check_ops(dev->ethtool_ops);
10223         if (ret)
10224                 return ret;
10225
10226         spin_lock_init(&dev->addr_list_lock);
10227         netdev_set_addr_lockdep_class(dev);
10228
10229         ret = dev_get_valid_name(net, dev, dev->name);
10230         if (ret < 0)
10231                 goto out;
10232
10233         ret = -ENOMEM;
10234         dev->name_node = netdev_name_node_head_alloc(dev);
10235         if (!dev->name_node)
10236                 goto out;
10237
10238         /* Init, if this function is available */
10239         if (dev->netdev_ops->ndo_init) {
10240                 ret = dev->netdev_ops->ndo_init(dev);
10241                 if (ret) {
10242                         if (ret > 0)
10243                                 ret = -EIO;
10244                         goto err_free_name;
10245                 }
10246         }
10247
10248         if (((dev->hw_features | dev->features) &
10249              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10250             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10251              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10252                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10253                 ret = -EINVAL;
10254                 goto err_uninit;
10255         }
10256
10257         ret = -EBUSY;
10258         if (!dev->ifindex)
10259                 dev->ifindex = dev_new_index(net);
10260         else if (__dev_get_by_index(net, dev->ifindex))
10261                 goto err_uninit;
10262
10263         /* Transfer changeable features to wanted_features and enable
10264          * software offloads (GSO and GRO).
10265          */
10266         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10267         dev->features |= NETIF_F_SOFT_FEATURES;
10268
10269         if (dev->udp_tunnel_nic_info) {
10270                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10271                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10272         }
10273
10274         dev->wanted_features = dev->features & dev->hw_features;
10275
10276         if (!(dev->flags & IFF_LOOPBACK))
10277                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10278
10279         /* If IPv4 TCP segmentation offload is supported we should also
10280          * allow the device to enable segmenting the frame with the option
10281          * of ignoring a static IP ID value.  This doesn't enable the
10282          * feature itself but allows the user to enable it later.
10283          */
10284         if (dev->hw_features & NETIF_F_TSO)
10285                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10286         if (dev->vlan_features & NETIF_F_TSO)
10287                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10288         if (dev->mpls_features & NETIF_F_TSO)
10289                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10290         if (dev->hw_enc_features & NETIF_F_TSO)
10291                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10292
10293         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10294          */
10295         dev->vlan_features |= NETIF_F_HIGHDMA;
10296
10297         /* Make NETIF_F_SG inheritable to tunnel devices.
10298          */
10299         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10300
10301         /* Make NETIF_F_SG inheritable to MPLS.
10302          */
10303         dev->mpls_features |= NETIF_F_SG;
10304
10305         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10306         ret = notifier_to_errno(ret);
10307         if (ret)
10308                 goto err_uninit;
10309
10310         ret = netdev_register_kobject(dev);
10311         if (ret) {
10312                 dev->reg_state = NETREG_UNREGISTERED;
10313                 goto err_uninit;
10314         }
10315         dev->reg_state = NETREG_REGISTERED;
10316
10317         __netdev_update_features(dev);
10318
10319         /*
10320          *      Default initial state at registry is that the
10321          *      device is present.
10322          */
10323
10324         set_bit(__LINK_STATE_PRESENT, &dev->state);
10325
10326         linkwatch_init_dev(dev);
10327
10328         dev_init_scheduler(dev);
10329         dev_hold(dev);
10330         list_netdevice(dev);
10331         add_device_randomness(dev->dev_addr, dev->addr_len);
10332
10333         /* If the device has permanent device address, driver should
10334          * set dev_addr and also addr_assign_type should be set to
10335          * NET_ADDR_PERM (default value).
10336          */
10337         if (dev->addr_assign_type == NET_ADDR_PERM)
10338                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10339
10340         /* Notify protocols, that a new device appeared. */
10341         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10342         ret = notifier_to_errno(ret);
10343         if (ret) {
10344                 /* Expect explicit free_netdev() on failure */
10345                 dev->needs_free_netdev = false;
10346                 unregister_netdevice_queue(dev, NULL);
10347                 goto out;
10348         }
10349         /*
10350          *      Prevent userspace races by waiting until the network
10351          *      device is fully setup before sending notifications.
10352          */
10353         if (!dev->rtnl_link_ops ||
10354             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10355                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10356
10357 out:
10358         return ret;
10359
10360 err_uninit:
10361         if (dev->netdev_ops->ndo_uninit)
10362                 dev->netdev_ops->ndo_uninit(dev);
10363         if (dev->priv_destructor)
10364                 dev->priv_destructor(dev);
10365 err_free_name:
10366         netdev_name_node_free(dev->name_node);
10367         goto out;
10368 }
10369 EXPORT_SYMBOL(register_netdevice);
10370
10371 /**
10372  *      init_dummy_netdev       - init a dummy network device for NAPI
10373  *      @dev: device to init
10374  *
10375  *      This takes a network device structure and initialize the minimum
10376  *      amount of fields so it can be used to schedule NAPI polls without
10377  *      registering a full blown interface. This is to be used by drivers
10378  *      that need to tie several hardware interfaces to a single NAPI
10379  *      poll scheduler due to HW limitations.
10380  */
10381 int init_dummy_netdev(struct net_device *dev)
10382 {
10383         /* Clear everything. Note we don't initialize spinlocks
10384          * are they aren't supposed to be taken by any of the
10385          * NAPI code and this dummy netdev is supposed to be
10386          * only ever used for NAPI polls
10387          */
10388         memset(dev, 0, sizeof(struct net_device));
10389
10390         /* make sure we BUG if trying to hit standard
10391          * register/unregister code path
10392          */
10393         dev->reg_state = NETREG_DUMMY;
10394
10395         /* NAPI wants this */
10396         INIT_LIST_HEAD(&dev->napi_list);
10397
10398         /* a dummy interface is started by default */
10399         set_bit(__LINK_STATE_PRESENT, &dev->state);
10400         set_bit(__LINK_STATE_START, &dev->state);
10401
10402         /* napi_busy_loop stats accounting wants this */
10403         dev_net_set(dev, &init_net);
10404
10405         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10406          * because users of this 'device' dont need to change
10407          * its refcount.
10408          */
10409
10410         return 0;
10411 }
10412 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10413
10414
10415 /**
10416  *      register_netdev - register a network device
10417  *      @dev: device to register
10418  *
10419  *      Take a completed network device structure and add it to the kernel
10420  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10421  *      chain. 0 is returned on success. A negative errno code is returned
10422  *      on a failure to set up the device, or if the name is a duplicate.
10423  *
10424  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10425  *      and expands the device name if you passed a format string to
10426  *      alloc_netdev.
10427  */
10428 int register_netdev(struct net_device *dev)
10429 {
10430         int err;
10431
10432         if (rtnl_lock_killable())
10433                 return -EINTR;
10434         err = register_netdevice(dev);
10435         rtnl_unlock();
10436         return err;
10437 }
10438 EXPORT_SYMBOL(register_netdev);
10439
10440 int netdev_refcnt_read(const struct net_device *dev)
10441 {
10442 #ifdef CONFIG_PCPU_DEV_REFCNT
10443         int i, refcnt = 0;
10444
10445         for_each_possible_cpu(i)
10446                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10447         return refcnt;
10448 #else
10449         return refcount_read(&dev->dev_refcnt);
10450 #endif
10451 }
10452 EXPORT_SYMBOL(netdev_refcnt_read);
10453
10454 int netdev_unregister_timeout_secs __read_mostly = 10;
10455
10456 #define WAIT_REFS_MIN_MSECS 1
10457 #define WAIT_REFS_MAX_MSECS 250
10458 /**
10459  * netdev_wait_allrefs - wait until all references are gone.
10460  * @dev: target net_device
10461  *
10462  * This is called when unregistering network devices.
10463  *
10464  * Any protocol or device that holds a reference should register
10465  * for netdevice notification, and cleanup and put back the
10466  * reference if they receive an UNREGISTER event.
10467  * We can get stuck here if buggy protocols don't correctly
10468  * call dev_put.
10469  */
10470 static void netdev_wait_allrefs(struct net_device *dev)
10471 {
10472         unsigned long rebroadcast_time, warning_time;
10473         int wait = 0, refcnt;
10474
10475         linkwatch_forget_dev(dev);
10476
10477         rebroadcast_time = warning_time = jiffies;
10478         refcnt = netdev_refcnt_read(dev);
10479
10480         while (refcnt != 1) {
10481                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10482                         rtnl_lock();
10483
10484                         /* Rebroadcast unregister notification */
10485                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10486
10487                         __rtnl_unlock();
10488                         rcu_barrier();
10489                         rtnl_lock();
10490
10491                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10492                                      &dev->state)) {
10493                                 /* We must not have linkwatch events
10494                                  * pending on unregister. If this
10495                                  * happens, we simply run the queue
10496                                  * unscheduled, resulting in a noop
10497                                  * for this device.
10498                                  */
10499                                 linkwatch_run_queue();
10500                         }
10501
10502                         __rtnl_unlock();
10503
10504                         rebroadcast_time = jiffies;
10505                 }
10506
10507                 if (!wait) {
10508                         rcu_barrier();
10509                         wait = WAIT_REFS_MIN_MSECS;
10510                 } else {
10511                         msleep(wait);
10512                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10513                 }
10514
10515                 refcnt = netdev_refcnt_read(dev);
10516
10517                 if (refcnt != 1 &&
10518                     time_after(jiffies, warning_time +
10519                                netdev_unregister_timeout_secs * HZ)) {
10520                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10521                                  dev->name, refcnt);
10522                         warning_time = jiffies;
10523                 }
10524         }
10525 }
10526
10527 /* The sequence is:
10528  *
10529  *      rtnl_lock();
10530  *      ...
10531  *      register_netdevice(x1);
10532  *      register_netdevice(x2);
10533  *      ...
10534  *      unregister_netdevice(y1);
10535  *      unregister_netdevice(y2);
10536  *      ...
10537  *      rtnl_unlock();
10538  *      free_netdev(y1);
10539  *      free_netdev(y2);
10540  *
10541  * We are invoked by rtnl_unlock().
10542  * This allows us to deal with problems:
10543  * 1) We can delete sysfs objects which invoke hotplug
10544  *    without deadlocking with linkwatch via keventd.
10545  * 2) Since we run with the RTNL semaphore not held, we can sleep
10546  *    safely in order to wait for the netdev refcnt to drop to zero.
10547  *
10548  * We must not return until all unregister events added during
10549  * the interval the lock was held have been completed.
10550  */
10551 void netdev_run_todo(void)
10552 {
10553         struct list_head list;
10554 #ifdef CONFIG_LOCKDEP
10555         struct list_head unlink_list;
10556
10557         list_replace_init(&net_unlink_list, &unlink_list);
10558
10559         while (!list_empty(&unlink_list)) {
10560                 struct net_device *dev = list_first_entry(&unlink_list,
10561                                                           struct net_device,
10562                                                           unlink_list);
10563                 list_del_init(&dev->unlink_list);
10564                 dev->nested_level = dev->lower_level - 1;
10565         }
10566 #endif
10567
10568         /* Snapshot list, allow later requests */
10569         list_replace_init(&net_todo_list, &list);
10570
10571         __rtnl_unlock();
10572
10573
10574         /* Wait for rcu callbacks to finish before next phase */
10575         if (!list_empty(&list))
10576                 rcu_barrier();
10577
10578         while (!list_empty(&list)) {
10579                 struct net_device *dev
10580                         = list_first_entry(&list, struct net_device, todo_list);
10581                 list_del(&dev->todo_list);
10582
10583                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10584                         pr_err("network todo '%s' but state %d\n",
10585                                dev->name, dev->reg_state);
10586                         dump_stack();
10587                         continue;
10588                 }
10589
10590                 dev->reg_state = NETREG_UNREGISTERED;
10591
10592                 netdev_wait_allrefs(dev);
10593
10594                 /* paranoia */
10595                 BUG_ON(netdev_refcnt_read(dev) != 1);
10596                 BUG_ON(!list_empty(&dev->ptype_all));
10597                 BUG_ON(!list_empty(&dev->ptype_specific));
10598                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10599                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10600 #if IS_ENABLED(CONFIG_DECNET)
10601                 WARN_ON(dev->dn_ptr);
10602 #endif
10603                 if (dev->priv_destructor)
10604                         dev->priv_destructor(dev);
10605                 if (dev->needs_free_netdev)
10606                         free_netdev(dev);
10607
10608                 /* Report a network device has been unregistered */
10609                 rtnl_lock();
10610                 dev_net(dev)->dev_unreg_count--;
10611                 __rtnl_unlock();
10612                 wake_up(&netdev_unregistering_wq);
10613
10614                 /* Free network device */
10615                 kobject_put(&dev->dev.kobj);
10616         }
10617 }
10618
10619 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10620  * all the same fields in the same order as net_device_stats, with only
10621  * the type differing, but rtnl_link_stats64 may have additional fields
10622  * at the end for newer counters.
10623  */
10624 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10625                              const struct net_device_stats *netdev_stats)
10626 {
10627 #if BITS_PER_LONG == 64
10628         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10629         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10630         /* zero out counters that only exist in rtnl_link_stats64 */
10631         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10632                sizeof(*stats64) - sizeof(*netdev_stats));
10633 #else
10634         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10635         const unsigned long *src = (const unsigned long *)netdev_stats;
10636         u64 *dst = (u64 *)stats64;
10637
10638         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10639         for (i = 0; i < n; i++)
10640                 dst[i] = src[i];
10641         /* zero out counters that only exist in rtnl_link_stats64 */
10642         memset((char *)stats64 + n * sizeof(u64), 0,
10643                sizeof(*stats64) - n * sizeof(u64));
10644 #endif
10645 }
10646 EXPORT_SYMBOL(netdev_stats_to_stats64);
10647
10648 /**
10649  *      dev_get_stats   - get network device statistics
10650  *      @dev: device to get statistics from
10651  *      @storage: place to store stats
10652  *
10653  *      Get network statistics from device. Return @storage.
10654  *      The device driver may provide its own method by setting
10655  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10656  *      otherwise the internal statistics structure is used.
10657  */
10658 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10659                                         struct rtnl_link_stats64 *storage)
10660 {
10661         const struct net_device_ops *ops = dev->netdev_ops;
10662
10663         if (ops->ndo_get_stats64) {
10664                 memset(storage, 0, sizeof(*storage));
10665                 ops->ndo_get_stats64(dev, storage);
10666         } else if (ops->ndo_get_stats) {
10667                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10668         } else {
10669                 netdev_stats_to_stats64(storage, &dev->stats);
10670         }
10671         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10672         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10673         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10674         return storage;
10675 }
10676 EXPORT_SYMBOL(dev_get_stats);
10677
10678 /**
10679  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10680  *      @s: place to store stats
10681  *      @netstats: per-cpu network stats to read from
10682  *
10683  *      Read per-cpu network statistics and populate the related fields in @s.
10684  */
10685 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10686                            const struct pcpu_sw_netstats __percpu *netstats)
10687 {
10688         int cpu;
10689
10690         for_each_possible_cpu(cpu) {
10691                 const struct pcpu_sw_netstats *stats;
10692                 struct pcpu_sw_netstats tmp;
10693                 unsigned int start;
10694
10695                 stats = per_cpu_ptr(netstats, cpu);
10696                 do {
10697                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10698                         tmp.rx_packets = stats->rx_packets;
10699                         tmp.rx_bytes   = stats->rx_bytes;
10700                         tmp.tx_packets = stats->tx_packets;
10701                         tmp.tx_bytes   = stats->tx_bytes;
10702                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10703
10704                 s->rx_packets += tmp.rx_packets;
10705                 s->rx_bytes   += tmp.rx_bytes;
10706                 s->tx_packets += tmp.tx_packets;
10707                 s->tx_bytes   += tmp.tx_bytes;
10708         }
10709 }
10710 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10711
10712 /**
10713  *      dev_get_tstats64 - ndo_get_stats64 implementation
10714  *      @dev: device to get statistics from
10715  *      @s: place to store stats
10716  *
10717  *      Populate @s from dev->stats and dev->tstats. Can be used as
10718  *      ndo_get_stats64() callback.
10719  */
10720 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10721 {
10722         netdev_stats_to_stats64(s, &dev->stats);
10723         dev_fetch_sw_netstats(s, dev->tstats);
10724 }
10725 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10726
10727 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10728 {
10729         struct netdev_queue *queue = dev_ingress_queue(dev);
10730
10731 #ifdef CONFIG_NET_CLS_ACT
10732         if (queue)
10733                 return queue;
10734         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10735         if (!queue)
10736                 return NULL;
10737         netdev_init_one_queue(dev, queue, NULL);
10738         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10739         queue->qdisc_sleeping = &noop_qdisc;
10740         rcu_assign_pointer(dev->ingress_queue, queue);
10741 #endif
10742         return queue;
10743 }
10744
10745 static const struct ethtool_ops default_ethtool_ops;
10746
10747 void netdev_set_default_ethtool_ops(struct net_device *dev,
10748                                     const struct ethtool_ops *ops)
10749 {
10750         if (dev->ethtool_ops == &default_ethtool_ops)
10751                 dev->ethtool_ops = ops;
10752 }
10753 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10754
10755 void netdev_freemem(struct net_device *dev)
10756 {
10757         char *addr = (char *)dev - dev->padded;
10758
10759         kvfree(addr);
10760 }
10761
10762 /**
10763  * alloc_netdev_mqs - allocate network device
10764  * @sizeof_priv: size of private data to allocate space for
10765  * @name: device name format string
10766  * @name_assign_type: origin of device name
10767  * @setup: callback to initialize device
10768  * @txqs: the number of TX subqueues to allocate
10769  * @rxqs: the number of RX subqueues to allocate
10770  *
10771  * Allocates a struct net_device with private data area for driver use
10772  * and performs basic initialization.  Also allocates subqueue structs
10773  * for each queue on the device.
10774  */
10775 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10776                 unsigned char name_assign_type,
10777                 void (*setup)(struct net_device *),
10778                 unsigned int txqs, unsigned int rxqs)
10779 {
10780         struct net_device *dev;
10781         unsigned int alloc_size;
10782         struct net_device *p;
10783
10784         BUG_ON(strlen(name) >= sizeof(dev->name));
10785
10786         if (txqs < 1) {
10787                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10788                 return NULL;
10789         }
10790
10791         if (rxqs < 1) {
10792                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10793                 return NULL;
10794         }
10795
10796         alloc_size = sizeof(struct net_device);
10797         if (sizeof_priv) {
10798                 /* ensure 32-byte alignment of private area */
10799                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10800                 alloc_size += sizeof_priv;
10801         }
10802         /* ensure 32-byte alignment of whole construct */
10803         alloc_size += NETDEV_ALIGN - 1;
10804
10805         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10806         if (!p)
10807                 return NULL;
10808
10809         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10810         dev->padded = (char *)dev - (char *)p;
10811
10812 #ifdef CONFIG_PCPU_DEV_REFCNT
10813         dev->pcpu_refcnt = alloc_percpu(int);
10814         if (!dev->pcpu_refcnt)
10815                 goto free_dev;
10816         dev_hold(dev);
10817 #else
10818         refcount_set(&dev->dev_refcnt, 1);
10819 #endif
10820
10821         if (dev_addr_init(dev))
10822                 goto free_pcpu;
10823
10824         dev_mc_init(dev);
10825         dev_uc_init(dev);
10826
10827         dev_net_set(dev, &init_net);
10828
10829         dev->gso_max_size = GSO_MAX_SIZE;
10830         dev->gso_max_segs = GSO_MAX_SEGS;
10831         dev->upper_level = 1;
10832         dev->lower_level = 1;
10833 #ifdef CONFIG_LOCKDEP
10834         dev->nested_level = 0;
10835         INIT_LIST_HEAD(&dev->unlink_list);
10836 #endif
10837
10838         INIT_LIST_HEAD(&dev->napi_list);
10839         INIT_LIST_HEAD(&dev->unreg_list);
10840         INIT_LIST_HEAD(&dev->close_list);
10841         INIT_LIST_HEAD(&dev->link_watch_list);
10842         INIT_LIST_HEAD(&dev->adj_list.upper);
10843         INIT_LIST_HEAD(&dev->adj_list.lower);
10844         INIT_LIST_HEAD(&dev->ptype_all);
10845         INIT_LIST_HEAD(&dev->ptype_specific);
10846         INIT_LIST_HEAD(&dev->net_notifier_list);
10847 #ifdef CONFIG_NET_SCHED
10848         hash_init(dev->qdisc_hash);
10849 #endif
10850         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10851         setup(dev);
10852
10853         if (!dev->tx_queue_len) {
10854                 dev->priv_flags |= IFF_NO_QUEUE;
10855                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10856         }
10857
10858         dev->num_tx_queues = txqs;
10859         dev->real_num_tx_queues = txqs;
10860         if (netif_alloc_netdev_queues(dev))
10861                 goto free_all;
10862
10863         dev->num_rx_queues = rxqs;
10864         dev->real_num_rx_queues = rxqs;
10865         if (netif_alloc_rx_queues(dev))
10866                 goto free_all;
10867
10868         strcpy(dev->name, name);
10869         dev->name_assign_type = name_assign_type;
10870         dev->group = INIT_NETDEV_GROUP;
10871         if (!dev->ethtool_ops)
10872                 dev->ethtool_ops = &default_ethtool_ops;
10873
10874         nf_hook_ingress_init(dev);
10875
10876         return dev;
10877
10878 free_all:
10879         free_netdev(dev);
10880         return NULL;
10881
10882 free_pcpu:
10883 #ifdef CONFIG_PCPU_DEV_REFCNT
10884         free_percpu(dev->pcpu_refcnt);
10885 free_dev:
10886 #endif
10887         netdev_freemem(dev);
10888         return NULL;
10889 }
10890 EXPORT_SYMBOL(alloc_netdev_mqs);
10891
10892 /**
10893  * free_netdev - free network device
10894  * @dev: device
10895  *
10896  * This function does the last stage of destroying an allocated device
10897  * interface. The reference to the device object is released. If this
10898  * is the last reference then it will be freed.Must be called in process
10899  * context.
10900  */
10901 void free_netdev(struct net_device *dev)
10902 {
10903         struct napi_struct *p, *n;
10904
10905         might_sleep();
10906
10907         /* When called immediately after register_netdevice() failed the unwind
10908          * handling may still be dismantling the device. Handle that case by
10909          * deferring the free.
10910          */
10911         if (dev->reg_state == NETREG_UNREGISTERING) {
10912                 ASSERT_RTNL();
10913                 dev->needs_free_netdev = true;
10914                 return;
10915         }
10916
10917         netif_free_tx_queues(dev);
10918         netif_free_rx_queues(dev);
10919
10920         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10921
10922         /* Flush device addresses */
10923         dev_addr_flush(dev);
10924
10925         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10926                 netif_napi_del(p);
10927
10928 #ifdef CONFIG_PCPU_DEV_REFCNT
10929         free_percpu(dev->pcpu_refcnt);
10930         dev->pcpu_refcnt = NULL;
10931 #endif
10932         free_percpu(dev->xdp_bulkq);
10933         dev->xdp_bulkq = NULL;
10934
10935         /*  Compatibility with error handling in drivers */
10936         if (dev->reg_state == NETREG_UNINITIALIZED) {
10937                 netdev_freemem(dev);
10938                 return;
10939         }
10940
10941         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10942         dev->reg_state = NETREG_RELEASED;
10943
10944         /* will free via device release */
10945         put_device(&dev->dev);
10946 }
10947 EXPORT_SYMBOL(free_netdev);
10948
10949 /**
10950  *      synchronize_net -  Synchronize with packet receive processing
10951  *
10952  *      Wait for packets currently being received to be done.
10953  *      Does not block later packets from starting.
10954  */
10955 void synchronize_net(void)
10956 {
10957         might_sleep();
10958         if (rtnl_is_locked())
10959                 synchronize_rcu_expedited();
10960         else
10961                 synchronize_rcu();
10962 }
10963 EXPORT_SYMBOL(synchronize_net);
10964
10965 /**
10966  *      unregister_netdevice_queue - remove device from the kernel
10967  *      @dev: device
10968  *      @head: list
10969  *
10970  *      This function shuts down a device interface and removes it
10971  *      from the kernel tables.
10972  *      If head not NULL, device is queued to be unregistered later.
10973  *
10974  *      Callers must hold the rtnl semaphore.  You may want
10975  *      unregister_netdev() instead of this.
10976  */
10977
10978 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10979 {
10980         ASSERT_RTNL();
10981
10982         if (head) {
10983                 list_move_tail(&dev->unreg_list, head);
10984         } else {
10985                 LIST_HEAD(single);
10986
10987                 list_add(&dev->unreg_list, &single);
10988                 unregister_netdevice_many(&single);
10989         }
10990 }
10991 EXPORT_SYMBOL(unregister_netdevice_queue);
10992
10993 /**
10994  *      unregister_netdevice_many - unregister many devices
10995  *      @head: list of devices
10996  *
10997  *  Note: As most callers use a stack allocated list_head,
10998  *  we force a list_del() to make sure stack wont be corrupted later.
10999  */
11000 void unregister_netdevice_many(struct list_head *head)
11001 {
11002         struct net_device *dev, *tmp;
11003         LIST_HEAD(close_head);
11004
11005         BUG_ON(dev_boot_phase);
11006         ASSERT_RTNL();
11007
11008         if (list_empty(head))
11009                 return;
11010
11011         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11012                 /* Some devices call without registering
11013                  * for initialization unwind. Remove those
11014                  * devices and proceed with the remaining.
11015                  */
11016                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11017                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11018                                  dev->name, dev);
11019
11020                         WARN_ON(1);
11021                         list_del(&dev->unreg_list);
11022                         continue;
11023                 }
11024                 dev->dismantle = true;
11025                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11026         }
11027
11028         /* If device is running, close it first. */
11029         list_for_each_entry(dev, head, unreg_list)
11030                 list_add_tail(&dev->close_list, &close_head);
11031         dev_close_many(&close_head, true);
11032
11033         list_for_each_entry(dev, head, unreg_list) {
11034                 /* And unlink it from device chain. */
11035                 unlist_netdevice(dev);
11036
11037                 dev->reg_state = NETREG_UNREGISTERING;
11038         }
11039         flush_all_backlogs();
11040
11041         synchronize_net();
11042
11043         list_for_each_entry(dev, head, unreg_list) {
11044                 struct sk_buff *skb = NULL;
11045
11046                 /* Shutdown queueing discipline. */
11047                 dev_shutdown(dev);
11048
11049                 dev_xdp_uninstall(dev);
11050
11051                 /* Notify protocols, that we are about to destroy
11052                  * this device. They should clean all the things.
11053                  */
11054                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11055
11056                 if (!dev->rtnl_link_ops ||
11057                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11058                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11059                                                      GFP_KERNEL, NULL, 0);
11060
11061                 /*
11062                  *      Flush the unicast and multicast chains
11063                  */
11064                 dev_uc_flush(dev);
11065                 dev_mc_flush(dev);
11066
11067                 netdev_name_node_alt_flush(dev);
11068                 netdev_name_node_free(dev->name_node);
11069
11070                 if (dev->netdev_ops->ndo_uninit)
11071                         dev->netdev_ops->ndo_uninit(dev);
11072
11073                 if (skb)
11074                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11075
11076                 /* Notifier chain MUST detach us all upper devices. */
11077                 WARN_ON(netdev_has_any_upper_dev(dev));
11078                 WARN_ON(netdev_has_any_lower_dev(dev));
11079
11080                 /* Remove entries from kobject tree */
11081                 netdev_unregister_kobject(dev);
11082 #ifdef CONFIG_XPS
11083                 /* Remove XPS queueing entries */
11084                 netif_reset_xps_queues_gt(dev, 0);
11085 #endif
11086         }
11087
11088         synchronize_net();
11089
11090         list_for_each_entry(dev, head, unreg_list) {
11091                 dev_put(dev);
11092                 net_set_todo(dev);
11093         }
11094
11095         list_del(head);
11096 }
11097 EXPORT_SYMBOL(unregister_netdevice_many);
11098
11099 /**
11100  *      unregister_netdev - remove device from the kernel
11101  *      @dev: device
11102  *
11103  *      This function shuts down a device interface and removes it
11104  *      from the kernel tables.
11105  *
11106  *      This is just a wrapper for unregister_netdevice that takes
11107  *      the rtnl semaphore.  In general you want to use this and not
11108  *      unregister_netdevice.
11109  */
11110 void unregister_netdev(struct net_device *dev)
11111 {
11112         rtnl_lock();
11113         unregister_netdevice(dev);
11114         rtnl_unlock();
11115 }
11116 EXPORT_SYMBOL(unregister_netdev);
11117
11118 /**
11119  *      __dev_change_net_namespace - move device to different nethost namespace
11120  *      @dev: device
11121  *      @net: network namespace
11122  *      @pat: If not NULL name pattern to try if the current device name
11123  *            is already taken in the destination network namespace.
11124  *      @new_ifindex: If not zero, specifies device index in the target
11125  *                    namespace.
11126  *
11127  *      This function shuts down a device interface and moves it
11128  *      to a new network namespace. On success 0 is returned, on
11129  *      a failure a netagive errno code is returned.
11130  *
11131  *      Callers must hold the rtnl semaphore.
11132  */
11133
11134 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11135                                const char *pat, int new_ifindex)
11136 {
11137         struct net *net_old = dev_net(dev);
11138         int err, new_nsid;
11139
11140         ASSERT_RTNL();
11141
11142         /* Don't allow namespace local devices to be moved. */
11143         err = -EINVAL;
11144         if (dev->features & NETIF_F_NETNS_LOCAL)
11145                 goto out;
11146
11147         /* Ensure the device has been registrered */
11148         if (dev->reg_state != NETREG_REGISTERED)
11149                 goto out;
11150
11151         /* Get out if there is nothing todo */
11152         err = 0;
11153         if (net_eq(net_old, net))
11154                 goto out;
11155
11156         /* Pick the destination device name, and ensure
11157          * we can use it in the destination network namespace.
11158          */
11159         err = -EEXIST;
11160         if (__dev_get_by_name(net, dev->name)) {
11161                 /* We get here if we can't use the current device name */
11162                 if (!pat)
11163                         goto out;
11164                 err = dev_get_valid_name(net, dev, pat);
11165                 if (err < 0)
11166                         goto out;
11167         }
11168
11169         /* Check that new_ifindex isn't used yet. */
11170         err = -EBUSY;
11171         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11172                 goto out;
11173
11174         /*
11175          * And now a mini version of register_netdevice unregister_netdevice.
11176          */
11177
11178         /* If device is running close it first. */
11179         dev_close(dev);
11180
11181         /* And unlink it from device chain */
11182         unlist_netdevice(dev);
11183
11184         synchronize_net();
11185
11186         /* Shutdown queueing discipline. */
11187         dev_shutdown(dev);
11188
11189         /* Notify protocols, that we are about to destroy
11190          * this device. They should clean all the things.
11191          *
11192          * Note that dev->reg_state stays at NETREG_REGISTERED.
11193          * This is wanted because this way 8021q and macvlan know
11194          * the device is just moving and can keep their slaves up.
11195          */
11196         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11197         rcu_barrier();
11198
11199         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11200         /* If there is an ifindex conflict assign a new one */
11201         if (!new_ifindex) {
11202                 if (__dev_get_by_index(net, dev->ifindex))
11203                         new_ifindex = dev_new_index(net);
11204                 else
11205                         new_ifindex = dev->ifindex;
11206         }
11207
11208         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11209                             new_ifindex);
11210
11211         /*
11212          *      Flush the unicast and multicast chains
11213          */
11214         dev_uc_flush(dev);
11215         dev_mc_flush(dev);
11216
11217         /* Send a netdev-removed uevent to the old namespace */
11218         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11219         netdev_adjacent_del_links(dev);
11220
11221         /* Move per-net netdevice notifiers that are following the netdevice */
11222         move_netdevice_notifiers_dev_net(dev, net);
11223
11224         /* Actually switch the network namespace */
11225         dev_net_set(dev, net);
11226         dev->ifindex = new_ifindex;
11227
11228         /* Send a netdev-add uevent to the new namespace */
11229         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11230         netdev_adjacent_add_links(dev);
11231
11232         /* Fixup kobjects */
11233         err = device_rename(&dev->dev, dev->name);
11234         WARN_ON(err);
11235
11236         /* Adapt owner in case owning user namespace of target network
11237          * namespace is different from the original one.
11238          */
11239         err = netdev_change_owner(dev, net_old, net);
11240         WARN_ON(err);
11241
11242         /* Add the device back in the hashes */
11243         list_netdevice(dev);
11244
11245         /* Notify protocols, that a new device appeared. */
11246         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11247
11248         /*
11249          *      Prevent userspace races by waiting until the network
11250          *      device is fully setup before sending notifications.
11251          */
11252         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11253
11254         synchronize_net();
11255         err = 0;
11256 out:
11257         return err;
11258 }
11259 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11260
11261 static int dev_cpu_dead(unsigned int oldcpu)
11262 {
11263         struct sk_buff **list_skb;
11264         struct sk_buff *skb;
11265         unsigned int cpu;
11266         struct softnet_data *sd, *oldsd, *remsd = NULL;
11267
11268         local_irq_disable();
11269         cpu = smp_processor_id();
11270         sd = &per_cpu(softnet_data, cpu);
11271         oldsd = &per_cpu(softnet_data, oldcpu);
11272
11273         /* Find end of our completion_queue. */
11274         list_skb = &sd->completion_queue;
11275         while (*list_skb)
11276                 list_skb = &(*list_skb)->next;
11277         /* Append completion queue from offline CPU. */
11278         *list_skb = oldsd->completion_queue;
11279         oldsd->completion_queue = NULL;
11280
11281         /* Append output queue from offline CPU. */
11282         if (oldsd->output_queue) {
11283                 *sd->output_queue_tailp = oldsd->output_queue;
11284                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11285                 oldsd->output_queue = NULL;
11286                 oldsd->output_queue_tailp = &oldsd->output_queue;
11287         }
11288         /* Append NAPI poll list from offline CPU, with one exception :
11289          * process_backlog() must be called by cpu owning percpu backlog.
11290          * We properly handle process_queue & input_pkt_queue later.
11291          */
11292         while (!list_empty(&oldsd->poll_list)) {
11293                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11294                                                             struct napi_struct,
11295                                                             poll_list);
11296
11297                 list_del_init(&napi->poll_list);
11298                 if (napi->poll == process_backlog)
11299                         napi->state = 0;
11300                 else
11301                         ____napi_schedule(sd, napi);
11302         }
11303
11304         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11305         local_irq_enable();
11306
11307 #ifdef CONFIG_RPS
11308         remsd = oldsd->rps_ipi_list;
11309         oldsd->rps_ipi_list = NULL;
11310 #endif
11311         /* send out pending IPI's on offline CPU */
11312         net_rps_send_ipi(remsd);
11313
11314         /* Process offline CPU's input_pkt_queue */
11315         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11316                 netif_rx_ni(skb);
11317                 input_queue_head_incr(oldsd);
11318         }
11319         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11320                 netif_rx_ni(skb);
11321                 input_queue_head_incr(oldsd);
11322         }
11323
11324         return 0;
11325 }
11326
11327 /**
11328  *      netdev_increment_features - increment feature set by one
11329  *      @all: current feature set
11330  *      @one: new feature set
11331  *      @mask: mask feature set
11332  *
11333  *      Computes a new feature set after adding a device with feature set
11334  *      @one to the master device with current feature set @all.  Will not
11335  *      enable anything that is off in @mask. Returns the new feature set.
11336  */
11337 netdev_features_t netdev_increment_features(netdev_features_t all,
11338         netdev_features_t one, netdev_features_t mask)
11339 {
11340         if (mask & NETIF_F_HW_CSUM)
11341                 mask |= NETIF_F_CSUM_MASK;
11342         mask |= NETIF_F_VLAN_CHALLENGED;
11343
11344         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11345         all &= one | ~NETIF_F_ALL_FOR_ALL;
11346
11347         /* If one device supports hw checksumming, set for all. */
11348         if (all & NETIF_F_HW_CSUM)
11349                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11350
11351         return all;
11352 }
11353 EXPORT_SYMBOL(netdev_increment_features);
11354
11355 static struct hlist_head * __net_init netdev_create_hash(void)
11356 {
11357         int i;
11358         struct hlist_head *hash;
11359
11360         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11361         if (hash != NULL)
11362                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11363                         INIT_HLIST_HEAD(&hash[i]);
11364
11365         return hash;
11366 }
11367
11368 /* Initialize per network namespace state */
11369 static int __net_init netdev_init(struct net *net)
11370 {
11371         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11372                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11373
11374         if (net != &init_net)
11375                 INIT_LIST_HEAD(&net->dev_base_head);
11376
11377         net->dev_name_head = netdev_create_hash();
11378         if (net->dev_name_head == NULL)
11379                 goto err_name;
11380
11381         net->dev_index_head = netdev_create_hash();
11382         if (net->dev_index_head == NULL)
11383                 goto err_idx;
11384
11385         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11386
11387         return 0;
11388
11389 err_idx:
11390         kfree(net->dev_name_head);
11391 err_name:
11392         return -ENOMEM;
11393 }
11394
11395 /**
11396  *      netdev_drivername - network driver for the device
11397  *      @dev: network device
11398  *
11399  *      Determine network driver for device.
11400  */
11401 const char *netdev_drivername(const struct net_device *dev)
11402 {
11403         const struct device_driver *driver;
11404         const struct device *parent;
11405         const char *empty = "";
11406
11407         parent = dev->dev.parent;
11408         if (!parent)
11409                 return empty;
11410
11411         driver = parent->driver;
11412         if (driver && driver->name)
11413                 return driver->name;
11414         return empty;
11415 }
11416
11417 static void __netdev_printk(const char *level, const struct net_device *dev,
11418                             struct va_format *vaf)
11419 {
11420         if (dev && dev->dev.parent) {
11421                 dev_printk_emit(level[1] - '0',
11422                                 dev->dev.parent,
11423                                 "%s %s %s%s: %pV",
11424                                 dev_driver_string(dev->dev.parent),
11425                                 dev_name(dev->dev.parent),
11426                                 netdev_name(dev), netdev_reg_state(dev),
11427                                 vaf);
11428         } else if (dev) {
11429                 printk("%s%s%s: %pV",
11430                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11431         } else {
11432                 printk("%s(NULL net_device): %pV", level, vaf);
11433         }
11434 }
11435
11436 void netdev_printk(const char *level, const struct net_device *dev,
11437                    const char *format, ...)
11438 {
11439         struct va_format vaf;
11440         va_list args;
11441
11442         va_start(args, format);
11443
11444         vaf.fmt = format;
11445         vaf.va = &args;
11446
11447         __netdev_printk(level, dev, &vaf);
11448
11449         va_end(args);
11450 }
11451 EXPORT_SYMBOL(netdev_printk);
11452
11453 #define define_netdev_printk_level(func, level)                 \
11454 void func(const struct net_device *dev, const char *fmt, ...)   \
11455 {                                                               \
11456         struct va_format vaf;                                   \
11457         va_list args;                                           \
11458                                                                 \
11459         va_start(args, fmt);                                    \
11460                                                                 \
11461         vaf.fmt = fmt;                                          \
11462         vaf.va = &args;                                         \
11463                                                                 \
11464         __netdev_printk(level, dev, &vaf);                      \
11465                                                                 \
11466         va_end(args);                                           \
11467 }                                                               \
11468 EXPORT_SYMBOL(func);
11469
11470 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11471 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11472 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11473 define_netdev_printk_level(netdev_err, KERN_ERR);
11474 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11475 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11476 define_netdev_printk_level(netdev_info, KERN_INFO);
11477
11478 static void __net_exit netdev_exit(struct net *net)
11479 {
11480         kfree(net->dev_name_head);
11481         kfree(net->dev_index_head);
11482         if (net != &init_net)
11483                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11484 }
11485
11486 static struct pernet_operations __net_initdata netdev_net_ops = {
11487         .init = netdev_init,
11488         .exit = netdev_exit,
11489 };
11490
11491 static void __net_exit default_device_exit(struct net *net)
11492 {
11493         struct net_device *dev, *aux;
11494         /*
11495          * Push all migratable network devices back to the
11496          * initial network namespace
11497          */
11498         rtnl_lock();
11499         for_each_netdev_safe(net, dev, aux) {
11500                 int err;
11501                 char fb_name[IFNAMSIZ];
11502
11503                 /* Ignore unmoveable devices (i.e. loopback) */
11504                 if (dev->features & NETIF_F_NETNS_LOCAL)
11505                         continue;
11506
11507                 /* Leave virtual devices for the generic cleanup */
11508                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11509                         continue;
11510
11511                 /* Push remaining network devices to init_net */
11512                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11513                 if (__dev_get_by_name(&init_net, fb_name))
11514                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11515                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11516                 if (err) {
11517                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11518                                  __func__, dev->name, err);
11519                         BUG();
11520                 }
11521         }
11522         rtnl_unlock();
11523 }
11524
11525 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11526 {
11527         /* Return with the rtnl_lock held when there are no network
11528          * devices unregistering in any network namespace in net_list.
11529          */
11530         struct net *net;
11531         bool unregistering;
11532         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11533
11534         add_wait_queue(&netdev_unregistering_wq, &wait);
11535         for (;;) {
11536                 unregistering = false;
11537                 rtnl_lock();
11538                 list_for_each_entry(net, net_list, exit_list) {
11539                         if (net->dev_unreg_count > 0) {
11540                                 unregistering = true;
11541                                 break;
11542                         }
11543                 }
11544                 if (!unregistering)
11545                         break;
11546                 __rtnl_unlock();
11547
11548                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11549         }
11550         remove_wait_queue(&netdev_unregistering_wq, &wait);
11551 }
11552
11553 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11554 {
11555         /* At exit all network devices most be removed from a network
11556          * namespace.  Do this in the reverse order of registration.
11557          * Do this across as many network namespaces as possible to
11558          * improve batching efficiency.
11559          */
11560         struct net_device *dev;
11561         struct net *net;
11562         LIST_HEAD(dev_kill_list);
11563
11564         /* To prevent network device cleanup code from dereferencing
11565          * loopback devices or network devices that have been freed
11566          * wait here for all pending unregistrations to complete,
11567          * before unregistring the loopback device and allowing the
11568          * network namespace be freed.
11569          *
11570          * The netdev todo list containing all network devices
11571          * unregistrations that happen in default_device_exit_batch
11572          * will run in the rtnl_unlock() at the end of
11573          * default_device_exit_batch.
11574          */
11575         rtnl_lock_unregistering(net_list);
11576         list_for_each_entry(net, net_list, exit_list) {
11577                 for_each_netdev_reverse(net, dev) {
11578                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11579                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11580                         else
11581                                 unregister_netdevice_queue(dev, &dev_kill_list);
11582                 }
11583         }
11584         unregister_netdevice_many(&dev_kill_list);
11585         rtnl_unlock();
11586 }
11587
11588 static struct pernet_operations __net_initdata default_device_ops = {
11589         .exit = default_device_exit,
11590         .exit_batch = default_device_exit_batch,
11591 };
11592
11593 /*
11594  *      Initialize the DEV module. At boot time this walks the device list and
11595  *      unhooks any devices that fail to initialise (normally hardware not
11596  *      present) and leaves us with a valid list of present and active devices.
11597  *
11598  */
11599
11600 /*
11601  *       This is called single threaded during boot, so no need
11602  *       to take the rtnl semaphore.
11603  */
11604 static int __init net_dev_init(void)
11605 {
11606         int i, rc = -ENOMEM;
11607
11608         BUG_ON(!dev_boot_phase);
11609
11610         if (dev_proc_init())
11611                 goto out;
11612
11613         if (netdev_kobject_init())
11614                 goto out;
11615
11616         INIT_LIST_HEAD(&ptype_all);
11617         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11618                 INIT_LIST_HEAD(&ptype_base[i]);
11619
11620         INIT_LIST_HEAD(&offload_base);
11621
11622         if (register_pernet_subsys(&netdev_net_ops))
11623                 goto out;
11624
11625         /*
11626          *      Initialise the packet receive queues.
11627          */
11628
11629         for_each_possible_cpu(i) {
11630                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11631                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11632
11633                 INIT_WORK(flush, flush_backlog);
11634
11635                 skb_queue_head_init(&sd->input_pkt_queue);
11636                 skb_queue_head_init(&sd->process_queue);
11637 #ifdef CONFIG_XFRM_OFFLOAD
11638                 skb_queue_head_init(&sd->xfrm_backlog);
11639 #endif
11640                 INIT_LIST_HEAD(&sd->poll_list);
11641                 sd->output_queue_tailp = &sd->output_queue;
11642 #ifdef CONFIG_RPS
11643                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11644                 sd->cpu = i;
11645 #endif
11646
11647                 init_gro_hash(&sd->backlog);
11648                 sd->backlog.poll = process_backlog;
11649                 sd->backlog.weight = weight_p;
11650         }
11651
11652         dev_boot_phase = 0;
11653
11654         /* The loopback device is special if any other network devices
11655          * is present in a network namespace the loopback device must
11656          * be present. Since we now dynamically allocate and free the
11657          * loopback device ensure this invariant is maintained by
11658          * keeping the loopback device as the first device on the
11659          * list of network devices.  Ensuring the loopback devices
11660          * is the first device that appears and the last network device
11661          * that disappears.
11662          */
11663         if (register_pernet_device(&loopback_net_ops))
11664                 goto out;
11665
11666         if (register_pernet_device(&default_device_ops))
11667                 goto out;
11668
11669         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11670         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11671
11672         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11673                                        NULL, dev_cpu_dead);
11674         WARN_ON(rc < 0);
11675         rc = 0;
11676 out:
11677         return rc;
11678 }
11679
11680 subsys_initcall(net_dev_init);