GNU Linux-libre 6.8.7-gnu
[releases.git] / net / can / af_can.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/can/can-ml.h>
62 #include <linux/ratelimit.h>
63 #include <net/net_namespace.h>
64 #include <net/sock.h>
65
66 #include "af_can.h"
67
68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69 MODULE_LICENSE("Dual BSD/GPL");
70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71               "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72
73 MODULE_ALIAS_NETPROTO(PF_CAN);
74
75 static int stats_timer __read_mostly = 1;
76 module_param(stats_timer, int, 0444);
77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78
79 static struct kmem_cache *rcv_cache __read_mostly;
80
81 /* table of registered CAN protocols */
82 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83 static DEFINE_MUTEX(proto_tab_lock);
84
85 static atomic_t skbcounter = ATOMIC_INIT(0);
86
87 /* af_can socket functions */
88
89 void can_sock_destruct(struct sock *sk)
90 {
91         skb_queue_purge(&sk->sk_receive_queue);
92         skb_queue_purge(&sk->sk_error_queue);
93 }
94 EXPORT_SYMBOL(can_sock_destruct);
95
96 static const struct can_proto *can_get_proto(int protocol)
97 {
98         const struct can_proto *cp;
99
100         rcu_read_lock();
101         cp = rcu_dereference(proto_tab[protocol]);
102         if (cp && !try_module_get(cp->prot->owner))
103                 cp = NULL;
104         rcu_read_unlock();
105
106         return cp;
107 }
108
109 static inline void can_put_proto(const struct can_proto *cp)
110 {
111         module_put(cp->prot->owner);
112 }
113
114 static int can_create(struct net *net, struct socket *sock, int protocol,
115                       int kern)
116 {
117         struct sock *sk;
118         const struct can_proto *cp;
119         int err = 0;
120
121         sock->state = SS_UNCONNECTED;
122
123         if (protocol < 0 || protocol >= CAN_NPROTO)
124                 return -EINVAL;
125
126         cp = can_get_proto(protocol);
127
128 #ifdef CONFIG_MODULES
129         if (!cp) {
130                 /* try to load protocol module if kernel is modular */
131
132                 err = request_module("can-proto-%d", protocol);
133
134                 /* In case of error we only print a message but don't
135                  * return the error code immediately.  Below we will
136                  * return -EPROTONOSUPPORT
137                  */
138                 if (err)
139                         pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
140                                            protocol);
141
142                 cp = can_get_proto(protocol);
143         }
144 #endif
145
146         /* check for available protocol and correct usage */
147
148         if (!cp)
149                 return -EPROTONOSUPPORT;
150
151         if (cp->type != sock->type) {
152                 err = -EPROTOTYPE;
153                 goto errout;
154         }
155
156         sock->ops = cp->ops;
157
158         sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
159         if (!sk) {
160                 err = -ENOMEM;
161                 goto errout;
162         }
163
164         sock_init_data(sock, sk);
165         sk->sk_destruct = can_sock_destruct;
166
167         if (sk->sk_prot->init)
168                 err = sk->sk_prot->init(sk);
169
170         if (err) {
171                 /* release sk on errors */
172                 sock_orphan(sk);
173                 sock_put(sk);
174         }
175
176  errout:
177         can_put_proto(cp);
178         return err;
179 }
180
181 /* af_can tx path */
182
183 /**
184  * can_send - transmit a CAN frame (optional with local loopback)
185  * @skb: pointer to socket buffer with CAN frame in data section
186  * @loop: loopback for listeners on local CAN sockets (recommended default!)
187  *
188  * Due to the loopback this routine must not be called from hardirq context.
189  *
190  * Return:
191  *  0 on success
192  *  -ENETDOWN when the selected interface is down
193  *  -ENOBUFS on full driver queue (see net_xmit_errno())
194  *  -ENOMEM when local loopback failed at calling skb_clone()
195  *  -EPERM when trying to send on a non-CAN interface
196  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
197  *  -EINVAL when the skb->data does not contain a valid CAN frame
198  */
199 int can_send(struct sk_buff *skb, int loop)
200 {
201         struct sk_buff *newskb = NULL;
202         struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
203         int err = -EINVAL;
204
205         if (can_is_canxl_skb(skb)) {
206                 skb->protocol = htons(ETH_P_CANXL);
207         } else if (can_is_can_skb(skb)) {
208                 skb->protocol = htons(ETH_P_CAN);
209         } else if (can_is_canfd_skb(skb)) {
210                 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
211
212                 skb->protocol = htons(ETH_P_CANFD);
213
214                 /* set CAN FD flag for CAN FD frames by default */
215                 cfd->flags |= CANFD_FDF;
216         } else {
217                 goto inval_skb;
218         }
219
220         /* Make sure the CAN frame can pass the selected CAN netdevice. */
221         if (unlikely(skb->len > skb->dev->mtu)) {
222                 err = -EMSGSIZE;
223                 goto inval_skb;
224         }
225
226         if (unlikely(skb->dev->type != ARPHRD_CAN)) {
227                 err = -EPERM;
228                 goto inval_skb;
229         }
230
231         if (unlikely(!(skb->dev->flags & IFF_UP))) {
232                 err = -ENETDOWN;
233                 goto inval_skb;
234         }
235
236         skb->ip_summed = CHECKSUM_UNNECESSARY;
237
238         skb_reset_mac_header(skb);
239         skb_reset_network_header(skb);
240         skb_reset_transport_header(skb);
241
242         if (loop) {
243                 /* local loopback of sent CAN frames */
244
245                 /* indication for the CAN driver: do loopback */
246                 skb->pkt_type = PACKET_LOOPBACK;
247
248                 /* The reference to the originating sock may be required
249                  * by the receiving socket to check whether the frame is
250                  * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
251                  * Therefore we have to ensure that skb->sk remains the
252                  * reference to the originating sock by restoring skb->sk
253                  * after each skb_clone() or skb_orphan() usage.
254                  */
255
256                 if (!(skb->dev->flags & IFF_ECHO)) {
257                         /* If the interface is not capable to do loopback
258                          * itself, we do it here.
259                          */
260                         newskb = skb_clone(skb, GFP_ATOMIC);
261                         if (!newskb) {
262                                 kfree_skb(skb);
263                                 return -ENOMEM;
264                         }
265
266                         can_skb_set_owner(newskb, skb->sk);
267                         newskb->ip_summed = CHECKSUM_UNNECESSARY;
268                         newskb->pkt_type = PACKET_BROADCAST;
269                 }
270         } else {
271                 /* indication for the CAN driver: no loopback required */
272                 skb->pkt_type = PACKET_HOST;
273         }
274
275         /* send to netdevice */
276         err = dev_queue_xmit(skb);
277         if (err > 0)
278                 err = net_xmit_errno(err);
279
280         if (err) {
281                 kfree_skb(newskb);
282                 return err;
283         }
284
285         if (newskb)
286                 netif_rx(newskb);
287
288         /* update statistics */
289         pkg_stats->tx_frames++;
290         pkg_stats->tx_frames_delta++;
291
292         return 0;
293
294 inval_skb:
295         kfree_skb(skb);
296         return err;
297 }
298 EXPORT_SYMBOL(can_send);
299
300 /* af_can rx path */
301
302 static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
303                                                         struct net_device *dev)
304 {
305         if (dev) {
306                 struct can_ml_priv *can_ml = can_get_ml_priv(dev);
307                 return &can_ml->dev_rcv_lists;
308         } else {
309                 return net->can.rx_alldev_list;
310         }
311 }
312
313 /**
314  * effhash - hash function for 29 bit CAN identifier reduction
315  * @can_id: 29 bit CAN identifier
316  *
317  * Description:
318  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
319  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
320  *  (see CAN_EFF_RCV_HASH_BITS definition)
321  *
322  * Return:
323  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
324  */
325 static unsigned int effhash(canid_t can_id)
326 {
327         unsigned int hash;
328
329         hash = can_id;
330         hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
331         hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
332
333         return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
334 }
335
336 /**
337  * can_rcv_list_find - determine optimal filterlist inside device filter struct
338  * @can_id: pointer to CAN identifier of a given can_filter
339  * @mask: pointer to CAN mask of a given can_filter
340  * @dev_rcv_lists: pointer to the device filter struct
341  *
342  * Description:
343  *  Returns the optimal filterlist to reduce the filter handling in the
344  *  receive path. This function is called by service functions that need
345  *  to register or unregister a can_filter in the filter lists.
346  *
347  *  A filter matches in general, when
348  *
349  *          <received_can_id> & mask == can_id & mask
350  *
351  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
352  *  relevant bits for the filter.
353  *
354  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
355  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
356  *  frames there is a special filterlist and a special rx path filter handling.
357  *
358  * Return:
359  *  Pointer to optimal filterlist for the given can_id/mask pair.
360  *  Consistency checked mask.
361  *  Reduced can_id to have a preprocessed filter compare value.
362  */
363 static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
364                                             struct can_dev_rcv_lists *dev_rcv_lists)
365 {
366         canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
367
368         /* filter for error message frames in extra filterlist */
369         if (*mask & CAN_ERR_FLAG) {
370                 /* clear CAN_ERR_FLAG in filter entry */
371                 *mask &= CAN_ERR_MASK;
372                 return &dev_rcv_lists->rx[RX_ERR];
373         }
374
375         /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
376
377 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
378
379         /* ensure valid values in can_mask for 'SFF only' frame filtering */
380         if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
381                 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
382
383         /* reduce condition testing at receive time */
384         *can_id &= *mask;
385
386         /* inverse can_id/can_mask filter */
387         if (inv)
388                 return &dev_rcv_lists->rx[RX_INV];
389
390         /* mask == 0 => no condition testing at receive time */
391         if (!(*mask))
392                 return &dev_rcv_lists->rx[RX_ALL];
393
394         /* extra filterlists for the subscription of a single non-RTR can_id */
395         if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
396             !(*can_id & CAN_RTR_FLAG)) {
397                 if (*can_id & CAN_EFF_FLAG) {
398                         if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
399                                 return &dev_rcv_lists->rx_eff[effhash(*can_id)];
400                 } else {
401                         if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
402                                 return &dev_rcv_lists->rx_sff[*can_id];
403                 }
404         }
405
406         /* default: filter via can_id/can_mask */
407         return &dev_rcv_lists->rx[RX_FIL];
408 }
409
410 /**
411  * can_rx_register - subscribe CAN frames from a specific interface
412  * @net: the applicable net namespace
413  * @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list)
414  * @can_id: CAN identifier (see description)
415  * @mask: CAN mask (see description)
416  * @func: callback function on filter match
417  * @data: returned parameter for callback function
418  * @ident: string for calling module identification
419  * @sk: socket pointer (might be NULL)
420  *
421  * Description:
422  *  Invokes the callback function with the received sk_buff and the given
423  *  parameter 'data' on a matching receive filter. A filter matches, when
424  *
425  *          <received_can_id> & mask == can_id & mask
426  *
427  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
428  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
429  *
430  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
431  *  the callback function is running. The callback function must *not* free
432  *  the given sk_buff while processing it's task. When the given sk_buff is
433  *  needed after the end of the callback function it must be cloned inside
434  *  the callback function with skb_clone().
435  *
436  * Return:
437  *  0 on success
438  *  -ENOMEM on missing cache mem to create subscription entry
439  *  -ENODEV unknown device
440  */
441 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
442                     canid_t mask, void (*func)(struct sk_buff *, void *),
443                     void *data, char *ident, struct sock *sk)
444 {
445         struct receiver *rcv;
446         struct hlist_head *rcv_list;
447         struct can_dev_rcv_lists *dev_rcv_lists;
448         struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
449
450         /* insert new receiver  (dev,canid,mask) -> (func,data) */
451
452         if (dev && (dev->type != ARPHRD_CAN || !can_get_ml_priv(dev)))
453                 return -ENODEV;
454
455         if (dev && !net_eq(net, dev_net(dev)))
456                 return -ENODEV;
457
458         rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
459         if (!rcv)
460                 return -ENOMEM;
461
462         spin_lock_bh(&net->can.rcvlists_lock);
463
464         dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
465         rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
466
467         rcv->can_id = can_id;
468         rcv->mask = mask;
469         rcv->matches = 0;
470         rcv->func = func;
471         rcv->data = data;
472         rcv->ident = ident;
473         rcv->sk = sk;
474
475         hlist_add_head_rcu(&rcv->list, rcv_list);
476         dev_rcv_lists->entries++;
477
478         rcv_lists_stats->rcv_entries++;
479         rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
480                                                rcv_lists_stats->rcv_entries);
481         spin_unlock_bh(&net->can.rcvlists_lock);
482
483         return 0;
484 }
485 EXPORT_SYMBOL(can_rx_register);
486
487 /* can_rx_delete_receiver - rcu callback for single receiver entry removal */
488 static void can_rx_delete_receiver(struct rcu_head *rp)
489 {
490         struct receiver *rcv = container_of(rp, struct receiver, rcu);
491         struct sock *sk = rcv->sk;
492
493         kmem_cache_free(rcv_cache, rcv);
494         if (sk)
495                 sock_put(sk);
496 }
497
498 /**
499  * can_rx_unregister - unsubscribe CAN frames from a specific interface
500  * @net: the applicable net namespace
501  * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
502  * @can_id: CAN identifier
503  * @mask: CAN mask
504  * @func: callback function on filter match
505  * @data: returned parameter for callback function
506  *
507  * Description:
508  *  Removes subscription entry depending on given (subscription) values.
509  */
510 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
511                        canid_t mask, void (*func)(struct sk_buff *, void *),
512                        void *data)
513 {
514         struct receiver *rcv = NULL;
515         struct hlist_head *rcv_list;
516         struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
517         struct can_dev_rcv_lists *dev_rcv_lists;
518
519         if (dev && dev->type != ARPHRD_CAN)
520                 return;
521
522         if (dev && !net_eq(net, dev_net(dev)))
523                 return;
524
525         spin_lock_bh(&net->can.rcvlists_lock);
526
527         dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
528         rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
529
530         /* Search the receiver list for the item to delete.  This should
531          * exist, since no receiver may be unregistered that hasn't
532          * been registered before.
533          */
534         hlist_for_each_entry_rcu(rcv, rcv_list, list) {
535                 if (rcv->can_id == can_id && rcv->mask == mask &&
536                     rcv->func == func && rcv->data == data)
537                         break;
538         }
539
540         /* Check for bugs in CAN protocol implementations using af_can.c:
541          * 'rcv' will be NULL if no matching list item was found for removal.
542          * As this case may potentially happen when closing a socket while
543          * the notifier for removing the CAN netdev is running we just print
544          * a warning here.
545          */
546         if (!rcv) {
547                 pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n",
548                         DNAME(dev), can_id, mask);
549                 goto out;
550         }
551
552         hlist_del_rcu(&rcv->list);
553         dev_rcv_lists->entries--;
554
555         if (rcv_lists_stats->rcv_entries > 0)
556                 rcv_lists_stats->rcv_entries--;
557
558  out:
559         spin_unlock_bh(&net->can.rcvlists_lock);
560
561         /* schedule the receiver item for deletion */
562         if (rcv) {
563                 if (rcv->sk)
564                         sock_hold(rcv->sk);
565                 call_rcu(&rcv->rcu, can_rx_delete_receiver);
566         }
567 }
568 EXPORT_SYMBOL(can_rx_unregister);
569
570 static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
571 {
572         rcv->func(skb, rcv->data);
573         rcv->matches++;
574 }
575
576 static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
577 {
578         struct receiver *rcv;
579         int matches = 0;
580         struct can_frame *cf = (struct can_frame *)skb->data;
581         canid_t can_id = cf->can_id;
582
583         if (dev_rcv_lists->entries == 0)
584                 return 0;
585
586         if (can_id & CAN_ERR_FLAG) {
587                 /* check for error message frame entries only */
588                 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
589                         if (can_id & rcv->mask) {
590                                 deliver(skb, rcv);
591                                 matches++;
592                         }
593                 }
594                 return matches;
595         }
596
597         /* check for unfiltered entries */
598         hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
599                 deliver(skb, rcv);
600                 matches++;
601         }
602
603         /* check for can_id/mask entries */
604         hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
605                 if ((can_id & rcv->mask) == rcv->can_id) {
606                         deliver(skb, rcv);
607                         matches++;
608                 }
609         }
610
611         /* check for inverted can_id/mask entries */
612         hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
613                 if ((can_id & rcv->mask) != rcv->can_id) {
614                         deliver(skb, rcv);
615                         matches++;
616                 }
617         }
618
619         /* check filterlists for single non-RTR can_ids */
620         if (can_id & CAN_RTR_FLAG)
621                 return matches;
622
623         if (can_id & CAN_EFF_FLAG) {
624                 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
625                         if (rcv->can_id == can_id) {
626                                 deliver(skb, rcv);
627                                 matches++;
628                         }
629                 }
630         } else {
631                 can_id &= CAN_SFF_MASK;
632                 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
633                         deliver(skb, rcv);
634                         matches++;
635                 }
636         }
637
638         return matches;
639 }
640
641 static void can_receive(struct sk_buff *skb, struct net_device *dev)
642 {
643         struct can_dev_rcv_lists *dev_rcv_lists;
644         struct net *net = dev_net(dev);
645         struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
646         int matches;
647
648         /* update statistics */
649         pkg_stats->rx_frames++;
650         pkg_stats->rx_frames_delta++;
651
652         /* create non-zero unique skb identifier together with *skb */
653         while (!(can_skb_prv(skb)->skbcnt))
654                 can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
655
656         rcu_read_lock();
657
658         /* deliver the packet to sockets listening on all devices */
659         matches = can_rcv_filter(net->can.rx_alldev_list, skb);
660
661         /* find receive list for this device */
662         dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
663         matches += can_rcv_filter(dev_rcv_lists, skb);
664
665         rcu_read_unlock();
666
667         /* consume the skbuff allocated by the netdevice driver */
668         consume_skb(skb);
669
670         if (matches > 0) {
671                 pkg_stats->matches++;
672                 pkg_stats->matches_delta++;
673         }
674 }
675
676 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
677                    struct packet_type *pt, struct net_device *orig_dev)
678 {
679         if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_can_skb(skb))) {
680                 pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n",
681                              dev->type, skb->len);
682
683                 kfree_skb(skb);
684                 return NET_RX_DROP;
685         }
686
687         can_receive(skb, dev);
688         return NET_RX_SUCCESS;
689 }
690
691 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
692                      struct packet_type *pt, struct net_device *orig_dev)
693 {
694         if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canfd_skb(skb))) {
695                 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n",
696                              dev->type, skb->len);
697
698                 kfree_skb(skb);
699                 return NET_RX_DROP;
700         }
701
702         can_receive(skb, dev);
703         return NET_RX_SUCCESS;
704 }
705
706 static int canxl_rcv(struct sk_buff *skb, struct net_device *dev,
707                      struct packet_type *pt, struct net_device *orig_dev)
708 {
709         if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canxl_skb(skb))) {
710                 pr_warn_once("PF_CAN: dropped non conform CAN XL skbuff: dev type %d, len %d\n",
711                              dev->type, skb->len);
712
713                 kfree_skb(skb);
714                 return NET_RX_DROP;
715         }
716
717         can_receive(skb, dev);
718         return NET_RX_SUCCESS;
719 }
720
721 /* af_can protocol functions */
722
723 /**
724  * can_proto_register - register CAN transport protocol
725  * @cp: pointer to CAN protocol structure
726  *
727  * Return:
728  *  0 on success
729  *  -EINVAL invalid (out of range) protocol number
730  *  -EBUSY  protocol already in use
731  *  -ENOBUF if proto_register() fails
732  */
733 int can_proto_register(const struct can_proto *cp)
734 {
735         int proto = cp->protocol;
736         int err = 0;
737
738         if (proto < 0 || proto >= CAN_NPROTO) {
739                 pr_err("can: protocol number %d out of range\n", proto);
740                 return -EINVAL;
741         }
742
743         err = proto_register(cp->prot, 0);
744         if (err < 0)
745                 return err;
746
747         mutex_lock(&proto_tab_lock);
748
749         if (rcu_access_pointer(proto_tab[proto])) {
750                 pr_err("can: protocol %d already registered\n", proto);
751                 err = -EBUSY;
752         } else {
753                 RCU_INIT_POINTER(proto_tab[proto], cp);
754         }
755
756         mutex_unlock(&proto_tab_lock);
757
758         if (err < 0)
759                 proto_unregister(cp->prot);
760
761         return err;
762 }
763 EXPORT_SYMBOL(can_proto_register);
764
765 /**
766  * can_proto_unregister - unregister CAN transport protocol
767  * @cp: pointer to CAN protocol structure
768  */
769 void can_proto_unregister(const struct can_proto *cp)
770 {
771         int proto = cp->protocol;
772
773         mutex_lock(&proto_tab_lock);
774         BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
775         RCU_INIT_POINTER(proto_tab[proto], NULL);
776         mutex_unlock(&proto_tab_lock);
777
778         synchronize_rcu();
779
780         proto_unregister(cp->prot);
781 }
782 EXPORT_SYMBOL(can_proto_unregister);
783
784 static int can_pernet_init(struct net *net)
785 {
786         spin_lock_init(&net->can.rcvlists_lock);
787         net->can.rx_alldev_list =
788                 kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
789         if (!net->can.rx_alldev_list)
790                 goto out;
791         net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
792         if (!net->can.pkg_stats)
793                 goto out_free_rx_alldev_list;
794         net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
795         if (!net->can.rcv_lists_stats)
796                 goto out_free_pkg_stats;
797
798         if (IS_ENABLED(CONFIG_PROC_FS)) {
799                 /* the statistics are updated every second (timer triggered) */
800                 if (stats_timer) {
801                         timer_setup(&net->can.stattimer, can_stat_update,
802                                     0);
803                         mod_timer(&net->can.stattimer,
804                                   round_jiffies(jiffies + HZ));
805                 }
806                 net->can.pkg_stats->jiffies_init = jiffies;
807                 can_init_proc(net);
808         }
809
810         return 0;
811
812  out_free_pkg_stats:
813         kfree(net->can.pkg_stats);
814  out_free_rx_alldev_list:
815         kfree(net->can.rx_alldev_list);
816  out:
817         return -ENOMEM;
818 }
819
820 static void can_pernet_exit(struct net *net)
821 {
822         if (IS_ENABLED(CONFIG_PROC_FS)) {
823                 can_remove_proc(net);
824                 if (stats_timer)
825                         del_timer_sync(&net->can.stattimer);
826         }
827
828         kfree(net->can.rx_alldev_list);
829         kfree(net->can.pkg_stats);
830         kfree(net->can.rcv_lists_stats);
831 }
832
833 /* af_can module init/exit functions */
834
835 static struct packet_type can_packet __read_mostly = {
836         .type = cpu_to_be16(ETH_P_CAN),
837         .func = can_rcv,
838 };
839
840 static struct packet_type canfd_packet __read_mostly = {
841         .type = cpu_to_be16(ETH_P_CANFD),
842         .func = canfd_rcv,
843 };
844
845 static struct packet_type canxl_packet __read_mostly = {
846         .type = cpu_to_be16(ETH_P_CANXL),
847         .func = canxl_rcv,
848 };
849
850 static const struct net_proto_family can_family_ops = {
851         .family = PF_CAN,
852         .create = can_create,
853         .owner  = THIS_MODULE,
854 };
855
856 static struct pernet_operations can_pernet_ops __read_mostly = {
857         .init = can_pernet_init,
858         .exit = can_pernet_exit,
859 };
860
861 static __init int can_init(void)
862 {
863         int err;
864
865         /* check for correct padding to be able to use the structs similarly */
866         BUILD_BUG_ON(offsetof(struct can_frame, len) !=
867                      offsetof(struct canfd_frame, len) ||
868                      offsetof(struct can_frame, data) !=
869                      offsetof(struct canfd_frame, data));
870
871         pr_info("can: controller area network core\n");
872
873         rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
874                                       0, 0, NULL);
875         if (!rcv_cache)
876                 return -ENOMEM;
877
878         err = register_pernet_subsys(&can_pernet_ops);
879         if (err)
880                 goto out_pernet;
881
882         /* protocol register */
883         err = sock_register(&can_family_ops);
884         if (err)
885                 goto out_sock;
886
887         dev_add_pack(&can_packet);
888         dev_add_pack(&canfd_packet);
889         dev_add_pack(&canxl_packet);
890
891         return 0;
892
893 out_sock:
894         unregister_pernet_subsys(&can_pernet_ops);
895 out_pernet:
896         kmem_cache_destroy(rcv_cache);
897
898         return err;
899 }
900
901 static __exit void can_exit(void)
902 {
903         /* protocol unregister */
904         dev_remove_pack(&canxl_packet);
905         dev_remove_pack(&canfd_packet);
906         dev_remove_pack(&can_packet);
907         sock_unregister(PF_CAN);
908
909         unregister_pernet_subsys(&can_pernet_ops);
910
911         rcu_barrier(); /* Wait for completion of call_rcu()'s */
912
913         kmem_cache_destroy(rcv_cache);
914 }
915
916 module_init(can_init);
917 module_exit(can_exit);