GNU Linux-libre 6.8.9-gnu
[releases.git] / mm / zswap.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/rbtree.h>
24 #include <linux/swap.h>
25 #include <linux/crypto.h>
26 #include <linux/scatterlist.h>
27 #include <linux/mempolicy.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 #include <linux/zswap.h>
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 #include <linux/list_lru.h>
39
40 #include "swap.h"
41 #include "internal.h"
42
43 /*********************************
44 * statistics
45 **********************************/
46 /* Total bytes used by the compressed storage */
47 u64 zswap_pool_total_size;
48 /* The number of compressed pages currently stored in zswap */
49 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50 /* The number of same-value filled pages currently stored in zswap */
51 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
52
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Store failed due to compression algorithm failure */
67 static u64 zswap_reject_compress_fail;
68 /* Compressed page was too big for the allocator to (optimally) store */
69 static u64 zswap_reject_compress_poor;
70 /* Store failed because underlying allocator could not get memory */
71 static u64 zswap_reject_alloc_fail;
72 /* Store failed because the entry metadata could not be allocated (rare) */
73 static u64 zswap_reject_kmemcache_fail;
74 /* Duplicate store was encountered (rare) */
75 static u64 zswap_duplicate_entry;
76
77 /* Shrinker work queue */
78 static struct workqueue_struct *shrink_wq;
79 /* Pool limit was hit, we need to calm down */
80 static bool zswap_pool_reached_full;
81
82 /*********************************
83 * tunables
84 **********************************/
85
86 #define ZSWAP_PARAM_UNSET ""
87
88 static int zswap_setup(void);
89
90 /* Enable/disable zswap */
91 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
92 static int zswap_enabled_param_set(const char *,
93                                    const struct kernel_param *);
94 static const struct kernel_param_ops zswap_enabled_param_ops = {
95         .set =          zswap_enabled_param_set,
96         .get =          param_get_bool,
97 };
98 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
99
100 /* Crypto compressor to use */
101 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
102 static int zswap_compressor_param_set(const char *,
103                                       const struct kernel_param *);
104 static const struct kernel_param_ops zswap_compressor_param_ops = {
105         .set =          zswap_compressor_param_set,
106         .get =          param_get_charp,
107         .free =         param_free_charp,
108 };
109 module_param_cb(compressor, &zswap_compressor_param_ops,
110                 &zswap_compressor, 0644);
111
112 /* Compressed storage zpool to use */
113 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
114 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
115 static const struct kernel_param_ops zswap_zpool_param_ops = {
116         .set =          zswap_zpool_param_set,
117         .get =          param_get_charp,
118         .free =         param_free_charp,
119 };
120 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
121
122 /* The maximum percentage of memory that the compressed pool can occupy */
123 static unsigned int zswap_max_pool_percent = 20;
124 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
125
126 /* The threshold for accepting new pages after the max_pool_percent was hit */
127 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
128 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
129                    uint, 0644);
130
131 /*
132  * Enable/disable handling same-value filled pages (enabled by default).
133  * If disabled every page is considered non-same-value filled.
134  */
135 static bool zswap_same_filled_pages_enabled = true;
136 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
137                    bool, 0644);
138
139 /* Enable/disable handling non-same-value filled pages (enabled by default) */
140 static bool zswap_non_same_filled_pages_enabled = true;
141 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
142                    bool, 0644);
143
144 static bool zswap_exclusive_loads_enabled = IS_ENABLED(
145                 CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON);
146 module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644);
147
148 /* Number of zpools in zswap_pool (empirically determined for scalability) */
149 #define ZSWAP_NR_ZPOOLS 32
150
151 /* Enable/disable memory pressure-based shrinker. */
152 static bool zswap_shrinker_enabled = IS_ENABLED(
153                 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
154 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
155
156 bool is_zswap_enabled(void)
157 {
158         return zswap_enabled;
159 }
160
161 /*********************************
162 * data structures
163 **********************************/
164
165 struct crypto_acomp_ctx {
166         struct crypto_acomp *acomp;
167         struct acomp_req *req;
168         struct crypto_wait wait;
169         u8 *buffer;
170         struct mutex mutex;
171 };
172
173 /*
174  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
175  * The only case where lru_lock is not acquired while holding tree.lock is
176  * when a zswap_entry is taken off the lru for writeback, in that case it
177  * needs to be verified that it's still valid in the tree.
178  */
179 struct zswap_pool {
180         struct zpool *zpools[ZSWAP_NR_ZPOOLS];
181         struct crypto_acomp_ctx __percpu *acomp_ctx;
182         struct kref kref;
183         struct list_head list;
184         struct work_struct release_work;
185         struct work_struct shrink_work;
186         struct hlist_node node;
187         char tfm_name[CRYPTO_MAX_ALG_NAME];
188         struct list_lru list_lru;
189         struct mem_cgroup *next_shrink;
190         struct shrinker *shrinker;
191         atomic_t nr_stored;
192 };
193
194 /*
195  * struct zswap_entry
196  *
197  * This structure contains the metadata for tracking a single compressed
198  * page within zswap.
199  *
200  * rbnode - links the entry into red-black tree for the appropriate swap type
201  * swpentry - associated swap entry, the offset indexes into the red-black tree
202  * refcount - the number of outstanding reference to the entry. This is needed
203  *            to protect against premature freeing of the entry by code
204  *            concurrent calls to load, invalidate, and writeback.  The lock
205  *            for the zswap_tree structure that contains the entry must
206  *            be held while changing the refcount.  Since the lock must
207  *            be held, there is no reason to also make refcount atomic.
208  * length - the length in bytes of the compressed page data.  Needed during
209  *          decompression. For a same value filled page length is 0, and both
210  *          pool and lru are invalid and must be ignored.
211  * pool - the zswap_pool the entry's data is in
212  * handle - zpool allocation handle that stores the compressed page data
213  * value - value of the same-value filled pages which have same content
214  * objcg - the obj_cgroup that the compressed memory is charged to
215  * lru - handle to the pool's lru used to evict pages.
216  */
217 struct zswap_entry {
218         struct rb_node rbnode;
219         swp_entry_t swpentry;
220         int refcount;
221         unsigned int length;
222         struct zswap_pool *pool;
223         union {
224                 unsigned long handle;
225                 unsigned long value;
226         };
227         struct obj_cgroup *objcg;
228         struct list_head lru;
229 };
230
231 /*
232  * The tree lock in the zswap_tree struct protects a few things:
233  * - the rbtree
234  * - the refcount field of each entry in the tree
235  */
236 struct zswap_tree {
237         struct rb_root rbroot;
238         spinlock_t lock;
239 };
240
241 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
242
243 /* RCU-protected iteration */
244 static LIST_HEAD(zswap_pools);
245 /* protects zswap_pools list modification */
246 static DEFINE_SPINLOCK(zswap_pools_lock);
247 /* pool counter to provide unique names to zpool */
248 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
249
250 enum zswap_init_type {
251         ZSWAP_UNINIT,
252         ZSWAP_INIT_SUCCEED,
253         ZSWAP_INIT_FAILED
254 };
255
256 static enum zswap_init_type zswap_init_state;
257
258 /* used to ensure the integrity of initialization */
259 static DEFINE_MUTEX(zswap_init_lock);
260
261 /* init completed, but couldn't create the initial pool */
262 static bool zswap_has_pool;
263
264 /*********************************
265 * helpers and fwd declarations
266 **********************************/
267
268 #define zswap_pool_debug(msg, p)                                \
269         pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,         \
270                  zpool_get_type((p)->zpools[0]))
271
272 static int zswap_writeback_entry(struct zswap_entry *entry,
273                                  struct zswap_tree *tree);
274 static int zswap_pool_get(struct zswap_pool *pool);
275 static void zswap_pool_put(struct zswap_pool *pool);
276
277 static bool zswap_is_full(void)
278 {
279         return totalram_pages() * zswap_max_pool_percent / 100 <
280                         DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
281 }
282
283 static bool zswap_can_accept(void)
284 {
285         return totalram_pages() * zswap_accept_thr_percent / 100 *
286                                 zswap_max_pool_percent / 100 >
287                         DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
288 }
289
290 static u64 get_zswap_pool_size(struct zswap_pool *pool)
291 {
292         u64 pool_size = 0;
293         int i;
294
295         for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
296                 pool_size += zpool_get_total_size(pool->zpools[i]);
297
298         return pool_size;
299 }
300
301 static void zswap_update_total_size(void)
302 {
303         struct zswap_pool *pool;
304         u64 total = 0;
305
306         rcu_read_lock();
307
308         list_for_each_entry_rcu(pool, &zswap_pools, list)
309                 total += get_zswap_pool_size(pool);
310
311         rcu_read_unlock();
312
313         zswap_pool_total_size = total;
314 }
315
316 /* should be called under RCU */
317 #ifdef CONFIG_MEMCG
318 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
319 {
320         return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
321 }
322 #else
323 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
324 {
325         return NULL;
326 }
327 #endif
328
329 static inline int entry_to_nid(struct zswap_entry *entry)
330 {
331         return page_to_nid(virt_to_page(entry));
332 }
333
334 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
335 {
336         struct zswap_pool *pool;
337
338         /* lock out zswap pools list modification */
339         spin_lock(&zswap_pools_lock);
340         list_for_each_entry(pool, &zswap_pools, list) {
341                 if (pool->next_shrink == memcg)
342                         pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
343         }
344         spin_unlock(&zswap_pools_lock);
345 }
346
347 /*********************************
348 * zswap entry functions
349 **********************************/
350 static struct kmem_cache *zswap_entry_cache;
351
352 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
353 {
354         struct zswap_entry *entry;
355         entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
356         if (!entry)
357                 return NULL;
358         entry->refcount = 1;
359         RB_CLEAR_NODE(&entry->rbnode);
360         return entry;
361 }
362
363 static void zswap_entry_cache_free(struct zswap_entry *entry)
364 {
365         kmem_cache_free(zswap_entry_cache, entry);
366 }
367
368 /*********************************
369 * zswap lruvec functions
370 **********************************/
371 void zswap_lruvec_state_init(struct lruvec *lruvec)
372 {
373         atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
374 }
375
376 void zswap_folio_swapin(struct folio *folio)
377 {
378         struct lruvec *lruvec;
379
380         VM_WARN_ON_ONCE(!folio_test_locked(folio));
381         lruvec = folio_lruvec(folio);
382         atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
383 }
384
385 /*********************************
386 * lru functions
387 **********************************/
388 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
389 {
390         atomic_long_t *nr_zswap_protected;
391         unsigned long lru_size, old, new;
392         int nid = entry_to_nid(entry);
393         struct mem_cgroup *memcg;
394         struct lruvec *lruvec;
395
396         /*
397          * Note that it is safe to use rcu_read_lock() here, even in the face of
398          * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
399          * used in list_lru lookup, only two scenarios are possible:
400          *
401          * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
402          *    new entry will be reparented to memcg's parent's list_lru.
403          * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
404          *    new entry will be added directly to memcg's parent's list_lru.
405          *
406          * Similar reasoning holds for list_lru_del() and list_lru_putback().
407          */
408         rcu_read_lock();
409         memcg = mem_cgroup_from_entry(entry);
410         /* will always succeed */
411         list_lru_add(list_lru, &entry->lru, nid, memcg);
412
413         /* Update the protection area */
414         lru_size = list_lru_count_one(list_lru, nid, memcg);
415         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
416         nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
417         old = atomic_long_inc_return(nr_zswap_protected);
418         /*
419          * Decay to avoid overflow and adapt to changing workloads.
420          * This is based on LRU reclaim cost decaying heuristics.
421          */
422         do {
423                 new = old > lru_size / 4 ? old / 2 : old;
424         } while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
425         rcu_read_unlock();
426 }
427
428 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
429 {
430         int nid = entry_to_nid(entry);
431         struct mem_cgroup *memcg;
432
433         rcu_read_lock();
434         memcg = mem_cgroup_from_entry(entry);
435         /* will always succeed */
436         list_lru_del(list_lru, &entry->lru, nid, memcg);
437         rcu_read_unlock();
438 }
439
440 static void zswap_lru_putback(struct list_lru *list_lru,
441                 struct zswap_entry *entry)
442 {
443         int nid = entry_to_nid(entry);
444         spinlock_t *lock = &list_lru->node[nid].lock;
445         struct mem_cgroup *memcg;
446         struct lruvec *lruvec;
447
448         rcu_read_lock();
449         memcg = mem_cgroup_from_entry(entry);
450         spin_lock(lock);
451         /* we cannot use list_lru_add here, because it increments node's lru count */
452         list_lru_putback(list_lru, &entry->lru, nid, memcg);
453         spin_unlock(lock);
454
455         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(entry_to_nid(entry)));
456         /* increment the protection area to account for the LRU rotation. */
457         atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
458         rcu_read_unlock();
459 }
460
461 /*********************************
462 * rbtree functions
463 **********************************/
464 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
465 {
466         struct rb_node *node = root->rb_node;
467         struct zswap_entry *entry;
468         pgoff_t entry_offset;
469
470         while (node) {
471                 entry = rb_entry(node, struct zswap_entry, rbnode);
472                 entry_offset = swp_offset(entry->swpentry);
473                 if (entry_offset > offset)
474                         node = node->rb_left;
475                 else if (entry_offset < offset)
476                         node = node->rb_right;
477                 else
478                         return entry;
479         }
480         return NULL;
481 }
482
483 /*
484  * In the case that a entry with the same offset is found, a pointer to
485  * the existing entry is stored in dupentry and the function returns -EEXIST
486  */
487 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
488                         struct zswap_entry **dupentry)
489 {
490         struct rb_node **link = &root->rb_node, *parent = NULL;
491         struct zswap_entry *myentry;
492         pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
493
494         while (*link) {
495                 parent = *link;
496                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
497                 myentry_offset = swp_offset(myentry->swpentry);
498                 if (myentry_offset > entry_offset)
499                         link = &(*link)->rb_left;
500                 else if (myentry_offset < entry_offset)
501                         link = &(*link)->rb_right;
502                 else {
503                         *dupentry = myentry;
504                         return -EEXIST;
505                 }
506         }
507         rb_link_node(&entry->rbnode, parent, link);
508         rb_insert_color(&entry->rbnode, root);
509         return 0;
510 }
511
512 static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
513 {
514         if (!RB_EMPTY_NODE(&entry->rbnode)) {
515                 rb_erase(&entry->rbnode, root);
516                 RB_CLEAR_NODE(&entry->rbnode);
517                 return true;
518         }
519         return false;
520 }
521
522 static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
523 {
524         int i = 0;
525
526         if (ZSWAP_NR_ZPOOLS > 1)
527                 i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
528
529         return entry->pool->zpools[i];
530 }
531
532 /*
533  * Carries out the common pattern of freeing and entry's zpool allocation,
534  * freeing the entry itself, and decrementing the number of stored pages.
535  */
536 static void zswap_free_entry(struct zswap_entry *entry)
537 {
538         if (!entry->length)
539                 atomic_dec(&zswap_same_filled_pages);
540         else {
541                 zswap_lru_del(&entry->pool->list_lru, entry);
542                 zpool_free(zswap_find_zpool(entry), entry->handle);
543                 atomic_dec(&entry->pool->nr_stored);
544                 zswap_pool_put(entry->pool);
545         }
546         if (entry->objcg) {
547                 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
548                 obj_cgroup_put(entry->objcg);
549         }
550         zswap_entry_cache_free(entry);
551         atomic_dec(&zswap_stored_pages);
552         zswap_update_total_size();
553 }
554
555 /* caller must hold the tree lock */
556 static void zswap_entry_get(struct zswap_entry *entry)
557 {
558         entry->refcount++;
559 }
560
561 /* caller must hold the tree lock
562 * remove from the tree and free it, if nobody reference the entry
563 */
564 static void zswap_entry_put(struct zswap_tree *tree,
565                         struct zswap_entry *entry)
566 {
567         int refcount = --entry->refcount;
568
569         WARN_ON_ONCE(refcount < 0);
570         if (refcount == 0) {
571                 WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode));
572                 zswap_free_entry(entry);
573         }
574 }
575
576 /* caller must hold the tree lock */
577 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
578                                 pgoff_t offset)
579 {
580         struct zswap_entry *entry;
581
582         entry = zswap_rb_search(root, offset);
583         if (entry)
584                 zswap_entry_get(entry);
585
586         return entry;
587 }
588
589 /*********************************
590 * shrinker functions
591 **********************************/
592 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
593                                        spinlock_t *lock, void *arg);
594
595 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
596                 struct shrink_control *sc)
597 {
598         struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
599         unsigned long shrink_ret, nr_protected, lru_size;
600         struct zswap_pool *pool = shrinker->private_data;
601         bool encountered_page_in_swapcache = false;
602
603         if (!zswap_shrinker_enabled ||
604                         !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
605                 sc->nr_scanned = 0;
606                 return SHRINK_STOP;
607         }
608
609         nr_protected =
610                 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
611         lru_size = list_lru_shrink_count(&pool->list_lru, sc);
612
613         /*
614          * Abort if we are shrinking into the protected region.
615          *
616          * This short-circuiting is necessary because if we have too many multiple
617          * concurrent reclaimers getting the freeable zswap object counts at the
618          * same time (before any of them made reasonable progress), the total
619          * number of reclaimed objects might be more than the number of unprotected
620          * objects (i.e the reclaimers will reclaim into the protected area of the
621          * zswap LRU).
622          */
623         if (nr_protected >= lru_size - sc->nr_to_scan) {
624                 sc->nr_scanned = 0;
625                 return SHRINK_STOP;
626         }
627
628         shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb,
629                 &encountered_page_in_swapcache);
630
631         if (encountered_page_in_swapcache)
632                 return SHRINK_STOP;
633
634         return shrink_ret ? shrink_ret : SHRINK_STOP;
635 }
636
637 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
638                 struct shrink_control *sc)
639 {
640         struct zswap_pool *pool = shrinker->private_data;
641         struct mem_cgroup *memcg = sc->memcg;
642         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
643         unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
644
645         if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
646                 return 0;
647
648         /*
649          * The shrinker resumes swap writeback, which will enter block
650          * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
651          * rules (may_enter_fs()), which apply on a per-folio basis.
652          */
653         if (!gfp_has_io_fs(sc->gfp_mask))
654                 return 0;
655
656         /*
657          * For memcg, use the cgroup-wide ZSWAP stats since we don't
658          * have them per-node and thus per-lruvec. Careful if memcg is
659          * runtime-disabled: we can get sc->memcg == NULL, which is ok
660          * for the lruvec, but not for memcg_page_state().
661          *
662          * Without memcg, use the zswap pool-wide metrics.
663          */
664         if (!mem_cgroup_disabled()) {
665                 mem_cgroup_flush_stats(memcg);
666                 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
667                 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
668         } else {
669                 nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT;
670                 nr_stored = atomic_read(&pool->nr_stored);
671         }
672
673         if (!nr_stored)
674                 return 0;
675
676         nr_protected =
677                 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
678         nr_freeable = list_lru_shrink_count(&pool->list_lru, sc);
679         /*
680          * Subtract the lru size by an estimate of the number of pages
681          * that should be protected.
682          */
683         nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
684
685         /*
686          * Scale the number of freeable pages by the memory saving factor.
687          * This ensures that the better zswap compresses memory, the fewer
688          * pages we will evict to swap (as it will otherwise incur IO for
689          * relatively small memory saving).
690          */
691         return mult_frac(nr_freeable, nr_backing, nr_stored);
692 }
693
694 static void zswap_alloc_shrinker(struct zswap_pool *pool)
695 {
696         pool->shrinker =
697                 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
698         if (!pool->shrinker)
699                 return;
700
701         pool->shrinker->private_data = pool;
702         pool->shrinker->scan_objects = zswap_shrinker_scan;
703         pool->shrinker->count_objects = zswap_shrinker_count;
704         pool->shrinker->batch = 0;
705         pool->shrinker->seeks = DEFAULT_SEEKS;
706 }
707
708 /*********************************
709 * per-cpu code
710 **********************************/
711 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
712 {
713         struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
714         struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
715         struct crypto_acomp *acomp;
716         struct acomp_req *req;
717         int ret;
718
719         mutex_init(&acomp_ctx->mutex);
720
721         acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
722         if (!acomp_ctx->buffer)
723                 return -ENOMEM;
724
725         acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
726         if (IS_ERR(acomp)) {
727                 pr_err("could not alloc crypto acomp %s : %ld\n",
728                                 pool->tfm_name, PTR_ERR(acomp));
729                 ret = PTR_ERR(acomp);
730                 goto acomp_fail;
731         }
732         acomp_ctx->acomp = acomp;
733
734         req = acomp_request_alloc(acomp_ctx->acomp);
735         if (!req) {
736                 pr_err("could not alloc crypto acomp_request %s\n",
737                        pool->tfm_name);
738                 ret = -ENOMEM;
739                 goto req_fail;
740         }
741         acomp_ctx->req = req;
742
743         crypto_init_wait(&acomp_ctx->wait);
744         /*
745          * if the backend of acomp is async zip, crypto_req_done() will wakeup
746          * crypto_wait_req(); if the backend of acomp is scomp, the callback
747          * won't be called, crypto_wait_req() will return without blocking.
748          */
749         acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
750                                    crypto_req_done, &acomp_ctx->wait);
751
752         return 0;
753
754 req_fail:
755         crypto_free_acomp(acomp_ctx->acomp);
756 acomp_fail:
757         kfree(acomp_ctx->buffer);
758         return ret;
759 }
760
761 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
762 {
763         struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
764         struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
765
766         if (!IS_ERR_OR_NULL(acomp_ctx)) {
767                 if (!IS_ERR_OR_NULL(acomp_ctx->req))
768                         acomp_request_free(acomp_ctx->req);
769                 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
770                         crypto_free_acomp(acomp_ctx->acomp);
771                 kfree(acomp_ctx->buffer);
772         }
773
774         return 0;
775 }
776
777 /*********************************
778 * pool functions
779 **********************************/
780
781 static struct zswap_pool *__zswap_pool_current(void)
782 {
783         struct zswap_pool *pool;
784
785         pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
786         WARN_ONCE(!pool && zswap_has_pool,
787                   "%s: no page storage pool!\n", __func__);
788
789         return pool;
790 }
791
792 static struct zswap_pool *zswap_pool_current(void)
793 {
794         assert_spin_locked(&zswap_pools_lock);
795
796         return __zswap_pool_current();
797 }
798
799 static struct zswap_pool *zswap_pool_current_get(void)
800 {
801         struct zswap_pool *pool;
802
803         rcu_read_lock();
804
805         pool = __zswap_pool_current();
806         if (!zswap_pool_get(pool))
807                 pool = NULL;
808
809         rcu_read_unlock();
810
811         return pool;
812 }
813
814 static struct zswap_pool *zswap_pool_last_get(void)
815 {
816         struct zswap_pool *pool, *last = NULL;
817
818         rcu_read_lock();
819
820         list_for_each_entry_rcu(pool, &zswap_pools, list)
821                 last = pool;
822         WARN_ONCE(!last && zswap_has_pool,
823                   "%s: no page storage pool!\n", __func__);
824         if (!zswap_pool_get(last))
825                 last = NULL;
826
827         rcu_read_unlock();
828
829         return last;
830 }
831
832 /* type and compressor must be null-terminated */
833 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
834 {
835         struct zswap_pool *pool;
836
837         assert_spin_locked(&zswap_pools_lock);
838
839         list_for_each_entry_rcu(pool, &zswap_pools, list) {
840                 if (strcmp(pool->tfm_name, compressor))
841                         continue;
842                 /* all zpools share the same type */
843                 if (strcmp(zpool_get_type(pool->zpools[0]), type))
844                         continue;
845                 /* if we can't get it, it's about to be destroyed */
846                 if (!zswap_pool_get(pool))
847                         continue;
848                 return pool;
849         }
850
851         return NULL;
852 }
853
854 /*
855  * If the entry is still valid in the tree, drop the initial ref and remove it
856  * from the tree. This function must be called with an additional ref held,
857  * otherwise it may race with another invalidation freeing the entry.
858  */
859 static void zswap_invalidate_entry(struct zswap_tree *tree,
860                                    struct zswap_entry *entry)
861 {
862         if (zswap_rb_erase(&tree->rbroot, entry))
863                 zswap_entry_put(tree, entry);
864 }
865
866 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
867                                        spinlock_t *lock, void *arg)
868 {
869         struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
870         bool *encountered_page_in_swapcache = (bool *)arg;
871         struct zswap_tree *tree;
872         pgoff_t swpoffset;
873         enum lru_status ret = LRU_REMOVED_RETRY;
874         int writeback_result;
875
876         /*
877          * Once the lru lock is dropped, the entry might get freed. The
878          * swpoffset is copied to the stack, and entry isn't deref'd again
879          * until the entry is verified to still be alive in the tree.
880          */
881         swpoffset = swp_offset(entry->swpentry);
882         tree = zswap_trees[swp_type(entry->swpentry)];
883         list_lru_isolate(l, item);
884         /*
885          * It's safe to drop the lock here because we return either
886          * LRU_REMOVED_RETRY or LRU_RETRY.
887          */
888         spin_unlock(lock);
889
890         /* Check for invalidate() race */
891         spin_lock(&tree->lock);
892         if (entry != zswap_rb_search(&tree->rbroot, swpoffset))
893                 goto unlock;
894
895         /* Hold a reference to prevent a free during writeback */
896         zswap_entry_get(entry);
897         spin_unlock(&tree->lock);
898
899         writeback_result = zswap_writeback_entry(entry, tree);
900
901         spin_lock(&tree->lock);
902         if (writeback_result) {
903                 zswap_reject_reclaim_fail++;
904                 zswap_lru_putback(&entry->pool->list_lru, entry);
905                 ret = LRU_RETRY;
906
907                 /*
908                  * Encountering a page already in swap cache is a sign that we are shrinking
909                  * into the warmer region. We should terminate shrinking (if we're in the dynamic
910                  * shrinker context).
911                  */
912                 if (writeback_result == -EEXIST && encountered_page_in_swapcache)
913                         *encountered_page_in_swapcache = true;
914
915                 goto put_unlock;
916         }
917         zswap_written_back_pages++;
918
919         if (entry->objcg)
920                 count_objcg_event(entry->objcg, ZSWPWB);
921
922         count_vm_event(ZSWPWB);
923         /*
924          * Writeback started successfully, the page now belongs to the
925          * swapcache. Drop the entry from zswap - unless invalidate already
926          * took it out while we had the tree->lock released for IO.
927          */
928         zswap_invalidate_entry(tree, entry);
929
930 put_unlock:
931         /* Drop local reference */
932         zswap_entry_put(tree, entry);
933 unlock:
934         spin_unlock(&tree->lock);
935         spin_lock(lock);
936         return ret;
937 }
938
939 static int shrink_memcg(struct mem_cgroup *memcg)
940 {
941         struct zswap_pool *pool;
942         int nid, shrunk = 0;
943
944         if (!mem_cgroup_zswap_writeback_enabled(memcg))
945                 return -EINVAL;
946
947         /*
948          * Skip zombies because their LRUs are reparented and we would be
949          * reclaiming from the parent instead of the dead memcg.
950          */
951         if (memcg && !mem_cgroup_online(memcg))
952                 return -ENOENT;
953
954         pool = zswap_pool_current_get();
955         if (!pool)
956                 return -EINVAL;
957
958         for_each_node_state(nid, N_NORMAL_MEMORY) {
959                 unsigned long nr_to_walk = 1;
960
961                 shrunk += list_lru_walk_one(&pool->list_lru, nid, memcg,
962                                             &shrink_memcg_cb, NULL, &nr_to_walk);
963         }
964         zswap_pool_put(pool);
965         return shrunk ? 0 : -EAGAIN;
966 }
967
968 static void shrink_worker(struct work_struct *w)
969 {
970         struct zswap_pool *pool = container_of(w, typeof(*pool),
971                                                 shrink_work);
972         struct mem_cgroup *memcg;
973         int ret, failures = 0;
974
975         /* global reclaim will select cgroup in a round-robin fashion. */
976         do {
977                 spin_lock(&zswap_pools_lock);
978                 pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
979                 memcg = pool->next_shrink;
980
981                 /*
982                  * We need to retry if we have gone through a full round trip, or if we
983                  * got an offline memcg (or else we risk undoing the effect of the
984                  * zswap memcg offlining cleanup callback). This is not catastrophic
985                  * per se, but it will keep the now offlined memcg hostage for a while.
986                  *
987                  * Note that if we got an online memcg, we will keep the extra
988                  * reference in case the original reference obtained by mem_cgroup_iter
989                  * is dropped by the zswap memcg offlining callback, ensuring that the
990                  * memcg is not killed when we are reclaiming.
991                  */
992                 if (!memcg) {
993                         spin_unlock(&zswap_pools_lock);
994                         if (++failures == MAX_RECLAIM_RETRIES)
995                                 break;
996
997                         goto resched;
998                 }
999
1000                 if (!mem_cgroup_tryget_online(memcg)) {
1001                         /* drop the reference from mem_cgroup_iter() */
1002                         mem_cgroup_iter_break(NULL, memcg);
1003                         pool->next_shrink = NULL;
1004                         spin_unlock(&zswap_pools_lock);
1005
1006                         if (++failures == MAX_RECLAIM_RETRIES)
1007                                 break;
1008
1009                         goto resched;
1010                 }
1011                 spin_unlock(&zswap_pools_lock);
1012
1013                 ret = shrink_memcg(memcg);
1014                 /* drop the extra reference */
1015                 mem_cgroup_put(memcg);
1016
1017                 if (ret == -EINVAL)
1018                         break;
1019                 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1020                         break;
1021
1022 resched:
1023                 cond_resched();
1024         } while (!zswap_can_accept());
1025         zswap_pool_put(pool);
1026 }
1027
1028 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
1029 {
1030         int i;
1031         struct zswap_pool *pool;
1032         char name[38]; /* 'zswap' + 32 char (max) num + \0 */
1033         gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1034         int ret;
1035
1036         if (!zswap_has_pool) {
1037                 /* if either are unset, pool initialization failed, and we
1038                  * need both params to be set correctly before trying to
1039                  * create a pool.
1040                  */
1041                 if (!strcmp(type, ZSWAP_PARAM_UNSET))
1042                         return NULL;
1043                 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
1044                         return NULL;
1045         }
1046
1047         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1048         if (!pool)
1049                 return NULL;
1050
1051         for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
1052                 /* unique name for each pool specifically required by zsmalloc */
1053                 snprintf(name, 38, "zswap%x",
1054                          atomic_inc_return(&zswap_pools_count));
1055
1056                 pool->zpools[i] = zpool_create_pool(type, name, gfp);
1057                 if (!pool->zpools[i]) {
1058                         pr_err("%s zpool not available\n", type);
1059                         goto error;
1060                 }
1061         }
1062         pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
1063
1064         strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
1065
1066         pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
1067         if (!pool->acomp_ctx) {
1068                 pr_err("percpu alloc failed\n");
1069                 goto error;
1070         }
1071
1072         ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
1073                                        &pool->node);
1074         if (ret)
1075                 goto error;
1076
1077         zswap_alloc_shrinker(pool);
1078         if (!pool->shrinker)
1079                 goto error;
1080
1081         pr_debug("using %s compressor\n", pool->tfm_name);
1082
1083         /* being the current pool takes 1 ref; this func expects the
1084          * caller to always add the new pool as the current pool
1085          */
1086         kref_init(&pool->kref);
1087         INIT_LIST_HEAD(&pool->list);
1088         if (list_lru_init_memcg(&pool->list_lru, pool->shrinker))
1089                 goto lru_fail;
1090         shrinker_register(pool->shrinker);
1091         INIT_WORK(&pool->shrink_work, shrink_worker);
1092         atomic_set(&pool->nr_stored, 0);
1093
1094         zswap_pool_debug("created", pool);
1095
1096         return pool;
1097
1098 lru_fail:
1099         list_lru_destroy(&pool->list_lru);
1100         shrinker_free(pool->shrinker);
1101 error:
1102         if (pool->acomp_ctx)
1103                 free_percpu(pool->acomp_ctx);
1104         while (i--)
1105                 zpool_destroy_pool(pool->zpools[i]);
1106         kfree(pool);
1107         return NULL;
1108 }
1109
1110 static struct zswap_pool *__zswap_pool_create_fallback(void)
1111 {
1112         bool has_comp, has_zpool;
1113
1114         has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1115         if (!has_comp && strcmp(zswap_compressor,
1116                                 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
1117                 pr_err("compressor %s not available, using default %s\n",
1118                        zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
1119                 param_free_charp(&zswap_compressor);
1120                 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
1121                 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1122         }
1123         if (!has_comp) {
1124                 pr_err("default compressor %s not available\n",
1125                        zswap_compressor);
1126                 param_free_charp(&zswap_compressor);
1127                 zswap_compressor = ZSWAP_PARAM_UNSET;
1128         }
1129
1130         has_zpool = zpool_has_pool(zswap_zpool_type);
1131         if (!has_zpool && strcmp(zswap_zpool_type,
1132                                  CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
1133                 pr_err("zpool %s not available, using default %s\n",
1134                        zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
1135                 param_free_charp(&zswap_zpool_type);
1136                 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
1137                 has_zpool = zpool_has_pool(zswap_zpool_type);
1138         }
1139         if (!has_zpool) {
1140                 pr_err("default zpool %s not available\n",
1141                        zswap_zpool_type);
1142                 param_free_charp(&zswap_zpool_type);
1143                 zswap_zpool_type = ZSWAP_PARAM_UNSET;
1144         }
1145
1146         if (!has_comp || !has_zpool)
1147                 return NULL;
1148
1149         return zswap_pool_create(zswap_zpool_type, zswap_compressor);
1150 }
1151
1152 static void zswap_pool_destroy(struct zswap_pool *pool)
1153 {
1154         int i;
1155
1156         zswap_pool_debug("destroying", pool);
1157
1158         shrinker_free(pool->shrinker);
1159         cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
1160         free_percpu(pool->acomp_ctx);
1161         list_lru_destroy(&pool->list_lru);
1162
1163         spin_lock(&zswap_pools_lock);
1164         mem_cgroup_iter_break(NULL, pool->next_shrink);
1165         pool->next_shrink = NULL;
1166         spin_unlock(&zswap_pools_lock);
1167
1168         for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
1169                 zpool_destroy_pool(pool->zpools[i]);
1170         kfree(pool);
1171 }
1172
1173 static int __must_check zswap_pool_get(struct zswap_pool *pool)
1174 {
1175         if (!pool)
1176                 return 0;
1177
1178         return kref_get_unless_zero(&pool->kref);
1179 }
1180
1181 static void __zswap_pool_release(struct work_struct *work)
1182 {
1183         struct zswap_pool *pool = container_of(work, typeof(*pool),
1184                                                 release_work);
1185
1186         synchronize_rcu();
1187
1188         /* nobody should have been able to get a kref... */
1189         WARN_ON(kref_get_unless_zero(&pool->kref));
1190
1191         /* pool is now off zswap_pools list and has no references. */
1192         zswap_pool_destroy(pool);
1193 }
1194
1195 static void __zswap_pool_empty(struct kref *kref)
1196 {
1197         struct zswap_pool *pool;
1198
1199         pool = container_of(kref, typeof(*pool), kref);
1200
1201         spin_lock(&zswap_pools_lock);
1202
1203         WARN_ON(pool == zswap_pool_current());
1204
1205         list_del_rcu(&pool->list);
1206
1207         INIT_WORK(&pool->release_work, __zswap_pool_release);
1208         schedule_work(&pool->release_work);
1209
1210         spin_unlock(&zswap_pools_lock);
1211 }
1212
1213 static void zswap_pool_put(struct zswap_pool *pool)
1214 {
1215         kref_put(&pool->kref, __zswap_pool_empty);
1216 }
1217
1218 /*********************************
1219 * param callbacks
1220 **********************************/
1221
1222 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
1223 {
1224         /* no change required */
1225         if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
1226                 return false;
1227         return true;
1228 }
1229
1230 /* val must be a null-terminated string */
1231 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
1232                              char *type, char *compressor)
1233 {
1234         struct zswap_pool *pool, *put_pool = NULL;
1235         char *s = strstrip((char *)val);
1236         int ret = 0;
1237         bool new_pool = false;
1238
1239         mutex_lock(&zswap_init_lock);
1240         switch (zswap_init_state) {
1241         case ZSWAP_UNINIT:
1242                 /* if this is load-time (pre-init) param setting,
1243                  * don't create a pool; that's done during init.
1244                  */
1245                 ret = param_set_charp(s, kp);
1246                 break;
1247         case ZSWAP_INIT_SUCCEED:
1248                 new_pool = zswap_pool_changed(s, kp);
1249                 break;
1250         case ZSWAP_INIT_FAILED:
1251                 pr_err("can't set param, initialization failed\n");
1252                 ret = -ENODEV;
1253         }
1254         mutex_unlock(&zswap_init_lock);
1255
1256         /* no need to create a new pool, return directly */
1257         if (!new_pool)
1258                 return ret;
1259
1260         if (!type) {
1261                 if (!zpool_has_pool(s)) {
1262                         pr_err("zpool %s not available\n", s);
1263                         return -ENOENT;
1264                 }
1265                 type = s;
1266         } else if (!compressor) {
1267                 if (!crypto_has_acomp(s, 0, 0)) {
1268                         pr_err("compressor %s not available\n", s);
1269                         return -ENOENT;
1270                 }
1271                 compressor = s;
1272         } else {
1273                 WARN_ON(1);
1274                 return -EINVAL;
1275         }
1276
1277         spin_lock(&zswap_pools_lock);
1278
1279         pool = zswap_pool_find_get(type, compressor);
1280         if (pool) {
1281                 zswap_pool_debug("using existing", pool);
1282                 WARN_ON(pool == zswap_pool_current());
1283                 list_del_rcu(&pool->list);
1284         }
1285
1286         spin_unlock(&zswap_pools_lock);
1287
1288         if (!pool)
1289                 pool = zswap_pool_create(type, compressor);
1290
1291         if (pool)
1292                 ret = param_set_charp(s, kp);
1293         else
1294                 ret = -EINVAL;
1295
1296         spin_lock(&zswap_pools_lock);
1297
1298         if (!ret) {
1299                 put_pool = zswap_pool_current();
1300                 list_add_rcu(&pool->list, &zswap_pools);
1301                 zswap_has_pool = true;
1302         } else if (pool) {
1303                 /* add the possibly pre-existing pool to the end of the pools
1304                  * list; if it's new (and empty) then it'll be removed and
1305                  * destroyed by the put after we drop the lock
1306                  */
1307                 list_add_tail_rcu(&pool->list, &zswap_pools);
1308                 put_pool = pool;
1309         }
1310
1311         spin_unlock(&zswap_pools_lock);
1312
1313         if (!zswap_has_pool && !pool) {
1314                 /* if initial pool creation failed, and this pool creation also
1315                  * failed, maybe both compressor and zpool params were bad.
1316                  * Allow changing this param, so pool creation will succeed
1317                  * when the other param is changed. We already verified this
1318                  * param is ok in the zpool_has_pool() or crypto_has_acomp()
1319                  * checks above.
1320                  */
1321                 ret = param_set_charp(s, kp);
1322         }
1323
1324         /* drop the ref from either the old current pool,
1325          * or the new pool we failed to add
1326          */
1327         if (put_pool)
1328                 zswap_pool_put(put_pool);
1329
1330         return ret;
1331 }
1332
1333 static int zswap_compressor_param_set(const char *val,
1334                                       const struct kernel_param *kp)
1335 {
1336         return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
1337 }
1338
1339 static int zswap_zpool_param_set(const char *val,
1340                                  const struct kernel_param *kp)
1341 {
1342         return __zswap_param_set(val, kp, NULL, zswap_compressor);
1343 }
1344
1345 static int zswap_enabled_param_set(const char *val,
1346                                    const struct kernel_param *kp)
1347 {
1348         int ret = -ENODEV;
1349
1350         /* if this is load-time (pre-init) param setting, only set param. */
1351         if (system_state != SYSTEM_RUNNING)
1352                 return param_set_bool(val, kp);
1353
1354         mutex_lock(&zswap_init_lock);
1355         switch (zswap_init_state) {
1356         case ZSWAP_UNINIT:
1357                 if (zswap_setup())
1358                         break;
1359                 fallthrough;
1360         case ZSWAP_INIT_SUCCEED:
1361                 if (!zswap_has_pool)
1362                         pr_err("can't enable, no pool configured\n");
1363                 else
1364                         ret = param_set_bool(val, kp);
1365                 break;
1366         case ZSWAP_INIT_FAILED:
1367                 pr_err("can't enable, initialization failed\n");
1368         }
1369         mutex_unlock(&zswap_init_lock);
1370
1371         return ret;
1372 }
1373
1374 static void __zswap_load(struct zswap_entry *entry, struct page *page)
1375 {
1376         struct zpool *zpool = zswap_find_zpool(entry);
1377         struct scatterlist input, output;
1378         struct crypto_acomp_ctx *acomp_ctx;
1379         u8 *src;
1380
1381         acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1382         mutex_lock(&acomp_ctx->mutex);
1383
1384         src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1385         if (!zpool_can_sleep_mapped(zpool)) {
1386                 memcpy(acomp_ctx->buffer, src, entry->length);
1387                 src = acomp_ctx->buffer;
1388                 zpool_unmap_handle(zpool, entry->handle);
1389         }
1390
1391         sg_init_one(&input, src, entry->length);
1392         sg_init_table(&output, 1);
1393         sg_set_page(&output, page, PAGE_SIZE, 0);
1394         acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1395         BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1396         BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1397         mutex_unlock(&acomp_ctx->mutex);
1398
1399         if (zpool_can_sleep_mapped(zpool))
1400                 zpool_unmap_handle(zpool, entry->handle);
1401 }
1402
1403 /*********************************
1404 * writeback code
1405 **********************************/
1406 /*
1407  * Attempts to free an entry by adding a folio to the swap cache,
1408  * decompressing the entry data into the folio, and issuing a
1409  * bio write to write the folio back to the swap device.
1410  *
1411  * This can be thought of as a "resumed writeback" of the folio
1412  * to the swap device.  We are basically resuming the same swap
1413  * writeback path that was intercepted with the zswap_store()
1414  * in the first place.  After the folio has been decompressed into
1415  * the swap cache, the compressed version stored by zswap can be
1416  * freed.
1417  */
1418 static int zswap_writeback_entry(struct zswap_entry *entry,
1419                                  struct zswap_tree *tree)
1420 {
1421         swp_entry_t swpentry = entry->swpentry;
1422         struct folio *folio;
1423         struct mempolicy *mpol;
1424         bool folio_was_allocated;
1425         struct writeback_control wbc = {
1426                 .sync_mode = WB_SYNC_NONE,
1427         };
1428
1429         /* try to allocate swap cache folio */
1430         mpol = get_task_policy(current);
1431         folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1432                                 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1433         if (!folio)
1434                 return -ENOMEM;
1435
1436         /*
1437          * Found an existing folio, we raced with load/swapin. We generally
1438          * writeback cold folios from zswap, and swapin means the folio just
1439          * became hot. Skip this folio and let the caller find another one.
1440          */
1441         if (!folio_was_allocated) {
1442                 folio_put(folio);
1443                 return -EEXIST;
1444         }
1445
1446         /*
1447          * folio is locked, and the swapcache is now secured against
1448          * concurrent swapping to and from the slot. Verify that the
1449          * swap entry hasn't been invalidated and recycled behind our
1450          * backs (our zswap_entry reference doesn't prevent that), to
1451          * avoid overwriting a new swap folio with old compressed data.
1452          */
1453         spin_lock(&tree->lock);
1454         if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) {
1455                 spin_unlock(&tree->lock);
1456                 delete_from_swap_cache(folio);
1457                 folio_unlock(folio);
1458                 folio_put(folio);
1459                 return -ENOMEM;
1460         }
1461         spin_unlock(&tree->lock);
1462
1463         __zswap_load(entry, &folio->page);
1464
1465         /* folio is up to date */
1466         folio_mark_uptodate(folio);
1467
1468         /* move it to the tail of the inactive list after end_writeback */
1469         folio_set_reclaim(folio);
1470
1471         /* start writeback */
1472         __swap_writepage(folio, &wbc);
1473         folio_put(folio);
1474
1475         return 0;
1476 }
1477
1478 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1479 {
1480         unsigned long *page;
1481         unsigned long val;
1482         unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1483
1484         page = (unsigned long *)ptr;
1485         val = page[0];
1486
1487         if (val != page[last_pos])
1488                 return 0;
1489
1490         for (pos = 1; pos < last_pos; pos++) {
1491                 if (val != page[pos])
1492                         return 0;
1493         }
1494
1495         *value = val;
1496
1497         return 1;
1498 }
1499
1500 static void zswap_fill_page(void *ptr, unsigned long value)
1501 {
1502         unsigned long *page;
1503
1504         page = (unsigned long *)ptr;
1505         memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1506 }
1507
1508 bool zswap_store(struct folio *folio)
1509 {
1510         swp_entry_t swp = folio->swap;
1511         int type = swp_type(swp);
1512         pgoff_t offset = swp_offset(swp);
1513         struct page *page = &folio->page;
1514         struct zswap_tree *tree = zswap_trees[type];
1515         struct zswap_entry *entry, *dupentry;
1516         struct scatterlist input, output;
1517         struct crypto_acomp_ctx *acomp_ctx;
1518         struct obj_cgroup *objcg = NULL;
1519         struct mem_cgroup *memcg = NULL;
1520         struct zswap_pool *pool;
1521         struct zpool *zpool;
1522         unsigned int dlen = PAGE_SIZE;
1523         unsigned long handle, value;
1524         char *buf;
1525         u8 *src, *dst;
1526         gfp_t gfp;
1527         int ret;
1528
1529         VM_WARN_ON_ONCE(!folio_test_locked(folio));
1530         VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1531
1532         /* Large folios aren't supported */
1533         if (folio_test_large(folio))
1534                 return false;
1535
1536         if (!tree)
1537                 return false;
1538
1539         /*
1540          * If this is a duplicate, it must be removed before attempting to store
1541          * it, otherwise, if the store fails the old page won't be removed from
1542          * the tree, and it might be written back overriding the new data.
1543          */
1544         spin_lock(&tree->lock);
1545         dupentry = zswap_rb_search(&tree->rbroot, offset);
1546         if (dupentry) {
1547                 zswap_duplicate_entry++;
1548                 zswap_invalidate_entry(tree, dupentry);
1549         }
1550         spin_unlock(&tree->lock);
1551
1552         if (!zswap_enabled)
1553                 return false;
1554
1555         objcg = get_obj_cgroup_from_folio(folio);
1556         if (objcg && !obj_cgroup_may_zswap(objcg)) {
1557                 memcg = get_mem_cgroup_from_objcg(objcg);
1558                 if (shrink_memcg(memcg)) {
1559                         mem_cgroup_put(memcg);
1560                         goto reject;
1561                 }
1562                 mem_cgroup_put(memcg);
1563         }
1564
1565         /* reclaim space if needed */
1566         if (zswap_is_full()) {
1567                 zswap_pool_limit_hit++;
1568                 zswap_pool_reached_full = true;
1569                 goto shrink;
1570         }
1571
1572         if (zswap_pool_reached_full) {
1573                if (!zswap_can_accept())
1574                         goto shrink;
1575                 else
1576                         zswap_pool_reached_full = false;
1577         }
1578
1579         /* allocate entry */
1580         entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1581         if (!entry) {
1582                 zswap_reject_kmemcache_fail++;
1583                 goto reject;
1584         }
1585
1586         if (zswap_same_filled_pages_enabled) {
1587                 src = kmap_local_page(page);
1588                 if (zswap_is_page_same_filled(src, &value)) {
1589                         kunmap_local(src);
1590                         entry->swpentry = swp_entry(type, offset);
1591                         entry->length = 0;
1592                         entry->value = value;
1593                         atomic_inc(&zswap_same_filled_pages);
1594                         goto insert_entry;
1595                 }
1596                 kunmap_local(src);
1597         }
1598
1599         if (!zswap_non_same_filled_pages_enabled)
1600                 goto freepage;
1601
1602         /* if entry is successfully added, it keeps the reference */
1603         entry->pool = zswap_pool_current_get();
1604         if (!entry->pool)
1605                 goto freepage;
1606
1607         if (objcg) {
1608                 memcg = get_mem_cgroup_from_objcg(objcg);
1609                 if (memcg_list_lru_alloc(memcg, &entry->pool->list_lru, GFP_KERNEL)) {
1610                         mem_cgroup_put(memcg);
1611                         goto put_pool;
1612                 }
1613                 mem_cgroup_put(memcg);
1614         }
1615
1616         /* compress */
1617         acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1618
1619         mutex_lock(&acomp_ctx->mutex);
1620
1621         dst = acomp_ctx->buffer;
1622         sg_init_table(&input, 1);
1623         sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1624
1625         /*
1626          * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1627          * and hardware-accelerators may won't check the dst buffer size, so
1628          * giving the dst buffer with enough length to avoid buffer overflow.
1629          */
1630         sg_init_one(&output, dst, PAGE_SIZE * 2);
1631         acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1632         /*
1633          * it maybe looks a little bit silly that we send an asynchronous request,
1634          * then wait for its completion synchronously. This makes the process look
1635          * synchronous in fact.
1636          * Theoretically, acomp supports users send multiple acomp requests in one
1637          * acomp instance, then get those requests done simultaneously. but in this
1638          * case, zswap actually does store and load page by page, there is no
1639          * existing method to send the second page before the first page is done
1640          * in one thread doing zwap.
1641          * but in different threads running on different cpu, we have different
1642          * acomp instance, so multiple threads can do (de)compression in parallel.
1643          */
1644         ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1645         dlen = acomp_ctx->req->dlen;
1646
1647         if (ret) {
1648                 zswap_reject_compress_fail++;
1649                 goto put_dstmem;
1650         }
1651
1652         /* store */
1653         zpool = zswap_find_zpool(entry);
1654         gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1655         if (zpool_malloc_support_movable(zpool))
1656                 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1657         ret = zpool_malloc(zpool, dlen, gfp, &handle);
1658         if (ret == -ENOSPC) {
1659                 zswap_reject_compress_poor++;
1660                 goto put_dstmem;
1661         }
1662         if (ret) {
1663                 zswap_reject_alloc_fail++;
1664                 goto put_dstmem;
1665         }
1666         buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1667         memcpy(buf, dst, dlen);
1668         zpool_unmap_handle(zpool, handle);
1669         mutex_unlock(&acomp_ctx->mutex);
1670
1671         /* populate entry */
1672         entry->swpentry = swp_entry(type, offset);
1673         entry->handle = handle;
1674         entry->length = dlen;
1675
1676 insert_entry:
1677         entry->objcg = objcg;
1678         if (objcg) {
1679                 obj_cgroup_charge_zswap(objcg, entry->length);
1680                 /* Account before objcg ref is moved to tree */
1681                 count_objcg_event(objcg, ZSWPOUT);
1682         }
1683
1684         /* map */
1685         spin_lock(&tree->lock);
1686         /*
1687          * A duplicate entry should have been removed at the beginning of this
1688          * function. Since the swap entry should be pinned, if a duplicate is
1689          * found again here it means that something went wrong in the swap
1690          * cache.
1691          */
1692         while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1693                 WARN_ON(1);
1694                 zswap_duplicate_entry++;
1695                 zswap_invalidate_entry(tree, dupentry);
1696         }
1697         if (entry->length) {
1698                 INIT_LIST_HEAD(&entry->lru);
1699                 zswap_lru_add(&entry->pool->list_lru, entry);
1700                 atomic_inc(&entry->pool->nr_stored);
1701         }
1702         spin_unlock(&tree->lock);
1703
1704         /* update stats */
1705         atomic_inc(&zswap_stored_pages);
1706         zswap_update_total_size();
1707         count_vm_event(ZSWPOUT);
1708
1709         return true;
1710
1711 put_dstmem:
1712         mutex_unlock(&acomp_ctx->mutex);
1713 put_pool:
1714         zswap_pool_put(entry->pool);
1715 freepage:
1716         zswap_entry_cache_free(entry);
1717 reject:
1718         if (objcg)
1719                 obj_cgroup_put(objcg);
1720         return false;
1721
1722 shrink:
1723         pool = zswap_pool_last_get();
1724         if (pool && !queue_work(shrink_wq, &pool->shrink_work))
1725                 zswap_pool_put(pool);
1726         goto reject;
1727 }
1728
1729 bool zswap_load(struct folio *folio)
1730 {
1731         swp_entry_t swp = folio->swap;
1732         int type = swp_type(swp);
1733         pgoff_t offset = swp_offset(swp);
1734         struct page *page = &folio->page;
1735         struct zswap_tree *tree = zswap_trees[type];
1736         struct zswap_entry *entry;
1737         u8 *dst;
1738
1739         VM_WARN_ON_ONCE(!folio_test_locked(folio));
1740
1741         /* find */
1742         spin_lock(&tree->lock);
1743         entry = zswap_entry_find_get(&tree->rbroot, offset);
1744         if (!entry) {
1745                 spin_unlock(&tree->lock);
1746                 return false;
1747         }
1748         spin_unlock(&tree->lock);
1749
1750         if (entry->length)
1751                 __zswap_load(entry, page);
1752         else {
1753                 dst = kmap_local_page(page);
1754                 zswap_fill_page(dst, entry->value);
1755                 kunmap_local(dst);
1756         }
1757
1758         count_vm_event(ZSWPIN);
1759         if (entry->objcg)
1760                 count_objcg_event(entry->objcg, ZSWPIN);
1761
1762         spin_lock(&tree->lock);
1763         if (zswap_exclusive_loads_enabled) {
1764                 zswap_invalidate_entry(tree, entry);
1765                 folio_mark_dirty(folio);
1766         } else if (entry->length) {
1767                 zswap_lru_del(&entry->pool->list_lru, entry);
1768                 zswap_lru_add(&entry->pool->list_lru, entry);
1769         }
1770         zswap_entry_put(tree, entry);
1771         spin_unlock(&tree->lock);
1772
1773         return true;
1774 }
1775
1776 void zswap_invalidate(int type, pgoff_t offset)
1777 {
1778         struct zswap_tree *tree = zswap_trees[type];
1779         struct zswap_entry *entry;
1780
1781         /* find */
1782         spin_lock(&tree->lock);
1783         entry = zswap_rb_search(&tree->rbroot, offset);
1784         if (!entry) {
1785                 /* entry was written back */
1786                 spin_unlock(&tree->lock);
1787                 return;
1788         }
1789         zswap_invalidate_entry(tree, entry);
1790         spin_unlock(&tree->lock);
1791 }
1792
1793 void zswap_swapon(int type)
1794 {
1795         struct zswap_tree *tree;
1796
1797         tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1798         if (!tree) {
1799                 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1800                 return;
1801         }
1802
1803         tree->rbroot = RB_ROOT;
1804         spin_lock_init(&tree->lock);
1805         zswap_trees[type] = tree;
1806 }
1807
1808 void zswap_swapoff(int type)
1809 {
1810         struct zswap_tree *tree = zswap_trees[type];
1811         struct zswap_entry *entry, *n;
1812
1813         if (!tree)
1814                 return;
1815
1816         /* walk the tree and free everything */
1817         spin_lock(&tree->lock);
1818         rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1819                 zswap_free_entry(entry);
1820         tree->rbroot = RB_ROOT;
1821         spin_unlock(&tree->lock);
1822         kfree(tree);
1823         zswap_trees[type] = NULL;
1824 }
1825
1826 /*********************************
1827 * debugfs functions
1828 **********************************/
1829 #ifdef CONFIG_DEBUG_FS
1830 #include <linux/debugfs.h>
1831
1832 static struct dentry *zswap_debugfs_root;
1833
1834 static int zswap_debugfs_init(void)
1835 {
1836         if (!debugfs_initialized())
1837                 return -ENODEV;
1838
1839         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1840
1841         debugfs_create_u64("pool_limit_hit", 0444,
1842                            zswap_debugfs_root, &zswap_pool_limit_hit);
1843         debugfs_create_u64("reject_reclaim_fail", 0444,
1844                            zswap_debugfs_root, &zswap_reject_reclaim_fail);
1845         debugfs_create_u64("reject_alloc_fail", 0444,
1846                            zswap_debugfs_root, &zswap_reject_alloc_fail);
1847         debugfs_create_u64("reject_kmemcache_fail", 0444,
1848                            zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1849         debugfs_create_u64("reject_compress_fail", 0444,
1850                            zswap_debugfs_root, &zswap_reject_compress_fail);
1851         debugfs_create_u64("reject_compress_poor", 0444,
1852                            zswap_debugfs_root, &zswap_reject_compress_poor);
1853         debugfs_create_u64("written_back_pages", 0444,
1854                            zswap_debugfs_root, &zswap_written_back_pages);
1855         debugfs_create_u64("duplicate_entry", 0444,
1856                            zswap_debugfs_root, &zswap_duplicate_entry);
1857         debugfs_create_u64("pool_total_size", 0444,
1858                            zswap_debugfs_root, &zswap_pool_total_size);
1859         debugfs_create_atomic_t("stored_pages", 0444,
1860                                 zswap_debugfs_root, &zswap_stored_pages);
1861         debugfs_create_atomic_t("same_filled_pages", 0444,
1862                                 zswap_debugfs_root, &zswap_same_filled_pages);
1863
1864         return 0;
1865 }
1866 #else
1867 static int zswap_debugfs_init(void)
1868 {
1869         return 0;
1870 }
1871 #endif
1872
1873 /*********************************
1874 * module init and exit
1875 **********************************/
1876 static int zswap_setup(void)
1877 {
1878         struct zswap_pool *pool;
1879         int ret;
1880
1881         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1882         if (!zswap_entry_cache) {
1883                 pr_err("entry cache creation failed\n");
1884                 goto cache_fail;
1885         }
1886
1887         ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1888                                       "mm/zswap_pool:prepare",
1889                                       zswap_cpu_comp_prepare,
1890                                       zswap_cpu_comp_dead);
1891         if (ret)
1892                 goto hp_fail;
1893
1894         pool = __zswap_pool_create_fallback();
1895         if (pool) {
1896                 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1897                         zpool_get_type(pool->zpools[0]));
1898                 list_add(&pool->list, &zswap_pools);
1899                 zswap_has_pool = true;
1900         } else {
1901                 pr_err("pool creation failed\n");
1902                 zswap_enabled = false;
1903         }
1904
1905         shrink_wq = create_workqueue("zswap-shrink");
1906         if (!shrink_wq)
1907                 goto fallback_fail;
1908
1909         if (zswap_debugfs_init())
1910                 pr_warn("debugfs initialization failed\n");
1911         zswap_init_state = ZSWAP_INIT_SUCCEED;
1912         return 0;
1913
1914 fallback_fail:
1915         if (pool)
1916                 zswap_pool_destroy(pool);
1917 hp_fail:
1918         kmem_cache_destroy(zswap_entry_cache);
1919 cache_fail:
1920         /* if built-in, we aren't unloaded on failure; don't allow use */
1921         zswap_init_state = ZSWAP_INIT_FAILED;
1922         zswap_enabled = false;
1923         return -ENOMEM;
1924 }
1925
1926 static int __init zswap_init(void)
1927 {
1928         if (!zswap_enabled)
1929                 return 0;
1930         return zswap_setup();
1931 }
1932 /* must be late so crypto has time to come up */
1933 late_initcall(zswap_init);
1934
1935 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1936 MODULE_DESCRIPTION("Compressed cache for swap pages");