GNU Linux-libre 4.14.253-gnu1
[releases.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/wait.h>
56 #include <linux/pagemap.h>
57
58 #define ZSPAGE_MAGIC    0x58
59
60 /*
61  * This must be power of 2 and greater than of equal to sizeof(link_free).
62  * These two conditions ensure that any 'struct link_free' itself doesn't
63  * span more than 1 page which avoids complex case of mapping 2 pages simply
64  * to restore link_free pointer values.
65  */
66 #define ZS_ALIGN                8
67
68 /*
69  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
70  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71  */
72 #define ZS_MAX_ZSPAGE_ORDER 2
73 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74
75 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
76
77 /*
78  * Object location (<PFN>, <obj_idx>) is encoded as
79  * as single (unsigned long) handle value.
80  *
81  * Note that object index <obj_idx> starts from 0.
82  *
83  * This is made more complicated by various memory models and PAE.
84  */
85
86 #ifndef MAX_PHYSMEM_BITS
87 #ifdef CONFIG_HIGHMEM64G
88 #define MAX_PHYSMEM_BITS 36
89 #else /* !CONFIG_HIGHMEM64G */
90 /*
91  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
92  * be PAGE_SHIFT
93  */
94 #define MAX_PHYSMEM_BITS BITS_PER_LONG
95 #endif
96 #endif
97 #define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
98
99 /*
100  * Memory for allocating for handle keeps object position by
101  * encoding <page, obj_idx> and the encoded value has a room
102  * in least bit(ie, look at obj_to_location).
103  * We use the bit to synchronize between object access by
104  * user and migration.
105  */
106 #define HANDLE_PIN_BIT  0
107
108 /*
109  * Head in allocated object should have OBJ_ALLOCATED_TAG
110  * to identify the object was allocated or not.
111  * It's okay to add the status bit in the least bit because
112  * header keeps handle which is 4byte-aligned address so we
113  * have room for two bit at least.
114  */
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119
120 #define FULLNESS_BITS   2
121 #define CLASS_BITS      8
122 #define ISOLATED_BITS   3
123 #define MAGIC_VAL_BITS  8
124
125 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
131
132 /*
133  * On systems with 4K page size, this gives 255 size classes! There is a
134  * trader-off here:
135  *  - Large number of size classes is potentially wasteful as free page are
136  *    spread across these classes
137  *  - Small number of size classes causes large internal fragmentation
138  *  - Probably its better to use specific size classes (empirically
139  *    determined). NOTE: all those class sizes must be set as multiple of
140  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141  *
142  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143  *  (reason above)
144  */
145 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147                                       ZS_SIZE_CLASS_DELTA) + 1)
148
149 enum fullness_group {
150         ZS_EMPTY,
151         ZS_ALMOST_EMPTY,
152         ZS_ALMOST_FULL,
153         ZS_FULL,
154         NR_ZS_FULLNESS,
155 };
156
157 enum zs_stat_type {
158         CLASS_EMPTY,
159         CLASS_ALMOST_EMPTY,
160         CLASS_ALMOST_FULL,
161         CLASS_FULL,
162         OBJ_ALLOCATED,
163         OBJ_USED,
164         NR_ZS_STAT_TYPE,
165 };
166
167 struct zs_size_stat {
168         unsigned long objs[NR_ZS_STAT_TYPE];
169 };
170
171 #ifdef CONFIG_ZSMALLOC_STAT
172 static struct dentry *zs_stat_root;
173 #endif
174
175 #ifdef CONFIG_COMPACTION
176 static struct vfsmount *zsmalloc_mnt;
177 #endif
178
179 /*
180  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
181  *      n <= N / f, where
182  * n = number of allocated objects
183  * N = total number of objects zspage can store
184  * f = fullness_threshold_frac
185  *
186  * Similarly, we assign zspage to:
187  *      ZS_ALMOST_FULL  when n > N / f
188  *      ZS_EMPTY        when n == 0
189  *      ZS_FULL         when n == N
190  *
191  * (see: fix_fullness_group())
192  */
193 static const int fullness_threshold_frac = 4;
194
195 struct size_class {
196         spinlock_t lock;
197         struct list_head fullness_list[NR_ZS_FULLNESS];
198         /*
199          * Size of objects stored in this class. Must be multiple
200          * of ZS_ALIGN.
201          */
202         int size;
203         int objs_per_zspage;
204         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
205         int pages_per_zspage;
206
207         unsigned int index;
208         struct zs_size_stat stats;
209 };
210
211 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
212 static void SetPageHugeObject(struct page *page)
213 {
214         SetPageOwnerPriv1(page);
215 }
216
217 static void ClearPageHugeObject(struct page *page)
218 {
219         ClearPageOwnerPriv1(page);
220 }
221
222 static int PageHugeObject(struct page *page)
223 {
224         return PageOwnerPriv1(page);
225 }
226
227 /*
228  * Placed within free objects to form a singly linked list.
229  * For every zspage, zspage->freeobj gives head of this list.
230  *
231  * This must be power of 2 and less than or equal to ZS_ALIGN
232  */
233 struct link_free {
234         union {
235                 /*
236                  * Free object index;
237                  * It's valid for non-allocated object
238                  */
239                 unsigned long next;
240                 /*
241                  * Handle of allocated object.
242                  */
243                 unsigned long handle;
244         };
245 };
246
247 struct zs_pool {
248         const char *name;
249
250         struct size_class *size_class[ZS_SIZE_CLASSES];
251         struct kmem_cache *handle_cachep;
252         struct kmem_cache *zspage_cachep;
253
254         atomic_long_t pages_allocated;
255
256         struct zs_pool_stats stats;
257
258         /* Compact classes */
259         struct shrinker shrinker;
260         /*
261          * To signify that register_shrinker() was successful
262          * and unregister_shrinker() will not Oops.
263          */
264         bool shrinker_enabled;
265 #ifdef CONFIG_ZSMALLOC_STAT
266         struct dentry *stat_dentry;
267 #endif
268 #ifdef CONFIG_COMPACTION
269         struct inode *inode;
270         struct work_struct free_work;
271         /* A wait queue for when migration races with async_free_zspage() */
272         struct wait_queue_head migration_wait;
273         atomic_long_t isolated_pages;
274         bool destroying;
275 #endif
276 };
277
278 struct zspage {
279         struct {
280                 unsigned int fullness:FULLNESS_BITS;
281                 unsigned int class:CLASS_BITS + 1;
282                 unsigned int isolated:ISOLATED_BITS;
283                 unsigned int magic:MAGIC_VAL_BITS;
284         };
285         unsigned int inuse;
286         unsigned int freeobj;
287         struct page *first_page;
288         struct list_head list; /* fullness list */
289 #ifdef CONFIG_COMPACTION
290         rwlock_t lock;
291 #endif
292 };
293
294 struct mapping_area {
295 #ifdef CONFIG_PGTABLE_MAPPING
296         struct vm_struct *vm; /* vm area for mapping object that span pages */
297 #else
298         char *vm_buf; /* copy buffer for objects that span pages */
299 #endif
300         char *vm_addr; /* address of kmap_atomic()'ed pages */
301         enum zs_mapmode vm_mm; /* mapping mode */
302 };
303
304 #ifdef CONFIG_COMPACTION
305 static int zs_register_migration(struct zs_pool *pool);
306 static void zs_unregister_migration(struct zs_pool *pool);
307 static void migrate_lock_init(struct zspage *zspage);
308 static void migrate_read_lock(struct zspage *zspage);
309 static void migrate_read_unlock(struct zspage *zspage);
310 static void kick_deferred_free(struct zs_pool *pool);
311 static void init_deferred_free(struct zs_pool *pool);
312 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
313 #else
314 static int zsmalloc_mount(void) { return 0; }
315 static void zsmalloc_unmount(void) {}
316 static int zs_register_migration(struct zs_pool *pool) { return 0; }
317 static void zs_unregister_migration(struct zs_pool *pool) {}
318 static void migrate_lock_init(struct zspage *zspage) {}
319 static void migrate_read_lock(struct zspage *zspage) {}
320 static void migrate_read_unlock(struct zspage *zspage) {}
321 static void kick_deferred_free(struct zs_pool *pool) {}
322 static void init_deferred_free(struct zs_pool *pool) {}
323 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
324 #endif
325
326 static int create_cache(struct zs_pool *pool)
327 {
328         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
329                                         0, 0, NULL);
330         if (!pool->handle_cachep)
331                 return 1;
332
333         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
334                                         0, 0, NULL);
335         if (!pool->zspage_cachep) {
336                 kmem_cache_destroy(pool->handle_cachep);
337                 pool->handle_cachep = NULL;
338                 return 1;
339         }
340
341         return 0;
342 }
343
344 static void destroy_cache(struct zs_pool *pool)
345 {
346         kmem_cache_destroy(pool->handle_cachep);
347         kmem_cache_destroy(pool->zspage_cachep);
348 }
349
350 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
351 {
352         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
353                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
354 }
355
356 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
357 {
358         kmem_cache_free(pool->handle_cachep, (void *)handle);
359 }
360
361 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
362 {
363         return kmem_cache_alloc(pool->zspage_cachep,
364                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
365 }
366
367 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
368 {
369         kmem_cache_free(pool->zspage_cachep, zspage);
370 }
371
372 static void record_obj(unsigned long handle, unsigned long obj)
373 {
374         /*
375          * lsb of @obj represents handle lock while other bits
376          * represent object value the handle is pointing so
377          * updating shouldn't do store tearing.
378          */
379         WRITE_ONCE(*(unsigned long *)handle, obj);
380 }
381
382 /* zpool driver */
383
384 #ifdef CONFIG_ZPOOL
385
386 static void *zs_zpool_create(const char *name, gfp_t gfp,
387                              const struct zpool_ops *zpool_ops,
388                              struct zpool *zpool)
389 {
390         /*
391          * Ignore global gfp flags: zs_malloc() may be invoked from
392          * different contexts and its caller must provide a valid
393          * gfp mask.
394          */
395         return zs_create_pool(name);
396 }
397
398 static void zs_zpool_destroy(void *pool)
399 {
400         zs_destroy_pool(pool);
401 }
402
403 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
404                         unsigned long *handle)
405 {
406         *handle = zs_malloc(pool, size, gfp);
407         return *handle ? 0 : -1;
408 }
409 static void zs_zpool_free(void *pool, unsigned long handle)
410 {
411         zs_free(pool, handle);
412 }
413
414 static int zs_zpool_shrink(void *pool, unsigned int pages,
415                         unsigned int *reclaimed)
416 {
417         return -EINVAL;
418 }
419
420 static void *zs_zpool_map(void *pool, unsigned long handle,
421                         enum zpool_mapmode mm)
422 {
423         enum zs_mapmode zs_mm;
424
425         switch (mm) {
426         case ZPOOL_MM_RO:
427                 zs_mm = ZS_MM_RO;
428                 break;
429         case ZPOOL_MM_WO:
430                 zs_mm = ZS_MM_WO;
431                 break;
432         case ZPOOL_MM_RW: /* fallthru */
433         default:
434                 zs_mm = ZS_MM_RW;
435                 break;
436         }
437
438         return zs_map_object(pool, handle, zs_mm);
439 }
440 static void zs_zpool_unmap(void *pool, unsigned long handle)
441 {
442         zs_unmap_object(pool, handle);
443 }
444
445 static u64 zs_zpool_total_size(void *pool)
446 {
447         return zs_get_total_pages(pool) << PAGE_SHIFT;
448 }
449
450 static struct zpool_driver zs_zpool_driver = {
451         .type =         "zsmalloc",
452         .owner =        THIS_MODULE,
453         .create =       zs_zpool_create,
454         .destroy =      zs_zpool_destroy,
455         .malloc =       zs_zpool_malloc,
456         .free =         zs_zpool_free,
457         .shrink =       zs_zpool_shrink,
458         .map =          zs_zpool_map,
459         .unmap =        zs_zpool_unmap,
460         .total_size =   zs_zpool_total_size,
461 };
462
463 MODULE_ALIAS("zpool-zsmalloc");
464 #endif /* CONFIG_ZPOOL */
465
466 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
467 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
468
469 static bool is_zspage_isolated(struct zspage *zspage)
470 {
471         return zspage->isolated;
472 }
473
474 static __maybe_unused int is_first_page(struct page *page)
475 {
476         return PagePrivate(page);
477 }
478
479 /* Protected by class->lock */
480 static inline int get_zspage_inuse(struct zspage *zspage)
481 {
482         return zspage->inuse;
483 }
484
485 static inline void set_zspage_inuse(struct zspage *zspage, int val)
486 {
487         zspage->inuse = val;
488 }
489
490 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
491 {
492         zspage->inuse += val;
493 }
494
495 static inline struct page *get_first_page(struct zspage *zspage)
496 {
497         struct page *first_page = zspage->first_page;
498
499         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
500         return first_page;
501 }
502
503 static inline int get_first_obj_offset(struct page *page)
504 {
505         return page->units;
506 }
507
508 static inline void set_first_obj_offset(struct page *page, int offset)
509 {
510         page->units = offset;
511 }
512
513 static inline unsigned int get_freeobj(struct zspage *zspage)
514 {
515         return zspage->freeobj;
516 }
517
518 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
519 {
520         zspage->freeobj = obj;
521 }
522
523 static void get_zspage_mapping(struct zspage *zspage,
524                                 unsigned int *class_idx,
525                                 enum fullness_group *fullness)
526 {
527         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
528
529         *fullness = zspage->fullness;
530         *class_idx = zspage->class;
531 }
532
533 static void set_zspage_mapping(struct zspage *zspage,
534                                 unsigned int class_idx,
535                                 enum fullness_group fullness)
536 {
537         zspage->class = class_idx;
538         zspage->fullness = fullness;
539 }
540
541 /*
542  * zsmalloc divides the pool into various size classes where each
543  * class maintains a list of zspages where each zspage is divided
544  * into equal sized chunks. Each allocation falls into one of these
545  * classes depending on its size. This function returns index of the
546  * size class which has chunk size big enough to hold the give size.
547  */
548 static int get_size_class_index(int size)
549 {
550         int idx = 0;
551
552         if (likely(size > ZS_MIN_ALLOC_SIZE))
553                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
554                                 ZS_SIZE_CLASS_DELTA);
555
556         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
557 }
558
559 /* type can be of enum type zs_stat_type or fullness_group */
560 static inline void zs_stat_inc(struct size_class *class,
561                                 int type, unsigned long cnt)
562 {
563         class->stats.objs[type] += cnt;
564 }
565
566 /* type can be of enum type zs_stat_type or fullness_group */
567 static inline void zs_stat_dec(struct size_class *class,
568                                 int type, unsigned long cnt)
569 {
570         class->stats.objs[type] -= cnt;
571 }
572
573 /* type can be of enum type zs_stat_type or fullness_group */
574 static inline unsigned long zs_stat_get(struct size_class *class,
575                                 int type)
576 {
577         return class->stats.objs[type];
578 }
579
580 #ifdef CONFIG_ZSMALLOC_STAT
581
582 static void __init zs_stat_init(void)
583 {
584         if (!debugfs_initialized()) {
585                 pr_warn("debugfs not available, stat dir not created\n");
586                 return;
587         }
588
589         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
590         if (!zs_stat_root)
591                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
592 }
593
594 static void __exit zs_stat_exit(void)
595 {
596         debugfs_remove_recursive(zs_stat_root);
597 }
598
599 static unsigned long zs_can_compact(struct size_class *class);
600
601 static int zs_stats_size_show(struct seq_file *s, void *v)
602 {
603         int i;
604         struct zs_pool *pool = s->private;
605         struct size_class *class;
606         int objs_per_zspage;
607         unsigned long class_almost_full, class_almost_empty;
608         unsigned long obj_allocated, obj_used, pages_used, freeable;
609         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
610         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
611         unsigned long total_freeable = 0;
612
613         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
614                         "class", "size", "almost_full", "almost_empty",
615                         "obj_allocated", "obj_used", "pages_used",
616                         "pages_per_zspage", "freeable");
617
618         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
619                 class = pool->size_class[i];
620
621                 if (class->index != i)
622                         continue;
623
624                 spin_lock(&class->lock);
625                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
626                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
627                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
628                 obj_used = zs_stat_get(class, OBJ_USED);
629                 freeable = zs_can_compact(class);
630                 spin_unlock(&class->lock);
631
632                 objs_per_zspage = class->objs_per_zspage;
633                 pages_used = obj_allocated / objs_per_zspage *
634                                 class->pages_per_zspage;
635
636                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
637                                 " %10lu %10lu %16d %8lu\n",
638                         i, class->size, class_almost_full, class_almost_empty,
639                         obj_allocated, obj_used, pages_used,
640                         class->pages_per_zspage, freeable);
641
642                 total_class_almost_full += class_almost_full;
643                 total_class_almost_empty += class_almost_empty;
644                 total_objs += obj_allocated;
645                 total_used_objs += obj_used;
646                 total_pages += pages_used;
647                 total_freeable += freeable;
648         }
649
650         seq_puts(s, "\n");
651         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
652                         "Total", "", total_class_almost_full,
653                         total_class_almost_empty, total_objs,
654                         total_used_objs, total_pages, "", total_freeable);
655
656         return 0;
657 }
658
659 static int zs_stats_size_open(struct inode *inode, struct file *file)
660 {
661         return single_open(file, zs_stats_size_show, inode->i_private);
662 }
663
664 static const struct file_operations zs_stat_size_ops = {
665         .open           = zs_stats_size_open,
666         .read           = seq_read,
667         .llseek         = seq_lseek,
668         .release        = single_release,
669 };
670
671 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
672 {
673         struct dentry *entry;
674
675         if (!zs_stat_root) {
676                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
677                 return;
678         }
679
680         entry = debugfs_create_dir(name, zs_stat_root);
681         if (!entry) {
682                 pr_warn("debugfs dir <%s> creation failed\n", name);
683                 return;
684         }
685         pool->stat_dentry = entry;
686
687         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
688                         pool->stat_dentry, pool, &zs_stat_size_ops);
689         if (!entry) {
690                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
691                                 name, "classes");
692                 debugfs_remove_recursive(pool->stat_dentry);
693                 pool->stat_dentry = NULL;
694         }
695 }
696
697 static void zs_pool_stat_destroy(struct zs_pool *pool)
698 {
699         debugfs_remove_recursive(pool->stat_dentry);
700 }
701
702 #else /* CONFIG_ZSMALLOC_STAT */
703 static void __init zs_stat_init(void)
704 {
705 }
706
707 static void __exit zs_stat_exit(void)
708 {
709 }
710
711 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
712 {
713 }
714
715 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
716 {
717 }
718 #endif
719
720
721 /*
722  * For each size class, zspages are divided into different groups
723  * depending on how "full" they are. This was done so that we could
724  * easily find empty or nearly empty zspages when we try to shrink
725  * the pool (not yet implemented). This function returns fullness
726  * status of the given page.
727  */
728 static enum fullness_group get_fullness_group(struct size_class *class,
729                                                 struct zspage *zspage)
730 {
731         int inuse, objs_per_zspage;
732         enum fullness_group fg;
733
734         inuse = get_zspage_inuse(zspage);
735         objs_per_zspage = class->objs_per_zspage;
736
737         if (inuse == 0)
738                 fg = ZS_EMPTY;
739         else if (inuse == objs_per_zspage)
740                 fg = ZS_FULL;
741         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
742                 fg = ZS_ALMOST_EMPTY;
743         else
744                 fg = ZS_ALMOST_FULL;
745
746         return fg;
747 }
748
749 /*
750  * Each size class maintains various freelists and zspages are assigned
751  * to one of these freelists based on the number of live objects they
752  * have. This functions inserts the given zspage into the freelist
753  * identified by <class, fullness_group>.
754  */
755 static void insert_zspage(struct size_class *class,
756                                 struct zspage *zspage,
757                                 enum fullness_group fullness)
758 {
759         struct zspage *head;
760
761         zs_stat_inc(class, fullness, 1);
762         head = list_first_entry_or_null(&class->fullness_list[fullness],
763                                         struct zspage, list);
764         /*
765          * We want to see more ZS_FULL pages and less almost empty/full.
766          * Put pages with higher ->inuse first.
767          */
768         if (head) {
769                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
770                         list_add(&zspage->list, &head->list);
771                         return;
772                 }
773         }
774         list_add(&zspage->list, &class->fullness_list[fullness]);
775 }
776
777 /*
778  * This function removes the given zspage from the freelist identified
779  * by <class, fullness_group>.
780  */
781 static void remove_zspage(struct size_class *class,
782                                 struct zspage *zspage,
783                                 enum fullness_group fullness)
784 {
785         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
786         VM_BUG_ON(is_zspage_isolated(zspage));
787
788         list_del_init(&zspage->list);
789         zs_stat_dec(class, fullness, 1);
790 }
791
792 /*
793  * Each size class maintains zspages in different fullness groups depending
794  * on the number of live objects they contain. When allocating or freeing
795  * objects, the fullness status of the page can change, say, from ALMOST_FULL
796  * to ALMOST_EMPTY when freeing an object. This function checks if such
797  * a status change has occurred for the given page and accordingly moves the
798  * page from the freelist of the old fullness group to that of the new
799  * fullness group.
800  */
801 static enum fullness_group fix_fullness_group(struct size_class *class,
802                                                 struct zspage *zspage)
803 {
804         int class_idx;
805         enum fullness_group currfg, newfg;
806
807         get_zspage_mapping(zspage, &class_idx, &currfg);
808         newfg = get_fullness_group(class, zspage);
809         if (newfg == currfg)
810                 goto out;
811
812         if (!is_zspage_isolated(zspage)) {
813                 remove_zspage(class, zspage, currfg);
814                 insert_zspage(class, zspage, newfg);
815         }
816
817         set_zspage_mapping(zspage, class_idx, newfg);
818
819 out:
820         return newfg;
821 }
822
823 /*
824  * We have to decide on how many pages to link together
825  * to form a zspage for each size class. This is important
826  * to reduce wastage due to unusable space left at end of
827  * each zspage which is given as:
828  *     wastage = Zp % class_size
829  *     usage = Zp - wastage
830  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
831  *
832  * For example, for size class of 3/8 * PAGE_SIZE, we should
833  * link together 3 PAGE_SIZE sized pages to form a zspage
834  * since then we can perfectly fit in 8 such objects.
835  */
836 static int get_pages_per_zspage(int class_size)
837 {
838         int i, max_usedpc = 0;
839         /* zspage order which gives maximum used size per KB */
840         int max_usedpc_order = 1;
841
842         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
843                 int zspage_size;
844                 int waste, usedpc;
845
846                 zspage_size = i * PAGE_SIZE;
847                 waste = zspage_size % class_size;
848                 usedpc = (zspage_size - waste) * 100 / zspage_size;
849
850                 if (usedpc > max_usedpc) {
851                         max_usedpc = usedpc;
852                         max_usedpc_order = i;
853                 }
854         }
855
856         return max_usedpc_order;
857 }
858
859 static struct zspage *get_zspage(struct page *page)
860 {
861         struct zspage *zspage = (struct zspage *)page->private;
862
863         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
864         return zspage;
865 }
866
867 static struct page *get_next_page(struct page *page)
868 {
869         if (unlikely(PageHugeObject(page)))
870                 return NULL;
871
872         return page->freelist;
873 }
874
875 /**
876  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
877  * @page: page object resides in zspage
878  * @obj_idx: object index
879  */
880 static void obj_to_location(unsigned long obj, struct page **page,
881                                 unsigned int *obj_idx)
882 {
883         obj >>= OBJ_TAG_BITS;
884         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
885         *obj_idx = (obj & OBJ_INDEX_MASK);
886 }
887
888 /**
889  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
890  * @page: page object resides in zspage
891  * @obj_idx: object index
892  */
893 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
894 {
895         unsigned long obj;
896
897         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
898         obj |= obj_idx & OBJ_INDEX_MASK;
899         obj <<= OBJ_TAG_BITS;
900
901         return obj;
902 }
903
904 static unsigned long handle_to_obj(unsigned long handle)
905 {
906         return *(unsigned long *)handle;
907 }
908
909 static unsigned long obj_to_head(struct page *page, void *obj)
910 {
911         if (unlikely(PageHugeObject(page))) {
912                 VM_BUG_ON_PAGE(!is_first_page(page), page);
913                 return page->index;
914         } else
915                 return *(unsigned long *)obj;
916 }
917
918 static inline int testpin_tag(unsigned long handle)
919 {
920         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
921 }
922
923 static inline int trypin_tag(unsigned long handle)
924 {
925         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
926 }
927
928 static void pin_tag(unsigned long handle)
929 {
930         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
931 }
932
933 static void unpin_tag(unsigned long handle)
934 {
935         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
936 }
937
938 static void reset_page(struct page *page)
939 {
940         __ClearPageMovable(page);
941         ClearPagePrivate(page);
942         set_page_private(page, 0);
943         page_mapcount_reset(page);
944         ClearPageHugeObject(page);
945         page->freelist = NULL;
946 }
947
948 /*
949  * To prevent zspage destroy during migration, zspage freeing should
950  * hold locks of all pages in the zspage.
951  */
952 void lock_zspage(struct zspage *zspage)
953 {
954         struct page *page = get_first_page(zspage);
955
956         do {
957                 lock_page(page);
958         } while ((page = get_next_page(page)) != NULL);
959 }
960
961 int trylock_zspage(struct zspage *zspage)
962 {
963         struct page *cursor, *fail;
964
965         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
966                                         get_next_page(cursor)) {
967                 if (!trylock_page(cursor)) {
968                         fail = cursor;
969                         goto unlock;
970                 }
971         }
972
973         return 1;
974 unlock:
975         for (cursor = get_first_page(zspage); cursor != fail; cursor =
976                                         get_next_page(cursor))
977                 unlock_page(cursor);
978
979         return 0;
980 }
981
982 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
983                                 struct zspage *zspage)
984 {
985         struct page *page, *next;
986         enum fullness_group fg;
987         unsigned int class_idx;
988
989         get_zspage_mapping(zspage, &class_idx, &fg);
990
991         assert_spin_locked(&class->lock);
992
993         VM_BUG_ON(get_zspage_inuse(zspage));
994         VM_BUG_ON(fg != ZS_EMPTY);
995
996         next = page = get_first_page(zspage);
997         do {
998                 VM_BUG_ON_PAGE(!PageLocked(page), page);
999                 next = get_next_page(page);
1000                 reset_page(page);
1001                 unlock_page(page);
1002                 dec_zone_page_state(page, NR_ZSPAGES);
1003                 put_page(page);
1004                 page = next;
1005         } while (page != NULL);
1006
1007         cache_free_zspage(pool, zspage);
1008
1009         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1010         atomic_long_sub(class->pages_per_zspage,
1011                                         &pool->pages_allocated);
1012 }
1013
1014 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1015                                 struct zspage *zspage)
1016 {
1017         VM_BUG_ON(get_zspage_inuse(zspage));
1018         VM_BUG_ON(list_empty(&zspage->list));
1019
1020         if (!trylock_zspage(zspage)) {
1021                 kick_deferred_free(pool);
1022                 return;
1023         }
1024
1025         remove_zspage(class, zspage, ZS_EMPTY);
1026         __free_zspage(pool, class, zspage);
1027 }
1028
1029 /* Initialize a newly allocated zspage */
1030 static void init_zspage(struct size_class *class, struct zspage *zspage)
1031 {
1032         unsigned int freeobj = 1;
1033         unsigned long off = 0;
1034         struct page *page = get_first_page(zspage);
1035
1036         while (page) {
1037                 struct page *next_page;
1038                 struct link_free *link;
1039                 void *vaddr;
1040
1041                 set_first_obj_offset(page, off);
1042
1043                 vaddr = kmap_atomic(page);
1044                 link = (struct link_free *)vaddr + off / sizeof(*link);
1045
1046                 while ((off += class->size) < PAGE_SIZE) {
1047                         link->next = freeobj++ << OBJ_TAG_BITS;
1048                         link += class->size / sizeof(*link);
1049                 }
1050
1051                 /*
1052                  * We now come to the last (full or partial) object on this
1053                  * page, which must point to the first object on the next
1054                  * page (if present)
1055                  */
1056                 next_page = get_next_page(page);
1057                 if (next_page) {
1058                         link->next = freeobj++ << OBJ_TAG_BITS;
1059                 } else {
1060                         /*
1061                          * Reset OBJ_TAG_BITS bit to last link to tell
1062                          * whether it's allocated object or not.
1063                          */
1064                         link->next = -1 << OBJ_TAG_BITS;
1065                 }
1066                 kunmap_atomic(vaddr);
1067                 page = next_page;
1068                 off %= PAGE_SIZE;
1069         }
1070
1071         set_freeobj(zspage, 0);
1072 }
1073
1074 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1075                                 struct page *pages[])
1076 {
1077         int i;
1078         struct page *page;
1079         struct page *prev_page = NULL;
1080         int nr_pages = class->pages_per_zspage;
1081
1082         /*
1083          * Allocate individual pages and link them together as:
1084          * 1. all pages are linked together using page->freelist
1085          * 2. each sub-page point to zspage using page->private
1086          *
1087          * we set PG_private to identify the first page (i.e. no other sub-page
1088          * has this flag set).
1089          */
1090         for (i = 0; i < nr_pages; i++) {
1091                 page = pages[i];
1092                 set_page_private(page, (unsigned long)zspage);
1093                 page->freelist = NULL;
1094                 if (i == 0) {
1095                         zspage->first_page = page;
1096                         SetPagePrivate(page);
1097                         if (unlikely(class->objs_per_zspage == 1 &&
1098                                         class->pages_per_zspage == 1))
1099                                 SetPageHugeObject(page);
1100                 } else {
1101                         prev_page->freelist = page;
1102                 }
1103                 prev_page = page;
1104         }
1105 }
1106
1107 /*
1108  * Allocate a zspage for the given size class
1109  */
1110 static struct zspage *alloc_zspage(struct zs_pool *pool,
1111                                         struct size_class *class,
1112                                         gfp_t gfp)
1113 {
1114         int i;
1115         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1116         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1117
1118         if (!zspage)
1119                 return NULL;
1120
1121         memset(zspage, 0, sizeof(struct zspage));
1122         zspage->magic = ZSPAGE_MAGIC;
1123         migrate_lock_init(zspage);
1124
1125         for (i = 0; i < class->pages_per_zspage; i++) {
1126                 struct page *page;
1127
1128                 page = alloc_page(gfp);
1129                 if (!page) {
1130                         while (--i >= 0) {
1131                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1132                                 __free_page(pages[i]);
1133                         }
1134                         cache_free_zspage(pool, zspage);
1135                         return NULL;
1136                 }
1137
1138                 inc_zone_page_state(page, NR_ZSPAGES);
1139                 pages[i] = page;
1140         }
1141
1142         create_page_chain(class, zspage, pages);
1143         init_zspage(class, zspage);
1144
1145         return zspage;
1146 }
1147
1148 static struct zspage *find_get_zspage(struct size_class *class)
1149 {
1150         int i;
1151         struct zspage *zspage;
1152
1153         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1154                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1155                                 struct zspage, list);
1156                 if (zspage)
1157                         break;
1158         }
1159
1160         return zspage;
1161 }
1162
1163 #ifdef CONFIG_PGTABLE_MAPPING
1164 static inline int __zs_cpu_up(struct mapping_area *area)
1165 {
1166         /*
1167          * Make sure we don't leak memory if a cpu UP notification
1168          * and zs_init() race and both call zs_cpu_up() on the same cpu
1169          */
1170         if (area->vm)
1171                 return 0;
1172         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1173         if (!area->vm)
1174                 return -ENOMEM;
1175         return 0;
1176 }
1177
1178 static inline void __zs_cpu_down(struct mapping_area *area)
1179 {
1180         if (area->vm)
1181                 free_vm_area(area->vm);
1182         area->vm = NULL;
1183 }
1184
1185 static inline void *__zs_map_object(struct mapping_area *area,
1186                                 struct page *pages[2], int off, int size)
1187 {
1188         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1189         area->vm_addr = area->vm->addr;
1190         return area->vm_addr + off;
1191 }
1192
1193 static inline void __zs_unmap_object(struct mapping_area *area,
1194                                 struct page *pages[2], int off, int size)
1195 {
1196         unsigned long addr = (unsigned long)area->vm_addr;
1197
1198         unmap_kernel_range(addr, PAGE_SIZE * 2);
1199 }
1200
1201 #else /* CONFIG_PGTABLE_MAPPING */
1202
1203 static inline int __zs_cpu_up(struct mapping_area *area)
1204 {
1205         /*
1206          * Make sure we don't leak memory if a cpu UP notification
1207          * and zs_init() race and both call zs_cpu_up() on the same cpu
1208          */
1209         if (area->vm_buf)
1210                 return 0;
1211         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1212         if (!area->vm_buf)
1213                 return -ENOMEM;
1214         return 0;
1215 }
1216
1217 static inline void __zs_cpu_down(struct mapping_area *area)
1218 {
1219         kfree(area->vm_buf);
1220         area->vm_buf = NULL;
1221 }
1222
1223 static void *__zs_map_object(struct mapping_area *area,
1224                         struct page *pages[2], int off, int size)
1225 {
1226         int sizes[2];
1227         void *addr;
1228         char *buf = area->vm_buf;
1229
1230         /* disable page faults to match kmap_atomic() return conditions */
1231         pagefault_disable();
1232
1233         /* no read fastpath */
1234         if (area->vm_mm == ZS_MM_WO)
1235                 goto out;
1236
1237         sizes[0] = PAGE_SIZE - off;
1238         sizes[1] = size - sizes[0];
1239
1240         /* copy object to per-cpu buffer */
1241         addr = kmap_atomic(pages[0]);
1242         memcpy(buf, addr + off, sizes[0]);
1243         kunmap_atomic(addr);
1244         addr = kmap_atomic(pages[1]);
1245         memcpy(buf + sizes[0], addr, sizes[1]);
1246         kunmap_atomic(addr);
1247 out:
1248         return area->vm_buf;
1249 }
1250
1251 static void __zs_unmap_object(struct mapping_area *area,
1252                         struct page *pages[2], int off, int size)
1253 {
1254         int sizes[2];
1255         void *addr;
1256         char *buf;
1257
1258         /* no write fastpath */
1259         if (area->vm_mm == ZS_MM_RO)
1260                 goto out;
1261
1262         buf = area->vm_buf;
1263         buf = buf + ZS_HANDLE_SIZE;
1264         size -= ZS_HANDLE_SIZE;
1265         off += ZS_HANDLE_SIZE;
1266
1267         sizes[0] = PAGE_SIZE - off;
1268         sizes[1] = size - sizes[0];
1269
1270         /* copy per-cpu buffer to object */
1271         addr = kmap_atomic(pages[0]);
1272         memcpy(addr + off, buf, sizes[0]);
1273         kunmap_atomic(addr);
1274         addr = kmap_atomic(pages[1]);
1275         memcpy(addr, buf + sizes[0], sizes[1]);
1276         kunmap_atomic(addr);
1277
1278 out:
1279         /* enable page faults to match kunmap_atomic() return conditions */
1280         pagefault_enable();
1281 }
1282
1283 #endif /* CONFIG_PGTABLE_MAPPING */
1284
1285 static int zs_cpu_prepare(unsigned int cpu)
1286 {
1287         struct mapping_area *area;
1288
1289         area = &per_cpu(zs_map_area, cpu);
1290         return __zs_cpu_up(area);
1291 }
1292
1293 static int zs_cpu_dead(unsigned int cpu)
1294 {
1295         struct mapping_area *area;
1296
1297         area = &per_cpu(zs_map_area, cpu);
1298         __zs_cpu_down(area);
1299         return 0;
1300 }
1301
1302 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1303                                         int objs_per_zspage)
1304 {
1305         if (prev->pages_per_zspage == pages_per_zspage &&
1306                 prev->objs_per_zspage == objs_per_zspage)
1307                 return true;
1308
1309         return false;
1310 }
1311
1312 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1313 {
1314         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1315 }
1316
1317 unsigned long zs_get_total_pages(struct zs_pool *pool)
1318 {
1319         return atomic_long_read(&pool->pages_allocated);
1320 }
1321 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1322
1323 /**
1324  * zs_map_object - get address of allocated object from handle.
1325  * @pool: pool from which the object was allocated
1326  * @handle: handle returned from zs_malloc
1327  *
1328  * Before using an object allocated from zs_malloc, it must be mapped using
1329  * this function. When done with the object, it must be unmapped using
1330  * zs_unmap_object.
1331  *
1332  * Only one object can be mapped per cpu at a time. There is no protection
1333  * against nested mappings.
1334  *
1335  * This function returns with preemption and page faults disabled.
1336  */
1337 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1338                         enum zs_mapmode mm)
1339 {
1340         struct zspage *zspage;
1341         struct page *page;
1342         unsigned long obj, off;
1343         unsigned int obj_idx;
1344
1345         unsigned int class_idx;
1346         enum fullness_group fg;
1347         struct size_class *class;
1348         struct mapping_area *area;
1349         struct page *pages[2];
1350         void *ret;
1351
1352         /*
1353          * Because we use per-cpu mapping areas shared among the
1354          * pools/users, we can't allow mapping in interrupt context
1355          * because it can corrupt another users mappings.
1356          */
1357         BUG_ON(in_interrupt());
1358
1359         /* From now on, migration cannot move the object */
1360         pin_tag(handle);
1361
1362         obj = handle_to_obj(handle);
1363         obj_to_location(obj, &page, &obj_idx);
1364         zspage = get_zspage(page);
1365
1366         /* migration cannot move any subpage in this zspage */
1367         migrate_read_lock(zspage);
1368
1369         get_zspage_mapping(zspage, &class_idx, &fg);
1370         class = pool->size_class[class_idx];
1371         off = (class->size * obj_idx) & ~PAGE_MASK;
1372
1373         area = &get_cpu_var(zs_map_area);
1374         area->vm_mm = mm;
1375         if (off + class->size <= PAGE_SIZE) {
1376                 /* this object is contained entirely within a page */
1377                 area->vm_addr = kmap_atomic(page);
1378                 ret = area->vm_addr + off;
1379                 goto out;
1380         }
1381
1382         /* this object spans two pages */
1383         pages[0] = page;
1384         pages[1] = get_next_page(page);
1385         BUG_ON(!pages[1]);
1386
1387         ret = __zs_map_object(area, pages, off, class->size);
1388 out:
1389         if (likely(!PageHugeObject(page)))
1390                 ret += ZS_HANDLE_SIZE;
1391
1392         return ret;
1393 }
1394 EXPORT_SYMBOL_GPL(zs_map_object);
1395
1396 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1397 {
1398         struct zspage *zspage;
1399         struct page *page;
1400         unsigned long obj, off;
1401         unsigned int obj_idx;
1402
1403         unsigned int class_idx;
1404         enum fullness_group fg;
1405         struct size_class *class;
1406         struct mapping_area *area;
1407
1408         obj = handle_to_obj(handle);
1409         obj_to_location(obj, &page, &obj_idx);
1410         zspage = get_zspage(page);
1411         get_zspage_mapping(zspage, &class_idx, &fg);
1412         class = pool->size_class[class_idx];
1413         off = (class->size * obj_idx) & ~PAGE_MASK;
1414
1415         area = this_cpu_ptr(&zs_map_area);
1416         if (off + class->size <= PAGE_SIZE)
1417                 kunmap_atomic(area->vm_addr);
1418         else {
1419                 struct page *pages[2];
1420
1421                 pages[0] = page;
1422                 pages[1] = get_next_page(page);
1423                 BUG_ON(!pages[1]);
1424
1425                 __zs_unmap_object(area, pages, off, class->size);
1426         }
1427         put_cpu_var(zs_map_area);
1428
1429         migrate_read_unlock(zspage);
1430         unpin_tag(handle);
1431 }
1432 EXPORT_SYMBOL_GPL(zs_unmap_object);
1433
1434 static unsigned long obj_malloc(struct size_class *class,
1435                                 struct zspage *zspage, unsigned long handle)
1436 {
1437         int i, nr_page, offset;
1438         unsigned long obj;
1439         struct link_free *link;
1440
1441         struct page *m_page;
1442         unsigned long m_offset;
1443         void *vaddr;
1444
1445         handle |= OBJ_ALLOCATED_TAG;
1446         obj = get_freeobj(zspage);
1447
1448         offset = obj * class->size;
1449         nr_page = offset >> PAGE_SHIFT;
1450         m_offset = offset & ~PAGE_MASK;
1451         m_page = get_first_page(zspage);
1452
1453         for (i = 0; i < nr_page; i++)
1454                 m_page = get_next_page(m_page);
1455
1456         vaddr = kmap_atomic(m_page);
1457         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1458         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1459         if (likely(!PageHugeObject(m_page)))
1460                 /* record handle in the header of allocated chunk */
1461                 link->handle = handle;
1462         else
1463                 /* record handle to page->index */
1464                 zspage->first_page->index = handle;
1465
1466         kunmap_atomic(vaddr);
1467         mod_zspage_inuse(zspage, 1);
1468         zs_stat_inc(class, OBJ_USED, 1);
1469
1470         obj = location_to_obj(m_page, obj);
1471
1472         return obj;
1473 }
1474
1475
1476 /**
1477  * zs_malloc - Allocate block of given size from pool.
1478  * @pool: pool to allocate from
1479  * @size: size of block to allocate
1480  * @gfp: gfp flags when allocating object
1481  *
1482  * On success, handle to the allocated object is returned,
1483  * otherwise 0.
1484  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1485  */
1486 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1487 {
1488         unsigned long handle, obj;
1489         struct size_class *class;
1490         enum fullness_group newfg;
1491         struct zspage *zspage;
1492
1493         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1494                 return 0;
1495
1496         handle = cache_alloc_handle(pool, gfp);
1497         if (!handle)
1498                 return 0;
1499
1500         /* extra space in chunk to keep the handle */
1501         size += ZS_HANDLE_SIZE;
1502         class = pool->size_class[get_size_class_index(size)];
1503
1504         spin_lock(&class->lock);
1505         zspage = find_get_zspage(class);
1506         if (likely(zspage)) {
1507                 obj = obj_malloc(class, zspage, handle);
1508                 /* Now move the zspage to another fullness group, if required */
1509                 fix_fullness_group(class, zspage);
1510                 record_obj(handle, obj);
1511                 spin_unlock(&class->lock);
1512
1513                 return handle;
1514         }
1515
1516         spin_unlock(&class->lock);
1517
1518         zspage = alloc_zspage(pool, class, gfp);
1519         if (!zspage) {
1520                 cache_free_handle(pool, handle);
1521                 return 0;
1522         }
1523
1524         spin_lock(&class->lock);
1525         obj = obj_malloc(class, zspage, handle);
1526         newfg = get_fullness_group(class, zspage);
1527         insert_zspage(class, zspage, newfg);
1528         set_zspage_mapping(zspage, class->index, newfg);
1529         record_obj(handle, obj);
1530         atomic_long_add(class->pages_per_zspage,
1531                                 &pool->pages_allocated);
1532         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1533
1534         /* We completely set up zspage so mark them as movable */
1535         SetZsPageMovable(pool, zspage);
1536         spin_unlock(&class->lock);
1537
1538         return handle;
1539 }
1540 EXPORT_SYMBOL_GPL(zs_malloc);
1541
1542 static void obj_free(struct size_class *class, unsigned long obj)
1543 {
1544         struct link_free *link;
1545         struct zspage *zspage;
1546         struct page *f_page;
1547         unsigned long f_offset;
1548         unsigned int f_objidx;
1549         void *vaddr;
1550
1551         obj &= ~OBJ_ALLOCATED_TAG;
1552         obj_to_location(obj, &f_page, &f_objidx);
1553         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1554         zspage = get_zspage(f_page);
1555
1556         vaddr = kmap_atomic(f_page);
1557
1558         /* Insert this object in containing zspage's freelist */
1559         link = (struct link_free *)(vaddr + f_offset);
1560         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1561         kunmap_atomic(vaddr);
1562         set_freeobj(zspage, f_objidx);
1563         mod_zspage_inuse(zspage, -1);
1564         zs_stat_dec(class, OBJ_USED, 1);
1565 }
1566
1567 void zs_free(struct zs_pool *pool, unsigned long handle)
1568 {
1569         struct zspage *zspage;
1570         struct page *f_page;
1571         unsigned long obj;
1572         unsigned int f_objidx;
1573         int class_idx;
1574         struct size_class *class;
1575         enum fullness_group fullness;
1576         bool isolated;
1577
1578         if (unlikely(!handle))
1579                 return;
1580
1581         pin_tag(handle);
1582         obj = handle_to_obj(handle);
1583         obj_to_location(obj, &f_page, &f_objidx);
1584         zspage = get_zspage(f_page);
1585
1586         migrate_read_lock(zspage);
1587
1588         get_zspage_mapping(zspage, &class_idx, &fullness);
1589         class = pool->size_class[class_idx];
1590
1591         spin_lock(&class->lock);
1592         obj_free(class, obj);
1593         fullness = fix_fullness_group(class, zspage);
1594         if (fullness != ZS_EMPTY) {
1595                 migrate_read_unlock(zspage);
1596                 goto out;
1597         }
1598
1599         isolated = is_zspage_isolated(zspage);
1600         migrate_read_unlock(zspage);
1601         /* If zspage is isolated, zs_page_putback will free the zspage */
1602         if (likely(!isolated))
1603                 free_zspage(pool, class, zspage);
1604 out:
1605
1606         spin_unlock(&class->lock);
1607         unpin_tag(handle);
1608         cache_free_handle(pool, handle);
1609 }
1610 EXPORT_SYMBOL_GPL(zs_free);
1611
1612 static void zs_object_copy(struct size_class *class, unsigned long dst,
1613                                 unsigned long src)
1614 {
1615         struct page *s_page, *d_page;
1616         unsigned int s_objidx, d_objidx;
1617         unsigned long s_off, d_off;
1618         void *s_addr, *d_addr;
1619         int s_size, d_size, size;
1620         int written = 0;
1621
1622         s_size = d_size = class->size;
1623
1624         obj_to_location(src, &s_page, &s_objidx);
1625         obj_to_location(dst, &d_page, &d_objidx);
1626
1627         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1628         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1629
1630         if (s_off + class->size > PAGE_SIZE)
1631                 s_size = PAGE_SIZE - s_off;
1632
1633         if (d_off + class->size > PAGE_SIZE)
1634                 d_size = PAGE_SIZE - d_off;
1635
1636         s_addr = kmap_atomic(s_page);
1637         d_addr = kmap_atomic(d_page);
1638
1639         while (1) {
1640                 size = min(s_size, d_size);
1641                 memcpy(d_addr + d_off, s_addr + s_off, size);
1642                 written += size;
1643
1644                 if (written == class->size)
1645                         break;
1646
1647                 s_off += size;
1648                 s_size -= size;
1649                 d_off += size;
1650                 d_size -= size;
1651
1652                 if (s_off >= PAGE_SIZE) {
1653                         kunmap_atomic(d_addr);
1654                         kunmap_atomic(s_addr);
1655                         s_page = get_next_page(s_page);
1656                         s_addr = kmap_atomic(s_page);
1657                         d_addr = kmap_atomic(d_page);
1658                         s_size = class->size - written;
1659                         s_off = 0;
1660                 }
1661
1662                 if (d_off >= PAGE_SIZE) {
1663                         kunmap_atomic(d_addr);
1664                         d_page = get_next_page(d_page);
1665                         d_addr = kmap_atomic(d_page);
1666                         d_size = class->size - written;
1667                         d_off = 0;
1668                 }
1669         }
1670
1671         kunmap_atomic(d_addr);
1672         kunmap_atomic(s_addr);
1673 }
1674
1675 /*
1676  * Find alloced object in zspage from index object and
1677  * return handle.
1678  */
1679 static unsigned long find_alloced_obj(struct size_class *class,
1680                                         struct page *page, int *obj_idx)
1681 {
1682         unsigned long head;
1683         int offset = 0;
1684         int index = *obj_idx;
1685         unsigned long handle = 0;
1686         void *addr = kmap_atomic(page);
1687
1688         offset = get_first_obj_offset(page);
1689         offset += class->size * index;
1690
1691         while (offset < PAGE_SIZE) {
1692                 head = obj_to_head(page, addr + offset);
1693                 if (head & OBJ_ALLOCATED_TAG) {
1694                         handle = head & ~OBJ_ALLOCATED_TAG;
1695                         if (trypin_tag(handle))
1696                                 break;
1697                         handle = 0;
1698                 }
1699
1700                 offset += class->size;
1701                 index++;
1702         }
1703
1704         kunmap_atomic(addr);
1705
1706         *obj_idx = index;
1707
1708         return handle;
1709 }
1710
1711 struct zs_compact_control {
1712         /* Source spage for migration which could be a subpage of zspage */
1713         struct page *s_page;
1714         /* Destination page for migration which should be a first page
1715          * of zspage. */
1716         struct page *d_page;
1717          /* Starting object index within @s_page which used for live object
1718           * in the subpage. */
1719         int obj_idx;
1720 };
1721
1722 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1723                                 struct zs_compact_control *cc)
1724 {
1725         unsigned long used_obj, free_obj;
1726         unsigned long handle;
1727         struct page *s_page = cc->s_page;
1728         struct page *d_page = cc->d_page;
1729         int obj_idx = cc->obj_idx;
1730         int ret = 0;
1731
1732         while (1) {
1733                 handle = find_alloced_obj(class, s_page, &obj_idx);
1734                 if (!handle) {
1735                         s_page = get_next_page(s_page);
1736                         if (!s_page)
1737                                 break;
1738                         obj_idx = 0;
1739                         continue;
1740                 }
1741
1742                 /* Stop if there is no more space */
1743                 if (zspage_full(class, get_zspage(d_page))) {
1744                         unpin_tag(handle);
1745                         ret = -ENOMEM;
1746                         break;
1747                 }
1748
1749                 used_obj = handle_to_obj(handle);
1750                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1751                 zs_object_copy(class, free_obj, used_obj);
1752                 obj_idx++;
1753                 /*
1754                  * record_obj updates handle's value to free_obj and it will
1755                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1756                  * breaks synchronization using pin_tag(e,g, zs_free) so
1757                  * let's keep the lock bit.
1758                  */
1759                 free_obj |= BIT(HANDLE_PIN_BIT);
1760                 record_obj(handle, free_obj);
1761                 unpin_tag(handle);
1762                 obj_free(class, used_obj);
1763         }
1764
1765         /* Remember last position in this iteration */
1766         cc->s_page = s_page;
1767         cc->obj_idx = obj_idx;
1768
1769         return ret;
1770 }
1771
1772 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1773 {
1774         int i;
1775         struct zspage *zspage;
1776         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1777
1778         if (!source) {
1779                 fg[0] = ZS_ALMOST_FULL;
1780                 fg[1] = ZS_ALMOST_EMPTY;
1781         }
1782
1783         for (i = 0; i < 2; i++) {
1784                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1785                                                         struct zspage, list);
1786                 if (zspage) {
1787                         VM_BUG_ON(is_zspage_isolated(zspage));
1788                         remove_zspage(class, zspage, fg[i]);
1789                         return zspage;
1790                 }
1791         }
1792
1793         return zspage;
1794 }
1795
1796 /*
1797  * putback_zspage - add @zspage into right class's fullness list
1798  * @class: destination class
1799  * @zspage: target page
1800  *
1801  * Return @zspage's fullness_group
1802  */
1803 static enum fullness_group putback_zspage(struct size_class *class,
1804                         struct zspage *zspage)
1805 {
1806         enum fullness_group fullness;
1807
1808         VM_BUG_ON(is_zspage_isolated(zspage));
1809
1810         fullness = get_fullness_group(class, zspage);
1811         insert_zspage(class, zspage, fullness);
1812         set_zspage_mapping(zspage, class->index, fullness);
1813
1814         return fullness;
1815 }
1816
1817 #ifdef CONFIG_COMPACTION
1818 static struct dentry *zs_mount(struct file_system_type *fs_type,
1819                                 int flags, const char *dev_name, void *data)
1820 {
1821         static const struct dentry_operations ops = {
1822                 .d_dname = simple_dname,
1823         };
1824
1825         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1826 }
1827
1828 static struct file_system_type zsmalloc_fs = {
1829         .name           = "zsmalloc",
1830         .mount          = zs_mount,
1831         .kill_sb        = kill_anon_super,
1832 };
1833
1834 static int zsmalloc_mount(void)
1835 {
1836         int ret = 0;
1837
1838         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1839         if (IS_ERR(zsmalloc_mnt))
1840                 ret = PTR_ERR(zsmalloc_mnt);
1841
1842         return ret;
1843 }
1844
1845 static void zsmalloc_unmount(void)
1846 {
1847         kern_unmount(zsmalloc_mnt);
1848 }
1849
1850 static void migrate_lock_init(struct zspage *zspage)
1851 {
1852         rwlock_init(&zspage->lock);
1853 }
1854
1855 static void migrate_read_lock(struct zspage *zspage)
1856 {
1857         read_lock(&zspage->lock);
1858 }
1859
1860 static void migrate_read_unlock(struct zspage *zspage)
1861 {
1862         read_unlock(&zspage->lock);
1863 }
1864
1865 static void migrate_write_lock(struct zspage *zspage)
1866 {
1867         write_lock(&zspage->lock);
1868 }
1869
1870 static void migrate_write_unlock(struct zspage *zspage)
1871 {
1872         write_unlock(&zspage->lock);
1873 }
1874
1875 /* Number of isolated subpage for *page migration* in this zspage */
1876 static void inc_zspage_isolation(struct zspage *zspage)
1877 {
1878         zspage->isolated++;
1879 }
1880
1881 static void dec_zspage_isolation(struct zspage *zspage)
1882 {
1883         zspage->isolated--;
1884 }
1885
1886 static void putback_zspage_deferred(struct zs_pool *pool,
1887                                     struct size_class *class,
1888                                     struct zspage *zspage)
1889 {
1890         enum fullness_group fg;
1891
1892         fg = putback_zspage(class, zspage);
1893         if (fg == ZS_EMPTY)
1894                 schedule_work(&pool->free_work);
1895
1896 }
1897
1898 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1899 {
1900         VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1901         atomic_long_dec(&pool->isolated_pages);
1902         /*
1903          * There's no possibility of racing, since wait_for_isolated_drain()
1904          * checks the isolated count under &class->lock after enqueuing
1905          * on migration_wait.
1906          */
1907         if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1908                 wake_up_all(&pool->migration_wait);
1909 }
1910
1911 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1912                                 struct page *newpage, struct page *oldpage)
1913 {
1914         struct page *page;
1915         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1916         int idx = 0;
1917
1918         page = get_first_page(zspage);
1919         do {
1920                 if (page == oldpage)
1921                         pages[idx] = newpage;
1922                 else
1923                         pages[idx] = page;
1924                 idx++;
1925         } while ((page = get_next_page(page)) != NULL);
1926
1927         create_page_chain(class, zspage, pages);
1928         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1929         if (unlikely(PageHugeObject(oldpage)))
1930                 newpage->index = oldpage->index;
1931         __SetPageMovable(newpage, page_mapping(oldpage));
1932 }
1933
1934 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1935 {
1936         struct zs_pool *pool;
1937         struct size_class *class;
1938         int class_idx;
1939         enum fullness_group fullness;
1940         struct zspage *zspage;
1941         struct address_space *mapping;
1942
1943         /*
1944          * Page is locked so zspage couldn't be destroyed. For detail, look at
1945          * lock_zspage in free_zspage.
1946          */
1947         VM_BUG_ON_PAGE(!PageMovable(page), page);
1948         VM_BUG_ON_PAGE(PageIsolated(page), page);
1949
1950         zspage = get_zspage(page);
1951
1952         /*
1953          * Without class lock, fullness could be stale while class_idx is okay
1954          * because class_idx is constant unless page is freed so we should get
1955          * fullness again under class lock.
1956          */
1957         get_zspage_mapping(zspage, &class_idx, &fullness);
1958         mapping = page_mapping(page);
1959         pool = mapping->private_data;
1960         class = pool->size_class[class_idx];
1961
1962         spin_lock(&class->lock);
1963         if (get_zspage_inuse(zspage) == 0) {
1964                 spin_unlock(&class->lock);
1965                 return false;
1966         }
1967
1968         /* zspage is isolated for object migration */
1969         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1970                 spin_unlock(&class->lock);
1971                 return false;
1972         }
1973
1974         /*
1975          * If this is first time isolation for the zspage, isolate zspage from
1976          * size_class to prevent further object allocation from the zspage.
1977          */
1978         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1979                 get_zspage_mapping(zspage, &class_idx, &fullness);
1980                 atomic_long_inc(&pool->isolated_pages);
1981                 remove_zspage(class, zspage, fullness);
1982         }
1983
1984         inc_zspage_isolation(zspage);
1985         spin_unlock(&class->lock);
1986
1987         return true;
1988 }
1989
1990 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1991                 struct page *page, enum migrate_mode mode)
1992 {
1993         struct zs_pool *pool;
1994         struct size_class *class;
1995         int class_idx;
1996         enum fullness_group fullness;
1997         struct zspage *zspage;
1998         struct page *dummy;
1999         void *s_addr, *d_addr, *addr;
2000         int offset, pos;
2001         unsigned long handle, head;
2002         unsigned long old_obj, new_obj;
2003         unsigned int obj_idx;
2004         int ret = -EAGAIN;
2005
2006         /*
2007          * We cannot support the _NO_COPY case here, because copy needs to
2008          * happen under the zs lock, which does not work with
2009          * MIGRATE_SYNC_NO_COPY workflow.
2010          */
2011         if (mode == MIGRATE_SYNC_NO_COPY)
2012                 return -EINVAL;
2013
2014         VM_BUG_ON_PAGE(!PageMovable(page), page);
2015         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2016
2017         zspage = get_zspage(page);
2018
2019         /* Concurrent compactor cannot migrate any subpage in zspage */
2020         migrate_write_lock(zspage);
2021         get_zspage_mapping(zspage, &class_idx, &fullness);
2022         pool = mapping->private_data;
2023         class = pool->size_class[class_idx];
2024         offset = get_first_obj_offset(page);
2025
2026         spin_lock(&class->lock);
2027         if (!get_zspage_inuse(zspage)) {
2028                 /*
2029                  * Set "offset" to end of the page so that every loops
2030                  * skips unnecessary object scanning.
2031                  */
2032                 offset = PAGE_SIZE;
2033         }
2034
2035         pos = offset;
2036         s_addr = kmap_atomic(page);
2037         while (pos < PAGE_SIZE) {
2038                 head = obj_to_head(page, s_addr + pos);
2039                 if (head & OBJ_ALLOCATED_TAG) {
2040                         handle = head & ~OBJ_ALLOCATED_TAG;
2041                         if (!trypin_tag(handle))
2042                                 goto unpin_objects;
2043                 }
2044                 pos += class->size;
2045         }
2046
2047         /*
2048          * Here, any user cannot access all objects in the zspage so let's move.
2049          */
2050         d_addr = kmap_atomic(newpage);
2051         memcpy(d_addr, s_addr, PAGE_SIZE);
2052         kunmap_atomic(d_addr);
2053
2054         for (addr = s_addr + offset; addr < s_addr + pos;
2055                                         addr += class->size) {
2056                 head = obj_to_head(page, addr);
2057                 if (head & OBJ_ALLOCATED_TAG) {
2058                         handle = head & ~OBJ_ALLOCATED_TAG;
2059                         if (!testpin_tag(handle))
2060                                 BUG();
2061
2062                         old_obj = handle_to_obj(handle);
2063                         obj_to_location(old_obj, &dummy, &obj_idx);
2064                         new_obj = (unsigned long)location_to_obj(newpage,
2065                                                                 obj_idx);
2066                         new_obj |= BIT(HANDLE_PIN_BIT);
2067                         record_obj(handle, new_obj);
2068                 }
2069         }
2070
2071         replace_sub_page(class, zspage, newpage, page);
2072         get_page(newpage);
2073
2074         dec_zspage_isolation(zspage);
2075
2076         /*
2077          * Page migration is done so let's putback isolated zspage to
2078          * the list if @page is final isolated subpage in the zspage.
2079          */
2080         if (!is_zspage_isolated(zspage)) {
2081                 /*
2082                  * We cannot race with zs_destroy_pool() here because we wait
2083                  * for isolation to hit zero before we start destroying.
2084                  * Also, we ensure that everyone can see pool->destroying before
2085                  * we start waiting.
2086                  */
2087                 putback_zspage_deferred(pool, class, zspage);
2088                 zs_pool_dec_isolated(pool);
2089         }
2090
2091         if (page_zone(newpage) != page_zone(page)) {
2092                 dec_zone_page_state(page, NR_ZSPAGES);
2093                 inc_zone_page_state(newpage, NR_ZSPAGES);
2094         }
2095
2096         reset_page(page);
2097         put_page(page);
2098         page = newpage;
2099
2100         ret = MIGRATEPAGE_SUCCESS;
2101 unpin_objects:
2102         for (addr = s_addr + offset; addr < s_addr + pos;
2103                                                 addr += class->size) {
2104                 head = obj_to_head(page, addr);
2105                 if (head & OBJ_ALLOCATED_TAG) {
2106                         handle = head & ~OBJ_ALLOCATED_TAG;
2107                         if (!testpin_tag(handle))
2108                                 BUG();
2109                         unpin_tag(handle);
2110                 }
2111         }
2112         kunmap_atomic(s_addr);
2113         spin_unlock(&class->lock);
2114         migrate_write_unlock(zspage);
2115
2116         return ret;
2117 }
2118
2119 void zs_page_putback(struct page *page)
2120 {
2121         struct zs_pool *pool;
2122         struct size_class *class;
2123         int class_idx;
2124         enum fullness_group fg;
2125         struct address_space *mapping;
2126         struct zspage *zspage;
2127
2128         VM_BUG_ON_PAGE(!PageMovable(page), page);
2129         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2130
2131         zspage = get_zspage(page);
2132         get_zspage_mapping(zspage, &class_idx, &fg);
2133         mapping = page_mapping(page);
2134         pool = mapping->private_data;
2135         class = pool->size_class[class_idx];
2136
2137         spin_lock(&class->lock);
2138         dec_zspage_isolation(zspage);
2139         if (!is_zspage_isolated(zspage)) {
2140                 /*
2141                  * Due to page_lock, we cannot free zspage immediately
2142                  * so let's defer.
2143                  */
2144                 putback_zspage_deferred(pool, class, zspage);
2145                 zs_pool_dec_isolated(pool);
2146         }
2147         spin_unlock(&class->lock);
2148 }
2149
2150 const struct address_space_operations zsmalloc_aops = {
2151         .isolate_page = zs_page_isolate,
2152         .migratepage = zs_page_migrate,
2153         .putback_page = zs_page_putback,
2154 };
2155
2156 static int zs_register_migration(struct zs_pool *pool)
2157 {
2158         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2159         if (IS_ERR(pool->inode)) {
2160                 pool->inode = NULL;
2161                 return 1;
2162         }
2163
2164         pool->inode->i_mapping->private_data = pool;
2165         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2166         return 0;
2167 }
2168
2169 static bool pool_isolated_are_drained(struct zs_pool *pool)
2170 {
2171         return atomic_long_read(&pool->isolated_pages) == 0;
2172 }
2173
2174 /* Function for resolving migration */
2175 static void wait_for_isolated_drain(struct zs_pool *pool)
2176 {
2177
2178         /*
2179          * We're in the process of destroying the pool, so there are no
2180          * active allocations. zs_page_isolate() fails for completely free
2181          * zspages, so we need only wait for the zs_pool's isolated
2182          * count to hit zero.
2183          */
2184         wait_event(pool->migration_wait,
2185                    pool_isolated_are_drained(pool));
2186 }
2187
2188 static void zs_unregister_migration(struct zs_pool *pool)
2189 {
2190         pool->destroying = true;
2191         /*
2192          * We need a memory barrier here to ensure global visibility of
2193          * pool->destroying. Thus pool->isolated pages will either be 0 in which
2194          * case we don't care, or it will be > 0 and pool->destroying will
2195          * ensure that we wake up once isolation hits 0.
2196          */
2197         smp_mb();
2198         wait_for_isolated_drain(pool); /* This can block */
2199         flush_work(&pool->free_work);
2200         iput(pool->inode);
2201 }
2202
2203 /*
2204  * Caller should hold page_lock of all pages in the zspage
2205  * In here, we cannot use zspage meta data.
2206  */
2207 static void async_free_zspage(struct work_struct *work)
2208 {
2209         int i;
2210         struct size_class *class;
2211         unsigned int class_idx;
2212         enum fullness_group fullness;
2213         struct zspage *zspage, *tmp;
2214         LIST_HEAD(free_pages);
2215         struct zs_pool *pool = container_of(work, struct zs_pool,
2216                                         free_work);
2217
2218         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2219                 class = pool->size_class[i];
2220                 if (class->index != i)
2221                         continue;
2222
2223                 spin_lock(&class->lock);
2224                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2225                 spin_unlock(&class->lock);
2226         }
2227
2228
2229         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2230                 list_del(&zspage->list);
2231                 lock_zspage(zspage);
2232
2233                 get_zspage_mapping(zspage, &class_idx, &fullness);
2234                 VM_BUG_ON(fullness != ZS_EMPTY);
2235                 class = pool->size_class[class_idx];
2236                 spin_lock(&class->lock);
2237                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2238                 spin_unlock(&class->lock);
2239         }
2240 };
2241
2242 static void kick_deferred_free(struct zs_pool *pool)
2243 {
2244         schedule_work(&pool->free_work);
2245 }
2246
2247 static void init_deferred_free(struct zs_pool *pool)
2248 {
2249         INIT_WORK(&pool->free_work, async_free_zspage);
2250 }
2251
2252 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2253 {
2254         struct page *page = get_first_page(zspage);
2255
2256         do {
2257                 WARN_ON(!trylock_page(page));
2258                 __SetPageMovable(page, pool->inode->i_mapping);
2259                 unlock_page(page);
2260         } while ((page = get_next_page(page)) != NULL);
2261 }
2262 #endif
2263
2264 /*
2265  *
2266  * Based on the number of unused allocated objects calculate
2267  * and return the number of pages that we can free.
2268  */
2269 static unsigned long zs_can_compact(struct size_class *class)
2270 {
2271         unsigned long obj_wasted;
2272         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2273         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2274
2275         if (obj_allocated <= obj_used)
2276                 return 0;
2277
2278         obj_wasted = obj_allocated - obj_used;
2279         obj_wasted /= class->objs_per_zspage;
2280
2281         return obj_wasted * class->pages_per_zspage;
2282 }
2283
2284 static unsigned long __zs_compact(struct zs_pool *pool,
2285                                   struct size_class *class)
2286 {
2287         struct zs_compact_control cc;
2288         struct zspage *src_zspage;
2289         struct zspage *dst_zspage = NULL;
2290         unsigned long pages_freed = 0;
2291
2292         spin_lock(&class->lock);
2293         while ((src_zspage = isolate_zspage(class, true))) {
2294
2295                 if (!zs_can_compact(class))
2296                         break;
2297
2298                 cc.obj_idx = 0;
2299                 cc.s_page = get_first_page(src_zspage);
2300
2301                 while ((dst_zspage = isolate_zspage(class, false))) {
2302                         cc.d_page = get_first_page(dst_zspage);
2303                         /*
2304                          * If there is no more space in dst_page, resched
2305                          * and see if anyone had allocated another zspage.
2306                          */
2307                         if (!migrate_zspage(pool, class, &cc))
2308                                 break;
2309
2310                         putback_zspage(class, dst_zspage);
2311                 }
2312
2313                 /* Stop if we couldn't find slot */
2314                 if (dst_zspage == NULL)
2315                         break;
2316
2317                 putback_zspage(class, dst_zspage);
2318                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2319                         free_zspage(pool, class, src_zspage);
2320                         pages_freed += class->pages_per_zspage;
2321                 }
2322                 spin_unlock(&class->lock);
2323                 cond_resched();
2324                 spin_lock(&class->lock);
2325         }
2326
2327         if (src_zspage)
2328                 putback_zspage(class, src_zspage);
2329
2330         spin_unlock(&class->lock);
2331
2332         return pages_freed;
2333 }
2334
2335 unsigned long zs_compact(struct zs_pool *pool)
2336 {
2337         int i;
2338         struct size_class *class;
2339         unsigned long pages_freed = 0;
2340
2341         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2342                 class = pool->size_class[i];
2343                 if (!class)
2344                         continue;
2345                 if (class->index != i)
2346                         continue;
2347                 pages_freed += __zs_compact(pool, class);
2348         }
2349         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2350
2351         return pages_freed;
2352 }
2353 EXPORT_SYMBOL_GPL(zs_compact);
2354
2355 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2356 {
2357         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2358 }
2359 EXPORT_SYMBOL_GPL(zs_pool_stats);
2360
2361 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2362                 struct shrink_control *sc)
2363 {
2364         unsigned long pages_freed;
2365         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2366                         shrinker);
2367
2368         /*
2369          * Compact classes and calculate compaction delta.
2370          * Can run concurrently with a manually triggered
2371          * (by user) compaction.
2372          */
2373         pages_freed = zs_compact(pool);
2374
2375         return pages_freed ? pages_freed : SHRINK_STOP;
2376 }
2377
2378 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2379                 struct shrink_control *sc)
2380 {
2381         int i;
2382         struct size_class *class;
2383         unsigned long pages_to_free = 0;
2384         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2385                         shrinker);
2386
2387         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2388                 class = pool->size_class[i];
2389                 if (!class)
2390                         continue;
2391                 if (class->index != i)
2392                         continue;
2393
2394                 pages_to_free += zs_can_compact(class);
2395         }
2396
2397         return pages_to_free;
2398 }
2399
2400 static void zs_unregister_shrinker(struct zs_pool *pool)
2401 {
2402         if (pool->shrinker_enabled) {
2403                 unregister_shrinker(&pool->shrinker);
2404                 pool->shrinker_enabled = false;
2405         }
2406 }
2407
2408 static int zs_register_shrinker(struct zs_pool *pool)
2409 {
2410         pool->shrinker.scan_objects = zs_shrinker_scan;
2411         pool->shrinker.count_objects = zs_shrinker_count;
2412         pool->shrinker.batch = 0;
2413         pool->shrinker.seeks = DEFAULT_SEEKS;
2414
2415         return register_shrinker(&pool->shrinker);
2416 }
2417
2418 /**
2419  * zs_create_pool - Creates an allocation pool to work from.
2420  * @name: pool name to be created
2421  *
2422  * This function must be called before anything when using
2423  * the zsmalloc allocator.
2424  *
2425  * On success, a pointer to the newly created pool is returned,
2426  * otherwise NULL.
2427  */
2428 struct zs_pool *zs_create_pool(const char *name)
2429 {
2430         int i;
2431         struct zs_pool *pool;
2432         struct size_class *prev_class = NULL;
2433
2434         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2435         if (!pool)
2436                 return NULL;
2437
2438         init_deferred_free(pool);
2439
2440         pool->name = kstrdup(name, GFP_KERNEL);
2441         if (!pool->name)
2442                 goto err;
2443
2444 #ifdef CONFIG_COMPACTION
2445         init_waitqueue_head(&pool->migration_wait);
2446 #endif
2447
2448         if (create_cache(pool))
2449                 goto err;
2450
2451         /*
2452          * Iterate reversely, because, size of size_class that we want to use
2453          * for merging should be larger or equal to current size.
2454          */
2455         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2456                 int size;
2457                 int pages_per_zspage;
2458                 int objs_per_zspage;
2459                 struct size_class *class;
2460                 int fullness = 0;
2461
2462                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2463                 if (size > ZS_MAX_ALLOC_SIZE)
2464                         size = ZS_MAX_ALLOC_SIZE;
2465                 pages_per_zspage = get_pages_per_zspage(size);
2466                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2467
2468                 /*
2469                  * size_class is used for normal zsmalloc operation such
2470                  * as alloc/free for that size. Although it is natural that we
2471                  * have one size_class for each size, there is a chance that we
2472                  * can get more memory utilization if we use one size_class for
2473                  * many different sizes whose size_class have same
2474                  * characteristics. So, we makes size_class point to
2475                  * previous size_class if possible.
2476                  */
2477                 if (prev_class) {
2478                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2479                                 pool->size_class[i] = prev_class;
2480                                 continue;
2481                         }
2482                 }
2483
2484                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2485                 if (!class)
2486                         goto err;
2487
2488                 class->size = size;
2489                 class->index = i;
2490                 class->pages_per_zspage = pages_per_zspage;
2491                 class->objs_per_zspage = objs_per_zspage;
2492                 spin_lock_init(&class->lock);
2493                 pool->size_class[i] = class;
2494                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2495                                                         fullness++)
2496                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2497
2498                 prev_class = class;
2499         }
2500
2501         /* debug only, don't abort if it fails */
2502         zs_pool_stat_create(pool, name);
2503
2504         if (zs_register_migration(pool))
2505                 goto err;
2506
2507         /*
2508          * Not critical, we still can use the pool
2509          * and user can trigger compaction manually.
2510          */
2511         if (zs_register_shrinker(pool) == 0)
2512                 pool->shrinker_enabled = true;
2513         return pool;
2514
2515 err:
2516         zs_destroy_pool(pool);
2517         return NULL;
2518 }
2519 EXPORT_SYMBOL_GPL(zs_create_pool);
2520
2521 void zs_destroy_pool(struct zs_pool *pool)
2522 {
2523         int i;
2524
2525         zs_unregister_shrinker(pool);
2526         zs_unregister_migration(pool);
2527         zs_pool_stat_destroy(pool);
2528
2529         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2530                 int fg;
2531                 struct size_class *class = pool->size_class[i];
2532
2533                 if (!class)
2534                         continue;
2535
2536                 if (class->index != i)
2537                         continue;
2538
2539                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2540                         if (!list_empty(&class->fullness_list[fg])) {
2541                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2542                                         class->size, fg);
2543                         }
2544                 }
2545                 kfree(class);
2546         }
2547
2548         destroy_cache(pool);
2549         kfree(pool->name);
2550         kfree(pool);
2551 }
2552 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2553
2554 static int __init zs_init(void)
2555 {
2556         int ret;
2557
2558         ret = zsmalloc_mount();
2559         if (ret)
2560                 goto out;
2561
2562         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2563                                 zs_cpu_prepare, zs_cpu_dead);
2564         if (ret)
2565                 goto hp_setup_fail;
2566
2567 #ifdef CONFIG_ZPOOL
2568         zpool_register_driver(&zs_zpool_driver);
2569 #endif
2570
2571         zs_stat_init();
2572
2573         return 0;
2574
2575 hp_setup_fail:
2576         zsmalloc_unmount();
2577 out:
2578         return ret;
2579 }
2580
2581 static void __exit zs_exit(void)
2582 {
2583 #ifdef CONFIG_ZPOOL
2584         zpool_unregister_driver(&zs_zpool_driver);
2585 #endif
2586         zsmalloc_unmount();
2587         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2588
2589         zs_stat_exit();
2590 }
2591
2592 module_init(zs_init);
2593 module_exit(zs_exit);
2594
2595 MODULE_LICENSE("Dual BSD/GPL");
2596 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");