GNU Linux-libre 4.4.283-gnu1
[releases.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39         int cpu;
40         int i;
41
42         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44         for_each_online_cpu(cpu) {
45                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48                         ret[i] += this->event[i];
49         }
50 }
51
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59         get_online_cpus();
60         sum_vm_events(ret);
61         put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74         int i;
75
76         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77                 count_vm_events(i, fold_state->event[i]);
78                 fold_state->event[i] = 0;
79         }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96         int threshold;
97         int watermark_distance;
98
99         /*
100          * As vmstats are not up to date, there is drift between the estimated
101          * and real values. For high thresholds and a high number of CPUs, it
102          * is possible for the min watermark to be breached while the estimated
103          * value looks fine. The pressure threshold is a reduced value such
104          * that even the maximum amount of drift will not accidentally breach
105          * the min watermark
106          */
107         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110         /*
111          * Maximum threshold is 125
112          */
113         threshold = min(125, threshold);
114
115         return threshold;
116 }
117
118 int calculate_normal_threshold(struct zone *zone)
119 {
120         int threshold;
121         int mem;        /* memory in 128 MB units */
122
123         /*
124          * The threshold scales with the number of processors and the amount
125          * of memory per zone. More memory means that we can defer updates for
126          * longer, more processors could lead to more contention.
127          * fls() is used to have a cheap way of logarithmic scaling.
128          *
129          * Some sample thresholds:
130          *
131          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
132          * ------------------------------------------------------------------
133          * 8            1               1       0.9-1 GB        4
134          * 16           2               2       0.9-1 GB        4
135          * 20           2               2       1-2 GB          5
136          * 24           2               2       2-4 GB          6
137          * 28           2               2       4-8 GB          7
138          * 32           2               2       8-16 GB         8
139          * 4            2               2       <128M           1
140          * 30           4               3       2-4 GB          5
141          * 48           4               3       8-16 GB         8
142          * 32           8               4       1-2 GB          4
143          * 32           8               4       0.9-1GB         4
144          * 10           16              5       <128M           1
145          * 40           16              5       900M            4
146          * 70           64              7       2-4 GB          5
147          * 84           64              7       4-8 GB          6
148          * 108          512             9       4-8 GB          6
149          * 125          1024            10      8-16 GB         8
150          * 125          1024            10      16-32 GB        9
151          */
152
153         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157         /*
158          * Maximum threshold is 125
159          */
160         threshold = min(125, threshold);
161
162         return threshold;
163 }
164
165 /*
166  * Refresh the thresholds for each zone.
167  */
168 void refresh_zone_stat_thresholds(void)
169 {
170         struct zone *zone;
171         int cpu;
172         int threshold;
173
174         for_each_populated_zone(zone) {
175                 unsigned long max_drift, tolerate_drift;
176
177                 threshold = calculate_normal_threshold(zone);
178
179                 for_each_online_cpu(cpu)
180                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181                                                         = threshold;
182
183                 /*
184                  * Only set percpu_drift_mark if there is a danger that
185                  * NR_FREE_PAGES reports the low watermark is ok when in fact
186                  * the min watermark could be breached by an allocation
187                  */
188                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189                 max_drift = num_online_cpus() * threshold;
190                 if (max_drift > tolerate_drift)
191                         zone->percpu_drift_mark = high_wmark_pages(zone) +
192                                         max_drift;
193         }
194 }
195
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197                                 int (*calculate_pressure)(struct zone *))
198 {
199         struct zone *zone;
200         int cpu;
201         int threshold;
202         int i;
203
204         for (i = 0; i < pgdat->nr_zones; i++) {
205                 zone = &pgdat->node_zones[i];
206                 if (!zone->percpu_drift_mark)
207                         continue;
208
209                 threshold = (*calculate_pressure)(zone);
210                 for_each_online_cpu(cpu)
211                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212                                                         = threshold;
213         }
214 }
215
216 /*
217  * For use when we know that interrupts are disabled,
218  * or when we know that preemption is disabled and that
219  * particular counter cannot be updated from interrupt context.
220  */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222                            long delta)
223 {
224         struct per_cpu_pageset __percpu *pcp = zone->pageset;
225         s8 __percpu *p = pcp->vm_stat_diff + item;
226         long x;
227         long t;
228
229         x = delta + __this_cpu_read(*p);
230
231         t = __this_cpu_read(pcp->stat_threshold);
232
233         if (unlikely(x > t || x < -t)) {
234                 zone_page_state_add(x, zone, item);
235                 x = 0;
236         }
237         __this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240
241 /*
242  * Optimized increment and decrement functions.
243  *
244  * These are only for a single page and therefore can take a struct page *
245  * argument instead of struct zone *. This allows the inclusion of the code
246  * generated for page_zone(page) into the optimized functions.
247  *
248  * No overflow check is necessary and therefore the differential can be
249  * incremented or decremented in place which may allow the compilers to
250  * generate better code.
251  * The increment or decrement is known and therefore one boundary check can
252  * be omitted.
253  *
254  * NOTE: These functions are very performance sensitive. Change only
255  * with care.
256  *
257  * Some processors have inc/dec instructions that are atomic vs an interrupt.
258  * However, the code must first determine the differential location in a zone
259  * based on the processor number and then inc/dec the counter. There is no
260  * guarantee without disabling preemption that the processor will not change
261  * in between and therefore the atomicity vs. interrupt cannot be exploited
262  * in a useful way here.
263  */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266         struct per_cpu_pageset __percpu *pcp = zone->pageset;
267         s8 __percpu *p = pcp->vm_stat_diff + item;
268         s8 v, t;
269
270         v = __this_cpu_inc_return(*p);
271         t = __this_cpu_read(pcp->stat_threshold);
272         if (unlikely(v > t)) {
273                 s8 overstep = t >> 1;
274
275                 zone_page_state_add(v + overstep, zone, item);
276                 __this_cpu_write(*p, -overstep);
277         }
278 }
279
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282         __inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288         struct per_cpu_pageset __percpu *pcp = zone->pageset;
289         s8 __percpu *p = pcp->vm_stat_diff + item;
290         s8 v, t;
291
292         v = __this_cpu_dec_return(*p);
293         t = __this_cpu_read(pcp->stat_threshold);
294         if (unlikely(v < - t)) {
295                 s8 overstep = t >> 1;
296
297                 zone_page_state_add(v - overstep, zone, item);
298                 __this_cpu_write(*p, overstep);
299         }
300 }
301
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304         __dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310  * If we have cmpxchg_local support then we do not need to incur the overhead
311  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312  *
313  * mod_state() modifies the zone counter state through atomic per cpu
314  * operations.
315  *
316  * Overstep mode specifies how overstep should handled:
317  *     0       No overstepping
318  *     1       Overstepping half of threshold
319  *     -1      Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322                              long delta, int overstep_mode)
323 {
324         struct per_cpu_pageset __percpu *pcp = zone->pageset;
325         s8 __percpu *p = pcp->vm_stat_diff + item;
326         long o, n, t, z;
327
328         do {
329                 z = 0;  /* overflow to zone counters */
330
331                 /*
332                  * The fetching of the stat_threshold is racy. We may apply
333                  * a counter threshold to the wrong the cpu if we get
334                  * rescheduled while executing here. However, the next
335                  * counter update will apply the threshold again and
336                  * therefore bring the counter under the threshold again.
337                  *
338                  * Most of the time the thresholds are the same anyways
339                  * for all cpus in a zone.
340                  */
341                 t = this_cpu_read(pcp->stat_threshold);
342
343                 o = this_cpu_read(*p);
344                 n = delta + o;
345
346                 if (n > t || n < -t) {
347                         int os = overstep_mode * (t >> 1) ;
348
349                         /* Overflow must be added to zone counters */
350                         z = n + os;
351                         n = -os;
352                 }
353         } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355         if (z)
356                 zone_page_state_add(z, zone, item);
357 }
358
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360                          long delta)
361 {
362         mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368         mod_state(zone, item, 1, 1);
369 }
370
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373         mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379         mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384  * Use interrupt disable to serialize counter updates
385  */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387                          long delta)
388 {
389         unsigned long flags;
390
391         local_irq_save(flags);
392         __mod_zone_page_state(zone, item, delta);
393         local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399         unsigned long flags;
400
401         local_irq_save(flags);
402         __inc_zone_state(zone, item);
403         local_irq_restore(flags);
404 }
405
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408         unsigned long flags;
409         struct zone *zone;
410
411         zone = page_zone(page);
412         local_irq_save(flags);
413         __inc_zone_state(zone, item);
414         local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420         unsigned long flags;
421
422         local_irq_save(flags);
423         __dec_zone_page_state(page, item);
424         local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428
429
430 /*
431  * Fold a differential into the global counters.
432  * Returns the number of counters updated.
433  */
434 static int fold_diff(int *diff)
435 {
436         int i;
437         int changes = 0;
438
439         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440                 if (diff[i]) {
441                         atomic_long_add(diff[i], &vm_stat[i]);
442                         changes++;
443         }
444         return changes;
445 }
446
447 /*
448  * Update the zone counters for the current cpu.
449  *
450  * Note that refresh_cpu_vm_stats strives to only access
451  * node local memory. The per cpu pagesets on remote zones are placed
452  * in the memory local to the processor using that pageset. So the
453  * loop over all zones will access a series of cachelines local to
454  * the processor.
455  *
456  * The call to zone_page_state_add updates the cachelines with the
457  * statistics in the remote zone struct as well as the global cachelines
458  * with the global counters. These could cause remote node cache line
459  * bouncing and will have to be only done when necessary.
460  *
461  * The function returns the number of global counters updated.
462  */
463 static int refresh_cpu_vm_stats(bool do_pagesets)
464 {
465         struct zone *zone;
466         int i;
467         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468         int changes = 0;
469
470         for_each_populated_zone(zone) {
471                 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474                         int v;
475
476                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477                         if (v) {
478
479                                 atomic_long_add(v, &zone->vm_stat[i]);
480                                 global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482                                 /* 3 seconds idle till flush */
483                                 __this_cpu_write(p->expire, 3);
484 #endif
485                         }
486                 }
487 #ifdef CONFIG_NUMA
488                 if (do_pagesets) {
489                         cond_resched();
490                         /*
491                          * Deal with draining the remote pageset of this
492                          * processor
493                          *
494                          * Check if there are pages remaining in this pageset
495                          * if not then there is nothing to expire.
496                          */
497                         if (!__this_cpu_read(p->expire) ||
498                                !__this_cpu_read(p->pcp.count))
499                                 continue;
500
501                         /*
502                          * We never drain zones local to this processor.
503                          */
504                         if (zone_to_nid(zone) == numa_node_id()) {
505                                 __this_cpu_write(p->expire, 0);
506                                 continue;
507                         }
508
509                         if (__this_cpu_dec_return(p->expire))
510                                 continue;
511
512                         if (__this_cpu_read(p->pcp.count)) {
513                                 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514                                 changes++;
515                         }
516                 }
517 #endif
518         }
519         changes += fold_diff(global_diff);
520         return changes;
521 }
522
523 /*
524  * Fold the data for an offline cpu into the global array.
525  * There cannot be any access by the offline cpu and therefore
526  * synchronization is simplified.
527  */
528 void cpu_vm_stats_fold(int cpu)
529 {
530         struct zone *zone;
531         int i;
532         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
533
534         for_each_populated_zone(zone) {
535                 struct per_cpu_pageset *p;
536
537                 p = per_cpu_ptr(zone->pageset, cpu);
538
539                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540                         if (p->vm_stat_diff[i]) {
541                                 int v;
542
543                                 v = p->vm_stat_diff[i];
544                                 p->vm_stat_diff[i] = 0;
545                                 atomic_long_add(v, &zone->vm_stat[i]);
546                                 global_diff[i] += v;
547                         }
548         }
549
550         fold_diff(global_diff);
551 }
552
553 /*
554  * this is only called if !populated_zone(zone), which implies no other users of
555  * pset->vm_stat_diff[] exsist.
556  */
557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
558 {
559         int i;
560
561         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562                 if (pset->vm_stat_diff[i]) {
563                         int v = pset->vm_stat_diff[i];
564                         pset->vm_stat_diff[i] = 0;
565                         atomic_long_add(v, &zone->vm_stat[i]);
566                         atomic_long_add(v, &vm_stat[i]);
567                 }
568 }
569 #endif
570
571 #ifdef CONFIG_NUMA
572 /*
573  * zonelist = the list of zones passed to the allocator
574  * z        = the zone from which the allocation occurred.
575  *
576  * Must be called with interrupts disabled.
577  *
578  * When __GFP_OTHER_NODE is set assume the node of the preferred
579  * zone is the local node. This is useful for daemons who allocate
580  * memory on behalf of other processes.
581  */
582 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
583 {
584         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
585                 __inc_zone_state(z, NUMA_HIT);
586         } else {
587                 __inc_zone_state(z, NUMA_MISS);
588                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
589         }
590         if (z->node == ((flags & __GFP_OTHER_NODE) ?
591                         preferred_zone->node : numa_node_id()))
592                 __inc_zone_state(z, NUMA_LOCAL);
593         else
594                 __inc_zone_state(z, NUMA_OTHER);
595 }
596
597 /*
598  * Determine the per node value of a stat item.
599  */
600 unsigned long node_page_state(int node, enum zone_stat_item item)
601 {
602         struct zone *zones = NODE_DATA(node)->node_zones;
603
604         return
605 #ifdef CONFIG_ZONE_DMA
606                 zone_page_state(&zones[ZONE_DMA], item) +
607 #endif
608 #ifdef CONFIG_ZONE_DMA32
609                 zone_page_state(&zones[ZONE_DMA32], item) +
610 #endif
611 #ifdef CONFIG_HIGHMEM
612                 zone_page_state(&zones[ZONE_HIGHMEM], item) +
613 #endif
614                 zone_page_state(&zones[ZONE_NORMAL], item) +
615                 zone_page_state(&zones[ZONE_MOVABLE], item);
616 }
617
618 #endif
619
620 #ifdef CONFIG_COMPACTION
621
622 struct contig_page_info {
623         unsigned long free_pages;
624         unsigned long free_blocks_total;
625         unsigned long free_blocks_suitable;
626 };
627
628 /*
629  * Calculate the number of free pages in a zone, how many contiguous
630  * pages are free and how many are large enough to satisfy an allocation of
631  * the target size. Note that this function makes no attempt to estimate
632  * how many suitable free blocks there *might* be if MOVABLE pages were
633  * migrated. Calculating that is possible, but expensive and can be
634  * figured out from userspace
635  */
636 static void fill_contig_page_info(struct zone *zone,
637                                 unsigned int suitable_order,
638                                 struct contig_page_info *info)
639 {
640         unsigned int order;
641
642         info->free_pages = 0;
643         info->free_blocks_total = 0;
644         info->free_blocks_suitable = 0;
645
646         for (order = 0; order < MAX_ORDER; order++) {
647                 unsigned long blocks;
648
649                 /* Count number of free blocks */
650                 blocks = zone->free_area[order].nr_free;
651                 info->free_blocks_total += blocks;
652
653                 /* Count free base pages */
654                 info->free_pages += blocks << order;
655
656                 /* Count the suitable free blocks */
657                 if (order >= suitable_order)
658                         info->free_blocks_suitable += blocks <<
659                                                 (order - suitable_order);
660         }
661 }
662
663 /*
664  * A fragmentation index only makes sense if an allocation of a requested
665  * size would fail. If that is true, the fragmentation index indicates
666  * whether external fragmentation or a lack of memory was the problem.
667  * The value can be used to determine if page reclaim or compaction
668  * should be used
669  */
670 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
671 {
672         unsigned long requested = 1UL << order;
673
674         if (!info->free_blocks_total)
675                 return 0;
676
677         /* Fragmentation index only makes sense when a request would fail */
678         if (info->free_blocks_suitable)
679                 return -1000;
680
681         /*
682          * Index is between 0 and 1 so return within 3 decimal places
683          *
684          * 0 => allocation would fail due to lack of memory
685          * 1 => allocation would fail due to fragmentation
686          */
687         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
688 }
689
690 /* Same as __fragmentation index but allocs contig_page_info on stack */
691 int fragmentation_index(struct zone *zone, unsigned int order)
692 {
693         struct contig_page_info info;
694
695         fill_contig_page_info(zone, order, &info);
696         return __fragmentation_index(order, &info);
697 }
698 #endif
699
700 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
701 #ifdef CONFIG_ZONE_DMA
702 #define TEXT_FOR_DMA(xx) xx "_dma",
703 #else
704 #define TEXT_FOR_DMA(xx)
705 #endif
706
707 #ifdef CONFIG_ZONE_DMA32
708 #define TEXT_FOR_DMA32(xx) xx "_dma32",
709 #else
710 #define TEXT_FOR_DMA32(xx)
711 #endif
712
713 #ifdef CONFIG_HIGHMEM
714 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
715 #else
716 #define TEXT_FOR_HIGHMEM(xx)
717 #endif
718
719 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
720                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
721
722 const char * const vmstat_text[] = {
723         /* enum zone_stat_item countes */
724         "nr_free_pages",
725         "nr_alloc_batch",
726         "nr_inactive_anon",
727         "nr_active_anon",
728         "nr_inactive_file",
729         "nr_active_file",
730         "nr_unevictable",
731         "nr_mlock",
732         "nr_anon_pages",
733         "nr_mapped",
734         "nr_file_pages",
735         "nr_dirty",
736         "nr_writeback",
737         "nr_slab_reclaimable",
738         "nr_slab_unreclaimable",
739         "nr_page_table_pages",
740         "nr_kernel_stack",
741         "nr_overhead",
742         "nr_unstable",
743         "nr_bounce",
744         "nr_vmscan_write",
745         "nr_vmscan_immediate_reclaim",
746         "nr_writeback_temp",
747         "nr_isolated_anon",
748         "nr_isolated_file",
749         "nr_shmem",
750         "nr_dirtied",
751         "nr_written",
752         "nr_pages_scanned",
753
754 #ifdef CONFIG_NUMA
755         "numa_hit",
756         "numa_miss",
757         "numa_foreign",
758         "numa_interleave",
759         "numa_local",
760         "numa_other",
761 #endif
762         "workingset_refault",
763         "workingset_activate",
764         "workingset_nodereclaim",
765         "nr_anon_transparent_hugepages",
766         "nr_free_cma",
767
768         /* enum writeback_stat_item counters */
769         "nr_dirty_threshold",
770         "nr_dirty_background_threshold",
771
772 #ifdef CONFIG_VM_EVENT_COUNTERS
773         /* enum vm_event_item counters */
774         "pgpgin",
775         "pgpgout",
776         "pswpin",
777         "pswpout",
778
779         TEXTS_FOR_ZONES("pgalloc")
780
781         "pgfree",
782         "pgactivate",
783         "pgdeactivate",
784
785         "pgfault",
786         "pgmajfault",
787
788         TEXTS_FOR_ZONES("pgrefill")
789         TEXTS_FOR_ZONES("pgsteal_kswapd")
790         TEXTS_FOR_ZONES("pgsteal_direct")
791         TEXTS_FOR_ZONES("pgscan_kswapd")
792         TEXTS_FOR_ZONES("pgscan_direct")
793         "pgscan_direct_throttle",
794
795 #ifdef CONFIG_NUMA
796         "zone_reclaim_failed",
797 #endif
798         "pginodesteal",
799         "slabs_scanned",
800         "kswapd_inodesteal",
801         "kswapd_low_wmark_hit_quickly",
802         "kswapd_high_wmark_hit_quickly",
803         "pageoutrun",
804         "allocstall",
805
806         "pgrotated",
807
808         "drop_pagecache",
809         "drop_slab",
810
811 #ifdef CONFIG_NUMA_BALANCING
812         "numa_pte_updates",
813         "numa_huge_pte_updates",
814         "numa_hint_faults",
815         "numa_hint_faults_local",
816         "numa_pages_migrated",
817 #endif
818 #ifdef CONFIG_MIGRATION
819         "pgmigrate_success",
820         "pgmigrate_fail",
821 #endif
822 #ifdef CONFIG_COMPACTION
823         "compact_migrate_scanned",
824         "compact_free_scanned",
825         "compact_isolated",
826         "compact_stall",
827         "compact_fail",
828         "compact_success",
829 #endif
830
831 #ifdef CONFIG_HUGETLB_PAGE
832         "htlb_buddy_alloc_success",
833         "htlb_buddy_alloc_fail",
834 #endif
835         "unevictable_pgs_culled",
836         "unevictable_pgs_scanned",
837         "unevictable_pgs_rescued",
838         "unevictable_pgs_mlocked",
839         "unevictable_pgs_munlocked",
840         "unevictable_pgs_cleared",
841         "unevictable_pgs_stranded",
842
843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
844         "thp_fault_alloc",
845         "thp_fault_fallback",
846         "thp_collapse_alloc",
847         "thp_collapse_alloc_failed",
848         "thp_split",
849         "thp_zero_page_alloc",
850         "thp_zero_page_alloc_failed",
851 #endif
852 #ifdef CONFIG_MEMORY_BALLOON
853         "balloon_inflate",
854         "balloon_deflate",
855 #ifdef CONFIG_BALLOON_COMPACTION
856         "balloon_migrate",
857 #endif
858 #endif /* CONFIG_MEMORY_BALLOON */
859 #ifdef CONFIG_DEBUG_TLBFLUSH
860         "nr_tlb_remote_flush",
861         "nr_tlb_remote_flush_received",
862         "nr_tlb_local_flush_all",
863         "nr_tlb_local_flush_one",
864 #endif /* CONFIG_DEBUG_TLBFLUSH */
865
866 #ifdef CONFIG_DEBUG_VM_VMACACHE
867         "vmacache_find_calls",
868         "vmacache_find_hits",
869 #endif
870 #endif /* CONFIG_VM_EVENTS_COUNTERS */
871 };
872 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
873
874
875 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
876      defined(CONFIG_PROC_FS)
877 static void *frag_start(struct seq_file *m, loff_t *pos)
878 {
879         pg_data_t *pgdat;
880         loff_t node = *pos;
881
882         for (pgdat = first_online_pgdat();
883              pgdat && node;
884              pgdat = next_online_pgdat(pgdat))
885                 --node;
886
887         return pgdat;
888 }
889
890 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
891 {
892         pg_data_t *pgdat = (pg_data_t *)arg;
893
894         (*pos)++;
895         return next_online_pgdat(pgdat);
896 }
897
898 static void frag_stop(struct seq_file *m, void *arg)
899 {
900 }
901
902 /* Walk all the zones in a node and print using a callback */
903 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
904                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
905 {
906         struct zone *zone;
907         struct zone *node_zones = pgdat->node_zones;
908         unsigned long flags;
909
910         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
911                 if (!populated_zone(zone))
912                         continue;
913
914                 spin_lock_irqsave(&zone->lock, flags);
915                 print(m, pgdat, zone);
916                 spin_unlock_irqrestore(&zone->lock, flags);
917         }
918 }
919 #endif
920
921 #ifdef CONFIG_PROC_FS
922 static char * const migratetype_names[MIGRATE_TYPES] = {
923         "Unmovable",
924         "Movable",
925         "Reclaimable",
926         "HighAtomic",
927 #ifdef CONFIG_CMA
928         "CMA",
929 #endif
930 #ifdef CONFIG_MEMORY_ISOLATION
931         "Isolate",
932 #endif
933 };
934
935 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
936                                                 struct zone *zone)
937 {
938         int order;
939
940         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
941         for (order = 0; order < MAX_ORDER; ++order)
942                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
943         seq_putc(m, '\n');
944 }
945
946 /*
947  * This walks the free areas for each zone.
948  */
949 static int frag_show(struct seq_file *m, void *arg)
950 {
951         pg_data_t *pgdat = (pg_data_t *)arg;
952         walk_zones_in_node(m, pgdat, frag_show_print);
953         return 0;
954 }
955
956 static void pagetypeinfo_showfree_print(struct seq_file *m,
957                                         pg_data_t *pgdat, struct zone *zone)
958 {
959         int order, mtype;
960
961         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
962                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
963                                         pgdat->node_id,
964                                         zone->name,
965                                         migratetype_names[mtype]);
966                 for (order = 0; order < MAX_ORDER; ++order) {
967                         unsigned long freecount = 0;
968                         struct free_area *area;
969                         struct list_head *curr;
970
971                         area = &(zone->free_area[order]);
972
973                         list_for_each(curr, &area->free_list[mtype])
974                                 freecount++;
975                         seq_printf(m, "%6lu ", freecount);
976                         spin_unlock_irq(&zone->lock);
977                         cond_resched();
978                         spin_lock_irq(&zone->lock);
979                 }
980                 seq_putc(m, '\n');
981         }
982 }
983
984 /* Print out the free pages at each order for each migatetype */
985 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
986 {
987         int order;
988         pg_data_t *pgdat = (pg_data_t *)arg;
989
990         /* Print header */
991         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
992         for (order = 0; order < MAX_ORDER; ++order)
993                 seq_printf(m, "%6d ", order);
994         seq_putc(m, '\n');
995
996         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
997
998         return 0;
999 }
1000
1001 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1002                                         pg_data_t *pgdat, struct zone *zone)
1003 {
1004         int mtype;
1005         unsigned long pfn;
1006         unsigned long start_pfn = zone->zone_start_pfn;
1007         unsigned long end_pfn = zone_end_pfn(zone);
1008         unsigned long count[MIGRATE_TYPES] = { 0, };
1009
1010         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1011                 struct page *page;
1012
1013                 if (!pfn_valid(pfn))
1014                         continue;
1015
1016                 page = pfn_to_page(pfn);
1017
1018                 /* Watch for unexpected holes punched in the memmap */
1019                 if (!memmap_valid_within(pfn, page, zone))
1020                         continue;
1021
1022                 mtype = get_pageblock_migratetype(page);
1023
1024                 if (mtype < MIGRATE_TYPES)
1025                         count[mtype]++;
1026         }
1027
1028         /* Print counts */
1029         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1030         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1031                 seq_printf(m, "%12lu ", count[mtype]);
1032         seq_putc(m, '\n');
1033 }
1034
1035 /* Print out the free pages at each order for each migratetype */
1036 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1037 {
1038         int mtype;
1039         pg_data_t *pgdat = (pg_data_t *)arg;
1040
1041         seq_printf(m, "\n%-23s", "Number of blocks type ");
1042         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1043                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1044         seq_putc(m, '\n');
1045         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1046
1047         return 0;
1048 }
1049
1050 #ifdef CONFIG_PAGE_OWNER
1051 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1052                                                         pg_data_t *pgdat,
1053                                                         struct zone *zone)
1054 {
1055         struct page *page;
1056         struct page_ext *page_ext;
1057         unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1058         unsigned long end_pfn = pfn + zone->spanned_pages;
1059         unsigned long count[MIGRATE_TYPES] = { 0, };
1060         int pageblock_mt, page_mt;
1061         int i;
1062
1063         /* Scan block by block. First and last block may be incomplete */
1064         pfn = zone->zone_start_pfn;
1065
1066         /*
1067          * Walk the zone in pageblock_nr_pages steps. If a page block spans
1068          * a zone boundary, it will be double counted between zones. This does
1069          * not matter as the mixed block count will still be correct
1070          */
1071         for (; pfn < end_pfn; ) {
1072                 if (!pfn_valid(pfn)) {
1073                         pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1074                         continue;
1075                 }
1076
1077                 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1078                 block_end_pfn = min(block_end_pfn, end_pfn);
1079
1080                 page = pfn_to_page(pfn);
1081                 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1082
1083                 for (; pfn < block_end_pfn; pfn++) {
1084                         if (!pfn_valid_within(pfn))
1085                                 continue;
1086
1087                         page = pfn_to_page(pfn);
1088                         if (PageBuddy(page)) {
1089                                 pfn += (1UL << page_order(page)) - 1;
1090                                 continue;
1091                         }
1092
1093                         if (PageReserved(page))
1094                                 continue;
1095
1096                         page_ext = lookup_page_ext(page);
1097                         if (unlikely(!page_ext))
1098                                 continue;
1099
1100                         if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1101                                 continue;
1102
1103                         page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1104                         if (pageblock_mt != page_mt) {
1105                                 if (is_migrate_cma(pageblock_mt))
1106                                         count[MIGRATE_MOVABLE]++;
1107                                 else
1108                                         count[pageblock_mt]++;
1109
1110                                 pfn = block_end_pfn;
1111                                 break;
1112                         }
1113                         pfn += (1UL << page_ext->order) - 1;
1114                 }
1115         }
1116
1117         /* Print counts */
1118         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1119         for (i = 0; i < MIGRATE_TYPES; i++)
1120                 seq_printf(m, "%12lu ", count[i]);
1121         seq_putc(m, '\n');
1122 }
1123 #endif /* CONFIG_PAGE_OWNER */
1124
1125 /*
1126  * Print out the number of pageblocks for each migratetype that contain pages
1127  * of other types. This gives an indication of how well fallbacks are being
1128  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1129  * to determine what is going on
1130  */
1131 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1132 {
1133 #ifdef CONFIG_PAGE_OWNER
1134         int mtype;
1135
1136         if (!page_owner_inited)
1137                 return;
1138
1139         drain_all_pages(NULL);
1140
1141         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1142         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1143                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1144         seq_putc(m, '\n');
1145
1146         walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1147 #endif /* CONFIG_PAGE_OWNER */
1148 }
1149
1150 /*
1151  * This prints out statistics in relation to grouping pages by mobility.
1152  * It is expensive to collect so do not constantly read the file.
1153  */
1154 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1155 {
1156         pg_data_t *pgdat = (pg_data_t *)arg;
1157
1158         /* check memoryless node */
1159         if (!node_state(pgdat->node_id, N_MEMORY))
1160                 return 0;
1161
1162         seq_printf(m, "Page block order: %d\n", pageblock_order);
1163         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1164         seq_putc(m, '\n');
1165         pagetypeinfo_showfree(m, pgdat);
1166         pagetypeinfo_showblockcount(m, pgdat);
1167         pagetypeinfo_showmixedcount(m, pgdat);
1168
1169         return 0;
1170 }
1171
1172 static const struct seq_operations fragmentation_op = {
1173         .start  = frag_start,
1174         .next   = frag_next,
1175         .stop   = frag_stop,
1176         .show   = frag_show,
1177 };
1178
1179 static int fragmentation_open(struct inode *inode, struct file *file)
1180 {
1181         return seq_open(file, &fragmentation_op);
1182 }
1183
1184 static const struct file_operations fragmentation_file_operations = {
1185         .open           = fragmentation_open,
1186         .read           = seq_read,
1187         .llseek         = seq_lseek,
1188         .release        = seq_release,
1189 };
1190
1191 static const struct seq_operations pagetypeinfo_op = {
1192         .start  = frag_start,
1193         .next   = frag_next,
1194         .stop   = frag_stop,
1195         .show   = pagetypeinfo_show,
1196 };
1197
1198 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1199 {
1200         return seq_open(file, &pagetypeinfo_op);
1201 }
1202
1203 static const struct file_operations pagetypeinfo_file_ops = {
1204         .open           = pagetypeinfo_open,
1205         .read           = seq_read,
1206         .llseek         = seq_lseek,
1207         .release        = seq_release,
1208 };
1209
1210 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1211                                                         struct zone *zone)
1212 {
1213         int i;
1214         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1215         seq_printf(m,
1216                    "\n  pages free     %lu"
1217                    "\n        min      %lu"
1218                    "\n        low      %lu"
1219                    "\n        high     %lu"
1220                    "\n        scanned  %lu"
1221                    "\n        spanned  %lu"
1222                    "\n        present  %lu"
1223                    "\n        managed  %lu",
1224                    zone_page_state(zone, NR_FREE_PAGES),
1225                    min_wmark_pages(zone),
1226                    low_wmark_pages(zone),
1227                    high_wmark_pages(zone),
1228                    zone_page_state(zone, NR_PAGES_SCANNED),
1229                    zone->spanned_pages,
1230                    zone->present_pages,
1231                    zone->managed_pages);
1232
1233         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1234                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1235                                 zone_page_state(zone, i));
1236
1237         seq_printf(m,
1238                    "\n        protection: (%ld",
1239                    zone->lowmem_reserve[0]);
1240         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1241                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1242         seq_printf(m,
1243                    ")"
1244                    "\n  pagesets");
1245         for_each_online_cpu(i) {
1246                 struct per_cpu_pageset *pageset;
1247
1248                 pageset = per_cpu_ptr(zone->pageset, i);
1249                 seq_printf(m,
1250                            "\n    cpu: %i"
1251                            "\n              count: %i"
1252                            "\n              high:  %i"
1253                            "\n              batch: %i",
1254                            i,
1255                            pageset->pcp.count,
1256                            pageset->pcp.high,
1257                            pageset->pcp.batch);
1258 #ifdef CONFIG_SMP
1259                 seq_printf(m, "\n  vm stats threshold: %d",
1260                                 pageset->stat_threshold);
1261 #endif
1262         }
1263         seq_printf(m,
1264                    "\n  all_unreclaimable: %u"
1265                    "\n  start_pfn:         %lu"
1266                    "\n  inactive_ratio:    %u",
1267                    !zone_reclaimable(zone),
1268                    zone->zone_start_pfn,
1269                    zone->inactive_ratio);
1270         seq_putc(m, '\n');
1271 }
1272
1273 /*
1274  * Output information about zones in @pgdat.
1275  */
1276 static int zoneinfo_show(struct seq_file *m, void *arg)
1277 {
1278         pg_data_t *pgdat = (pg_data_t *)arg;
1279         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1280         return 0;
1281 }
1282
1283 static const struct seq_operations zoneinfo_op = {
1284         .start  = frag_start, /* iterate over all zones. The same as in
1285                                * fragmentation. */
1286         .next   = frag_next,
1287         .stop   = frag_stop,
1288         .show   = zoneinfo_show,
1289 };
1290
1291 static int zoneinfo_open(struct inode *inode, struct file *file)
1292 {
1293         return seq_open(file, &zoneinfo_op);
1294 }
1295
1296 static const struct file_operations proc_zoneinfo_file_operations = {
1297         .open           = zoneinfo_open,
1298         .read           = seq_read,
1299         .llseek         = seq_lseek,
1300         .release        = seq_release,
1301 };
1302
1303 enum writeback_stat_item {
1304         NR_DIRTY_THRESHOLD,
1305         NR_DIRTY_BG_THRESHOLD,
1306         NR_VM_WRITEBACK_STAT_ITEMS,
1307 };
1308
1309 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1310 {
1311         unsigned long *v;
1312         int i, stat_items_size;
1313
1314         if (*pos >= ARRAY_SIZE(vmstat_text))
1315                 return NULL;
1316         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1317                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1318
1319 #ifdef CONFIG_VM_EVENT_COUNTERS
1320         stat_items_size += sizeof(struct vm_event_state);
1321 #endif
1322
1323         v = kmalloc(stat_items_size, GFP_KERNEL);
1324         m->private = v;
1325         if (!v)
1326                 return ERR_PTR(-ENOMEM);
1327         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1328                 v[i] = global_page_state(i);
1329         v += NR_VM_ZONE_STAT_ITEMS;
1330
1331         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1332                             v + NR_DIRTY_THRESHOLD);
1333         v += NR_VM_WRITEBACK_STAT_ITEMS;
1334
1335 #ifdef CONFIG_VM_EVENT_COUNTERS
1336         all_vm_events(v);
1337         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1338         v[PGPGOUT] /= 2;
1339 #endif
1340         return (unsigned long *)m->private + *pos;
1341 }
1342
1343 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1344 {
1345         (*pos)++;
1346         if (*pos >= ARRAY_SIZE(vmstat_text))
1347                 return NULL;
1348         return (unsigned long *)m->private + *pos;
1349 }
1350
1351 static int vmstat_show(struct seq_file *m, void *arg)
1352 {
1353         unsigned long *l = arg;
1354         unsigned long off = l - (unsigned long *)m->private;
1355
1356         seq_puts(m, vmstat_text[off]);
1357         seq_put_decimal_ull(m, ' ', *l);
1358         seq_putc(m, '\n');
1359         return 0;
1360 }
1361
1362 static void vmstat_stop(struct seq_file *m, void *arg)
1363 {
1364         kfree(m->private);
1365         m->private = NULL;
1366 }
1367
1368 static const struct seq_operations vmstat_op = {
1369         .start  = vmstat_start,
1370         .next   = vmstat_next,
1371         .stop   = vmstat_stop,
1372         .show   = vmstat_show,
1373 };
1374
1375 static int vmstat_open(struct inode *inode, struct file *file)
1376 {
1377         return seq_open(file, &vmstat_op);
1378 }
1379
1380 static const struct file_operations proc_vmstat_file_operations = {
1381         .open           = vmstat_open,
1382         .read           = seq_read,
1383         .llseek         = seq_lseek,
1384         .release        = seq_release,
1385 };
1386 #endif /* CONFIG_PROC_FS */
1387
1388 #ifdef CONFIG_SMP
1389 static struct workqueue_struct *vmstat_wq;
1390 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1391 int sysctl_stat_interval __read_mostly = HZ;
1392 static cpumask_var_t cpu_stat_off;
1393
1394 static void vmstat_update(struct work_struct *w)
1395 {
1396         if (refresh_cpu_vm_stats(true)) {
1397                 /*
1398                  * Counters were updated so we expect more updates
1399                  * to occur in the future. Keep on running the
1400                  * update worker thread.
1401                  * If we were marked on cpu_stat_off clear the flag
1402                  * so that vmstat_shepherd doesn't schedule us again.
1403                  */
1404                 if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1405                                                 cpu_stat_off)) {
1406                         queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1407                                 this_cpu_ptr(&vmstat_work),
1408                                 round_jiffies_relative(sysctl_stat_interval));
1409                 }
1410         } else {
1411                 /*
1412                  * We did not update any counters so the app may be in
1413                  * a mode where it does not cause counter updates.
1414                  * We may be uselessly running vmstat_update.
1415                  * Defer the checking for differentials to the
1416                  * shepherd thread on a different processor.
1417                  */
1418                 cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1419         }
1420 }
1421
1422 /*
1423  * Switch off vmstat processing and then fold all the remaining differentials
1424  * until the diffs stay at zero. The function is used by NOHZ and can only be
1425  * invoked when tick processing is not active.
1426  */
1427 /*
1428  * Check if the diffs for a certain cpu indicate that
1429  * an update is needed.
1430  */
1431 static bool need_update(int cpu)
1432 {
1433         struct zone *zone;
1434
1435         for_each_populated_zone(zone) {
1436                 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1437
1438                 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1439                 /*
1440                  * The fast way of checking if there are any vmstat diffs.
1441                  * This works because the diffs are byte sized items.
1442                  */
1443                 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1444                         return true;
1445
1446         }
1447         return false;
1448 }
1449
1450 void quiet_vmstat(void)
1451 {
1452         if (system_state != SYSTEM_RUNNING)
1453                 return;
1454
1455         /*
1456          * If we are already in hands of the shepherd then there
1457          * is nothing for us to do here.
1458          */
1459         if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1460                 return;
1461
1462         if (!need_update(smp_processor_id()))
1463                 return;
1464
1465         /*
1466          * Just refresh counters and do not care about the pending delayed
1467          * vmstat_update. It doesn't fire that often to matter and canceling
1468          * it would be too expensive from this path.
1469          * vmstat_shepherd will take care about that for us.
1470          */
1471         refresh_cpu_vm_stats(false);
1472 }
1473
1474
1475 /*
1476  * Shepherd worker thread that checks the
1477  * differentials of processors that have their worker
1478  * threads for vm statistics updates disabled because of
1479  * inactivity.
1480  */
1481 static void vmstat_shepherd(struct work_struct *w);
1482
1483 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1484
1485 static void vmstat_shepherd(struct work_struct *w)
1486 {
1487         int cpu;
1488
1489         get_online_cpus();
1490         /* Check processors whose vmstat worker threads have been disabled */
1491         for_each_cpu(cpu, cpu_stat_off) {
1492                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1493
1494                 if (need_update(cpu)) {
1495                         if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1496                                 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1497                 } else {
1498                         /*
1499                          * Cancel the work if quiet_vmstat has put this
1500                          * cpu on cpu_stat_off because the work item might
1501                          * be still scheduled
1502                          */
1503                         cancel_delayed_work(dw);
1504                 }
1505         }
1506         put_online_cpus();
1507
1508         schedule_delayed_work(&shepherd,
1509                 round_jiffies_relative(sysctl_stat_interval));
1510 }
1511
1512 static void __init start_shepherd_timer(void)
1513 {
1514         int cpu;
1515
1516         for_each_possible_cpu(cpu)
1517                 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1518                         vmstat_update);
1519
1520         if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1521                 BUG();
1522         cpumask_copy(cpu_stat_off, cpu_online_mask);
1523
1524         vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1525         schedule_delayed_work(&shepherd,
1526                 round_jiffies_relative(sysctl_stat_interval));
1527 }
1528
1529 static void vmstat_cpu_dead(int node)
1530 {
1531         int cpu;
1532
1533         get_online_cpus();
1534         for_each_online_cpu(cpu)
1535                 if (cpu_to_node(cpu) == node)
1536                         goto end;
1537
1538         node_clear_state(node, N_CPU);
1539 end:
1540         put_online_cpus();
1541 }
1542
1543 /*
1544  * Use the cpu notifier to insure that the thresholds are recalculated
1545  * when necessary.
1546  */
1547 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1548                 unsigned long action,
1549                 void *hcpu)
1550 {
1551         long cpu = (long)hcpu;
1552
1553         switch (action) {
1554         case CPU_ONLINE:
1555         case CPU_ONLINE_FROZEN:
1556                 refresh_zone_stat_thresholds();
1557                 node_set_state(cpu_to_node(cpu), N_CPU);
1558                 cpumask_set_cpu(cpu, cpu_stat_off);
1559                 break;
1560         case CPU_DOWN_PREPARE:
1561         case CPU_DOWN_PREPARE_FROZEN:
1562                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1563                 cpumask_clear_cpu(cpu, cpu_stat_off);
1564                 break;
1565         case CPU_DOWN_FAILED:
1566         case CPU_DOWN_FAILED_FROZEN:
1567                 cpumask_set_cpu(cpu, cpu_stat_off);
1568                 break;
1569         case CPU_DEAD:
1570         case CPU_DEAD_FROZEN:
1571                 refresh_zone_stat_thresholds();
1572                 vmstat_cpu_dead(cpu_to_node(cpu));
1573                 break;
1574         default:
1575                 break;
1576         }
1577         return NOTIFY_OK;
1578 }
1579
1580 static struct notifier_block vmstat_notifier =
1581         { &vmstat_cpuup_callback, NULL, 0 };
1582 #endif
1583
1584 static int __init setup_vmstat(void)
1585 {
1586 #ifdef CONFIG_SMP
1587         cpu_notifier_register_begin();
1588         __register_cpu_notifier(&vmstat_notifier);
1589
1590         start_shepherd_timer();
1591         cpu_notifier_register_done();
1592 #endif
1593 #ifdef CONFIG_PROC_FS
1594         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1595         proc_create("pagetypeinfo", 0400, NULL, &pagetypeinfo_file_ops);
1596         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1597         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1598 #endif
1599         return 0;
1600 }
1601 module_init(setup_vmstat)
1602
1603 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1604
1605 /*
1606  * Return an index indicating how much of the available free memory is
1607  * unusable for an allocation of the requested size.
1608  */
1609 static int unusable_free_index(unsigned int order,
1610                                 struct contig_page_info *info)
1611 {
1612         /* No free memory is interpreted as all free memory is unusable */
1613         if (info->free_pages == 0)
1614                 return 1000;
1615
1616         /*
1617          * Index should be a value between 0 and 1. Return a value to 3
1618          * decimal places.
1619          *
1620          * 0 => no fragmentation
1621          * 1 => high fragmentation
1622          */
1623         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1624
1625 }
1626
1627 static void unusable_show_print(struct seq_file *m,
1628                                         pg_data_t *pgdat, struct zone *zone)
1629 {
1630         unsigned int order;
1631         int index;
1632         struct contig_page_info info;
1633
1634         seq_printf(m, "Node %d, zone %8s ",
1635                                 pgdat->node_id,
1636                                 zone->name);
1637         for (order = 0; order < MAX_ORDER; ++order) {
1638                 fill_contig_page_info(zone, order, &info);
1639                 index = unusable_free_index(order, &info);
1640                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1641         }
1642
1643         seq_putc(m, '\n');
1644 }
1645
1646 /*
1647  * Display unusable free space index
1648  *
1649  * The unusable free space index measures how much of the available free
1650  * memory cannot be used to satisfy an allocation of a given size and is a
1651  * value between 0 and 1. The higher the value, the more of free memory is
1652  * unusable and by implication, the worse the external fragmentation is. This
1653  * can be expressed as a percentage by multiplying by 100.
1654  */
1655 static int unusable_show(struct seq_file *m, void *arg)
1656 {
1657         pg_data_t *pgdat = (pg_data_t *)arg;
1658
1659         /* check memoryless node */
1660         if (!node_state(pgdat->node_id, N_MEMORY))
1661                 return 0;
1662
1663         walk_zones_in_node(m, pgdat, unusable_show_print);
1664
1665         return 0;
1666 }
1667
1668 static const struct seq_operations unusable_op = {
1669         .start  = frag_start,
1670         .next   = frag_next,
1671         .stop   = frag_stop,
1672         .show   = unusable_show,
1673 };
1674
1675 static int unusable_open(struct inode *inode, struct file *file)
1676 {
1677         return seq_open(file, &unusable_op);
1678 }
1679
1680 static const struct file_operations unusable_file_ops = {
1681         .open           = unusable_open,
1682         .read           = seq_read,
1683         .llseek         = seq_lseek,
1684         .release        = seq_release,
1685 };
1686
1687 static void extfrag_show_print(struct seq_file *m,
1688                                         pg_data_t *pgdat, struct zone *zone)
1689 {
1690         unsigned int order;
1691         int index;
1692
1693         /* Alloc on stack as interrupts are disabled for zone walk */
1694         struct contig_page_info info;
1695
1696         seq_printf(m, "Node %d, zone %8s ",
1697                                 pgdat->node_id,
1698                                 zone->name);
1699         for (order = 0; order < MAX_ORDER; ++order) {
1700                 fill_contig_page_info(zone, order, &info);
1701                 index = __fragmentation_index(order, &info);
1702                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1703         }
1704
1705         seq_putc(m, '\n');
1706 }
1707
1708 /*
1709  * Display fragmentation index for orders that allocations would fail for
1710  */
1711 static int extfrag_show(struct seq_file *m, void *arg)
1712 {
1713         pg_data_t *pgdat = (pg_data_t *)arg;
1714
1715         walk_zones_in_node(m, pgdat, extfrag_show_print);
1716
1717         return 0;
1718 }
1719
1720 static const struct seq_operations extfrag_op = {
1721         .start  = frag_start,
1722         .next   = frag_next,
1723         .stop   = frag_stop,
1724         .show   = extfrag_show,
1725 };
1726
1727 static int extfrag_open(struct inode *inode, struct file *file)
1728 {
1729         return seq_open(file, &extfrag_op);
1730 }
1731
1732 static const struct file_operations extfrag_file_ops = {
1733         .open           = extfrag_open,
1734         .read           = seq_read,
1735         .llseek         = seq_lseek,
1736         .release        = seq_release,
1737 };
1738
1739 static int __init extfrag_debug_init(void)
1740 {
1741         struct dentry *extfrag_debug_root;
1742
1743         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1744         if (!extfrag_debug_root)
1745                 return -ENOMEM;
1746
1747         if (!debugfs_create_file("unusable_index", 0444,
1748                         extfrag_debug_root, NULL, &unusable_file_ops))
1749                 goto fail;
1750
1751         if (!debugfs_create_file("extfrag_index", 0444,
1752                         extfrag_debug_root, NULL, &extfrag_file_ops))
1753                 goto fail;
1754
1755         return 0;
1756 fail:
1757         debugfs_remove_recursive(extfrag_debug_root);
1758         return -ENOMEM;
1759 }
1760
1761 module_init(extfrag_debug_init);
1762 #endif