GNU Linux-libre 5.15.137-gnu
[releases.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= MAX_SWAPFILES)
104                 return NULL;
105
106         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY             0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED           0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL               0x4
123
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126                                  unsigned long offset, unsigned long flags)
127 {
128         swp_entry_t entry = swp_entry(si->type, offset);
129         struct page *page;
130         int ret = 0;
131
132         page = find_get_page(swap_address_space(entry), offset);
133         if (!page)
134                 return 0;
135         /*
136          * When this function is called from scan_swap_map_slots() and it's
137          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138          * here. We have to use trylock for avoiding deadlock. This is a special
139          * case and you should use try_to_free_swap() with explicit lock_page()
140          * in usual operations.
141          */
142         if (trylock_page(page)) {
143                 if ((flags & TTRS_ANYWAY) ||
144                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146                         ret = try_to_free_swap(page);
147                 unlock_page(page);
148         }
149         put_page(page);
150         return ret;
151 }
152
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155         struct rb_node *rb = rb_first(&sis->swap_extent_root);
156         return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161         struct rb_node *rb = rb_next(&se->rb_node);
162         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171         struct swap_extent *se;
172         sector_t start_block;
173         sector_t nr_blocks;
174         int err = 0;
175
176         /* Do not discard the swap header page! */
177         se = first_se(si);
178         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180         if (nr_blocks) {
181                 err = blkdev_issue_discard(si->bdev, start_block,
182                                 nr_blocks, GFP_KERNEL, 0);
183                 if (err)
184                         return err;
185                 cond_resched();
186         }
187
188         for (se = next_se(se); se; se = next_se(se)) {
189                 start_block = se->start_block << (PAGE_SHIFT - 9);
190                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192                 err = blkdev_issue_discard(si->bdev, start_block,
193                                 nr_blocks, GFP_KERNEL, 0);
194                 if (err)
195                         break;
196
197                 cond_resched();
198         }
199         return err;             /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205         struct swap_extent *se;
206         struct rb_node *rb;
207
208         rb = sis->swap_extent_root.rb_node;
209         while (rb) {
210                 se = rb_entry(rb, struct swap_extent, rb_node);
211                 if (offset < se->start_page)
212                         rb = rb->rb_left;
213                 else if (offset >= se->start_page + se->nr_pages)
214                         rb = rb->rb_right;
215                 else
216                         return se;
217         }
218         /* It *must* be present */
219         BUG();
220 }
221
222 sector_t swap_page_sector(struct page *page)
223 {
224         struct swap_info_struct *sis = page_swap_info(page);
225         struct swap_extent *se;
226         sector_t sector;
227         pgoff_t offset;
228
229         offset = __page_file_index(page);
230         se = offset_to_swap_extent(sis, offset);
231         sector = se->start_block + (offset - se->start_page);
232         return sector << (PAGE_SHIFT - 9);
233 }
234
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240                                  pgoff_t start_page, pgoff_t nr_pages)
241 {
242         struct swap_extent *se = offset_to_swap_extent(si, start_page);
243
244         while (nr_pages) {
245                 pgoff_t offset = start_page - se->start_page;
246                 sector_t start_block = se->start_block + offset;
247                 sector_t nr_blocks = se->nr_pages - offset;
248
249                 if (nr_blocks > nr_pages)
250                         nr_blocks = nr_pages;
251                 start_page += nr_blocks;
252                 nr_pages -= nr_blocks;
253
254                 start_block <<= PAGE_SHIFT - 9;
255                 nr_blocks <<= PAGE_SHIFT - 9;
256                 if (blkdev_issue_discard(si->bdev, start_block,
257                                         nr_blocks, GFP_NOIO, 0))
258                         break;
259
260                 se = next_se(se);
261         }
262 }
263
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
266
267 #define swap_entry_size(size)   (size)
268 #else
269 #define SWAPFILE_CLUSTER        256
270
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)   1
276 #endif
277 #define LATENCY_LIMIT           256
278
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280         unsigned int flag)
281 {
282         info->flags = flag;
283 }
284
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287         return info->data;
288 }
289
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291                                      unsigned int c)
292 {
293         info->data = c;
294 }
295
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297                                          unsigned int c, unsigned int f)
298 {
299         info->flags = f;
300         info->data = c;
301 }
302
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305         return info->data;
306 }
307
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309                                     unsigned int n)
310 {
311         info->data = n;
312 }
313
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315                                          unsigned int n, unsigned int f)
316 {
317         info->flags = f;
318         info->data = n;
319 }
320
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323         return info->flags & CLUSTER_FLAG_FREE;
324 }
325
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328         return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333         info->flags = CLUSTER_FLAG_NEXT_NULL;
334         info->data = 0;
335 }
336
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339         if (IS_ENABLED(CONFIG_THP_SWAP))
340                 return info->flags & CLUSTER_FLAG_HUGE;
341         return false;
342 }
343
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346         info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350                                                      unsigned long offset)
351 {
352         struct swap_cluster_info *ci;
353
354         ci = si->cluster_info;
355         if (ci) {
356                 ci += offset / SWAPFILE_CLUSTER;
357                 spin_lock(&ci->lock);
358         }
359         return ci;
360 }
361
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364         if (ci)
365                 spin_unlock(&ci->lock);
366 }
367
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373                 struct swap_info_struct *si, unsigned long offset)
374 {
375         struct swap_cluster_info *ci;
376
377         /* Try to use fine-grained SSD-style locking if available: */
378         ci = lock_cluster(si, offset);
379         /* Otherwise, fall back to traditional, coarse locking: */
380         if (!ci)
381                 spin_lock(&si->lock);
382
383         return ci;
384 }
385
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387                                                struct swap_cluster_info *ci)
388 {
389         if (ci)
390                 unlock_cluster(ci);
391         else
392                 spin_unlock(&si->lock);
393 }
394
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397         return cluster_is_null(&list->head);
398 }
399
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402         return cluster_next(&list->head);
403 }
404
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407         cluster_set_null(&list->head);
408         cluster_set_null(&list->tail);
409 }
410
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412                                   struct swap_cluster_info *ci,
413                                   unsigned int idx)
414 {
415         if (cluster_list_empty(list)) {
416                 cluster_set_next_flag(&list->head, idx, 0);
417                 cluster_set_next_flag(&list->tail, idx, 0);
418         } else {
419                 struct swap_cluster_info *ci_tail;
420                 unsigned int tail = cluster_next(&list->tail);
421
422                 /*
423                  * Nested cluster lock, but both cluster locks are
424                  * only acquired when we held swap_info_struct->lock
425                  */
426                 ci_tail = ci + tail;
427                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428                 cluster_set_next(ci_tail, idx);
429                 spin_unlock(&ci_tail->lock);
430                 cluster_set_next_flag(&list->tail, idx, 0);
431         }
432 }
433
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435                                            struct swap_cluster_info *ci)
436 {
437         unsigned int idx;
438
439         idx = cluster_next(&list->head);
440         if (cluster_next(&list->tail) == idx) {
441                 cluster_set_null(&list->head);
442                 cluster_set_null(&list->tail);
443         } else
444                 cluster_set_next_flag(&list->head,
445                                       cluster_next(&ci[idx]), 0);
446
447         return idx;
448 }
449
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452                 unsigned int idx)
453 {
454         /*
455          * If scan_swap_map_slots() can't find a free cluster, it will check
456          * si->swap_map directly. To make sure the discarding cluster isn't
457          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458          * It will be cleared after discard
459          */
460         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
463         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464
465         schedule_work(&si->discard_work);
466 }
467
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470         struct swap_cluster_info *ci = si->cluster_info;
471
472         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473         cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482         struct swap_cluster_info *info, *ci;
483         unsigned int idx;
484
485         info = si->cluster_info;
486
487         while (!cluster_list_empty(&si->discard_clusters)) {
488                 idx = cluster_list_del_first(&si->discard_clusters, info);
489                 spin_unlock(&si->lock);
490
491                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492                                 SWAPFILE_CLUSTER);
493
494                 spin_lock(&si->lock);
495                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496                 __free_cluster(si, idx);
497                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498                                 0, SWAPFILE_CLUSTER);
499                 unlock_cluster(ci);
500         }
501 }
502
503 static void swap_discard_work(struct work_struct *work)
504 {
505         struct swap_info_struct *si;
506
507         si = container_of(work, struct swap_info_struct, discard_work);
508
509         spin_lock(&si->lock);
510         swap_do_scheduled_discard(si);
511         spin_unlock(&si->lock);
512 }
513
514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516         struct swap_info_struct *si;
517
518         si = container_of(ref, struct swap_info_struct, users);
519         complete(&si->comp);
520 }
521
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524         struct swap_cluster_info *ci = si->cluster_info;
525
526         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527         cluster_list_del_first(&si->free_clusters, ci);
528         cluster_set_count_flag(ci + idx, 0, 0);
529 }
530
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533         struct swap_cluster_info *ci = si->cluster_info + idx;
534
535         VM_BUG_ON(cluster_count(ci) != 0);
536         /*
537          * If the swap is discardable, prepare discard the cluster
538          * instead of free it immediately. The cluster will be freed
539          * after discard.
540          */
541         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543                 swap_cluster_schedule_discard(si, idx);
544                 return;
545         }
546
547         __free_cluster(si, idx);
548 }
549
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will be
552  * removed from free cluster list and its usage counter will be increased.
553  */
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561         if (cluster_is_free(&cluster_info[idx]))
562                 alloc_cluster(p, idx);
563
564         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565         cluster_set_count(&cluster_info[idx],
566                 cluster_count(&cluster_info[idx]) + 1);
567 }
568
569 /*
570  * The cluster corresponding to page_nr decreases one usage. If the usage
571  * counter becomes 0, which means no page in the cluster is in using, we can
572  * optionally discard the cluster and add it to free cluster list.
573  */
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575         struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578
579         if (!cluster_info)
580                 return;
581
582         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583         cluster_set_count(&cluster_info[idx],
584                 cluster_count(&cluster_info[idx]) - 1);
585
586         if (cluster_count(&cluster_info[idx]) == 0)
587                 free_cluster(p, idx);
588 }
589
590 /*
591  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592  * cluster list. Avoiding such abuse to avoid list corruption.
593  */
594 static bool
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596         unsigned long offset)
597 {
598         struct percpu_cluster *percpu_cluster;
599         bool conflict;
600
601         offset /= SWAPFILE_CLUSTER;
602         conflict = !cluster_list_empty(&si->free_clusters) &&
603                 offset != cluster_list_first(&si->free_clusters) &&
604                 cluster_is_free(&si->cluster_info[offset]);
605
606         if (!conflict)
607                 return false;
608
609         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610         cluster_set_null(&percpu_cluster->index);
611         return true;
612 }
613
614 /*
615  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616  * might involve allocating a new cluster for current CPU too.
617  */
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619         unsigned long *offset, unsigned long *scan_base)
620 {
621         struct percpu_cluster *cluster;
622         struct swap_cluster_info *ci;
623         unsigned long tmp, max;
624
625 new_cluster:
626         cluster = this_cpu_ptr(si->percpu_cluster);
627         if (cluster_is_null(&cluster->index)) {
628                 if (!cluster_list_empty(&si->free_clusters)) {
629                         cluster->index = si->free_clusters.head;
630                         cluster->next = cluster_next(&cluster->index) *
631                                         SWAPFILE_CLUSTER;
632                 } else if (!cluster_list_empty(&si->discard_clusters)) {
633                         /*
634                          * we don't have free cluster but have some clusters in
635                          * discarding, do discard now and reclaim them, then
636                          * reread cluster_next_cpu since we dropped si->lock
637                          */
638                         swap_do_scheduled_discard(si);
639                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
640                         *offset = *scan_base;
641                         goto new_cluster;
642                 } else
643                         return false;
644         }
645
646         /*
647          * Other CPUs can use our cluster if they can't find a free cluster,
648          * check if there is still free entry in the cluster
649          */
650         tmp = cluster->next;
651         max = min_t(unsigned long, si->max,
652                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653         if (tmp < max) {
654                 ci = lock_cluster(si, tmp);
655                 while (tmp < max) {
656                         if (!si->swap_map[tmp])
657                                 break;
658                         tmp++;
659                 }
660                 unlock_cluster(ci);
661         }
662         if (tmp >= max) {
663                 cluster_set_null(&cluster->index);
664                 goto new_cluster;
665         }
666         cluster->next = tmp + 1;
667         *offset = tmp;
668         *scan_base = tmp;
669         return true;
670 }
671
672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674         int nid;
675
676         assert_spin_locked(&p->lock);
677         for_each_node(nid)
678                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
679 }
680
681 static void del_from_avail_list(struct swap_info_struct *p)
682 {
683         spin_lock(&swap_avail_lock);
684         __del_from_avail_list(p);
685         spin_unlock(&swap_avail_lock);
686 }
687
688 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
689                              unsigned int nr_entries)
690 {
691         unsigned int end = offset + nr_entries - 1;
692
693         if (offset == si->lowest_bit)
694                 si->lowest_bit += nr_entries;
695         if (end == si->highest_bit)
696                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
697         si->inuse_pages += nr_entries;
698         if (si->inuse_pages == si->pages) {
699                 si->lowest_bit = si->max;
700                 si->highest_bit = 0;
701                 del_from_avail_list(si);
702         }
703 }
704
705 static void add_to_avail_list(struct swap_info_struct *p)
706 {
707         int nid;
708
709         spin_lock(&swap_avail_lock);
710         for_each_node(nid) {
711                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
712                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713         }
714         spin_unlock(&swap_avail_lock);
715 }
716
717 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
718                             unsigned int nr_entries)
719 {
720         unsigned long begin = offset;
721         unsigned long end = offset + nr_entries - 1;
722         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723
724         if (offset < si->lowest_bit)
725                 si->lowest_bit = offset;
726         if (end > si->highest_bit) {
727                 bool was_full = !si->highest_bit;
728
729                 WRITE_ONCE(si->highest_bit, end);
730                 if (was_full && (si->flags & SWP_WRITEOK))
731                         add_to_avail_list(si);
732         }
733         atomic_long_add(nr_entries, &nr_swap_pages);
734         si->inuse_pages -= nr_entries;
735         if (si->flags & SWP_BLKDEV)
736                 swap_slot_free_notify =
737                         si->bdev->bd_disk->fops->swap_slot_free_notify;
738         else
739                 swap_slot_free_notify = NULL;
740         while (offset <= end) {
741                 arch_swap_invalidate_page(si->type, offset);
742                 frontswap_invalidate_page(si->type, offset);
743                 if (swap_slot_free_notify)
744                         swap_slot_free_notify(si->bdev, offset);
745                 offset++;
746         }
747         clear_shadow_from_swap_cache(si->type, begin, end);
748 }
749
750 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
751 {
752         unsigned long prev;
753
754         if (!(si->flags & SWP_SOLIDSTATE)) {
755                 si->cluster_next = next;
756                 return;
757         }
758
759         prev = this_cpu_read(*si->cluster_next_cpu);
760         /*
761          * Cross the swap address space size aligned trunk, choose
762          * another trunk randomly to avoid lock contention on swap
763          * address space if possible.
764          */
765         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
766             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
767                 /* No free swap slots available */
768                 if (si->highest_bit <= si->lowest_bit)
769                         return;
770                 next = si->lowest_bit +
771                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
772                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
773                 next = max_t(unsigned int, next, si->lowest_bit);
774         }
775         this_cpu_write(*si->cluster_next_cpu, next);
776 }
777
778 static int scan_swap_map_slots(struct swap_info_struct *si,
779                                unsigned char usage, int nr,
780                                swp_entry_t slots[])
781 {
782         struct swap_cluster_info *ci;
783         unsigned long offset;
784         unsigned long scan_base;
785         unsigned long last_in_cluster = 0;
786         int latency_ration = LATENCY_LIMIT;
787         int n_ret = 0;
788         bool scanned_many = false;
789
790         /*
791          * We try to cluster swap pages by allocating them sequentially
792          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
793          * way, however, we resort to first-free allocation, starting
794          * a new cluster.  This prevents us from scattering swap pages
795          * all over the entire swap partition, so that we reduce
796          * overall disk seek times between swap pages.  -- sct
797          * But we do now try to find an empty cluster.  -Andrea
798          * And we let swap pages go all over an SSD partition.  Hugh
799          */
800
801         si->flags += SWP_SCANNING;
802         /*
803          * Use percpu scan base for SSD to reduce lock contention on
804          * cluster and swap cache.  For HDD, sequential access is more
805          * important.
806          */
807         if (si->flags & SWP_SOLIDSTATE)
808                 scan_base = this_cpu_read(*si->cluster_next_cpu);
809         else
810                 scan_base = si->cluster_next;
811         offset = scan_base;
812
813         /* SSD algorithm */
814         if (si->cluster_info) {
815                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
816                         goto scan;
817         } else if (unlikely(!si->cluster_nr--)) {
818                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
819                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
820                         goto checks;
821                 }
822
823                 spin_unlock(&si->lock);
824
825                 /*
826                  * If seek is expensive, start searching for new cluster from
827                  * start of partition, to minimize the span of allocated swap.
828                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
829                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
830                  */
831                 scan_base = offset = si->lowest_bit;
832                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
833
834                 /* Locate the first empty (unaligned) cluster */
835                 for (; last_in_cluster <= si->highest_bit; offset++) {
836                         if (si->swap_map[offset])
837                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
838                         else if (offset == last_in_cluster) {
839                                 spin_lock(&si->lock);
840                                 offset -= SWAPFILE_CLUSTER - 1;
841                                 si->cluster_next = offset;
842                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
843                                 goto checks;
844                         }
845                         if (unlikely(--latency_ration < 0)) {
846                                 cond_resched();
847                                 latency_ration = LATENCY_LIMIT;
848                         }
849                 }
850
851                 offset = scan_base;
852                 spin_lock(&si->lock);
853                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
854         }
855
856 checks:
857         if (si->cluster_info) {
858                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
859                 /* take a break if we already got some slots */
860                         if (n_ret)
861                                 goto done;
862                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
863                                                         &scan_base))
864                                 goto scan;
865                 }
866         }
867         if (!(si->flags & SWP_WRITEOK))
868                 goto no_page;
869         if (!si->highest_bit)
870                 goto no_page;
871         if (offset > si->highest_bit)
872                 scan_base = offset = si->lowest_bit;
873
874         ci = lock_cluster(si, offset);
875         /* reuse swap entry of cache-only swap if not busy. */
876         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
877                 int swap_was_freed;
878                 unlock_cluster(ci);
879                 spin_unlock(&si->lock);
880                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
881                 spin_lock(&si->lock);
882                 /* entry was freed successfully, try to use this again */
883                 if (swap_was_freed)
884                         goto checks;
885                 goto scan; /* check next one */
886         }
887
888         if (si->swap_map[offset]) {
889                 unlock_cluster(ci);
890                 if (!n_ret)
891                         goto scan;
892                 else
893                         goto done;
894         }
895         WRITE_ONCE(si->swap_map[offset], usage);
896         inc_cluster_info_page(si, si->cluster_info, offset);
897         unlock_cluster(ci);
898
899         swap_range_alloc(si, offset, 1);
900         slots[n_ret++] = swp_entry(si->type, offset);
901
902         /* got enough slots or reach max slots? */
903         if ((n_ret == nr) || (offset >= si->highest_bit))
904                 goto done;
905
906         /* search for next available slot */
907
908         /* time to take a break? */
909         if (unlikely(--latency_ration < 0)) {
910                 if (n_ret)
911                         goto done;
912                 spin_unlock(&si->lock);
913                 cond_resched();
914                 spin_lock(&si->lock);
915                 latency_ration = LATENCY_LIMIT;
916         }
917
918         /* try to get more slots in cluster */
919         if (si->cluster_info) {
920                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
921                         goto checks;
922         } else if (si->cluster_nr && !si->swap_map[++offset]) {
923                 /* non-ssd case, still more slots in cluster? */
924                 --si->cluster_nr;
925                 goto checks;
926         }
927
928         /*
929          * Even if there's no free clusters available (fragmented),
930          * try to scan a little more quickly with lock held unless we
931          * have scanned too many slots already.
932          */
933         if (!scanned_many) {
934                 unsigned long scan_limit;
935
936                 if (offset < scan_base)
937                         scan_limit = scan_base;
938                 else
939                         scan_limit = si->highest_bit;
940                 for (; offset <= scan_limit && --latency_ration > 0;
941                      offset++) {
942                         if (!si->swap_map[offset])
943                                 goto checks;
944                 }
945         }
946
947 done:
948         set_cluster_next(si, offset + 1);
949         si->flags -= SWP_SCANNING;
950         return n_ret;
951
952 scan:
953         spin_unlock(&si->lock);
954         while (++offset <= READ_ONCE(si->highest_bit)) {
955                 if (data_race(!si->swap_map[offset])) {
956                         spin_lock(&si->lock);
957                         goto checks;
958                 }
959                 if (vm_swap_full() &&
960                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
961                         spin_lock(&si->lock);
962                         goto checks;
963                 }
964                 if (unlikely(--latency_ration < 0)) {
965                         cond_resched();
966                         latency_ration = LATENCY_LIMIT;
967                         scanned_many = true;
968                 }
969         }
970         offset = si->lowest_bit;
971         while (offset < scan_base) {
972                 if (data_race(!si->swap_map[offset])) {
973                         spin_lock(&si->lock);
974                         goto checks;
975                 }
976                 if (vm_swap_full() &&
977                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
978                         spin_lock(&si->lock);
979                         goto checks;
980                 }
981                 if (unlikely(--latency_ration < 0)) {
982                         cond_resched();
983                         latency_ration = LATENCY_LIMIT;
984                         scanned_many = true;
985                 }
986                 offset++;
987         }
988         spin_lock(&si->lock);
989
990 no_page:
991         si->flags -= SWP_SCANNING;
992         return n_ret;
993 }
994
995 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
996 {
997         unsigned long idx;
998         struct swap_cluster_info *ci;
999         unsigned long offset;
1000
1001         /*
1002          * Should not even be attempting cluster allocations when huge
1003          * page swap is disabled.  Warn and fail the allocation.
1004          */
1005         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1006                 VM_WARN_ON_ONCE(1);
1007                 return 0;
1008         }
1009
1010         if (cluster_list_empty(&si->free_clusters))
1011                 return 0;
1012
1013         idx = cluster_list_first(&si->free_clusters);
1014         offset = idx * SWAPFILE_CLUSTER;
1015         ci = lock_cluster(si, offset);
1016         alloc_cluster(si, idx);
1017         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1018
1019         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1020         unlock_cluster(ci);
1021         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1022         *slot = swp_entry(si->type, offset);
1023
1024         return 1;
1025 }
1026
1027 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1028 {
1029         unsigned long offset = idx * SWAPFILE_CLUSTER;
1030         struct swap_cluster_info *ci;
1031
1032         ci = lock_cluster(si, offset);
1033         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1034         cluster_set_count_flag(ci, 0, 0);
1035         free_cluster(si, idx);
1036         unlock_cluster(ci);
1037         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1038 }
1039
1040 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1041 {
1042         unsigned long size = swap_entry_size(entry_size);
1043         struct swap_info_struct *si, *next;
1044         long avail_pgs;
1045         int n_ret = 0;
1046         int node;
1047
1048         /* Only single cluster request supported */
1049         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1050
1051         spin_lock(&swap_avail_lock);
1052
1053         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1054         if (avail_pgs <= 0) {
1055                 spin_unlock(&swap_avail_lock);
1056                 goto noswap;
1057         }
1058
1059         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1060
1061         atomic_long_sub(n_goal * size, &nr_swap_pages);
1062
1063 start_over:
1064         node = numa_node_id();
1065         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1066                 /* requeue si to after same-priority siblings */
1067                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1068                 spin_unlock(&swap_avail_lock);
1069                 spin_lock(&si->lock);
1070                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1071                         spin_lock(&swap_avail_lock);
1072                         if (plist_node_empty(&si->avail_lists[node])) {
1073                                 spin_unlock(&si->lock);
1074                                 goto nextsi;
1075                         }
1076                         WARN(!si->highest_bit,
1077                              "swap_info %d in list but !highest_bit\n",
1078                              si->type);
1079                         WARN(!(si->flags & SWP_WRITEOK),
1080                              "swap_info %d in list but !SWP_WRITEOK\n",
1081                              si->type);
1082                         __del_from_avail_list(si);
1083                         spin_unlock(&si->lock);
1084                         goto nextsi;
1085                 }
1086                 if (size == SWAPFILE_CLUSTER) {
1087                         if (si->flags & SWP_BLKDEV)
1088                                 n_ret = swap_alloc_cluster(si, swp_entries);
1089                 } else
1090                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1091                                                     n_goal, swp_entries);
1092                 spin_unlock(&si->lock);
1093                 if (n_ret || size == SWAPFILE_CLUSTER)
1094                         goto check_out;
1095                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1096                         si->type);
1097                 cond_resched();
1098
1099                 spin_lock(&swap_avail_lock);
1100 nextsi:
1101                 /*
1102                  * if we got here, it's likely that si was almost full before,
1103                  * and since scan_swap_map_slots() can drop the si->lock,
1104                  * multiple callers probably all tried to get a page from the
1105                  * same si and it filled up before we could get one; or, the si
1106                  * filled up between us dropping swap_avail_lock and taking
1107                  * si->lock. Since we dropped the swap_avail_lock, the
1108                  * swap_avail_head list may have been modified; so if next is
1109                  * still in the swap_avail_head list then try it, otherwise
1110                  * start over if we have not gotten any slots.
1111                  */
1112                 if (plist_node_empty(&next->avail_lists[node]))
1113                         goto start_over;
1114         }
1115
1116         spin_unlock(&swap_avail_lock);
1117
1118 check_out:
1119         if (n_ret < n_goal)
1120                 atomic_long_add((long)(n_goal - n_ret) * size,
1121                                 &nr_swap_pages);
1122 noswap:
1123         return n_ret;
1124 }
1125
1126 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1127 {
1128         struct swap_info_struct *p;
1129         unsigned long offset;
1130
1131         if (!entry.val)
1132                 goto out;
1133         p = swp_swap_info(entry);
1134         if (!p)
1135                 goto bad_nofile;
1136         if (data_race(!(p->flags & SWP_USED)))
1137                 goto bad_device;
1138         offset = swp_offset(entry);
1139         if (offset >= p->max)
1140                 goto bad_offset;
1141         return p;
1142
1143 bad_offset:
1144         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1145         goto out;
1146 bad_device:
1147         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1148         goto out;
1149 bad_nofile:
1150         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1151 out:
1152         return NULL;
1153 }
1154
1155 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1156 {
1157         struct swap_info_struct *p;
1158
1159         p = __swap_info_get(entry);
1160         if (!p)
1161                 goto out;
1162         if (data_race(!p->swap_map[swp_offset(entry)]))
1163                 goto bad_free;
1164         return p;
1165
1166 bad_free:
1167         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1168 out:
1169         return NULL;
1170 }
1171
1172 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1173 {
1174         struct swap_info_struct *p;
1175
1176         p = _swap_info_get(entry);
1177         if (p)
1178                 spin_lock(&p->lock);
1179         return p;
1180 }
1181
1182 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1183                                         struct swap_info_struct *q)
1184 {
1185         struct swap_info_struct *p;
1186
1187         p = _swap_info_get(entry);
1188
1189         if (p != q) {
1190                 if (q != NULL)
1191                         spin_unlock(&q->lock);
1192                 if (p != NULL)
1193                         spin_lock(&p->lock);
1194         }
1195         return p;
1196 }
1197
1198 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1199                                               unsigned long offset,
1200                                               unsigned char usage)
1201 {
1202         unsigned char count;
1203         unsigned char has_cache;
1204
1205         count = p->swap_map[offset];
1206
1207         has_cache = count & SWAP_HAS_CACHE;
1208         count &= ~SWAP_HAS_CACHE;
1209
1210         if (usage == SWAP_HAS_CACHE) {
1211                 VM_BUG_ON(!has_cache);
1212                 has_cache = 0;
1213         } else if (count == SWAP_MAP_SHMEM) {
1214                 /*
1215                  * Or we could insist on shmem.c using a special
1216                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1217                  */
1218                 count = 0;
1219         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1220                 if (count == COUNT_CONTINUED) {
1221                         if (swap_count_continued(p, offset, count))
1222                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1223                         else
1224                                 count = SWAP_MAP_MAX;
1225                 } else
1226                         count--;
1227         }
1228
1229         usage = count | has_cache;
1230         if (usage)
1231                 WRITE_ONCE(p->swap_map[offset], usage);
1232         else
1233                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1234
1235         return usage;
1236 }
1237
1238 /*
1239  * Check whether swap entry is valid in the swap device.  If so,
1240  * return pointer to swap_info_struct, and keep the swap entry valid
1241  * via preventing the swap device from being swapoff, until
1242  * put_swap_device() is called.  Otherwise return NULL.
1243  *
1244  * Notice that swapoff or swapoff+swapon can still happen before the
1245  * percpu_ref_tryget_live() in get_swap_device() or after the
1246  * percpu_ref_put() in put_swap_device() if there isn't any other way
1247  * to prevent swapoff, such as page lock, page table lock, etc.  The
1248  * caller must be prepared for that.  For example, the following
1249  * situation is possible.
1250  *
1251  *   CPU1                               CPU2
1252  *   do_swap_page()
1253  *     ...                              swapoff+swapon
1254  *     __read_swap_cache_async()
1255  *       swapcache_prepare()
1256  *         __swap_duplicate()
1257  *           // check swap_map
1258  *     // verify PTE not changed
1259  *
1260  * In __swap_duplicate(), the swap_map need to be checked before
1261  * changing partly because the specified swap entry may be for another
1262  * swap device which has been swapoff.  And in do_swap_page(), after
1263  * the page is read from the swap device, the PTE is verified not
1264  * changed with the page table locked to check whether the swap device
1265  * has been swapoff or swapoff+swapon.
1266  */
1267 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1268 {
1269         struct swap_info_struct *si;
1270         unsigned long offset;
1271
1272         if (!entry.val)
1273                 goto out;
1274         si = swp_swap_info(entry);
1275         if (!si)
1276                 goto bad_nofile;
1277         if (!percpu_ref_tryget_live(&si->users))
1278                 goto out;
1279         /*
1280          * Guarantee the si->users are checked before accessing other
1281          * fields of swap_info_struct.
1282          *
1283          * Paired with the spin_unlock() after setup_swap_info() in
1284          * enable_swap_info().
1285          */
1286         smp_rmb();
1287         offset = swp_offset(entry);
1288         if (offset >= si->max)
1289                 goto put_out;
1290
1291         return si;
1292 bad_nofile:
1293         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1294 out:
1295         return NULL;
1296 put_out:
1297         percpu_ref_put(&si->users);
1298         return NULL;
1299 }
1300
1301 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1302                                        swp_entry_t entry)
1303 {
1304         struct swap_cluster_info *ci;
1305         unsigned long offset = swp_offset(entry);
1306         unsigned char usage;
1307
1308         ci = lock_cluster_or_swap_info(p, offset);
1309         usage = __swap_entry_free_locked(p, offset, 1);
1310         unlock_cluster_or_swap_info(p, ci);
1311         if (!usage)
1312                 free_swap_slot(entry);
1313
1314         return usage;
1315 }
1316
1317 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1318 {
1319         struct swap_cluster_info *ci;
1320         unsigned long offset = swp_offset(entry);
1321         unsigned char count;
1322
1323         ci = lock_cluster(p, offset);
1324         count = p->swap_map[offset];
1325         VM_BUG_ON(count != SWAP_HAS_CACHE);
1326         p->swap_map[offset] = 0;
1327         dec_cluster_info_page(p, p->cluster_info, offset);
1328         unlock_cluster(ci);
1329
1330         mem_cgroup_uncharge_swap(entry, 1);
1331         swap_range_free(p, offset, 1);
1332 }
1333
1334 /*
1335  * Caller has made sure that the swap device corresponding to entry
1336  * is still around or has not been recycled.
1337  */
1338 void swap_free(swp_entry_t entry)
1339 {
1340         struct swap_info_struct *p;
1341
1342         p = _swap_info_get(entry);
1343         if (p)
1344                 __swap_entry_free(p, entry);
1345 }
1346
1347 /*
1348  * Called after dropping swapcache to decrease refcnt to swap entries.
1349  */
1350 void put_swap_page(struct page *page, swp_entry_t entry)
1351 {
1352         unsigned long offset = swp_offset(entry);
1353         unsigned long idx = offset / SWAPFILE_CLUSTER;
1354         struct swap_cluster_info *ci;
1355         struct swap_info_struct *si;
1356         unsigned char *map;
1357         unsigned int i, free_entries = 0;
1358         unsigned char val;
1359         int size = swap_entry_size(thp_nr_pages(page));
1360
1361         si = _swap_info_get(entry);
1362         if (!si)
1363                 return;
1364
1365         ci = lock_cluster_or_swap_info(si, offset);
1366         if (size == SWAPFILE_CLUSTER) {
1367                 VM_BUG_ON(!cluster_is_huge(ci));
1368                 map = si->swap_map + offset;
1369                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1370                         val = map[i];
1371                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1372                         if (val == SWAP_HAS_CACHE)
1373                                 free_entries++;
1374                 }
1375                 cluster_clear_huge(ci);
1376                 if (free_entries == SWAPFILE_CLUSTER) {
1377                         unlock_cluster_or_swap_info(si, ci);
1378                         spin_lock(&si->lock);
1379                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1380                         swap_free_cluster(si, idx);
1381                         spin_unlock(&si->lock);
1382                         return;
1383                 }
1384         }
1385         for (i = 0; i < size; i++, entry.val++) {
1386                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1387                         unlock_cluster_or_swap_info(si, ci);
1388                         free_swap_slot(entry);
1389                         if (i == size - 1)
1390                                 return;
1391                         lock_cluster_or_swap_info(si, offset);
1392                 }
1393         }
1394         unlock_cluster_or_swap_info(si, ci);
1395 }
1396
1397 #ifdef CONFIG_THP_SWAP
1398 int split_swap_cluster(swp_entry_t entry)
1399 {
1400         struct swap_info_struct *si;
1401         struct swap_cluster_info *ci;
1402         unsigned long offset = swp_offset(entry);
1403
1404         si = _swap_info_get(entry);
1405         if (!si)
1406                 return -EBUSY;
1407         ci = lock_cluster(si, offset);
1408         cluster_clear_huge(ci);
1409         unlock_cluster(ci);
1410         return 0;
1411 }
1412 #endif
1413
1414 static int swp_entry_cmp(const void *ent1, const void *ent2)
1415 {
1416         const swp_entry_t *e1 = ent1, *e2 = ent2;
1417
1418         return (int)swp_type(*e1) - (int)swp_type(*e2);
1419 }
1420
1421 void swapcache_free_entries(swp_entry_t *entries, int n)
1422 {
1423         struct swap_info_struct *p, *prev;
1424         int i;
1425
1426         if (n <= 0)
1427                 return;
1428
1429         prev = NULL;
1430         p = NULL;
1431
1432         /*
1433          * Sort swap entries by swap device, so each lock is only taken once.
1434          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1435          * so low that it isn't necessary to optimize further.
1436          */
1437         if (nr_swapfiles > 1)
1438                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1439         for (i = 0; i < n; ++i) {
1440                 p = swap_info_get_cont(entries[i], prev);
1441                 if (p)
1442                         swap_entry_free(p, entries[i]);
1443                 prev = p;
1444         }
1445         if (p)
1446                 spin_unlock(&p->lock);
1447 }
1448
1449 /*
1450  * How many references to page are currently swapped out?
1451  * This does not give an exact answer when swap count is continued,
1452  * but does include the high COUNT_CONTINUED flag to allow for that.
1453  */
1454 int page_swapcount(struct page *page)
1455 {
1456         int count = 0;
1457         struct swap_info_struct *p;
1458         struct swap_cluster_info *ci;
1459         swp_entry_t entry;
1460         unsigned long offset;
1461
1462         entry.val = page_private(page);
1463         p = _swap_info_get(entry);
1464         if (p) {
1465                 offset = swp_offset(entry);
1466                 ci = lock_cluster_or_swap_info(p, offset);
1467                 count = swap_count(p->swap_map[offset]);
1468                 unlock_cluster_or_swap_info(p, ci);
1469         }
1470         return count;
1471 }
1472
1473 int __swap_count(swp_entry_t entry)
1474 {
1475         struct swap_info_struct *si;
1476         pgoff_t offset = swp_offset(entry);
1477         int count = 0;
1478
1479         si = get_swap_device(entry);
1480         if (si) {
1481                 count = swap_count(si->swap_map[offset]);
1482                 put_swap_device(si);
1483         }
1484         return count;
1485 }
1486
1487 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1488 {
1489         int count = 0;
1490         pgoff_t offset = swp_offset(entry);
1491         struct swap_cluster_info *ci;
1492
1493         ci = lock_cluster_or_swap_info(si, offset);
1494         count = swap_count(si->swap_map[offset]);
1495         unlock_cluster_or_swap_info(si, ci);
1496         return count;
1497 }
1498
1499 /*
1500  * How many references to @entry are currently swapped out?
1501  * This does not give an exact answer when swap count is continued,
1502  * but does include the high COUNT_CONTINUED flag to allow for that.
1503  */
1504 int __swp_swapcount(swp_entry_t entry)
1505 {
1506         int count = 0;
1507         struct swap_info_struct *si;
1508
1509         si = get_swap_device(entry);
1510         if (si) {
1511                 count = swap_swapcount(si, entry);
1512                 put_swap_device(si);
1513         }
1514         return count;
1515 }
1516
1517 /*
1518  * How many references to @entry are currently swapped out?
1519  * This considers COUNT_CONTINUED so it returns exact answer.
1520  */
1521 int swp_swapcount(swp_entry_t entry)
1522 {
1523         int count, tmp_count, n;
1524         struct swap_info_struct *p;
1525         struct swap_cluster_info *ci;
1526         struct page *page;
1527         pgoff_t offset;
1528         unsigned char *map;
1529
1530         p = _swap_info_get(entry);
1531         if (!p)
1532                 return 0;
1533
1534         offset = swp_offset(entry);
1535
1536         ci = lock_cluster_or_swap_info(p, offset);
1537
1538         count = swap_count(p->swap_map[offset]);
1539         if (!(count & COUNT_CONTINUED))
1540                 goto out;
1541
1542         count &= ~COUNT_CONTINUED;
1543         n = SWAP_MAP_MAX + 1;
1544
1545         page = vmalloc_to_page(p->swap_map + offset);
1546         offset &= ~PAGE_MASK;
1547         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1548
1549         do {
1550                 page = list_next_entry(page, lru);
1551                 map = kmap_atomic(page);
1552                 tmp_count = map[offset];
1553                 kunmap_atomic(map);
1554
1555                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1556                 n *= (SWAP_CONT_MAX + 1);
1557         } while (tmp_count & COUNT_CONTINUED);
1558 out:
1559         unlock_cluster_or_swap_info(p, ci);
1560         return count;
1561 }
1562
1563 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1564                                          swp_entry_t entry)
1565 {
1566         struct swap_cluster_info *ci;
1567         unsigned char *map = si->swap_map;
1568         unsigned long roffset = swp_offset(entry);
1569         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1570         int i;
1571         bool ret = false;
1572
1573         ci = lock_cluster_or_swap_info(si, offset);
1574         if (!ci || !cluster_is_huge(ci)) {
1575                 if (swap_count(map[roffset]))
1576                         ret = true;
1577                 goto unlock_out;
1578         }
1579         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1580                 if (swap_count(map[offset + i])) {
1581                         ret = true;
1582                         break;
1583                 }
1584         }
1585 unlock_out:
1586         unlock_cluster_or_swap_info(si, ci);
1587         return ret;
1588 }
1589
1590 static bool page_swapped(struct page *page)
1591 {
1592         swp_entry_t entry;
1593         struct swap_info_struct *si;
1594
1595         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1596                 return page_swapcount(page) != 0;
1597
1598         page = compound_head(page);
1599         entry.val = page_private(page);
1600         si = _swap_info_get(entry);
1601         if (si)
1602                 return swap_page_trans_huge_swapped(si, entry);
1603         return false;
1604 }
1605
1606 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1607                                          int *total_swapcount)
1608 {
1609         int i, map_swapcount, _total_mapcount, _total_swapcount;
1610         unsigned long offset = 0;
1611         struct swap_info_struct *si;
1612         struct swap_cluster_info *ci = NULL;
1613         unsigned char *map = NULL;
1614         int mapcount, swapcount = 0;
1615
1616         /* hugetlbfs shouldn't call it */
1617         VM_BUG_ON_PAGE(PageHuge(page), page);
1618
1619         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1620                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1621                 if (PageSwapCache(page))
1622                         swapcount = page_swapcount(page);
1623                 if (total_swapcount)
1624                         *total_swapcount = swapcount;
1625                 return mapcount + swapcount;
1626         }
1627
1628         page = compound_head(page);
1629
1630         _total_mapcount = _total_swapcount = map_swapcount = 0;
1631         if (PageSwapCache(page)) {
1632                 swp_entry_t entry;
1633
1634                 entry.val = page_private(page);
1635                 si = _swap_info_get(entry);
1636                 if (si) {
1637                         map = si->swap_map;
1638                         offset = swp_offset(entry);
1639                 }
1640         }
1641         if (map)
1642                 ci = lock_cluster(si, offset);
1643         for (i = 0; i < HPAGE_PMD_NR; i++) {
1644                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1645                 _total_mapcount += mapcount;
1646                 if (map) {
1647                         swapcount = swap_count(map[offset + i]);
1648                         _total_swapcount += swapcount;
1649                 }
1650                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1651         }
1652         unlock_cluster(ci);
1653         if (PageDoubleMap(page)) {
1654                 map_swapcount -= 1;
1655                 _total_mapcount -= HPAGE_PMD_NR;
1656         }
1657         mapcount = compound_mapcount(page);
1658         map_swapcount += mapcount;
1659         _total_mapcount += mapcount;
1660         if (total_mapcount)
1661                 *total_mapcount = _total_mapcount;
1662         if (total_swapcount)
1663                 *total_swapcount = _total_swapcount;
1664
1665         return map_swapcount;
1666 }
1667
1668 /*
1669  * We can write to an anon page without COW if there are no other references
1670  * to it.  And as a side-effect, free up its swap: because the old content
1671  * on disk will never be read, and seeking back there to write new content
1672  * later would only waste time away from clustering.
1673  *
1674  * NOTE: total_map_swapcount should not be relied upon by the caller if
1675  * reuse_swap_page() returns false, but it may be always overwritten
1676  * (see the other implementation for CONFIG_SWAP=n).
1677  */
1678 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1679 {
1680         int count, total_mapcount, total_swapcount;
1681
1682         VM_BUG_ON_PAGE(!PageLocked(page), page);
1683         if (unlikely(PageKsm(page)))
1684                 return false;
1685         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1686                                               &total_swapcount);
1687         if (total_map_swapcount)
1688                 *total_map_swapcount = total_mapcount + total_swapcount;
1689         if (count == 1 && PageSwapCache(page) &&
1690             (likely(!PageTransCompound(page)) ||
1691              /* The remaining swap count will be freed soon */
1692              total_swapcount == page_swapcount(page))) {
1693                 if (!PageWriteback(page)) {
1694                         page = compound_head(page);
1695                         delete_from_swap_cache(page);
1696                         SetPageDirty(page);
1697                 } else {
1698                         swp_entry_t entry;
1699                         struct swap_info_struct *p;
1700
1701                         entry.val = page_private(page);
1702                         p = swap_info_get(entry);
1703                         if (p->flags & SWP_STABLE_WRITES) {
1704                                 spin_unlock(&p->lock);
1705                                 return false;
1706                         }
1707                         spin_unlock(&p->lock);
1708                 }
1709         }
1710
1711         return count <= 1;
1712 }
1713
1714 /*
1715  * If swap is getting full, or if there are no more mappings of this page,
1716  * then try_to_free_swap is called to free its swap space.
1717  */
1718 int try_to_free_swap(struct page *page)
1719 {
1720         VM_BUG_ON_PAGE(!PageLocked(page), page);
1721
1722         if (!PageSwapCache(page))
1723                 return 0;
1724         if (PageWriteback(page))
1725                 return 0;
1726         if (page_swapped(page))
1727                 return 0;
1728
1729         /*
1730          * Once hibernation has begun to create its image of memory,
1731          * there's a danger that one of the calls to try_to_free_swap()
1732          * - most probably a call from __try_to_reclaim_swap() while
1733          * hibernation is allocating its own swap pages for the image,
1734          * but conceivably even a call from memory reclaim - will free
1735          * the swap from a page which has already been recorded in the
1736          * image as a clean swapcache page, and then reuse its swap for
1737          * another page of the image.  On waking from hibernation, the
1738          * original page might be freed under memory pressure, then
1739          * later read back in from swap, now with the wrong data.
1740          *
1741          * Hibernation suspends storage while it is writing the image
1742          * to disk so check that here.
1743          */
1744         if (pm_suspended_storage())
1745                 return 0;
1746
1747         page = compound_head(page);
1748         delete_from_swap_cache(page);
1749         SetPageDirty(page);
1750         return 1;
1751 }
1752
1753 /*
1754  * Free the swap entry like above, but also try to
1755  * free the page cache entry if it is the last user.
1756  */
1757 int free_swap_and_cache(swp_entry_t entry)
1758 {
1759         struct swap_info_struct *p;
1760         unsigned char count;
1761
1762         if (non_swap_entry(entry))
1763                 return 1;
1764
1765         p = _swap_info_get(entry);
1766         if (p) {
1767                 count = __swap_entry_free(p, entry);
1768                 if (count == SWAP_HAS_CACHE &&
1769                     !swap_page_trans_huge_swapped(p, entry))
1770                         __try_to_reclaim_swap(p, swp_offset(entry),
1771                                               TTRS_UNMAPPED | TTRS_FULL);
1772         }
1773         return p != NULL;
1774 }
1775
1776 #ifdef CONFIG_HIBERNATION
1777
1778 swp_entry_t get_swap_page_of_type(int type)
1779 {
1780         struct swap_info_struct *si = swap_type_to_swap_info(type);
1781         swp_entry_t entry = {0};
1782
1783         if (!si)
1784                 goto fail;
1785
1786         /* This is called for allocating swap entry, not cache */
1787         spin_lock(&si->lock);
1788         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1789                 atomic_long_dec(&nr_swap_pages);
1790         spin_unlock(&si->lock);
1791 fail:
1792         return entry;
1793 }
1794
1795 /*
1796  * Find the swap type that corresponds to given device (if any).
1797  *
1798  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1799  * from 0, in which the swap header is expected to be located.
1800  *
1801  * This is needed for the suspend to disk (aka swsusp).
1802  */
1803 int swap_type_of(dev_t device, sector_t offset)
1804 {
1805         int type;
1806
1807         if (!device)
1808                 return -1;
1809
1810         spin_lock(&swap_lock);
1811         for (type = 0; type < nr_swapfiles; type++) {
1812                 struct swap_info_struct *sis = swap_info[type];
1813
1814                 if (!(sis->flags & SWP_WRITEOK))
1815                         continue;
1816
1817                 if (device == sis->bdev->bd_dev) {
1818                         struct swap_extent *se = first_se(sis);
1819
1820                         if (se->start_block == offset) {
1821                                 spin_unlock(&swap_lock);
1822                                 return type;
1823                         }
1824                 }
1825         }
1826         spin_unlock(&swap_lock);
1827         return -ENODEV;
1828 }
1829
1830 int find_first_swap(dev_t *device)
1831 {
1832         int type;
1833
1834         spin_lock(&swap_lock);
1835         for (type = 0; type < nr_swapfiles; type++) {
1836                 struct swap_info_struct *sis = swap_info[type];
1837
1838                 if (!(sis->flags & SWP_WRITEOK))
1839                         continue;
1840                 *device = sis->bdev->bd_dev;
1841                 spin_unlock(&swap_lock);
1842                 return type;
1843         }
1844         spin_unlock(&swap_lock);
1845         return -ENODEV;
1846 }
1847
1848 /*
1849  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1850  * corresponding to given index in swap_info (swap type).
1851  */
1852 sector_t swapdev_block(int type, pgoff_t offset)
1853 {
1854         struct swap_info_struct *si = swap_type_to_swap_info(type);
1855         struct swap_extent *se;
1856
1857         if (!si || !(si->flags & SWP_WRITEOK))
1858                 return 0;
1859         se = offset_to_swap_extent(si, offset);
1860         return se->start_block + (offset - se->start_page);
1861 }
1862
1863 /*
1864  * Return either the total number of swap pages of given type, or the number
1865  * of free pages of that type (depending on @free)
1866  *
1867  * This is needed for software suspend
1868  */
1869 unsigned int count_swap_pages(int type, int free)
1870 {
1871         unsigned int n = 0;
1872
1873         spin_lock(&swap_lock);
1874         if ((unsigned int)type < nr_swapfiles) {
1875                 struct swap_info_struct *sis = swap_info[type];
1876
1877                 spin_lock(&sis->lock);
1878                 if (sis->flags & SWP_WRITEOK) {
1879                         n = sis->pages;
1880                         if (free)
1881                                 n -= sis->inuse_pages;
1882                 }
1883                 spin_unlock(&sis->lock);
1884         }
1885         spin_unlock(&swap_lock);
1886         return n;
1887 }
1888 #endif /* CONFIG_HIBERNATION */
1889
1890 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1891 {
1892         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1893 }
1894
1895 /*
1896  * No need to decide whether this PTE shares the swap entry with others,
1897  * just let do_wp_page work it out if a write is requested later - to
1898  * force COW, vm_page_prot omits write permission from any private vma.
1899  */
1900 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1901                 unsigned long addr, swp_entry_t entry, struct page *page)
1902 {
1903         struct page *swapcache;
1904         spinlock_t *ptl;
1905         pte_t *pte;
1906         int ret = 1;
1907
1908         swapcache = page;
1909         page = ksm_might_need_to_copy(page, vma, addr);
1910         if (unlikely(!page))
1911                 return -ENOMEM;
1912
1913         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1914         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1915                 ret = 0;
1916                 goto out;
1917         }
1918
1919         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1920         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1921         get_page(page);
1922         set_pte_at(vma->vm_mm, addr, pte,
1923                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1924         if (page == swapcache) {
1925                 page_add_anon_rmap(page, vma, addr, false);
1926         } else { /* ksm created a completely new copy */
1927                 page_add_new_anon_rmap(page, vma, addr, false);
1928                 lru_cache_add_inactive_or_unevictable(page, vma);
1929         }
1930         swap_free(entry);
1931 out:
1932         pte_unmap_unlock(pte, ptl);
1933         if (page != swapcache) {
1934                 unlock_page(page);
1935                 put_page(page);
1936         }
1937         return ret;
1938 }
1939
1940 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1941                         unsigned long addr, unsigned long end,
1942                         unsigned int type, bool frontswap,
1943                         unsigned long *fs_pages_to_unuse)
1944 {
1945         struct page *page;
1946         swp_entry_t entry;
1947         pte_t *pte;
1948         struct swap_info_struct *si;
1949         unsigned long offset;
1950         int ret = 0;
1951         volatile unsigned char *swap_map;
1952
1953         si = swap_info[type];
1954         pte = pte_offset_map(pmd, addr);
1955         do {
1956                 if (!is_swap_pte(*pte))
1957                         continue;
1958
1959                 entry = pte_to_swp_entry(*pte);
1960                 if (swp_type(entry) != type)
1961                         continue;
1962
1963                 offset = swp_offset(entry);
1964                 if (frontswap && !frontswap_test(si, offset))
1965                         continue;
1966
1967                 pte_unmap(pte);
1968                 swap_map = &si->swap_map[offset];
1969                 page = lookup_swap_cache(entry, vma, addr);
1970                 if (!page) {
1971                         struct vm_fault vmf = {
1972                                 .vma = vma,
1973                                 .address = addr,
1974                                 .pmd = pmd,
1975                         };
1976
1977                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1978                                                 &vmf);
1979                 }
1980                 if (!page) {
1981                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1982                                 goto try_next;
1983                         return -ENOMEM;
1984                 }
1985
1986                 lock_page(page);
1987                 wait_on_page_writeback(page);
1988                 ret = unuse_pte(vma, pmd, addr, entry, page);
1989                 if (ret < 0) {
1990                         unlock_page(page);
1991                         put_page(page);
1992                         goto out;
1993                 }
1994
1995                 try_to_free_swap(page);
1996                 unlock_page(page);
1997                 put_page(page);
1998
1999                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2000                         ret = FRONTSWAP_PAGES_UNUSED;
2001                         goto out;
2002                 }
2003 try_next:
2004                 pte = pte_offset_map(pmd, addr);
2005         } while (pte++, addr += PAGE_SIZE, addr != end);
2006         pte_unmap(pte - 1);
2007
2008         ret = 0;
2009 out:
2010         return ret;
2011 }
2012
2013 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2014                                 unsigned long addr, unsigned long end,
2015                                 unsigned int type, bool frontswap,
2016                                 unsigned long *fs_pages_to_unuse)
2017 {
2018         pmd_t *pmd;
2019         unsigned long next;
2020         int ret;
2021
2022         pmd = pmd_offset(pud, addr);
2023         do {
2024                 cond_resched();
2025                 next = pmd_addr_end(addr, end);
2026                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2027                         continue;
2028                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2029                                       frontswap, fs_pages_to_unuse);
2030                 if (ret)
2031                         return ret;
2032         } while (pmd++, addr = next, addr != end);
2033         return 0;
2034 }
2035
2036 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2037                                 unsigned long addr, unsigned long end,
2038                                 unsigned int type, bool frontswap,
2039                                 unsigned long *fs_pages_to_unuse)
2040 {
2041         pud_t *pud;
2042         unsigned long next;
2043         int ret;
2044
2045         pud = pud_offset(p4d, addr);
2046         do {
2047                 next = pud_addr_end(addr, end);
2048                 if (pud_none_or_clear_bad(pud))
2049                         continue;
2050                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2051                                       frontswap, fs_pages_to_unuse);
2052                 if (ret)
2053                         return ret;
2054         } while (pud++, addr = next, addr != end);
2055         return 0;
2056 }
2057
2058 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2059                                 unsigned long addr, unsigned long end,
2060                                 unsigned int type, bool frontswap,
2061                                 unsigned long *fs_pages_to_unuse)
2062 {
2063         p4d_t *p4d;
2064         unsigned long next;
2065         int ret;
2066
2067         p4d = p4d_offset(pgd, addr);
2068         do {
2069                 next = p4d_addr_end(addr, end);
2070                 if (p4d_none_or_clear_bad(p4d))
2071                         continue;
2072                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2073                                       frontswap, fs_pages_to_unuse);
2074                 if (ret)
2075                         return ret;
2076         } while (p4d++, addr = next, addr != end);
2077         return 0;
2078 }
2079
2080 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2081                      bool frontswap, unsigned long *fs_pages_to_unuse)
2082 {
2083         pgd_t *pgd;
2084         unsigned long addr, end, next;
2085         int ret;
2086
2087         addr = vma->vm_start;
2088         end = vma->vm_end;
2089
2090         pgd = pgd_offset(vma->vm_mm, addr);
2091         do {
2092                 next = pgd_addr_end(addr, end);
2093                 if (pgd_none_or_clear_bad(pgd))
2094                         continue;
2095                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2096                                       frontswap, fs_pages_to_unuse);
2097                 if (ret)
2098                         return ret;
2099         } while (pgd++, addr = next, addr != end);
2100         return 0;
2101 }
2102
2103 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2104                     bool frontswap, unsigned long *fs_pages_to_unuse)
2105 {
2106         struct vm_area_struct *vma;
2107         int ret = 0;
2108
2109         mmap_read_lock(mm);
2110         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2111                 if (vma->anon_vma) {
2112                         ret = unuse_vma(vma, type, frontswap,
2113                                         fs_pages_to_unuse);
2114                         if (ret)
2115                                 break;
2116                 }
2117                 cond_resched();
2118         }
2119         mmap_read_unlock(mm);
2120         return ret;
2121 }
2122
2123 /*
2124  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2125  * from current position to next entry still in use. Return 0
2126  * if there are no inuse entries after prev till end of the map.
2127  */
2128 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2129                                         unsigned int prev, bool frontswap)
2130 {
2131         unsigned int i;
2132         unsigned char count;
2133
2134         /*
2135          * No need for swap_lock here: we're just looking
2136          * for whether an entry is in use, not modifying it; false
2137          * hits are okay, and sys_swapoff() has already prevented new
2138          * allocations from this area (while holding swap_lock).
2139          */
2140         for (i = prev + 1; i < si->max; i++) {
2141                 count = READ_ONCE(si->swap_map[i]);
2142                 if (count && swap_count(count) != SWAP_MAP_BAD)
2143                         if (!frontswap || frontswap_test(si, i))
2144                                 break;
2145                 if ((i % LATENCY_LIMIT) == 0)
2146                         cond_resched();
2147         }
2148
2149         if (i == si->max)
2150                 i = 0;
2151
2152         return i;
2153 }
2154
2155 /*
2156  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2157  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2158  */
2159 int try_to_unuse(unsigned int type, bool frontswap,
2160                  unsigned long pages_to_unuse)
2161 {
2162         struct mm_struct *prev_mm;
2163         struct mm_struct *mm;
2164         struct list_head *p;
2165         int retval = 0;
2166         struct swap_info_struct *si = swap_info[type];
2167         struct page *page;
2168         swp_entry_t entry;
2169         unsigned int i;
2170
2171         if (!READ_ONCE(si->inuse_pages))
2172                 return 0;
2173
2174         if (!frontswap)
2175                 pages_to_unuse = 0;
2176
2177 retry:
2178         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2179         if (retval)
2180                 goto out;
2181
2182         prev_mm = &init_mm;
2183         mmget(prev_mm);
2184
2185         spin_lock(&mmlist_lock);
2186         p = &init_mm.mmlist;
2187         while (READ_ONCE(si->inuse_pages) &&
2188                !signal_pending(current) &&
2189                (p = p->next) != &init_mm.mmlist) {
2190
2191                 mm = list_entry(p, struct mm_struct, mmlist);
2192                 if (!mmget_not_zero(mm))
2193                         continue;
2194                 spin_unlock(&mmlist_lock);
2195                 mmput(prev_mm);
2196                 prev_mm = mm;
2197                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2198
2199                 if (retval) {
2200                         mmput(prev_mm);
2201                         goto out;
2202                 }
2203
2204                 /*
2205                  * Make sure that we aren't completely killing
2206                  * interactive performance.
2207                  */
2208                 cond_resched();
2209                 spin_lock(&mmlist_lock);
2210         }
2211         spin_unlock(&mmlist_lock);
2212
2213         mmput(prev_mm);
2214
2215         i = 0;
2216         while (READ_ONCE(si->inuse_pages) &&
2217                !signal_pending(current) &&
2218                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2219
2220                 entry = swp_entry(type, i);
2221                 page = find_get_page(swap_address_space(entry), i);
2222                 if (!page)
2223                         continue;
2224
2225                 /*
2226                  * It is conceivable that a racing task removed this page from
2227                  * swap cache just before we acquired the page lock. The page
2228                  * might even be back in swap cache on another swap area. But
2229                  * that is okay, try_to_free_swap() only removes stale pages.
2230                  */
2231                 lock_page(page);
2232                 wait_on_page_writeback(page);
2233                 try_to_free_swap(page);
2234                 unlock_page(page);
2235                 put_page(page);
2236
2237                 /*
2238                  * For frontswap, we just need to unuse pages_to_unuse, if
2239                  * it was specified. Need not check frontswap again here as
2240                  * we already zeroed out pages_to_unuse if not frontswap.
2241                  */
2242                 if (pages_to_unuse && --pages_to_unuse == 0)
2243                         goto out;
2244         }
2245
2246         /*
2247          * Lets check again to see if there are still swap entries in the map.
2248          * If yes, we would need to do retry the unuse logic again.
2249          * Under global memory pressure, swap entries can be reinserted back
2250          * into process space after the mmlist loop above passes over them.
2251          *
2252          * Limit the number of retries? No: when mmget_not_zero() above fails,
2253          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2254          * at its own independent pace; and even shmem_writepage() could have
2255          * been preempted after get_swap_page(), temporarily hiding that swap.
2256          * It's easy and robust (though cpu-intensive) just to keep retrying.
2257          */
2258         if (READ_ONCE(si->inuse_pages)) {
2259                 if (!signal_pending(current))
2260                         goto retry;
2261                 retval = -EINTR;
2262         }
2263 out:
2264         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2265 }
2266
2267 /*
2268  * After a successful try_to_unuse, if no swap is now in use, we know
2269  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2270  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2271  * added to the mmlist just after page_duplicate - before would be racy.
2272  */
2273 static void drain_mmlist(void)
2274 {
2275         struct list_head *p, *next;
2276         unsigned int type;
2277
2278         for (type = 0; type < nr_swapfiles; type++)
2279                 if (swap_info[type]->inuse_pages)
2280                         return;
2281         spin_lock(&mmlist_lock);
2282         list_for_each_safe(p, next, &init_mm.mmlist)
2283                 list_del_init(p);
2284         spin_unlock(&mmlist_lock);
2285 }
2286
2287 /*
2288  * Free all of a swapdev's extent information
2289  */
2290 static void destroy_swap_extents(struct swap_info_struct *sis)
2291 {
2292         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2293                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2294                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2295
2296                 rb_erase(rb, &sis->swap_extent_root);
2297                 kfree(se);
2298         }
2299
2300         if (sis->flags & SWP_ACTIVATED) {
2301                 struct file *swap_file = sis->swap_file;
2302                 struct address_space *mapping = swap_file->f_mapping;
2303
2304                 sis->flags &= ~SWP_ACTIVATED;
2305                 if (mapping->a_ops->swap_deactivate)
2306                         mapping->a_ops->swap_deactivate(swap_file);
2307         }
2308 }
2309
2310 /*
2311  * Add a block range (and the corresponding page range) into this swapdev's
2312  * extent tree.
2313  *
2314  * This function rather assumes that it is called in ascending page order.
2315  */
2316 int
2317 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2318                 unsigned long nr_pages, sector_t start_block)
2319 {
2320         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2321         struct swap_extent *se;
2322         struct swap_extent *new_se;
2323
2324         /*
2325          * place the new node at the right most since the
2326          * function is called in ascending page order.
2327          */
2328         while (*link) {
2329                 parent = *link;
2330                 link = &parent->rb_right;
2331         }
2332
2333         if (parent) {
2334                 se = rb_entry(parent, struct swap_extent, rb_node);
2335                 BUG_ON(se->start_page + se->nr_pages != start_page);
2336                 if (se->start_block + se->nr_pages == start_block) {
2337                         /* Merge it */
2338                         se->nr_pages += nr_pages;
2339                         return 0;
2340                 }
2341         }
2342
2343         /* No merge, insert a new extent. */
2344         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2345         if (new_se == NULL)
2346                 return -ENOMEM;
2347         new_se->start_page = start_page;
2348         new_se->nr_pages = nr_pages;
2349         new_se->start_block = start_block;
2350
2351         rb_link_node(&new_se->rb_node, parent, link);
2352         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2353         return 1;
2354 }
2355 EXPORT_SYMBOL_GPL(add_swap_extent);
2356
2357 /*
2358  * A `swap extent' is a simple thing which maps a contiguous range of pages
2359  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2360  * is built at swapon time and is then used at swap_writepage/swap_readpage
2361  * time for locating where on disk a page belongs.
2362  *
2363  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2364  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2365  * swap files identically.
2366  *
2367  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2368  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2369  * swapfiles are handled *identically* after swapon time.
2370  *
2371  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2372  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2373  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2374  * requirements, they are simply tossed out - we will never use those blocks
2375  * for swapping.
2376  *
2377  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2378  * prevents users from writing to the swap device, which will corrupt memory.
2379  *
2380  * The amount of disk space which a single swap extent represents varies.
2381  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2382  * extents in the list.  To avoid much list walking, we cache the previous
2383  * search location in `curr_swap_extent', and start new searches from there.
2384  * This is extremely effective.  The average number of iterations in
2385  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2386  */
2387 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2388 {
2389         struct file *swap_file = sis->swap_file;
2390         struct address_space *mapping = swap_file->f_mapping;
2391         struct inode *inode = mapping->host;
2392         int ret;
2393
2394         if (S_ISBLK(inode->i_mode)) {
2395                 ret = add_swap_extent(sis, 0, sis->max, 0);
2396                 *span = sis->pages;
2397                 return ret;
2398         }
2399
2400         if (mapping->a_ops->swap_activate) {
2401                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2402                 if (ret >= 0)
2403                         sis->flags |= SWP_ACTIVATED;
2404                 if (!ret) {
2405                         sis->flags |= SWP_FS_OPS;
2406                         ret = add_swap_extent(sis, 0, sis->max, 0);
2407                         *span = sis->pages;
2408                 }
2409                 return ret;
2410         }
2411
2412         return generic_swapfile_activate(sis, swap_file, span);
2413 }
2414
2415 static int swap_node(struct swap_info_struct *p)
2416 {
2417         struct block_device *bdev;
2418
2419         if (p->bdev)
2420                 bdev = p->bdev;
2421         else
2422                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2423
2424         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2425 }
2426
2427 static void setup_swap_info(struct swap_info_struct *p, int prio,
2428                             unsigned char *swap_map,
2429                             struct swap_cluster_info *cluster_info)
2430 {
2431         int i;
2432
2433         if (prio >= 0)
2434                 p->prio = prio;
2435         else
2436                 p->prio = --least_priority;
2437         /*
2438          * the plist prio is negated because plist ordering is
2439          * low-to-high, while swap ordering is high-to-low
2440          */
2441         p->list.prio = -p->prio;
2442         for_each_node(i) {
2443                 if (p->prio >= 0)
2444                         p->avail_lists[i].prio = -p->prio;
2445                 else {
2446                         if (swap_node(p) == i)
2447                                 p->avail_lists[i].prio = 1;
2448                         else
2449                                 p->avail_lists[i].prio = -p->prio;
2450                 }
2451         }
2452         p->swap_map = swap_map;
2453         p->cluster_info = cluster_info;
2454 }
2455
2456 static void _enable_swap_info(struct swap_info_struct *p)
2457 {
2458         p->flags |= SWP_WRITEOK;
2459         atomic_long_add(p->pages, &nr_swap_pages);
2460         total_swap_pages += p->pages;
2461
2462         assert_spin_locked(&swap_lock);
2463         /*
2464          * both lists are plists, and thus priority ordered.
2465          * swap_active_head needs to be priority ordered for swapoff(),
2466          * which on removal of any swap_info_struct with an auto-assigned
2467          * (i.e. negative) priority increments the auto-assigned priority
2468          * of any lower-priority swap_info_structs.
2469          * swap_avail_head needs to be priority ordered for get_swap_page(),
2470          * which allocates swap pages from the highest available priority
2471          * swap_info_struct.
2472          */
2473         plist_add(&p->list, &swap_active_head);
2474         add_to_avail_list(p);
2475 }
2476
2477 static void enable_swap_info(struct swap_info_struct *p, int prio,
2478                                 unsigned char *swap_map,
2479                                 struct swap_cluster_info *cluster_info,
2480                                 unsigned long *frontswap_map)
2481 {
2482         frontswap_init(p->type, frontswap_map);
2483         spin_lock(&swap_lock);
2484         spin_lock(&p->lock);
2485         setup_swap_info(p, prio, swap_map, cluster_info);
2486         spin_unlock(&p->lock);
2487         spin_unlock(&swap_lock);
2488         /*
2489          * Finished initializing swap device, now it's safe to reference it.
2490          */
2491         percpu_ref_resurrect(&p->users);
2492         spin_lock(&swap_lock);
2493         spin_lock(&p->lock);
2494         _enable_swap_info(p);
2495         spin_unlock(&p->lock);
2496         spin_unlock(&swap_lock);
2497 }
2498
2499 static void reinsert_swap_info(struct swap_info_struct *p)
2500 {
2501         spin_lock(&swap_lock);
2502         spin_lock(&p->lock);
2503         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2504         _enable_swap_info(p);
2505         spin_unlock(&p->lock);
2506         spin_unlock(&swap_lock);
2507 }
2508
2509 bool has_usable_swap(void)
2510 {
2511         bool ret = true;
2512
2513         spin_lock(&swap_lock);
2514         if (plist_head_empty(&swap_active_head))
2515                 ret = false;
2516         spin_unlock(&swap_lock);
2517         return ret;
2518 }
2519
2520 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2521 {
2522         struct swap_info_struct *p = NULL;
2523         unsigned char *swap_map;
2524         struct swap_cluster_info *cluster_info;
2525         unsigned long *frontswap_map;
2526         struct file *swap_file, *victim;
2527         struct address_space *mapping;
2528         struct inode *inode;
2529         struct filename *pathname;
2530         int err, found = 0;
2531         unsigned int old_block_size;
2532
2533         if (!capable(CAP_SYS_ADMIN))
2534                 return -EPERM;
2535
2536         BUG_ON(!current->mm);
2537
2538         pathname = getname(specialfile);
2539         if (IS_ERR(pathname))
2540                 return PTR_ERR(pathname);
2541
2542         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2543         err = PTR_ERR(victim);
2544         if (IS_ERR(victim))
2545                 goto out;
2546
2547         mapping = victim->f_mapping;
2548         spin_lock(&swap_lock);
2549         plist_for_each_entry(p, &swap_active_head, list) {
2550                 if (p->flags & SWP_WRITEOK) {
2551                         if (p->swap_file->f_mapping == mapping) {
2552                                 found = 1;
2553                                 break;
2554                         }
2555                 }
2556         }
2557         if (!found) {
2558                 err = -EINVAL;
2559                 spin_unlock(&swap_lock);
2560                 goto out_dput;
2561         }
2562         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2563                 vm_unacct_memory(p->pages);
2564         else {
2565                 err = -ENOMEM;
2566                 spin_unlock(&swap_lock);
2567                 goto out_dput;
2568         }
2569         spin_lock(&p->lock);
2570         del_from_avail_list(p);
2571         if (p->prio < 0) {
2572                 struct swap_info_struct *si = p;
2573                 int nid;
2574
2575                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2576                         si->prio++;
2577                         si->list.prio--;
2578                         for_each_node(nid) {
2579                                 if (si->avail_lists[nid].prio != 1)
2580                                         si->avail_lists[nid].prio--;
2581                         }
2582                 }
2583                 least_priority++;
2584         }
2585         plist_del(&p->list, &swap_active_head);
2586         atomic_long_sub(p->pages, &nr_swap_pages);
2587         total_swap_pages -= p->pages;
2588         p->flags &= ~SWP_WRITEOK;
2589         spin_unlock(&p->lock);
2590         spin_unlock(&swap_lock);
2591
2592         disable_swap_slots_cache_lock();
2593
2594         set_current_oom_origin();
2595         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2596         clear_current_oom_origin();
2597
2598         if (err) {
2599                 /* re-insert swap space back into swap_list */
2600                 reinsert_swap_info(p);
2601                 reenable_swap_slots_cache_unlock();
2602                 goto out_dput;
2603         }
2604
2605         reenable_swap_slots_cache_unlock();
2606
2607         /*
2608          * Wait for swap operations protected by get/put_swap_device()
2609          * to complete.
2610          *
2611          * We need synchronize_rcu() here to protect the accessing to
2612          * the swap cache data structure.
2613          */
2614         percpu_ref_kill(&p->users);
2615         synchronize_rcu();
2616         wait_for_completion(&p->comp);
2617
2618         flush_work(&p->discard_work);
2619
2620         destroy_swap_extents(p);
2621         if (p->flags & SWP_CONTINUED)
2622                 free_swap_count_continuations(p);
2623
2624         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2625                 atomic_dec(&nr_rotate_swap);
2626
2627         mutex_lock(&swapon_mutex);
2628         spin_lock(&swap_lock);
2629         spin_lock(&p->lock);
2630         drain_mmlist();
2631
2632         /* wait for anyone still in scan_swap_map_slots */
2633         p->highest_bit = 0;             /* cuts scans short */
2634         while (p->flags >= SWP_SCANNING) {
2635                 spin_unlock(&p->lock);
2636                 spin_unlock(&swap_lock);
2637                 schedule_timeout_uninterruptible(1);
2638                 spin_lock(&swap_lock);
2639                 spin_lock(&p->lock);
2640         }
2641
2642         swap_file = p->swap_file;
2643         old_block_size = p->old_block_size;
2644         p->swap_file = NULL;
2645         p->max = 0;
2646         swap_map = p->swap_map;
2647         p->swap_map = NULL;
2648         cluster_info = p->cluster_info;
2649         p->cluster_info = NULL;
2650         frontswap_map = frontswap_map_get(p);
2651         spin_unlock(&p->lock);
2652         spin_unlock(&swap_lock);
2653         arch_swap_invalidate_area(p->type);
2654         frontswap_invalidate_area(p->type);
2655         frontswap_map_set(p, NULL);
2656         mutex_unlock(&swapon_mutex);
2657         free_percpu(p->percpu_cluster);
2658         p->percpu_cluster = NULL;
2659         free_percpu(p->cluster_next_cpu);
2660         p->cluster_next_cpu = NULL;
2661         vfree(swap_map);
2662         kvfree(cluster_info);
2663         kvfree(frontswap_map);
2664         /* Destroy swap account information */
2665         swap_cgroup_swapoff(p->type);
2666         exit_swap_address_space(p->type);
2667
2668         inode = mapping->host;
2669         if (S_ISBLK(inode->i_mode)) {
2670                 struct block_device *bdev = I_BDEV(inode);
2671
2672                 set_blocksize(bdev, old_block_size);
2673                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2674         }
2675
2676         inode_lock(inode);
2677         inode->i_flags &= ~S_SWAPFILE;
2678         inode_unlock(inode);
2679         filp_close(swap_file, NULL);
2680
2681         /*
2682          * Clear the SWP_USED flag after all resources are freed so that swapon
2683          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2684          * not hold p->lock after we cleared its SWP_WRITEOK.
2685          */
2686         spin_lock(&swap_lock);
2687         p->flags = 0;
2688         spin_unlock(&swap_lock);
2689
2690         err = 0;
2691         atomic_inc(&proc_poll_event);
2692         wake_up_interruptible(&proc_poll_wait);
2693
2694 out_dput:
2695         filp_close(victim, NULL);
2696 out:
2697         putname(pathname);
2698         return err;
2699 }
2700
2701 #ifdef CONFIG_PROC_FS
2702 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2703 {
2704         struct seq_file *seq = file->private_data;
2705
2706         poll_wait(file, &proc_poll_wait, wait);
2707
2708         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2709                 seq->poll_event = atomic_read(&proc_poll_event);
2710                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2711         }
2712
2713         return EPOLLIN | EPOLLRDNORM;
2714 }
2715
2716 /* iterator */
2717 static void *swap_start(struct seq_file *swap, loff_t *pos)
2718 {
2719         struct swap_info_struct *si;
2720         int type;
2721         loff_t l = *pos;
2722
2723         mutex_lock(&swapon_mutex);
2724
2725         if (!l)
2726                 return SEQ_START_TOKEN;
2727
2728         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2729                 if (!(si->flags & SWP_USED) || !si->swap_map)
2730                         continue;
2731                 if (!--l)
2732                         return si;
2733         }
2734
2735         return NULL;
2736 }
2737
2738 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2739 {
2740         struct swap_info_struct *si = v;
2741         int type;
2742
2743         if (v == SEQ_START_TOKEN)
2744                 type = 0;
2745         else
2746                 type = si->type + 1;
2747
2748         ++(*pos);
2749         for (; (si = swap_type_to_swap_info(type)); type++) {
2750                 if (!(si->flags & SWP_USED) || !si->swap_map)
2751                         continue;
2752                 return si;
2753         }
2754
2755         return NULL;
2756 }
2757
2758 static void swap_stop(struct seq_file *swap, void *v)
2759 {
2760         mutex_unlock(&swapon_mutex);
2761 }
2762
2763 static int swap_show(struct seq_file *swap, void *v)
2764 {
2765         struct swap_info_struct *si = v;
2766         struct file *file;
2767         int len;
2768         unsigned int bytes, inuse;
2769
2770         if (si == SEQ_START_TOKEN) {
2771                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2772                 return 0;
2773         }
2774
2775         bytes = si->pages << (PAGE_SHIFT - 10);
2776         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2777
2778         file = si->swap_file;
2779         len = seq_file_path(swap, file, " \t\n\\");
2780         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2781                         len < 40 ? 40 - len : 1, " ",
2782                         S_ISBLK(file_inode(file)->i_mode) ?
2783                                 "partition" : "file\t",
2784                         bytes, bytes < 10000000 ? "\t" : "",
2785                         inuse, inuse < 10000000 ? "\t" : "",
2786                         si->prio);
2787         return 0;
2788 }
2789
2790 static const struct seq_operations swaps_op = {
2791         .start =        swap_start,
2792         .next =         swap_next,
2793         .stop =         swap_stop,
2794         .show =         swap_show
2795 };
2796
2797 static int swaps_open(struct inode *inode, struct file *file)
2798 {
2799         struct seq_file *seq;
2800         int ret;
2801
2802         ret = seq_open(file, &swaps_op);
2803         if (ret)
2804                 return ret;
2805
2806         seq = file->private_data;
2807         seq->poll_event = atomic_read(&proc_poll_event);
2808         return 0;
2809 }
2810
2811 static const struct proc_ops swaps_proc_ops = {
2812         .proc_flags     = PROC_ENTRY_PERMANENT,
2813         .proc_open      = swaps_open,
2814         .proc_read      = seq_read,
2815         .proc_lseek     = seq_lseek,
2816         .proc_release   = seq_release,
2817         .proc_poll      = swaps_poll,
2818 };
2819
2820 static int __init procswaps_init(void)
2821 {
2822         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2823         return 0;
2824 }
2825 __initcall(procswaps_init);
2826 #endif /* CONFIG_PROC_FS */
2827
2828 #ifdef MAX_SWAPFILES_CHECK
2829 static int __init max_swapfiles_check(void)
2830 {
2831         MAX_SWAPFILES_CHECK();
2832         return 0;
2833 }
2834 late_initcall(max_swapfiles_check);
2835 #endif
2836
2837 static struct swap_info_struct *alloc_swap_info(void)
2838 {
2839         struct swap_info_struct *p;
2840         struct swap_info_struct *defer = NULL;
2841         unsigned int type;
2842         int i;
2843
2844         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2845         if (!p)
2846                 return ERR_PTR(-ENOMEM);
2847
2848         if (percpu_ref_init(&p->users, swap_users_ref_free,
2849                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2850                 kvfree(p);
2851                 return ERR_PTR(-ENOMEM);
2852         }
2853
2854         spin_lock(&swap_lock);
2855         for (type = 0; type < nr_swapfiles; type++) {
2856                 if (!(swap_info[type]->flags & SWP_USED))
2857                         break;
2858         }
2859         if (type >= MAX_SWAPFILES) {
2860                 spin_unlock(&swap_lock);
2861                 percpu_ref_exit(&p->users);
2862                 kvfree(p);
2863                 return ERR_PTR(-EPERM);
2864         }
2865         if (type >= nr_swapfiles) {
2866                 p->type = type;
2867                 /*
2868                  * Publish the swap_info_struct after initializing it.
2869                  * Note that kvzalloc() above zeroes all its fields.
2870                  */
2871                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2872                 nr_swapfiles++;
2873         } else {
2874                 defer = p;
2875                 p = swap_info[type];
2876                 /*
2877                  * Do not memset this entry: a racing procfs swap_next()
2878                  * would be relying on p->type to remain valid.
2879                  */
2880         }
2881         p->swap_extent_root = RB_ROOT;
2882         plist_node_init(&p->list, 0);
2883         for_each_node(i)
2884                 plist_node_init(&p->avail_lists[i], 0);
2885         p->flags = SWP_USED;
2886         spin_unlock(&swap_lock);
2887         if (defer) {
2888                 percpu_ref_exit(&defer->users);
2889                 kvfree(defer);
2890         }
2891         spin_lock_init(&p->lock);
2892         spin_lock_init(&p->cont_lock);
2893         init_completion(&p->comp);
2894
2895         return p;
2896 }
2897
2898 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2899 {
2900         int error;
2901
2902         if (S_ISBLK(inode->i_mode)) {
2903                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2904                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2905                 if (IS_ERR(p->bdev)) {
2906                         error = PTR_ERR(p->bdev);
2907                         p->bdev = NULL;
2908                         return error;
2909                 }
2910                 p->old_block_size = block_size(p->bdev);
2911                 error = set_blocksize(p->bdev, PAGE_SIZE);
2912                 if (error < 0)
2913                         return error;
2914                 /*
2915                  * Zoned block devices contain zones that have a sequential
2916                  * write only restriction.  Hence zoned block devices are not
2917                  * suitable for swapping.  Disallow them here.
2918                  */
2919                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2920                         return -EINVAL;
2921                 p->flags |= SWP_BLKDEV;
2922         } else if (S_ISREG(inode->i_mode)) {
2923                 p->bdev = inode->i_sb->s_bdev;
2924         }
2925
2926         return 0;
2927 }
2928
2929
2930 /*
2931  * Find out how many pages are allowed for a single swap device. There
2932  * are two limiting factors:
2933  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2934  * 2) the number of bits in the swap pte, as defined by the different
2935  * architectures.
2936  *
2937  * In order to find the largest possible bit mask, a swap entry with
2938  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2939  * decoded to a swp_entry_t again, and finally the swap offset is
2940  * extracted.
2941  *
2942  * This will mask all the bits from the initial ~0UL mask that can't
2943  * be encoded in either the swp_entry_t or the architecture definition
2944  * of a swap pte.
2945  */
2946 unsigned long generic_max_swapfile_size(void)
2947 {
2948         return swp_offset(pte_to_swp_entry(
2949                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2950 }
2951
2952 /* Can be overridden by an architecture for additional checks. */
2953 __weak unsigned long max_swapfile_size(void)
2954 {
2955         return generic_max_swapfile_size();
2956 }
2957
2958 static unsigned long read_swap_header(struct swap_info_struct *p,
2959                                         union swap_header *swap_header,
2960                                         struct inode *inode)
2961 {
2962         int i;
2963         unsigned long maxpages;
2964         unsigned long swapfilepages;
2965         unsigned long last_page;
2966
2967         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2968                 pr_err("Unable to find swap-space signature\n");
2969                 return 0;
2970         }
2971
2972         /* swap partition endianness hack... */
2973         if (swab32(swap_header->info.version) == 1) {
2974                 swab32s(&swap_header->info.version);
2975                 swab32s(&swap_header->info.last_page);
2976                 swab32s(&swap_header->info.nr_badpages);
2977                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2978                         return 0;
2979                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2980                         swab32s(&swap_header->info.badpages[i]);
2981         }
2982         /* Check the swap header's sub-version */
2983         if (swap_header->info.version != 1) {
2984                 pr_warn("Unable to handle swap header version %d\n",
2985                         swap_header->info.version);
2986                 return 0;
2987         }
2988
2989         p->lowest_bit  = 1;
2990         p->cluster_next = 1;
2991         p->cluster_nr = 0;
2992
2993         maxpages = max_swapfile_size();
2994         last_page = swap_header->info.last_page;
2995         if (!last_page) {
2996                 pr_warn("Empty swap-file\n");
2997                 return 0;
2998         }
2999         if (last_page > maxpages) {
3000                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3001                         maxpages << (PAGE_SHIFT - 10),
3002                         last_page << (PAGE_SHIFT - 10));
3003         }
3004         if (maxpages > last_page) {
3005                 maxpages = last_page + 1;
3006                 /* p->max is an unsigned int: don't overflow it */
3007                 if ((unsigned int)maxpages == 0)
3008                         maxpages = UINT_MAX;
3009         }
3010         p->highest_bit = maxpages - 1;
3011
3012         if (!maxpages)
3013                 return 0;
3014         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3015         if (swapfilepages && maxpages > swapfilepages) {
3016                 pr_warn("Swap area shorter than signature indicates\n");
3017                 return 0;
3018         }
3019         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3020                 return 0;
3021         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3022                 return 0;
3023
3024         return maxpages;
3025 }
3026
3027 #define SWAP_CLUSTER_INFO_COLS                                          \
3028         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3029 #define SWAP_CLUSTER_SPACE_COLS                                         \
3030         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3031 #define SWAP_CLUSTER_COLS                                               \
3032         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3033
3034 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3035                                         union swap_header *swap_header,
3036                                         unsigned char *swap_map,
3037                                         struct swap_cluster_info *cluster_info,
3038                                         unsigned long maxpages,
3039                                         sector_t *span)
3040 {
3041         unsigned int j, k;
3042         unsigned int nr_good_pages;
3043         int nr_extents;
3044         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3045         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3046         unsigned long i, idx;
3047
3048         nr_good_pages = maxpages - 1;   /* omit header page */
3049
3050         cluster_list_init(&p->free_clusters);
3051         cluster_list_init(&p->discard_clusters);
3052
3053         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3054                 unsigned int page_nr = swap_header->info.badpages[i];
3055                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3056                         return -EINVAL;
3057                 if (page_nr < maxpages) {
3058                         swap_map[page_nr] = SWAP_MAP_BAD;
3059                         nr_good_pages--;
3060                         /*
3061                          * Haven't marked the cluster free yet, no list
3062                          * operation involved
3063                          */
3064                         inc_cluster_info_page(p, cluster_info, page_nr);
3065                 }
3066         }
3067
3068         /* Haven't marked the cluster free yet, no list operation involved */
3069         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3070                 inc_cluster_info_page(p, cluster_info, i);
3071
3072         if (nr_good_pages) {
3073                 swap_map[0] = SWAP_MAP_BAD;
3074                 /*
3075                  * Not mark the cluster free yet, no list
3076                  * operation involved
3077                  */
3078                 inc_cluster_info_page(p, cluster_info, 0);
3079                 p->max = maxpages;
3080                 p->pages = nr_good_pages;
3081                 nr_extents = setup_swap_extents(p, span);
3082                 if (nr_extents < 0)
3083                         return nr_extents;
3084                 nr_good_pages = p->pages;
3085         }
3086         if (!nr_good_pages) {
3087                 pr_warn("Empty swap-file\n");
3088                 return -EINVAL;
3089         }
3090
3091         if (!cluster_info)
3092                 return nr_extents;
3093
3094
3095         /*
3096          * Reduce false cache line sharing between cluster_info and
3097          * sharing same address space.
3098          */
3099         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3100                 j = (k + col) % SWAP_CLUSTER_COLS;
3101                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3102                         idx = i * SWAP_CLUSTER_COLS + j;
3103                         if (idx >= nr_clusters)
3104                                 continue;
3105                         if (cluster_count(&cluster_info[idx]))
3106                                 continue;
3107                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3108                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3109                                               idx);
3110                 }
3111         }
3112         return nr_extents;
3113 }
3114
3115 /*
3116  * Helper to sys_swapon determining if a given swap
3117  * backing device queue supports DISCARD operations.
3118  */
3119 static bool swap_discardable(struct swap_info_struct *si)
3120 {
3121         struct request_queue *q = bdev_get_queue(si->bdev);
3122
3123         if (!q || !blk_queue_discard(q))
3124                 return false;
3125
3126         return true;
3127 }
3128
3129 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3130 {
3131         struct swap_info_struct *p;
3132         struct filename *name;
3133         struct file *swap_file = NULL;
3134         struct address_space *mapping;
3135         struct dentry *dentry;
3136         int prio;
3137         int error;
3138         union swap_header *swap_header;
3139         int nr_extents;
3140         sector_t span;
3141         unsigned long maxpages;
3142         unsigned char *swap_map = NULL;
3143         struct swap_cluster_info *cluster_info = NULL;
3144         unsigned long *frontswap_map = NULL;
3145         struct page *page = NULL;
3146         struct inode *inode = NULL;
3147         bool inced_nr_rotate_swap = false;
3148
3149         if (swap_flags & ~SWAP_FLAGS_VALID)
3150                 return -EINVAL;
3151
3152         if (!capable(CAP_SYS_ADMIN))
3153                 return -EPERM;
3154
3155         if (!swap_avail_heads)
3156                 return -ENOMEM;
3157
3158         p = alloc_swap_info();
3159         if (IS_ERR(p))
3160                 return PTR_ERR(p);
3161
3162         INIT_WORK(&p->discard_work, swap_discard_work);
3163
3164         name = getname(specialfile);
3165         if (IS_ERR(name)) {
3166                 error = PTR_ERR(name);
3167                 name = NULL;
3168                 goto bad_swap;
3169         }
3170         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3171         if (IS_ERR(swap_file)) {
3172                 error = PTR_ERR(swap_file);
3173                 swap_file = NULL;
3174                 goto bad_swap;
3175         }
3176
3177         p->swap_file = swap_file;
3178         mapping = swap_file->f_mapping;
3179         dentry = swap_file->f_path.dentry;
3180         inode = mapping->host;
3181
3182         error = claim_swapfile(p, inode);
3183         if (unlikely(error))
3184                 goto bad_swap;
3185
3186         inode_lock(inode);
3187         if (d_unlinked(dentry) || cant_mount(dentry)) {
3188                 error = -ENOENT;
3189                 goto bad_swap_unlock_inode;
3190         }
3191         if (IS_SWAPFILE(inode)) {
3192                 error = -EBUSY;
3193                 goto bad_swap_unlock_inode;
3194         }
3195
3196         /*
3197          * Read the swap header.
3198          */
3199         if (!mapping->a_ops->readpage) {
3200                 error = -EINVAL;
3201                 goto bad_swap_unlock_inode;
3202         }
3203         page = read_mapping_page(mapping, 0, swap_file);
3204         if (IS_ERR(page)) {
3205                 error = PTR_ERR(page);
3206                 goto bad_swap_unlock_inode;
3207         }
3208         swap_header = kmap(page);
3209
3210         maxpages = read_swap_header(p, swap_header, inode);
3211         if (unlikely(!maxpages)) {
3212                 error = -EINVAL;
3213                 goto bad_swap_unlock_inode;
3214         }
3215
3216         /* OK, set up the swap map and apply the bad block list */
3217         swap_map = vzalloc(maxpages);
3218         if (!swap_map) {
3219                 error = -ENOMEM;
3220                 goto bad_swap_unlock_inode;
3221         }
3222
3223         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3224                 p->flags |= SWP_STABLE_WRITES;
3225
3226         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3227                 p->flags |= SWP_SYNCHRONOUS_IO;
3228
3229         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3230                 int cpu;
3231                 unsigned long ci, nr_cluster;
3232
3233                 p->flags |= SWP_SOLIDSTATE;
3234                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3235                 if (!p->cluster_next_cpu) {
3236                         error = -ENOMEM;
3237                         goto bad_swap_unlock_inode;
3238                 }
3239                 /*
3240                  * select a random position to start with to help wear leveling
3241                  * SSD
3242                  */
3243                 for_each_possible_cpu(cpu) {
3244                         per_cpu(*p->cluster_next_cpu, cpu) =
3245                                 1 + prandom_u32_max(p->highest_bit);
3246                 }
3247                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3248
3249                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3250                                         GFP_KERNEL);
3251                 if (!cluster_info) {
3252                         error = -ENOMEM;
3253                         goto bad_swap_unlock_inode;
3254                 }
3255
3256                 for (ci = 0; ci < nr_cluster; ci++)
3257                         spin_lock_init(&((cluster_info + ci)->lock));
3258
3259                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3260                 if (!p->percpu_cluster) {
3261                         error = -ENOMEM;
3262                         goto bad_swap_unlock_inode;
3263                 }
3264                 for_each_possible_cpu(cpu) {
3265                         struct percpu_cluster *cluster;
3266                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3267                         cluster_set_null(&cluster->index);
3268                 }
3269         } else {
3270                 atomic_inc(&nr_rotate_swap);
3271                 inced_nr_rotate_swap = true;
3272         }
3273
3274         error = swap_cgroup_swapon(p->type, maxpages);
3275         if (error)
3276                 goto bad_swap_unlock_inode;
3277
3278         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3279                 cluster_info, maxpages, &span);
3280         if (unlikely(nr_extents < 0)) {
3281                 error = nr_extents;
3282                 goto bad_swap_unlock_inode;
3283         }
3284         /* frontswap enabled? set up bit-per-page map for frontswap */
3285         if (IS_ENABLED(CONFIG_FRONTSWAP))
3286                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3287                                          sizeof(long),
3288                                          GFP_KERNEL);
3289
3290         if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3291                 /*
3292                  * When discard is enabled for swap with no particular
3293                  * policy flagged, we set all swap discard flags here in
3294                  * order to sustain backward compatibility with older
3295                  * swapon(8) releases.
3296                  */
3297                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3298                              SWP_PAGE_DISCARD);
3299
3300                 /*
3301                  * By flagging sys_swapon, a sysadmin can tell us to
3302                  * either do single-time area discards only, or to just
3303                  * perform discards for released swap page-clusters.
3304                  * Now it's time to adjust the p->flags accordingly.
3305                  */
3306                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3307                         p->flags &= ~SWP_PAGE_DISCARD;
3308                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3309                         p->flags &= ~SWP_AREA_DISCARD;
3310
3311                 /* issue a swapon-time discard if it's still required */
3312                 if (p->flags & SWP_AREA_DISCARD) {
3313                         int err = discard_swap(p);
3314                         if (unlikely(err))
3315                                 pr_err("swapon: discard_swap(%p): %d\n",
3316                                         p, err);
3317                 }
3318         }
3319
3320         error = init_swap_address_space(p->type, maxpages);
3321         if (error)
3322                 goto bad_swap_unlock_inode;
3323
3324         /*
3325          * Flush any pending IO and dirty mappings before we start using this
3326          * swap device.
3327          */
3328         inode->i_flags |= S_SWAPFILE;
3329         error = inode_drain_writes(inode);
3330         if (error) {
3331                 inode->i_flags &= ~S_SWAPFILE;
3332                 goto free_swap_address_space;
3333         }
3334
3335         mutex_lock(&swapon_mutex);
3336         prio = -1;
3337         if (swap_flags & SWAP_FLAG_PREFER)
3338                 prio =
3339                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3340         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3341
3342         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3343                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3344                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3345                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3346                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3347                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3348                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3349                 (frontswap_map) ? "FS" : "");
3350
3351         mutex_unlock(&swapon_mutex);
3352         atomic_inc(&proc_poll_event);
3353         wake_up_interruptible(&proc_poll_wait);
3354
3355         error = 0;
3356         goto out;
3357 free_swap_address_space:
3358         exit_swap_address_space(p->type);
3359 bad_swap_unlock_inode:
3360         inode_unlock(inode);
3361 bad_swap:
3362         free_percpu(p->percpu_cluster);
3363         p->percpu_cluster = NULL;
3364         free_percpu(p->cluster_next_cpu);
3365         p->cluster_next_cpu = NULL;
3366         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3367                 set_blocksize(p->bdev, p->old_block_size);
3368                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3369         }
3370         inode = NULL;
3371         destroy_swap_extents(p);
3372         swap_cgroup_swapoff(p->type);
3373         spin_lock(&swap_lock);
3374         p->swap_file = NULL;
3375         p->flags = 0;
3376         spin_unlock(&swap_lock);
3377         vfree(swap_map);
3378         kvfree(cluster_info);
3379         kvfree(frontswap_map);
3380         if (inced_nr_rotate_swap)
3381                 atomic_dec(&nr_rotate_swap);
3382         if (swap_file)
3383                 filp_close(swap_file, NULL);
3384 out:
3385         if (page && !IS_ERR(page)) {
3386                 kunmap(page);
3387                 put_page(page);
3388         }
3389         if (name)
3390                 putname(name);
3391         if (inode)
3392                 inode_unlock(inode);
3393         if (!error)
3394                 enable_swap_slots_cache();
3395         return error;
3396 }
3397
3398 void si_swapinfo(struct sysinfo *val)
3399 {
3400         unsigned int type;
3401         unsigned long nr_to_be_unused = 0;
3402
3403         spin_lock(&swap_lock);
3404         for (type = 0; type < nr_swapfiles; type++) {
3405                 struct swap_info_struct *si = swap_info[type];
3406
3407                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3408                         nr_to_be_unused += si->inuse_pages;
3409         }
3410         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3411         val->totalswap = total_swap_pages + nr_to_be_unused;
3412         spin_unlock(&swap_lock);
3413 }
3414
3415 /*
3416  * Verify that a swap entry is valid and increment its swap map count.
3417  *
3418  * Returns error code in following case.
3419  * - success -> 0
3420  * - swp_entry is invalid -> EINVAL
3421  * - swp_entry is migration entry -> EINVAL
3422  * - swap-cache reference is requested but there is already one. -> EEXIST
3423  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3424  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3425  */
3426 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3427 {
3428         struct swap_info_struct *p;
3429         struct swap_cluster_info *ci;
3430         unsigned long offset;
3431         unsigned char count;
3432         unsigned char has_cache;
3433         int err;
3434
3435         p = get_swap_device(entry);
3436         if (!p)
3437                 return -EINVAL;
3438
3439         offset = swp_offset(entry);
3440         ci = lock_cluster_or_swap_info(p, offset);
3441
3442         count = p->swap_map[offset];
3443
3444         /*
3445          * swapin_readahead() doesn't check if a swap entry is valid, so the
3446          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3447          */
3448         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3449                 err = -ENOENT;
3450                 goto unlock_out;
3451         }
3452
3453         has_cache = count & SWAP_HAS_CACHE;
3454         count &= ~SWAP_HAS_CACHE;
3455         err = 0;
3456
3457         if (usage == SWAP_HAS_CACHE) {
3458
3459                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3460                 if (!has_cache && count)
3461                         has_cache = SWAP_HAS_CACHE;
3462                 else if (has_cache)             /* someone else added cache */
3463                         err = -EEXIST;
3464                 else                            /* no users remaining */
3465                         err = -ENOENT;
3466
3467         } else if (count || has_cache) {
3468
3469                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3470                         count += usage;
3471                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3472                         err = -EINVAL;
3473                 else if (swap_count_continued(p, offset, count))
3474                         count = COUNT_CONTINUED;
3475                 else
3476                         err = -ENOMEM;
3477         } else
3478                 err = -ENOENT;                  /* unused swap entry */
3479
3480         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3481
3482 unlock_out:
3483         unlock_cluster_or_swap_info(p, ci);
3484         if (p)
3485                 put_swap_device(p);
3486         return err;
3487 }
3488
3489 /*
3490  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3491  * (in which case its reference count is never incremented).
3492  */
3493 void swap_shmem_alloc(swp_entry_t entry)
3494 {
3495         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3496 }
3497
3498 /*
3499  * Increase reference count of swap entry by 1.
3500  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3501  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3502  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3503  * might occur if a page table entry has got corrupted.
3504  */
3505 int swap_duplicate(swp_entry_t entry)
3506 {
3507         int err = 0;
3508
3509         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3510                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3511         return err;
3512 }
3513
3514 /*
3515  * @entry: swap entry for which we allocate swap cache.
3516  *
3517  * Called when allocating swap cache for existing swap entry,
3518  * This can return error codes. Returns 0 at success.
3519  * -EEXIST means there is a swap cache.
3520  * Note: return code is different from swap_duplicate().
3521  */
3522 int swapcache_prepare(swp_entry_t entry)
3523 {
3524         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3525 }
3526
3527 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3528 {
3529         return swap_type_to_swap_info(swp_type(entry));
3530 }
3531
3532 struct swap_info_struct *page_swap_info(struct page *page)
3533 {
3534         swp_entry_t entry = { .val = page_private(page) };
3535         return swp_swap_info(entry);
3536 }
3537
3538 /*
3539  * out-of-line __page_file_ methods to avoid include hell.
3540  */
3541 struct address_space *__page_file_mapping(struct page *page)
3542 {
3543         return page_swap_info(page)->swap_file->f_mapping;
3544 }
3545 EXPORT_SYMBOL_GPL(__page_file_mapping);
3546
3547 pgoff_t __page_file_index(struct page *page)
3548 {
3549         swp_entry_t swap = { .val = page_private(page) };
3550         return swp_offset(swap);
3551 }
3552 EXPORT_SYMBOL_GPL(__page_file_index);
3553
3554 /*
3555  * add_swap_count_continuation - called when a swap count is duplicated
3556  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3557  * page of the original vmalloc'ed swap_map, to hold the continuation count
3558  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3559  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3560  *
3561  * These continuation pages are seldom referenced: the common paths all work
3562  * on the original swap_map, only referring to a continuation page when the
3563  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3564  *
3565  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3566  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3567  * can be called after dropping locks.
3568  */
3569 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3570 {
3571         struct swap_info_struct *si;
3572         struct swap_cluster_info *ci;
3573         struct page *head;
3574         struct page *page;
3575         struct page *list_page;
3576         pgoff_t offset;
3577         unsigned char count;
3578         int ret = 0;
3579
3580         /*
3581          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3582          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3583          */
3584         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3585
3586         si = get_swap_device(entry);
3587         if (!si) {
3588                 /*
3589                  * An acceptable race has occurred since the failing
3590                  * __swap_duplicate(): the swap device may be swapoff
3591                  */
3592                 goto outer;
3593         }
3594         spin_lock(&si->lock);
3595
3596         offset = swp_offset(entry);
3597
3598         ci = lock_cluster(si, offset);
3599
3600         count = swap_count(si->swap_map[offset]);
3601
3602         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3603                 /*
3604                  * The higher the swap count, the more likely it is that tasks
3605                  * will race to add swap count continuation: we need to avoid
3606                  * over-provisioning.
3607                  */
3608                 goto out;
3609         }
3610
3611         if (!page) {
3612                 ret = -ENOMEM;
3613                 goto out;
3614         }
3615
3616         /*
3617          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3618          * no architecture is using highmem pages for kernel page tables: so it
3619          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3620          */
3621         head = vmalloc_to_page(si->swap_map + offset);
3622         offset &= ~PAGE_MASK;
3623
3624         spin_lock(&si->cont_lock);
3625         /*
3626          * Page allocation does not initialize the page's lru field,
3627          * but it does always reset its private field.
3628          */
3629         if (!page_private(head)) {
3630                 BUG_ON(count & COUNT_CONTINUED);
3631                 INIT_LIST_HEAD(&head->lru);
3632                 set_page_private(head, SWP_CONTINUED);
3633                 si->flags |= SWP_CONTINUED;
3634         }
3635
3636         list_for_each_entry(list_page, &head->lru, lru) {
3637                 unsigned char *map;
3638
3639                 /*
3640                  * If the previous map said no continuation, but we've found
3641                  * a continuation page, free our allocation and use this one.
3642                  */
3643                 if (!(count & COUNT_CONTINUED))
3644                         goto out_unlock_cont;
3645
3646                 map = kmap_atomic(list_page) + offset;
3647                 count = *map;
3648                 kunmap_atomic(map);
3649
3650                 /*
3651                  * If this continuation count now has some space in it,
3652                  * free our allocation and use this one.
3653                  */
3654                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3655                         goto out_unlock_cont;
3656         }
3657
3658         list_add_tail(&page->lru, &head->lru);
3659         page = NULL;                    /* now it's attached, don't free it */
3660 out_unlock_cont:
3661         spin_unlock(&si->cont_lock);
3662 out:
3663         unlock_cluster(ci);
3664         spin_unlock(&si->lock);
3665         put_swap_device(si);
3666 outer:
3667         if (page)
3668                 __free_page(page);
3669         return ret;
3670 }
3671
3672 /*
3673  * swap_count_continued - when the original swap_map count is incremented
3674  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3675  * into, carry if so, or else fail until a new continuation page is allocated;
3676  * when the original swap_map count is decremented from 0 with continuation,
3677  * borrow from the continuation and report whether it still holds more.
3678  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3679  * lock.
3680  */
3681 static bool swap_count_continued(struct swap_info_struct *si,
3682                                  pgoff_t offset, unsigned char count)
3683 {
3684         struct page *head;
3685         struct page *page;
3686         unsigned char *map;
3687         bool ret;
3688
3689         head = vmalloc_to_page(si->swap_map + offset);
3690         if (page_private(head) != SWP_CONTINUED) {
3691                 BUG_ON(count & COUNT_CONTINUED);
3692                 return false;           /* need to add count continuation */
3693         }
3694
3695         spin_lock(&si->cont_lock);
3696         offset &= ~PAGE_MASK;
3697         page = list_next_entry(head, lru);
3698         map = kmap_atomic(page) + offset;
3699
3700         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3701                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3702
3703         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3704                 /*
3705                  * Think of how you add 1 to 999
3706                  */
3707                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3708                         kunmap_atomic(map);
3709                         page = list_next_entry(page, lru);
3710                         BUG_ON(page == head);
3711                         map = kmap_atomic(page) + offset;
3712                 }
3713                 if (*map == SWAP_CONT_MAX) {
3714                         kunmap_atomic(map);
3715                         page = list_next_entry(page, lru);
3716                         if (page == head) {
3717                                 ret = false;    /* add count continuation */
3718                                 goto out;
3719                         }
3720                         map = kmap_atomic(page) + offset;
3721 init_map:               *map = 0;               /* we didn't zero the page */
3722                 }
3723                 *map += 1;
3724                 kunmap_atomic(map);
3725                 while ((page = list_prev_entry(page, lru)) != head) {
3726                         map = kmap_atomic(page) + offset;
3727                         *map = COUNT_CONTINUED;
3728                         kunmap_atomic(map);
3729                 }
3730                 ret = true;                     /* incremented */
3731
3732         } else {                                /* decrementing */
3733                 /*
3734                  * Think of how you subtract 1 from 1000
3735                  */
3736                 BUG_ON(count != COUNT_CONTINUED);
3737                 while (*map == COUNT_CONTINUED) {
3738                         kunmap_atomic(map);
3739                         page = list_next_entry(page, lru);
3740                         BUG_ON(page == head);
3741                         map = kmap_atomic(page) + offset;
3742                 }
3743                 BUG_ON(*map == 0);
3744                 *map -= 1;
3745                 if (*map == 0)
3746                         count = 0;
3747                 kunmap_atomic(map);
3748                 while ((page = list_prev_entry(page, lru)) != head) {
3749                         map = kmap_atomic(page) + offset;
3750                         *map = SWAP_CONT_MAX | count;
3751                         count = COUNT_CONTINUED;
3752                         kunmap_atomic(map);
3753                 }
3754                 ret = count == COUNT_CONTINUED;
3755         }
3756 out:
3757         spin_unlock(&si->cont_lock);
3758         return ret;
3759 }
3760
3761 /*
3762  * free_swap_count_continuations - swapoff free all the continuation pages
3763  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3764  */
3765 static void free_swap_count_continuations(struct swap_info_struct *si)
3766 {
3767         pgoff_t offset;
3768
3769         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3770                 struct page *head;
3771                 head = vmalloc_to_page(si->swap_map + offset);
3772                 if (page_private(head)) {
3773                         struct page *page, *next;
3774
3775                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3776                                 list_del(&page->lru);
3777                                 __free_page(page);
3778                         }
3779                 }
3780         }
3781 }
3782
3783 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3784 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3785 {
3786         struct swap_info_struct *si, *next;
3787         int nid = page_to_nid(page);
3788
3789         if (!(gfp_mask & __GFP_IO))
3790                 return;
3791
3792         if (!blk_cgroup_congested())
3793                 return;
3794
3795         /*
3796          * We've already scheduled a throttle, avoid taking the global swap
3797          * lock.
3798          */
3799         if (current->throttle_queue)
3800                 return;
3801
3802         spin_lock(&swap_avail_lock);
3803         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3804                                   avail_lists[nid]) {
3805                 if (si->bdev) {
3806                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3807                         break;
3808                 }
3809         }
3810         spin_unlock(&swap_avail_lock);
3811 }
3812 #endif
3813
3814 static int __init swapfile_init(void)
3815 {
3816         int nid;
3817
3818         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3819                                          GFP_KERNEL);
3820         if (!swap_avail_heads) {
3821                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3822                 return -ENOMEM;
3823         }
3824
3825         for_each_node(nid)
3826                 plist_head_init(&swap_avail_heads[nid]);
3827
3828         return 0;
3829 }
3830 subsys_initcall(swapfile_init);