GNU Linux-libre 4.14.332-gnu1
[releases.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
104 }
105
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110         swp_entry_t entry = swp_entry(si->type, offset);
111         struct page *page;
112         int ret = 0;
113
114         page = find_get_page(swap_address_space(entry), swp_offset(entry));
115         if (!page)
116                 return 0;
117         /*
118          * This function is called from scan_swap_map() and it's called
119          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120          * We have to use trylock for avoiding deadlock. This is a special
121          * case and you should use try_to_free_swap() with explicit lock_page()
122          * in usual operations.
123          */
124         if (trylock_page(page)) {
125                 ret = try_to_free_swap(page);
126                 unlock_page(page);
127         }
128         put_page(page);
129         return ret;
130 }
131
132 /*
133  * swapon tell device that all the old swap contents can be discarded,
134  * to allow the swap device to optimize its wear-levelling.
135  */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138         struct swap_extent *se;
139         sector_t start_block;
140         sector_t nr_blocks;
141         int err = 0;
142
143         /* Do not discard the swap header page! */
144         se = &si->first_swap_extent;
145         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147         if (nr_blocks) {
148                 err = blkdev_issue_discard(si->bdev, start_block,
149                                 nr_blocks, GFP_KERNEL, 0);
150                 if (err)
151                         return err;
152                 cond_resched();
153         }
154
155         list_for_each_entry(se, &si->first_swap_extent.list, list) {
156                 start_block = se->start_block << (PAGE_SHIFT - 9);
157                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158
159                 err = blkdev_issue_discard(si->bdev, start_block,
160                                 nr_blocks, GFP_KERNEL, 0);
161                 if (err)
162                         break;
163
164                 cond_resched();
165         }
166         return err;             /* That will often be -EOPNOTSUPP */
167 }
168
169 /*
170  * swap allocation tell device that a cluster of swap can now be discarded,
171  * to allow the swap device to optimize its wear-levelling.
172  */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174                                  pgoff_t start_page, pgoff_t nr_pages)
175 {
176         struct swap_extent *se = si->curr_swap_extent;
177         int found_extent = 0;
178
179         while (nr_pages) {
180                 if (se->start_page <= start_page &&
181                     start_page < se->start_page + se->nr_pages) {
182                         pgoff_t offset = start_page - se->start_page;
183                         sector_t start_block = se->start_block + offset;
184                         sector_t nr_blocks = se->nr_pages - offset;
185
186                         if (nr_blocks > nr_pages)
187                                 nr_blocks = nr_pages;
188                         start_page += nr_blocks;
189                         nr_pages -= nr_blocks;
190
191                         if (!found_extent++)
192                                 si->curr_swap_extent = se;
193
194                         start_block <<= PAGE_SHIFT - 9;
195                         nr_blocks <<= PAGE_SHIFT - 9;
196                         if (blkdev_issue_discard(si->bdev, start_block,
197                                     nr_blocks, GFP_NOIO, 0))
198                                 break;
199                 }
200
201                 se = list_next_entry(se, list);
202         }
203 }
204
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
207 #else
208 #define SWAPFILE_CLUSTER        256
209 #endif
210 #define LATENCY_LIMIT           256
211
212 static inline void cluster_set_flag(struct swap_cluster_info *info,
213         unsigned int flag)
214 {
215         info->flags = flag;
216 }
217
218 static inline unsigned int cluster_count(struct swap_cluster_info *info)
219 {
220         return info->data;
221 }
222
223 static inline void cluster_set_count(struct swap_cluster_info *info,
224                                      unsigned int c)
225 {
226         info->data = c;
227 }
228
229 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230                                          unsigned int c, unsigned int f)
231 {
232         info->flags = f;
233         info->data = c;
234 }
235
236 static inline unsigned int cluster_next(struct swap_cluster_info *info)
237 {
238         return info->data;
239 }
240
241 static inline void cluster_set_next(struct swap_cluster_info *info,
242                                     unsigned int n)
243 {
244         info->data = n;
245 }
246
247 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248                                          unsigned int n, unsigned int f)
249 {
250         info->flags = f;
251         info->data = n;
252 }
253
254 static inline bool cluster_is_free(struct swap_cluster_info *info)
255 {
256         return info->flags & CLUSTER_FLAG_FREE;
257 }
258
259 static inline bool cluster_is_null(struct swap_cluster_info *info)
260 {
261         return info->flags & CLUSTER_FLAG_NEXT_NULL;
262 }
263
264 static inline void cluster_set_null(struct swap_cluster_info *info)
265 {
266         info->flags = CLUSTER_FLAG_NEXT_NULL;
267         info->data = 0;
268 }
269
270 static inline bool cluster_is_huge(struct swap_cluster_info *info)
271 {
272         return info->flags & CLUSTER_FLAG_HUGE;
273 }
274
275 static inline void cluster_clear_huge(struct swap_cluster_info *info)
276 {
277         info->flags &= ~CLUSTER_FLAG_HUGE;
278 }
279
280 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281                                                      unsigned long offset)
282 {
283         struct swap_cluster_info *ci;
284
285         ci = si->cluster_info;
286         if (ci) {
287                 ci += offset / SWAPFILE_CLUSTER;
288                 spin_lock(&ci->lock);
289         }
290         return ci;
291 }
292
293 static inline void unlock_cluster(struct swap_cluster_info *ci)
294 {
295         if (ci)
296                 spin_unlock(&ci->lock);
297 }
298
299 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
300         struct swap_info_struct *si,
301         unsigned long offset)
302 {
303         struct swap_cluster_info *ci;
304
305         ci = lock_cluster(si, offset);
306         if (!ci)
307                 spin_lock(&si->lock);
308
309         return ci;
310 }
311
312 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
313                                                struct swap_cluster_info *ci)
314 {
315         if (ci)
316                 unlock_cluster(ci);
317         else
318                 spin_unlock(&si->lock);
319 }
320
321 static inline bool cluster_list_empty(struct swap_cluster_list *list)
322 {
323         return cluster_is_null(&list->head);
324 }
325
326 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
327 {
328         return cluster_next(&list->head);
329 }
330
331 static void cluster_list_init(struct swap_cluster_list *list)
332 {
333         cluster_set_null(&list->head);
334         cluster_set_null(&list->tail);
335 }
336
337 static void cluster_list_add_tail(struct swap_cluster_list *list,
338                                   struct swap_cluster_info *ci,
339                                   unsigned int idx)
340 {
341         if (cluster_list_empty(list)) {
342                 cluster_set_next_flag(&list->head, idx, 0);
343                 cluster_set_next_flag(&list->tail, idx, 0);
344         } else {
345                 struct swap_cluster_info *ci_tail;
346                 unsigned int tail = cluster_next(&list->tail);
347
348                 /*
349                  * Nested cluster lock, but both cluster locks are
350                  * only acquired when we held swap_info_struct->lock
351                  */
352                 ci_tail = ci + tail;
353                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
354                 cluster_set_next(ci_tail, idx);
355                 spin_unlock(&ci_tail->lock);
356                 cluster_set_next_flag(&list->tail, idx, 0);
357         }
358 }
359
360 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
361                                            struct swap_cluster_info *ci)
362 {
363         unsigned int idx;
364
365         idx = cluster_next(&list->head);
366         if (cluster_next(&list->tail) == idx) {
367                 cluster_set_null(&list->head);
368                 cluster_set_null(&list->tail);
369         } else
370                 cluster_set_next_flag(&list->head,
371                                       cluster_next(&ci[idx]), 0);
372
373         return idx;
374 }
375
376 /* Add a cluster to discard list and schedule it to do discard */
377 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
378                 unsigned int idx)
379 {
380         /*
381          * If scan_swap_map() can't find a free cluster, it will check
382          * si->swap_map directly. To make sure the discarding cluster isn't
383          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
384          * will be cleared after discard
385          */
386         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
387                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
388
389         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
390
391         schedule_work(&si->discard_work);
392 }
393
394 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
395 {
396         struct swap_cluster_info *ci = si->cluster_info;
397
398         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
399         cluster_list_add_tail(&si->free_clusters, ci, idx);
400 }
401
402 /*
403  * Doing discard actually. After a cluster discard is finished, the cluster
404  * will be added to free cluster list. caller should hold si->lock.
405 */
406 static void swap_do_scheduled_discard(struct swap_info_struct *si)
407 {
408         struct swap_cluster_info *info, *ci;
409         unsigned int idx;
410
411         info = si->cluster_info;
412
413         while (!cluster_list_empty(&si->discard_clusters)) {
414                 idx = cluster_list_del_first(&si->discard_clusters, info);
415                 spin_unlock(&si->lock);
416
417                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
418                                 SWAPFILE_CLUSTER);
419
420                 spin_lock(&si->lock);
421                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
422                 __free_cluster(si, idx);
423                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
424                                 0, SWAPFILE_CLUSTER);
425                 unlock_cluster(ci);
426         }
427 }
428
429 static void swap_discard_work(struct work_struct *work)
430 {
431         struct swap_info_struct *si;
432
433         si = container_of(work, struct swap_info_struct, discard_work);
434
435         spin_lock(&si->lock);
436         swap_do_scheduled_discard(si);
437         spin_unlock(&si->lock);
438 }
439
440 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
441 {
442         struct swap_cluster_info *ci = si->cluster_info;
443
444         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
445         cluster_list_del_first(&si->free_clusters, ci);
446         cluster_set_count_flag(ci + idx, 0, 0);
447 }
448
449 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
450 {
451         struct swap_cluster_info *ci = si->cluster_info + idx;
452
453         VM_BUG_ON(cluster_count(ci) != 0);
454         /*
455          * If the swap is discardable, prepare discard the cluster
456          * instead of free it immediately. The cluster will be freed
457          * after discard.
458          */
459         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
460             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
461                 swap_cluster_schedule_discard(si, idx);
462                 return;
463         }
464
465         __free_cluster(si, idx);
466 }
467
468 /*
469  * The cluster corresponding to page_nr will be used. The cluster will be
470  * removed from free cluster list and its usage counter will be increased.
471  */
472 static void inc_cluster_info_page(struct swap_info_struct *p,
473         struct swap_cluster_info *cluster_info, unsigned long page_nr)
474 {
475         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
476
477         if (!cluster_info)
478                 return;
479         if (cluster_is_free(&cluster_info[idx]))
480                 alloc_cluster(p, idx);
481
482         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
483         cluster_set_count(&cluster_info[idx],
484                 cluster_count(&cluster_info[idx]) + 1);
485 }
486
487 /*
488  * The cluster corresponding to page_nr decreases one usage. If the usage
489  * counter becomes 0, which means no page in the cluster is in using, we can
490  * optionally discard the cluster and add it to free cluster list.
491  */
492 static void dec_cluster_info_page(struct swap_info_struct *p,
493         struct swap_cluster_info *cluster_info, unsigned long page_nr)
494 {
495         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
496
497         if (!cluster_info)
498                 return;
499
500         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
501         cluster_set_count(&cluster_info[idx],
502                 cluster_count(&cluster_info[idx]) - 1);
503
504         if (cluster_count(&cluster_info[idx]) == 0)
505                 free_cluster(p, idx);
506 }
507
508 /*
509  * It's possible scan_swap_map() uses a free cluster in the middle of free
510  * cluster list. Avoiding such abuse to avoid list corruption.
511  */
512 static bool
513 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
514         unsigned long offset)
515 {
516         struct percpu_cluster *percpu_cluster;
517         bool conflict;
518
519         offset /= SWAPFILE_CLUSTER;
520         conflict = !cluster_list_empty(&si->free_clusters) &&
521                 offset != cluster_list_first(&si->free_clusters) &&
522                 cluster_is_free(&si->cluster_info[offset]);
523
524         if (!conflict)
525                 return false;
526
527         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
528         cluster_set_null(&percpu_cluster->index);
529         return true;
530 }
531
532 /*
533  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
534  * might involve allocating a new cluster for current CPU too.
535  */
536 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
537         unsigned long *offset, unsigned long *scan_base)
538 {
539         struct percpu_cluster *cluster;
540         struct swap_cluster_info *ci;
541         bool found_free;
542         unsigned long tmp, max;
543
544 new_cluster:
545         cluster = this_cpu_ptr(si->percpu_cluster);
546         if (cluster_is_null(&cluster->index)) {
547                 if (!cluster_list_empty(&si->free_clusters)) {
548                         cluster->index = si->free_clusters.head;
549                         cluster->next = cluster_next(&cluster->index) *
550                                         SWAPFILE_CLUSTER;
551                 } else if (!cluster_list_empty(&si->discard_clusters)) {
552                         /*
553                          * we don't have free cluster but have some clusters in
554                          * discarding, do discard now and reclaim them
555                          */
556                         swap_do_scheduled_discard(si);
557                         *scan_base = *offset = si->cluster_next;
558                         goto new_cluster;
559                 } else
560                         return false;
561         }
562
563         found_free = false;
564
565         /*
566          * Other CPUs can use our cluster if they can't find a free cluster,
567          * check if there is still free entry in the cluster
568          */
569         tmp = cluster->next;
570         max = min_t(unsigned long, si->max,
571                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
572         if (tmp >= max) {
573                 cluster_set_null(&cluster->index);
574                 goto new_cluster;
575         }
576         ci = lock_cluster(si, tmp);
577         while (tmp < max) {
578                 if (!si->swap_map[tmp]) {
579                         found_free = true;
580                         break;
581                 }
582                 tmp++;
583         }
584         unlock_cluster(ci);
585         if (!found_free) {
586                 cluster_set_null(&cluster->index);
587                 goto new_cluster;
588         }
589         cluster->next = tmp + 1;
590         *offset = tmp;
591         *scan_base = tmp;
592         return found_free;
593 }
594
595 static void __del_from_avail_list(struct swap_info_struct *p)
596 {
597         int nid;
598
599         assert_spin_locked(&p->lock);
600         for_each_node(nid)
601                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
602 }
603
604 static void del_from_avail_list(struct swap_info_struct *p)
605 {
606         spin_lock(&swap_avail_lock);
607         __del_from_avail_list(p);
608         spin_unlock(&swap_avail_lock);
609 }
610
611 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
612                              unsigned int nr_entries)
613 {
614         unsigned int end = offset + nr_entries - 1;
615
616         if (offset == si->lowest_bit)
617                 si->lowest_bit += nr_entries;
618         if (end == si->highest_bit)
619                 si->highest_bit -= nr_entries;
620         si->inuse_pages += nr_entries;
621         if (si->inuse_pages == si->pages) {
622                 si->lowest_bit = si->max;
623                 si->highest_bit = 0;
624                 del_from_avail_list(si);
625         }
626 }
627
628 static void add_to_avail_list(struct swap_info_struct *p)
629 {
630         int nid;
631
632         spin_lock(&swap_avail_lock);
633         for_each_node(nid) {
634                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
635                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
636         }
637         spin_unlock(&swap_avail_lock);
638 }
639
640 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
641                             unsigned int nr_entries)
642 {
643         unsigned long end = offset + nr_entries - 1;
644         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
645
646         if (offset < si->lowest_bit)
647                 si->lowest_bit = offset;
648         if (end > si->highest_bit) {
649                 bool was_full = !si->highest_bit;
650
651                 si->highest_bit = end;
652                 if (was_full && (si->flags & SWP_WRITEOK))
653                         add_to_avail_list(si);
654         }
655         atomic_long_add(nr_entries, &nr_swap_pages);
656         si->inuse_pages -= nr_entries;
657         if (si->flags & SWP_BLKDEV)
658                 swap_slot_free_notify =
659                         si->bdev->bd_disk->fops->swap_slot_free_notify;
660         else
661                 swap_slot_free_notify = NULL;
662         while (offset <= end) {
663                 frontswap_invalidate_page(si->type, offset);
664                 if (swap_slot_free_notify)
665                         swap_slot_free_notify(si->bdev, offset);
666                 offset++;
667         }
668 }
669
670 static int scan_swap_map_slots(struct swap_info_struct *si,
671                                unsigned char usage, int nr,
672                                swp_entry_t slots[])
673 {
674         struct swap_cluster_info *ci;
675         unsigned long offset;
676         unsigned long scan_base;
677         unsigned long last_in_cluster = 0;
678         int latency_ration = LATENCY_LIMIT;
679         int n_ret = 0;
680
681         if (nr > SWAP_BATCH)
682                 nr = SWAP_BATCH;
683
684         /*
685          * We try to cluster swap pages by allocating them sequentially
686          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
687          * way, however, we resort to first-free allocation, starting
688          * a new cluster.  This prevents us from scattering swap pages
689          * all over the entire swap partition, so that we reduce
690          * overall disk seek times between swap pages.  -- sct
691          * But we do now try to find an empty cluster.  -Andrea
692          * And we let swap pages go all over an SSD partition.  Hugh
693          */
694
695         si->flags += SWP_SCANNING;
696         scan_base = offset = si->cluster_next;
697
698         /* SSD algorithm */
699         if (si->cluster_info) {
700                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
701                         goto checks;
702                 else
703                         goto scan;
704         }
705
706         if (unlikely(!si->cluster_nr--)) {
707                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
708                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
709                         goto checks;
710                 }
711
712                 spin_unlock(&si->lock);
713
714                 /*
715                  * If seek is expensive, start searching for new cluster from
716                  * start of partition, to minimize the span of allocated swap.
717                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
718                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
719                  */
720                 scan_base = offset = si->lowest_bit;
721                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
722
723                 /* Locate the first empty (unaligned) cluster */
724                 for (; last_in_cluster <= si->highest_bit; offset++) {
725                         if (si->swap_map[offset])
726                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
727                         else if (offset == last_in_cluster) {
728                                 spin_lock(&si->lock);
729                                 offset -= SWAPFILE_CLUSTER - 1;
730                                 si->cluster_next = offset;
731                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
732                                 goto checks;
733                         }
734                         if (unlikely(--latency_ration < 0)) {
735                                 cond_resched();
736                                 latency_ration = LATENCY_LIMIT;
737                         }
738                 }
739
740                 offset = scan_base;
741                 spin_lock(&si->lock);
742                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
743         }
744
745 checks:
746         if (si->cluster_info) {
747                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
748                 /* take a break if we already got some slots */
749                         if (n_ret)
750                                 goto done;
751                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
752                                                         &scan_base))
753                                 goto scan;
754                 }
755         }
756         if (!(si->flags & SWP_WRITEOK))
757                 goto no_page;
758         if (!si->highest_bit)
759                 goto no_page;
760         if (offset > si->highest_bit)
761                 scan_base = offset = si->lowest_bit;
762
763         ci = lock_cluster(si, offset);
764         /* reuse swap entry of cache-only swap if not busy. */
765         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
766                 int swap_was_freed;
767                 unlock_cluster(ci);
768                 spin_unlock(&si->lock);
769                 swap_was_freed = __try_to_reclaim_swap(si, offset);
770                 spin_lock(&si->lock);
771                 /* entry was freed successfully, try to use this again */
772                 if (swap_was_freed)
773                         goto checks;
774                 goto scan; /* check next one */
775         }
776
777         if (si->swap_map[offset]) {
778                 unlock_cluster(ci);
779                 if (!n_ret)
780                         goto scan;
781                 else
782                         goto done;
783         }
784         si->swap_map[offset] = usage;
785         inc_cluster_info_page(si, si->cluster_info, offset);
786         unlock_cluster(ci);
787
788         swap_range_alloc(si, offset, 1);
789         si->cluster_next = offset + 1;
790         slots[n_ret++] = swp_entry(si->type, offset);
791
792         /* got enough slots or reach max slots? */
793         if ((n_ret == nr) || (offset >= si->highest_bit))
794                 goto done;
795
796         /* search for next available slot */
797
798         /* time to take a break? */
799         if (unlikely(--latency_ration < 0)) {
800                 if (n_ret)
801                         goto done;
802                 spin_unlock(&si->lock);
803                 cond_resched();
804                 spin_lock(&si->lock);
805                 latency_ration = LATENCY_LIMIT;
806         }
807
808         /* try to get more slots in cluster */
809         if (si->cluster_info) {
810                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
811                         goto checks;
812                 else
813                         goto done;
814         }
815         /* non-ssd case */
816         ++offset;
817
818         /* non-ssd case, still more slots in cluster? */
819         if (si->cluster_nr && !si->swap_map[offset]) {
820                 --si->cluster_nr;
821                 goto checks;
822         }
823
824 done:
825         si->flags -= SWP_SCANNING;
826         return n_ret;
827
828 scan:
829         spin_unlock(&si->lock);
830         while (++offset <= si->highest_bit) {
831                 if (!si->swap_map[offset]) {
832                         spin_lock(&si->lock);
833                         goto checks;
834                 }
835                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
836                         spin_lock(&si->lock);
837                         goto checks;
838                 }
839                 if (unlikely(--latency_ration < 0)) {
840                         cond_resched();
841                         latency_ration = LATENCY_LIMIT;
842                 }
843         }
844         offset = si->lowest_bit;
845         while (offset < scan_base) {
846                 if (!si->swap_map[offset]) {
847                         spin_lock(&si->lock);
848                         goto checks;
849                 }
850                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
851                         spin_lock(&si->lock);
852                         goto checks;
853                 }
854                 if (unlikely(--latency_ration < 0)) {
855                         cond_resched();
856                         latency_ration = LATENCY_LIMIT;
857                 }
858                 offset++;
859         }
860         spin_lock(&si->lock);
861
862 no_page:
863         si->flags -= SWP_SCANNING;
864         return n_ret;
865 }
866
867 #ifdef CONFIG_THP_SWAP
868 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
869 {
870         unsigned long idx;
871         struct swap_cluster_info *ci;
872         unsigned long offset, i;
873         unsigned char *map;
874
875         if (cluster_list_empty(&si->free_clusters))
876                 return 0;
877
878         idx = cluster_list_first(&si->free_clusters);
879         offset = idx * SWAPFILE_CLUSTER;
880         ci = lock_cluster(si, offset);
881         alloc_cluster(si, idx);
882         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
883
884         map = si->swap_map + offset;
885         for (i = 0; i < SWAPFILE_CLUSTER; i++)
886                 map[i] = SWAP_HAS_CACHE;
887         unlock_cluster(ci);
888         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
889         *slot = swp_entry(si->type, offset);
890
891         return 1;
892 }
893
894 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
895 {
896         unsigned long offset = idx * SWAPFILE_CLUSTER;
897         struct swap_cluster_info *ci;
898
899         ci = lock_cluster(si, offset);
900         cluster_set_count_flag(ci, 0, 0);
901         free_cluster(si, idx);
902         unlock_cluster(ci);
903         swap_range_free(si, offset, SWAPFILE_CLUSTER);
904 }
905 #else
906 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
907 {
908         VM_WARN_ON_ONCE(1);
909         return 0;
910 }
911 #endif /* CONFIG_THP_SWAP */
912
913 static unsigned long scan_swap_map(struct swap_info_struct *si,
914                                    unsigned char usage)
915 {
916         swp_entry_t entry;
917         int n_ret;
918
919         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
920
921         if (n_ret)
922                 return swp_offset(entry);
923         else
924                 return 0;
925
926 }
927
928 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
929 {
930         unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
931         struct swap_info_struct *si, *next;
932         long avail_pgs;
933         int n_ret = 0;
934         int node;
935
936         /* Only single cluster request supported */
937         WARN_ON_ONCE(n_goal > 1 && cluster);
938
939         avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
940         if (avail_pgs <= 0)
941                 goto noswap;
942
943         if (n_goal > SWAP_BATCH)
944                 n_goal = SWAP_BATCH;
945
946         if (n_goal > avail_pgs)
947                 n_goal = avail_pgs;
948
949         atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
950
951         spin_lock(&swap_avail_lock);
952
953 start_over:
954         node = numa_node_id();
955         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
956                 /* requeue si to after same-priority siblings */
957                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
958                 spin_unlock(&swap_avail_lock);
959                 spin_lock(&si->lock);
960                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
961                         spin_lock(&swap_avail_lock);
962                         if (plist_node_empty(&si->avail_lists[node])) {
963                                 spin_unlock(&si->lock);
964                                 goto nextsi;
965                         }
966                         WARN(!si->highest_bit,
967                              "swap_info %d in list but !highest_bit\n",
968                              si->type);
969                         WARN(!(si->flags & SWP_WRITEOK),
970                              "swap_info %d in list but !SWP_WRITEOK\n",
971                              si->type);
972                         __del_from_avail_list(si);
973                         spin_unlock(&si->lock);
974                         goto nextsi;
975                 }
976                 if (cluster) {
977                         if (si->flags & SWP_BLKDEV)
978                                 n_ret = swap_alloc_cluster(si, swp_entries);
979                 } else
980                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
981                                                     n_goal, swp_entries);
982                 spin_unlock(&si->lock);
983                 if (n_ret || cluster)
984                         goto check_out;
985                 pr_debug("scan_swap_map of si %d failed to find offset\n",
986                         si->type);
987                 cond_resched();
988
989                 spin_lock(&swap_avail_lock);
990 nextsi:
991                 /*
992                  * if we got here, it's likely that si was almost full before,
993                  * and since scan_swap_map() can drop the si->lock, multiple
994                  * callers probably all tried to get a page from the same si
995                  * and it filled up before we could get one; or, the si filled
996                  * up between us dropping swap_avail_lock and taking si->lock.
997                  * Since we dropped the swap_avail_lock, the swap_avail_head
998                  * list may have been modified; so if next is still in the
999                  * swap_avail_head list then try it, otherwise start over
1000                  * if we have not gotten any slots.
1001                  */
1002                 if (plist_node_empty(&next->avail_lists[node]))
1003                         goto start_over;
1004         }
1005
1006         spin_unlock(&swap_avail_lock);
1007
1008 check_out:
1009         if (n_ret < n_goal)
1010                 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1011                                 &nr_swap_pages);
1012 noswap:
1013         return n_ret;
1014 }
1015
1016 /* The only caller of this function is now suspend routine */
1017 swp_entry_t get_swap_page_of_type(int type)
1018 {
1019         struct swap_info_struct *si;
1020         pgoff_t offset;
1021
1022         si = swap_info[type];
1023         spin_lock(&si->lock);
1024         if (si && (si->flags & SWP_WRITEOK)) {
1025                 atomic_long_dec(&nr_swap_pages);
1026                 /* This is called for allocating swap entry, not cache */
1027                 offset = scan_swap_map(si, 1);
1028                 if (offset) {
1029                         spin_unlock(&si->lock);
1030                         return swp_entry(type, offset);
1031                 }
1032                 atomic_long_inc(&nr_swap_pages);
1033         }
1034         spin_unlock(&si->lock);
1035         return (swp_entry_t) {0};
1036 }
1037
1038 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1039 {
1040         struct swap_info_struct *p;
1041         unsigned long offset, type;
1042
1043         if (!entry.val)
1044                 goto out;
1045         type = swp_type(entry);
1046         if (type >= nr_swapfiles)
1047                 goto bad_nofile;
1048         p = swap_info[type];
1049         if (!(p->flags & SWP_USED))
1050                 goto bad_device;
1051         offset = swp_offset(entry);
1052         if (offset >= p->max)
1053                 goto bad_offset;
1054         return p;
1055
1056 bad_offset:
1057         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1058         goto out;
1059 bad_device:
1060         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1061         goto out;
1062 bad_nofile:
1063         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1064 out:
1065         return NULL;
1066 }
1067
1068 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1069 {
1070         struct swap_info_struct *p;
1071
1072         p = __swap_info_get(entry);
1073         if (!p)
1074                 goto out;
1075         if (!p->swap_map[swp_offset(entry)])
1076                 goto bad_free;
1077         return p;
1078
1079 bad_free:
1080         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1081         goto out;
1082 out:
1083         return NULL;
1084 }
1085
1086 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1087 {
1088         struct swap_info_struct *p;
1089
1090         p = _swap_info_get(entry);
1091         if (p)
1092                 spin_lock(&p->lock);
1093         return p;
1094 }
1095
1096 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1097                                         struct swap_info_struct *q)
1098 {
1099         struct swap_info_struct *p;
1100
1101         p = _swap_info_get(entry);
1102
1103         if (p != q) {
1104                 if (q != NULL)
1105                         spin_unlock(&q->lock);
1106                 if (p != NULL)
1107                         spin_lock(&p->lock);
1108         }
1109         return p;
1110 }
1111
1112 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1113                                        swp_entry_t entry, unsigned char usage)
1114 {
1115         struct swap_cluster_info *ci;
1116         unsigned long offset = swp_offset(entry);
1117         unsigned char count;
1118         unsigned char has_cache;
1119
1120         ci = lock_cluster_or_swap_info(p, offset);
1121
1122         count = p->swap_map[offset];
1123
1124         has_cache = count & SWAP_HAS_CACHE;
1125         count &= ~SWAP_HAS_CACHE;
1126
1127         if (usage == SWAP_HAS_CACHE) {
1128                 VM_BUG_ON(!has_cache);
1129                 has_cache = 0;
1130         } else if (count == SWAP_MAP_SHMEM) {
1131                 /*
1132                  * Or we could insist on shmem.c using a special
1133                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1134                  */
1135                 count = 0;
1136         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1137                 if (count == COUNT_CONTINUED) {
1138                         if (swap_count_continued(p, offset, count))
1139                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1140                         else
1141                                 count = SWAP_MAP_MAX;
1142                 } else
1143                         count--;
1144         }
1145
1146         usage = count | has_cache;
1147         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1148
1149         unlock_cluster_or_swap_info(p, ci);
1150
1151         return usage;
1152 }
1153
1154 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1155 {
1156         struct swap_cluster_info *ci;
1157         unsigned long offset = swp_offset(entry);
1158         unsigned char count;
1159
1160         ci = lock_cluster(p, offset);
1161         count = p->swap_map[offset];
1162         VM_BUG_ON(count != SWAP_HAS_CACHE);
1163         p->swap_map[offset] = 0;
1164         dec_cluster_info_page(p, p->cluster_info, offset);
1165         unlock_cluster(ci);
1166
1167         mem_cgroup_uncharge_swap(entry, 1);
1168         swap_range_free(p, offset, 1);
1169 }
1170
1171 /*
1172  * Caller has made sure that the swap device corresponding to entry
1173  * is still around or has not been recycled.
1174  */
1175 void swap_free(swp_entry_t entry)
1176 {
1177         struct swap_info_struct *p;
1178
1179         p = _swap_info_get(entry);
1180         if (p) {
1181                 if (!__swap_entry_free(p, entry, 1))
1182                         free_swap_slot(entry);
1183         }
1184 }
1185
1186 /*
1187  * Called after dropping swapcache to decrease refcnt to swap entries.
1188  */
1189 static void swapcache_free(swp_entry_t entry)
1190 {
1191         struct swap_info_struct *p;
1192
1193         p = _swap_info_get(entry);
1194         if (p) {
1195                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1196                         free_swap_slot(entry);
1197         }
1198 }
1199
1200 #ifdef CONFIG_THP_SWAP
1201 static void swapcache_free_cluster(swp_entry_t entry)
1202 {
1203         unsigned long offset = swp_offset(entry);
1204         unsigned long idx = offset / SWAPFILE_CLUSTER;
1205         struct swap_cluster_info *ci;
1206         struct swap_info_struct *si;
1207         unsigned char *map;
1208         unsigned int i, free_entries = 0;
1209         unsigned char val;
1210
1211         si = _swap_info_get(entry);
1212         if (!si)
1213                 return;
1214
1215         ci = lock_cluster(si, offset);
1216         VM_BUG_ON(!cluster_is_huge(ci));
1217         map = si->swap_map + offset;
1218         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1219                 val = map[i];
1220                 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1221                 if (val == SWAP_HAS_CACHE)
1222                         free_entries++;
1223         }
1224         if (!free_entries) {
1225                 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1226                         map[i] &= ~SWAP_HAS_CACHE;
1227         }
1228         cluster_clear_huge(ci);
1229         unlock_cluster(ci);
1230         if (free_entries == SWAPFILE_CLUSTER) {
1231                 spin_lock(&si->lock);
1232                 ci = lock_cluster(si, offset);
1233                 memset(map, 0, SWAPFILE_CLUSTER);
1234                 unlock_cluster(ci);
1235                 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1236                 swap_free_cluster(si, idx);
1237                 spin_unlock(&si->lock);
1238         } else if (free_entries) {
1239                 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1240                         if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1241                                 free_swap_slot(entry);
1242                 }
1243         }
1244 }
1245
1246 int split_swap_cluster(swp_entry_t entry)
1247 {
1248         struct swap_info_struct *si;
1249         struct swap_cluster_info *ci;
1250         unsigned long offset = swp_offset(entry);
1251
1252         si = _swap_info_get(entry);
1253         if (!si)
1254                 return -EBUSY;
1255         ci = lock_cluster(si, offset);
1256         cluster_clear_huge(ci);
1257         unlock_cluster(ci);
1258         return 0;
1259 }
1260 #else
1261 static inline void swapcache_free_cluster(swp_entry_t entry)
1262 {
1263 }
1264 #endif /* CONFIG_THP_SWAP */
1265
1266 void put_swap_page(struct page *page, swp_entry_t entry)
1267 {
1268         if (!PageTransHuge(page))
1269                 swapcache_free(entry);
1270         else
1271                 swapcache_free_cluster(entry);
1272 }
1273
1274 static int swp_entry_cmp(const void *ent1, const void *ent2)
1275 {
1276         const swp_entry_t *e1 = ent1, *e2 = ent2;
1277
1278         return (int)swp_type(*e1) - (int)swp_type(*e2);
1279 }
1280
1281 void swapcache_free_entries(swp_entry_t *entries, int n)
1282 {
1283         struct swap_info_struct *p, *prev;
1284         int i;
1285
1286         if (n <= 0)
1287                 return;
1288
1289         prev = NULL;
1290         p = NULL;
1291
1292         /*
1293          * Sort swap entries by swap device, so each lock is only taken once.
1294          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1295          * so low that it isn't necessary to optimize further.
1296          */
1297         if (nr_swapfiles > 1)
1298                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1299         for (i = 0; i < n; ++i) {
1300                 p = swap_info_get_cont(entries[i], prev);
1301                 if (p)
1302                         swap_entry_free(p, entries[i]);
1303                 prev = p;
1304         }
1305         if (p)
1306                 spin_unlock(&p->lock);
1307 }
1308
1309 /*
1310  * How many references to page are currently swapped out?
1311  * This does not give an exact answer when swap count is continued,
1312  * but does include the high COUNT_CONTINUED flag to allow for that.
1313  */
1314 int page_swapcount(struct page *page)
1315 {
1316         int count = 0;
1317         struct swap_info_struct *p;
1318         struct swap_cluster_info *ci;
1319         swp_entry_t entry;
1320         unsigned long offset;
1321
1322         entry.val = page_private(page);
1323         p = _swap_info_get(entry);
1324         if (p) {
1325                 offset = swp_offset(entry);
1326                 ci = lock_cluster_or_swap_info(p, offset);
1327                 count = swap_count(p->swap_map[offset]);
1328                 unlock_cluster_or_swap_info(p, ci);
1329         }
1330         return count;
1331 }
1332
1333 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1334 {
1335         int count = 0;
1336         pgoff_t offset = swp_offset(entry);
1337         struct swap_cluster_info *ci;
1338
1339         ci = lock_cluster_or_swap_info(si, offset);
1340         count = swap_count(si->swap_map[offset]);
1341         unlock_cluster_or_swap_info(si, ci);
1342         return count;
1343 }
1344
1345 /*
1346  * How many references to @entry are currently swapped out?
1347  * This does not give an exact answer when swap count is continued,
1348  * but does include the high COUNT_CONTINUED flag to allow for that.
1349  */
1350 int __swp_swapcount(swp_entry_t entry)
1351 {
1352         int count = 0;
1353         struct swap_info_struct *si;
1354
1355         si = __swap_info_get(entry);
1356         if (si)
1357                 count = swap_swapcount(si, entry);
1358         return count;
1359 }
1360
1361 /*
1362  * How many references to @entry are currently swapped out?
1363  * This considers COUNT_CONTINUED so it returns exact answer.
1364  */
1365 int swp_swapcount(swp_entry_t entry)
1366 {
1367         int count, tmp_count, n;
1368         struct swap_info_struct *p;
1369         struct swap_cluster_info *ci;
1370         struct page *page;
1371         pgoff_t offset;
1372         unsigned char *map;
1373
1374         p = _swap_info_get(entry);
1375         if (!p)
1376                 return 0;
1377
1378         offset = swp_offset(entry);
1379
1380         ci = lock_cluster_or_swap_info(p, offset);
1381
1382         count = swap_count(p->swap_map[offset]);
1383         if (!(count & COUNT_CONTINUED))
1384                 goto out;
1385
1386         count &= ~COUNT_CONTINUED;
1387         n = SWAP_MAP_MAX + 1;
1388
1389         page = vmalloc_to_page(p->swap_map + offset);
1390         offset &= ~PAGE_MASK;
1391         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1392
1393         do {
1394                 page = list_next_entry(page, lru);
1395                 map = kmap_atomic(page);
1396                 tmp_count = map[offset];
1397                 kunmap_atomic(map);
1398
1399                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1400                 n *= (SWAP_CONT_MAX + 1);
1401         } while (tmp_count & COUNT_CONTINUED);
1402 out:
1403         unlock_cluster_or_swap_info(p, ci);
1404         return count;
1405 }
1406
1407 #ifdef CONFIG_THP_SWAP
1408 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1409                                          swp_entry_t entry)
1410 {
1411         struct swap_cluster_info *ci;
1412         unsigned char *map = si->swap_map;
1413         unsigned long roffset = swp_offset(entry);
1414         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1415         int i;
1416         bool ret = false;
1417
1418         ci = lock_cluster_or_swap_info(si, offset);
1419         if (!ci || !cluster_is_huge(ci)) {
1420                 if (map[roffset] != SWAP_HAS_CACHE)
1421                         ret = true;
1422                 goto unlock_out;
1423         }
1424         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1425                 if (map[offset + i] != SWAP_HAS_CACHE) {
1426                         ret = true;
1427                         break;
1428                 }
1429         }
1430 unlock_out:
1431         unlock_cluster_or_swap_info(si, ci);
1432         return ret;
1433 }
1434
1435 static bool page_swapped(struct page *page)
1436 {
1437         swp_entry_t entry;
1438         struct swap_info_struct *si;
1439
1440         if (likely(!PageTransCompound(page)))
1441                 return page_swapcount(page) != 0;
1442
1443         page = compound_head(page);
1444         entry.val = page_private(page);
1445         si = _swap_info_get(entry);
1446         if (si)
1447                 return swap_page_trans_huge_swapped(si, entry);
1448         return false;
1449 }
1450
1451 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1452                                          int *total_swapcount)
1453 {
1454         int i, map_swapcount, _total_mapcount, _total_swapcount;
1455         unsigned long offset = 0;
1456         struct swap_info_struct *si;
1457         struct swap_cluster_info *ci = NULL;
1458         unsigned char *map = NULL;
1459         int mapcount, swapcount = 0;
1460
1461         /* hugetlbfs shouldn't call it */
1462         VM_BUG_ON_PAGE(PageHuge(page), page);
1463
1464         if (likely(!PageTransCompound(page))) {
1465                 mapcount = atomic_read(&page->_mapcount) + 1;
1466                 if (total_mapcount)
1467                         *total_mapcount = mapcount;
1468                 if (PageSwapCache(page))
1469                         swapcount = page_swapcount(page);
1470                 if (total_swapcount)
1471                         *total_swapcount = swapcount;
1472                 return mapcount + swapcount;
1473         }
1474
1475         page = compound_head(page);
1476
1477         _total_mapcount = _total_swapcount = map_swapcount = 0;
1478         if (PageSwapCache(page)) {
1479                 swp_entry_t entry;
1480
1481                 entry.val = page_private(page);
1482                 si = _swap_info_get(entry);
1483                 if (si) {
1484                         map = si->swap_map;
1485                         offset = swp_offset(entry);
1486                 }
1487         }
1488         if (map)
1489                 ci = lock_cluster(si, offset);
1490         for (i = 0; i < HPAGE_PMD_NR; i++) {
1491                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1492                 _total_mapcount += mapcount;
1493                 if (map) {
1494                         swapcount = swap_count(map[offset + i]);
1495                         _total_swapcount += swapcount;
1496                 }
1497                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1498         }
1499         unlock_cluster(ci);
1500         if (PageDoubleMap(page)) {
1501                 map_swapcount -= 1;
1502                 _total_mapcount -= HPAGE_PMD_NR;
1503         }
1504         mapcount = compound_mapcount(page);
1505         map_swapcount += mapcount;
1506         _total_mapcount += mapcount;
1507         if (total_mapcount)
1508                 *total_mapcount = _total_mapcount;
1509         if (total_swapcount)
1510                 *total_swapcount = _total_swapcount;
1511
1512         return map_swapcount;
1513 }
1514 #else
1515 #define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1516 #define page_swapped(page)                      (page_swapcount(page) != 0)
1517
1518 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1519                                          int *total_swapcount)
1520 {
1521         int mapcount, swapcount = 0;
1522
1523         /* hugetlbfs shouldn't call it */
1524         VM_BUG_ON_PAGE(PageHuge(page), page);
1525
1526         mapcount = page_trans_huge_mapcount(page, total_mapcount);
1527         if (PageSwapCache(page))
1528                 swapcount = page_swapcount(page);
1529         if (total_swapcount)
1530                 *total_swapcount = swapcount;
1531         return mapcount + swapcount;
1532 }
1533 #endif
1534
1535 /*
1536  * We can write to an anon page without COW if there are no other references
1537  * to it.  And as a side-effect, free up its swap: because the old content
1538  * on disk will never be read, and seeking back there to write new content
1539  * later would only waste time away from clustering.
1540  *
1541  * NOTE: total_map_swapcount should not be relied upon by the caller if
1542  * reuse_swap_page() returns false, but it may be always overwritten
1543  * (see the other implementation for CONFIG_SWAP=n).
1544  */
1545 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1546 {
1547         int count, total_mapcount, total_swapcount;
1548
1549         VM_BUG_ON_PAGE(!PageLocked(page), page);
1550         if (unlikely(PageKsm(page)))
1551                 return false;
1552         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1553                                               &total_swapcount);
1554         if (total_map_swapcount)
1555                 *total_map_swapcount = total_mapcount + total_swapcount;
1556         if (count == 1 && PageSwapCache(page) &&
1557             (likely(!PageTransCompound(page)) ||
1558              /* The remaining swap count will be freed soon */
1559              total_swapcount == page_swapcount(page))) {
1560                 if (!PageWriteback(page)) {
1561                         page = compound_head(page);
1562                         delete_from_swap_cache(page);
1563                         SetPageDirty(page);
1564                 } else {
1565                         swp_entry_t entry;
1566                         struct swap_info_struct *p;
1567
1568                         entry.val = page_private(page);
1569                         p = swap_info_get(entry);
1570                         if (p->flags & SWP_STABLE_WRITES) {
1571                                 spin_unlock(&p->lock);
1572                                 return false;
1573                         }
1574                         spin_unlock(&p->lock);
1575                 }
1576         }
1577
1578         return count <= 1;
1579 }
1580
1581 /*
1582  * If swap is getting full, or if there are no more mappings of this page,
1583  * then try_to_free_swap is called to free its swap space.
1584  */
1585 int try_to_free_swap(struct page *page)
1586 {
1587         VM_BUG_ON_PAGE(!PageLocked(page), page);
1588
1589         if (!PageSwapCache(page))
1590                 return 0;
1591         if (PageWriteback(page))
1592                 return 0;
1593         if (page_swapped(page))
1594                 return 0;
1595
1596         /*
1597          * Once hibernation has begun to create its image of memory,
1598          * there's a danger that one of the calls to try_to_free_swap()
1599          * - most probably a call from __try_to_reclaim_swap() while
1600          * hibernation is allocating its own swap pages for the image,
1601          * but conceivably even a call from memory reclaim - will free
1602          * the swap from a page which has already been recorded in the
1603          * image as a clean swapcache page, and then reuse its swap for
1604          * another page of the image.  On waking from hibernation, the
1605          * original page might be freed under memory pressure, then
1606          * later read back in from swap, now with the wrong data.
1607          *
1608          * Hibernation suspends storage while it is writing the image
1609          * to disk so check that here.
1610          */
1611         if (pm_suspended_storage())
1612                 return 0;
1613
1614         page = compound_head(page);
1615         delete_from_swap_cache(page);
1616         SetPageDirty(page);
1617         return 1;
1618 }
1619
1620 /*
1621  * Free the swap entry like above, but also try to
1622  * free the page cache entry if it is the last user.
1623  */
1624 int free_swap_and_cache(swp_entry_t entry)
1625 {
1626         struct swap_info_struct *p;
1627         struct page *page = NULL;
1628         unsigned char count;
1629
1630         if (non_swap_entry(entry))
1631                 return 1;
1632
1633         p = _swap_info_get(entry);
1634         if (p) {
1635                 count = __swap_entry_free(p, entry, 1);
1636                 if (count == SWAP_HAS_CACHE &&
1637                     !swap_page_trans_huge_swapped(p, entry)) {
1638                         page = find_get_page(swap_address_space(entry),
1639                                              swp_offset(entry));
1640                         if (page && !trylock_page(page)) {
1641                                 put_page(page);
1642                                 page = NULL;
1643                         }
1644                 } else if (!count)
1645                         free_swap_slot(entry);
1646         }
1647         if (page) {
1648                 /*
1649                  * Not mapped elsewhere, or swap space full? Free it!
1650                  * Also recheck PageSwapCache now page is locked (above).
1651                  */
1652                 if (PageSwapCache(page) && !PageWriteback(page) &&
1653                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1654                     !swap_page_trans_huge_swapped(p, entry)) {
1655                         page = compound_head(page);
1656                         delete_from_swap_cache(page);
1657                         SetPageDirty(page);
1658                 }
1659                 unlock_page(page);
1660                 put_page(page);
1661         }
1662         return p != NULL;
1663 }
1664
1665 #ifdef CONFIG_HIBERNATION
1666 /*
1667  * Find the swap type that corresponds to given device (if any).
1668  *
1669  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1670  * from 0, in which the swap header is expected to be located.
1671  *
1672  * This is needed for the suspend to disk (aka swsusp).
1673  */
1674 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1675 {
1676         struct block_device *bdev = NULL;
1677         int type;
1678
1679         if (device)
1680                 bdev = bdget(device);
1681
1682         spin_lock(&swap_lock);
1683         for (type = 0; type < nr_swapfiles; type++) {
1684                 struct swap_info_struct *sis = swap_info[type];
1685
1686                 if (!(sis->flags & SWP_WRITEOK))
1687                         continue;
1688
1689                 if (!bdev) {
1690                         if (bdev_p)
1691                                 *bdev_p = bdgrab(sis->bdev);
1692
1693                         spin_unlock(&swap_lock);
1694                         return type;
1695                 }
1696                 if (bdev == sis->bdev) {
1697                         struct swap_extent *se = &sis->first_swap_extent;
1698
1699                         if (se->start_block == offset) {
1700                                 if (bdev_p)
1701                                         *bdev_p = bdgrab(sis->bdev);
1702
1703                                 spin_unlock(&swap_lock);
1704                                 bdput(bdev);
1705                                 return type;
1706                         }
1707                 }
1708         }
1709         spin_unlock(&swap_lock);
1710         if (bdev)
1711                 bdput(bdev);
1712
1713         return -ENODEV;
1714 }
1715
1716 /*
1717  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1718  * corresponding to given index in swap_info (swap type).
1719  */
1720 sector_t swapdev_block(int type, pgoff_t offset)
1721 {
1722         struct block_device *bdev;
1723
1724         if ((unsigned int)type >= nr_swapfiles)
1725                 return 0;
1726         if (!(swap_info[type]->flags & SWP_WRITEOK))
1727                 return 0;
1728         return map_swap_entry(swp_entry(type, offset), &bdev);
1729 }
1730
1731 /*
1732  * Return either the total number of swap pages of given type, or the number
1733  * of free pages of that type (depending on @free)
1734  *
1735  * This is needed for software suspend
1736  */
1737 unsigned int count_swap_pages(int type, int free)
1738 {
1739         unsigned int n = 0;
1740
1741         spin_lock(&swap_lock);
1742         if ((unsigned int)type < nr_swapfiles) {
1743                 struct swap_info_struct *sis = swap_info[type];
1744
1745                 spin_lock(&sis->lock);
1746                 if (sis->flags & SWP_WRITEOK) {
1747                         n = sis->pages;
1748                         if (free)
1749                                 n -= sis->inuse_pages;
1750                 }
1751                 spin_unlock(&sis->lock);
1752         }
1753         spin_unlock(&swap_lock);
1754         return n;
1755 }
1756 #endif /* CONFIG_HIBERNATION */
1757
1758 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1759 {
1760         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1761 }
1762
1763 /*
1764  * No need to decide whether this PTE shares the swap entry with others,
1765  * just let do_wp_page work it out if a write is requested later - to
1766  * force COW, vm_page_prot omits write permission from any private vma.
1767  */
1768 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1769                 unsigned long addr, swp_entry_t entry, struct page *page)
1770 {
1771         struct page *swapcache;
1772         struct mem_cgroup *memcg;
1773         spinlock_t *ptl;
1774         pte_t *pte;
1775         int ret = 1;
1776
1777         swapcache = page;
1778         page = ksm_might_need_to_copy(page, vma, addr);
1779         if (unlikely(!page))
1780                 return -ENOMEM;
1781
1782         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1783                                 &memcg, false)) {
1784                 ret = -ENOMEM;
1785                 goto out_nolock;
1786         }
1787
1788         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1789         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1790                 mem_cgroup_cancel_charge(page, memcg, false);
1791                 ret = 0;
1792                 goto out;
1793         }
1794
1795         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1796         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1797         get_page(page);
1798         set_pte_at(vma->vm_mm, addr, pte,
1799                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1800         if (page == swapcache) {
1801                 page_add_anon_rmap(page, vma, addr, false);
1802                 mem_cgroup_commit_charge(page, memcg, true, false);
1803         } else { /* ksm created a completely new copy */
1804                 page_add_new_anon_rmap(page, vma, addr, false);
1805                 mem_cgroup_commit_charge(page, memcg, false, false);
1806                 lru_cache_add_active_or_unevictable(page, vma);
1807         }
1808         swap_free(entry);
1809         /*
1810          * Move the page to the active list so it is not
1811          * immediately swapped out again after swapon.
1812          */
1813         activate_page(page);
1814 out:
1815         pte_unmap_unlock(pte, ptl);
1816 out_nolock:
1817         if (page != swapcache) {
1818                 unlock_page(page);
1819                 put_page(page);
1820         }
1821         return ret;
1822 }
1823
1824 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1825                                 unsigned long addr, unsigned long end,
1826                                 swp_entry_t entry, struct page *page)
1827 {
1828         pte_t swp_pte = swp_entry_to_pte(entry);
1829         pte_t *pte;
1830         int ret = 0;
1831
1832         /*
1833          * We don't actually need pte lock while scanning for swp_pte: since
1834          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1835          * page table while we're scanning; though it could get zapped, and on
1836          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1837          * of unmatched parts which look like swp_pte, so unuse_pte must
1838          * recheck under pte lock.  Scanning without pte lock lets it be
1839          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1840          */
1841         pte = pte_offset_map(pmd, addr);
1842         do {
1843                 /*
1844                  * swapoff spends a _lot_ of time in this loop!
1845                  * Test inline before going to call unuse_pte.
1846                  */
1847                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1848                         pte_unmap(pte);
1849                         ret = unuse_pte(vma, pmd, addr, entry, page);
1850                         if (ret)
1851                                 goto out;
1852                         pte = pte_offset_map(pmd, addr);
1853                 }
1854         } while (pte++, addr += PAGE_SIZE, addr != end);
1855         pte_unmap(pte - 1);
1856 out:
1857         return ret;
1858 }
1859
1860 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1861                                 unsigned long addr, unsigned long end,
1862                                 swp_entry_t entry, struct page *page)
1863 {
1864         pmd_t *pmd;
1865         unsigned long next;
1866         int ret;
1867
1868         pmd = pmd_offset(pud, addr);
1869         do {
1870                 cond_resched();
1871                 next = pmd_addr_end(addr, end);
1872                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1873                         continue;
1874                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1875                 if (ret)
1876                         return ret;
1877         } while (pmd++, addr = next, addr != end);
1878         return 0;
1879 }
1880
1881 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1882                                 unsigned long addr, unsigned long end,
1883                                 swp_entry_t entry, struct page *page)
1884 {
1885         pud_t *pud;
1886         unsigned long next;
1887         int ret;
1888
1889         pud = pud_offset(p4d, addr);
1890         do {
1891                 next = pud_addr_end(addr, end);
1892                 if (pud_none_or_clear_bad(pud))
1893                         continue;
1894                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1895                 if (ret)
1896                         return ret;
1897         } while (pud++, addr = next, addr != end);
1898         return 0;
1899 }
1900
1901 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1902                                 unsigned long addr, unsigned long end,
1903                                 swp_entry_t entry, struct page *page)
1904 {
1905         p4d_t *p4d;
1906         unsigned long next;
1907         int ret;
1908
1909         p4d = p4d_offset(pgd, addr);
1910         do {
1911                 next = p4d_addr_end(addr, end);
1912                 if (p4d_none_or_clear_bad(p4d))
1913                         continue;
1914                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1915                 if (ret)
1916                         return ret;
1917         } while (p4d++, addr = next, addr != end);
1918         return 0;
1919 }
1920
1921 static int unuse_vma(struct vm_area_struct *vma,
1922                                 swp_entry_t entry, struct page *page)
1923 {
1924         pgd_t *pgd;
1925         unsigned long addr, end, next;
1926         int ret;
1927
1928         if (page_anon_vma(page)) {
1929                 addr = page_address_in_vma(page, vma);
1930                 if (addr == -EFAULT)
1931                         return 0;
1932                 else
1933                         end = addr + PAGE_SIZE;
1934         } else {
1935                 addr = vma->vm_start;
1936                 end = vma->vm_end;
1937         }
1938
1939         pgd = pgd_offset(vma->vm_mm, addr);
1940         do {
1941                 next = pgd_addr_end(addr, end);
1942                 if (pgd_none_or_clear_bad(pgd))
1943                         continue;
1944                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1945                 if (ret)
1946                         return ret;
1947         } while (pgd++, addr = next, addr != end);
1948         return 0;
1949 }
1950
1951 static int unuse_mm(struct mm_struct *mm,
1952                                 swp_entry_t entry, struct page *page)
1953 {
1954         struct vm_area_struct *vma;
1955         int ret = 0;
1956
1957         if (!down_read_trylock(&mm->mmap_sem)) {
1958                 /*
1959                  * Activate page so shrink_inactive_list is unlikely to unmap
1960                  * its ptes while lock is dropped, so swapoff can make progress.
1961                  */
1962                 activate_page(page);
1963                 unlock_page(page);
1964                 down_read(&mm->mmap_sem);
1965                 lock_page(page);
1966         }
1967         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1968                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1969                         break;
1970                 cond_resched();
1971         }
1972         up_read(&mm->mmap_sem);
1973         return (ret < 0)? ret: 0;
1974 }
1975
1976 /*
1977  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1978  * from current position to next entry still in use.
1979  * Recycle to start on reaching the end, returning 0 when empty.
1980  */
1981 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1982                                         unsigned int prev, bool frontswap)
1983 {
1984         unsigned int max = si->max;
1985         unsigned int i = prev;
1986         unsigned char count;
1987
1988         /*
1989          * No need for swap_lock here: we're just looking
1990          * for whether an entry is in use, not modifying it; false
1991          * hits are okay, and sys_swapoff() has already prevented new
1992          * allocations from this area (while holding swap_lock).
1993          */
1994         for (;;) {
1995                 if (++i >= max) {
1996                         if (!prev) {
1997                                 i = 0;
1998                                 break;
1999                         }
2000                         /*
2001                          * No entries in use at top of swap_map,
2002                          * loop back to start and recheck there.
2003                          */
2004                         max = prev + 1;
2005                         prev = 0;
2006                         i = 1;
2007                 }
2008                 count = READ_ONCE(si->swap_map[i]);
2009                 if (count && swap_count(count) != SWAP_MAP_BAD)
2010                         if (!frontswap || frontswap_test(si, i))
2011                                 break;
2012                 if ((i % LATENCY_LIMIT) == 0)
2013                         cond_resched();
2014         }
2015         return i;
2016 }
2017
2018 /*
2019  * We completely avoid races by reading each swap page in advance,
2020  * and then search for the process using it.  All the necessary
2021  * page table adjustments can then be made atomically.
2022  *
2023  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2024  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2025  */
2026 int try_to_unuse(unsigned int type, bool frontswap,
2027                  unsigned long pages_to_unuse)
2028 {
2029         struct swap_info_struct *si = swap_info[type];
2030         struct mm_struct *start_mm;
2031         volatile unsigned char *swap_map; /* swap_map is accessed without
2032                                            * locking. Mark it as volatile
2033                                            * to prevent compiler doing
2034                                            * something odd.
2035                                            */
2036         unsigned char swcount;
2037         struct page *page;
2038         swp_entry_t entry;
2039         unsigned int i = 0;
2040         int retval = 0;
2041
2042         /*
2043          * When searching mms for an entry, a good strategy is to
2044          * start at the first mm we freed the previous entry from
2045          * (though actually we don't notice whether we or coincidence
2046          * freed the entry).  Initialize this start_mm with a hold.
2047          *
2048          * A simpler strategy would be to start at the last mm we
2049          * freed the previous entry from; but that would take less
2050          * advantage of mmlist ordering, which clusters forked mms
2051          * together, child after parent.  If we race with dup_mmap(), we
2052          * prefer to resolve parent before child, lest we miss entries
2053          * duplicated after we scanned child: using last mm would invert
2054          * that.
2055          */
2056         start_mm = &init_mm;
2057         mmget(&init_mm);
2058
2059         /*
2060          * Keep on scanning until all entries have gone.  Usually,
2061          * one pass through swap_map is enough, but not necessarily:
2062          * there are races when an instance of an entry might be missed.
2063          */
2064         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2065                 if (signal_pending(current)) {
2066                         retval = -EINTR;
2067                         break;
2068                 }
2069
2070                 /*
2071                  * Get a page for the entry, using the existing swap
2072                  * cache page if there is one.  Otherwise, get a clean
2073                  * page and read the swap into it.
2074                  */
2075                 swap_map = &si->swap_map[i];
2076                 entry = swp_entry(type, i);
2077                 page = read_swap_cache_async(entry,
2078                                         GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2079                 if (!page) {
2080                         /*
2081                          * Either swap_duplicate() failed because entry
2082                          * has been freed independently, and will not be
2083                          * reused since sys_swapoff() already disabled
2084                          * allocation from here, or alloc_page() failed.
2085                          */
2086                         swcount = *swap_map;
2087                         /*
2088                          * We don't hold lock here, so the swap entry could be
2089                          * SWAP_MAP_BAD (when the cluster is discarding).
2090                          * Instead of fail out, We can just skip the swap
2091                          * entry because swapoff will wait for discarding
2092                          * finish anyway.
2093                          */
2094                         if (!swcount || swcount == SWAP_MAP_BAD)
2095                                 continue;
2096                         retval = -ENOMEM;
2097                         break;
2098                 }
2099
2100                 /*
2101                  * Don't hold on to start_mm if it looks like exiting.
2102                  */
2103                 if (atomic_read(&start_mm->mm_users) == 1) {
2104                         mmput(start_mm);
2105                         start_mm = &init_mm;
2106                         mmget(&init_mm);
2107                 }
2108
2109                 /*
2110                  * Wait for and lock page.  When do_swap_page races with
2111                  * try_to_unuse, do_swap_page can handle the fault much
2112                  * faster than try_to_unuse can locate the entry.  This
2113                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
2114                  * defer to do_swap_page in such a case - in some tests,
2115                  * do_swap_page and try_to_unuse repeatedly compete.
2116                  */
2117                 wait_on_page_locked(page);
2118                 wait_on_page_writeback(page);
2119                 lock_page(page);
2120                 wait_on_page_writeback(page);
2121
2122                 /*
2123                  * Remove all references to entry.
2124                  */
2125                 swcount = *swap_map;
2126                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2127                         retval = shmem_unuse(entry, page);
2128                         /* page has already been unlocked and released */
2129                         if (retval < 0)
2130                                 break;
2131                         continue;
2132                 }
2133                 if (swap_count(swcount) && start_mm != &init_mm)
2134                         retval = unuse_mm(start_mm, entry, page);
2135
2136                 if (swap_count(*swap_map)) {
2137                         int set_start_mm = (*swap_map >= swcount);
2138                         struct list_head *p = &start_mm->mmlist;
2139                         struct mm_struct *new_start_mm = start_mm;
2140                         struct mm_struct *prev_mm = start_mm;
2141                         struct mm_struct *mm;
2142
2143                         mmget(new_start_mm);
2144                         mmget(prev_mm);
2145                         spin_lock(&mmlist_lock);
2146                         while (swap_count(*swap_map) && !retval &&
2147                                         (p = p->next) != &start_mm->mmlist) {
2148                                 mm = list_entry(p, struct mm_struct, mmlist);
2149                                 if (!mmget_not_zero(mm))
2150                                         continue;
2151                                 spin_unlock(&mmlist_lock);
2152                                 mmput(prev_mm);
2153                                 prev_mm = mm;
2154
2155                                 cond_resched();
2156
2157                                 swcount = *swap_map;
2158                                 if (!swap_count(swcount)) /* any usage ? */
2159                                         ;
2160                                 else if (mm == &init_mm)
2161                                         set_start_mm = 1;
2162                                 else
2163                                         retval = unuse_mm(mm, entry, page);
2164
2165                                 if (set_start_mm && *swap_map < swcount) {
2166                                         mmput(new_start_mm);
2167                                         mmget(mm);
2168                                         new_start_mm = mm;
2169                                         set_start_mm = 0;
2170                                 }
2171                                 spin_lock(&mmlist_lock);
2172                         }
2173                         spin_unlock(&mmlist_lock);
2174                         mmput(prev_mm);
2175                         mmput(start_mm);
2176                         start_mm = new_start_mm;
2177                 }
2178                 if (retval) {
2179                         unlock_page(page);
2180                         put_page(page);
2181                         break;
2182                 }
2183
2184                 /*
2185                  * If a reference remains (rare), we would like to leave
2186                  * the page in the swap cache; but try_to_unmap could
2187                  * then re-duplicate the entry once we drop page lock,
2188                  * so we might loop indefinitely; also, that page could
2189                  * not be swapped out to other storage meanwhile.  So:
2190                  * delete from cache even if there's another reference,
2191                  * after ensuring that the data has been saved to disk -
2192                  * since if the reference remains (rarer), it will be
2193                  * read from disk into another page.  Splitting into two
2194                  * pages would be incorrect if swap supported "shared
2195                  * private" pages, but they are handled by tmpfs files.
2196                  *
2197                  * Given how unuse_vma() targets one particular offset
2198                  * in an anon_vma, once the anon_vma has been determined,
2199                  * this splitting happens to be just what is needed to
2200                  * handle where KSM pages have been swapped out: re-reading
2201                  * is unnecessarily slow, but we can fix that later on.
2202                  */
2203                 if (swap_count(*swap_map) &&
2204                      PageDirty(page) && PageSwapCache(page)) {
2205                         struct writeback_control wbc = {
2206                                 .sync_mode = WB_SYNC_NONE,
2207                         };
2208
2209                         swap_writepage(compound_head(page), &wbc);
2210                         lock_page(page);
2211                         wait_on_page_writeback(page);
2212                 }
2213
2214                 /*
2215                  * It is conceivable that a racing task removed this page from
2216                  * swap cache just before we acquired the page lock at the top,
2217                  * or while we dropped it in unuse_mm().  The page might even
2218                  * be back in swap cache on another swap area: that we must not
2219                  * delete, since it may not have been written out to swap yet.
2220                  */
2221                 if (PageSwapCache(page) &&
2222                     likely(page_private(page) == entry.val) &&
2223                     (!PageTransCompound(page) ||
2224                      !swap_page_trans_huge_swapped(si, entry)))
2225                         delete_from_swap_cache(compound_head(page));
2226
2227                 /*
2228                  * So we could skip searching mms once swap count went
2229                  * to 1, we did not mark any present ptes as dirty: must
2230                  * mark page dirty so shrink_page_list will preserve it.
2231                  */
2232                 SetPageDirty(page);
2233                 unlock_page(page);
2234                 put_page(page);
2235
2236                 /*
2237                  * Make sure that we aren't completely killing
2238                  * interactive performance.
2239                  */
2240                 cond_resched();
2241                 if (frontswap && pages_to_unuse > 0) {
2242                         if (!--pages_to_unuse)
2243                                 break;
2244                 }
2245         }
2246
2247         mmput(start_mm);
2248         return retval;
2249 }
2250
2251 /*
2252  * After a successful try_to_unuse, if no swap is now in use, we know
2253  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2254  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2255  * added to the mmlist just after page_duplicate - before would be racy.
2256  */
2257 static void drain_mmlist(void)
2258 {
2259         struct list_head *p, *next;
2260         unsigned int type;
2261
2262         for (type = 0; type < nr_swapfiles; type++)
2263                 if (swap_info[type]->inuse_pages)
2264                         return;
2265         spin_lock(&mmlist_lock);
2266         list_for_each_safe(p, next, &init_mm.mmlist)
2267                 list_del_init(p);
2268         spin_unlock(&mmlist_lock);
2269 }
2270
2271 /*
2272  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2273  * corresponds to page offset for the specified swap entry.
2274  * Note that the type of this function is sector_t, but it returns page offset
2275  * into the bdev, not sector offset.
2276  */
2277 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2278 {
2279         struct swap_info_struct *sis;
2280         struct swap_extent *start_se;
2281         struct swap_extent *se;
2282         pgoff_t offset;
2283
2284         sis = swap_info[swp_type(entry)];
2285         *bdev = sis->bdev;
2286
2287         offset = swp_offset(entry);
2288         start_se = sis->curr_swap_extent;
2289         se = start_se;
2290
2291         for ( ; ; ) {
2292                 if (se->start_page <= offset &&
2293                                 offset < (se->start_page + se->nr_pages)) {
2294                         return se->start_block + (offset - se->start_page);
2295                 }
2296                 se = list_next_entry(se, list);
2297                 sis->curr_swap_extent = se;
2298                 BUG_ON(se == start_se);         /* It *must* be present */
2299         }
2300 }
2301
2302 /*
2303  * Returns the page offset into bdev for the specified page's swap entry.
2304  */
2305 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2306 {
2307         swp_entry_t entry;
2308         entry.val = page_private(page);
2309         return map_swap_entry(entry, bdev) << (PAGE_SHIFT - 9);
2310 }
2311
2312 /*
2313  * Free all of a swapdev's extent information
2314  */
2315 static void destroy_swap_extents(struct swap_info_struct *sis)
2316 {
2317         while (!list_empty(&sis->first_swap_extent.list)) {
2318                 struct swap_extent *se;
2319
2320                 se = list_first_entry(&sis->first_swap_extent.list,
2321                                 struct swap_extent, list);
2322                 list_del(&se->list);
2323                 kfree(se);
2324         }
2325
2326         if (sis->flags & SWP_FILE) {
2327                 struct file *swap_file = sis->swap_file;
2328                 struct address_space *mapping = swap_file->f_mapping;
2329
2330                 sis->flags &= ~SWP_FILE;
2331                 mapping->a_ops->swap_deactivate(swap_file);
2332         }
2333 }
2334
2335 /*
2336  * Add a block range (and the corresponding page range) into this swapdev's
2337  * extent list.  The extent list is kept sorted in page order.
2338  *
2339  * This function rather assumes that it is called in ascending page order.
2340  */
2341 int
2342 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2343                 unsigned long nr_pages, sector_t start_block)
2344 {
2345         struct swap_extent *se;
2346         struct swap_extent *new_se;
2347         struct list_head *lh;
2348
2349         if (start_page == 0) {
2350                 se = &sis->first_swap_extent;
2351                 sis->curr_swap_extent = se;
2352                 se->start_page = 0;
2353                 se->nr_pages = nr_pages;
2354                 se->start_block = start_block;
2355                 return 1;
2356         } else {
2357                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2358                 se = list_entry(lh, struct swap_extent, list);
2359                 BUG_ON(se->start_page + se->nr_pages != start_page);
2360                 if (se->start_block + se->nr_pages == start_block) {
2361                         /* Merge it */
2362                         se->nr_pages += nr_pages;
2363                         return 0;
2364                 }
2365         }
2366
2367         /*
2368          * No merge.  Insert a new extent, preserving ordering.
2369          */
2370         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2371         if (new_se == NULL)
2372                 return -ENOMEM;
2373         new_se->start_page = start_page;
2374         new_se->nr_pages = nr_pages;
2375         new_se->start_block = start_block;
2376
2377         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2378         return 1;
2379 }
2380
2381 /*
2382  * A `swap extent' is a simple thing which maps a contiguous range of pages
2383  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2384  * is built at swapon time and is then used at swap_writepage/swap_readpage
2385  * time for locating where on disk a page belongs.
2386  *
2387  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2388  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2389  * swap files identically.
2390  *
2391  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2392  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2393  * swapfiles are handled *identically* after swapon time.
2394  *
2395  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2396  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2397  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2398  * requirements, they are simply tossed out - we will never use those blocks
2399  * for swapping.
2400  *
2401  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2402  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2403  * which will scribble on the fs.
2404  *
2405  * The amount of disk space which a single swap extent represents varies.
2406  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2407  * extents in the list.  To avoid much list walking, we cache the previous
2408  * search location in `curr_swap_extent', and start new searches from there.
2409  * This is extremely effective.  The average number of iterations in
2410  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2411  */
2412 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2413 {
2414         struct file *swap_file = sis->swap_file;
2415         struct address_space *mapping = swap_file->f_mapping;
2416         struct inode *inode = mapping->host;
2417         int ret;
2418
2419         if (S_ISBLK(inode->i_mode)) {
2420                 ret = add_swap_extent(sis, 0, sis->max, 0);
2421                 *span = sis->pages;
2422                 return ret;
2423         }
2424
2425         if (mapping->a_ops->swap_activate) {
2426                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2427                 if (!ret) {
2428                         sis->flags |= SWP_FILE;
2429                         ret = add_swap_extent(sis, 0, sis->max, 0);
2430                         *span = sis->pages;
2431                 }
2432                 return ret;
2433         }
2434
2435         return generic_swapfile_activate(sis, swap_file, span);
2436 }
2437
2438 static int swap_node(struct swap_info_struct *p)
2439 {
2440         struct block_device *bdev;
2441
2442         if (p->bdev)
2443                 bdev = p->bdev;
2444         else
2445                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2446
2447         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2448 }
2449
2450 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2451                                 unsigned char *swap_map,
2452                                 struct swap_cluster_info *cluster_info)
2453 {
2454         int i;
2455
2456         if (prio >= 0)
2457                 p->prio = prio;
2458         else
2459                 p->prio = --least_priority;
2460         /*
2461          * the plist prio is negated because plist ordering is
2462          * low-to-high, while swap ordering is high-to-low
2463          */
2464         p->list.prio = -p->prio;
2465         for_each_node(i) {
2466                 if (p->prio >= 0)
2467                         p->avail_lists[i].prio = -p->prio;
2468                 else {
2469                         if (swap_node(p) == i)
2470                                 p->avail_lists[i].prio = 1;
2471                         else
2472                                 p->avail_lists[i].prio = -p->prio;
2473                 }
2474         }
2475         p->swap_map = swap_map;
2476         p->cluster_info = cluster_info;
2477         p->flags |= SWP_WRITEOK;
2478         atomic_long_add(p->pages, &nr_swap_pages);
2479         total_swap_pages += p->pages;
2480
2481         assert_spin_locked(&swap_lock);
2482         /*
2483          * both lists are plists, and thus priority ordered.
2484          * swap_active_head needs to be priority ordered for swapoff(),
2485          * which on removal of any swap_info_struct with an auto-assigned
2486          * (i.e. negative) priority increments the auto-assigned priority
2487          * of any lower-priority swap_info_structs.
2488          * swap_avail_head needs to be priority ordered for get_swap_page(),
2489          * which allocates swap pages from the highest available priority
2490          * swap_info_struct.
2491          */
2492         plist_add(&p->list, &swap_active_head);
2493         add_to_avail_list(p);
2494 }
2495
2496 static void enable_swap_info(struct swap_info_struct *p, int prio,
2497                                 unsigned char *swap_map,
2498                                 struct swap_cluster_info *cluster_info,
2499                                 unsigned long *frontswap_map)
2500 {
2501         frontswap_init(p->type, frontswap_map);
2502         spin_lock(&swap_lock);
2503         spin_lock(&p->lock);
2504          _enable_swap_info(p, prio, swap_map, cluster_info);
2505         spin_unlock(&p->lock);
2506         spin_unlock(&swap_lock);
2507 }
2508
2509 static void reinsert_swap_info(struct swap_info_struct *p)
2510 {
2511         spin_lock(&swap_lock);
2512         spin_lock(&p->lock);
2513         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2514         spin_unlock(&p->lock);
2515         spin_unlock(&swap_lock);
2516 }
2517
2518 bool has_usable_swap(void)
2519 {
2520         bool ret = true;
2521
2522         spin_lock(&swap_lock);
2523         if (plist_head_empty(&swap_active_head))
2524                 ret = false;
2525         spin_unlock(&swap_lock);
2526         return ret;
2527 }
2528
2529 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2530 {
2531         struct swap_info_struct *p = NULL;
2532         unsigned char *swap_map;
2533         struct swap_cluster_info *cluster_info;
2534         unsigned long *frontswap_map;
2535         struct file *swap_file, *victim;
2536         struct address_space *mapping;
2537         struct inode *inode;
2538         struct filename *pathname;
2539         int err, found = 0;
2540         unsigned int old_block_size;
2541
2542         if (!capable(CAP_SYS_ADMIN))
2543                 return -EPERM;
2544
2545         BUG_ON(!current->mm);
2546
2547         pathname = getname(specialfile);
2548         if (IS_ERR(pathname))
2549                 return PTR_ERR(pathname);
2550
2551         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2552         err = PTR_ERR(victim);
2553         if (IS_ERR(victim))
2554                 goto out;
2555
2556         mapping = victim->f_mapping;
2557         spin_lock(&swap_lock);
2558         plist_for_each_entry(p, &swap_active_head, list) {
2559                 if (p->flags & SWP_WRITEOK) {
2560                         if (p->swap_file->f_mapping == mapping) {
2561                                 found = 1;
2562                                 break;
2563                         }
2564                 }
2565         }
2566         if (!found) {
2567                 err = -EINVAL;
2568                 spin_unlock(&swap_lock);
2569                 goto out_dput;
2570         }
2571         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2572                 vm_unacct_memory(p->pages);
2573         else {
2574                 err = -ENOMEM;
2575                 spin_unlock(&swap_lock);
2576                 goto out_dput;
2577         }
2578         spin_lock(&p->lock);
2579         del_from_avail_list(p);
2580         if (p->prio < 0) {
2581                 struct swap_info_struct *si = p;
2582                 int nid;
2583
2584                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2585                         si->prio++;
2586                         si->list.prio--;
2587                         for_each_node(nid) {
2588                                 if (si->avail_lists[nid].prio != 1)
2589                                         si->avail_lists[nid].prio--;
2590                         }
2591                 }
2592                 least_priority++;
2593         }
2594         plist_del(&p->list, &swap_active_head);
2595         atomic_long_sub(p->pages, &nr_swap_pages);
2596         total_swap_pages -= p->pages;
2597         p->flags &= ~SWP_WRITEOK;
2598         spin_unlock(&p->lock);
2599         spin_unlock(&swap_lock);
2600
2601         disable_swap_slots_cache_lock();
2602
2603         set_current_oom_origin();
2604         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2605         clear_current_oom_origin();
2606
2607         if (err) {
2608                 /* re-insert swap space back into swap_list */
2609                 reinsert_swap_info(p);
2610                 reenable_swap_slots_cache_unlock();
2611                 goto out_dput;
2612         }
2613
2614         reenable_swap_slots_cache_unlock();
2615
2616         flush_work(&p->discard_work);
2617
2618         destroy_swap_extents(p);
2619         if (p->flags & SWP_CONTINUED)
2620                 free_swap_count_continuations(p);
2621
2622         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2623                 atomic_dec(&nr_rotate_swap);
2624
2625         mutex_lock(&swapon_mutex);
2626         spin_lock(&swap_lock);
2627         spin_lock(&p->lock);
2628         drain_mmlist();
2629
2630         /* wait for anyone still in scan_swap_map */
2631         p->highest_bit = 0;             /* cuts scans short */
2632         while (p->flags >= SWP_SCANNING) {
2633                 spin_unlock(&p->lock);
2634                 spin_unlock(&swap_lock);
2635                 schedule_timeout_uninterruptible(1);
2636                 spin_lock(&swap_lock);
2637                 spin_lock(&p->lock);
2638         }
2639
2640         swap_file = p->swap_file;
2641         old_block_size = p->old_block_size;
2642         p->swap_file = NULL;
2643         p->max = 0;
2644         swap_map = p->swap_map;
2645         p->swap_map = NULL;
2646         cluster_info = p->cluster_info;
2647         p->cluster_info = NULL;
2648         frontswap_map = frontswap_map_get(p);
2649         spin_unlock(&p->lock);
2650         spin_unlock(&swap_lock);
2651         frontswap_invalidate_area(p->type);
2652         frontswap_map_set(p, NULL);
2653         mutex_unlock(&swapon_mutex);
2654         free_percpu(p->percpu_cluster);
2655         p->percpu_cluster = NULL;
2656         vfree(swap_map);
2657         kvfree(cluster_info);
2658         kvfree(frontswap_map);
2659         /* Destroy swap account information */
2660         swap_cgroup_swapoff(p->type);
2661         exit_swap_address_space(p->type);
2662
2663         inode = mapping->host;
2664         if (S_ISBLK(inode->i_mode)) {
2665                 struct block_device *bdev = I_BDEV(inode);
2666                 set_blocksize(bdev, old_block_size);
2667                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2668         } else {
2669                 inode_lock(inode);
2670                 inode->i_flags &= ~S_SWAPFILE;
2671                 inode_unlock(inode);
2672         }
2673         filp_close(swap_file, NULL);
2674
2675         /*
2676          * Clear the SWP_USED flag after all resources are freed so that swapon
2677          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2678          * not hold p->lock after we cleared its SWP_WRITEOK.
2679          */
2680         spin_lock(&swap_lock);
2681         p->flags = 0;
2682         spin_unlock(&swap_lock);
2683
2684         err = 0;
2685         atomic_inc(&proc_poll_event);
2686         wake_up_interruptible(&proc_poll_wait);
2687
2688 out_dput:
2689         filp_close(victim, NULL);
2690 out:
2691         putname(pathname);
2692         return err;
2693 }
2694
2695 #ifdef CONFIG_PROC_FS
2696 static unsigned swaps_poll(struct file *file, poll_table *wait)
2697 {
2698         struct seq_file *seq = file->private_data;
2699
2700         poll_wait(file, &proc_poll_wait, wait);
2701
2702         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2703                 seq->poll_event = atomic_read(&proc_poll_event);
2704                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2705         }
2706
2707         return POLLIN | POLLRDNORM;
2708 }
2709
2710 /* iterator */
2711 static void *swap_start(struct seq_file *swap, loff_t *pos)
2712 {
2713         struct swap_info_struct *si;
2714         int type;
2715         loff_t l = *pos;
2716
2717         mutex_lock(&swapon_mutex);
2718
2719         if (!l)
2720                 return SEQ_START_TOKEN;
2721
2722         for (type = 0; type < nr_swapfiles; type++) {
2723                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2724                 si = swap_info[type];
2725                 if (!(si->flags & SWP_USED) || !si->swap_map)
2726                         continue;
2727                 if (!--l)
2728                         return si;
2729         }
2730
2731         return NULL;
2732 }
2733
2734 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2735 {
2736         struct swap_info_struct *si = v;
2737         int type;
2738
2739         if (v == SEQ_START_TOKEN)
2740                 type = 0;
2741         else
2742                 type = si->type + 1;
2743
2744         for (; type < nr_swapfiles; type++) {
2745                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2746                 si = swap_info[type];
2747                 if (!(si->flags & SWP_USED) || !si->swap_map)
2748                         continue;
2749                 ++*pos;
2750                 return si;
2751         }
2752
2753         return NULL;
2754 }
2755
2756 static void swap_stop(struct seq_file *swap, void *v)
2757 {
2758         mutex_unlock(&swapon_mutex);
2759 }
2760
2761 static int swap_show(struct seq_file *swap, void *v)
2762 {
2763         struct swap_info_struct *si = v;
2764         struct file *file;
2765         int len;
2766
2767         if (si == SEQ_START_TOKEN) {
2768                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2769                 return 0;
2770         }
2771
2772         file = si->swap_file;
2773         len = seq_file_path(swap, file, " \t\n\\");
2774         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2775                         len < 40 ? 40 - len : 1, " ",
2776                         S_ISBLK(file_inode(file)->i_mode) ?
2777                                 "partition" : "file\t",
2778                         si->pages << (PAGE_SHIFT - 10),
2779                         si->inuse_pages << (PAGE_SHIFT - 10),
2780                         si->prio);
2781         return 0;
2782 }
2783
2784 static const struct seq_operations swaps_op = {
2785         .start =        swap_start,
2786         .next =         swap_next,
2787         .stop =         swap_stop,
2788         .show =         swap_show
2789 };
2790
2791 static int swaps_open(struct inode *inode, struct file *file)
2792 {
2793         struct seq_file *seq;
2794         int ret;
2795
2796         ret = seq_open(file, &swaps_op);
2797         if (ret)
2798                 return ret;
2799
2800         seq = file->private_data;
2801         seq->poll_event = atomic_read(&proc_poll_event);
2802         return 0;
2803 }
2804
2805 static const struct file_operations proc_swaps_operations = {
2806         .open           = swaps_open,
2807         .read           = seq_read,
2808         .llseek         = seq_lseek,
2809         .release        = seq_release,
2810         .poll           = swaps_poll,
2811 };
2812
2813 static int __init procswaps_init(void)
2814 {
2815         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2816         return 0;
2817 }
2818 __initcall(procswaps_init);
2819 #endif /* CONFIG_PROC_FS */
2820
2821 #ifdef MAX_SWAPFILES_CHECK
2822 static int __init max_swapfiles_check(void)
2823 {
2824         MAX_SWAPFILES_CHECK();
2825         return 0;
2826 }
2827 late_initcall(max_swapfiles_check);
2828 #endif
2829
2830 static struct swap_info_struct *alloc_swap_info(void)
2831 {
2832         struct swap_info_struct *p;
2833         struct swap_info_struct *defer = NULL;
2834         unsigned int type;
2835         int i;
2836         int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node);
2837
2838         p = kvzalloc(size, GFP_KERNEL);
2839         if (!p)
2840                 return ERR_PTR(-ENOMEM);
2841
2842         spin_lock(&swap_lock);
2843         for (type = 0; type < nr_swapfiles; type++) {
2844                 if (!(swap_info[type]->flags & SWP_USED))
2845                         break;
2846         }
2847         if (type >= MAX_SWAPFILES) {
2848                 spin_unlock(&swap_lock);
2849                 kvfree(p);
2850                 return ERR_PTR(-EPERM);
2851         }
2852         if (type >= nr_swapfiles) {
2853                 p->type = type;
2854                 swap_info[type] = p;
2855                 /*
2856                  * Write swap_info[type] before nr_swapfiles, in case a
2857                  * racing procfs swap_start() or swap_next() is reading them.
2858                  * (We never shrink nr_swapfiles, we never free this entry.)
2859                  */
2860                 smp_wmb();
2861                 nr_swapfiles++;
2862         } else {
2863                 defer = p;
2864                 p = swap_info[type];
2865                 /*
2866                  * Do not memset this entry: a racing procfs swap_next()
2867                  * would be relying on p->type to remain valid.
2868                  */
2869         }
2870         INIT_LIST_HEAD(&p->first_swap_extent.list);
2871         plist_node_init(&p->list, 0);
2872         for_each_node(i)
2873                 plist_node_init(&p->avail_lists[i], 0);
2874         p->flags = SWP_USED;
2875         spin_unlock(&swap_lock);
2876         kvfree(defer);
2877         spin_lock_init(&p->lock);
2878         spin_lock_init(&p->cont_lock);
2879
2880         return p;
2881 }
2882
2883 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2884 {
2885         int error;
2886
2887         if (S_ISBLK(inode->i_mode)) {
2888                 p->bdev = bdgrab(I_BDEV(inode));
2889                 error = blkdev_get(p->bdev,
2890                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2891                 if (error < 0) {
2892                         p->bdev = NULL;
2893                         return error;
2894                 }
2895                 p->old_block_size = block_size(p->bdev);
2896                 error = set_blocksize(p->bdev, PAGE_SIZE);
2897                 if (error < 0)
2898                         return error;
2899                 p->flags |= SWP_BLKDEV;
2900         } else if (S_ISREG(inode->i_mode)) {
2901                 p->bdev = inode->i_sb->s_bdev;
2902                 inode_lock(inode);
2903                 if (IS_SWAPFILE(inode))
2904                         return -EBUSY;
2905         } else
2906                 return -EINVAL;
2907
2908         return 0;
2909 }
2910
2911
2912 /*
2913  * Find out how many pages are allowed for a single swap device. There
2914  * are two limiting factors:
2915  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2916  * 2) the number of bits in the swap pte, as defined by the different
2917  * architectures.
2918  *
2919  * In order to find the largest possible bit mask, a swap entry with
2920  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2921  * decoded to a swp_entry_t again, and finally the swap offset is
2922  * extracted.
2923  *
2924  * This will mask all the bits from the initial ~0UL mask that can't
2925  * be encoded in either the swp_entry_t or the architecture definition
2926  * of a swap pte.
2927  */
2928 unsigned long generic_max_swapfile_size(void)
2929 {
2930         return swp_offset(pte_to_swp_entry(
2931                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2932 }
2933
2934 /* Can be overridden by an architecture for additional checks. */
2935 __weak unsigned long max_swapfile_size(void)
2936 {
2937         return generic_max_swapfile_size();
2938 }
2939
2940 static unsigned long read_swap_header(struct swap_info_struct *p,
2941                                         union swap_header *swap_header,
2942                                         struct inode *inode)
2943 {
2944         int i;
2945         unsigned long maxpages;
2946         unsigned long swapfilepages;
2947         unsigned long last_page;
2948
2949         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2950                 pr_err("Unable to find swap-space signature\n");
2951                 return 0;
2952         }
2953
2954         /* swap partition endianess hack... */
2955         if (swab32(swap_header->info.version) == 1) {
2956                 swab32s(&swap_header->info.version);
2957                 swab32s(&swap_header->info.last_page);
2958                 swab32s(&swap_header->info.nr_badpages);
2959                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2960                         return 0;
2961                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2962                         swab32s(&swap_header->info.badpages[i]);
2963         }
2964         /* Check the swap header's sub-version */
2965         if (swap_header->info.version != 1) {
2966                 pr_warn("Unable to handle swap header version %d\n",
2967                         swap_header->info.version);
2968                 return 0;
2969         }
2970
2971         p->lowest_bit  = 1;
2972         p->cluster_next = 1;
2973         p->cluster_nr = 0;
2974
2975         maxpages = max_swapfile_size();
2976         last_page = swap_header->info.last_page;
2977         if (!last_page) {
2978                 pr_warn("Empty swap-file\n");
2979                 return 0;
2980         }
2981         if (last_page > maxpages) {
2982                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2983                         maxpages << (PAGE_SHIFT - 10),
2984                         last_page << (PAGE_SHIFT - 10));
2985         }
2986         if (maxpages > last_page) {
2987                 maxpages = last_page + 1;
2988                 /* p->max is an unsigned int: don't overflow it */
2989                 if ((unsigned int)maxpages == 0)
2990                         maxpages = UINT_MAX;
2991         }
2992         p->highest_bit = maxpages - 1;
2993
2994         if (!maxpages)
2995                 return 0;
2996         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2997         if (swapfilepages && maxpages > swapfilepages) {
2998                 pr_warn("Swap area shorter than signature indicates\n");
2999                 return 0;
3000         }
3001         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3002                 return 0;
3003         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3004                 return 0;
3005
3006         return maxpages;
3007 }
3008
3009 #define SWAP_CLUSTER_INFO_COLS                                          \
3010         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3011 #define SWAP_CLUSTER_SPACE_COLS                                         \
3012         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3013 #define SWAP_CLUSTER_COLS                                               \
3014         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3015
3016 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3017                                         union swap_header *swap_header,
3018                                         unsigned char *swap_map,
3019                                         struct swap_cluster_info *cluster_info,
3020                                         unsigned long maxpages,
3021                                         sector_t *span)
3022 {
3023         unsigned int j, k;
3024         unsigned int nr_good_pages;
3025         int nr_extents;
3026         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3027         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3028         unsigned long i, idx;
3029
3030         nr_good_pages = maxpages - 1;   /* omit header page */
3031
3032         cluster_list_init(&p->free_clusters);
3033         cluster_list_init(&p->discard_clusters);
3034
3035         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3036                 unsigned int page_nr = swap_header->info.badpages[i];
3037                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3038                         return -EINVAL;
3039                 if (page_nr < maxpages) {
3040                         swap_map[page_nr] = SWAP_MAP_BAD;
3041                         nr_good_pages--;
3042                         /*
3043                          * Haven't marked the cluster free yet, no list
3044                          * operation involved
3045                          */
3046                         inc_cluster_info_page(p, cluster_info, page_nr);
3047                 }
3048         }
3049
3050         /* Haven't marked the cluster free yet, no list operation involved */
3051         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3052                 inc_cluster_info_page(p, cluster_info, i);
3053
3054         if (nr_good_pages) {
3055                 swap_map[0] = SWAP_MAP_BAD;
3056                 /*
3057                  * Not mark the cluster free yet, no list
3058                  * operation involved
3059                  */
3060                 inc_cluster_info_page(p, cluster_info, 0);
3061                 p->max = maxpages;
3062                 p->pages = nr_good_pages;
3063                 nr_extents = setup_swap_extents(p, span);
3064                 if (nr_extents < 0)
3065                         return nr_extents;
3066                 nr_good_pages = p->pages;
3067         }
3068         if (!nr_good_pages) {
3069                 pr_warn("Empty swap-file\n");
3070                 return -EINVAL;
3071         }
3072
3073         if (!cluster_info)
3074                 return nr_extents;
3075
3076
3077         /*
3078          * Reduce false cache line sharing between cluster_info and
3079          * sharing same address space.
3080          */
3081         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3082                 j = (k + col) % SWAP_CLUSTER_COLS;
3083                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3084                         idx = i * SWAP_CLUSTER_COLS + j;
3085                         if (idx >= nr_clusters)
3086                                 continue;
3087                         if (cluster_count(&cluster_info[idx]))
3088                                 continue;
3089                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3090                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3091                                               idx);
3092                 }
3093         }
3094         return nr_extents;
3095 }
3096
3097 /*
3098  * Helper to sys_swapon determining if a given swap
3099  * backing device queue supports DISCARD operations.
3100  */
3101 static bool swap_discardable(struct swap_info_struct *si)
3102 {
3103         struct request_queue *q = bdev_get_queue(si->bdev);
3104
3105         if (!q || !blk_queue_discard(q))
3106                 return false;
3107
3108         return true;
3109 }
3110
3111 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3112 {
3113         struct swap_info_struct *p;
3114         struct filename *name;
3115         struct file *swap_file = NULL;
3116         struct address_space *mapping;
3117         int prio;
3118         int error;
3119         union swap_header *swap_header;
3120         int nr_extents;
3121         sector_t span;
3122         unsigned long maxpages;
3123         unsigned char *swap_map = NULL;
3124         struct swap_cluster_info *cluster_info = NULL;
3125         unsigned long *frontswap_map = NULL;
3126         struct page *page = NULL;
3127         struct inode *inode = NULL;
3128
3129         if (swap_flags & ~SWAP_FLAGS_VALID)
3130                 return -EINVAL;
3131
3132         if (!capable(CAP_SYS_ADMIN))
3133                 return -EPERM;
3134
3135         if (!swap_avail_heads)
3136                 return -ENOMEM;
3137
3138         p = alloc_swap_info();
3139         if (IS_ERR(p))
3140                 return PTR_ERR(p);
3141
3142         INIT_WORK(&p->discard_work, swap_discard_work);
3143
3144         name = getname(specialfile);
3145         if (IS_ERR(name)) {
3146                 error = PTR_ERR(name);
3147                 name = NULL;
3148                 goto bad_swap;
3149         }
3150         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3151         if (IS_ERR(swap_file)) {
3152                 error = PTR_ERR(swap_file);
3153                 swap_file = NULL;
3154                 goto bad_swap;
3155         }
3156
3157         p->swap_file = swap_file;
3158         mapping = swap_file->f_mapping;
3159         inode = mapping->host;
3160
3161         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3162         error = claim_swapfile(p, inode);
3163         if (unlikely(error))
3164                 goto bad_swap;
3165
3166         /*
3167          * Read the swap header.
3168          */
3169         if (!mapping->a_ops->readpage) {
3170                 error = -EINVAL;
3171                 goto bad_swap;
3172         }
3173         page = read_mapping_page(mapping, 0, swap_file);
3174         if (IS_ERR(page)) {
3175                 error = PTR_ERR(page);
3176                 goto bad_swap;
3177         }
3178         swap_header = kmap(page);
3179
3180         maxpages = read_swap_header(p, swap_header, inode);
3181         if (unlikely(!maxpages)) {
3182                 error = -EINVAL;
3183                 goto bad_swap;
3184         }
3185
3186         /* OK, set up the swap map and apply the bad block list */
3187         swap_map = vzalloc(maxpages);
3188         if (!swap_map) {
3189                 error = -ENOMEM;
3190                 goto bad_swap;
3191         }
3192
3193         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3194                 p->flags |= SWP_STABLE_WRITES;
3195
3196         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3197                 int cpu;
3198                 unsigned long ci, nr_cluster;
3199
3200                 p->flags |= SWP_SOLIDSTATE;
3201                 /*
3202                  * select a random position to start with to help wear leveling
3203                  * SSD
3204                  */
3205                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3206                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3207
3208                 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3209                                         GFP_KERNEL);
3210                 if (!cluster_info) {
3211                         error = -ENOMEM;
3212                         goto bad_swap;
3213                 }
3214
3215                 for (ci = 0; ci < nr_cluster; ci++)
3216                         spin_lock_init(&((cluster_info + ci)->lock));
3217
3218                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3219                 if (!p->percpu_cluster) {
3220                         error = -ENOMEM;
3221                         goto bad_swap;
3222                 }
3223                 for_each_possible_cpu(cpu) {
3224                         struct percpu_cluster *cluster;
3225                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3226                         cluster_set_null(&cluster->index);
3227                 }
3228         } else
3229                 atomic_inc(&nr_rotate_swap);
3230
3231         error = swap_cgroup_swapon(p->type, maxpages);
3232         if (error)
3233                 goto bad_swap;
3234
3235         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3236                 cluster_info, maxpages, &span);
3237         if (unlikely(nr_extents < 0)) {
3238                 error = nr_extents;
3239                 goto bad_swap;
3240         }
3241         /* frontswap enabled? set up bit-per-page map for frontswap */
3242         if (IS_ENABLED(CONFIG_FRONTSWAP))
3243                 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3244                                          GFP_KERNEL);
3245
3246         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3247                 /*
3248                  * When discard is enabled for swap with no particular
3249                  * policy flagged, we set all swap discard flags here in
3250                  * order to sustain backward compatibility with older
3251                  * swapon(8) releases.
3252                  */
3253                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3254                              SWP_PAGE_DISCARD);
3255
3256                 /*
3257                  * By flagging sys_swapon, a sysadmin can tell us to
3258                  * either do single-time area discards only, or to just
3259                  * perform discards for released swap page-clusters.
3260                  * Now it's time to adjust the p->flags accordingly.
3261                  */
3262                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3263                         p->flags &= ~SWP_PAGE_DISCARD;
3264                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3265                         p->flags &= ~SWP_AREA_DISCARD;
3266
3267                 /* issue a swapon-time discard if it's still required */
3268                 if (p->flags & SWP_AREA_DISCARD) {
3269                         int err = discard_swap(p);
3270                         if (unlikely(err))
3271                                 pr_err("swapon: discard_swap(%p): %d\n",
3272                                         p, err);
3273                 }
3274         }
3275
3276         error = init_swap_address_space(p->type, maxpages);
3277         if (error)
3278                 goto bad_swap;
3279
3280         mutex_lock(&swapon_mutex);
3281         prio = -1;
3282         if (swap_flags & SWAP_FLAG_PREFER)
3283                 prio =
3284                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3285         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3286
3287         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3288                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3289                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3290                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3291                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3292                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3293                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3294                 (frontswap_map) ? "FS" : "");
3295
3296         mutex_unlock(&swapon_mutex);
3297         atomic_inc(&proc_poll_event);
3298         wake_up_interruptible(&proc_poll_wait);
3299
3300         if (S_ISREG(inode->i_mode))
3301                 inode->i_flags |= S_SWAPFILE;
3302         error = 0;
3303         goto out;
3304 bad_swap:
3305         free_percpu(p->percpu_cluster);
3306         p->percpu_cluster = NULL;
3307         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3308                 set_blocksize(p->bdev, p->old_block_size);
3309                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3310         }
3311         destroy_swap_extents(p);
3312         swap_cgroup_swapoff(p->type);
3313         spin_lock(&swap_lock);
3314         p->swap_file = NULL;
3315         p->flags = 0;
3316         spin_unlock(&swap_lock);
3317         vfree(swap_map);
3318         kvfree(cluster_info);
3319         kvfree(frontswap_map);
3320         if (swap_file) {
3321                 if (inode && S_ISREG(inode->i_mode)) {
3322                         inode_unlock(inode);
3323                         inode = NULL;
3324                 }
3325                 filp_close(swap_file, NULL);
3326         }
3327 out:
3328         if (page && !IS_ERR(page)) {
3329                 kunmap(page);
3330                 put_page(page);
3331         }
3332         if (name)
3333                 putname(name);
3334         if (inode && S_ISREG(inode->i_mode))
3335                 inode_unlock(inode);
3336         if (!error)
3337                 enable_swap_slots_cache();
3338         return error;
3339 }
3340
3341 void si_swapinfo(struct sysinfo *val)
3342 {
3343         unsigned int type;
3344         unsigned long nr_to_be_unused = 0;
3345
3346         spin_lock(&swap_lock);
3347         for (type = 0; type < nr_swapfiles; type++) {
3348                 struct swap_info_struct *si = swap_info[type];
3349
3350                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3351                         nr_to_be_unused += si->inuse_pages;
3352         }
3353         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3354         val->totalswap = total_swap_pages + nr_to_be_unused;
3355         spin_unlock(&swap_lock);
3356 }
3357
3358 /*
3359  * Verify that a swap entry is valid and increment its swap map count.
3360  *
3361  * Returns error code in following case.
3362  * - success -> 0
3363  * - swp_entry is invalid -> EINVAL
3364  * - swp_entry is migration entry -> EINVAL
3365  * - swap-cache reference is requested but there is already one. -> EEXIST
3366  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3367  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3368  */
3369 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3370 {
3371         struct swap_info_struct *p;
3372         struct swap_cluster_info *ci;
3373         unsigned long offset, type;
3374         unsigned char count;
3375         unsigned char has_cache;
3376         int err = -EINVAL;
3377
3378         if (non_swap_entry(entry))
3379                 goto out;
3380
3381         type = swp_type(entry);
3382         if (type >= nr_swapfiles)
3383                 goto bad_file;
3384         p = swap_info[type];
3385         offset = swp_offset(entry);
3386         if (unlikely(offset >= p->max))
3387                 goto out;
3388
3389         ci = lock_cluster_or_swap_info(p, offset);
3390
3391         count = p->swap_map[offset];
3392
3393         /*
3394          * swapin_readahead() doesn't check if a swap entry is valid, so the
3395          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3396          */
3397         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3398                 err = -ENOENT;
3399                 goto unlock_out;
3400         }
3401
3402         has_cache = count & SWAP_HAS_CACHE;
3403         count &= ~SWAP_HAS_CACHE;
3404         err = 0;
3405
3406         if (usage == SWAP_HAS_CACHE) {
3407
3408                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3409                 if (!has_cache && count)
3410                         has_cache = SWAP_HAS_CACHE;
3411                 else if (has_cache)             /* someone else added cache */
3412                         err = -EEXIST;
3413                 else                            /* no users remaining */
3414                         err = -ENOENT;
3415
3416         } else if (count || has_cache) {
3417
3418                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3419                         count += usage;
3420                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3421                         err = -EINVAL;
3422                 else if (swap_count_continued(p, offset, count))
3423                         count = COUNT_CONTINUED;
3424                 else
3425                         err = -ENOMEM;
3426         } else
3427                 err = -ENOENT;                  /* unused swap entry */
3428
3429         p->swap_map[offset] = count | has_cache;
3430
3431 unlock_out:
3432         unlock_cluster_or_swap_info(p, ci);
3433 out:
3434         return err;
3435
3436 bad_file:
3437         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3438         goto out;
3439 }
3440
3441 /*
3442  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3443  * (in which case its reference count is never incremented).
3444  */
3445 void swap_shmem_alloc(swp_entry_t entry)
3446 {
3447         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3448 }
3449
3450 /*
3451  * Increase reference count of swap entry by 1.
3452  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3453  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3454  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3455  * might occur if a page table entry has got corrupted.
3456  */
3457 int swap_duplicate(swp_entry_t entry)
3458 {
3459         int err = 0;
3460
3461         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3462                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3463         return err;
3464 }
3465
3466 /*
3467  * @entry: swap entry for which we allocate swap cache.
3468  *
3469  * Called when allocating swap cache for existing swap entry,
3470  * This can return error codes. Returns 0 at success.
3471  * -EBUSY means there is a swap cache.
3472  * Note: return code is different from swap_duplicate().
3473  */
3474 int swapcache_prepare(swp_entry_t entry)
3475 {
3476         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3477 }
3478
3479 struct swap_info_struct *page_swap_info(struct page *page)
3480 {
3481         swp_entry_t swap = { .val = page_private(page) };
3482         return swap_info[swp_type(swap)];
3483 }
3484
3485 /*
3486  * out-of-line __page_file_ methods to avoid include hell.
3487  */
3488 struct address_space *__page_file_mapping(struct page *page)
3489 {
3490         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3491         return page_swap_info(page)->swap_file->f_mapping;
3492 }
3493 EXPORT_SYMBOL_GPL(__page_file_mapping);
3494
3495 pgoff_t __page_file_index(struct page *page)
3496 {
3497         swp_entry_t swap = { .val = page_private(page) };
3498         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3499         return swp_offset(swap);
3500 }
3501 EXPORT_SYMBOL_GPL(__page_file_index);
3502
3503 /*
3504  * add_swap_count_continuation - called when a swap count is duplicated
3505  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3506  * page of the original vmalloc'ed swap_map, to hold the continuation count
3507  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3508  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3509  *
3510  * These continuation pages are seldom referenced: the common paths all work
3511  * on the original swap_map, only referring to a continuation page when the
3512  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3513  *
3514  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3515  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3516  * can be called after dropping locks.
3517  */
3518 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3519 {
3520         struct swap_info_struct *si;
3521         struct swap_cluster_info *ci;
3522         struct page *head;
3523         struct page *page;
3524         struct page *list_page;
3525         pgoff_t offset;
3526         unsigned char count;
3527
3528         /*
3529          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3530          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3531          */
3532         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3533
3534         si = swap_info_get(entry);
3535         if (!si) {
3536                 /*
3537                  * An acceptable race has occurred since the failing
3538                  * __swap_duplicate(): the swap entry has been freed,
3539                  * perhaps even the whole swap_map cleared for swapoff.
3540                  */
3541                 goto outer;
3542         }
3543
3544         offset = swp_offset(entry);
3545
3546         ci = lock_cluster(si, offset);
3547
3548         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3549
3550         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3551                 /*
3552                  * The higher the swap count, the more likely it is that tasks
3553                  * will race to add swap count continuation: we need to avoid
3554                  * over-provisioning.
3555                  */
3556                 goto out;
3557         }
3558
3559         if (!page) {
3560                 unlock_cluster(ci);
3561                 spin_unlock(&si->lock);
3562                 return -ENOMEM;
3563         }
3564
3565         /*
3566          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3567          * no architecture is using highmem pages for kernel page tables: so it
3568          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3569          */
3570         head = vmalloc_to_page(si->swap_map + offset);
3571         offset &= ~PAGE_MASK;
3572
3573         spin_lock(&si->cont_lock);
3574         /*
3575          * Page allocation does not initialize the page's lru field,
3576          * but it does always reset its private field.
3577          */
3578         if (!page_private(head)) {
3579                 BUG_ON(count & COUNT_CONTINUED);
3580                 INIT_LIST_HEAD(&head->lru);
3581                 set_page_private(head, SWP_CONTINUED);
3582                 si->flags |= SWP_CONTINUED;
3583         }
3584
3585         list_for_each_entry(list_page, &head->lru, lru) {
3586                 unsigned char *map;
3587
3588                 /*
3589                  * If the previous map said no continuation, but we've found
3590                  * a continuation page, free our allocation and use this one.
3591                  */
3592                 if (!(count & COUNT_CONTINUED))
3593                         goto out_unlock_cont;
3594
3595                 map = kmap_atomic(list_page) + offset;
3596                 count = *map;
3597                 kunmap_atomic(map);
3598
3599                 /*
3600                  * If this continuation count now has some space in it,
3601                  * free our allocation and use this one.
3602                  */
3603                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3604                         goto out_unlock_cont;
3605         }
3606
3607         list_add_tail(&page->lru, &head->lru);
3608         page = NULL;                    /* now it's attached, don't free it */
3609 out_unlock_cont:
3610         spin_unlock(&si->cont_lock);
3611 out:
3612         unlock_cluster(ci);
3613         spin_unlock(&si->lock);
3614 outer:
3615         if (page)
3616                 __free_page(page);
3617         return 0;
3618 }
3619
3620 /*
3621  * swap_count_continued - when the original swap_map count is incremented
3622  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3623  * into, carry if so, or else fail until a new continuation page is allocated;
3624  * when the original swap_map count is decremented from 0 with continuation,
3625  * borrow from the continuation and report whether it still holds more.
3626  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3627  * lock.
3628  */
3629 static bool swap_count_continued(struct swap_info_struct *si,
3630                                  pgoff_t offset, unsigned char count)
3631 {
3632         struct page *head;
3633         struct page *page;
3634         unsigned char *map;
3635         bool ret;
3636
3637         head = vmalloc_to_page(si->swap_map + offset);
3638         if (page_private(head) != SWP_CONTINUED) {
3639                 BUG_ON(count & COUNT_CONTINUED);
3640                 return false;           /* need to add count continuation */
3641         }
3642
3643         spin_lock(&si->cont_lock);
3644         offset &= ~PAGE_MASK;
3645         page = list_entry(head->lru.next, struct page, lru);
3646         map = kmap_atomic(page) + offset;
3647
3648         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3649                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3650
3651         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3652                 /*
3653                  * Think of how you add 1 to 999
3654                  */
3655                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3656                         kunmap_atomic(map);
3657                         page = list_entry(page->lru.next, struct page, lru);
3658                         BUG_ON(page == head);
3659                         map = kmap_atomic(page) + offset;
3660                 }
3661                 if (*map == SWAP_CONT_MAX) {
3662                         kunmap_atomic(map);
3663                         page = list_entry(page->lru.next, struct page, lru);
3664                         if (page == head) {
3665                                 ret = false;    /* add count continuation */
3666                                 goto out;
3667                         }
3668                         map = kmap_atomic(page) + offset;
3669 init_map:               *map = 0;               /* we didn't zero the page */
3670                 }
3671                 *map += 1;
3672                 kunmap_atomic(map);
3673                 page = list_entry(page->lru.prev, struct page, lru);
3674                 while (page != head) {
3675                         map = kmap_atomic(page) + offset;
3676                         *map = COUNT_CONTINUED;
3677                         kunmap_atomic(map);
3678                         page = list_entry(page->lru.prev, struct page, lru);
3679                 }
3680                 ret = true;                     /* incremented */
3681
3682         } else {                                /* decrementing */
3683                 /*
3684                  * Think of how you subtract 1 from 1000
3685                  */
3686                 BUG_ON(count != COUNT_CONTINUED);
3687                 while (*map == COUNT_CONTINUED) {
3688                         kunmap_atomic(map);
3689                         page = list_entry(page->lru.next, struct page, lru);
3690                         BUG_ON(page == head);
3691                         map = kmap_atomic(page) + offset;
3692                 }
3693                 BUG_ON(*map == 0);
3694                 *map -= 1;
3695                 if (*map == 0)
3696                         count = 0;
3697                 kunmap_atomic(map);
3698                 page = list_entry(page->lru.prev, struct page, lru);
3699                 while (page != head) {
3700                         map = kmap_atomic(page) + offset;
3701                         *map = SWAP_CONT_MAX | count;
3702                         count = COUNT_CONTINUED;
3703                         kunmap_atomic(map);
3704                         page = list_entry(page->lru.prev, struct page, lru);
3705                 }
3706                 ret = count == COUNT_CONTINUED;
3707         }
3708 out:
3709         spin_unlock(&si->cont_lock);
3710         return ret;
3711 }
3712
3713 /*
3714  * free_swap_count_continuations - swapoff free all the continuation pages
3715  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3716  */
3717 static void free_swap_count_continuations(struct swap_info_struct *si)
3718 {
3719         pgoff_t offset;
3720
3721         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3722                 struct page *head;
3723                 head = vmalloc_to_page(si->swap_map + offset);
3724                 if (page_private(head)) {
3725                         struct page *page, *next;
3726
3727                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3728                                 list_del(&page->lru);
3729                                 __free_page(page);
3730                         }
3731                 }
3732         }
3733 }
3734
3735 static int __init swapfile_init(void)
3736 {
3737         int nid;
3738
3739         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3740                                          GFP_KERNEL);
3741         if (!swap_avail_heads) {
3742                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3743                 return -ENOMEM;
3744         }
3745
3746         for_each_node(nid)
3747                 plist_head_init(&swap_avail_heads[nid]);
3748
3749         return 0;
3750 }
3751 subsys_initcall(swapfile_init);