GNU Linux-libre 6.8.9-gnu
[releases.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54                                  unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61  * Some modules use swappable objects and may try to swap them out under
62  * memory pressure (via the shrinker). Before doing so, they may wish to
63  * check to see if any swap space is available.
64  */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif  /* CONFIG_MIGRATION */
73
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78
79 /*
80  * all active swap_info_structs
81  * protected with swap_lock, and ordered by priority.
82  */
83 static PLIST_HEAD(swap_active_head);
84
85 /*
86  * all available (active, not full) swap_info_structs
87  * protected with swap_avail_lock, ordered by priority.
88  * This is used by folio_alloc_swap() instead of swap_active_head
89  * because swap_active_head includes all swap_info_structs,
90  * but folio_alloc_swap() doesn't need to look at full ones.
91  * This uses its own lock instead of swap_lock because when a
92  * swap_info_struct changes between not-full/full, it needs to
93  * add/remove itself to/from this list, but the swap_info_struct->lock
94  * is held and the locking order requires swap_lock to be taken
95  * before any swap_info_struct->lock.
96  */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101
102 static DEFINE_MUTEX(swapon_mutex);
103
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112         if (type >= MAX_SWAPFILES)
113                 return NULL;
114
115         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117
118 static inline unsigned char swap_count(unsigned char ent)
119 {
120         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
121 }
122
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY             0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED           0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL               0x4
132
133 /* returns 1 if swap entry is freed */
134 static int __try_to_reclaim_swap(struct swap_info_struct *si,
135                                  unsigned long offset, unsigned long flags)
136 {
137         swp_entry_t entry = swp_entry(si->type, offset);
138         struct folio *folio;
139         int ret = 0;
140
141         folio = filemap_get_folio(swap_address_space(entry), offset);
142         if (IS_ERR(folio))
143                 return 0;
144         /*
145          * When this function is called from scan_swap_map_slots() and it's
146          * called by vmscan.c at reclaiming folios. So we hold a folio lock
147          * here. We have to use trylock for avoiding deadlock. This is a special
148          * case and you should use folio_free_swap() with explicit folio_lock()
149          * in usual operations.
150          */
151         if (folio_trylock(folio)) {
152                 if ((flags & TTRS_ANYWAY) ||
153                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
154                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
155                         ret = folio_free_swap(folio);
156                 folio_unlock(folio);
157         }
158         folio_put(folio);
159         return ret;
160 }
161
162 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
163 {
164         struct rb_node *rb = rb_first(&sis->swap_extent_root);
165         return rb_entry(rb, struct swap_extent, rb_node);
166 }
167
168 static inline struct swap_extent *next_se(struct swap_extent *se)
169 {
170         struct rb_node *rb = rb_next(&se->rb_node);
171         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
172 }
173
174 /*
175  * swapon tell device that all the old swap contents can be discarded,
176  * to allow the swap device to optimize its wear-levelling.
177  */
178 static int discard_swap(struct swap_info_struct *si)
179 {
180         struct swap_extent *se;
181         sector_t start_block;
182         sector_t nr_blocks;
183         int err = 0;
184
185         /* Do not discard the swap header page! */
186         se = first_se(si);
187         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
188         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
189         if (nr_blocks) {
190                 err = blkdev_issue_discard(si->bdev, start_block,
191                                 nr_blocks, GFP_KERNEL);
192                 if (err)
193                         return err;
194                 cond_resched();
195         }
196
197         for (se = next_se(se); se; se = next_se(se)) {
198                 start_block = se->start_block << (PAGE_SHIFT - 9);
199                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
200
201                 err = blkdev_issue_discard(si->bdev, start_block,
202                                 nr_blocks, GFP_KERNEL);
203                 if (err)
204                         break;
205
206                 cond_resched();
207         }
208         return err;             /* That will often be -EOPNOTSUPP */
209 }
210
211 static struct swap_extent *
212 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
213 {
214         struct swap_extent *se;
215         struct rb_node *rb;
216
217         rb = sis->swap_extent_root.rb_node;
218         while (rb) {
219                 se = rb_entry(rb, struct swap_extent, rb_node);
220                 if (offset < se->start_page)
221                         rb = rb->rb_left;
222                 else if (offset >= se->start_page + se->nr_pages)
223                         rb = rb->rb_right;
224                 else
225                         return se;
226         }
227         /* It *must* be present */
228         BUG();
229 }
230
231 sector_t swap_folio_sector(struct folio *folio)
232 {
233         struct swap_info_struct *sis = swp_swap_info(folio->swap);
234         struct swap_extent *se;
235         sector_t sector;
236         pgoff_t offset;
237
238         offset = swp_offset(folio->swap);
239         se = offset_to_swap_extent(sis, offset);
240         sector = se->start_block + (offset - se->start_page);
241         return sector << (PAGE_SHIFT - 9);
242 }
243
244 /*
245  * swap allocation tell device that a cluster of swap can now be discarded,
246  * to allow the swap device to optimize its wear-levelling.
247  */
248 static void discard_swap_cluster(struct swap_info_struct *si,
249                                  pgoff_t start_page, pgoff_t nr_pages)
250 {
251         struct swap_extent *se = offset_to_swap_extent(si, start_page);
252
253         while (nr_pages) {
254                 pgoff_t offset = start_page - se->start_page;
255                 sector_t start_block = se->start_block + offset;
256                 sector_t nr_blocks = se->nr_pages - offset;
257
258                 if (nr_blocks > nr_pages)
259                         nr_blocks = nr_pages;
260                 start_page += nr_blocks;
261                 nr_pages -= nr_blocks;
262
263                 start_block <<= PAGE_SHIFT - 9;
264                 nr_blocks <<= PAGE_SHIFT - 9;
265                 if (blkdev_issue_discard(si->bdev, start_block,
266                                         nr_blocks, GFP_NOIO))
267                         break;
268
269                 se = next_se(se);
270         }
271 }
272
273 #ifdef CONFIG_THP_SWAP
274 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
275
276 #define swap_entry_size(size)   (size)
277 #else
278 #define SWAPFILE_CLUSTER        256
279
280 /*
281  * Define swap_entry_size() as constant to let compiler to optimize
282  * out some code if !CONFIG_THP_SWAP
283  */
284 #define swap_entry_size(size)   1
285 #endif
286 #define LATENCY_LIMIT           256
287
288 static inline void cluster_set_flag(struct swap_cluster_info *info,
289         unsigned int flag)
290 {
291         info->flags = flag;
292 }
293
294 static inline unsigned int cluster_count(struct swap_cluster_info *info)
295 {
296         return info->data;
297 }
298
299 static inline void cluster_set_count(struct swap_cluster_info *info,
300                                      unsigned int c)
301 {
302         info->data = c;
303 }
304
305 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
306                                          unsigned int c, unsigned int f)
307 {
308         info->flags = f;
309         info->data = c;
310 }
311
312 static inline unsigned int cluster_next(struct swap_cluster_info *info)
313 {
314         return info->data;
315 }
316
317 static inline void cluster_set_next(struct swap_cluster_info *info,
318                                     unsigned int n)
319 {
320         info->data = n;
321 }
322
323 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
324                                          unsigned int n, unsigned int f)
325 {
326         info->flags = f;
327         info->data = n;
328 }
329
330 static inline bool cluster_is_free(struct swap_cluster_info *info)
331 {
332         return info->flags & CLUSTER_FLAG_FREE;
333 }
334
335 static inline bool cluster_is_null(struct swap_cluster_info *info)
336 {
337         return info->flags & CLUSTER_FLAG_NEXT_NULL;
338 }
339
340 static inline void cluster_set_null(struct swap_cluster_info *info)
341 {
342         info->flags = CLUSTER_FLAG_NEXT_NULL;
343         info->data = 0;
344 }
345
346 static inline bool cluster_is_huge(struct swap_cluster_info *info)
347 {
348         if (IS_ENABLED(CONFIG_THP_SWAP))
349                 return info->flags & CLUSTER_FLAG_HUGE;
350         return false;
351 }
352
353 static inline void cluster_clear_huge(struct swap_cluster_info *info)
354 {
355         info->flags &= ~CLUSTER_FLAG_HUGE;
356 }
357
358 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
359                                                      unsigned long offset)
360 {
361         struct swap_cluster_info *ci;
362
363         ci = si->cluster_info;
364         if (ci) {
365                 ci += offset / SWAPFILE_CLUSTER;
366                 spin_lock(&ci->lock);
367         }
368         return ci;
369 }
370
371 static inline void unlock_cluster(struct swap_cluster_info *ci)
372 {
373         if (ci)
374                 spin_unlock(&ci->lock);
375 }
376
377 /*
378  * Determine the locking method in use for this device.  Return
379  * swap_cluster_info if SSD-style cluster-based locking is in place.
380  */
381 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
382                 struct swap_info_struct *si, unsigned long offset)
383 {
384         struct swap_cluster_info *ci;
385
386         /* Try to use fine-grained SSD-style locking if available: */
387         ci = lock_cluster(si, offset);
388         /* Otherwise, fall back to traditional, coarse locking: */
389         if (!ci)
390                 spin_lock(&si->lock);
391
392         return ci;
393 }
394
395 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
396                                                struct swap_cluster_info *ci)
397 {
398         if (ci)
399                 unlock_cluster(ci);
400         else
401                 spin_unlock(&si->lock);
402 }
403
404 static inline bool cluster_list_empty(struct swap_cluster_list *list)
405 {
406         return cluster_is_null(&list->head);
407 }
408
409 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
410 {
411         return cluster_next(&list->head);
412 }
413
414 static void cluster_list_init(struct swap_cluster_list *list)
415 {
416         cluster_set_null(&list->head);
417         cluster_set_null(&list->tail);
418 }
419
420 static void cluster_list_add_tail(struct swap_cluster_list *list,
421                                   struct swap_cluster_info *ci,
422                                   unsigned int idx)
423 {
424         if (cluster_list_empty(list)) {
425                 cluster_set_next_flag(&list->head, idx, 0);
426                 cluster_set_next_flag(&list->tail, idx, 0);
427         } else {
428                 struct swap_cluster_info *ci_tail;
429                 unsigned int tail = cluster_next(&list->tail);
430
431                 /*
432                  * Nested cluster lock, but both cluster locks are
433                  * only acquired when we held swap_info_struct->lock
434                  */
435                 ci_tail = ci + tail;
436                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
437                 cluster_set_next(ci_tail, idx);
438                 spin_unlock(&ci_tail->lock);
439                 cluster_set_next_flag(&list->tail, idx, 0);
440         }
441 }
442
443 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
444                                            struct swap_cluster_info *ci)
445 {
446         unsigned int idx;
447
448         idx = cluster_next(&list->head);
449         if (cluster_next(&list->tail) == idx) {
450                 cluster_set_null(&list->head);
451                 cluster_set_null(&list->tail);
452         } else
453                 cluster_set_next_flag(&list->head,
454                                       cluster_next(&ci[idx]), 0);
455
456         return idx;
457 }
458
459 /* Add a cluster to discard list and schedule it to do discard */
460 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
461                 unsigned int idx)
462 {
463         /*
464          * If scan_swap_map_slots() can't find a free cluster, it will check
465          * si->swap_map directly. To make sure the discarding cluster isn't
466          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
467          * It will be cleared after discard
468          */
469         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
470                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
471
472         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
473
474         schedule_work(&si->discard_work);
475 }
476
477 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479         struct swap_cluster_info *ci = si->cluster_info;
480
481         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
482         cluster_list_add_tail(&si->free_clusters, ci, idx);
483 }
484
485 /*
486  * Doing discard actually. After a cluster discard is finished, the cluster
487  * will be added to free cluster list. caller should hold si->lock.
488 */
489 static void swap_do_scheduled_discard(struct swap_info_struct *si)
490 {
491         struct swap_cluster_info *info, *ci;
492         unsigned int idx;
493
494         info = si->cluster_info;
495
496         while (!cluster_list_empty(&si->discard_clusters)) {
497                 idx = cluster_list_del_first(&si->discard_clusters, info);
498                 spin_unlock(&si->lock);
499
500                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
501                                 SWAPFILE_CLUSTER);
502
503                 spin_lock(&si->lock);
504                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
505                 __free_cluster(si, idx);
506                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
507                                 0, SWAPFILE_CLUSTER);
508                 unlock_cluster(ci);
509         }
510 }
511
512 static void swap_discard_work(struct work_struct *work)
513 {
514         struct swap_info_struct *si;
515
516         si = container_of(work, struct swap_info_struct, discard_work);
517
518         spin_lock(&si->lock);
519         swap_do_scheduled_discard(si);
520         spin_unlock(&si->lock);
521 }
522
523 static void swap_users_ref_free(struct percpu_ref *ref)
524 {
525         struct swap_info_struct *si;
526
527         si = container_of(ref, struct swap_info_struct, users);
528         complete(&si->comp);
529 }
530
531 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533         struct swap_cluster_info *ci = si->cluster_info;
534
535         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
536         cluster_list_del_first(&si->free_clusters, ci);
537         cluster_set_count_flag(ci + idx, 0, 0);
538 }
539
540 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
541 {
542         struct swap_cluster_info *ci = si->cluster_info + idx;
543
544         VM_BUG_ON(cluster_count(ci) != 0);
545         /*
546          * If the swap is discardable, prepare discard the cluster
547          * instead of free it immediately. The cluster will be freed
548          * after discard.
549          */
550         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
551             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
552                 swap_cluster_schedule_discard(si, idx);
553                 return;
554         }
555
556         __free_cluster(si, idx);
557 }
558
559 /*
560  * The cluster corresponding to page_nr will be used. The cluster will be
561  * removed from free cluster list and its usage counter will be increased.
562  */
563 static void inc_cluster_info_page(struct swap_info_struct *p,
564         struct swap_cluster_info *cluster_info, unsigned long page_nr)
565 {
566         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
567
568         if (!cluster_info)
569                 return;
570         if (cluster_is_free(&cluster_info[idx]))
571                 alloc_cluster(p, idx);
572
573         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
574         cluster_set_count(&cluster_info[idx],
575                 cluster_count(&cluster_info[idx]) + 1);
576 }
577
578 /*
579  * The cluster corresponding to page_nr decreases one usage. If the usage
580  * counter becomes 0, which means no page in the cluster is in using, we can
581  * optionally discard the cluster and add it to free cluster list.
582  */
583 static void dec_cluster_info_page(struct swap_info_struct *p,
584         struct swap_cluster_info *cluster_info, unsigned long page_nr)
585 {
586         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
587
588         if (!cluster_info)
589                 return;
590
591         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
592         cluster_set_count(&cluster_info[idx],
593                 cluster_count(&cluster_info[idx]) - 1);
594
595         if (cluster_count(&cluster_info[idx]) == 0)
596                 free_cluster(p, idx);
597 }
598
599 /*
600  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
601  * cluster list. Avoiding such abuse to avoid list corruption.
602  */
603 static bool
604 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
605         unsigned long offset)
606 {
607         struct percpu_cluster *percpu_cluster;
608         bool conflict;
609
610         offset /= SWAPFILE_CLUSTER;
611         conflict = !cluster_list_empty(&si->free_clusters) &&
612                 offset != cluster_list_first(&si->free_clusters) &&
613                 cluster_is_free(&si->cluster_info[offset]);
614
615         if (!conflict)
616                 return false;
617
618         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
619         cluster_set_null(&percpu_cluster->index);
620         return true;
621 }
622
623 /*
624  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
625  * might involve allocating a new cluster for current CPU too.
626  */
627 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
628         unsigned long *offset, unsigned long *scan_base)
629 {
630         struct percpu_cluster *cluster;
631         struct swap_cluster_info *ci;
632         unsigned long tmp, max;
633
634 new_cluster:
635         cluster = this_cpu_ptr(si->percpu_cluster);
636         if (cluster_is_null(&cluster->index)) {
637                 if (!cluster_list_empty(&si->free_clusters)) {
638                         cluster->index = si->free_clusters.head;
639                         cluster->next = cluster_next(&cluster->index) *
640                                         SWAPFILE_CLUSTER;
641                 } else if (!cluster_list_empty(&si->discard_clusters)) {
642                         /*
643                          * we don't have free cluster but have some clusters in
644                          * discarding, do discard now and reclaim them, then
645                          * reread cluster_next_cpu since we dropped si->lock
646                          */
647                         swap_do_scheduled_discard(si);
648                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
649                         *offset = *scan_base;
650                         goto new_cluster;
651                 } else
652                         return false;
653         }
654
655         /*
656          * Other CPUs can use our cluster if they can't find a free cluster,
657          * check if there is still free entry in the cluster
658          */
659         tmp = cluster->next;
660         max = min_t(unsigned long, si->max,
661                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
662         if (tmp < max) {
663                 ci = lock_cluster(si, tmp);
664                 while (tmp < max) {
665                         if (!si->swap_map[tmp])
666                                 break;
667                         tmp++;
668                 }
669                 unlock_cluster(ci);
670         }
671         if (tmp >= max) {
672                 cluster_set_null(&cluster->index);
673                 goto new_cluster;
674         }
675         cluster->next = tmp + 1;
676         *offset = tmp;
677         *scan_base = tmp;
678         return true;
679 }
680
681 static void __del_from_avail_list(struct swap_info_struct *p)
682 {
683         int nid;
684
685         assert_spin_locked(&p->lock);
686         for_each_node(nid)
687                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
688 }
689
690 static void del_from_avail_list(struct swap_info_struct *p)
691 {
692         spin_lock(&swap_avail_lock);
693         __del_from_avail_list(p);
694         spin_unlock(&swap_avail_lock);
695 }
696
697 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
698                              unsigned int nr_entries)
699 {
700         unsigned int end = offset + nr_entries - 1;
701
702         if (offset == si->lowest_bit)
703                 si->lowest_bit += nr_entries;
704         if (end == si->highest_bit)
705                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
706         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
707         if (si->inuse_pages == si->pages) {
708                 si->lowest_bit = si->max;
709                 si->highest_bit = 0;
710                 del_from_avail_list(si);
711         }
712 }
713
714 static void add_to_avail_list(struct swap_info_struct *p)
715 {
716         int nid;
717
718         spin_lock(&swap_avail_lock);
719         for_each_node(nid)
720                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
721         spin_unlock(&swap_avail_lock);
722 }
723
724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725                             unsigned int nr_entries)
726 {
727         unsigned long begin = offset;
728         unsigned long end = offset + nr_entries - 1;
729         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730
731         if (offset < si->lowest_bit)
732                 si->lowest_bit = offset;
733         if (end > si->highest_bit) {
734                 bool was_full = !si->highest_bit;
735
736                 WRITE_ONCE(si->highest_bit, end);
737                 if (was_full && (si->flags & SWP_WRITEOK))
738                         add_to_avail_list(si);
739         }
740         atomic_long_add(nr_entries, &nr_swap_pages);
741         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
742         if (si->flags & SWP_BLKDEV)
743                 swap_slot_free_notify =
744                         si->bdev->bd_disk->fops->swap_slot_free_notify;
745         else
746                 swap_slot_free_notify = NULL;
747         while (offset <= end) {
748                 arch_swap_invalidate_page(si->type, offset);
749                 zswap_invalidate(si->type, offset);
750                 if (swap_slot_free_notify)
751                         swap_slot_free_notify(si->bdev, offset);
752                 offset++;
753         }
754         clear_shadow_from_swap_cache(si->type, begin, end);
755 }
756
757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
758 {
759         unsigned long prev;
760
761         if (!(si->flags & SWP_SOLIDSTATE)) {
762                 si->cluster_next = next;
763                 return;
764         }
765
766         prev = this_cpu_read(*si->cluster_next_cpu);
767         /*
768          * Cross the swap address space size aligned trunk, choose
769          * another trunk randomly to avoid lock contention on swap
770          * address space if possible.
771          */
772         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
773             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
774                 /* No free swap slots available */
775                 if (si->highest_bit <= si->lowest_bit)
776                         return;
777                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
778                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
779                 next = max_t(unsigned int, next, si->lowest_bit);
780         }
781         this_cpu_write(*si->cluster_next_cpu, next);
782 }
783
784 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
785                                              unsigned long offset)
786 {
787         if (data_race(!si->swap_map[offset])) {
788                 spin_lock(&si->lock);
789                 return true;
790         }
791
792         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
793                 spin_lock(&si->lock);
794                 return true;
795         }
796
797         return false;
798 }
799
800 static int scan_swap_map_slots(struct swap_info_struct *si,
801                                unsigned char usage, int nr,
802                                swp_entry_t slots[])
803 {
804         struct swap_cluster_info *ci;
805         unsigned long offset;
806         unsigned long scan_base;
807         unsigned long last_in_cluster = 0;
808         int latency_ration = LATENCY_LIMIT;
809         int n_ret = 0;
810         bool scanned_many = false;
811
812         /*
813          * We try to cluster swap pages by allocating them sequentially
814          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
815          * way, however, we resort to first-free allocation, starting
816          * a new cluster.  This prevents us from scattering swap pages
817          * all over the entire swap partition, so that we reduce
818          * overall disk seek times between swap pages.  -- sct
819          * But we do now try to find an empty cluster.  -Andrea
820          * And we let swap pages go all over an SSD partition.  Hugh
821          */
822
823         si->flags += SWP_SCANNING;
824         /*
825          * Use percpu scan base for SSD to reduce lock contention on
826          * cluster and swap cache.  For HDD, sequential access is more
827          * important.
828          */
829         if (si->flags & SWP_SOLIDSTATE)
830                 scan_base = this_cpu_read(*si->cluster_next_cpu);
831         else
832                 scan_base = si->cluster_next;
833         offset = scan_base;
834
835         /* SSD algorithm */
836         if (si->cluster_info) {
837                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838                         goto scan;
839         } else if (unlikely(!si->cluster_nr--)) {
840                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
841                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
842                         goto checks;
843                 }
844
845                 spin_unlock(&si->lock);
846
847                 /*
848                  * If seek is expensive, start searching for new cluster from
849                  * start of partition, to minimize the span of allocated swap.
850                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
851                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
852                  */
853                 scan_base = offset = si->lowest_bit;
854                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
855
856                 /* Locate the first empty (unaligned) cluster */
857                 for (; last_in_cluster <= si->highest_bit; offset++) {
858                         if (si->swap_map[offset])
859                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
860                         else if (offset == last_in_cluster) {
861                                 spin_lock(&si->lock);
862                                 offset -= SWAPFILE_CLUSTER - 1;
863                                 si->cluster_next = offset;
864                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
865                                 goto checks;
866                         }
867                         if (unlikely(--latency_ration < 0)) {
868                                 cond_resched();
869                                 latency_ration = LATENCY_LIMIT;
870                         }
871                 }
872
873                 offset = scan_base;
874                 spin_lock(&si->lock);
875                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
876         }
877
878 checks:
879         if (si->cluster_info) {
880                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
881                 /* take a break if we already got some slots */
882                         if (n_ret)
883                                 goto done;
884                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
885                                                         &scan_base))
886                                 goto scan;
887                 }
888         }
889         if (!(si->flags & SWP_WRITEOK))
890                 goto no_page;
891         if (!si->highest_bit)
892                 goto no_page;
893         if (offset > si->highest_bit)
894                 scan_base = offset = si->lowest_bit;
895
896         ci = lock_cluster(si, offset);
897         /* reuse swap entry of cache-only swap if not busy. */
898         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
899                 int swap_was_freed;
900                 unlock_cluster(ci);
901                 spin_unlock(&si->lock);
902                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
903                 spin_lock(&si->lock);
904                 /* entry was freed successfully, try to use this again */
905                 if (swap_was_freed)
906                         goto checks;
907                 goto scan; /* check next one */
908         }
909
910         if (si->swap_map[offset]) {
911                 unlock_cluster(ci);
912                 if (!n_ret)
913                         goto scan;
914                 else
915                         goto done;
916         }
917         WRITE_ONCE(si->swap_map[offset], usage);
918         inc_cluster_info_page(si, si->cluster_info, offset);
919         unlock_cluster(ci);
920
921         swap_range_alloc(si, offset, 1);
922         slots[n_ret++] = swp_entry(si->type, offset);
923
924         /* got enough slots or reach max slots? */
925         if ((n_ret == nr) || (offset >= si->highest_bit))
926                 goto done;
927
928         /* search for next available slot */
929
930         /* time to take a break? */
931         if (unlikely(--latency_ration < 0)) {
932                 if (n_ret)
933                         goto done;
934                 spin_unlock(&si->lock);
935                 cond_resched();
936                 spin_lock(&si->lock);
937                 latency_ration = LATENCY_LIMIT;
938         }
939
940         /* try to get more slots in cluster */
941         if (si->cluster_info) {
942                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
943                         goto checks;
944         } else if (si->cluster_nr && !si->swap_map[++offset]) {
945                 /* non-ssd case, still more slots in cluster? */
946                 --si->cluster_nr;
947                 goto checks;
948         }
949
950         /*
951          * Even if there's no free clusters available (fragmented),
952          * try to scan a little more quickly with lock held unless we
953          * have scanned too many slots already.
954          */
955         if (!scanned_many) {
956                 unsigned long scan_limit;
957
958                 if (offset < scan_base)
959                         scan_limit = scan_base;
960                 else
961                         scan_limit = si->highest_bit;
962                 for (; offset <= scan_limit && --latency_ration > 0;
963                      offset++) {
964                         if (!si->swap_map[offset])
965                                 goto checks;
966                 }
967         }
968
969 done:
970         set_cluster_next(si, offset + 1);
971         si->flags -= SWP_SCANNING;
972         return n_ret;
973
974 scan:
975         spin_unlock(&si->lock);
976         while (++offset <= READ_ONCE(si->highest_bit)) {
977                 if (unlikely(--latency_ration < 0)) {
978                         cond_resched();
979                         latency_ration = LATENCY_LIMIT;
980                         scanned_many = true;
981                 }
982                 if (swap_offset_available_and_locked(si, offset))
983                         goto checks;
984         }
985         offset = si->lowest_bit;
986         while (offset < scan_base) {
987                 if (unlikely(--latency_ration < 0)) {
988                         cond_resched();
989                         latency_ration = LATENCY_LIMIT;
990                         scanned_many = true;
991                 }
992                 if (swap_offset_available_and_locked(si, offset))
993                         goto checks;
994                 offset++;
995         }
996         spin_lock(&si->lock);
997
998 no_page:
999         si->flags -= SWP_SCANNING;
1000         return n_ret;
1001 }
1002
1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004 {
1005         unsigned long idx;
1006         struct swap_cluster_info *ci;
1007         unsigned long offset;
1008
1009         /*
1010          * Should not even be attempting cluster allocations when huge
1011          * page swap is disabled.  Warn and fail the allocation.
1012          */
1013         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014                 VM_WARN_ON_ONCE(1);
1015                 return 0;
1016         }
1017
1018         if (cluster_list_empty(&si->free_clusters))
1019                 return 0;
1020
1021         idx = cluster_list_first(&si->free_clusters);
1022         offset = idx * SWAPFILE_CLUSTER;
1023         ci = lock_cluster(si, offset);
1024         alloc_cluster(si, idx);
1025         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026
1027         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028         unlock_cluster(ci);
1029         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030         *slot = swp_entry(si->type, offset);
1031
1032         return 1;
1033 }
1034
1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036 {
1037         unsigned long offset = idx * SWAPFILE_CLUSTER;
1038         struct swap_cluster_info *ci;
1039
1040         ci = lock_cluster(si, offset);
1041         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042         cluster_set_count_flag(ci, 0, 0);
1043         free_cluster(si, idx);
1044         unlock_cluster(ci);
1045         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046 }
1047
1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049 {
1050         unsigned long size = swap_entry_size(entry_size);
1051         struct swap_info_struct *si, *next;
1052         long avail_pgs;
1053         int n_ret = 0;
1054         int node;
1055
1056         /* Only single cluster request supported */
1057         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058
1059         spin_lock(&swap_avail_lock);
1060
1061         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062         if (avail_pgs <= 0) {
1063                 spin_unlock(&swap_avail_lock);
1064                 goto noswap;
1065         }
1066
1067         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068
1069         atomic_long_sub(n_goal * size, &nr_swap_pages);
1070
1071 start_over:
1072         node = numa_node_id();
1073         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074                 /* requeue si to after same-priority siblings */
1075                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076                 spin_unlock(&swap_avail_lock);
1077                 spin_lock(&si->lock);
1078                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079                         spin_lock(&swap_avail_lock);
1080                         if (plist_node_empty(&si->avail_lists[node])) {
1081                                 spin_unlock(&si->lock);
1082                                 goto nextsi;
1083                         }
1084                         WARN(!si->highest_bit,
1085                              "swap_info %d in list but !highest_bit\n",
1086                              si->type);
1087                         WARN(!(si->flags & SWP_WRITEOK),
1088                              "swap_info %d in list but !SWP_WRITEOK\n",
1089                              si->type);
1090                         __del_from_avail_list(si);
1091                         spin_unlock(&si->lock);
1092                         goto nextsi;
1093                 }
1094                 if (size == SWAPFILE_CLUSTER) {
1095                         if (si->flags & SWP_BLKDEV)
1096                                 n_ret = swap_alloc_cluster(si, swp_entries);
1097                 } else
1098                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099                                                     n_goal, swp_entries);
1100                 spin_unlock(&si->lock);
1101                 if (n_ret || size == SWAPFILE_CLUSTER)
1102                         goto check_out;
1103                 cond_resched();
1104
1105                 spin_lock(&swap_avail_lock);
1106 nextsi:
1107                 /*
1108                  * if we got here, it's likely that si was almost full before,
1109                  * and since scan_swap_map_slots() can drop the si->lock,
1110                  * multiple callers probably all tried to get a page from the
1111                  * same si and it filled up before we could get one; or, the si
1112                  * filled up between us dropping swap_avail_lock and taking
1113                  * si->lock. Since we dropped the swap_avail_lock, the
1114                  * swap_avail_head list may have been modified; so if next is
1115                  * still in the swap_avail_head list then try it, otherwise
1116                  * start over if we have not gotten any slots.
1117                  */
1118                 if (plist_node_empty(&next->avail_lists[node]))
1119                         goto start_over;
1120         }
1121
1122         spin_unlock(&swap_avail_lock);
1123
1124 check_out:
1125         if (n_ret < n_goal)
1126                 atomic_long_add((long)(n_goal - n_ret) * size,
1127                                 &nr_swap_pages);
1128 noswap:
1129         return n_ret;
1130 }
1131
1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1133 {
1134         struct swap_info_struct *p;
1135         unsigned long offset;
1136
1137         if (!entry.val)
1138                 goto out;
1139         p = swp_swap_info(entry);
1140         if (!p)
1141                 goto bad_nofile;
1142         if (data_race(!(p->flags & SWP_USED)))
1143                 goto bad_device;
1144         offset = swp_offset(entry);
1145         if (offset >= p->max)
1146                 goto bad_offset;
1147         if (data_race(!p->swap_map[swp_offset(entry)]))
1148                 goto bad_free;
1149         return p;
1150
1151 bad_free:
1152         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153         goto out;
1154 bad_offset:
1155         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156         goto out;
1157 bad_device:
1158         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159         goto out;
1160 bad_nofile:
1161         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162 out:
1163         return NULL;
1164 }
1165
1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167                                         struct swap_info_struct *q)
1168 {
1169         struct swap_info_struct *p;
1170
1171         p = _swap_info_get(entry);
1172
1173         if (p != q) {
1174                 if (q != NULL)
1175                         spin_unlock(&q->lock);
1176                 if (p != NULL)
1177                         spin_lock(&p->lock);
1178         }
1179         return p;
1180 }
1181
1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183                                               unsigned long offset,
1184                                               unsigned char usage)
1185 {
1186         unsigned char count;
1187         unsigned char has_cache;
1188
1189         count = p->swap_map[offset];
1190
1191         has_cache = count & SWAP_HAS_CACHE;
1192         count &= ~SWAP_HAS_CACHE;
1193
1194         if (usage == SWAP_HAS_CACHE) {
1195                 VM_BUG_ON(!has_cache);
1196                 has_cache = 0;
1197         } else if (count == SWAP_MAP_SHMEM) {
1198                 /*
1199                  * Or we could insist on shmem.c using a special
1200                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1201                  */
1202                 count = 0;
1203         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204                 if (count == COUNT_CONTINUED) {
1205                         if (swap_count_continued(p, offset, count))
1206                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207                         else
1208                                 count = SWAP_MAP_MAX;
1209                 } else
1210                         count--;
1211         }
1212
1213         usage = count | has_cache;
1214         if (usage)
1215                 WRITE_ONCE(p->swap_map[offset], usage);
1216         else
1217                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218
1219         return usage;
1220 }
1221
1222 /*
1223  * When we get a swap entry, if there aren't some other ways to
1224  * prevent swapoff, such as the folio in swap cache is locked, page
1225  * table lock is held, etc., the swap entry may become invalid because
1226  * of swapoff.  Then, we need to enclose all swap related functions
1227  * with get_swap_device() and put_swap_device(), unless the swap
1228  * functions call get/put_swap_device() by themselves.
1229  *
1230  * Note that when only holding the PTL, swapoff might succeed immediately
1231  * after freeing a swap entry. Therefore, immediately after
1232  * __swap_entry_free(), the swap info might become stale and should not
1233  * be touched without a prior get_swap_device().
1234  *
1235  * Check whether swap entry is valid in the swap device.  If so,
1236  * return pointer to swap_info_struct, and keep the swap entry valid
1237  * via preventing the swap device from being swapoff, until
1238  * put_swap_device() is called.  Otherwise return NULL.
1239  *
1240  * Notice that swapoff or swapoff+swapon can still happen before the
1241  * percpu_ref_tryget_live() in get_swap_device() or after the
1242  * percpu_ref_put() in put_swap_device() if there isn't any other way
1243  * to prevent swapoff.  The caller must be prepared for that.  For
1244  * example, the following situation is possible.
1245  *
1246  *   CPU1                               CPU2
1247  *   do_swap_page()
1248  *     ...                              swapoff+swapon
1249  *     __read_swap_cache_async()
1250  *       swapcache_prepare()
1251  *         __swap_duplicate()
1252  *           // check swap_map
1253  *     // verify PTE not changed
1254  *
1255  * In __swap_duplicate(), the swap_map need to be checked before
1256  * changing partly because the specified swap entry may be for another
1257  * swap device which has been swapoff.  And in do_swap_page(), after
1258  * the page is read from the swap device, the PTE is verified not
1259  * changed with the page table locked to check whether the swap device
1260  * has been swapoff or swapoff+swapon.
1261  */
1262 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1263 {
1264         struct swap_info_struct *si;
1265         unsigned long offset;
1266
1267         if (!entry.val)
1268                 goto out;
1269         si = swp_swap_info(entry);
1270         if (!si)
1271                 goto bad_nofile;
1272         if (!percpu_ref_tryget_live(&si->users))
1273                 goto out;
1274         /*
1275          * Guarantee the si->users are checked before accessing other
1276          * fields of swap_info_struct.
1277          *
1278          * Paired with the spin_unlock() after setup_swap_info() in
1279          * enable_swap_info().
1280          */
1281         smp_rmb();
1282         offset = swp_offset(entry);
1283         if (offset >= si->max)
1284                 goto put_out;
1285
1286         return si;
1287 bad_nofile:
1288         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1289 out:
1290         return NULL;
1291 put_out:
1292         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1293         percpu_ref_put(&si->users);
1294         return NULL;
1295 }
1296
1297 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1298                                        swp_entry_t entry)
1299 {
1300         struct swap_cluster_info *ci;
1301         unsigned long offset = swp_offset(entry);
1302         unsigned char usage;
1303
1304         ci = lock_cluster_or_swap_info(p, offset);
1305         usage = __swap_entry_free_locked(p, offset, 1);
1306         unlock_cluster_or_swap_info(p, ci);
1307         if (!usage)
1308                 free_swap_slot(entry);
1309
1310         return usage;
1311 }
1312
1313 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1314 {
1315         struct swap_cluster_info *ci;
1316         unsigned long offset = swp_offset(entry);
1317         unsigned char count;
1318
1319         ci = lock_cluster(p, offset);
1320         count = p->swap_map[offset];
1321         VM_BUG_ON(count != SWAP_HAS_CACHE);
1322         p->swap_map[offset] = 0;
1323         dec_cluster_info_page(p, p->cluster_info, offset);
1324         unlock_cluster(ci);
1325
1326         mem_cgroup_uncharge_swap(entry, 1);
1327         swap_range_free(p, offset, 1);
1328 }
1329
1330 /*
1331  * Caller has made sure that the swap device corresponding to entry
1332  * is still around or has not been recycled.
1333  */
1334 void swap_free(swp_entry_t entry)
1335 {
1336         struct swap_info_struct *p;
1337
1338         p = _swap_info_get(entry);
1339         if (p)
1340                 __swap_entry_free(p, entry);
1341 }
1342
1343 /*
1344  * Called after dropping swapcache to decrease refcnt to swap entries.
1345  */
1346 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1347 {
1348         unsigned long offset = swp_offset(entry);
1349         unsigned long idx = offset / SWAPFILE_CLUSTER;
1350         struct swap_cluster_info *ci;
1351         struct swap_info_struct *si;
1352         unsigned char *map;
1353         unsigned int i, free_entries = 0;
1354         unsigned char val;
1355         int size = swap_entry_size(folio_nr_pages(folio));
1356
1357         si = _swap_info_get(entry);
1358         if (!si)
1359                 return;
1360
1361         ci = lock_cluster_or_swap_info(si, offset);
1362         if (size == SWAPFILE_CLUSTER) {
1363                 VM_BUG_ON(!cluster_is_huge(ci));
1364                 map = si->swap_map + offset;
1365                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1366                         val = map[i];
1367                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1368                         if (val == SWAP_HAS_CACHE)
1369                                 free_entries++;
1370                 }
1371                 cluster_clear_huge(ci);
1372                 if (free_entries == SWAPFILE_CLUSTER) {
1373                         unlock_cluster_or_swap_info(si, ci);
1374                         spin_lock(&si->lock);
1375                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1376                         swap_free_cluster(si, idx);
1377                         spin_unlock(&si->lock);
1378                         return;
1379                 }
1380         }
1381         for (i = 0; i < size; i++, entry.val++) {
1382                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1383                         unlock_cluster_or_swap_info(si, ci);
1384                         free_swap_slot(entry);
1385                         if (i == size - 1)
1386                                 return;
1387                         lock_cluster_or_swap_info(si, offset);
1388                 }
1389         }
1390         unlock_cluster_or_swap_info(si, ci);
1391 }
1392
1393 #ifdef CONFIG_THP_SWAP
1394 int split_swap_cluster(swp_entry_t entry)
1395 {
1396         struct swap_info_struct *si;
1397         struct swap_cluster_info *ci;
1398         unsigned long offset = swp_offset(entry);
1399
1400         si = _swap_info_get(entry);
1401         if (!si)
1402                 return -EBUSY;
1403         ci = lock_cluster(si, offset);
1404         cluster_clear_huge(ci);
1405         unlock_cluster(ci);
1406         return 0;
1407 }
1408 #endif
1409
1410 static int swp_entry_cmp(const void *ent1, const void *ent2)
1411 {
1412         const swp_entry_t *e1 = ent1, *e2 = ent2;
1413
1414         return (int)swp_type(*e1) - (int)swp_type(*e2);
1415 }
1416
1417 void swapcache_free_entries(swp_entry_t *entries, int n)
1418 {
1419         struct swap_info_struct *p, *prev;
1420         int i;
1421
1422         if (n <= 0)
1423                 return;
1424
1425         prev = NULL;
1426         p = NULL;
1427
1428         /*
1429          * Sort swap entries by swap device, so each lock is only taken once.
1430          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1431          * so low that it isn't necessary to optimize further.
1432          */
1433         if (nr_swapfiles > 1)
1434                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1435         for (i = 0; i < n; ++i) {
1436                 p = swap_info_get_cont(entries[i], prev);
1437                 if (p)
1438                         swap_entry_free(p, entries[i]);
1439                 prev = p;
1440         }
1441         if (p)
1442                 spin_unlock(&p->lock);
1443 }
1444
1445 int __swap_count(swp_entry_t entry)
1446 {
1447         struct swap_info_struct *si = swp_swap_info(entry);
1448         pgoff_t offset = swp_offset(entry);
1449
1450         return swap_count(si->swap_map[offset]);
1451 }
1452
1453 /*
1454  * How many references to @entry are currently swapped out?
1455  * This does not give an exact answer when swap count is continued,
1456  * but does include the high COUNT_CONTINUED flag to allow for that.
1457  */
1458 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1459 {
1460         pgoff_t offset = swp_offset(entry);
1461         struct swap_cluster_info *ci;
1462         int count;
1463
1464         ci = lock_cluster_or_swap_info(si, offset);
1465         count = swap_count(si->swap_map[offset]);
1466         unlock_cluster_or_swap_info(si, ci);
1467         return count;
1468 }
1469
1470 /*
1471  * How many references to @entry are currently swapped out?
1472  * This considers COUNT_CONTINUED so it returns exact answer.
1473  */
1474 int swp_swapcount(swp_entry_t entry)
1475 {
1476         int count, tmp_count, n;
1477         struct swap_info_struct *p;
1478         struct swap_cluster_info *ci;
1479         struct page *page;
1480         pgoff_t offset;
1481         unsigned char *map;
1482
1483         p = _swap_info_get(entry);
1484         if (!p)
1485                 return 0;
1486
1487         offset = swp_offset(entry);
1488
1489         ci = lock_cluster_or_swap_info(p, offset);
1490
1491         count = swap_count(p->swap_map[offset]);
1492         if (!(count & COUNT_CONTINUED))
1493                 goto out;
1494
1495         count &= ~COUNT_CONTINUED;
1496         n = SWAP_MAP_MAX + 1;
1497
1498         page = vmalloc_to_page(p->swap_map + offset);
1499         offset &= ~PAGE_MASK;
1500         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1501
1502         do {
1503                 page = list_next_entry(page, lru);
1504                 map = kmap_local_page(page);
1505                 tmp_count = map[offset];
1506                 kunmap_local(map);
1507
1508                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1509                 n *= (SWAP_CONT_MAX + 1);
1510         } while (tmp_count & COUNT_CONTINUED);
1511 out:
1512         unlock_cluster_or_swap_info(p, ci);
1513         return count;
1514 }
1515
1516 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1517                                          swp_entry_t entry)
1518 {
1519         struct swap_cluster_info *ci;
1520         unsigned char *map = si->swap_map;
1521         unsigned long roffset = swp_offset(entry);
1522         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1523         int i;
1524         bool ret = false;
1525
1526         ci = lock_cluster_or_swap_info(si, offset);
1527         if (!ci || !cluster_is_huge(ci)) {
1528                 if (swap_count(map[roffset]))
1529                         ret = true;
1530                 goto unlock_out;
1531         }
1532         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1533                 if (swap_count(map[offset + i])) {
1534                         ret = true;
1535                         break;
1536                 }
1537         }
1538 unlock_out:
1539         unlock_cluster_or_swap_info(si, ci);
1540         return ret;
1541 }
1542
1543 static bool folio_swapped(struct folio *folio)
1544 {
1545         swp_entry_t entry = folio->swap;
1546         struct swap_info_struct *si = _swap_info_get(entry);
1547
1548         if (!si)
1549                 return false;
1550
1551         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1552                 return swap_swapcount(si, entry) != 0;
1553
1554         return swap_page_trans_huge_swapped(si, entry);
1555 }
1556
1557 /**
1558  * folio_free_swap() - Free the swap space used for this folio.
1559  * @folio: The folio to remove.
1560  *
1561  * If swap is getting full, or if there are no more mappings of this folio,
1562  * then call folio_free_swap to free its swap space.
1563  *
1564  * Return: true if we were able to release the swap space.
1565  */
1566 bool folio_free_swap(struct folio *folio)
1567 {
1568         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1569
1570         if (!folio_test_swapcache(folio))
1571                 return false;
1572         if (folio_test_writeback(folio))
1573                 return false;
1574         if (folio_swapped(folio))
1575                 return false;
1576
1577         /*
1578          * Once hibernation has begun to create its image of memory,
1579          * there's a danger that one of the calls to folio_free_swap()
1580          * - most probably a call from __try_to_reclaim_swap() while
1581          * hibernation is allocating its own swap pages for the image,
1582          * but conceivably even a call from memory reclaim - will free
1583          * the swap from a folio which has already been recorded in the
1584          * image as a clean swapcache folio, and then reuse its swap for
1585          * another page of the image.  On waking from hibernation, the
1586          * original folio might be freed under memory pressure, then
1587          * later read back in from swap, now with the wrong data.
1588          *
1589          * Hibernation suspends storage while it is writing the image
1590          * to disk so check that here.
1591          */
1592         if (pm_suspended_storage())
1593                 return false;
1594
1595         delete_from_swap_cache(folio);
1596         folio_set_dirty(folio);
1597         return true;
1598 }
1599
1600 /*
1601  * Free the swap entry like above, but also try to
1602  * free the page cache entry if it is the last user.
1603  */
1604 int free_swap_and_cache(swp_entry_t entry)
1605 {
1606         struct swap_info_struct *p;
1607         unsigned char count;
1608
1609         if (non_swap_entry(entry))
1610                 return 1;
1611
1612         p = get_swap_device(entry);
1613         if (p) {
1614                 if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1615                         put_swap_device(p);
1616                         return 0;
1617                 }
1618
1619                 count = __swap_entry_free(p, entry);
1620                 if (count == SWAP_HAS_CACHE &&
1621                     !swap_page_trans_huge_swapped(p, entry))
1622                         __try_to_reclaim_swap(p, swp_offset(entry),
1623                                               TTRS_UNMAPPED | TTRS_FULL);
1624                 put_swap_device(p);
1625         }
1626         return p != NULL;
1627 }
1628
1629 #ifdef CONFIG_HIBERNATION
1630
1631 swp_entry_t get_swap_page_of_type(int type)
1632 {
1633         struct swap_info_struct *si = swap_type_to_swap_info(type);
1634         swp_entry_t entry = {0};
1635
1636         if (!si)
1637                 goto fail;
1638
1639         /* This is called for allocating swap entry, not cache */
1640         spin_lock(&si->lock);
1641         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1642                 atomic_long_dec(&nr_swap_pages);
1643         spin_unlock(&si->lock);
1644 fail:
1645         return entry;
1646 }
1647
1648 /*
1649  * Find the swap type that corresponds to given device (if any).
1650  *
1651  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1652  * from 0, in which the swap header is expected to be located.
1653  *
1654  * This is needed for the suspend to disk (aka swsusp).
1655  */
1656 int swap_type_of(dev_t device, sector_t offset)
1657 {
1658         int type;
1659
1660         if (!device)
1661                 return -1;
1662
1663         spin_lock(&swap_lock);
1664         for (type = 0; type < nr_swapfiles; type++) {
1665                 struct swap_info_struct *sis = swap_info[type];
1666
1667                 if (!(sis->flags & SWP_WRITEOK))
1668                         continue;
1669
1670                 if (device == sis->bdev->bd_dev) {
1671                         struct swap_extent *se = first_se(sis);
1672
1673                         if (se->start_block == offset) {
1674                                 spin_unlock(&swap_lock);
1675                                 return type;
1676                         }
1677                 }
1678         }
1679         spin_unlock(&swap_lock);
1680         return -ENODEV;
1681 }
1682
1683 int find_first_swap(dev_t *device)
1684 {
1685         int type;
1686
1687         spin_lock(&swap_lock);
1688         for (type = 0; type < nr_swapfiles; type++) {
1689                 struct swap_info_struct *sis = swap_info[type];
1690
1691                 if (!(sis->flags & SWP_WRITEOK))
1692                         continue;
1693                 *device = sis->bdev->bd_dev;
1694                 spin_unlock(&swap_lock);
1695                 return type;
1696         }
1697         spin_unlock(&swap_lock);
1698         return -ENODEV;
1699 }
1700
1701 /*
1702  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1703  * corresponding to given index in swap_info (swap type).
1704  */
1705 sector_t swapdev_block(int type, pgoff_t offset)
1706 {
1707         struct swap_info_struct *si = swap_type_to_swap_info(type);
1708         struct swap_extent *se;
1709
1710         if (!si || !(si->flags & SWP_WRITEOK))
1711                 return 0;
1712         se = offset_to_swap_extent(si, offset);
1713         return se->start_block + (offset - se->start_page);
1714 }
1715
1716 /*
1717  * Return either the total number of swap pages of given type, or the number
1718  * of free pages of that type (depending on @free)
1719  *
1720  * This is needed for software suspend
1721  */
1722 unsigned int count_swap_pages(int type, int free)
1723 {
1724         unsigned int n = 0;
1725
1726         spin_lock(&swap_lock);
1727         if ((unsigned int)type < nr_swapfiles) {
1728                 struct swap_info_struct *sis = swap_info[type];
1729
1730                 spin_lock(&sis->lock);
1731                 if (sis->flags & SWP_WRITEOK) {
1732                         n = sis->pages;
1733                         if (free)
1734                                 n -= sis->inuse_pages;
1735                 }
1736                 spin_unlock(&sis->lock);
1737         }
1738         spin_unlock(&swap_lock);
1739         return n;
1740 }
1741 #endif /* CONFIG_HIBERNATION */
1742
1743 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1744 {
1745         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1746 }
1747
1748 /*
1749  * No need to decide whether this PTE shares the swap entry with others,
1750  * just let do_wp_page work it out if a write is requested later - to
1751  * force COW, vm_page_prot omits write permission from any private vma.
1752  */
1753 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1754                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1755 {
1756         struct page *page;
1757         struct folio *swapcache;
1758         spinlock_t *ptl;
1759         pte_t *pte, new_pte, old_pte;
1760         bool hwpoisoned = false;
1761         int ret = 1;
1762
1763         swapcache = folio;
1764         folio = ksm_might_need_to_copy(folio, vma, addr);
1765         if (unlikely(!folio))
1766                 return -ENOMEM;
1767         else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1768                 hwpoisoned = true;
1769                 folio = swapcache;
1770         }
1771
1772         page = folio_file_page(folio, swp_offset(entry));
1773         if (PageHWPoison(page))
1774                 hwpoisoned = true;
1775
1776         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1777         if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1778                                                 swp_entry_to_pte(entry)))) {
1779                 ret = 0;
1780                 goto out;
1781         }
1782
1783         old_pte = ptep_get(pte);
1784
1785         if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1786                 swp_entry_t swp_entry;
1787
1788                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1789                 if (hwpoisoned) {
1790                         swp_entry = make_hwpoison_entry(page);
1791                 } else {
1792                         swp_entry = make_poisoned_swp_entry();
1793                 }
1794                 new_pte = swp_entry_to_pte(swp_entry);
1795                 ret = 0;
1796                 goto setpte;
1797         }
1798
1799         /*
1800          * Some architectures may have to restore extra metadata to the page
1801          * when reading from swap. This metadata may be indexed by swap entry
1802          * so this must be called before swap_free().
1803          */
1804         arch_swap_restore(entry, folio);
1805
1806         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1807         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1808         folio_get(folio);
1809         if (folio == swapcache) {
1810                 rmap_t rmap_flags = RMAP_NONE;
1811
1812                 /*
1813                  * See do_swap_page(): writeback would be problematic.
1814                  * However, we do a folio_wait_writeback() just before this
1815                  * call and have the folio locked.
1816                  */
1817                 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1818                 if (pte_swp_exclusive(old_pte))
1819                         rmap_flags |= RMAP_EXCLUSIVE;
1820
1821                 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1822         } else { /* ksm created a completely new copy */
1823                 folio_add_new_anon_rmap(folio, vma, addr);
1824                 folio_add_lru_vma(folio, vma);
1825         }
1826         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1827         if (pte_swp_soft_dirty(old_pte))
1828                 new_pte = pte_mksoft_dirty(new_pte);
1829         if (pte_swp_uffd_wp(old_pte))
1830                 new_pte = pte_mkuffd_wp(new_pte);
1831 setpte:
1832         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1833         swap_free(entry);
1834 out:
1835         if (pte)
1836                 pte_unmap_unlock(pte, ptl);
1837         if (folio != swapcache) {
1838                 folio_unlock(folio);
1839                 folio_put(folio);
1840         }
1841         return ret;
1842 }
1843
1844 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1845                         unsigned long addr, unsigned long end,
1846                         unsigned int type)
1847 {
1848         pte_t *pte = NULL;
1849         struct swap_info_struct *si;
1850
1851         si = swap_info[type];
1852         do {
1853                 struct folio *folio;
1854                 unsigned long offset;
1855                 unsigned char swp_count;
1856                 swp_entry_t entry;
1857                 int ret;
1858                 pte_t ptent;
1859
1860                 if (!pte++) {
1861                         pte = pte_offset_map(pmd, addr);
1862                         if (!pte)
1863                                 break;
1864                 }
1865
1866                 ptent = ptep_get_lockless(pte);
1867
1868                 if (!is_swap_pte(ptent))
1869                         continue;
1870
1871                 entry = pte_to_swp_entry(ptent);
1872                 if (swp_type(entry) != type)
1873                         continue;
1874
1875                 offset = swp_offset(entry);
1876                 pte_unmap(pte);
1877                 pte = NULL;
1878
1879                 folio = swap_cache_get_folio(entry, vma, addr);
1880                 if (!folio) {
1881                         struct page *page;
1882                         struct vm_fault vmf = {
1883                                 .vma = vma,
1884                                 .address = addr,
1885                                 .real_address = addr,
1886                                 .pmd = pmd,
1887                         };
1888
1889                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1890                                                 &vmf);
1891                         if (page)
1892                                 folio = page_folio(page);
1893                 }
1894                 if (!folio) {
1895                         swp_count = READ_ONCE(si->swap_map[offset]);
1896                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1897                                 continue;
1898                         return -ENOMEM;
1899                 }
1900
1901                 folio_lock(folio);
1902                 folio_wait_writeback(folio);
1903                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1904                 if (ret < 0) {
1905                         folio_unlock(folio);
1906                         folio_put(folio);
1907                         return ret;
1908                 }
1909
1910                 folio_free_swap(folio);
1911                 folio_unlock(folio);
1912                 folio_put(folio);
1913         } while (addr += PAGE_SIZE, addr != end);
1914
1915         if (pte)
1916                 pte_unmap(pte);
1917         return 0;
1918 }
1919
1920 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1921                                 unsigned long addr, unsigned long end,
1922                                 unsigned int type)
1923 {
1924         pmd_t *pmd;
1925         unsigned long next;
1926         int ret;
1927
1928         pmd = pmd_offset(pud, addr);
1929         do {
1930                 cond_resched();
1931                 next = pmd_addr_end(addr, end);
1932                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1933                 if (ret)
1934                         return ret;
1935         } while (pmd++, addr = next, addr != end);
1936         return 0;
1937 }
1938
1939 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1940                                 unsigned long addr, unsigned long end,
1941                                 unsigned int type)
1942 {
1943         pud_t *pud;
1944         unsigned long next;
1945         int ret;
1946
1947         pud = pud_offset(p4d, addr);
1948         do {
1949                 next = pud_addr_end(addr, end);
1950                 if (pud_none_or_clear_bad(pud))
1951                         continue;
1952                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1953                 if (ret)
1954                         return ret;
1955         } while (pud++, addr = next, addr != end);
1956         return 0;
1957 }
1958
1959 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1960                                 unsigned long addr, unsigned long end,
1961                                 unsigned int type)
1962 {
1963         p4d_t *p4d;
1964         unsigned long next;
1965         int ret;
1966
1967         p4d = p4d_offset(pgd, addr);
1968         do {
1969                 next = p4d_addr_end(addr, end);
1970                 if (p4d_none_or_clear_bad(p4d))
1971                         continue;
1972                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1973                 if (ret)
1974                         return ret;
1975         } while (p4d++, addr = next, addr != end);
1976         return 0;
1977 }
1978
1979 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1980 {
1981         pgd_t *pgd;
1982         unsigned long addr, end, next;
1983         int ret;
1984
1985         addr = vma->vm_start;
1986         end = vma->vm_end;
1987
1988         pgd = pgd_offset(vma->vm_mm, addr);
1989         do {
1990                 next = pgd_addr_end(addr, end);
1991                 if (pgd_none_or_clear_bad(pgd))
1992                         continue;
1993                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1994                 if (ret)
1995                         return ret;
1996         } while (pgd++, addr = next, addr != end);
1997         return 0;
1998 }
1999
2000 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2001 {
2002         struct vm_area_struct *vma;
2003         int ret = 0;
2004         VMA_ITERATOR(vmi, mm, 0);
2005
2006         mmap_read_lock(mm);
2007         for_each_vma(vmi, vma) {
2008                 if (vma->anon_vma) {
2009                         ret = unuse_vma(vma, type);
2010                         if (ret)
2011                                 break;
2012                 }
2013
2014                 cond_resched();
2015         }
2016         mmap_read_unlock(mm);
2017         return ret;
2018 }
2019
2020 /*
2021  * Scan swap_map from current position to next entry still in use.
2022  * Return 0 if there are no inuse entries after prev till end of
2023  * the map.
2024  */
2025 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2026                                         unsigned int prev)
2027 {
2028         unsigned int i;
2029         unsigned char count;
2030
2031         /*
2032          * No need for swap_lock here: we're just looking
2033          * for whether an entry is in use, not modifying it; false
2034          * hits are okay, and sys_swapoff() has already prevented new
2035          * allocations from this area (while holding swap_lock).
2036          */
2037         for (i = prev + 1; i < si->max; i++) {
2038                 count = READ_ONCE(si->swap_map[i]);
2039                 if (count && swap_count(count) != SWAP_MAP_BAD)
2040                         break;
2041                 if ((i % LATENCY_LIMIT) == 0)
2042                         cond_resched();
2043         }
2044
2045         if (i == si->max)
2046                 i = 0;
2047
2048         return i;
2049 }
2050
2051 static int try_to_unuse(unsigned int type)
2052 {
2053         struct mm_struct *prev_mm;
2054         struct mm_struct *mm;
2055         struct list_head *p;
2056         int retval = 0;
2057         struct swap_info_struct *si = swap_info[type];
2058         struct folio *folio;
2059         swp_entry_t entry;
2060         unsigned int i;
2061
2062         if (!READ_ONCE(si->inuse_pages))
2063                 return 0;
2064
2065 retry:
2066         retval = shmem_unuse(type);
2067         if (retval)
2068                 return retval;
2069
2070         prev_mm = &init_mm;
2071         mmget(prev_mm);
2072
2073         spin_lock(&mmlist_lock);
2074         p = &init_mm.mmlist;
2075         while (READ_ONCE(si->inuse_pages) &&
2076                !signal_pending(current) &&
2077                (p = p->next) != &init_mm.mmlist) {
2078
2079                 mm = list_entry(p, struct mm_struct, mmlist);
2080                 if (!mmget_not_zero(mm))
2081                         continue;
2082                 spin_unlock(&mmlist_lock);
2083                 mmput(prev_mm);
2084                 prev_mm = mm;
2085                 retval = unuse_mm(mm, type);
2086                 if (retval) {
2087                         mmput(prev_mm);
2088                         return retval;
2089                 }
2090
2091                 /*
2092                  * Make sure that we aren't completely killing
2093                  * interactive performance.
2094                  */
2095                 cond_resched();
2096                 spin_lock(&mmlist_lock);
2097         }
2098         spin_unlock(&mmlist_lock);
2099
2100         mmput(prev_mm);
2101
2102         i = 0;
2103         while (READ_ONCE(si->inuse_pages) &&
2104                !signal_pending(current) &&
2105                (i = find_next_to_unuse(si, i)) != 0) {
2106
2107                 entry = swp_entry(type, i);
2108                 folio = filemap_get_folio(swap_address_space(entry), i);
2109                 if (IS_ERR(folio))
2110                         continue;
2111
2112                 /*
2113                  * It is conceivable that a racing task removed this folio from
2114                  * swap cache just before we acquired the page lock. The folio
2115                  * might even be back in swap cache on another swap area. But
2116                  * that is okay, folio_free_swap() only removes stale folios.
2117                  */
2118                 folio_lock(folio);
2119                 folio_wait_writeback(folio);
2120                 folio_free_swap(folio);
2121                 folio_unlock(folio);
2122                 folio_put(folio);
2123         }
2124
2125         /*
2126          * Lets check again to see if there are still swap entries in the map.
2127          * If yes, we would need to do retry the unuse logic again.
2128          * Under global memory pressure, swap entries can be reinserted back
2129          * into process space after the mmlist loop above passes over them.
2130          *
2131          * Limit the number of retries? No: when mmget_not_zero()
2132          * above fails, that mm is likely to be freeing swap from
2133          * exit_mmap(), which proceeds at its own independent pace;
2134          * and even shmem_writepage() could have been preempted after
2135          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2136          * and robust (though cpu-intensive) just to keep retrying.
2137          */
2138         if (READ_ONCE(si->inuse_pages)) {
2139                 if (!signal_pending(current))
2140                         goto retry;
2141                 return -EINTR;
2142         }
2143
2144         return 0;
2145 }
2146
2147 /*
2148  * After a successful try_to_unuse, if no swap is now in use, we know
2149  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2150  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2151  * added to the mmlist just after page_duplicate - before would be racy.
2152  */
2153 static void drain_mmlist(void)
2154 {
2155         struct list_head *p, *next;
2156         unsigned int type;
2157
2158         for (type = 0; type < nr_swapfiles; type++)
2159                 if (swap_info[type]->inuse_pages)
2160                         return;
2161         spin_lock(&mmlist_lock);
2162         list_for_each_safe(p, next, &init_mm.mmlist)
2163                 list_del_init(p);
2164         spin_unlock(&mmlist_lock);
2165 }
2166
2167 /*
2168  * Free all of a swapdev's extent information
2169  */
2170 static void destroy_swap_extents(struct swap_info_struct *sis)
2171 {
2172         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2173                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2174                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2175
2176                 rb_erase(rb, &sis->swap_extent_root);
2177                 kfree(se);
2178         }
2179
2180         if (sis->flags & SWP_ACTIVATED) {
2181                 struct file *swap_file = sis->swap_file;
2182                 struct address_space *mapping = swap_file->f_mapping;
2183
2184                 sis->flags &= ~SWP_ACTIVATED;
2185                 if (mapping->a_ops->swap_deactivate)
2186                         mapping->a_ops->swap_deactivate(swap_file);
2187         }
2188 }
2189
2190 /*
2191  * Add a block range (and the corresponding page range) into this swapdev's
2192  * extent tree.
2193  *
2194  * This function rather assumes that it is called in ascending page order.
2195  */
2196 int
2197 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2198                 unsigned long nr_pages, sector_t start_block)
2199 {
2200         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2201         struct swap_extent *se;
2202         struct swap_extent *new_se;
2203
2204         /*
2205          * place the new node at the right most since the
2206          * function is called in ascending page order.
2207          */
2208         while (*link) {
2209                 parent = *link;
2210                 link = &parent->rb_right;
2211         }
2212
2213         if (parent) {
2214                 se = rb_entry(parent, struct swap_extent, rb_node);
2215                 BUG_ON(se->start_page + se->nr_pages != start_page);
2216                 if (se->start_block + se->nr_pages == start_block) {
2217                         /* Merge it */
2218                         se->nr_pages += nr_pages;
2219                         return 0;
2220                 }
2221         }
2222
2223         /* No merge, insert a new extent. */
2224         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2225         if (new_se == NULL)
2226                 return -ENOMEM;
2227         new_se->start_page = start_page;
2228         new_se->nr_pages = nr_pages;
2229         new_se->start_block = start_block;
2230
2231         rb_link_node(&new_se->rb_node, parent, link);
2232         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2233         return 1;
2234 }
2235 EXPORT_SYMBOL_GPL(add_swap_extent);
2236
2237 /*
2238  * A `swap extent' is a simple thing which maps a contiguous range of pages
2239  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2240  * built at swapon time and is then used at swap_writepage/swap_read_folio
2241  * time for locating where on disk a page belongs.
2242  *
2243  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2244  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2245  * swap files identically.
2246  *
2247  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2248  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2249  * swapfiles are handled *identically* after swapon time.
2250  *
2251  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2252  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2253  * blocks are found which do not fall within the PAGE_SIZE alignment
2254  * requirements, they are simply tossed out - we will never use those blocks
2255  * for swapping.
2256  *
2257  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2258  * prevents users from writing to the swap device, which will corrupt memory.
2259  *
2260  * The amount of disk space which a single swap extent represents varies.
2261  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2262  * extents in the rbtree. - akpm.
2263  */
2264 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2265 {
2266         struct file *swap_file = sis->swap_file;
2267         struct address_space *mapping = swap_file->f_mapping;
2268         struct inode *inode = mapping->host;
2269         int ret;
2270
2271         if (S_ISBLK(inode->i_mode)) {
2272                 ret = add_swap_extent(sis, 0, sis->max, 0);
2273                 *span = sis->pages;
2274                 return ret;
2275         }
2276
2277         if (mapping->a_ops->swap_activate) {
2278                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2279                 if (ret < 0)
2280                         return ret;
2281                 sis->flags |= SWP_ACTIVATED;
2282                 if ((sis->flags & SWP_FS_OPS) &&
2283                     sio_pool_init() != 0) {
2284                         destroy_swap_extents(sis);
2285                         return -ENOMEM;
2286                 }
2287                 return ret;
2288         }
2289
2290         return generic_swapfile_activate(sis, swap_file, span);
2291 }
2292
2293 static int swap_node(struct swap_info_struct *p)
2294 {
2295         struct block_device *bdev;
2296
2297         if (p->bdev)
2298                 bdev = p->bdev;
2299         else
2300                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2301
2302         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2303 }
2304
2305 static void setup_swap_info(struct swap_info_struct *p, int prio,
2306                             unsigned char *swap_map,
2307                             struct swap_cluster_info *cluster_info)
2308 {
2309         int i;
2310
2311         if (prio >= 0)
2312                 p->prio = prio;
2313         else
2314                 p->prio = --least_priority;
2315         /*
2316          * the plist prio is negated because plist ordering is
2317          * low-to-high, while swap ordering is high-to-low
2318          */
2319         p->list.prio = -p->prio;
2320         for_each_node(i) {
2321                 if (p->prio >= 0)
2322                         p->avail_lists[i].prio = -p->prio;
2323                 else {
2324                         if (swap_node(p) == i)
2325                                 p->avail_lists[i].prio = 1;
2326                         else
2327                                 p->avail_lists[i].prio = -p->prio;
2328                 }
2329         }
2330         p->swap_map = swap_map;
2331         p->cluster_info = cluster_info;
2332 }
2333
2334 static void _enable_swap_info(struct swap_info_struct *p)
2335 {
2336         p->flags |= SWP_WRITEOK;
2337         atomic_long_add(p->pages, &nr_swap_pages);
2338         total_swap_pages += p->pages;
2339
2340         assert_spin_locked(&swap_lock);
2341         /*
2342          * both lists are plists, and thus priority ordered.
2343          * swap_active_head needs to be priority ordered for swapoff(),
2344          * which on removal of any swap_info_struct with an auto-assigned
2345          * (i.e. negative) priority increments the auto-assigned priority
2346          * of any lower-priority swap_info_structs.
2347          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2348          * which allocates swap pages from the highest available priority
2349          * swap_info_struct.
2350          */
2351         plist_add(&p->list, &swap_active_head);
2352
2353         /* add to available list iff swap device is not full */
2354         if (p->highest_bit)
2355                 add_to_avail_list(p);
2356 }
2357
2358 static void enable_swap_info(struct swap_info_struct *p, int prio,
2359                                 unsigned char *swap_map,
2360                                 struct swap_cluster_info *cluster_info)
2361 {
2362         zswap_swapon(p->type);
2363
2364         spin_lock(&swap_lock);
2365         spin_lock(&p->lock);
2366         setup_swap_info(p, prio, swap_map, cluster_info);
2367         spin_unlock(&p->lock);
2368         spin_unlock(&swap_lock);
2369         /*
2370          * Finished initializing swap device, now it's safe to reference it.
2371          */
2372         percpu_ref_resurrect(&p->users);
2373         spin_lock(&swap_lock);
2374         spin_lock(&p->lock);
2375         _enable_swap_info(p);
2376         spin_unlock(&p->lock);
2377         spin_unlock(&swap_lock);
2378 }
2379
2380 static void reinsert_swap_info(struct swap_info_struct *p)
2381 {
2382         spin_lock(&swap_lock);
2383         spin_lock(&p->lock);
2384         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2385         _enable_swap_info(p);
2386         spin_unlock(&p->lock);
2387         spin_unlock(&swap_lock);
2388 }
2389
2390 bool has_usable_swap(void)
2391 {
2392         bool ret = true;
2393
2394         spin_lock(&swap_lock);
2395         if (plist_head_empty(&swap_active_head))
2396                 ret = false;
2397         spin_unlock(&swap_lock);
2398         return ret;
2399 }
2400
2401 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2402 {
2403         struct swap_info_struct *p = NULL;
2404         unsigned char *swap_map;
2405         struct swap_cluster_info *cluster_info;
2406         struct file *swap_file, *victim;
2407         struct address_space *mapping;
2408         struct inode *inode;
2409         struct filename *pathname;
2410         int err, found = 0;
2411         unsigned int old_block_size;
2412
2413         if (!capable(CAP_SYS_ADMIN))
2414                 return -EPERM;
2415
2416         BUG_ON(!current->mm);
2417
2418         pathname = getname(specialfile);
2419         if (IS_ERR(pathname))
2420                 return PTR_ERR(pathname);
2421
2422         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2423         err = PTR_ERR(victim);
2424         if (IS_ERR(victim))
2425                 goto out;
2426
2427         mapping = victim->f_mapping;
2428         spin_lock(&swap_lock);
2429         plist_for_each_entry(p, &swap_active_head, list) {
2430                 if (p->flags & SWP_WRITEOK) {
2431                         if (p->swap_file->f_mapping == mapping) {
2432                                 found = 1;
2433                                 break;
2434                         }
2435                 }
2436         }
2437         if (!found) {
2438                 err = -EINVAL;
2439                 spin_unlock(&swap_lock);
2440                 goto out_dput;
2441         }
2442         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2443                 vm_unacct_memory(p->pages);
2444         else {
2445                 err = -ENOMEM;
2446                 spin_unlock(&swap_lock);
2447                 goto out_dput;
2448         }
2449         spin_lock(&p->lock);
2450         del_from_avail_list(p);
2451         if (p->prio < 0) {
2452                 struct swap_info_struct *si = p;
2453                 int nid;
2454
2455                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2456                         si->prio++;
2457                         si->list.prio--;
2458                         for_each_node(nid) {
2459                                 if (si->avail_lists[nid].prio != 1)
2460                                         si->avail_lists[nid].prio--;
2461                         }
2462                 }
2463                 least_priority++;
2464         }
2465         plist_del(&p->list, &swap_active_head);
2466         atomic_long_sub(p->pages, &nr_swap_pages);
2467         total_swap_pages -= p->pages;
2468         p->flags &= ~SWP_WRITEOK;
2469         spin_unlock(&p->lock);
2470         spin_unlock(&swap_lock);
2471
2472         disable_swap_slots_cache_lock();
2473
2474         set_current_oom_origin();
2475         err = try_to_unuse(p->type);
2476         clear_current_oom_origin();
2477
2478         if (err) {
2479                 /* re-insert swap space back into swap_list */
2480                 reinsert_swap_info(p);
2481                 reenable_swap_slots_cache_unlock();
2482                 goto out_dput;
2483         }
2484
2485         reenable_swap_slots_cache_unlock();
2486
2487         /*
2488          * Wait for swap operations protected by get/put_swap_device()
2489          * to complete.
2490          *
2491          * We need synchronize_rcu() here to protect the accessing to
2492          * the swap cache data structure.
2493          */
2494         percpu_ref_kill(&p->users);
2495         synchronize_rcu();
2496         wait_for_completion(&p->comp);
2497
2498         flush_work(&p->discard_work);
2499
2500         destroy_swap_extents(p);
2501         if (p->flags & SWP_CONTINUED)
2502                 free_swap_count_continuations(p);
2503
2504         if (!p->bdev || !bdev_nonrot(p->bdev))
2505                 atomic_dec(&nr_rotate_swap);
2506
2507         mutex_lock(&swapon_mutex);
2508         spin_lock(&swap_lock);
2509         spin_lock(&p->lock);
2510         drain_mmlist();
2511
2512         /* wait for anyone still in scan_swap_map_slots */
2513         p->highest_bit = 0;             /* cuts scans short */
2514         while (p->flags >= SWP_SCANNING) {
2515                 spin_unlock(&p->lock);
2516                 spin_unlock(&swap_lock);
2517                 schedule_timeout_uninterruptible(1);
2518                 spin_lock(&swap_lock);
2519                 spin_lock(&p->lock);
2520         }
2521
2522         swap_file = p->swap_file;
2523         old_block_size = p->old_block_size;
2524         p->swap_file = NULL;
2525         p->max = 0;
2526         swap_map = p->swap_map;
2527         p->swap_map = NULL;
2528         cluster_info = p->cluster_info;
2529         p->cluster_info = NULL;
2530         spin_unlock(&p->lock);
2531         spin_unlock(&swap_lock);
2532         arch_swap_invalidate_area(p->type);
2533         zswap_swapoff(p->type);
2534         mutex_unlock(&swapon_mutex);
2535         free_percpu(p->percpu_cluster);
2536         p->percpu_cluster = NULL;
2537         free_percpu(p->cluster_next_cpu);
2538         p->cluster_next_cpu = NULL;
2539         vfree(swap_map);
2540         kvfree(cluster_info);
2541         /* Destroy swap account information */
2542         swap_cgroup_swapoff(p->type);
2543         exit_swap_address_space(p->type);
2544
2545         inode = mapping->host;
2546         if (p->bdev_handle) {
2547                 set_blocksize(p->bdev, old_block_size);
2548                 bdev_release(p->bdev_handle);
2549                 p->bdev_handle = NULL;
2550         }
2551
2552         inode_lock(inode);
2553         inode->i_flags &= ~S_SWAPFILE;
2554         inode_unlock(inode);
2555         filp_close(swap_file, NULL);
2556
2557         /*
2558          * Clear the SWP_USED flag after all resources are freed so that swapon
2559          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2560          * not hold p->lock after we cleared its SWP_WRITEOK.
2561          */
2562         spin_lock(&swap_lock);
2563         p->flags = 0;
2564         spin_unlock(&swap_lock);
2565
2566         err = 0;
2567         atomic_inc(&proc_poll_event);
2568         wake_up_interruptible(&proc_poll_wait);
2569
2570 out_dput:
2571         filp_close(victim, NULL);
2572 out:
2573         putname(pathname);
2574         return err;
2575 }
2576
2577 #ifdef CONFIG_PROC_FS
2578 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2579 {
2580         struct seq_file *seq = file->private_data;
2581
2582         poll_wait(file, &proc_poll_wait, wait);
2583
2584         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2585                 seq->poll_event = atomic_read(&proc_poll_event);
2586                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2587         }
2588
2589         return EPOLLIN | EPOLLRDNORM;
2590 }
2591
2592 /* iterator */
2593 static void *swap_start(struct seq_file *swap, loff_t *pos)
2594 {
2595         struct swap_info_struct *si;
2596         int type;
2597         loff_t l = *pos;
2598
2599         mutex_lock(&swapon_mutex);
2600
2601         if (!l)
2602                 return SEQ_START_TOKEN;
2603
2604         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2605                 if (!(si->flags & SWP_USED) || !si->swap_map)
2606                         continue;
2607                 if (!--l)
2608                         return si;
2609         }
2610
2611         return NULL;
2612 }
2613
2614 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2615 {
2616         struct swap_info_struct *si = v;
2617         int type;
2618
2619         if (v == SEQ_START_TOKEN)
2620                 type = 0;
2621         else
2622                 type = si->type + 1;
2623
2624         ++(*pos);
2625         for (; (si = swap_type_to_swap_info(type)); type++) {
2626                 if (!(si->flags & SWP_USED) || !si->swap_map)
2627                         continue;
2628                 return si;
2629         }
2630
2631         return NULL;
2632 }
2633
2634 static void swap_stop(struct seq_file *swap, void *v)
2635 {
2636         mutex_unlock(&swapon_mutex);
2637 }
2638
2639 static int swap_show(struct seq_file *swap, void *v)
2640 {
2641         struct swap_info_struct *si = v;
2642         struct file *file;
2643         int len;
2644         unsigned long bytes, inuse;
2645
2646         if (si == SEQ_START_TOKEN) {
2647                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2648                 return 0;
2649         }
2650
2651         bytes = K(si->pages);
2652         inuse = K(READ_ONCE(si->inuse_pages));
2653
2654         file = si->swap_file;
2655         len = seq_file_path(swap, file, " \t\n\\");
2656         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2657                         len < 40 ? 40 - len : 1, " ",
2658                         S_ISBLK(file_inode(file)->i_mode) ?
2659                                 "partition" : "file\t",
2660                         bytes, bytes < 10000000 ? "\t" : "",
2661                         inuse, inuse < 10000000 ? "\t" : "",
2662                         si->prio);
2663         return 0;
2664 }
2665
2666 static const struct seq_operations swaps_op = {
2667         .start =        swap_start,
2668         .next =         swap_next,
2669         .stop =         swap_stop,
2670         .show =         swap_show
2671 };
2672
2673 static int swaps_open(struct inode *inode, struct file *file)
2674 {
2675         struct seq_file *seq;
2676         int ret;
2677
2678         ret = seq_open(file, &swaps_op);
2679         if (ret)
2680                 return ret;
2681
2682         seq = file->private_data;
2683         seq->poll_event = atomic_read(&proc_poll_event);
2684         return 0;
2685 }
2686
2687 static const struct proc_ops swaps_proc_ops = {
2688         .proc_flags     = PROC_ENTRY_PERMANENT,
2689         .proc_open      = swaps_open,
2690         .proc_read      = seq_read,
2691         .proc_lseek     = seq_lseek,
2692         .proc_release   = seq_release,
2693         .proc_poll      = swaps_poll,
2694 };
2695
2696 static int __init procswaps_init(void)
2697 {
2698         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2699         return 0;
2700 }
2701 __initcall(procswaps_init);
2702 #endif /* CONFIG_PROC_FS */
2703
2704 #ifdef MAX_SWAPFILES_CHECK
2705 static int __init max_swapfiles_check(void)
2706 {
2707         MAX_SWAPFILES_CHECK();
2708         return 0;
2709 }
2710 late_initcall(max_swapfiles_check);
2711 #endif
2712
2713 static struct swap_info_struct *alloc_swap_info(void)
2714 {
2715         struct swap_info_struct *p;
2716         struct swap_info_struct *defer = NULL;
2717         unsigned int type;
2718         int i;
2719
2720         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2721         if (!p)
2722                 return ERR_PTR(-ENOMEM);
2723
2724         if (percpu_ref_init(&p->users, swap_users_ref_free,
2725                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2726                 kvfree(p);
2727                 return ERR_PTR(-ENOMEM);
2728         }
2729
2730         spin_lock(&swap_lock);
2731         for (type = 0; type < nr_swapfiles; type++) {
2732                 if (!(swap_info[type]->flags & SWP_USED))
2733                         break;
2734         }
2735         if (type >= MAX_SWAPFILES) {
2736                 spin_unlock(&swap_lock);
2737                 percpu_ref_exit(&p->users);
2738                 kvfree(p);
2739                 return ERR_PTR(-EPERM);
2740         }
2741         if (type >= nr_swapfiles) {
2742                 p->type = type;
2743                 /*
2744                  * Publish the swap_info_struct after initializing it.
2745                  * Note that kvzalloc() above zeroes all its fields.
2746                  */
2747                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2748                 nr_swapfiles++;
2749         } else {
2750                 defer = p;
2751                 p = swap_info[type];
2752                 /*
2753                  * Do not memset this entry: a racing procfs swap_next()
2754                  * would be relying on p->type to remain valid.
2755                  */
2756         }
2757         p->swap_extent_root = RB_ROOT;
2758         plist_node_init(&p->list, 0);
2759         for_each_node(i)
2760                 plist_node_init(&p->avail_lists[i], 0);
2761         p->flags = SWP_USED;
2762         spin_unlock(&swap_lock);
2763         if (defer) {
2764                 percpu_ref_exit(&defer->users);
2765                 kvfree(defer);
2766         }
2767         spin_lock_init(&p->lock);
2768         spin_lock_init(&p->cont_lock);
2769         init_completion(&p->comp);
2770
2771         return p;
2772 }
2773
2774 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2775 {
2776         int error;
2777
2778         if (S_ISBLK(inode->i_mode)) {
2779                 p->bdev_handle = bdev_open_by_dev(inode->i_rdev,
2780                                 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2781                 if (IS_ERR(p->bdev_handle)) {
2782                         error = PTR_ERR(p->bdev_handle);
2783                         p->bdev_handle = NULL;
2784                         return error;
2785                 }
2786                 p->bdev = p->bdev_handle->bdev;
2787                 p->old_block_size = block_size(p->bdev);
2788                 error = set_blocksize(p->bdev, PAGE_SIZE);
2789                 if (error < 0)
2790                         return error;
2791                 /*
2792                  * Zoned block devices contain zones that have a sequential
2793                  * write only restriction.  Hence zoned block devices are not
2794                  * suitable for swapping.  Disallow them here.
2795                  */
2796                 if (bdev_is_zoned(p->bdev))
2797                         return -EINVAL;
2798                 p->flags |= SWP_BLKDEV;
2799         } else if (S_ISREG(inode->i_mode)) {
2800                 p->bdev = inode->i_sb->s_bdev;
2801         }
2802
2803         return 0;
2804 }
2805
2806
2807 /*
2808  * Find out how many pages are allowed for a single swap device. There
2809  * are two limiting factors:
2810  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2811  * 2) the number of bits in the swap pte, as defined by the different
2812  * architectures.
2813  *
2814  * In order to find the largest possible bit mask, a swap entry with
2815  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2816  * decoded to a swp_entry_t again, and finally the swap offset is
2817  * extracted.
2818  *
2819  * This will mask all the bits from the initial ~0UL mask that can't
2820  * be encoded in either the swp_entry_t or the architecture definition
2821  * of a swap pte.
2822  */
2823 unsigned long generic_max_swapfile_size(void)
2824 {
2825         return swp_offset(pte_to_swp_entry(
2826                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2827 }
2828
2829 /* Can be overridden by an architecture for additional checks. */
2830 __weak unsigned long arch_max_swapfile_size(void)
2831 {
2832         return generic_max_swapfile_size();
2833 }
2834
2835 static unsigned long read_swap_header(struct swap_info_struct *p,
2836                                         union swap_header *swap_header,
2837                                         struct inode *inode)
2838 {
2839         int i;
2840         unsigned long maxpages;
2841         unsigned long swapfilepages;
2842         unsigned long last_page;
2843
2844         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2845                 pr_err("Unable to find swap-space signature\n");
2846                 return 0;
2847         }
2848
2849         /* swap partition endianness hack... */
2850         if (swab32(swap_header->info.version) == 1) {
2851                 swab32s(&swap_header->info.version);
2852                 swab32s(&swap_header->info.last_page);
2853                 swab32s(&swap_header->info.nr_badpages);
2854                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2855                         return 0;
2856                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2857                         swab32s(&swap_header->info.badpages[i]);
2858         }
2859         /* Check the swap header's sub-version */
2860         if (swap_header->info.version != 1) {
2861                 pr_warn("Unable to handle swap header version %d\n",
2862                         swap_header->info.version);
2863                 return 0;
2864         }
2865
2866         p->lowest_bit  = 1;
2867         p->cluster_next = 1;
2868         p->cluster_nr = 0;
2869
2870         maxpages = swapfile_maximum_size;
2871         last_page = swap_header->info.last_page;
2872         if (!last_page) {
2873                 pr_warn("Empty swap-file\n");
2874                 return 0;
2875         }
2876         if (last_page > maxpages) {
2877                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2878                         K(maxpages), K(last_page));
2879         }
2880         if (maxpages > last_page) {
2881                 maxpages = last_page + 1;
2882                 /* p->max is an unsigned int: don't overflow it */
2883                 if ((unsigned int)maxpages == 0)
2884                         maxpages = UINT_MAX;
2885         }
2886         p->highest_bit = maxpages - 1;
2887
2888         if (!maxpages)
2889                 return 0;
2890         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2891         if (swapfilepages && maxpages > swapfilepages) {
2892                 pr_warn("Swap area shorter than signature indicates\n");
2893                 return 0;
2894         }
2895         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2896                 return 0;
2897         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2898                 return 0;
2899
2900         return maxpages;
2901 }
2902
2903 #define SWAP_CLUSTER_INFO_COLS                                          \
2904         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2905 #define SWAP_CLUSTER_SPACE_COLS                                         \
2906         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2907 #define SWAP_CLUSTER_COLS                                               \
2908         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2909
2910 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2911                                         union swap_header *swap_header,
2912                                         unsigned char *swap_map,
2913                                         struct swap_cluster_info *cluster_info,
2914                                         unsigned long maxpages,
2915                                         sector_t *span)
2916 {
2917         unsigned int j, k;
2918         unsigned int nr_good_pages;
2919         int nr_extents;
2920         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2921         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2922         unsigned long i, idx;
2923
2924         nr_good_pages = maxpages - 1;   /* omit header page */
2925
2926         cluster_list_init(&p->free_clusters);
2927         cluster_list_init(&p->discard_clusters);
2928
2929         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2930                 unsigned int page_nr = swap_header->info.badpages[i];
2931                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2932                         return -EINVAL;
2933                 if (page_nr < maxpages) {
2934                         swap_map[page_nr] = SWAP_MAP_BAD;
2935                         nr_good_pages--;
2936                         /*
2937                          * Haven't marked the cluster free yet, no list
2938                          * operation involved
2939                          */
2940                         inc_cluster_info_page(p, cluster_info, page_nr);
2941                 }
2942         }
2943
2944         /* Haven't marked the cluster free yet, no list operation involved */
2945         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2946                 inc_cluster_info_page(p, cluster_info, i);
2947
2948         if (nr_good_pages) {
2949                 swap_map[0] = SWAP_MAP_BAD;
2950                 /*
2951                  * Not mark the cluster free yet, no list
2952                  * operation involved
2953                  */
2954                 inc_cluster_info_page(p, cluster_info, 0);
2955                 p->max = maxpages;
2956                 p->pages = nr_good_pages;
2957                 nr_extents = setup_swap_extents(p, span);
2958                 if (nr_extents < 0)
2959                         return nr_extents;
2960                 nr_good_pages = p->pages;
2961         }
2962         if (!nr_good_pages) {
2963                 pr_warn("Empty swap-file\n");
2964                 return -EINVAL;
2965         }
2966
2967         if (!cluster_info)
2968                 return nr_extents;
2969
2970
2971         /*
2972          * Reduce false cache line sharing between cluster_info and
2973          * sharing same address space.
2974          */
2975         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2976                 j = (k + col) % SWAP_CLUSTER_COLS;
2977                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2978                         idx = i * SWAP_CLUSTER_COLS + j;
2979                         if (idx >= nr_clusters)
2980                                 continue;
2981                         if (cluster_count(&cluster_info[idx]))
2982                                 continue;
2983                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2984                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2985                                               idx);
2986                 }
2987         }
2988         return nr_extents;
2989 }
2990
2991 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2992 {
2993         struct swap_info_struct *p;
2994         struct filename *name;
2995         struct file *swap_file = NULL;
2996         struct address_space *mapping;
2997         struct dentry *dentry;
2998         int prio;
2999         int error;
3000         union swap_header *swap_header;
3001         int nr_extents;
3002         sector_t span;
3003         unsigned long maxpages;
3004         unsigned char *swap_map = NULL;
3005         struct swap_cluster_info *cluster_info = NULL;
3006         struct page *page = NULL;
3007         struct inode *inode = NULL;
3008         bool inced_nr_rotate_swap = false;
3009
3010         if (swap_flags & ~SWAP_FLAGS_VALID)
3011                 return -EINVAL;
3012
3013         if (!capable(CAP_SYS_ADMIN))
3014                 return -EPERM;
3015
3016         if (!swap_avail_heads)
3017                 return -ENOMEM;
3018
3019         p = alloc_swap_info();
3020         if (IS_ERR(p))
3021                 return PTR_ERR(p);
3022
3023         INIT_WORK(&p->discard_work, swap_discard_work);
3024
3025         name = getname(specialfile);
3026         if (IS_ERR(name)) {
3027                 error = PTR_ERR(name);
3028                 name = NULL;
3029                 goto bad_swap;
3030         }
3031         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3032         if (IS_ERR(swap_file)) {
3033                 error = PTR_ERR(swap_file);
3034                 swap_file = NULL;
3035                 goto bad_swap;
3036         }
3037
3038         p->swap_file = swap_file;
3039         mapping = swap_file->f_mapping;
3040         dentry = swap_file->f_path.dentry;
3041         inode = mapping->host;
3042
3043         error = claim_swapfile(p, inode);
3044         if (unlikely(error))
3045                 goto bad_swap;
3046
3047         inode_lock(inode);
3048         if (d_unlinked(dentry) || cant_mount(dentry)) {
3049                 error = -ENOENT;
3050                 goto bad_swap_unlock_inode;
3051         }
3052         if (IS_SWAPFILE(inode)) {
3053                 error = -EBUSY;
3054                 goto bad_swap_unlock_inode;
3055         }
3056
3057         /*
3058          * Read the swap header.
3059          */
3060         if (!mapping->a_ops->read_folio) {
3061                 error = -EINVAL;
3062                 goto bad_swap_unlock_inode;
3063         }
3064         page = read_mapping_page(mapping, 0, swap_file);
3065         if (IS_ERR(page)) {
3066                 error = PTR_ERR(page);
3067                 goto bad_swap_unlock_inode;
3068         }
3069         swap_header = kmap(page);
3070
3071         maxpages = read_swap_header(p, swap_header, inode);
3072         if (unlikely(!maxpages)) {
3073                 error = -EINVAL;
3074                 goto bad_swap_unlock_inode;
3075         }
3076
3077         /* OK, set up the swap map and apply the bad block list */
3078         swap_map = vzalloc(maxpages);
3079         if (!swap_map) {
3080                 error = -ENOMEM;
3081                 goto bad_swap_unlock_inode;
3082         }
3083
3084         if (p->bdev && bdev_stable_writes(p->bdev))
3085                 p->flags |= SWP_STABLE_WRITES;
3086
3087         if (p->bdev && bdev_synchronous(p->bdev))
3088                 p->flags |= SWP_SYNCHRONOUS_IO;
3089
3090         if (p->bdev && bdev_nonrot(p->bdev)) {
3091                 int cpu;
3092                 unsigned long ci, nr_cluster;
3093
3094                 p->flags |= SWP_SOLIDSTATE;
3095                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3096                 if (!p->cluster_next_cpu) {
3097                         error = -ENOMEM;
3098                         goto bad_swap_unlock_inode;
3099                 }
3100                 /*
3101                  * select a random position to start with to help wear leveling
3102                  * SSD
3103                  */
3104                 for_each_possible_cpu(cpu) {
3105                         per_cpu(*p->cluster_next_cpu, cpu) =
3106                                 get_random_u32_inclusive(1, p->highest_bit);
3107                 }
3108                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3109
3110                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3111                                         GFP_KERNEL);
3112                 if (!cluster_info) {
3113                         error = -ENOMEM;
3114                         goto bad_swap_unlock_inode;
3115                 }
3116
3117                 for (ci = 0; ci < nr_cluster; ci++)
3118                         spin_lock_init(&((cluster_info + ci)->lock));
3119
3120                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3121                 if (!p->percpu_cluster) {
3122                         error = -ENOMEM;
3123                         goto bad_swap_unlock_inode;
3124                 }
3125                 for_each_possible_cpu(cpu) {
3126                         struct percpu_cluster *cluster;
3127                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3128                         cluster_set_null(&cluster->index);
3129                 }
3130         } else {
3131                 atomic_inc(&nr_rotate_swap);
3132                 inced_nr_rotate_swap = true;
3133         }
3134
3135         error = swap_cgroup_swapon(p->type, maxpages);
3136         if (error)
3137                 goto bad_swap_unlock_inode;
3138
3139         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3140                 cluster_info, maxpages, &span);
3141         if (unlikely(nr_extents < 0)) {
3142                 error = nr_extents;
3143                 goto bad_swap_unlock_inode;
3144         }
3145
3146         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3147             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3148                 /*
3149                  * When discard is enabled for swap with no particular
3150                  * policy flagged, we set all swap discard flags here in
3151                  * order to sustain backward compatibility with older
3152                  * swapon(8) releases.
3153                  */
3154                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3155                              SWP_PAGE_DISCARD);
3156
3157                 /*
3158                  * By flagging sys_swapon, a sysadmin can tell us to
3159                  * either do single-time area discards only, or to just
3160                  * perform discards for released swap page-clusters.
3161                  * Now it's time to adjust the p->flags accordingly.
3162                  */
3163                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3164                         p->flags &= ~SWP_PAGE_DISCARD;
3165                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3166                         p->flags &= ~SWP_AREA_DISCARD;
3167
3168                 /* issue a swapon-time discard if it's still required */
3169                 if (p->flags & SWP_AREA_DISCARD) {
3170                         int err = discard_swap(p);
3171                         if (unlikely(err))
3172                                 pr_err("swapon: discard_swap(%p): %d\n",
3173                                         p, err);
3174                 }
3175         }
3176
3177         error = init_swap_address_space(p->type, maxpages);
3178         if (error)
3179                 goto bad_swap_unlock_inode;
3180
3181         /*
3182          * Flush any pending IO and dirty mappings before we start using this
3183          * swap device.
3184          */
3185         inode->i_flags |= S_SWAPFILE;
3186         error = inode_drain_writes(inode);
3187         if (error) {
3188                 inode->i_flags &= ~S_SWAPFILE;
3189                 goto free_swap_address_space;
3190         }
3191
3192         mutex_lock(&swapon_mutex);
3193         prio = -1;
3194         if (swap_flags & SWAP_FLAG_PREFER)
3195                 prio =
3196                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3197         enable_swap_info(p, prio, swap_map, cluster_info);
3198
3199         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3200                 K(p->pages), name->name, p->prio, nr_extents,
3201                 K((unsigned long long)span),
3202                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3203                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3204                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3205                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3206
3207         mutex_unlock(&swapon_mutex);
3208         atomic_inc(&proc_poll_event);
3209         wake_up_interruptible(&proc_poll_wait);
3210
3211         error = 0;
3212         goto out;
3213 free_swap_address_space:
3214         exit_swap_address_space(p->type);
3215 bad_swap_unlock_inode:
3216         inode_unlock(inode);
3217 bad_swap:
3218         free_percpu(p->percpu_cluster);
3219         p->percpu_cluster = NULL;
3220         free_percpu(p->cluster_next_cpu);
3221         p->cluster_next_cpu = NULL;
3222         if (p->bdev_handle) {
3223                 set_blocksize(p->bdev, p->old_block_size);
3224                 bdev_release(p->bdev_handle);
3225                 p->bdev_handle = NULL;
3226         }
3227         inode = NULL;
3228         destroy_swap_extents(p);
3229         swap_cgroup_swapoff(p->type);
3230         spin_lock(&swap_lock);
3231         p->swap_file = NULL;
3232         p->flags = 0;
3233         spin_unlock(&swap_lock);
3234         vfree(swap_map);
3235         kvfree(cluster_info);
3236         if (inced_nr_rotate_swap)
3237                 atomic_dec(&nr_rotate_swap);
3238         if (swap_file)
3239                 filp_close(swap_file, NULL);
3240 out:
3241         if (page && !IS_ERR(page)) {
3242                 kunmap(page);
3243                 put_page(page);
3244         }
3245         if (name)
3246                 putname(name);
3247         if (inode)
3248                 inode_unlock(inode);
3249         if (!error)
3250                 enable_swap_slots_cache();
3251         return error;
3252 }
3253
3254 void si_swapinfo(struct sysinfo *val)
3255 {
3256         unsigned int type;
3257         unsigned long nr_to_be_unused = 0;
3258
3259         spin_lock(&swap_lock);
3260         for (type = 0; type < nr_swapfiles; type++) {
3261                 struct swap_info_struct *si = swap_info[type];
3262
3263                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3264                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3265         }
3266         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3267         val->totalswap = total_swap_pages + nr_to_be_unused;
3268         spin_unlock(&swap_lock);
3269 }
3270
3271 /*
3272  * Verify that a swap entry is valid and increment its swap map count.
3273  *
3274  * Returns error code in following case.
3275  * - success -> 0
3276  * - swp_entry is invalid -> EINVAL
3277  * - swp_entry is migration entry -> EINVAL
3278  * - swap-cache reference is requested but there is already one. -> EEXIST
3279  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3280  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3281  */
3282 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3283 {
3284         struct swap_info_struct *p;
3285         struct swap_cluster_info *ci;
3286         unsigned long offset;
3287         unsigned char count;
3288         unsigned char has_cache;
3289         int err;
3290
3291         p = swp_swap_info(entry);
3292
3293         offset = swp_offset(entry);
3294         ci = lock_cluster_or_swap_info(p, offset);
3295
3296         count = p->swap_map[offset];
3297
3298         /*
3299          * swapin_readahead() doesn't check if a swap entry is valid, so the
3300          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3301          */
3302         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3303                 err = -ENOENT;
3304                 goto unlock_out;
3305         }
3306
3307         has_cache = count & SWAP_HAS_CACHE;
3308         count &= ~SWAP_HAS_CACHE;
3309         err = 0;
3310
3311         if (usage == SWAP_HAS_CACHE) {
3312
3313                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3314                 if (!has_cache && count)
3315                         has_cache = SWAP_HAS_CACHE;
3316                 else if (has_cache)             /* someone else added cache */
3317                         err = -EEXIST;
3318                 else                            /* no users remaining */
3319                         err = -ENOENT;
3320
3321         } else if (count || has_cache) {
3322
3323                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3324                         count += usage;
3325                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3326                         err = -EINVAL;
3327                 else if (swap_count_continued(p, offset, count))
3328                         count = COUNT_CONTINUED;
3329                 else
3330                         err = -ENOMEM;
3331         } else
3332                 err = -ENOENT;                  /* unused swap entry */
3333
3334         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3335
3336 unlock_out:
3337         unlock_cluster_or_swap_info(p, ci);
3338         return err;
3339 }
3340
3341 /*
3342  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3343  * (in which case its reference count is never incremented).
3344  */
3345 void swap_shmem_alloc(swp_entry_t entry)
3346 {
3347         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3348 }
3349
3350 /*
3351  * Increase reference count of swap entry by 1.
3352  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3353  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3354  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3355  * might occur if a page table entry has got corrupted.
3356  */
3357 int swap_duplicate(swp_entry_t entry)
3358 {
3359         int err = 0;
3360
3361         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3362                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3363         return err;
3364 }
3365
3366 /*
3367  * @entry: swap entry for which we allocate swap cache.
3368  *
3369  * Called when allocating swap cache for existing swap entry,
3370  * This can return error codes. Returns 0 at success.
3371  * -EEXIST means there is a swap cache.
3372  * Note: return code is different from swap_duplicate().
3373  */
3374 int swapcache_prepare(swp_entry_t entry)
3375 {
3376         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3377 }
3378
3379 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3380 {
3381         struct swap_cluster_info *ci;
3382         unsigned long offset = swp_offset(entry);
3383         unsigned char usage;
3384
3385         ci = lock_cluster_or_swap_info(si, offset);
3386         usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3387         unlock_cluster_or_swap_info(si, ci);
3388         if (!usage)
3389                 free_swap_slot(entry);
3390 }
3391
3392 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3393 {
3394         return swap_type_to_swap_info(swp_type(entry));
3395 }
3396
3397 /*
3398  * out-of-line methods to avoid include hell.
3399  */
3400 struct address_space *swapcache_mapping(struct folio *folio)
3401 {
3402         return swp_swap_info(folio->swap)->swap_file->f_mapping;
3403 }
3404 EXPORT_SYMBOL_GPL(swapcache_mapping);
3405
3406 pgoff_t __page_file_index(struct page *page)
3407 {
3408         swp_entry_t swap = page_swap_entry(page);
3409         return swp_offset(swap);
3410 }
3411 EXPORT_SYMBOL_GPL(__page_file_index);
3412
3413 /*
3414  * add_swap_count_continuation - called when a swap count is duplicated
3415  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3416  * page of the original vmalloc'ed swap_map, to hold the continuation count
3417  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3418  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3419  *
3420  * These continuation pages are seldom referenced: the common paths all work
3421  * on the original swap_map, only referring to a continuation page when the
3422  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3423  *
3424  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3425  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3426  * can be called after dropping locks.
3427  */
3428 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3429 {
3430         struct swap_info_struct *si;
3431         struct swap_cluster_info *ci;
3432         struct page *head;
3433         struct page *page;
3434         struct page *list_page;
3435         pgoff_t offset;
3436         unsigned char count;
3437         int ret = 0;
3438
3439         /*
3440          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3441          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3442          */
3443         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3444
3445         si = get_swap_device(entry);
3446         if (!si) {
3447                 /*
3448                  * An acceptable race has occurred since the failing
3449                  * __swap_duplicate(): the swap device may be swapoff
3450                  */
3451                 goto outer;
3452         }
3453         spin_lock(&si->lock);
3454
3455         offset = swp_offset(entry);
3456
3457         ci = lock_cluster(si, offset);
3458
3459         count = swap_count(si->swap_map[offset]);
3460
3461         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3462                 /*
3463                  * The higher the swap count, the more likely it is that tasks
3464                  * will race to add swap count continuation: we need to avoid
3465                  * over-provisioning.
3466                  */
3467                 goto out;
3468         }
3469
3470         if (!page) {
3471                 ret = -ENOMEM;
3472                 goto out;
3473         }
3474
3475         head = vmalloc_to_page(si->swap_map + offset);
3476         offset &= ~PAGE_MASK;
3477
3478         spin_lock(&si->cont_lock);
3479         /*
3480          * Page allocation does not initialize the page's lru field,
3481          * but it does always reset its private field.
3482          */
3483         if (!page_private(head)) {
3484                 BUG_ON(count & COUNT_CONTINUED);
3485                 INIT_LIST_HEAD(&head->lru);
3486                 set_page_private(head, SWP_CONTINUED);
3487                 si->flags |= SWP_CONTINUED;
3488         }
3489
3490         list_for_each_entry(list_page, &head->lru, lru) {
3491                 unsigned char *map;
3492
3493                 /*
3494                  * If the previous map said no continuation, but we've found
3495                  * a continuation page, free our allocation and use this one.
3496                  */
3497                 if (!(count & COUNT_CONTINUED))
3498                         goto out_unlock_cont;
3499
3500                 map = kmap_local_page(list_page) + offset;
3501                 count = *map;
3502                 kunmap_local(map);
3503
3504                 /*
3505                  * If this continuation count now has some space in it,
3506                  * free our allocation and use this one.
3507                  */
3508                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3509                         goto out_unlock_cont;
3510         }
3511
3512         list_add_tail(&page->lru, &head->lru);
3513         page = NULL;                    /* now it's attached, don't free it */
3514 out_unlock_cont:
3515         spin_unlock(&si->cont_lock);
3516 out:
3517         unlock_cluster(ci);
3518         spin_unlock(&si->lock);
3519         put_swap_device(si);
3520 outer:
3521         if (page)
3522                 __free_page(page);
3523         return ret;
3524 }
3525
3526 /*
3527  * swap_count_continued - when the original swap_map count is incremented
3528  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3529  * into, carry if so, or else fail until a new continuation page is allocated;
3530  * when the original swap_map count is decremented from 0 with continuation,
3531  * borrow from the continuation and report whether it still holds more.
3532  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3533  * lock.
3534  */
3535 static bool swap_count_continued(struct swap_info_struct *si,
3536                                  pgoff_t offset, unsigned char count)
3537 {
3538         struct page *head;
3539         struct page *page;
3540         unsigned char *map;
3541         bool ret;
3542
3543         head = vmalloc_to_page(si->swap_map + offset);
3544         if (page_private(head) != SWP_CONTINUED) {
3545                 BUG_ON(count & COUNT_CONTINUED);
3546                 return false;           /* need to add count continuation */
3547         }
3548
3549         spin_lock(&si->cont_lock);
3550         offset &= ~PAGE_MASK;
3551         page = list_next_entry(head, lru);
3552         map = kmap_local_page(page) + offset;
3553
3554         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3555                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3556
3557         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3558                 /*
3559                  * Think of how you add 1 to 999
3560                  */
3561                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3562                         kunmap_local(map);
3563                         page = list_next_entry(page, lru);
3564                         BUG_ON(page == head);
3565                         map = kmap_local_page(page) + offset;
3566                 }
3567                 if (*map == SWAP_CONT_MAX) {
3568                         kunmap_local(map);
3569                         page = list_next_entry(page, lru);
3570                         if (page == head) {
3571                                 ret = false;    /* add count continuation */
3572                                 goto out;
3573                         }
3574                         map = kmap_local_page(page) + offset;
3575 init_map:               *map = 0;               /* we didn't zero the page */
3576                 }
3577                 *map += 1;
3578                 kunmap_local(map);
3579                 while ((page = list_prev_entry(page, lru)) != head) {
3580                         map = kmap_local_page(page) + offset;
3581                         *map = COUNT_CONTINUED;
3582                         kunmap_local(map);
3583                 }
3584                 ret = true;                     /* incremented */
3585
3586         } else {                                /* decrementing */
3587                 /*
3588                  * Think of how you subtract 1 from 1000
3589                  */
3590                 BUG_ON(count != COUNT_CONTINUED);
3591                 while (*map == COUNT_CONTINUED) {
3592                         kunmap_local(map);
3593                         page = list_next_entry(page, lru);
3594                         BUG_ON(page == head);
3595                         map = kmap_local_page(page) + offset;
3596                 }
3597                 BUG_ON(*map == 0);
3598                 *map -= 1;
3599                 if (*map == 0)
3600                         count = 0;
3601                 kunmap_local(map);
3602                 while ((page = list_prev_entry(page, lru)) != head) {
3603                         map = kmap_local_page(page) + offset;
3604                         *map = SWAP_CONT_MAX | count;
3605                         count = COUNT_CONTINUED;
3606                         kunmap_local(map);
3607                 }
3608                 ret = count == COUNT_CONTINUED;
3609         }
3610 out:
3611         spin_unlock(&si->cont_lock);
3612         return ret;
3613 }
3614
3615 /*
3616  * free_swap_count_continuations - swapoff free all the continuation pages
3617  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3618  */
3619 static void free_swap_count_continuations(struct swap_info_struct *si)
3620 {
3621         pgoff_t offset;
3622
3623         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3624                 struct page *head;
3625                 head = vmalloc_to_page(si->swap_map + offset);
3626                 if (page_private(head)) {
3627                         struct page *page, *next;
3628
3629                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3630                                 list_del(&page->lru);
3631                                 __free_page(page);
3632                         }
3633                 }
3634         }
3635 }
3636
3637 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3638 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3639 {
3640         struct swap_info_struct *si, *next;
3641         int nid = folio_nid(folio);
3642
3643         if (!(gfp & __GFP_IO))
3644                 return;
3645
3646         if (!blk_cgroup_congested())
3647                 return;
3648
3649         /*
3650          * We've already scheduled a throttle, avoid taking the global swap
3651          * lock.
3652          */
3653         if (current->throttle_disk)
3654                 return;
3655
3656         spin_lock(&swap_avail_lock);
3657         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3658                                   avail_lists[nid]) {
3659                 if (si->bdev) {
3660                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3661                         break;
3662                 }
3663         }
3664         spin_unlock(&swap_avail_lock);
3665 }
3666 #endif
3667
3668 static int __init swapfile_init(void)
3669 {
3670         int nid;
3671
3672         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3673                                          GFP_KERNEL);
3674         if (!swap_avail_heads) {
3675                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3676                 return -ENOMEM;
3677         }
3678
3679         for_each_node(nid)
3680                 plist_head_init(&swap_avail_heads[nid]);
3681
3682         swapfile_maximum_size = arch_max_swapfile_size();
3683
3684 #ifdef CONFIG_MIGRATION
3685         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3686                 swap_migration_ad_supported = true;
3687 #endif  /* CONFIG_MIGRATION */
3688
3689         return 0;
3690 }
3691 subsys_initcall(swapfile_init);