GNU Linux-libre 5.10.217-gnu1
[releases.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL, 0);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 sector_t swap_page_sector(struct page *page)
224 {
225         struct swap_info_struct *sis = page_swap_info(page);
226         struct swap_extent *se;
227         sector_t sector;
228         pgoff_t offset;
229
230         offset = __page_file_index(page);
231         se = offset_to_swap_extent(sis, offset);
232         sector = se->start_block + (offset - se->start_page);
233         return sector << (PAGE_SHIFT - 9);
234 }
235
236 /*
237  * swap allocation tell device that a cluster of swap can now be discarded,
238  * to allow the swap device to optimize its wear-levelling.
239  */
240 static void discard_swap_cluster(struct swap_info_struct *si,
241                                  pgoff_t start_page, pgoff_t nr_pages)
242 {
243         struct swap_extent *se = offset_to_swap_extent(si, start_page);
244
245         while (nr_pages) {
246                 pgoff_t offset = start_page - se->start_page;
247                 sector_t start_block = se->start_block + offset;
248                 sector_t nr_blocks = se->nr_pages - offset;
249
250                 if (nr_blocks > nr_pages)
251                         nr_blocks = nr_pages;
252                 start_page += nr_blocks;
253                 nr_pages -= nr_blocks;
254
255                 start_block <<= PAGE_SHIFT - 9;
256                 nr_blocks <<= PAGE_SHIFT - 9;
257                 if (blkdev_issue_discard(si->bdev, start_block,
258                                         nr_blocks, GFP_NOIO, 0))
259                         break;
260
261                 se = next_se(se);
262         }
263 }
264
265 #ifdef CONFIG_THP_SWAP
266 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
267
268 #define swap_entry_size(size)   (size)
269 #else
270 #define SWAPFILE_CLUSTER        256
271
272 /*
273  * Define swap_entry_size() as constant to let compiler to optimize
274  * out some code if !CONFIG_THP_SWAP
275  */
276 #define swap_entry_size(size)   1
277 #endif
278 #define LATENCY_LIMIT           256
279
280 static inline void cluster_set_flag(struct swap_cluster_info *info,
281         unsigned int flag)
282 {
283         info->flags = flag;
284 }
285
286 static inline unsigned int cluster_count(struct swap_cluster_info *info)
287 {
288         return info->data;
289 }
290
291 static inline void cluster_set_count(struct swap_cluster_info *info,
292                                      unsigned int c)
293 {
294         info->data = c;
295 }
296
297 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298                                          unsigned int c, unsigned int f)
299 {
300         info->flags = f;
301         info->data = c;
302 }
303
304 static inline unsigned int cluster_next(struct swap_cluster_info *info)
305 {
306         return info->data;
307 }
308
309 static inline void cluster_set_next(struct swap_cluster_info *info,
310                                     unsigned int n)
311 {
312         info->data = n;
313 }
314
315 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316                                          unsigned int n, unsigned int f)
317 {
318         info->flags = f;
319         info->data = n;
320 }
321
322 static inline bool cluster_is_free(struct swap_cluster_info *info)
323 {
324         return info->flags & CLUSTER_FLAG_FREE;
325 }
326
327 static inline bool cluster_is_null(struct swap_cluster_info *info)
328 {
329         return info->flags & CLUSTER_FLAG_NEXT_NULL;
330 }
331
332 static inline void cluster_set_null(struct swap_cluster_info *info)
333 {
334         info->flags = CLUSTER_FLAG_NEXT_NULL;
335         info->data = 0;
336 }
337
338 static inline bool cluster_is_huge(struct swap_cluster_info *info)
339 {
340         if (IS_ENABLED(CONFIG_THP_SWAP))
341                 return info->flags & CLUSTER_FLAG_HUGE;
342         return false;
343 }
344
345 static inline void cluster_clear_huge(struct swap_cluster_info *info)
346 {
347         info->flags &= ~CLUSTER_FLAG_HUGE;
348 }
349
350 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351                                                      unsigned long offset)
352 {
353         struct swap_cluster_info *ci;
354
355         ci = si->cluster_info;
356         if (ci) {
357                 ci += offset / SWAPFILE_CLUSTER;
358                 spin_lock(&ci->lock);
359         }
360         return ci;
361 }
362
363 static inline void unlock_cluster(struct swap_cluster_info *ci)
364 {
365         if (ci)
366                 spin_unlock(&ci->lock);
367 }
368
369 /*
370  * Determine the locking method in use for this device.  Return
371  * swap_cluster_info if SSD-style cluster-based locking is in place.
372  */
373 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
374                 struct swap_info_struct *si, unsigned long offset)
375 {
376         struct swap_cluster_info *ci;
377
378         /* Try to use fine-grained SSD-style locking if available: */
379         ci = lock_cluster(si, offset);
380         /* Otherwise, fall back to traditional, coarse locking: */
381         if (!ci)
382                 spin_lock(&si->lock);
383
384         return ci;
385 }
386
387 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388                                                struct swap_cluster_info *ci)
389 {
390         if (ci)
391                 unlock_cluster(ci);
392         else
393                 spin_unlock(&si->lock);
394 }
395
396 static inline bool cluster_list_empty(struct swap_cluster_list *list)
397 {
398         return cluster_is_null(&list->head);
399 }
400
401 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402 {
403         return cluster_next(&list->head);
404 }
405
406 static void cluster_list_init(struct swap_cluster_list *list)
407 {
408         cluster_set_null(&list->head);
409         cluster_set_null(&list->tail);
410 }
411
412 static void cluster_list_add_tail(struct swap_cluster_list *list,
413                                   struct swap_cluster_info *ci,
414                                   unsigned int idx)
415 {
416         if (cluster_list_empty(list)) {
417                 cluster_set_next_flag(&list->head, idx, 0);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         } else {
420                 struct swap_cluster_info *ci_tail;
421                 unsigned int tail = cluster_next(&list->tail);
422
423                 /*
424                  * Nested cluster lock, but both cluster locks are
425                  * only acquired when we held swap_info_struct->lock
426                  */
427                 ci_tail = ci + tail;
428                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429                 cluster_set_next(ci_tail, idx);
430                 spin_unlock(&ci_tail->lock);
431                 cluster_set_next_flag(&list->tail, idx, 0);
432         }
433 }
434
435 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436                                            struct swap_cluster_info *ci)
437 {
438         unsigned int idx;
439
440         idx = cluster_next(&list->head);
441         if (cluster_next(&list->tail) == idx) {
442                 cluster_set_null(&list->head);
443                 cluster_set_null(&list->tail);
444         } else
445                 cluster_set_next_flag(&list->head,
446                                       cluster_next(&ci[idx]), 0);
447
448         return idx;
449 }
450
451 /* Add a cluster to discard list and schedule it to do discard */
452 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453                 unsigned int idx)
454 {
455         /*
456          * If scan_swap_map() can't find a free cluster, it will check
457          * si->swap_map directly. To make sure the discarding cluster isn't
458          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
459          * will be cleared after discard
460          */
461         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463
464         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465
466         schedule_work(&si->discard_work);
467 }
468
469 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470 {
471         struct swap_cluster_info *ci = si->cluster_info;
472
473         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474         cluster_list_add_tail(&si->free_clusters, ci, idx);
475 }
476
477 /*
478  * Doing discard actually. After a cluster discard is finished, the cluster
479  * will be added to free cluster list. caller should hold si->lock.
480 */
481 static void swap_do_scheduled_discard(struct swap_info_struct *si)
482 {
483         struct swap_cluster_info *info, *ci;
484         unsigned int idx;
485
486         info = si->cluster_info;
487
488         while (!cluster_list_empty(&si->discard_clusters)) {
489                 idx = cluster_list_del_first(&si->discard_clusters, info);
490                 spin_unlock(&si->lock);
491
492                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493                                 SWAPFILE_CLUSTER);
494
495                 spin_lock(&si->lock);
496                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
497                 __free_cluster(si, idx);
498                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499                                 0, SWAPFILE_CLUSTER);
500                 unlock_cluster(ci);
501         }
502 }
503
504 static void swap_discard_work(struct work_struct *work)
505 {
506         struct swap_info_struct *si;
507
508         si = container_of(work, struct swap_info_struct, discard_work);
509
510         spin_lock(&si->lock);
511         swap_do_scheduled_discard(si);
512         spin_unlock(&si->lock);
513 }
514
515 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
516 {
517         struct swap_cluster_info *ci = si->cluster_info;
518
519         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
520         cluster_list_del_first(&si->free_clusters, ci);
521         cluster_set_count_flag(ci + idx, 0, 0);
522 }
523
524 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
525 {
526         struct swap_cluster_info *ci = si->cluster_info + idx;
527
528         VM_BUG_ON(cluster_count(ci) != 0);
529         /*
530          * If the swap is discardable, prepare discard the cluster
531          * instead of free it immediately. The cluster will be freed
532          * after discard.
533          */
534         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
535             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
536                 swap_cluster_schedule_discard(si, idx);
537                 return;
538         }
539
540         __free_cluster(si, idx);
541 }
542
543 /*
544  * The cluster corresponding to page_nr will be used. The cluster will be
545  * removed from free cluster list and its usage counter will be increased.
546  */
547 static void inc_cluster_info_page(struct swap_info_struct *p,
548         struct swap_cluster_info *cluster_info, unsigned long page_nr)
549 {
550         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
551
552         if (!cluster_info)
553                 return;
554         if (cluster_is_free(&cluster_info[idx]))
555                 alloc_cluster(p, idx);
556
557         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
558         cluster_set_count(&cluster_info[idx],
559                 cluster_count(&cluster_info[idx]) + 1);
560 }
561
562 /*
563  * The cluster corresponding to page_nr decreases one usage. If the usage
564  * counter becomes 0, which means no page in the cluster is in using, we can
565  * optionally discard the cluster and add it to free cluster list.
566  */
567 static void dec_cluster_info_page(struct swap_info_struct *p,
568         struct swap_cluster_info *cluster_info, unsigned long page_nr)
569 {
570         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
571
572         if (!cluster_info)
573                 return;
574
575         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
576         cluster_set_count(&cluster_info[idx],
577                 cluster_count(&cluster_info[idx]) - 1);
578
579         if (cluster_count(&cluster_info[idx]) == 0)
580                 free_cluster(p, idx);
581 }
582
583 /*
584  * It's possible scan_swap_map() uses a free cluster in the middle of free
585  * cluster list. Avoiding such abuse to avoid list corruption.
586  */
587 static bool
588 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
589         unsigned long offset)
590 {
591         struct percpu_cluster *percpu_cluster;
592         bool conflict;
593
594         offset /= SWAPFILE_CLUSTER;
595         conflict = !cluster_list_empty(&si->free_clusters) &&
596                 offset != cluster_list_first(&si->free_clusters) &&
597                 cluster_is_free(&si->cluster_info[offset]);
598
599         if (!conflict)
600                 return false;
601
602         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
603         cluster_set_null(&percpu_cluster->index);
604         return true;
605 }
606
607 /*
608  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
609  * might involve allocating a new cluster for current CPU too.
610  */
611 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
612         unsigned long *offset, unsigned long *scan_base)
613 {
614         struct percpu_cluster *cluster;
615         struct swap_cluster_info *ci;
616         unsigned long tmp, max;
617
618 new_cluster:
619         cluster = this_cpu_ptr(si->percpu_cluster);
620         if (cluster_is_null(&cluster->index)) {
621                 if (!cluster_list_empty(&si->free_clusters)) {
622                         cluster->index = si->free_clusters.head;
623                         cluster->next = cluster_next(&cluster->index) *
624                                         SWAPFILE_CLUSTER;
625                 } else if (!cluster_list_empty(&si->discard_clusters)) {
626                         /*
627                          * we don't have free cluster but have some clusters in
628                          * discarding, do discard now and reclaim them, then
629                          * reread cluster_next_cpu since we dropped si->lock
630                          */
631                         swap_do_scheduled_discard(si);
632                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
633                         *offset = *scan_base;
634                         goto new_cluster;
635                 } else
636                         return false;
637         }
638
639         /*
640          * Other CPUs can use our cluster if they can't find a free cluster,
641          * check if there is still free entry in the cluster
642          */
643         tmp = cluster->next;
644         max = min_t(unsigned long, si->max,
645                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
646         if (tmp < max) {
647                 ci = lock_cluster(si, tmp);
648                 while (tmp < max) {
649                         if (!si->swap_map[tmp])
650                                 break;
651                         tmp++;
652                 }
653                 unlock_cluster(ci);
654         }
655         if (tmp >= max) {
656                 cluster_set_null(&cluster->index);
657                 goto new_cluster;
658         }
659         cluster->next = tmp + 1;
660         *offset = tmp;
661         *scan_base = tmp;
662         return true;
663 }
664
665 static void __del_from_avail_list(struct swap_info_struct *p)
666 {
667         int nid;
668
669         assert_spin_locked(&p->lock);
670         for_each_node(nid)
671                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
672 }
673
674 static void del_from_avail_list(struct swap_info_struct *p)
675 {
676         spin_lock(&swap_avail_lock);
677         __del_from_avail_list(p);
678         spin_unlock(&swap_avail_lock);
679 }
680
681 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
682                              unsigned int nr_entries)
683 {
684         unsigned int end = offset + nr_entries - 1;
685
686         if (offset == si->lowest_bit)
687                 si->lowest_bit += nr_entries;
688         if (end == si->highest_bit)
689                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
690         si->inuse_pages += nr_entries;
691         if (si->inuse_pages == si->pages) {
692                 si->lowest_bit = si->max;
693                 si->highest_bit = 0;
694                 del_from_avail_list(si);
695         }
696 }
697
698 static void add_to_avail_list(struct swap_info_struct *p)
699 {
700         int nid;
701
702         spin_lock(&swap_avail_lock);
703         for_each_node(nid) {
704                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
705                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
706         }
707         spin_unlock(&swap_avail_lock);
708 }
709
710 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
711                             unsigned int nr_entries)
712 {
713         unsigned long begin = offset;
714         unsigned long end = offset + nr_entries - 1;
715         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
716
717         if (offset < si->lowest_bit)
718                 si->lowest_bit = offset;
719         if (end > si->highest_bit) {
720                 bool was_full = !si->highest_bit;
721
722                 WRITE_ONCE(si->highest_bit, end);
723                 if (was_full && (si->flags & SWP_WRITEOK))
724                         add_to_avail_list(si);
725         }
726         atomic_long_add(nr_entries, &nr_swap_pages);
727         si->inuse_pages -= nr_entries;
728         if (si->flags & SWP_BLKDEV)
729                 swap_slot_free_notify =
730                         si->bdev->bd_disk->fops->swap_slot_free_notify;
731         else
732                 swap_slot_free_notify = NULL;
733         while (offset <= end) {
734                 arch_swap_invalidate_page(si->type, offset);
735                 frontswap_invalidate_page(si->type, offset);
736                 if (swap_slot_free_notify)
737                         swap_slot_free_notify(si->bdev, offset);
738                 offset++;
739         }
740         clear_shadow_from_swap_cache(si->type, begin, end);
741 }
742
743 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
744 {
745         unsigned long prev;
746
747         if (!(si->flags & SWP_SOLIDSTATE)) {
748                 si->cluster_next = next;
749                 return;
750         }
751
752         prev = this_cpu_read(*si->cluster_next_cpu);
753         /*
754          * Cross the swap address space size aligned trunk, choose
755          * another trunk randomly to avoid lock contention on swap
756          * address space if possible.
757          */
758         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
759             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
760                 /* No free swap slots available */
761                 if (si->highest_bit <= si->lowest_bit)
762                         return;
763                 next = si->lowest_bit +
764                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
765                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
766                 next = max_t(unsigned int, next, si->lowest_bit);
767         }
768         this_cpu_write(*si->cluster_next_cpu, next);
769 }
770
771 static int scan_swap_map_slots(struct swap_info_struct *si,
772                                unsigned char usage, int nr,
773                                swp_entry_t slots[])
774 {
775         struct swap_cluster_info *ci;
776         unsigned long offset;
777         unsigned long scan_base;
778         unsigned long last_in_cluster = 0;
779         int latency_ration = LATENCY_LIMIT;
780         int n_ret = 0;
781         bool scanned_many = false;
782
783         /*
784          * We try to cluster swap pages by allocating them sequentially
785          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
786          * way, however, we resort to first-free allocation, starting
787          * a new cluster.  This prevents us from scattering swap pages
788          * all over the entire swap partition, so that we reduce
789          * overall disk seek times between swap pages.  -- sct
790          * But we do now try to find an empty cluster.  -Andrea
791          * And we let swap pages go all over an SSD partition.  Hugh
792          */
793
794         si->flags += SWP_SCANNING;
795         /*
796          * Use percpu scan base for SSD to reduce lock contention on
797          * cluster and swap cache.  For HDD, sequential access is more
798          * important.
799          */
800         if (si->flags & SWP_SOLIDSTATE)
801                 scan_base = this_cpu_read(*si->cluster_next_cpu);
802         else
803                 scan_base = si->cluster_next;
804         offset = scan_base;
805
806         /* SSD algorithm */
807         if (si->cluster_info) {
808                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
809                         goto scan;
810         } else if (unlikely(!si->cluster_nr--)) {
811                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
812                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
813                         goto checks;
814                 }
815
816                 spin_unlock(&si->lock);
817
818                 /*
819                  * If seek is expensive, start searching for new cluster from
820                  * start of partition, to minimize the span of allocated swap.
821                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
822                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
823                  */
824                 scan_base = offset = si->lowest_bit;
825                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
826
827                 /* Locate the first empty (unaligned) cluster */
828                 for (; last_in_cluster <= si->highest_bit; offset++) {
829                         if (si->swap_map[offset])
830                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
831                         else if (offset == last_in_cluster) {
832                                 spin_lock(&si->lock);
833                                 offset -= SWAPFILE_CLUSTER - 1;
834                                 si->cluster_next = offset;
835                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
836                                 goto checks;
837                         }
838                         if (unlikely(--latency_ration < 0)) {
839                                 cond_resched();
840                                 latency_ration = LATENCY_LIMIT;
841                         }
842                 }
843
844                 offset = scan_base;
845                 spin_lock(&si->lock);
846                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
847         }
848
849 checks:
850         if (si->cluster_info) {
851                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
852                 /* take a break if we already got some slots */
853                         if (n_ret)
854                                 goto done;
855                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
856                                                         &scan_base))
857                                 goto scan;
858                 }
859         }
860         if (!(si->flags & SWP_WRITEOK))
861                 goto no_page;
862         if (!si->highest_bit)
863                 goto no_page;
864         if (offset > si->highest_bit)
865                 scan_base = offset = si->lowest_bit;
866
867         ci = lock_cluster(si, offset);
868         /* reuse swap entry of cache-only swap if not busy. */
869         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
870                 int swap_was_freed;
871                 unlock_cluster(ci);
872                 spin_unlock(&si->lock);
873                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
874                 spin_lock(&si->lock);
875                 /* entry was freed successfully, try to use this again */
876                 if (swap_was_freed)
877                         goto checks;
878                 goto scan; /* check next one */
879         }
880
881         if (si->swap_map[offset]) {
882                 unlock_cluster(ci);
883                 if (!n_ret)
884                         goto scan;
885                 else
886                         goto done;
887         }
888         WRITE_ONCE(si->swap_map[offset], usage);
889         inc_cluster_info_page(si, si->cluster_info, offset);
890         unlock_cluster(ci);
891
892         swap_range_alloc(si, offset, 1);
893         slots[n_ret++] = swp_entry(si->type, offset);
894
895         /* got enough slots or reach max slots? */
896         if ((n_ret == nr) || (offset >= si->highest_bit))
897                 goto done;
898
899         /* search for next available slot */
900
901         /* time to take a break? */
902         if (unlikely(--latency_ration < 0)) {
903                 if (n_ret)
904                         goto done;
905                 spin_unlock(&si->lock);
906                 cond_resched();
907                 spin_lock(&si->lock);
908                 latency_ration = LATENCY_LIMIT;
909         }
910
911         /* try to get more slots in cluster */
912         if (si->cluster_info) {
913                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
914                         goto checks;
915         } else if (si->cluster_nr && !si->swap_map[++offset]) {
916                 /* non-ssd case, still more slots in cluster? */
917                 --si->cluster_nr;
918                 goto checks;
919         }
920
921         /*
922          * Even if there's no free clusters available (fragmented),
923          * try to scan a little more quickly with lock held unless we
924          * have scanned too many slots already.
925          */
926         if (!scanned_many) {
927                 unsigned long scan_limit;
928
929                 if (offset < scan_base)
930                         scan_limit = scan_base;
931                 else
932                         scan_limit = si->highest_bit;
933                 for (; offset <= scan_limit && --latency_ration > 0;
934                      offset++) {
935                         if (!si->swap_map[offset])
936                                 goto checks;
937                 }
938         }
939
940 done:
941         set_cluster_next(si, offset + 1);
942         si->flags -= SWP_SCANNING;
943         return n_ret;
944
945 scan:
946         spin_unlock(&si->lock);
947         while (++offset <= READ_ONCE(si->highest_bit)) {
948                 if (data_race(!si->swap_map[offset])) {
949                         spin_lock(&si->lock);
950                         goto checks;
951                 }
952                 if (vm_swap_full() &&
953                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
954                         spin_lock(&si->lock);
955                         goto checks;
956                 }
957                 if (unlikely(--latency_ration < 0)) {
958                         cond_resched();
959                         latency_ration = LATENCY_LIMIT;
960                         scanned_many = true;
961                 }
962         }
963         offset = si->lowest_bit;
964         while (offset < scan_base) {
965                 if (data_race(!si->swap_map[offset])) {
966                         spin_lock(&si->lock);
967                         goto checks;
968                 }
969                 if (vm_swap_full() &&
970                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
971                         spin_lock(&si->lock);
972                         goto checks;
973                 }
974                 if (unlikely(--latency_ration < 0)) {
975                         cond_resched();
976                         latency_ration = LATENCY_LIMIT;
977                         scanned_many = true;
978                 }
979                 offset++;
980         }
981         spin_lock(&si->lock);
982
983 no_page:
984         si->flags -= SWP_SCANNING;
985         return n_ret;
986 }
987
988 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
989 {
990         unsigned long idx;
991         struct swap_cluster_info *ci;
992         unsigned long offset, i;
993         unsigned char *map;
994
995         /*
996          * Should not even be attempting cluster allocations when huge
997          * page swap is disabled.  Warn and fail the allocation.
998          */
999         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1000                 VM_WARN_ON_ONCE(1);
1001                 return 0;
1002         }
1003
1004         if (cluster_list_empty(&si->free_clusters))
1005                 return 0;
1006
1007         idx = cluster_list_first(&si->free_clusters);
1008         offset = idx * SWAPFILE_CLUSTER;
1009         ci = lock_cluster(si, offset);
1010         alloc_cluster(si, idx);
1011         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1012
1013         map = si->swap_map + offset;
1014         for (i = 0; i < SWAPFILE_CLUSTER; i++)
1015                 map[i] = SWAP_HAS_CACHE;
1016         unlock_cluster(ci);
1017         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1018         *slot = swp_entry(si->type, offset);
1019
1020         return 1;
1021 }
1022
1023 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1024 {
1025         unsigned long offset = idx * SWAPFILE_CLUSTER;
1026         struct swap_cluster_info *ci;
1027
1028         ci = lock_cluster(si, offset);
1029         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1030         cluster_set_count_flag(ci, 0, 0);
1031         free_cluster(si, idx);
1032         unlock_cluster(ci);
1033         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1034 }
1035
1036 static unsigned long scan_swap_map(struct swap_info_struct *si,
1037                                    unsigned char usage)
1038 {
1039         swp_entry_t entry;
1040         int n_ret;
1041
1042         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1043
1044         if (n_ret)
1045                 return swp_offset(entry);
1046         else
1047                 return 0;
1048
1049 }
1050
1051 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1052 {
1053         unsigned long size = swap_entry_size(entry_size);
1054         struct swap_info_struct *si, *next;
1055         long avail_pgs;
1056         int n_ret = 0;
1057         int node;
1058
1059         /* Only single cluster request supported */
1060         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1061
1062         spin_lock(&swap_avail_lock);
1063
1064         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1065         if (avail_pgs <= 0) {
1066                 spin_unlock(&swap_avail_lock);
1067                 goto noswap;
1068         }
1069
1070         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1071
1072         atomic_long_sub(n_goal * size, &nr_swap_pages);
1073
1074 start_over:
1075         node = numa_node_id();
1076         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1077                 /* requeue si to after same-priority siblings */
1078                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1079                 spin_unlock(&swap_avail_lock);
1080                 spin_lock(&si->lock);
1081                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1082                         spin_lock(&swap_avail_lock);
1083                         if (plist_node_empty(&si->avail_lists[node])) {
1084                                 spin_unlock(&si->lock);
1085                                 goto nextsi;
1086                         }
1087                         WARN(!si->highest_bit,
1088                              "swap_info %d in list but !highest_bit\n",
1089                              si->type);
1090                         WARN(!(si->flags & SWP_WRITEOK),
1091                              "swap_info %d in list but !SWP_WRITEOK\n",
1092                              si->type);
1093                         __del_from_avail_list(si);
1094                         spin_unlock(&si->lock);
1095                         goto nextsi;
1096                 }
1097                 if (size == SWAPFILE_CLUSTER) {
1098                         if (si->flags & SWP_BLKDEV)
1099                                 n_ret = swap_alloc_cluster(si, swp_entries);
1100                 } else
1101                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1102                                                     n_goal, swp_entries);
1103                 spin_unlock(&si->lock);
1104                 if (n_ret || size == SWAPFILE_CLUSTER)
1105                         goto check_out;
1106                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1107                         si->type);
1108                 cond_resched();
1109
1110                 spin_lock(&swap_avail_lock);
1111 nextsi:
1112                 /*
1113                  * if we got here, it's likely that si was almost full before,
1114                  * and since scan_swap_map() can drop the si->lock, multiple
1115                  * callers probably all tried to get a page from the same si
1116                  * and it filled up before we could get one; or, the si filled
1117                  * up between us dropping swap_avail_lock and taking si->lock.
1118                  * Since we dropped the swap_avail_lock, the swap_avail_head
1119                  * list may have been modified; so if next is still in the
1120                  * swap_avail_head list then try it, otherwise start over
1121                  * if we have not gotten any slots.
1122                  */
1123                 if (plist_node_empty(&next->avail_lists[node]))
1124                         goto start_over;
1125         }
1126
1127         spin_unlock(&swap_avail_lock);
1128
1129 check_out:
1130         if (n_ret < n_goal)
1131                 atomic_long_add((long)(n_goal - n_ret) * size,
1132                                 &nr_swap_pages);
1133 noswap:
1134         return n_ret;
1135 }
1136
1137 /* The only caller of this function is now suspend routine */
1138 swp_entry_t get_swap_page_of_type(int type)
1139 {
1140         struct swap_info_struct *si = swap_type_to_swap_info(type);
1141         pgoff_t offset;
1142
1143         if (!si)
1144                 goto fail;
1145
1146         spin_lock(&si->lock);
1147         if (si->flags & SWP_WRITEOK) {
1148                 /* This is called for allocating swap entry, not cache */
1149                 offset = scan_swap_map(si, 1);
1150                 if (offset) {
1151                         atomic_long_dec(&nr_swap_pages);
1152                         spin_unlock(&si->lock);
1153                         return swp_entry(type, offset);
1154                 }
1155         }
1156         spin_unlock(&si->lock);
1157 fail:
1158         return (swp_entry_t) {0};
1159 }
1160
1161 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1162 {
1163         struct swap_info_struct *p;
1164         unsigned long offset;
1165
1166         if (!entry.val)
1167                 goto out;
1168         p = swp_swap_info(entry);
1169         if (!p)
1170                 goto bad_nofile;
1171         if (data_race(!(p->flags & SWP_USED)))
1172                 goto bad_device;
1173         offset = swp_offset(entry);
1174         if (offset >= p->max)
1175                 goto bad_offset;
1176         return p;
1177
1178 bad_offset:
1179         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1180         goto out;
1181 bad_device:
1182         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1183         goto out;
1184 bad_nofile:
1185         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1186 out:
1187         return NULL;
1188 }
1189
1190 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1191 {
1192         struct swap_info_struct *p;
1193
1194         p = __swap_info_get(entry);
1195         if (!p)
1196                 goto out;
1197         if (data_race(!p->swap_map[swp_offset(entry)]))
1198                 goto bad_free;
1199         return p;
1200
1201 bad_free:
1202         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1203 out:
1204         return NULL;
1205 }
1206
1207 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1208 {
1209         struct swap_info_struct *p;
1210
1211         p = _swap_info_get(entry);
1212         if (p)
1213                 spin_lock(&p->lock);
1214         return p;
1215 }
1216
1217 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1218                                         struct swap_info_struct *q)
1219 {
1220         struct swap_info_struct *p;
1221
1222         p = _swap_info_get(entry);
1223
1224         if (p != q) {
1225                 if (q != NULL)
1226                         spin_unlock(&q->lock);
1227                 if (p != NULL)
1228                         spin_lock(&p->lock);
1229         }
1230         return p;
1231 }
1232
1233 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1234                                               unsigned long offset,
1235                                               unsigned char usage)
1236 {
1237         unsigned char count;
1238         unsigned char has_cache;
1239
1240         count = p->swap_map[offset];
1241
1242         has_cache = count & SWAP_HAS_CACHE;
1243         count &= ~SWAP_HAS_CACHE;
1244
1245         if (usage == SWAP_HAS_CACHE) {
1246                 VM_BUG_ON(!has_cache);
1247                 has_cache = 0;
1248         } else if (count == SWAP_MAP_SHMEM) {
1249                 /*
1250                  * Or we could insist on shmem.c using a special
1251                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1252                  */
1253                 count = 0;
1254         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1255                 if (count == COUNT_CONTINUED) {
1256                         if (swap_count_continued(p, offset, count))
1257                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1258                         else
1259                                 count = SWAP_MAP_MAX;
1260                 } else
1261                         count--;
1262         }
1263
1264         usage = count | has_cache;
1265         if (usage)
1266                 WRITE_ONCE(p->swap_map[offset], usage);
1267         else
1268                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1269
1270         return usage;
1271 }
1272
1273 /*
1274  * Note that when only holding the PTL, swapoff might succeed immediately
1275  * after freeing a swap entry. Therefore, immediately after
1276  * __swap_entry_free(), the swap info might become stale and should not
1277  * be touched without a prior get_swap_device().
1278  *
1279  * Check whether swap entry is valid in the swap device.  If so,
1280  * return pointer to swap_info_struct, and keep the swap entry valid
1281  * via preventing the swap device from being swapoff, until
1282  * put_swap_device() is called.  Otherwise return NULL.
1283  *
1284  * The entirety of the RCU read critical section must come before the
1285  * return from or after the call to synchronize_rcu() in
1286  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1287  * true, the si->map, si->cluster_info, etc. must be valid in the
1288  * critical section.
1289  *
1290  * Notice that swapoff or swapoff+swapon can still happen before the
1291  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1292  * in put_swap_device() if there isn't any other way to prevent
1293  * swapoff, such as page lock, page table lock, etc.  The caller must
1294  * be prepared for that.  For example, the following situation is
1295  * possible.
1296  *
1297  *   CPU1                               CPU2
1298  *   do_swap_page()
1299  *     ...                              swapoff+swapon
1300  *     __read_swap_cache_async()
1301  *       swapcache_prepare()
1302  *         __swap_duplicate()
1303  *           // check swap_map
1304  *     // verify PTE not changed
1305  *
1306  * In __swap_duplicate(), the swap_map need to be checked before
1307  * changing partly because the specified swap entry may be for another
1308  * swap device which has been swapoff.  And in do_swap_page(), after
1309  * the page is read from the swap device, the PTE is verified not
1310  * changed with the page table locked to check whether the swap device
1311  * has been swapoff or swapoff+swapon.
1312  */
1313 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1314 {
1315         struct swap_info_struct *si;
1316         unsigned long offset;
1317
1318         if (!entry.val)
1319                 goto out;
1320         si = swp_swap_info(entry);
1321         if (!si)
1322                 goto bad_nofile;
1323
1324         rcu_read_lock();
1325         if (data_race(!(si->flags & SWP_VALID)))
1326                 goto unlock_out;
1327         offset = swp_offset(entry);
1328         if (offset >= si->max)
1329                 goto unlock_out;
1330
1331         return si;
1332 bad_nofile:
1333         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1334 out:
1335         return NULL;
1336 unlock_out:
1337         rcu_read_unlock();
1338         return NULL;
1339 }
1340
1341 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1342                                        swp_entry_t entry)
1343 {
1344         struct swap_cluster_info *ci;
1345         unsigned long offset = swp_offset(entry);
1346         unsigned char usage;
1347
1348         ci = lock_cluster_or_swap_info(p, offset);
1349         usage = __swap_entry_free_locked(p, offset, 1);
1350         unlock_cluster_or_swap_info(p, ci);
1351         if (!usage)
1352                 free_swap_slot(entry);
1353
1354         return usage;
1355 }
1356
1357 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1358 {
1359         struct swap_cluster_info *ci;
1360         unsigned long offset = swp_offset(entry);
1361         unsigned char count;
1362
1363         ci = lock_cluster(p, offset);
1364         count = p->swap_map[offset];
1365         VM_BUG_ON(count != SWAP_HAS_CACHE);
1366         p->swap_map[offset] = 0;
1367         dec_cluster_info_page(p, p->cluster_info, offset);
1368         unlock_cluster(ci);
1369
1370         mem_cgroup_uncharge_swap(entry, 1);
1371         swap_range_free(p, offset, 1);
1372 }
1373
1374 /*
1375  * Caller has made sure that the swap device corresponding to entry
1376  * is still around or has not been recycled.
1377  */
1378 void swap_free(swp_entry_t entry)
1379 {
1380         struct swap_info_struct *p;
1381
1382         p = _swap_info_get(entry);
1383         if (p)
1384                 __swap_entry_free(p, entry);
1385 }
1386
1387 /*
1388  * Called after dropping swapcache to decrease refcnt to swap entries.
1389  */
1390 void put_swap_page(struct page *page, swp_entry_t entry)
1391 {
1392         unsigned long offset = swp_offset(entry);
1393         unsigned long idx = offset / SWAPFILE_CLUSTER;
1394         struct swap_cluster_info *ci;
1395         struct swap_info_struct *si;
1396         unsigned char *map;
1397         unsigned int i, free_entries = 0;
1398         unsigned char val;
1399         int size = swap_entry_size(thp_nr_pages(page));
1400
1401         si = _swap_info_get(entry);
1402         if (!si)
1403                 return;
1404
1405         ci = lock_cluster_or_swap_info(si, offset);
1406         if (size == SWAPFILE_CLUSTER) {
1407                 VM_BUG_ON(!cluster_is_huge(ci));
1408                 map = si->swap_map + offset;
1409                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1410                         val = map[i];
1411                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1412                         if (val == SWAP_HAS_CACHE)
1413                                 free_entries++;
1414                 }
1415                 cluster_clear_huge(ci);
1416                 if (free_entries == SWAPFILE_CLUSTER) {
1417                         unlock_cluster_or_swap_info(si, ci);
1418                         spin_lock(&si->lock);
1419                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1420                         swap_free_cluster(si, idx);
1421                         spin_unlock(&si->lock);
1422                         return;
1423                 }
1424         }
1425         for (i = 0; i < size; i++, entry.val++) {
1426                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1427                         unlock_cluster_or_swap_info(si, ci);
1428                         free_swap_slot(entry);
1429                         if (i == size - 1)
1430                                 return;
1431                         lock_cluster_or_swap_info(si, offset);
1432                 }
1433         }
1434         unlock_cluster_or_swap_info(si, ci);
1435 }
1436
1437 #ifdef CONFIG_THP_SWAP
1438 int split_swap_cluster(swp_entry_t entry)
1439 {
1440         struct swap_info_struct *si;
1441         struct swap_cluster_info *ci;
1442         unsigned long offset = swp_offset(entry);
1443
1444         si = _swap_info_get(entry);
1445         if (!si)
1446                 return -EBUSY;
1447         ci = lock_cluster(si, offset);
1448         cluster_clear_huge(ci);
1449         unlock_cluster(ci);
1450         return 0;
1451 }
1452 #endif
1453
1454 static int swp_entry_cmp(const void *ent1, const void *ent2)
1455 {
1456         const swp_entry_t *e1 = ent1, *e2 = ent2;
1457
1458         return (int)swp_type(*e1) - (int)swp_type(*e2);
1459 }
1460
1461 void swapcache_free_entries(swp_entry_t *entries, int n)
1462 {
1463         struct swap_info_struct *p, *prev;
1464         int i;
1465
1466         if (n <= 0)
1467                 return;
1468
1469         prev = NULL;
1470         p = NULL;
1471
1472         /*
1473          * Sort swap entries by swap device, so each lock is only taken once.
1474          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1475          * so low that it isn't necessary to optimize further.
1476          */
1477         if (nr_swapfiles > 1)
1478                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1479         for (i = 0; i < n; ++i) {
1480                 p = swap_info_get_cont(entries[i], prev);
1481                 if (p)
1482                         swap_entry_free(p, entries[i]);
1483                 prev = p;
1484         }
1485         if (p)
1486                 spin_unlock(&p->lock);
1487 }
1488
1489 /*
1490  * How many references to page are currently swapped out?
1491  * This does not give an exact answer when swap count is continued,
1492  * but does include the high COUNT_CONTINUED flag to allow for that.
1493  */
1494 int page_swapcount(struct page *page)
1495 {
1496         int count = 0;
1497         struct swap_info_struct *p;
1498         struct swap_cluster_info *ci;
1499         swp_entry_t entry;
1500         unsigned long offset;
1501
1502         entry.val = page_private(page);
1503         p = _swap_info_get(entry);
1504         if (p) {
1505                 offset = swp_offset(entry);
1506                 ci = lock_cluster_or_swap_info(p, offset);
1507                 count = swap_count(p->swap_map[offset]);
1508                 unlock_cluster_or_swap_info(p, ci);
1509         }
1510         return count;
1511 }
1512
1513 int __swap_count(swp_entry_t entry)
1514 {
1515         struct swap_info_struct *si;
1516         pgoff_t offset = swp_offset(entry);
1517         int count = 0;
1518
1519         si = get_swap_device(entry);
1520         if (si) {
1521                 count = swap_count(si->swap_map[offset]);
1522                 put_swap_device(si);
1523         }
1524         return count;
1525 }
1526
1527 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1528 {
1529         int count = 0;
1530         pgoff_t offset = swp_offset(entry);
1531         struct swap_cluster_info *ci;
1532
1533         ci = lock_cluster_or_swap_info(si, offset);
1534         count = swap_count(si->swap_map[offset]);
1535         unlock_cluster_or_swap_info(si, ci);
1536         return count;
1537 }
1538
1539 /*
1540  * How many references to @entry are currently swapped out?
1541  * This does not give an exact answer when swap count is continued,
1542  * but does include the high COUNT_CONTINUED flag to allow for that.
1543  */
1544 int __swp_swapcount(swp_entry_t entry)
1545 {
1546         int count = 0;
1547         struct swap_info_struct *si;
1548
1549         si = get_swap_device(entry);
1550         if (si) {
1551                 count = swap_swapcount(si, entry);
1552                 put_swap_device(si);
1553         }
1554         return count;
1555 }
1556
1557 /*
1558  * How many references to @entry are currently swapped out?
1559  * This considers COUNT_CONTINUED so it returns exact answer.
1560  */
1561 int swp_swapcount(swp_entry_t entry)
1562 {
1563         int count, tmp_count, n;
1564         struct swap_info_struct *p;
1565         struct swap_cluster_info *ci;
1566         struct page *page;
1567         pgoff_t offset;
1568         unsigned char *map;
1569
1570         p = _swap_info_get(entry);
1571         if (!p)
1572                 return 0;
1573
1574         offset = swp_offset(entry);
1575
1576         ci = lock_cluster_or_swap_info(p, offset);
1577
1578         count = swap_count(p->swap_map[offset]);
1579         if (!(count & COUNT_CONTINUED))
1580                 goto out;
1581
1582         count &= ~COUNT_CONTINUED;
1583         n = SWAP_MAP_MAX + 1;
1584
1585         page = vmalloc_to_page(p->swap_map + offset);
1586         offset &= ~PAGE_MASK;
1587         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1588
1589         do {
1590                 page = list_next_entry(page, lru);
1591                 map = kmap_atomic(page);
1592                 tmp_count = map[offset];
1593                 kunmap_atomic(map);
1594
1595                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1596                 n *= (SWAP_CONT_MAX + 1);
1597         } while (tmp_count & COUNT_CONTINUED);
1598 out:
1599         unlock_cluster_or_swap_info(p, ci);
1600         return count;
1601 }
1602
1603 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1604                                          swp_entry_t entry)
1605 {
1606         struct swap_cluster_info *ci;
1607         unsigned char *map = si->swap_map;
1608         unsigned long roffset = swp_offset(entry);
1609         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1610         int i;
1611         bool ret = false;
1612
1613         ci = lock_cluster_or_swap_info(si, offset);
1614         if (!ci || !cluster_is_huge(ci)) {
1615                 if (swap_count(map[roffset]))
1616                         ret = true;
1617                 goto unlock_out;
1618         }
1619         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1620                 if (swap_count(map[offset + i])) {
1621                         ret = true;
1622                         break;
1623                 }
1624         }
1625 unlock_out:
1626         unlock_cluster_or_swap_info(si, ci);
1627         return ret;
1628 }
1629
1630 static bool page_swapped(struct page *page)
1631 {
1632         swp_entry_t entry;
1633         struct swap_info_struct *si;
1634
1635         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1636                 return page_swapcount(page) != 0;
1637
1638         page = compound_head(page);
1639         entry.val = page_private(page);
1640         si = _swap_info_get(entry);
1641         if (si)
1642                 return swap_page_trans_huge_swapped(si, entry);
1643         return false;
1644 }
1645
1646 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1647                                          int *total_swapcount)
1648 {
1649         int i, map_swapcount, _total_mapcount, _total_swapcount;
1650         unsigned long offset = 0;
1651         struct swap_info_struct *si;
1652         struct swap_cluster_info *ci = NULL;
1653         unsigned char *map = NULL;
1654         int mapcount, swapcount = 0;
1655
1656         /* hugetlbfs shouldn't call it */
1657         VM_BUG_ON_PAGE(PageHuge(page), page);
1658
1659         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1660                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1661                 if (PageSwapCache(page))
1662                         swapcount = page_swapcount(page);
1663                 if (total_swapcount)
1664                         *total_swapcount = swapcount;
1665                 return mapcount + swapcount;
1666         }
1667
1668         page = compound_head(page);
1669
1670         _total_mapcount = _total_swapcount = map_swapcount = 0;
1671         if (PageSwapCache(page)) {
1672                 swp_entry_t entry;
1673
1674                 entry.val = page_private(page);
1675                 si = _swap_info_get(entry);
1676                 if (si) {
1677                         map = si->swap_map;
1678                         offset = swp_offset(entry);
1679                 }
1680         }
1681         if (map)
1682                 ci = lock_cluster(si, offset);
1683         for (i = 0; i < HPAGE_PMD_NR; i++) {
1684                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1685                 _total_mapcount += mapcount;
1686                 if (map) {
1687                         swapcount = swap_count(map[offset + i]);
1688                         _total_swapcount += swapcount;
1689                 }
1690                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1691         }
1692         unlock_cluster(ci);
1693         if (PageDoubleMap(page)) {
1694                 map_swapcount -= 1;
1695                 _total_mapcount -= HPAGE_PMD_NR;
1696         }
1697         mapcount = compound_mapcount(page);
1698         map_swapcount += mapcount;
1699         _total_mapcount += mapcount;
1700         if (total_mapcount)
1701                 *total_mapcount = _total_mapcount;
1702         if (total_swapcount)
1703                 *total_swapcount = _total_swapcount;
1704
1705         return map_swapcount;
1706 }
1707
1708 /*
1709  * We can write to an anon page without COW if there are no other references
1710  * to it.  And as a side-effect, free up its swap: because the old content
1711  * on disk will never be read, and seeking back there to write new content
1712  * later would only waste time away from clustering.
1713  *
1714  * NOTE: total_map_swapcount should not be relied upon by the caller if
1715  * reuse_swap_page() returns false, but it may be always overwritten
1716  * (see the other implementation for CONFIG_SWAP=n).
1717  */
1718 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1719 {
1720         int count, total_mapcount, total_swapcount;
1721
1722         VM_BUG_ON_PAGE(!PageLocked(page), page);
1723         if (unlikely(PageKsm(page)))
1724                 return false;
1725         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1726                                               &total_swapcount);
1727         if (total_map_swapcount)
1728                 *total_map_swapcount = total_mapcount + total_swapcount;
1729         if (count == 1 && PageSwapCache(page) &&
1730             (likely(!PageTransCompound(page)) ||
1731              /* The remaining swap count will be freed soon */
1732              total_swapcount == page_swapcount(page))) {
1733                 if (!PageWriteback(page)) {
1734                         page = compound_head(page);
1735                         delete_from_swap_cache(page);
1736                         SetPageDirty(page);
1737                 } else {
1738                         swp_entry_t entry;
1739                         struct swap_info_struct *p;
1740
1741                         entry.val = page_private(page);
1742                         p = swap_info_get(entry);
1743                         if (p->flags & SWP_STABLE_WRITES) {
1744                                 spin_unlock(&p->lock);
1745                                 return false;
1746                         }
1747                         spin_unlock(&p->lock);
1748                 }
1749         }
1750
1751         return count <= 1;
1752 }
1753
1754 /*
1755  * If swap is getting full, or if there are no more mappings of this page,
1756  * then try_to_free_swap is called to free its swap space.
1757  */
1758 int try_to_free_swap(struct page *page)
1759 {
1760         VM_BUG_ON_PAGE(!PageLocked(page), page);
1761
1762         if (!PageSwapCache(page))
1763                 return 0;
1764         if (PageWriteback(page))
1765                 return 0;
1766         if (page_swapped(page))
1767                 return 0;
1768
1769         /*
1770          * Once hibernation has begun to create its image of memory,
1771          * there's a danger that one of the calls to try_to_free_swap()
1772          * - most probably a call from __try_to_reclaim_swap() while
1773          * hibernation is allocating its own swap pages for the image,
1774          * but conceivably even a call from memory reclaim - will free
1775          * the swap from a page which has already been recorded in the
1776          * image as a clean swapcache page, and then reuse its swap for
1777          * another page of the image.  On waking from hibernation, the
1778          * original page might be freed under memory pressure, then
1779          * later read back in from swap, now with the wrong data.
1780          *
1781          * Hibernation suspends storage while it is writing the image
1782          * to disk so check that here.
1783          */
1784         if (pm_suspended_storage())
1785                 return 0;
1786
1787         page = compound_head(page);
1788         delete_from_swap_cache(page);
1789         SetPageDirty(page);
1790         return 1;
1791 }
1792
1793 /*
1794  * Free the swap entry like above, but also try to
1795  * free the page cache entry if it is the last user.
1796  */
1797 int free_swap_and_cache(swp_entry_t entry)
1798 {
1799         struct swap_info_struct *p;
1800         unsigned char count;
1801
1802         if (non_swap_entry(entry))
1803                 return 1;
1804
1805         p = get_swap_device(entry);
1806         if (p) {
1807                 if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1808                         put_swap_device(p);
1809                         return 0;
1810                 }
1811
1812                 count = __swap_entry_free(p, entry);
1813                 if (count == SWAP_HAS_CACHE &&
1814                     !swap_page_trans_huge_swapped(p, entry))
1815                         __try_to_reclaim_swap(p, swp_offset(entry),
1816                                               TTRS_UNMAPPED | TTRS_FULL);
1817                 put_swap_device(p);
1818         }
1819         return p != NULL;
1820 }
1821
1822 #ifdef CONFIG_HIBERNATION
1823 /*
1824  * Find the swap type that corresponds to given device (if any).
1825  *
1826  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1827  * from 0, in which the swap header is expected to be located.
1828  *
1829  * This is needed for the suspend to disk (aka swsusp).
1830  */
1831 int swap_type_of(dev_t device, sector_t offset)
1832 {
1833         int type;
1834
1835         if (!device)
1836                 return -1;
1837
1838         spin_lock(&swap_lock);
1839         for (type = 0; type < nr_swapfiles; type++) {
1840                 struct swap_info_struct *sis = swap_info[type];
1841
1842                 if (!(sis->flags & SWP_WRITEOK))
1843                         continue;
1844
1845                 if (device == sis->bdev->bd_dev) {
1846                         struct swap_extent *se = first_se(sis);
1847
1848                         if (se->start_block == offset) {
1849                                 spin_unlock(&swap_lock);
1850                                 return type;
1851                         }
1852                 }
1853         }
1854         spin_unlock(&swap_lock);
1855         return -ENODEV;
1856 }
1857
1858 int find_first_swap(dev_t *device)
1859 {
1860         int type;
1861
1862         spin_lock(&swap_lock);
1863         for (type = 0; type < nr_swapfiles; type++) {
1864                 struct swap_info_struct *sis = swap_info[type];
1865
1866                 if (!(sis->flags & SWP_WRITEOK))
1867                         continue;
1868                 *device = sis->bdev->bd_dev;
1869                 spin_unlock(&swap_lock);
1870                 return type;
1871         }
1872         spin_unlock(&swap_lock);
1873         return -ENODEV;
1874 }
1875
1876 /*
1877  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1878  * corresponding to given index in swap_info (swap type).
1879  */
1880 sector_t swapdev_block(int type, pgoff_t offset)
1881 {
1882         struct block_device *bdev;
1883         struct swap_info_struct *si = swap_type_to_swap_info(type);
1884
1885         if (!si || !(si->flags & SWP_WRITEOK))
1886                 return 0;
1887         return map_swap_entry(swp_entry(type, offset), &bdev);
1888 }
1889
1890 /*
1891  * Return either the total number of swap pages of given type, or the number
1892  * of free pages of that type (depending on @free)
1893  *
1894  * This is needed for software suspend
1895  */
1896 unsigned int count_swap_pages(int type, int free)
1897 {
1898         unsigned int n = 0;
1899
1900         spin_lock(&swap_lock);
1901         if ((unsigned int)type < nr_swapfiles) {
1902                 struct swap_info_struct *sis = swap_info[type];
1903
1904                 spin_lock(&sis->lock);
1905                 if (sis->flags & SWP_WRITEOK) {
1906                         n = sis->pages;
1907                         if (free)
1908                                 n -= sis->inuse_pages;
1909                 }
1910                 spin_unlock(&sis->lock);
1911         }
1912         spin_unlock(&swap_lock);
1913         return n;
1914 }
1915 #endif /* CONFIG_HIBERNATION */
1916
1917 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1918 {
1919         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1920 }
1921
1922 /*
1923  * No need to decide whether this PTE shares the swap entry with others,
1924  * just let do_wp_page work it out if a write is requested later - to
1925  * force COW, vm_page_prot omits write permission from any private vma.
1926  */
1927 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1928                 unsigned long addr, swp_entry_t entry, struct page *page)
1929 {
1930         struct page *swapcache;
1931         spinlock_t *ptl;
1932         pte_t *pte;
1933         int ret = 1;
1934
1935         swapcache = page;
1936         page = ksm_might_need_to_copy(page, vma, addr);
1937         if (unlikely(!page))
1938                 return -ENOMEM;
1939
1940         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1941         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1942                 ret = 0;
1943                 goto out;
1944         }
1945
1946         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1947         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1948         get_page(page);
1949         set_pte_at(vma->vm_mm, addr, pte,
1950                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1951         if (page == swapcache) {
1952                 page_add_anon_rmap(page, vma, addr, false);
1953         } else { /* ksm created a completely new copy */
1954                 page_add_new_anon_rmap(page, vma, addr, false);
1955                 lru_cache_add_inactive_or_unevictable(page, vma);
1956         }
1957         swap_free(entry);
1958 out:
1959         pte_unmap_unlock(pte, ptl);
1960         if (page != swapcache) {
1961                 unlock_page(page);
1962                 put_page(page);
1963         }
1964         return ret;
1965 }
1966
1967 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1968                         unsigned long addr, unsigned long end,
1969                         unsigned int type, bool frontswap,
1970                         unsigned long *fs_pages_to_unuse)
1971 {
1972         struct page *page;
1973         swp_entry_t entry;
1974         pte_t *pte;
1975         struct swap_info_struct *si;
1976         unsigned long offset;
1977         int ret = 0;
1978         volatile unsigned char *swap_map;
1979
1980         si = swap_info[type];
1981         pte = pte_offset_map(pmd, addr);
1982         do {
1983                 struct vm_fault vmf;
1984
1985                 if (!is_swap_pte(*pte))
1986                         continue;
1987
1988                 entry = pte_to_swp_entry(*pte);
1989                 if (swp_type(entry) != type)
1990                         continue;
1991
1992                 offset = swp_offset(entry);
1993                 if (frontswap && !frontswap_test(si, offset))
1994                         continue;
1995
1996                 pte_unmap(pte);
1997                 swap_map = &si->swap_map[offset];
1998                 page = lookup_swap_cache(entry, vma, addr);
1999                 if (!page) {
2000                         vmf.vma = vma;
2001                         vmf.address = addr;
2002                         vmf.pmd = pmd;
2003                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2004                                                 &vmf);
2005                 }
2006                 if (!page) {
2007                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
2008                                 goto try_next;
2009                         return -ENOMEM;
2010                 }
2011
2012                 lock_page(page);
2013                 wait_on_page_writeback(page);
2014                 ret = unuse_pte(vma, pmd, addr, entry, page);
2015                 if (ret < 0) {
2016                         unlock_page(page);
2017                         put_page(page);
2018                         goto out;
2019                 }
2020
2021                 try_to_free_swap(page);
2022                 unlock_page(page);
2023                 put_page(page);
2024
2025                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2026                         ret = FRONTSWAP_PAGES_UNUSED;
2027                         goto out;
2028                 }
2029 try_next:
2030                 pte = pte_offset_map(pmd, addr);
2031         } while (pte++, addr += PAGE_SIZE, addr != end);
2032         pte_unmap(pte - 1);
2033
2034         ret = 0;
2035 out:
2036         return ret;
2037 }
2038
2039 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2040                                 unsigned long addr, unsigned long end,
2041                                 unsigned int type, bool frontswap,
2042                                 unsigned long *fs_pages_to_unuse)
2043 {
2044         pmd_t *pmd;
2045         unsigned long next;
2046         int ret;
2047
2048         pmd = pmd_offset(pud, addr);
2049         do {
2050                 cond_resched();
2051                 next = pmd_addr_end(addr, end);
2052                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2053                         continue;
2054                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2055                                       frontswap, fs_pages_to_unuse);
2056                 if (ret)
2057                         return ret;
2058         } while (pmd++, addr = next, addr != end);
2059         return 0;
2060 }
2061
2062 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2063                                 unsigned long addr, unsigned long end,
2064                                 unsigned int type, bool frontswap,
2065                                 unsigned long *fs_pages_to_unuse)
2066 {
2067         pud_t *pud;
2068         unsigned long next;
2069         int ret;
2070
2071         pud = pud_offset(p4d, addr);
2072         do {
2073                 next = pud_addr_end(addr, end);
2074                 if (pud_none_or_clear_bad(pud))
2075                         continue;
2076                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2077                                       frontswap, fs_pages_to_unuse);
2078                 if (ret)
2079                         return ret;
2080         } while (pud++, addr = next, addr != end);
2081         return 0;
2082 }
2083
2084 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2085                                 unsigned long addr, unsigned long end,
2086                                 unsigned int type, bool frontswap,
2087                                 unsigned long *fs_pages_to_unuse)
2088 {
2089         p4d_t *p4d;
2090         unsigned long next;
2091         int ret;
2092
2093         p4d = p4d_offset(pgd, addr);
2094         do {
2095                 next = p4d_addr_end(addr, end);
2096                 if (p4d_none_or_clear_bad(p4d))
2097                         continue;
2098                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2099                                       frontswap, fs_pages_to_unuse);
2100                 if (ret)
2101                         return ret;
2102         } while (p4d++, addr = next, addr != end);
2103         return 0;
2104 }
2105
2106 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2107                      bool frontswap, unsigned long *fs_pages_to_unuse)
2108 {
2109         pgd_t *pgd;
2110         unsigned long addr, end, next;
2111         int ret;
2112
2113         addr = vma->vm_start;
2114         end = vma->vm_end;
2115
2116         pgd = pgd_offset(vma->vm_mm, addr);
2117         do {
2118                 next = pgd_addr_end(addr, end);
2119                 if (pgd_none_or_clear_bad(pgd))
2120                         continue;
2121                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2122                                       frontswap, fs_pages_to_unuse);
2123                 if (ret)
2124                         return ret;
2125         } while (pgd++, addr = next, addr != end);
2126         return 0;
2127 }
2128
2129 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2130                     bool frontswap, unsigned long *fs_pages_to_unuse)
2131 {
2132         struct vm_area_struct *vma;
2133         int ret = 0;
2134
2135         mmap_read_lock(mm);
2136         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2137                 if (vma->anon_vma) {
2138                         ret = unuse_vma(vma, type, frontswap,
2139                                         fs_pages_to_unuse);
2140                         if (ret)
2141                                 break;
2142                 }
2143                 cond_resched();
2144         }
2145         mmap_read_unlock(mm);
2146         return ret;
2147 }
2148
2149 /*
2150  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2151  * from current position to next entry still in use. Return 0
2152  * if there are no inuse entries after prev till end of the map.
2153  */
2154 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2155                                         unsigned int prev, bool frontswap)
2156 {
2157         unsigned int i;
2158         unsigned char count;
2159
2160         /*
2161          * No need for swap_lock here: we're just looking
2162          * for whether an entry is in use, not modifying it; false
2163          * hits are okay, and sys_swapoff() has already prevented new
2164          * allocations from this area (while holding swap_lock).
2165          */
2166         for (i = prev + 1; i < si->max; i++) {
2167                 count = READ_ONCE(si->swap_map[i]);
2168                 if (count && swap_count(count) != SWAP_MAP_BAD)
2169                         if (!frontswap || frontswap_test(si, i))
2170                                 break;
2171                 if ((i % LATENCY_LIMIT) == 0)
2172                         cond_resched();
2173         }
2174
2175         if (i == si->max)
2176                 i = 0;
2177
2178         return i;
2179 }
2180
2181 /*
2182  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2183  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2184  */
2185 int try_to_unuse(unsigned int type, bool frontswap,
2186                  unsigned long pages_to_unuse)
2187 {
2188         struct mm_struct *prev_mm;
2189         struct mm_struct *mm;
2190         struct list_head *p;
2191         int retval = 0;
2192         struct swap_info_struct *si = swap_info[type];
2193         struct page *page;
2194         swp_entry_t entry;
2195         unsigned int i;
2196
2197         if (!READ_ONCE(si->inuse_pages))
2198                 return 0;
2199
2200         if (!frontswap)
2201                 pages_to_unuse = 0;
2202
2203 retry:
2204         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2205         if (retval)
2206                 goto out;
2207
2208         prev_mm = &init_mm;
2209         mmget(prev_mm);
2210
2211         spin_lock(&mmlist_lock);
2212         p = &init_mm.mmlist;
2213         while (READ_ONCE(si->inuse_pages) &&
2214                !signal_pending(current) &&
2215                (p = p->next) != &init_mm.mmlist) {
2216
2217                 mm = list_entry(p, struct mm_struct, mmlist);
2218                 if (!mmget_not_zero(mm))
2219                         continue;
2220                 spin_unlock(&mmlist_lock);
2221                 mmput(prev_mm);
2222                 prev_mm = mm;
2223                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2224
2225                 if (retval) {
2226                         mmput(prev_mm);
2227                         goto out;
2228                 }
2229
2230                 /*
2231                  * Make sure that we aren't completely killing
2232                  * interactive performance.
2233                  */
2234                 cond_resched();
2235                 spin_lock(&mmlist_lock);
2236         }
2237         spin_unlock(&mmlist_lock);
2238
2239         mmput(prev_mm);
2240
2241         i = 0;
2242         while (READ_ONCE(si->inuse_pages) &&
2243                !signal_pending(current) &&
2244                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2245
2246                 entry = swp_entry(type, i);
2247                 page = find_get_page(swap_address_space(entry), i);
2248                 if (!page)
2249                         continue;
2250
2251                 /*
2252                  * It is conceivable that a racing task removed this page from
2253                  * swap cache just before we acquired the page lock. The page
2254                  * might even be back in swap cache on another swap area. But
2255                  * that is okay, try_to_free_swap() only removes stale pages.
2256                  */
2257                 lock_page(page);
2258                 wait_on_page_writeback(page);
2259                 try_to_free_swap(page);
2260                 unlock_page(page);
2261                 put_page(page);
2262
2263                 /*
2264                  * For frontswap, we just need to unuse pages_to_unuse, if
2265                  * it was specified. Need not check frontswap again here as
2266                  * we already zeroed out pages_to_unuse if not frontswap.
2267                  */
2268                 if (pages_to_unuse && --pages_to_unuse == 0)
2269                         goto out;
2270         }
2271
2272         /*
2273          * Lets check again to see if there are still swap entries in the map.
2274          * If yes, we would need to do retry the unuse logic again.
2275          * Under global memory pressure, swap entries can be reinserted back
2276          * into process space after the mmlist loop above passes over them.
2277          *
2278          * Limit the number of retries? No: when mmget_not_zero() above fails,
2279          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2280          * at its own independent pace; and even shmem_writepage() could have
2281          * been preempted after get_swap_page(), temporarily hiding that swap.
2282          * It's easy and robust (though cpu-intensive) just to keep retrying.
2283          */
2284         if (READ_ONCE(si->inuse_pages)) {
2285                 if (!signal_pending(current))
2286                         goto retry;
2287                 retval = -EINTR;
2288         }
2289 out:
2290         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2291 }
2292
2293 /*
2294  * After a successful try_to_unuse, if no swap is now in use, we know
2295  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2296  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2297  * added to the mmlist just after page_duplicate - before would be racy.
2298  */
2299 static void drain_mmlist(void)
2300 {
2301         struct list_head *p, *next;
2302         unsigned int type;
2303
2304         for (type = 0; type < nr_swapfiles; type++)
2305                 if (swap_info[type]->inuse_pages)
2306                         return;
2307         spin_lock(&mmlist_lock);
2308         list_for_each_safe(p, next, &init_mm.mmlist)
2309                 list_del_init(p);
2310         spin_unlock(&mmlist_lock);
2311 }
2312
2313 /*
2314  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2315  * corresponds to page offset for the specified swap entry.
2316  * Note that the type of this function is sector_t, but it returns page offset
2317  * into the bdev, not sector offset.
2318  */
2319 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2320 {
2321         struct swap_info_struct *sis;
2322         struct swap_extent *se;
2323         pgoff_t offset;
2324
2325         sis = swp_swap_info(entry);
2326         *bdev = sis->bdev;
2327
2328         offset = swp_offset(entry);
2329         se = offset_to_swap_extent(sis, offset);
2330         return se->start_block + (offset - se->start_page);
2331 }
2332
2333 /*
2334  * Returns the page offset into bdev for the specified page's swap entry.
2335  */
2336 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2337 {
2338         swp_entry_t entry;
2339         entry.val = page_private(page);
2340         return map_swap_entry(entry, bdev);
2341 }
2342
2343 /*
2344  * Free all of a swapdev's extent information
2345  */
2346 static void destroy_swap_extents(struct swap_info_struct *sis)
2347 {
2348         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2349                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2350                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2351
2352                 rb_erase(rb, &sis->swap_extent_root);
2353                 kfree(se);
2354         }
2355
2356         if (sis->flags & SWP_ACTIVATED) {
2357                 struct file *swap_file = sis->swap_file;
2358                 struct address_space *mapping = swap_file->f_mapping;
2359
2360                 sis->flags &= ~SWP_ACTIVATED;
2361                 if (mapping->a_ops->swap_deactivate)
2362                         mapping->a_ops->swap_deactivate(swap_file);
2363         }
2364 }
2365
2366 /*
2367  * Add a block range (and the corresponding page range) into this swapdev's
2368  * extent tree.
2369  *
2370  * This function rather assumes that it is called in ascending page order.
2371  */
2372 int
2373 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2374                 unsigned long nr_pages, sector_t start_block)
2375 {
2376         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2377         struct swap_extent *se;
2378         struct swap_extent *new_se;
2379
2380         /*
2381          * place the new node at the right most since the
2382          * function is called in ascending page order.
2383          */
2384         while (*link) {
2385                 parent = *link;
2386                 link = &parent->rb_right;
2387         }
2388
2389         if (parent) {
2390                 se = rb_entry(parent, struct swap_extent, rb_node);
2391                 BUG_ON(se->start_page + se->nr_pages != start_page);
2392                 if (se->start_block + se->nr_pages == start_block) {
2393                         /* Merge it */
2394                         se->nr_pages += nr_pages;
2395                         return 0;
2396                 }
2397         }
2398
2399         /* No merge, insert a new extent. */
2400         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2401         if (new_se == NULL)
2402                 return -ENOMEM;
2403         new_se->start_page = start_page;
2404         new_se->nr_pages = nr_pages;
2405         new_se->start_block = start_block;
2406
2407         rb_link_node(&new_se->rb_node, parent, link);
2408         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2409         return 1;
2410 }
2411 EXPORT_SYMBOL_GPL(add_swap_extent);
2412
2413 /*
2414  * A `swap extent' is a simple thing which maps a contiguous range of pages
2415  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2416  * is built at swapon time and is then used at swap_writepage/swap_readpage
2417  * time for locating where on disk a page belongs.
2418  *
2419  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2420  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2421  * swap files identically.
2422  *
2423  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2424  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2425  * swapfiles are handled *identically* after swapon time.
2426  *
2427  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2428  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2429  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2430  * requirements, they are simply tossed out - we will never use those blocks
2431  * for swapping.
2432  *
2433  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2434  * prevents users from writing to the swap device, which will corrupt memory.
2435  *
2436  * The amount of disk space which a single swap extent represents varies.
2437  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2438  * extents in the list.  To avoid much list walking, we cache the previous
2439  * search location in `curr_swap_extent', and start new searches from there.
2440  * This is extremely effective.  The average number of iterations in
2441  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2442  */
2443 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2444 {
2445         struct file *swap_file = sis->swap_file;
2446         struct address_space *mapping = swap_file->f_mapping;
2447         struct inode *inode = mapping->host;
2448         int ret;
2449
2450         if (S_ISBLK(inode->i_mode)) {
2451                 ret = add_swap_extent(sis, 0, sis->max, 0);
2452                 *span = sis->pages;
2453                 return ret;
2454         }
2455
2456         if (mapping->a_ops->swap_activate) {
2457                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2458                 if (ret >= 0)
2459                         sis->flags |= SWP_ACTIVATED;
2460                 if (!ret) {
2461                         sis->flags |= SWP_FS_OPS;
2462                         ret = add_swap_extent(sis, 0, sis->max, 0);
2463                         *span = sis->pages;
2464                 }
2465                 return ret;
2466         }
2467
2468         return generic_swapfile_activate(sis, swap_file, span);
2469 }
2470
2471 static int swap_node(struct swap_info_struct *p)
2472 {
2473         struct block_device *bdev;
2474
2475         if (p->bdev)
2476                 bdev = p->bdev;
2477         else
2478                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2479
2480         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2481 }
2482
2483 static void setup_swap_info(struct swap_info_struct *p, int prio,
2484                             unsigned char *swap_map,
2485                             struct swap_cluster_info *cluster_info)
2486 {
2487         int i;
2488
2489         if (prio >= 0)
2490                 p->prio = prio;
2491         else
2492                 p->prio = --least_priority;
2493         /*
2494          * the plist prio is negated because plist ordering is
2495          * low-to-high, while swap ordering is high-to-low
2496          */
2497         p->list.prio = -p->prio;
2498         for_each_node(i) {
2499                 if (p->prio >= 0)
2500                         p->avail_lists[i].prio = -p->prio;
2501                 else {
2502                         if (swap_node(p) == i)
2503                                 p->avail_lists[i].prio = 1;
2504                         else
2505                                 p->avail_lists[i].prio = -p->prio;
2506                 }
2507         }
2508         p->swap_map = swap_map;
2509         p->cluster_info = cluster_info;
2510 }
2511
2512 static void _enable_swap_info(struct swap_info_struct *p)
2513 {
2514         p->flags |= SWP_WRITEOK | SWP_VALID;
2515         atomic_long_add(p->pages, &nr_swap_pages);
2516         total_swap_pages += p->pages;
2517
2518         assert_spin_locked(&swap_lock);
2519         /*
2520          * both lists are plists, and thus priority ordered.
2521          * swap_active_head needs to be priority ordered for swapoff(),
2522          * which on removal of any swap_info_struct with an auto-assigned
2523          * (i.e. negative) priority increments the auto-assigned priority
2524          * of any lower-priority swap_info_structs.
2525          * swap_avail_head needs to be priority ordered for get_swap_page(),
2526          * which allocates swap pages from the highest available priority
2527          * swap_info_struct.
2528          */
2529         plist_add(&p->list, &swap_active_head);
2530         add_to_avail_list(p);
2531 }
2532
2533 static void enable_swap_info(struct swap_info_struct *p, int prio,
2534                                 unsigned char *swap_map,
2535                                 struct swap_cluster_info *cluster_info,
2536                                 unsigned long *frontswap_map)
2537 {
2538         frontswap_init(p->type, frontswap_map);
2539         spin_lock(&swap_lock);
2540         spin_lock(&p->lock);
2541         setup_swap_info(p, prio, swap_map, cluster_info);
2542         spin_unlock(&p->lock);
2543         spin_unlock(&swap_lock);
2544         /*
2545          * Guarantee swap_map, cluster_info, etc. fields are valid
2546          * between get/put_swap_device() if SWP_VALID bit is set
2547          */
2548         synchronize_rcu();
2549         spin_lock(&swap_lock);
2550         spin_lock(&p->lock);
2551         _enable_swap_info(p);
2552         spin_unlock(&p->lock);
2553         spin_unlock(&swap_lock);
2554 }
2555
2556 static void reinsert_swap_info(struct swap_info_struct *p)
2557 {
2558         spin_lock(&swap_lock);
2559         spin_lock(&p->lock);
2560         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2561         _enable_swap_info(p);
2562         spin_unlock(&p->lock);
2563         spin_unlock(&swap_lock);
2564 }
2565
2566 bool has_usable_swap(void)
2567 {
2568         bool ret = true;
2569
2570         spin_lock(&swap_lock);
2571         if (plist_head_empty(&swap_active_head))
2572                 ret = false;
2573         spin_unlock(&swap_lock);
2574         return ret;
2575 }
2576
2577 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2578 {
2579         struct swap_info_struct *p = NULL;
2580         unsigned char *swap_map;
2581         struct swap_cluster_info *cluster_info;
2582         unsigned long *frontswap_map;
2583         struct file *swap_file, *victim;
2584         struct address_space *mapping;
2585         struct inode *inode;
2586         struct filename *pathname;
2587         int err, found = 0;
2588         unsigned int old_block_size;
2589
2590         if (!capable(CAP_SYS_ADMIN))
2591                 return -EPERM;
2592
2593         BUG_ON(!current->mm);
2594
2595         pathname = getname(specialfile);
2596         if (IS_ERR(pathname))
2597                 return PTR_ERR(pathname);
2598
2599         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2600         err = PTR_ERR(victim);
2601         if (IS_ERR(victim))
2602                 goto out;
2603
2604         mapping = victim->f_mapping;
2605         spin_lock(&swap_lock);
2606         plist_for_each_entry(p, &swap_active_head, list) {
2607                 if (p->flags & SWP_WRITEOK) {
2608                         if (p->swap_file->f_mapping == mapping) {
2609                                 found = 1;
2610                                 break;
2611                         }
2612                 }
2613         }
2614         if (!found) {
2615                 err = -EINVAL;
2616                 spin_unlock(&swap_lock);
2617                 goto out_dput;
2618         }
2619         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2620                 vm_unacct_memory(p->pages);
2621         else {
2622                 err = -ENOMEM;
2623                 spin_unlock(&swap_lock);
2624                 goto out_dput;
2625         }
2626         spin_lock(&p->lock);
2627         del_from_avail_list(p);
2628         if (p->prio < 0) {
2629                 struct swap_info_struct *si = p;
2630                 int nid;
2631
2632                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2633                         si->prio++;
2634                         si->list.prio--;
2635                         for_each_node(nid) {
2636                                 if (si->avail_lists[nid].prio != 1)
2637                                         si->avail_lists[nid].prio--;
2638                         }
2639                 }
2640                 least_priority++;
2641         }
2642         plist_del(&p->list, &swap_active_head);
2643         atomic_long_sub(p->pages, &nr_swap_pages);
2644         total_swap_pages -= p->pages;
2645         p->flags &= ~SWP_WRITEOK;
2646         spin_unlock(&p->lock);
2647         spin_unlock(&swap_lock);
2648
2649         disable_swap_slots_cache_lock();
2650
2651         set_current_oom_origin();
2652         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2653         clear_current_oom_origin();
2654
2655         if (err) {
2656                 /* re-insert swap space back into swap_list */
2657                 reinsert_swap_info(p);
2658                 reenable_swap_slots_cache_unlock();
2659                 goto out_dput;
2660         }
2661
2662         reenable_swap_slots_cache_unlock();
2663
2664         spin_lock(&swap_lock);
2665         spin_lock(&p->lock);
2666         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2667         spin_unlock(&p->lock);
2668         spin_unlock(&swap_lock);
2669         /*
2670          * wait for swap operations protected by get/put_swap_device()
2671          * to complete
2672          */
2673         synchronize_rcu();
2674
2675         flush_work(&p->discard_work);
2676
2677         destroy_swap_extents(p);
2678         if (p->flags & SWP_CONTINUED)
2679                 free_swap_count_continuations(p);
2680
2681         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2682                 atomic_dec(&nr_rotate_swap);
2683
2684         mutex_lock(&swapon_mutex);
2685         spin_lock(&swap_lock);
2686         spin_lock(&p->lock);
2687         drain_mmlist();
2688
2689         /* wait for anyone still in scan_swap_map */
2690         p->highest_bit = 0;             /* cuts scans short */
2691         while (p->flags >= SWP_SCANNING) {
2692                 spin_unlock(&p->lock);
2693                 spin_unlock(&swap_lock);
2694                 schedule_timeout_uninterruptible(1);
2695                 spin_lock(&swap_lock);
2696                 spin_lock(&p->lock);
2697         }
2698
2699         swap_file = p->swap_file;
2700         old_block_size = p->old_block_size;
2701         p->swap_file = NULL;
2702         p->max = 0;
2703         swap_map = p->swap_map;
2704         p->swap_map = NULL;
2705         cluster_info = p->cluster_info;
2706         p->cluster_info = NULL;
2707         frontswap_map = frontswap_map_get(p);
2708         spin_unlock(&p->lock);
2709         spin_unlock(&swap_lock);
2710         arch_swap_invalidate_area(p->type);
2711         frontswap_invalidate_area(p->type);
2712         frontswap_map_set(p, NULL);
2713         mutex_unlock(&swapon_mutex);
2714         free_percpu(p->percpu_cluster);
2715         p->percpu_cluster = NULL;
2716         free_percpu(p->cluster_next_cpu);
2717         p->cluster_next_cpu = NULL;
2718         vfree(swap_map);
2719         kvfree(cluster_info);
2720         kvfree(frontswap_map);
2721         /* Destroy swap account information */
2722         swap_cgroup_swapoff(p->type);
2723         exit_swap_address_space(p->type);
2724
2725         inode = mapping->host;
2726         if (S_ISBLK(inode->i_mode)) {
2727                 struct block_device *bdev = I_BDEV(inode);
2728
2729                 set_blocksize(bdev, old_block_size);
2730                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2731         }
2732
2733         inode_lock(inode);
2734         inode->i_flags &= ~S_SWAPFILE;
2735         inode_unlock(inode);
2736         filp_close(swap_file, NULL);
2737
2738         /*
2739          * Clear the SWP_USED flag after all resources are freed so that swapon
2740          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2741          * not hold p->lock after we cleared its SWP_WRITEOK.
2742          */
2743         spin_lock(&swap_lock);
2744         p->flags = 0;
2745         spin_unlock(&swap_lock);
2746
2747         err = 0;
2748         atomic_inc(&proc_poll_event);
2749         wake_up_interruptible(&proc_poll_wait);
2750
2751 out_dput:
2752         filp_close(victim, NULL);
2753 out:
2754         putname(pathname);
2755         return err;
2756 }
2757
2758 #ifdef CONFIG_PROC_FS
2759 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2760 {
2761         struct seq_file *seq = file->private_data;
2762
2763         poll_wait(file, &proc_poll_wait, wait);
2764
2765         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2766                 seq->poll_event = atomic_read(&proc_poll_event);
2767                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2768         }
2769
2770         return EPOLLIN | EPOLLRDNORM;
2771 }
2772
2773 /* iterator */
2774 static void *swap_start(struct seq_file *swap, loff_t *pos)
2775 {
2776         struct swap_info_struct *si;
2777         int type;
2778         loff_t l = *pos;
2779
2780         mutex_lock(&swapon_mutex);
2781
2782         if (!l)
2783                 return SEQ_START_TOKEN;
2784
2785         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2786                 if (!(si->flags & SWP_USED) || !si->swap_map)
2787                         continue;
2788                 if (!--l)
2789                         return si;
2790         }
2791
2792         return NULL;
2793 }
2794
2795 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2796 {
2797         struct swap_info_struct *si = v;
2798         int type;
2799
2800         if (v == SEQ_START_TOKEN)
2801                 type = 0;
2802         else
2803                 type = si->type + 1;
2804
2805         ++(*pos);
2806         for (; (si = swap_type_to_swap_info(type)); type++) {
2807                 if (!(si->flags & SWP_USED) || !si->swap_map)
2808                         continue;
2809                 return si;
2810         }
2811
2812         return NULL;
2813 }
2814
2815 static void swap_stop(struct seq_file *swap, void *v)
2816 {
2817         mutex_unlock(&swapon_mutex);
2818 }
2819
2820 static int swap_show(struct seq_file *swap, void *v)
2821 {
2822         struct swap_info_struct *si = v;
2823         struct file *file;
2824         int len;
2825         unsigned int bytes, inuse;
2826
2827         if (si == SEQ_START_TOKEN) {
2828                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2829                 return 0;
2830         }
2831
2832         bytes = si->pages << (PAGE_SHIFT - 10);
2833         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2834
2835         file = si->swap_file;
2836         len = seq_file_path(swap, file, " \t\n\\");
2837         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2838                         len < 40 ? 40 - len : 1, " ",
2839                         S_ISBLK(file_inode(file)->i_mode) ?
2840                                 "partition" : "file\t",
2841                         bytes, bytes < 10000000 ? "\t" : "",
2842                         inuse, inuse < 10000000 ? "\t" : "",
2843                         si->prio);
2844         return 0;
2845 }
2846
2847 static const struct seq_operations swaps_op = {
2848         .start =        swap_start,
2849         .next =         swap_next,
2850         .stop =         swap_stop,
2851         .show =         swap_show
2852 };
2853
2854 static int swaps_open(struct inode *inode, struct file *file)
2855 {
2856         struct seq_file *seq;
2857         int ret;
2858
2859         ret = seq_open(file, &swaps_op);
2860         if (ret)
2861                 return ret;
2862
2863         seq = file->private_data;
2864         seq->poll_event = atomic_read(&proc_poll_event);
2865         return 0;
2866 }
2867
2868 static const struct proc_ops swaps_proc_ops = {
2869         .proc_flags     = PROC_ENTRY_PERMANENT,
2870         .proc_open      = swaps_open,
2871         .proc_read      = seq_read,
2872         .proc_lseek     = seq_lseek,
2873         .proc_release   = seq_release,
2874         .proc_poll      = swaps_poll,
2875 };
2876
2877 static int __init procswaps_init(void)
2878 {
2879         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2880         return 0;
2881 }
2882 __initcall(procswaps_init);
2883 #endif /* CONFIG_PROC_FS */
2884
2885 #ifdef MAX_SWAPFILES_CHECK
2886 static int __init max_swapfiles_check(void)
2887 {
2888         MAX_SWAPFILES_CHECK();
2889         return 0;
2890 }
2891 late_initcall(max_swapfiles_check);
2892 #endif
2893
2894 static struct swap_info_struct *alloc_swap_info(void)
2895 {
2896         struct swap_info_struct *p;
2897         struct swap_info_struct *defer = NULL;
2898         unsigned int type;
2899         int i;
2900
2901         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2902         if (!p)
2903                 return ERR_PTR(-ENOMEM);
2904
2905         spin_lock(&swap_lock);
2906         for (type = 0; type < nr_swapfiles; type++) {
2907                 if (!(swap_info[type]->flags & SWP_USED))
2908                         break;
2909         }
2910         if (type >= MAX_SWAPFILES) {
2911                 spin_unlock(&swap_lock);
2912                 kvfree(p);
2913                 return ERR_PTR(-EPERM);
2914         }
2915         if (type >= nr_swapfiles) {
2916                 p->type = type;
2917                 WRITE_ONCE(swap_info[type], p);
2918                 /*
2919                  * Write swap_info[type] before nr_swapfiles, in case a
2920                  * racing procfs swap_start() or swap_next() is reading them.
2921                  * (We never shrink nr_swapfiles, we never free this entry.)
2922                  */
2923                 smp_wmb();
2924                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2925         } else {
2926                 defer = p;
2927                 p = swap_info[type];
2928                 /*
2929                  * Do not memset this entry: a racing procfs swap_next()
2930                  * would be relying on p->type to remain valid.
2931                  */
2932         }
2933         p->swap_extent_root = RB_ROOT;
2934         plist_node_init(&p->list, 0);
2935         for_each_node(i)
2936                 plist_node_init(&p->avail_lists[i], 0);
2937         p->flags = SWP_USED;
2938         spin_unlock(&swap_lock);
2939         kvfree(defer);
2940         spin_lock_init(&p->lock);
2941         spin_lock_init(&p->cont_lock);
2942
2943         return p;
2944 }
2945
2946 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2947 {
2948         int error;
2949
2950         if (S_ISBLK(inode->i_mode)) {
2951                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2952                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2953                 if (IS_ERR(p->bdev)) {
2954                         error = PTR_ERR(p->bdev);
2955                         p->bdev = NULL;
2956                         return error;
2957                 }
2958                 p->old_block_size = block_size(p->bdev);
2959                 error = set_blocksize(p->bdev, PAGE_SIZE);
2960                 if (error < 0)
2961                         return error;
2962                 /*
2963                  * Zoned block devices contain zones that have a sequential
2964                  * write only restriction.  Hence zoned block devices are not
2965                  * suitable for swapping.  Disallow them here.
2966                  */
2967                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2968                         return -EINVAL;
2969                 p->flags |= SWP_BLKDEV;
2970         } else if (S_ISREG(inode->i_mode)) {
2971                 p->bdev = inode->i_sb->s_bdev;
2972         }
2973
2974         return 0;
2975 }
2976
2977
2978 /*
2979  * Find out how many pages are allowed for a single swap device. There
2980  * are two limiting factors:
2981  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2982  * 2) the number of bits in the swap pte, as defined by the different
2983  * architectures.
2984  *
2985  * In order to find the largest possible bit mask, a swap entry with
2986  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2987  * decoded to a swp_entry_t again, and finally the swap offset is
2988  * extracted.
2989  *
2990  * This will mask all the bits from the initial ~0UL mask that can't
2991  * be encoded in either the swp_entry_t or the architecture definition
2992  * of a swap pte.
2993  */
2994 unsigned long generic_max_swapfile_size(void)
2995 {
2996         return swp_offset(pte_to_swp_entry(
2997                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2998 }
2999
3000 /* Can be overridden by an architecture for additional checks. */
3001 __weak unsigned long max_swapfile_size(void)
3002 {
3003         return generic_max_swapfile_size();
3004 }
3005
3006 static unsigned long read_swap_header(struct swap_info_struct *p,
3007                                         union swap_header *swap_header,
3008                                         struct inode *inode)
3009 {
3010         int i;
3011         unsigned long maxpages;
3012         unsigned long swapfilepages;
3013         unsigned long last_page;
3014
3015         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3016                 pr_err("Unable to find swap-space signature\n");
3017                 return 0;
3018         }
3019
3020         /* swap partition endianess hack... */
3021         if (swab32(swap_header->info.version) == 1) {
3022                 swab32s(&swap_header->info.version);
3023                 swab32s(&swap_header->info.last_page);
3024                 swab32s(&swap_header->info.nr_badpages);
3025                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3026                         return 0;
3027                 for (i = 0; i < swap_header->info.nr_badpages; i++)
3028                         swab32s(&swap_header->info.badpages[i]);
3029         }
3030         /* Check the swap header's sub-version */
3031         if (swap_header->info.version != 1) {
3032                 pr_warn("Unable to handle swap header version %d\n",
3033                         swap_header->info.version);
3034                 return 0;
3035         }
3036
3037         p->lowest_bit  = 1;
3038         p->cluster_next = 1;
3039         p->cluster_nr = 0;
3040
3041         maxpages = max_swapfile_size();
3042         last_page = swap_header->info.last_page;
3043         if (!last_page) {
3044                 pr_warn("Empty swap-file\n");
3045                 return 0;
3046         }
3047         if (last_page > maxpages) {
3048                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3049                         maxpages << (PAGE_SHIFT - 10),
3050                         last_page << (PAGE_SHIFT - 10));
3051         }
3052         if (maxpages > last_page) {
3053                 maxpages = last_page + 1;
3054                 /* p->max is an unsigned int: don't overflow it */
3055                 if ((unsigned int)maxpages == 0)
3056                         maxpages = UINT_MAX;
3057         }
3058         p->highest_bit = maxpages - 1;
3059
3060         if (!maxpages)
3061                 return 0;
3062         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3063         if (swapfilepages && maxpages > swapfilepages) {
3064                 pr_warn("Swap area shorter than signature indicates\n");
3065                 return 0;
3066         }
3067         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3068                 return 0;
3069         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3070                 return 0;
3071
3072         return maxpages;
3073 }
3074
3075 #define SWAP_CLUSTER_INFO_COLS                                          \
3076         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3077 #define SWAP_CLUSTER_SPACE_COLS                                         \
3078         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3079 #define SWAP_CLUSTER_COLS                                               \
3080         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3081
3082 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3083                                         union swap_header *swap_header,
3084                                         unsigned char *swap_map,
3085                                         struct swap_cluster_info *cluster_info,
3086                                         unsigned long maxpages,
3087                                         sector_t *span)
3088 {
3089         unsigned int j, k;
3090         unsigned int nr_good_pages;
3091         int nr_extents;
3092         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3093         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3094         unsigned long i, idx;
3095
3096         nr_good_pages = maxpages - 1;   /* omit header page */
3097
3098         cluster_list_init(&p->free_clusters);
3099         cluster_list_init(&p->discard_clusters);
3100
3101         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3102                 unsigned int page_nr = swap_header->info.badpages[i];
3103                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3104                         return -EINVAL;
3105                 if (page_nr < maxpages) {
3106                         swap_map[page_nr] = SWAP_MAP_BAD;
3107                         nr_good_pages--;
3108                         /*
3109                          * Haven't marked the cluster free yet, no list
3110                          * operation involved
3111                          */
3112                         inc_cluster_info_page(p, cluster_info, page_nr);
3113                 }
3114         }
3115
3116         /* Haven't marked the cluster free yet, no list operation involved */
3117         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3118                 inc_cluster_info_page(p, cluster_info, i);
3119
3120         if (nr_good_pages) {
3121                 swap_map[0] = SWAP_MAP_BAD;
3122                 /*
3123                  * Not mark the cluster free yet, no list
3124                  * operation involved
3125                  */
3126                 inc_cluster_info_page(p, cluster_info, 0);
3127                 p->max = maxpages;
3128                 p->pages = nr_good_pages;
3129                 nr_extents = setup_swap_extents(p, span);
3130                 if (nr_extents < 0)
3131                         return nr_extents;
3132                 nr_good_pages = p->pages;
3133         }
3134         if (!nr_good_pages) {
3135                 pr_warn("Empty swap-file\n");
3136                 return -EINVAL;
3137         }
3138
3139         if (!cluster_info)
3140                 return nr_extents;
3141
3142
3143         /*
3144          * Reduce false cache line sharing between cluster_info and
3145          * sharing same address space.
3146          */
3147         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3148                 j = (k + col) % SWAP_CLUSTER_COLS;
3149                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3150                         idx = i * SWAP_CLUSTER_COLS + j;
3151                         if (idx >= nr_clusters)
3152                                 continue;
3153                         if (cluster_count(&cluster_info[idx]))
3154                                 continue;
3155                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3156                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3157                                               idx);
3158                 }
3159         }
3160         return nr_extents;
3161 }
3162
3163 /*
3164  * Helper to sys_swapon determining if a given swap
3165  * backing device queue supports DISCARD operations.
3166  */
3167 static bool swap_discardable(struct swap_info_struct *si)
3168 {
3169         struct request_queue *q = bdev_get_queue(si->bdev);
3170
3171         if (!q || !blk_queue_discard(q))
3172                 return false;
3173
3174         return true;
3175 }
3176
3177 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3178 {
3179         struct swap_info_struct *p;
3180         struct filename *name;
3181         struct file *swap_file = NULL;
3182         struct address_space *mapping;
3183         int prio;
3184         int error;
3185         union swap_header *swap_header;
3186         int nr_extents;
3187         sector_t span;
3188         unsigned long maxpages;
3189         unsigned char *swap_map = NULL;
3190         struct swap_cluster_info *cluster_info = NULL;
3191         unsigned long *frontswap_map = NULL;
3192         struct page *page = NULL;
3193         struct inode *inode = NULL;
3194         bool inced_nr_rotate_swap = false;
3195
3196         if (swap_flags & ~SWAP_FLAGS_VALID)
3197                 return -EINVAL;
3198
3199         if (!capable(CAP_SYS_ADMIN))
3200                 return -EPERM;
3201
3202         if (!swap_avail_heads)
3203                 return -ENOMEM;
3204
3205         p = alloc_swap_info();
3206         if (IS_ERR(p))
3207                 return PTR_ERR(p);
3208
3209         INIT_WORK(&p->discard_work, swap_discard_work);
3210
3211         name = getname(specialfile);
3212         if (IS_ERR(name)) {
3213                 error = PTR_ERR(name);
3214                 name = NULL;
3215                 goto bad_swap;
3216         }
3217         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3218         if (IS_ERR(swap_file)) {
3219                 error = PTR_ERR(swap_file);
3220                 swap_file = NULL;
3221                 goto bad_swap;
3222         }
3223
3224         p->swap_file = swap_file;
3225         mapping = swap_file->f_mapping;
3226         inode = mapping->host;
3227
3228         error = claim_swapfile(p, inode);
3229         if (unlikely(error))
3230                 goto bad_swap;
3231
3232         inode_lock(inode);
3233         if (IS_SWAPFILE(inode)) {
3234                 error = -EBUSY;
3235                 goto bad_swap_unlock_inode;
3236         }
3237
3238         /*
3239          * Read the swap header.
3240          */
3241         if (!mapping->a_ops->readpage) {
3242                 error = -EINVAL;
3243                 goto bad_swap_unlock_inode;
3244         }
3245         page = read_mapping_page(mapping, 0, swap_file);
3246         if (IS_ERR(page)) {
3247                 error = PTR_ERR(page);
3248                 goto bad_swap_unlock_inode;
3249         }
3250         swap_header = kmap(page);
3251
3252         maxpages = read_swap_header(p, swap_header, inode);
3253         if (unlikely(!maxpages)) {
3254                 error = -EINVAL;
3255                 goto bad_swap_unlock_inode;
3256         }
3257
3258         /* OK, set up the swap map and apply the bad block list */
3259         swap_map = vzalloc(maxpages);
3260         if (!swap_map) {
3261                 error = -ENOMEM;
3262                 goto bad_swap_unlock_inode;
3263         }
3264
3265         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3266                 p->flags |= SWP_STABLE_WRITES;
3267
3268         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3269                 p->flags |= SWP_SYNCHRONOUS_IO;
3270
3271         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3272                 int cpu;
3273                 unsigned long ci, nr_cluster;
3274
3275                 p->flags |= SWP_SOLIDSTATE;
3276                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3277                 if (!p->cluster_next_cpu) {
3278                         error = -ENOMEM;
3279                         goto bad_swap_unlock_inode;
3280                 }
3281                 /*
3282                  * select a random position to start with to help wear leveling
3283                  * SSD
3284                  */
3285                 for_each_possible_cpu(cpu) {
3286                         per_cpu(*p->cluster_next_cpu, cpu) =
3287                                 1 + prandom_u32_max(p->highest_bit);
3288                 }
3289                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3290
3291                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3292                                         GFP_KERNEL);
3293                 if (!cluster_info) {
3294                         error = -ENOMEM;
3295                         goto bad_swap_unlock_inode;
3296                 }
3297
3298                 for (ci = 0; ci < nr_cluster; ci++)
3299                         spin_lock_init(&((cluster_info + ci)->lock));
3300
3301                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3302                 if (!p->percpu_cluster) {
3303                         error = -ENOMEM;
3304                         goto bad_swap_unlock_inode;
3305                 }
3306                 for_each_possible_cpu(cpu) {
3307                         struct percpu_cluster *cluster;
3308                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3309                         cluster_set_null(&cluster->index);
3310                 }
3311         } else {
3312                 atomic_inc(&nr_rotate_swap);
3313                 inced_nr_rotate_swap = true;
3314         }
3315
3316         error = swap_cgroup_swapon(p->type, maxpages);
3317         if (error)
3318                 goto bad_swap_unlock_inode;
3319
3320         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3321                 cluster_info, maxpages, &span);
3322         if (unlikely(nr_extents < 0)) {
3323                 error = nr_extents;
3324                 goto bad_swap_unlock_inode;
3325         }
3326         /* frontswap enabled? set up bit-per-page map for frontswap */
3327         if (IS_ENABLED(CONFIG_FRONTSWAP))
3328                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3329                                          sizeof(long),
3330                                          GFP_KERNEL);
3331
3332         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3333                 /*
3334                  * When discard is enabled for swap with no particular
3335                  * policy flagged, we set all swap discard flags here in
3336                  * order to sustain backward compatibility with older
3337                  * swapon(8) releases.
3338                  */
3339                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3340                              SWP_PAGE_DISCARD);
3341
3342                 /*
3343                  * By flagging sys_swapon, a sysadmin can tell us to
3344                  * either do single-time area discards only, or to just
3345                  * perform discards for released swap page-clusters.
3346                  * Now it's time to adjust the p->flags accordingly.
3347                  */
3348                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3349                         p->flags &= ~SWP_PAGE_DISCARD;
3350                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3351                         p->flags &= ~SWP_AREA_DISCARD;
3352
3353                 /* issue a swapon-time discard if it's still required */
3354                 if (p->flags & SWP_AREA_DISCARD) {
3355                         int err = discard_swap(p);
3356                         if (unlikely(err))
3357                                 pr_err("swapon: discard_swap(%p): %d\n",
3358                                         p, err);
3359                 }
3360         }
3361
3362         error = init_swap_address_space(p->type, maxpages);
3363         if (error)
3364                 goto bad_swap_unlock_inode;
3365
3366         /*
3367          * Flush any pending IO and dirty mappings before we start using this
3368          * swap device.
3369          */
3370         inode->i_flags |= S_SWAPFILE;
3371         error = inode_drain_writes(inode);
3372         if (error) {
3373                 inode->i_flags &= ~S_SWAPFILE;
3374                 goto free_swap_address_space;
3375         }
3376
3377         mutex_lock(&swapon_mutex);
3378         prio = -1;
3379         if (swap_flags & SWAP_FLAG_PREFER)
3380                 prio =
3381                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3382         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3383
3384         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3385                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3386                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3387                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3388                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3389                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3390                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3391                 (frontswap_map) ? "FS" : "");
3392
3393         mutex_unlock(&swapon_mutex);
3394         atomic_inc(&proc_poll_event);
3395         wake_up_interruptible(&proc_poll_wait);
3396
3397         error = 0;
3398         goto out;
3399 free_swap_address_space:
3400         exit_swap_address_space(p->type);
3401 bad_swap_unlock_inode:
3402         inode_unlock(inode);
3403 bad_swap:
3404         free_percpu(p->percpu_cluster);
3405         p->percpu_cluster = NULL;
3406         free_percpu(p->cluster_next_cpu);
3407         p->cluster_next_cpu = NULL;
3408         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3409                 set_blocksize(p->bdev, p->old_block_size);
3410                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3411         }
3412         inode = NULL;
3413         destroy_swap_extents(p);
3414         swap_cgroup_swapoff(p->type);
3415         spin_lock(&swap_lock);
3416         p->swap_file = NULL;
3417         p->flags = 0;
3418         spin_unlock(&swap_lock);
3419         vfree(swap_map);
3420         kvfree(cluster_info);
3421         kvfree(frontswap_map);
3422         if (inced_nr_rotate_swap)
3423                 atomic_dec(&nr_rotate_swap);
3424         if (swap_file)
3425                 filp_close(swap_file, NULL);
3426 out:
3427         if (page && !IS_ERR(page)) {
3428                 kunmap(page);
3429                 put_page(page);
3430         }
3431         if (name)
3432                 putname(name);
3433         if (inode)
3434                 inode_unlock(inode);
3435         if (!error)
3436                 enable_swap_slots_cache();
3437         return error;
3438 }
3439
3440 void si_swapinfo(struct sysinfo *val)
3441 {
3442         unsigned int type;
3443         unsigned long nr_to_be_unused = 0;
3444
3445         spin_lock(&swap_lock);
3446         for (type = 0; type < nr_swapfiles; type++) {
3447                 struct swap_info_struct *si = swap_info[type];
3448
3449                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3450                         nr_to_be_unused += si->inuse_pages;
3451         }
3452         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3453         val->totalswap = total_swap_pages + nr_to_be_unused;
3454         spin_unlock(&swap_lock);
3455 }
3456
3457 /*
3458  * Verify that a swap entry is valid and increment its swap map count.
3459  *
3460  * Returns error code in following case.
3461  * - success -> 0
3462  * - swp_entry is invalid -> EINVAL
3463  * - swp_entry is migration entry -> EINVAL
3464  * - swap-cache reference is requested but there is already one. -> EEXIST
3465  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3466  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3467  */
3468 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3469 {
3470         struct swap_info_struct *p;
3471         struct swap_cluster_info *ci;
3472         unsigned long offset;
3473         unsigned char count;
3474         unsigned char has_cache;
3475         int err = -EINVAL;
3476
3477         p = get_swap_device(entry);
3478         if (!p)
3479                 goto out;
3480
3481         offset = swp_offset(entry);
3482         ci = lock_cluster_or_swap_info(p, offset);
3483
3484         count = p->swap_map[offset];
3485
3486         /*
3487          * swapin_readahead() doesn't check if a swap entry is valid, so the
3488          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3489          */
3490         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3491                 err = -ENOENT;
3492                 goto unlock_out;
3493         }
3494
3495         has_cache = count & SWAP_HAS_CACHE;
3496         count &= ~SWAP_HAS_CACHE;
3497         err = 0;
3498
3499         if (usage == SWAP_HAS_CACHE) {
3500
3501                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3502                 if (!has_cache && count)
3503                         has_cache = SWAP_HAS_CACHE;
3504                 else if (has_cache)             /* someone else added cache */
3505                         err = -EEXIST;
3506                 else                            /* no users remaining */
3507                         err = -ENOENT;
3508
3509         } else if (count || has_cache) {
3510
3511                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3512                         count += usage;
3513                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3514                         err = -EINVAL;
3515                 else if (swap_count_continued(p, offset, count))
3516                         count = COUNT_CONTINUED;
3517                 else
3518                         err = -ENOMEM;
3519         } else
3520                 err = -ENOENT;                  /* unused swap entry */
3521
3522         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3523
3524 unlock_out:
3525         unlock_cluster_or_swap_info(p, ci);
3526 out:
3527         if (p)
3528                 put_swap_device(p);
3529         return err;
3530 }
3531
3532 /*
3533  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3534  * (in which case its reference count is never incremented).
3535  */
3536 void swap_shmem_alloc(swp_entry_t entry)
3537 {
3538         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3539 }
3540
3541 /*
3542  * Increase reference count of swap entry by 1.
3543  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3544  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3545  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3546  * might occur if a page table entry has got corrupted.
3547  */
3548 int swap_duplicate(swp_entry_t entry)
3549 {
3550         int err = 0;
3551
3552         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3553                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3554         return err;
3555 }
3556
3557 /*
3558  * @entry: swap entry for which we allocate swap cache.
3559  *
3560  * Called when allocating swap cache for existing swap entry,
3561  * This can return error codes. Returns 0 at success.
3562  * -EEXIST means there is a swap cache.
3563  * Note: return code is different from swap_duplicate().
3564  */
3565 int swapcache_prepare(swp_entry_t entry)
3566 {
3567         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3568 }
3569
3570 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3571 {
3572         return swap_type_to_swap_info(swp_type(entry));
3573 }
3574
3575 struct swap_info_struct *page_swap_info(struct page *page)
3576 {
3577         swp_entry_t entry = { .val = page_private(page) };
3578         return swp_swap_info(entry);
3579 }
3580
3581 /*
3582  * out-of-line __page_file_ methods to avoid include hell.
3583  */
3584 struct address_space *__page_file_mapping(struct page *page)
3585 {
3586         return page_swap_info(page)->swap_file->f_mapping;
3587 }
3588 EXPORT_SYMBOL_GPL(__page_file_mapping);
3589
3590 pgoff_t __page_file_index(struct page *page)
3591 {
3592         swp_entry_t swap = { .val = page_private(page) };
3593         return swp_offset(swap);
3594 }
3595 EXPORT_SYMBOL_GPL(__page_file_index);
3596
3597 /*
3598  * add_swap_count_continuation - called when a swap count is duplicated
3599  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3600  * page of the original vmalloc'ed swap_map, to hold the continuation count
3601  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3602  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3603  *
3604  * These continuation pages are seldom referenced: the common paths all work
3605  * on the original swap_map, only referring to a continuation page when the
3606  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3607  *
3608  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3609  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3610  * can be called after dropping locks.
3611  */
3612 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3613 {
3614         struct swap_info_struct *si;
3615         struct swap_cluster_info *ci;
3616         struct page *head;
3617         struct page *page;
3618         struct page *list_page;
3619         pgoff_t offset;
3620         unsigned char count;
3621         int ret = 0;
3622
3623         /*
3624          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3625          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3626          */
3627         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3628
3629         si = get_swap_device(entry);
3630         if (!si) {
3631                 /*
3632                  * An acceptable race has occurred since the failing
3633                  * __swap_duplicate(): the swap device may be swapoff
3634                  */
3635                 goto outer;
3636         }
3637         spin_lock(&si->lock);
3638
3639         offset = swp_offset(entry);
3640
3641         ci = lock_cluster(si, offset);
3642
3643         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3644
3645         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3646                 /*
3647                  * The higher the swap count, the more likely it is that tasks
3648                  * will race to add swap count continuation: we need to avoid
3649                  * over-provisioning.
3650                  */
3651                 goto out;
3652         }
3653
3654         if (!page) {
3655                 ret = -ENOMEM;
3656                 goto out;
3657         }
3658
3659         /*
3660          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3661          * no architecture is using highmem pages for kernel page tables: so it
3662          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3663          */
3664         head = vmalloc_to_page(si->swap_map + offset);
3665         offset &= ~PAGE_MASK;
3666
3667         spin_lock(&si->cont_lock);
3668         /*
3669          * Page allocation does not initialize the page's lru field,
3670          * but it does always reset its private field.
3671          */
3672         if (!page_private(head)) {
3673                 BUG_ON(count & COUNT_CONTINUED);
3674                 INIT_LIST_HEAD(&head->lru);
3675                 set_page_private(head, SWP_CONTINUED);
3676                 si->flags |= SWP_CONTINUED;
3677         }
3678
3679         list_for_each_entry(list_page, &head->lru, lru) {
3680                 unsigned char *map;
3681
3682                 /*
3683                  * If the previous map said no continuation, but we've found
3684                  * a continuation page, free our allocation and use this one.
3685                  */
3686                 if (!(count & COUNT_CONTINUED))
3687                         goto out_unlock_cont;
3688
3689                 map = kmap_atomic(list_page) + offset;
3690                 count = *map;
3691                 kunmap_atomic(map);
3692
3693                 /*
3694                  * If this continuation count now has some space in it,
3695                  * free our allocation and use this one.
3696                  */
3697                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3698                         goto out_unlock_cont;
3699         }
3700
3701         list_add_tail(&page->lru, &head->lru);
3702         page = NULL;                    /* now it's attached, don't free it */
3703 out_unlock_cont:
3704         spin_unlock(&si->cont_lock);
3705 out:
3706         unlock_cluster(ci);
3707         spin_unlock(&si->lock);
3708         put_swap_device(si);
3709 outer:
3710         if (page)
3711                 __free_page(page);
3712         return ret;
3713 }
3714
3715 /*
3716  * swap_count_continued - when the original swap_map count is incremented
3717  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3718  * into, carry if so, or else fail until a new continuation page is allocated;
3719  * when the original swap_map count is decremented from 0 with continuation,
3720  * borrow from the continuation and report whether it still holds more.
3721  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3722  * lock.
3723  */
3724 static bool swap_count_continued(struct swap_info_struct *si,
3725                                  pgoff_t offset, unsigned char count)
3726 {
3727         struct page *head;
3728         struct page *page;
3729         unsigned char *map;
3730         bool ret;
3731
3732         head = vmalloc_to_page(si->swap_map + offset);
3733         if (page_private(head) != SWP_CONTINUED) {
3734                 BUG_ON(count & COUNT_CONTINUED);
3735                 return false;           /* need to add count continuation */
3736         }
3737
3738         spin_lock(&si->cont_lock);
3739         offset &= ~PAGE_MASK;
3740         page = list_next_entry(head, lru);
3741         map = kmap_atomic(page) + offset;
3742
3743         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3744                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3745
3746         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3747                 /*
3748                  * Think of how you add 1 to 999
3749                  */
3750                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3751                         kunmap_atomic(map);
3752                         page = list_next_entry(page, lru);
3753                         BUG_ON(page == head);
3754                         map = kmap_atomic(page) + offset;
3755                 }
3756                 if (*map == SWAP_CONT_MAX) {
3757                         kunmap_atomic(map);
3758                         page = list_next_entry(page, lru);
3759                         if (page == head) {
3760                                 ret = false;    /* add count continuation */
3761                                 goto out;
3762                         }
3763                         map = kmap_atomic(page) + offset;
3764 init_map:               *map = 0;               /* we didn't zero the page */
3765                 }
3766                 *map += 1;
3767                 kunmap_atomic(map);
3768                 while ((page = list_prev_entry(page, lru)) != head) {
3769                         map = kmap_atomic(page) + offset;
3770                         *map = COUNT_CONTINUED;
3771                         kunmap_atomic(map);
3772                 }
3773                 ret = true;                     /* incremented */
3774
3775         } else {                                /* decrementing */
3776                 /*
3777                  * Think of how you subtract 1 from 1000
3778                  */
3779                 BUG_ON(count != COUNT_CONTINUED);
3780                 while (*map == COUNT_CONTINUED) {
3781                         kunmap_atomic(map);
3782                         page = list_next_entry(page, lru);
3783                         BUG_ON(page == head);
3784                         map = kmap_atomic(page) + offset;
3785                 }
3786                 BUG_ON(*map == 0);
3787                 *map -= 1;
3788                 if (*map == 0)
3789                         count = 0;
3790                 kunmap_atomic(map);
3791                 while ((page = list_prev_entry(page, lru)) != head) {
3792                         map = kmap_atomic(page) + offset;
3793                         *map = SWAP_CONT_MAX | count;
3794                         count = COUNT_CONTINUED;
3795                         kunmap_atomic(map);
3796                 }
3797                 ret = count == COUNT_CONTINUED;
3798         }
3799 out:
3800         spin_unlock(&si->cont_lock);
3801         return ret;
3802 }
3803
3804 /*
3805  * free_swap_count_continuations - swapoff free all the continuation pages
3806  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3807  */
3808 static void free_swap_count_continuations(struct swap_info_struct *si)
3809 {
3810         pgoff_t offset;
3811
3812         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3813                 struct page *head;
3814                 head = vmalloc_to_page(si->swap_map + offset);
3815                 if (page_private(head)) {
3816                         struct page *page, *next;
3817
3818                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3819                                 list_del(&page->lru);
3820                                 __free_page(page);
3821                         }
3822                 }
3823         }
3824 }
3825
3826 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3827 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3828 {
3829         struct swap_info_struct *si, *next;
3830         int nid = page_to_nid(page);
3831
3832         if (!(gfp_mask & __GFP_IO))
3833                 return;
3834
3835         if (!blk_cgroup_congested())
3836                 return;
3837
3838         /*
3839          * We've already scheduled a throttle, avoid taking the global swap
3840          * lock.
3841          */
3842         if (current->throttle_queue)
3843                 return;
3844
3845         spin_lock(&swap_avail_lock);
3846         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3847                                   avail_lists[nid]) {
3848                 if (si->bdev) {
3849                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3850                         break;
3851                 }
3852         }
3853         spin_unlock(&swap_avail_lock);
3854 }
3855 #endif
3856
3857 static int __init swapfile_init(void)
3858 {
3859         int nid;
3860
3861         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3862                                          GFP_KERNEL);
3863         if (!swap_avail_heads) {
3864                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3865                 return -ENOMEM;
3866         }
3867
3868         for_each_node(nid)
3869                 plist_head_init(&swap_avail_heads[nid]);
3870
3871         return 0;
3872 }
3873 subsys_initcall(swapfile_init);