GNU Linux-libre 4.14.253-gnu1
[releases.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41 static struct vfsmount *shm_mnt;
42
43 #ifdef CONFIG_SHMEM
44 /*
45  * This virtual memory filesystem is heavily based on the ramfs. It
46  * extends ramfs by the ability to use swap and honor resource limits
47  * which makes it a completely usable filesystem.
48  */
49
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_mutex making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102         pgoff_t start;          /* start of range currently being fallocated */
103         pgoff_t next;           /* the next page offset to be fallocated */
104         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
105         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111         return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122                                 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124                 struct page **pagep, enum sgp_type sgp,
125                 gfp_t gfp, struct vm_area_struct *vma,
126                 struct vm_fault *vmf, int *fault_type);
127
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129                 struct page **pagep, enum sgp_type sgp)
130 {
131         return shmem_getpage_gfp(inode, index, pagep, sgp,
132                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137         return sb->s_fs_info;
138 }
139
140 /*
141  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142  * for shared memory and for shared anonymous (/dev/zero) mappings
143  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144  * consistent with the pre-accounting of private mappings ...
145  */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148         return (flags & VM_NORESERVE) ?
149                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154         if (!(flags & VM_NORESERVE))
155                 vm_unacct_memory(VM_ACCT(size));
156 }
157
158 static inline int shmem_reacct_size(unsigned long flags,
159                 loff_t oldsize, loff_t newsize)
160 {
161         if (!(flags & VM_NORESERVE)) {
162                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163                         return security_vm_enough_memory_mm(current->mm,
164                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
165                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167         }
168         return 0;
169 }
170
171 /*
172  * ... whereas tmpfs objects are accounted incrementally as
173  * pages are allocated, in order to allow large sparse files.
174  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176  */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179         if (!(flags & VM_NORESERVE))
180                 return 0;
181
182         return security_vm_enough_memory_mm(current->mm,
183                         pages * VM_ACCT(PAGE_SIZE));
184 }
185
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188         if (flags & VM_NORESERVE)
189                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194         struct shmem_inode_info *info = SHMEM_I(inode);
195         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197         if (shmem_acct_block(info->flags, pages))
198                 return false;
199
200         if (sbinfo->max_blocks) {
201                 if (percpu_counter_compare(&sbinfo->used_blocks,
202                                            sbinfo->max_blocks - pages) > 0)
203                         goto unacct;
204                 percpu_counter_add(&sbinfo->used_blocks, pages);
205         }
206
207         return true;
208
209 unacct:
210         shmem_unacct_blocks(info->flags, pages);
211         return false;
212 }
213
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216         struct shmem_inode_info *info = SHMEM_I(inode);
217         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219         if (sbinfo->max_blocks)
220                 percpu_counter_sub(&sbinfo->used_blocks, pages);
221         shmem_unacct_blocks(info->flags, pages);
222 }
223
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235         return vma->vm_ops == &shmem_vm_ops;
236 }
237
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244         if (sbinfo->max_inodes) {
245                 spin_lock(&sbinfo->stat_lock);
246                 if (!sbinfo->free_inodes) {
247                         spin_unlock(&sbinfo->stat_lock);
248                         return -ENOSPC;
249                 }
250                 sbinfo->free_inodes--;
251                 spin_unlock(&sbinfo->stat_lock);
252         }
253         return 0;
254 }
255
256 static void shmem_free_inode(struct super_block *sb)
257 {
258         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259         if (sbinfo->max_inodes) {
260                 spin_lock(&sbinfo->stat_lock);
261                 sbinfo->free_inodes++;
262                 spin_unlock(&sbinfo->stat_lock);
263         }
264 }
265
266 /**
267  * shmem_recalc_inode - recalculate the block usage of an inode
268  * @inode: inode to recalc
269  *
270  * We have to calculate the free blocks since the mm can drop
271  * undirtied hole pages behind our back.
272  *
273  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
274  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275  *
276  * It has to be called with the spinlock held.
277  */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280         struct shmem_inode_info *info = SHMEM_I(inode);
281         long freed;
282
283         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284         if (freed > 0) {
285                 info->alloced -= freed;
286                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287                 shmem_inode_unacct_blocks(inode, freed);
288         }
289 }
290
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293         struct shmem_inode_info *info = SHMEM_I(inode);
294         unsigned long flags;
295
296         if (!shmem_inode_acct_block(inode, pages))
297                 return false;
298
299         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
300         inode->i_mapping->nrpages += pages;
301
302         spin_lock_irqsave(&info->lock, flags);
303         info->alloced += pages;
304         inode->i_blocks += pages * BLOCKS_PER_PAGE;
305         shmem_recalc_inode(inode);
306         spin_unlock_irqrestore(&info->lock, flags);
307
308         return true;
309 }
310
311 void shmem_uncharge(struct inode *inode, long pages)
312 {
313         struct shmem_inode_info *info = SHMEM_I(inode);
314         unsigned long flags;
315
316         /* nrpages adjustment done by __delete_from_page_cache() or caller */
317
318         spin_lock_irqsave(&info->lock, flags);
319         info->alloced -= pages;
320         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321         shmem_recalc_inode(inode);
322         spin_unlock_irqrestore(&info->lock, flags);
323
324         shmem_inode_unacct_blocks(inode, pages);
325 }
326
327 /*
328  * Replace item expected in radix tree by a new item, while holding tree lock.
329  */
330 static int shmem_radix_tree_replace(struct address_space *mapping,
331                         pgoff_t index, void *expected, void *replacement)
332 {
333         struct radix_tree_node *node;
334         void **pslot;
335         void *item;
336
337         VM_BUG_ON(!expected);
338         VM_BUG_ON(!replacement);
339         item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340         if (!item)
341                 return -ENOENT;
342         if (item != expected)
343                 return -ENOENT;
344         __radix_tree_replace(&mapping->page_tree, node, pslot,
345                              replacement, NULL, NULL);
346         return 0;
347 }
348
349 /*
350  * Sometimes, before we decide whether to proceed or to fail, we must check
351  * that an entry was not already brought back from swap by a racing thread.
352  *
353  * Checking page is not enough: by the time a SwapCache page is locked, it
354  * might be reused, and again be SwapCache, using the same swap as before.
355  */
356 static bool shmem_confirm_swap(struct address_space *mapping,
357                                pgoff_t index, swp_entry_t swap)
358 {
359         void *item;
360
361         rcu_read_lock();
362         item = radix_tree_lookup(&mapping->page_tree, index);
363         rcu_read_unlock();
364         return item == swp_to_radix_entry(swap);
365 }
366
367 /*
368  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
369  *
370  * SHMEM_HUGE_NEVER:
371  *      disables huge pages for the mount;
372  * SHMEM_HUGE_ALWAYS:
373  *      enables huge pages for the mount;
374  * SHMEM_HUGE_WITHIN_SIZE:
375  *      only allocate huge pages if the page will be fully within i_size,
376  *      also respect fadvise()/madvise() hints;
377  * SHMEM_HUGE_ADVISE:
378  *      only allocate huge pages if requested with fadvise()/madvise();
379  */
380
381 #define SHMEM_HUGE_NEVER        0
382 #define SHMEM_HUGE_ALWAYS       1
383 #define SHMEM_HUGE_WITHIN_SIZE  2
384 #define SHMEM_HUGE_ADVISE       3
385
386 /*
387  * Special values.
388  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
389  *
390  * SHMEM_HUGE_DENY:
391  *      disables huge on shm_mnt and all mounts, for emergency use;
392  * SHMEM_HUGE_FORCE:
393  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
394  *
395  */
396 #define SHMEM_HUGE_DENY         (-1)
397 #define SHMEM_HUGE_FORCE        (-2)
398
399 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
400 /* ifdef here to avoid bloating shmem.o when not necessary */
401
402 int shmem_huge __read_mostly;
403
404 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
405 static int shmem_parse_huge(const char *str)
406 {
407         if (!strcmp(str, "never"))
408                 return SHMEM_HUGE_NEVER;
409         if (!strcmp(str, "always"))
410                 return SHMEM_HUGE_ALWAYS;
411         if (!strcmp(str, "within_size"))
412                 return SHMEM_HUGE_WITHIN_SIZE;
413         if (!strcmp(str, "advise"))
414                 return SHMEM_HUGE_ADVISE;
415         if (!strcmp(str, "deny"))
416                 return SHMEM_HUGE_DENY;
417         if (!strcmp(str, "force"))
418                 return SHMEM_HUGE_FORCE;
419         return -EINVAL;
420 }
421
422 static const char *shmem_format_huge(int huge)
423 {
424         switch (huge) {
425         case SHMEM_HUGE_NEVER:
426                 return "never";
427         case SHMEM_HUGE_ALWAYS:
428                 return "always";
429         case SHMEM_HUGE_WITHIN_SIZE:
430                 return "within_size";
431         case SHMEM_HUGE_ADVISE:
432                 return "advise";
433         case SHMEM_HUGE_DENY:
434                 return "deny";
435         case SHMEM_HUGE_FORCE:
436                 return "force";
437         default:
438                 VM_BUG_ON(1);
439                 return "bad_val";
440         }
441 }
442 #endif
443
444 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445                 struct shrink_control *sc, unsigned long nr_to_split)
446 {
447         LIST_HEAD(list), *pos, *next;
448         LIST_HEAD(to_remove);
449         struct inode *inode;
450         struct shmem_inode_info *info;
451         struct page *page;
452         unsigned long batch = sc ? sc->nr_to_scan : 128;
453         int removed = 0, split = 0;
454
455         if (list_empty(&sbinfo->shrinklist))
456                 return SHRINK_STOP;
457
458         spin_lock(&sbinfo->shrinklist_lock);
459         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461
462                 /* pin the inode */
463                 inode = igrab(&info->vfs_inode);
464
465                 /* inode is about to be evicted */
466                 if (!inode) {
467                         list_del_init(&info->shrinklist);
468                         removed++;
469                         goto next;
470                 }
471
472                 /* Check if there's anything to gain */
473                 if (round_up(inode->i_size, PAGE_SIZE) ==
474                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
475                         list_move(&info->shrinklist, &to_remove);
476                         removed++;
477                         goto next;
478                 }
479
480                 list_move(&info->shrinklist, &list);
481 next:
482                 if (!--batch)
483                         break;
484         }
485         spin_unlock(&sbinfo->shrinklist_lock);
486
487         list_for_each_safe(pos, next, &to_remove) {
488                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489                 inode = &info->vfs_inode;
490                 list_del_init(&info->shrinklist);
491                 iput(inode);
492         }
493
494         list_for_each_safe(pos, next, &list) {
495                 int ret;
496
497                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498                 inode = &info->vfs_inode;
499
500                 if (nr_to_split && split >= nr_to_split)
501                         goto leave;
502
503                 page = find_get_page(inode->i_mapping,
504                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
505                 if (!page)
506                         goto drop;
507
508                 /* No huge page at the end of the file: nothing to split */
509                 if (!PageTransHuge(page)) {
510                         put_page(page);
511                         goto drop;
512                 }
513
514                 /*
515                  * Leave the inode on the list if we failed to lock
516                  * the page at this time.
517                  *
518                  * Waiting for the lock may lead to deadlock in the
519                  * reclaim path.
520                  */
521                 if (!trylock_page(page)) {
522                         put_page(page);
523                         goto leave;
524                 }
525
526                 ret = split_huge_page(page);
527                 unlock_page(page);
528                 put_page(page);
529
530                 /* If split failed leave the inode on the list */
531                 if (ret)
532                         goto leave;
533
534                 split++;
535 drop:
536                 list_del_init(&info->shrinklist);
537                 removed++;
538 leave:
539                 iput(inode);
540         }
541
542         spin_lock(&sbinfo->shrinklist_lock);
543         list_splice_tail(&list, &sbinfo->shrinklist);
544         sbinfo->shrinklist_len -= removed;
545         spin_unlock(&sbinfo->shrinklist_lock);
546
547         return split;
548 }
549
550 static long shmem_unused_huge_scan(struct super_block *sb,
551                 struct shrink_control *sc)
552 {
553         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
554
555         if (!READ_ONCE(sbinfo->shrinklist_len))
556                 return SHRINK_STOP;
557
558         return shmem_unused_huge_shrink(sbinfo, sc, 0);
559 }
560
561 static long shmem_unused_huge_count(struct super_block *sb,
562                 struct shrink_control *sc)
563 {
564         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
565         return READ_ONCE(sbinfo->shrinklist_len);
566 }
567 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
568
569 #define shmem_huge SHMEM_HUGE_DENY
570
571 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
572                 struct shrink_control *sc, unsigned long nr_to_split)
573 {
574         return 0;
575 }
576 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
577
578 /*
579  * Like add_to_page_cache_locked, but error if expected item has gone.
580  */
581 static int shmem_add_to_page_cache(struct page *page,
582                                    struct address_space *mapping,
583                                    pgoff_t index, void *expected)
584 {
585         int error, nr = hpage_nr_pages(page);
586
587         VM_BUG_ON_PAGE(PageTail(page), page);
588         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
589         VM_BUG_ON_PAGE(!PageLocked(page), page);
590         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
591         VM_BUG_ON(expected && PageTransHuge(page));
592
593         page_ref_add(page, nr);
594         page->mapping = mapping;
595         page->index = index;
596
597         spin_lock_irq(&mapping->tree_lock);
598         if (PageTransHuge(page)) {
599                 void __rcu **results;
600                 pgoff_t idx;
601                 int i;
602
603                 error = 0;
604                 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
605                                         &results, &idx, index, 1) &&
606                                 idx < index + HPAGE_PMD_NR) {
607                         error = -EEXIST;
608                 }
609
610                 if (!error) {
611                         for (i = 0; i < HPAGE_PMD_NR; i++) {
612                                 error = radix_tree_insert(&mapping->page_tree,
613                                                 index + i, page + i);
614                                 VM_BUG_ON(error);
615                         }
616                         count_vm_event(THP_FILE_ALLOC);
617                 }
618         } else if (!expected) {
619                 error = radix_tree_insert(&mapping->page_tree, index, page);
620         } else {
621                 error = shmem_radix_tree_replace(mapping, index, expected,
622                                                                  page);
623         }
624
625         if (!error) {
626                 mapping->nrpages += nr;
627                 if (PageTransHuge(page))
628                         __inc_node_page_state(page, NR_SHMEM_THPS);
629                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
631                 spin_unlock_irq(&mapping->tree_lock);
632         } else {
633                 page->mapping = NULL;
634                 spin_unlock_irq(&mapping->tree_lock);
635                 page_ref_sub(page, nr);
636         }
637         return error;
638 }
639
640 /*
641  * Like delete_from_page_cache, but substitutes swap for page.
642  */
643 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
644 {
645         struct address_space *mapping = page->mapping;
646         int error;
647
648         VM_BUG_ON_PAGE(PageCompound(page), page);
649
650         spin_lock_irq(&mapping->tree_lock);
651         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
652         page->mapping = NULL;
653         mapping->nrpages--;
654         __dec_node_page_state(page, NR_FILE_PAGES);
655         __dec_node_page_state(page, NR_SHMEM);
656         spin_unlock_irq(&mapping->tree_lock);
657         put_page(page);
658         BUG_ON(error);
659 }
660
661 /*
662  * Remove swap entry from radix tree, free the swap and its page cache.
663  */
664 static int shmem_free_swap(struct address_space *mapping,
665                            pgoff_t index, void *radswap)
666 {
667         void *old;
668
669         spin_lock_irq(&mapping->tree_lock);
670         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
671         spin_unlock_irq(&mapping->tree_lock);
672         if (old != radswap)
673                 return -ENOENT;
674         free_swap_and_cache(radix_to_swp_entry(radswap));
675         return 0;
676 }
677
678 /*
679  * Determine (in bytes) how many of the shmem object's pages mapped by the
680  * given offsets are swapped out.
681  *
682  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683  * as long as the inode doesn't go away and racy results are not a problem.
684  */
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686                                                 pgoff_t start, pgoff_t end)
687 {
688         struct radix_tree_iter iter;
689         void **slot;
690         struct page *page;
691         unsigned long swapped = 0;
692
693         rcu_read_lock();
694
695         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
696                 if (iter.index >= end)
697                         break;
698
699                 page = radix_tree_deref_slot(slot);
700
701                 if (radix_tree_deref_retry(page)) {
702                         slot = radix_tree_iter_retry(&iter);
703                         continue;
704                 }
705
706                 if (radix_tree_exceptional_entry(page))
707                         swapped++;
708
709                 if (need_resched()) {
710                         slot = radix_tree_iter_resume(slot, &iter);
711                         cond_resched_rcu();
712                 }
713         }
714
715         rcu_read_unlock();
716
717         return swapped << PAGE_SHIFT;
718 }
719
720 /*
721  * Determine (in bytes) how many of the shmem object's pages mapped by the
722  * given vma is swapped out.
723  *
724  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
725  * as long as the inode doesn't go away and racy results are not a problem.
726  */
727 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
728 {
729         struct inode *inode = file_inode(vma->vm_file);
730         struct shmem_inode_info *info = SHMEM_I(inode);
731         struct address_space *mapping = inode->i_mapping;
732         unsigned long swapped;
733
734         /* Be careful as we don't hold info->lock */
735         swapped = READ_ONCE(info->swapped);
736
737         /*
738          * The easier cases are when the shmem object has nothing in swap, or
739          * the vma maps it whole. Then we can simply use the stats that we
740          * already track.
741          */
742         if (!swapped)
743                 return 0;
744
745         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
746                 return swapped << PAGE_SHIFT;
747
748         /* Here comes the more involved part */
749         return shmem_partial_swap_usage(mapping,
750                         linear_page_index(vma, vma->vm_start),
751                         linear_page_index(vma, vma->vm_end));
752 }
753
754 /*
755  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
756  */
757 void shmem_unlock_mapping(struct address_space *mapping)
758 {
759         struct pagevec pvec;
760         pgoff_t indices[PAGEVEC_SIZE];
761         pgoff_t index = 0;
762
763         pagevec_init(&pvec, 0);
764         /*
765          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
766          */
767         while (!mapping_unevictable(mapping)) {
768                 /*
769                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
770                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
771                  */
772                 pvec.nr = find_get_entries(mapping, index,
773                                            PAGEVEC_SIZE, pvec.pages, indices);
774                 if (!pvec.nr)
775                         break;
776                 index = indices[pvec.nr - 1] + 1;
777                 pagevec_remove_exceptionals(&pvec);
778                 check_move_unevictable_pages(pvec.pages, pvec.nr);
779                 pagevec_release(&pvec);
780                 cond_resched();
781         }
782 }
783
784 /*
785  * Remove range of pages and swap entries from radix tree, and free them.
786  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
787  */
788 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
789                                                                  bool unfalloc)
790 {
791         struct address_space *mapping = inode->i_mapping;
792         struct shmem_inode_info *info = SHMEM_I(inode);
793         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
794         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
795         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
796         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
797         struct pagevec pvec;
798         pgoff_t indices[PAGEVEC_SIZE];
799         long nr_swaps_freed = 0;
800         pgoff_t index;
801         int i;
802
803         if (lend == -1)
804                 end = -1;       /* unsigned, so actually very big */
805
806         pagevec_init(&pvec, 0);
807         index = start;
808         while (index < end) {
809                 pvec.nr = find_get_entries(mapping, index,
810                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
811                         pvec.pages, indices);
812                 if (!pvec.nr)
813                         break;
814                 for (i = 0; i < pagevec_count(&pvec); i++) {
815                         struct page *page = pvec.pages[i];
816
817                         index = indices[i];
818                         if (index >= end)
819                                 break;
820
821                         if (radix_tree_exceptional_entry(page)) {
822                                 if (unfalloc)
823                                         continue;
824                                 nr_swaps_freed += !shmem_free_swap(mapping,
825                                                                 index, page);
826                                 continue;
827                         }
828
829                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
830
831                         if (!trylock_page(page))
832                                 continue;
833
834                         if (PageTransTail(page)) {
835                                 /* Middle of THP: zero out the page */
836                                 clear_highpage(page);
837                                 unlock_page(page);
838                                 continue;
839                         } else if (PageTransHuge(page)) {
840                                 if (index == round_down(end, HPAGE_PMD_NR)) {
841                                         /*
842                                          * Range ends in the middle of THP:
843                                          * zero out the page
844                                          */
845                                         clear_highpage(page);
846                                         unlock_page(page);
847                                         continue;
848                                 }
849                                 index += HPAGE_PMD_NR - 1;
850                                 i += HPAGE_PMD_NR - 1;
851                         }
852
853                         if (!unfalloc || !PageUptodate(page)) {
854                                 VM_BUG_ON_PAGE(PageTail(page), page);
855                                 if (page_mapping(page) == mapping) {
856                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
857                                         truncate_inode_page(mapping, page);
858                                 }
859                         }
860                         unlock_page(page);
861                 }
862                 pagevec_remove_exceptionals(&pvec);
863                 pagevec_release(&pvec);
864                 cond_resched();
865                 index++;
866         }
867
868         if (partial_start) {
869                 struct page *page = NULL;
870                 shmem_getpage(inode, start - 1, &page, SGP_READ);
871                 if (page) {
872                         unsigned int top = PAGE_SIZE;
873                         if (start > end) {
874                                 top = partial_end;
875                                 partial_end = 0;
876                         }
877                         zero_user_segment(page, partial_start, top);
878                         set_page_dirty(page);
879                         unlock_page(page);
880                         put_page(page);
881                 }
882         }
883         if (partial_end) {
884                 struct page *page = NULL;
885                 shmem_getpage(inode, end, &page, SGP_READ);
886                 if (page) {
887                         zero_user_segment(page, 0, partial_end);
888                         set_page_dirty(page);
889                         unlock_page(page);
890                         put_page(page);
891                 }
892         }
893         if (start >= end)
894                 return;
895
896         index = start;
897         while (index < end) {
898                 cond_resched();
899
900                 pvec.nr = find_get_entries(mapping, index,
901                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
902                                 pvec.pages, indices);
903                 if (!pvec.nr) {
904                         /* If all gone or hole-punch or unfalloc, we're done */
905                         if (index == start || end != -1)
906                                 break;
907                         /* But if truncating, restart to make sure all gone */
908                         index = start;
909                         continue;
910                 }
911                 for (i = 0; i < pagevec_count(&pvec); i++) {
912                         struct page *page = pvec.pages[i];
913
914                         index = indices[i];
915                         if (index >= end)
916                                 break;
917
918                         if (radix_tree_exceptional_entry(page)) {
919                                 if (unfalloc)
920                                         continue;
921                                 if (shmem_free_swap(mapping, index, page)) {
922                                         /* Swap was replaced by page: retry */
923                                         index--;
924                                         break;
925                                 }
926                                 nr_swaps_freed++;
927                                 continue;
928                         }
929
930                         lock_page(page);
931
932                         if (PageTransTail(page)) {
933                                 /* Middle of THP: zero out the page */
934                                 clear_highpage(page);
935                                 unlock_page(page);
936                                 /*
937                                  * Partial thp truncate due 'start' in middle
938                                  * of THP: don't need to look on these pages
939                                  * again on !pvec.nr restart.
940                                  */
941                                 if (index != round_down(end, HPAGE_PMD_NR))
942                                         start++;
943                                 continue;
944                         } else if (PageTransHuge(page)) {
945                                 if (index == round_down(end, HPAGE_PMD_NR)) {
946                                         /*
947                                          * Range ends in the middle of THP:
948                                          * zero out the page
949                                          */
950                                         clear_highpage(page);
951                                         unlock_page(page);
952                                         continue;
953                                 }
954                                 index += HPAGE_PMD_NR - 1;
955                                 i += HPAGE_PMD_NR - 1;
956                         }
957
958                         if (!unfalloc || !PageUptodate(page)) {
959                                 VM_BUG_ON_PAGE(PageTail(page), page);
960                                 if (page_mapping(page) == mapping) {
961                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
962                                         truncate_inode_page(mapping, page);
963                                 } else {
964                                         /* Page was replaced by swap: retry */
965                                         unlock_page(page);
966                                         index--;
967                                         break;
968                                 }
969                         }
970                         unlock_page(page);
971                 }
972                 pagevec_remove_exceptionals(&pvec);
973                 pagevec_release(&pvec);
974                 index++;
975         }
976
977         spin_lock_irq(&info->lock);
978         info->swapped -= nr_swaps_freed;
979         shmem_recalc_inode(inode);
980         spin_unlock_irq(&info->lock);
981 }
982
983 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
984 {
985         shmem_undo_range(inode, lstart, lend, false);
986         inode->i_ctime = inode->i_mtime = current_time(inode);
987 }
988 EXPORT_SYMBOL_GPL(shmem_truncate_range);
989
990 static int shmem_getattr(const struct path *path, struct kstat *stat,
991                          u32 request_mask, unsigned int query_flags)
992 {
993         struct inode *inode = path->dentry->d_inode;
994         struct shmem_inode_info *info = SHMEM_I(inode);
995
996         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
997                 spin_lock_irq(&info->lock);
998                 shmem_recalc_inode(inode);
999                 spin_unlock_irq(&info->lock);
1000         }
1001         generic_fillattr(inode, stat);
1002         return 0;
1003 }
1004
1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1006 {
1007         struct inode *inode = d_inode(dentry);
1008         struct shmem_inode_info *info = SHMEM_I(inode);
1009         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1010         int error;
1011
1012         error = setattr_prepare(dentry, attr);
1013         if (error)
1014                 return error;
1015
1016         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017                 loff_t oldsize = inode->i_size;
1018                 loff_t newsize = attr->ia_size;
1019
1020                 /* protected by i_mutex */
1021                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023                         return -EPERM;
1024
1025                 if (newsize != oldsize) {
1026                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027                                         oldsize, newsize);
1028                         if (error)
1029                                 return error;
1030                         i_size_write(inode, newsize);
1031                         inode->i_ctime = inode->i_mtime = current_time(inode);
1032                 }
1033                 if (newsize <= oldsize) {
1034                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1035                         if (oldsize > holebegin)
1036                                 unmap_mapping_range(inode->i_mapping,
1037                                                         holebegin, 0, 1);
1038                         if (info->alloced)
1039                                 shmem_truncate_range(inode,
1040                                                         newsize, (loff_t)-1);
1041                         /* unmap again to remove racily COWed private pages */
1042                         if (oldsize > holebegin)
1043                                 unmap_mapping_range(inode->i_mapping,
1044                                                         holebegin, 0, 1);
1045
1046                         /*
1047                          * Part of the huge page can be beyond i_size: subject
1048                          * to shrink under memory pressure.
1049                          */
1050                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1051                                 spin_lock(&sbinfo->shrinklist_lock);
1052                                 /*
1053                                  * _careful to defend against unlocked access to
1054                                  * ->shrink_list in shmem_unused_huge_shrink()
1055                                  */
1056                                 if (list_empty_careful(&info->shrinklist)) {
1057                                         list_add_tail(&info->shrinklist,
1058                                                         &sbinfo->shrinklist);
1059                                         sbinfo->shrinklist_len++;
1060                                 }
1061                                 spin_unlock(&sbinfo->shrinklist_lock);
1062                         }
1063                 }
1064         }
1065
1066         setattr_copy(inode, attr);
1067         if (attr->ia_valid & ATTR_MODE)
1068                 error = posix_acl_chmod(inode, inode->i_mode);
1069         return error;
1070 }
1071
1072 static void shmem_evict_inode(struct inode *inode)
1073 {
1074         struct shmem_inode_info *info = SHMEM_I(inode);
1075         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1076
1077         if (inode->i_mapping->a_ops == &shmem_aops) {
1078                 shmem_unacct_size(info->flags, inode->i_size);
1079                 inode->i_size = 0;
1080                 shmem_truncate_range(inode, 0, (loff_t)-1);
1081                 if (!list_empty(&info->shrinklist)) {
1082                         spin_lock(&sbinfo->shrinklist_lock);
1083                         if (!list_empty(&info->shrinklist)) {
1084                                 list_del_init(&info->shrinklist);
1085                                 sbinfo->shrinklist_len--;
1086                         }
1087                         spin_unlock(&sbinfo->shrinklist_lock);
1088                 }
1089                 if (!list_empty(&info->swaplist)) {
1090                         mutex_lock(&shmem_swaplist_mutex);
1091                         list_del_init(&info->swaplist);
1092                         mutex_unlock(&shmem_swaplist_mutex);
1093                 }
1094         }
1095
1096         simple_xattrs_free(&info->xattrs);
1097         WARN_ON(inode->i_blocks);
1098         shmem_free_inode(inode->i_sb);
1099         clear_inode(inode);
1100 }
1101
1102 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1103 {
1104         struct radix_tree_iter iter;
1105         void **slot;
1106         unsigned long found = -1;
1107         unsigned int checked = 0;
1108
1109         rcu_read_lock();
1110         radix_tree_for_each_slot(slot, root, &iter, 0) {
1111                 if (*slot == item) {
1112                         found = iter.index;
1113                         break;
1114                 }
1115                 checked++;
1116                 if ((checked % 4096) != 0)
1117                         continue;
1118                 slot = radix_tree_iter_resume(slot, &iter);
1119                 cond_resched_rcu();
1120         }
1121
1122         rcu_read_unlock();
1123         return found;
1124 }
1125
1126 /*
1127  * If swap found in inode, free it and move page from swapcache to filecache.
1128  */
1129 static int shmem_unuse_inode(struct shmem_inode_info *info,
1130                              swp_entry_t swap, struct page **pagep)
1131 {
1132         struct address_space *mapping = info->vfs_inode.i_mapping;
1133         void *radswap;
1134         pgoff_t index;
1135         gfp_t gfp;
1136         int error = 0;
1137
1138         radswap = swp_to_radix_entry(swap);
1139         index = find_swap_entry(&mapping->page_tree, radswap);
1140         if (index == -1)
1141                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1142
1143         /*
1144          * Move _head_ to start search for next from here.
1145          * But be careful: shmem_evict_inode checks list_empty without taking
1146          * mutex, and there's an instant in list_move_tail when info->swaplist
1147          * would appear empty, if it were the only one on shmem_swaplist.
1148          */
1149         if (shmem_swaplist.next != &info->swaplist)
1150                 list_move_tail(&shmem_swaplist, &info->swaplist);
1151
1152         gfp = mapping_gfp_mask(mapping);
1153         if (shmem_should_replace_page(*pagep, gfp)) {
1154                 mutex_unlock(&shmem_swaplist_mutex);
1155                 error = shmem_replace_page(pagep, gfp, info, index);
1156                 mutex_lock(&shmem_swaplist_mutex);
1157                 /*
1158                  * We needed to drop mutex to make that restrictive page
1159                  * allocation, but the inode might have been freed while we
1160                  * dropped it: although a racing shmem_evict_inode() cannot
1161                  * complete without emptying the radix_tree, our page lock
1162                  * on this swapcache page is not enough to prevent that -
1163                  * free_swap_and_cache() of our swap entry will only
1164                  * trylock_page(), removing swap from radix_tree whatever.
1165                  *
1166                  * We must not proceed to shmem_add_to_page_cache() if the
1167                  * inode has been freed, but of course we cannot rely on
1168                  * inode or mapping or info to check that.  However, we can
1169                  * safely check if our swap entry is still in use (and here
1170                  * it can't have got reused for another page): if it's still
1171                  * in use, then the inode cannot have been freed yet, and we
1172                  * can safely proceed (if it's no longer in use, that tells
1173                  * nothing about the inode, but we don't need to unuse swap).
1174                  */
1175                 if (!page_swapcount(*pagep))
1176                         error = -ENOENT;
1177         }
1178
1179         /*
1180          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1181          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1182          * beneath us (pagelock doesn't help until the page is in pagecache).
1183          */
1184         if (!error)
1185                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1186                                                 radswap);
1187         if (error != -ENOMEM) {
1188                 /*
1189                  * Truncation and eviction use free_swap_and_cache(), which
1190                  * only does trylock page: if we raced, best clean up here.
1191                  */
1192                 delete_from_swap_cache(*pagep);
1193                 set_page_dirty(*pagep);
1194                 if (!error) {
1195                         spin_lock_irq(&info->lock);
1196                         info->swapped--;
1197                         spin_unlock_irq(&info->lock);
1198                         swap_free(swap);
1199                 }
1200         }
1201         return error;
1202 }
1203
1204 /*
1205  * Search through swapped inodes to find and replace swap by page.
1206  */
1207 int shmem_unuse(swp_entry_t swap, struct page *page)
1208 {
1209         struct list_head *this, *next;
1210         struct shmem_inode_info *info;
1211         struct mem_cgroup *memcg;
1212         int error = 0;
1213
1214         /*
1215          * There's a faint possibility that swap page was replaced before
1216          * caller locked it: caller will come back later with the right page.
1217          */
1218         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1219                 goto out;
1220
1221         /*
1222          * Charge page using GFP_KERNEL while we can wait, before taking
1223          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1224          * Charged back to the user (not to caller) when swap account is used.
1225          */
1226         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1227                         false);
1228         if (error)
1229                 goto out;
1230         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1231         error = -EAGAIN;
1232
1233         mutex_lock(&shmem_swaplist_mutex);
1234         list_for_each_safe(this, next, &shmem_swaplist) {
1235                 info = list_entry(this, struct shmem_inode_info, swaplist);
1236                 if (info->swapped)
1237                         error = shmem_unuse_inode(info, swap, &page);
1238                 else
1239                         list_del_init(&info->swaplist);
1240                 cond_resched();
1241                 if (error != -EAGAIN)
1242                         break;
1243                 /* found nothing in this: move on to search the next */
1244         }
1245         mutex_unlock(&shmem_swaplist_mutex);
1246
1247         if (error) {
1248                 if (error != -ENOMEM)
1249                         error = 0;
1250                 mem_cgroup_cancel_charge(page, memcg, false);
1251         } else
1252                 mem_cgroup_commit_charge(page, memcg, true, false);
1253 out:
1254         unlock_page(page);
1255         put_page(page);
1256         return error;
1257 }
1258
1259 /*
1260  * Move the page from the page cache to the swap cache.
1261  */
1262 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1263 {
1264         struct shmem_inode_info *info;
1265         struct address_space *mapping;
1266         struct inode *inode;
1267         swp_entry_t swap;
1268         pgoff_t index;
1269
1270         VM_BUG_ON_PAGE(PageCompound(page), page);
1271         BUG_ON(!PageLocked(page));
1272         mapping = page->mapping;
1273         index = page->index;
1274         inode = mapping->host;
1275         info = SHMEM_I(inode);
1276         if (info->flags & VM_LOCKED)
1277                 goto redirty;
1278         if (!total_swap_pages)
1279                 goto redirty;
1280
1281         /*
1282          * Our capabilities prevent regular writeback or sync from ever calling
1283          * shmem_writepage; but a stacking filesystem might use ->writepage of
1284          * its underlying filesystem, in which case tmpfs should write out to
1285          * swap only in response to memory pressure, and not for the writeback
1286          * threads or sync.
1287          */
1288         if (!wbc->for_reclaim) {
1289                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1290                 goto redirty;
1291         }
1292
1293         /*
1294          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1295          * value into swapfile.c, the only way we can correctly account for a
1296          * fallocated page arriving here is now to initialize it and write it.
1297          *
1298          * That's okay for a page already fallocated earlier, but if we have
1299          * not yet completed the fallocation, then (a) we want to keep track
1300          * of this page in case we have to undo it, and (b) it may not be a
1301          * good idea to continue anyway, once we're pushing into swap.  So
1302          * reactivate the page, and let shmem_fallocate() quit when too many.
1303          */
1304         if (!PageUptodate(page)) {
1305                 if (inode->i_private) {
1306                         struct shmem_falloc *shmem_falloc;
1307                         spin_lock(&inode->i_lock);
1308                         shmem_falloc = inode->i_private;
1309                         if (shmem_falloc &&
1310                             !shmem_falloc->waitq &&
1311                             index >= shmem_falloc->start &&
1312                             index < shmem_falloc->next)
1313                                 shmem_falloc->nr_unswapped++;
1314                         else
1315                                 shmem_falloc = NULL;
1316                         spin_unlock(&inode->i_lock);
1317                         if (shmem_falloc)
1318                                 goto redirty;
1319                 }
1320                 clear_highpage(page);
1321                 flush_dcache_page(page);
1322                 SetPageUptodate(page);
1323         }
1324
1325         swap = get_swap_page(page);
1326         if (!swap.val)
1327                 goto redirty;
1328
1329         if (mem_cgroup_try_charge_swap(page, swap))
1330                 goto free_swap;
1331
1332         /*
1333          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1334          * if it's not already there.  Do it now before the page is
1335          * moved to swap cache, when its pagelock no longer protects
1336          * the inode from eviction.  But don't unlock the mutex until
1337          * we've incremented swapped, because shmem_unuse_inode() will
1338          * prune a !swapped inode from the swaplist under this mutex.
1339          */
1340         mutex_lock(&shmem_swaplist_mutex);
1341         if (list_empty(&info->swaplist))
1342                 list_add_tail(&info->swaplist, &shmem_swaplist);
1343
1344         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1345                 spin_lock_irq(&info->lock);
1346                 shmem_recalc_inode(inode);
1347                 info->swapped++;
1348                 spin_unlock_irq(&info->lock);
1349
1350                 swap_shmem_alloc(swap);
1351                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1352
1353                 mutex_unlock(&shmem_swaplist_mutex);
1354                 BUG_ON(page_mapped(page));
1355                 swap_writepage(page, wbc);
1356                 return 0;
1357         }
1358
1359         mutex_unlock(&shmem_swaplist_mutex);
1360 free_swap:
1361         put_swap_page(page, swap);
1362 redirty:
1363         set_page_dirty(page);
1364         if (wbc->for_reclaim)
1365                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1366         unlock_page(page);
1367         return 0;
1368 }
1369
1370 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1371 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1372 {
1373         char buffer[64];
1374
1375         if (!mpol || mpol->mode == MPOL_DEFAULT)
1376                 return;         /* show nothing */
1377
1378         mpol_to_str(buffer, sizeof(buffer), mpol);
1379
1380         seq_printf(seq, ",mpol=%s", buffer);
1381 }
1382
1383 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1384 {
1385         struct mempolicy *mpol = NULL;
1386         if (sbinfo->mpol) {
1387                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1388                 mpol = sbinfo->mpol;
1389                 mpol_get(mpol);
1390                 spin_unlock(&sbinfo->stat_lock);
1391         }
1392         return mpol;
1393 }
1394 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1395 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1396 {
1397 }
1398 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1399 {
1400         return NULL;
1401 }
1402 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1403 #ifndef CONFIG_NUMA
1404 #define vm_policy vm_private_data
1405 #endif
1406
1407 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1408                 struct shmem_inode_info *info, pgoff_t index)
1409 {
1410         /* Create a pseudo vma that just contains the policy */
1411         vma->vm_start = 0;
1412         /* Bias interleave by inode number to distribute better across nodes */
1413         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1414         vma->vm_ops = NULL;
1415         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1416 }
1417
1418 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1419 {
1420         /* Drop reference taken by mpol_shared_policy_lookup() */
1421         mpol_cond_put(vma->vm_policy);
1422 }
1423
1424 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1425                         struct shmem_inode_info *info, pgoff_t index)
1426 {
1427         struct vm_area_struct pvma;
1428         struct page *page;
1429
1430         shmem_pseudo_vma_init(&pvma, info, index);
1431         page = swapin_readahead(swap, gfp, &pvma, 0);
1432         shmem_pseudo_vma_destroy(&pvma);
1433
1434         return page;
1435 }
1436
1437 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1438                 struct shmem_inode_info *info, pgoff_t index)
1439 {
1440         struct vm_area_struct pvma;
1441         struct inode *inode = &info->vfs_inode;
1442         struct address_space *mapping = inode->i_mapping;
1443         pgoff_t idx, hindex;
1444         void __rcu **results;
1445         struct page *page;
1446
1447         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1448                 return NULL;
1449
1450         hindex = round_down(index, HPAGE_PMD_NR);
1451         rcu_read_lock();
1452         if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1453                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1454                 rcu_read_unlock();
1455                 return NULL;
1456         }
1457         rcu_read_unlock();
1458
1459         shmem_pseudo_vma_init(&pvma, info, hindex);
1460         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1461                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1462         shmem_pseudo_vma_destroy(&pvma);
1463         if (page)
1464                 prep_transhuge_page(page);
1465         return page;
1466 }
1467
1468 static struct page *shmem_alloc_page(gfp_t gfp,
1469                         struct shmem_inode_info *info, pgoff_t index)
1470 {
1471         struct vm_area_struct pvma;
1472         struct page *page;
1473
1474         shmem_pseudo_vma_init(&pvma, info, index);
1475         page = alloc_page_vma(gfp, &pvma, 0);
1476         shmem_pseudo_vma_destroy(&pvma);
1477
1478         return page;
1479 }
1480
1481 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1482                 struct inode *inode,
1483                 pgoff_t index, bool huge)
1484 {
1485         struct shmem_inode_info *info = SHMEM_I(inode);
1486         struct page *page;
1487         int nr;
1488         int err = -ENOSPC;
1489
1490         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1491                 huge = false;
1492         nr = huge ? HPAGE_PMD_NR : 1;
1493
1494         if (!shmem_inode_acct_block(inode, nr))
1495                 goto failed;
1496
1497         if (huge)
1498                 page = shmem_alloc_hugepage(gfp, info, index);
1499         else
1500                 page = shmem_alloc_page(gfp, info, index);
1501         if (page) {
1502                 __SetPageLocked(page);
1503                 __SetPageSwapBacked(page);
1504                 return page;
1505         }
1506
1507         err = -ENOMEM;
1508         shmem_inode_unacct_blocks(inode, nr);
1509 failed:
1510         return ERR_PTR(err);
1511 }
1512
1513 /*
1514  * When a page is moved from swapcache to shmem filecache (either by the
1515  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1516  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1517  * ignorance of the mapping it belongs to.  If that mapping has special
1518  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1519  * we may need to copy to a suitable page before moving to filecache.
1520  *
1521  * In a future release, this may well be extended to respect cpuset and
1522  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1523  * but for now it is a simple matter of zone.
1524  */
1525 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1526 {
1527         return page_zonenum(page) > gfp_zone(gfp);
1528 }
1529
1530 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1531                                 struct shmem_inode_info *info, pgoff_t index)
1532 {
1533         struct page *oldpage, *newpage;
1534         struct address_space *swap_mapping;
1535         swp_entry_t entry;
1536         pgoff_t swap_index;
1537         int error;
1538
1539         oldpage = *pagep;
1540         entry.val = page_private(oldpage);
1541         swap_index = swp_offset(entry);
1542         swap_mapping = page_mapping(oldpage);
1543
1544         /*
1545          * We have arrived here because our zones are constrained, so don't
1546          * limit chance of success by further cpuset and node constraints.
1547          */
1548         gfp &= ~GFP_CONSTRAINT_MASK;
1549         newpage = shmem_alloc_page(gfp, info, index);
1550         if (!newpage)
1551                 return -ENOMEM;
1552
1553         get_page(newpage);
1554         copy_highpage(newpage, oldpage);
1555         flush_dcache_page(newpage);
1556
1557         __SetPageLocked(newpage);
1558         __SetPageSwapBacked(newpage);
1559         SetPageUptodate(newpage);
1560         set_page_private(newpage, entry.val);
1561         SetPageSwapCache(newpage);
1562
1563         /*
1564          * Our caller will very soon move newpage out of swapcache, but it's
1565          * a nice clean interface for us to replace oldpage by newpage there.
1566          */
1567         spin_lock_irq(&swap_mapping->tree_lock);
1568         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1569                                                                    newpage);
1570         if (!error) {
1571                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1572                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1573         }
1574         spin_unlock_irq(&swap_mapping->tree_lock);
1575
1576         if (unlikely(error)) {
1577                 /*
1578                  * Is this possible?  I think not, now that our callers check
1579                  * both PageSwapCache and page_private after getting page lock;
1580                  * but be defensive.  Reverse old to newpage for clear and free.
1581                  */
1582                 oldpage = newpage;
1583         } else {
1584                 mem_cgroup_migrate(oldpage, newpage);
1585                 lru_cache_add_anon(newpage);
1586                 *pagep = newpage;
1587         }
1588
1589         ClearPageSwapCache(oldpage);
1590         set_page_private(oldpage, 0);
1591
1592         unlock_page(oldpage);
1593         put_page(oldpage);
1594         put_page(oldpage);
1595         return error;
1596 }
1597
1598 /*
1599  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1600  *
1601  * If we allocate a new one we do not mark it dirty. That's up to the
1602  * vm. If we swap it in we mark it dirty since we also free the swap
1603  * entry since a page cannot live in both the swap and page cache.
1604  *
1605  * fault_mm and fault_type are only supplied by shmem_fault:
1606  * otherwise they are NULL.
1607  */
1608 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1609         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1610         struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1611 {
1612         struct address_space *mapping = inode->i_mapping;
1613         struct shmem_inode_info *info = SHMEM_I(inode);
1614         struct shmem_sb_info *sbinfo;
1615         struct mm_struct *charge_mm;
1616         struct mem_cgroup *memcg;
1617         struct page *page;
1618         swp_entry_t swap;
1619         enum sgp_type sgp_huge = sgp;
1620         pgoff_t hindex = index;
1621         int error;
1622         int once = 0;
1623         int alloced = 0;
1624
1625         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1626                 return -EFBIG;
1627         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1628                 sgp = SGP_CACHE;
1629 repeat:
1630         swap.val = 0;
1631         page = find_lock_entry(mapping, index);
1632         if (radix_tree_exceptional_entry(page)) {
1633                 swap = radix_to_swp_entry(page);
1634                 page = NULL;
1635         }
1636
1637         if (sgp <= SGP_CACHE &&
1638             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1639                 error = -EINVAL;
1640                 goto unlock;
1641         }
1642
1643         if (page && sgp == SGP_WRITE)
1644                 mark_page_accessed(page);
1645
1646         /* fallocated page? */
1647         if (page && !PageUptodate(page)) {
1648                 if (sgp != SGP_READ)
1649                         goto clear;
1650                 unlock_page(page);
1651                 put_page(page);
1652                 page = NULL;
1653         }
1654         if (page || (sgp == SGP_READ && !swap.val)) {
1655                 *pagep = page;
1656                 return 0;
1657         }
1658
1659         /*
1660          * Fast cache lookup did not find it:
1661          * bring it back from swap or allocate.
1662          */
1663         sbinfo = SHMEM_SB(inode->i_sb);
1664         charge_mm = vma ? vma->vm_mm : current->mm;
1665
1666         if (swap.val) {
1667                 /* Look it up and read it in.. */
1668                 page = lookup_swap_cache(swap, NULL, 0);
1669                 if (!page) {
1670                         /* Or update major stats only when swapin succeeds?? */
1671                         if (fault_type) {
1672                                 *fault_type |= VM_FAULT_MAJOR;
1673                                 count_vm_event(PGMAJFAULT);
1674                                 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1675                         }
1676                         /* Here we actually start the io */
1677                         page = shmem_swapin(swap, gfp, info, index);
1678                         if (!page) {
1679                                 error = -ENOMEM;
1680                                 goto failed;
1681                         }
1682                 }
1683
1684                 /* We have to do this with page locked to prevent races */
1685                 lock_page(page);
1686                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1687                     !shmem_confirm_swap(mapping, index, swap)) {
1688                         error = -EEXIST;        /* try again */
1689                         goto unlock;
1690                 }
1691                 if (!PageUptodate(page)) {
1692                         error = -EIO;
1693                         goto failed;
1694                 }
1695                 wait_on_page_writeback(page);
1696
1697                 if (shmem_should_replace_page(page, gfp)) {
1698                         error = shmem_replace_page(&page, gfp, info, index);
1699                         if (error)
1700                                 goto failed;
1701                 }
1702
1703                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1704                                 false);
1705                 if (!error) {
1706                         error = shmem_add_to_page_cache(page, mapping, index,
1707                                                 swp_to_radix_entry(swap));
1708                         /*
1709                          * We already confirmed swap under page lock, and make
1710                          * no memory allocation here, so usually no possibility
1711                          * of error; but free_swap_and_cache() only trylocks a
1712                          * page, so it is just possible that the entry has been
1713                          * truncated or holepunched since swap was confirmed.
1714                          * shmem_undo_range() will have done some of the
1715                          * unaccounting, now delete_from_swap_cache() will do
1716                          * the rest.
1717                          * Reset swap.val? No, leave it so "failed" goes back to
1718                          * "repeat": reading a hole and writing should succeed.
1719                          */
1720                         if (error) {
1721                                 mem_cgroup_cancel_charge(page, memcg, false);
1722                                 delete_from_swap_cache(page);
1723                         }
1724                 }
1725                 if (error)
1726                         goto failed;
1727
1728                 mem_cgroup_commit_charge(page, memcg, true, false);
1729
1730                 spin_lock_irq(&info->lock);
1731                 info->swapped--;
1732                 shmem_recalc_inode(inode);
1733                 spin_unlock_irq(&info->lock);
1734
1735                 if (sgp == SGP_WRITE)
1736                         mark_page_accessed(page);
1737
1738                 delete_from_swap_cache(page);
1739                 set_page_dirty(page);
1740                 swap_free(swap);
1741
1742         } else {
1743                 if (vma && userfaultfd_missing(vma)) {
1744                         *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1745                         return 0;
1746                 }
1747
1748                 /* shmem_symlink() */
1749                 if (mapping->a_ops != &shmem_aops)
1750                         goto alloc_nohuge;
1751                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1752                         goto alloc_nohuge;
1753                 if (shmem_huge == SHMEM_HUGE_FORCE)
1754                         goto alloc_huge;
1755                 switch (sbinfo->huge) {
1756                         loff_t i_size;
1757                         pgoff_t off;
1758                 case SHMEM_HUGE_NEVER:
1759                         goto alloc_nohuge;
1760                 case SHMEM_HUGE_WITHIN_SIZE:
1761                         off = round_up(index, HPAGE_PMD_NR);
1762                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1763                         if (i_size >= HPAGE_PMD_SIZE &&
1764                                         i_size >> PAGE_SHIFT >= off)
1765                                 goto alloc_huge;
1766                         /* fallthrough */
1767                 case SHMEM_HUGE_ADVISE:
1768                         if (sgp_huge == SGP_HUGE)
1769                                 goto alloc_huge;
1770                         /* TODO: implement fadvise() hints */
1771                         goto alloc_nohuge;
1772                 }
1773
1774 alloc_huge:
1775                 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1776                 if (IS_ERR(page)) {
1777 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1778                                         index, false);
1779                 }
1780                 if (IS_ERR(page)) {
1781                         int retry = 5;
1782                         error = PTR_ERR(page);
1783                         page = NULL;
1784                         if (error != -ENOSPC)
1785                                 goto failed;
1786                         /*
1787                          * Try to reclaim some spece by splitting a huge page
1788                          * beyond i_size on the filesystem.
1789                          */
1790                         while (retry--) {
1791                                 int ret;
1792                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1793                                 if (ret == SHRINK_STOP)
1794                                         break;
1795                                 if (ret)
1796                                         goto alloc_nohuge;
1797                         }
1798                         goto failed;
1799                 }
1800
1801                 if (PageTransHuge(page))
1802                         hindex = round_down(index, HPAGE_PMD_NR);
1803                 else
1804                         hindex = index;
1805
1806                 if (sgp == SGP_WRITE)
1807                         __SetPageReferenced(page);
1808
1809                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1810                                 PageTransHuge(page));
1811                 if (error)
1812                         goto unacct;
1813                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1814                                 compound_order(page));
1815                 if (!error) {
1816                         error = shmem_add_to_page_cache(page, mapping, hindex,
1817                                                         NULL);
1818                         radix_tree_preload_end();
1819                 }
1820                 if (error) {
1821                         mem_cgroup_cancel_charge(page, memcg,
1822                                         PageTransHuge(page));
1823                         goto unacct;
1824                 }
1825                 mem_cgroup_commit_charge(page, memcg, false,
1826                                 PageTransHuge(page));
1827                 lru_cache_add_anon(page);
1828
1829                 spin_lock_irq(&info->lock);
1830                 info->alloced += 1 << compound_order(page);
1831                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1832                 shmem_recalc_inode(inode);
1833                 spin_unlock_irq(&info->lock);
1834                 alloced = true;
1835
1836                 if (PageTransHuge(page) &&
1837                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1838                                 hindex + HPAGE_PMD_NR - 1) {
1839                         /*
1840                          * Part of the huge page is beyond i_size: subject
1841                          * to shrink under memory pressure.
1842                          */
1843                         spin_lock(&sbinfo->shrinklist_lock);
1844                         /*
1845                          * _careful to defend against unlocked access to
1846                          * ->shrink_list in shmem_unused_huge_shrink()
1847                          */
1848                         if (list_empty_careful(&info->shrinklist)) {
1849                                 list_add_tail(&info->shrinklist,
1850                                                 &sbinfo->shrinklist);
1851                                 sbinfo->shrinklist_len++;
1852                         }
1853                         spin_unlock(&sbinfo->shrinklist_lock);
1854                 }
1855
1856                 /*
1857                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1858                  */
1859                 if (sgp == SGP_FALLOC)
1860                         sgp = SGP_WRITE;
1861 clear:
1862                 /*
1863                  * Let SGP_WRITE caller clear ends if write does not fill page;
1864                  * but SGP_FALLOC on a page fallocated earlier must initialize
1865                  * it now, lest undo on failure cancel our earlier guarantee.
1866                  */
1867                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1868                         struct page *head = compound_head(page);
1869                         int i;
1870
1871                         for (i = 0; i < (1 << compound_order(head)); i++) {
1872                                 clear_highpage(head + i);
1873                                 flush_dcache_page(head + i);
1874                         }
1875                         SetPageUptodate(head);
1876                 }
1877         }
1878
1879         /* Perhaps the file has been truncated since we checked */
1880         if (sgp <= SGP_CACHE &&
1881             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1882                 if (alloced) {
1883                         ClearPageDirty(page);
1884                         delete_from_page_cache(page);
1885                         spin_lock_irq(&info->lock);
1886                         shmem_recalc_inode(inode);
1887                         spin_unlock_irq(&info->lock);
1888                 }
1889                 error = -EINVAL;
1890                 goto unlock;
1891         }
1892         *pagep = page + index - hindex;
1893         return 0;
1894
1895         /*
1896          * Error recovery.
1897          */
1898 unacct:
1899         shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1900
1901         if (PageTransHuge(page)) {
1902                 unlock_page(page);
1903                 put_page(page);
1904                 goto alloc_nohuge;
1905         }
1906 failed:
1907         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1908                 error = -EEXIST;
1909 unlock:
1910         if (page) {
1911                 unlock_page(page);
1912                 put_page(page);
1913         }
1914         if (error == -ENOSPC && !once++) {
1915                 spin_lock_irq(&info->lock);
1916                 shmem_recalc_inode(inode);
1917                 spin_unlock_irq(&info->lock);
1918                 goto repeat;
1919         }
1920         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1921                 goto repeat;
1922         return error;
1923 }
1924
1925 /*
1926  * This is like autoremove_wake_function, but it removes the wait queue
1927  * entry unconditionally - even if something else had already woken the
1928  * target.
1929  */
1930 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1931 {
1932         int ret = default_wake_function(wait, mode, sync, key);
1933         list_del_init(&wait->entry);
1934         return ret;
1935 }
1936
1937 static int shmem_fault(struct vm_fault *vmf)
1938 {
1939         struct vm_area_struct *vma = vmf->vma;
1940         struct inode *inode = file_inode(vma->vm_file);
1941         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1942         enum sgp_type sgp;
1943         int error;
1944         int ret = VM_FAULT_LOCKED;
1945
1946         /*
1947          * Trinity finds that probing a hole which tmpfs is punching can
1948          * prevent the hole-punch from ever completing: which in turn
1949          * locks writers out with its hold on i_mutex.  So refrain from
1950          * faulting pages into the hole while it's being punched.  Although
1951          * shmem_undo_range() does remove the additions, it may be unable to
1952          * keep up, as each new page needs its own unmap_mapping_range() call,
1953          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1954          *
1955          * It does not matter if we sometimes reach this check just before the
1956          * hole-punch begins, so that one fault then races with the punch:
1957          * we just need to make racing faults a rare case.
1958          *
1959          * The implementation below would be much simpler if we just used a
1960          * standard mutex or completion: but we cannot take i_mutex in fault,
1961          * and bloating every shmem inode for this unlikely case would be sad.
1962          */
1963         if (unlikely(inode->i_private)) {
1964                 struct shmem_falloc *shmem_falloc;
1965
1966                 spin_lock(&inode->i_lock);
1967                 shmem_falloc = inode->i_private;
1968                 if (shmem_falloc &&
1969                     shmem_falloc->waitq &&
1970                     vmf->pgoff >= shmem_falloc->start &&
1971                     vmf->pgoff < shmem_falloc->next) {
1972                         wait_queue_head_t *shmem_falloc_waitq;
1973                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1974
1975                         ret = VM_FAULT_NOPAGE;
1976                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1977                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1978                                 /* It's polite to up mmap_sem if we can */
1979                                 up_read(&vma->vm_mm->mmap_sem);
1980                                 ret = VM_FAULT_RETRY;
1981                         }
1982
1983                         shmem_falloc_waitq = shmem_falloc->waitq;
1984                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1985                                         TASK_UNINTERRUPTIBLE);
1986                         spin_unlock(&inode->i_lock);
1987                         schedule();
1988
1989                         /*
1990                          * shmem_falloc_waitq points into the shmem_fallocate()
1991                          * stack of the hole-punching task: shmem_falloc_waitq
1992                          * is usually invalid by the time we reach here, but
1993                          * finish_wait() does not dereference it in that case;
1994                          * though i_lock needed lest racing with wake_up_all().
1995                          */
1996                         spin_lock(&inode->i_lock);
1997                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1998                         spin_unlock(&inode->i_lock);
1999                         return ret;
2000                 }
2001                 spin_unlock(&inode->i_lock);
2002         }
2003
2004         sgp = SGP_CACHE;
2005
2006         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2007             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2008                 sgp = SGP_NOHUGE;
2009         else if (vma->vm_flags & VM_HUGEPAGE)
2010                 sgp = SGP_HUGE;
2011
2012         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2013                                   gfp, vma, vmf, &ret);
2014         if (error)
2015                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2016         return ret;
2017 }
2018
2019 unsigned long shmem_get_unmapped_area(struct file *file,
2020                                       unsigned long uaddr, unsigned long len,
2021                                       unsigned long pgoff, unsigned long flags)
2022 {
2023         unsigned long (*get_area)(struct file *,
2024                 unsigned long, unsigned long, unsigned long, unsigned long);
2025         unsigned long addr;
2026         unsigned long offset;
2027         unsigned long inflated_len;
2028         unsigned long inflated_addr;
2029         unsigned long inflated_offset;
2030
2031         if (len > TASK_SIZE)
2032                 return -ENOMEM;
2033
2034         get_area = current->mm->get_unmapped_area;
2035         addr = get_area(file, uaddr, len, pgoff, flags);
2036
2037         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2038                 return addr;
2039         if (IS_ERR_VALUE(addr))
2040                 return addr;
2041         if (addr & ~PAGE_MASK)
2042                 return addr;
2043         if (addr > TASK_SIZE - len)
2044                 return addr;
2045
2046         if (shmem_huge == SHMEM_HUGE_DENY)
2047                 return addr;
2048         if (len < HPAGE_PMD_SIZE)
2049                 return addr;
2050         if (flags & MAP_FIXED)
2051                 return addr;
2052         /*
2053          * Our priority is to support MAP_SHARED mapped hugely;
2054          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2055          * But if caller specified an address hint and we allocated area there
2056          * successfully, respect that as before.
2057          */
2058         if (uaddr == addr)
2059                 return addr;
2060
2061         if (shmem_huge != SHMEM_HUGE_FORCE) {
2062                 struct super_block *sb;
2063
2064                 if (file) {
2065                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2066                         sb = file_inode(file)->i_sb;
2067                 } else {
2068                         /*
2069                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2070                          * for "/dev/zero", to create a shared anonymous object.
2071                          */
2072                         if (IS_ERR(shm_mnt))
2073                                 return addr;
2074                         sb = shm_mnt->mnt_sb;
2075                 }
2076                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2077                         return addr;
2078         }
2079
2080         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2081         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2082                 return addr;
2083         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2084                 return addr;
2085
2086         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2087         if (inflated_len > TASK_SIZE)
2088                 return addr;
2089         if (inflated_len < len)
2090                 return addr;
2091
2092         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2093         if (IS_ERR_VALUE(inflated_addr))
2094                 return addr;
2095         if (inflated_addr & ~PAGE_MASK)
2096                 return addr;
2097
2098         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2099         inflated_addr += offset - inflated_offset;
2100         if (inflated_offset > offset)
2101                 inflated_addr += HPAGE_PMD_SIZE;
2102
2103         if (inflated_addr > TASK_SIZE - len)
2104                 return addr;
2105         return inflated_addr;
2106 }
2107
2108 #ifdef CONFIG_NUMA
2109 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2110 {
2111         struct inode *inode = file_inode(vma->vm_file);
2112         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2113 }
2114
2115 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2116                                           unsigned long addr)
2117 {
2118         struct inode *inode = file_inode(vma->vm_file);
2119         pgoff_t index;
2120
2121         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2122         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2123 }
2124 #endif
2125
2126 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2127 {
2128         struct inode *inode = file_inode(file);
2129         struct shmem_inode_info *info = SHMEM_I(inode);
2130         int retval = -ENOMEM;
2131
2132         /*
2133          * What serializes the accesses to info->flags?
2134          * ipc_lock_object() when called from shmctl_do_lock(),
2135          * no serialization needed when called from shm_destroy().
2136          */
2137         if (lock && !(info->flags & VM_LOCKED)) {
2138                 if (!user_shm_lock(inode->i_size, user))
2139                         goto out_nomem;
2140                 info->flags |= VM_LOCKED;
2141                 mapping_set_unevictable(file->f_mapping);
2142         }
2143         if (!lock && (info->flags & VM_LOCKED) && user) {
2144                 user_shm_unlock(inode->i_size, user);
2145                 info->flags &= ~VM_LOCKED;
2146                 mapping_clear_unevictable(file->f_mapping);
2147         }
2148         retval = 0;
2149
2150 out_nomem:
2151         return retval;
2152 }
2153
2154 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2155 {
2156         file_accessed(file);
2157         vma->vm_ops = &shmem_vm_ops;
2158         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2159                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2160                         (vma->vm_end & HPAGE_PMD_MASK)) {
2161                 khugepaged_enter(vma, vma->vm_flags);
2162         }
2163         return 0;
2164 }
2165
2166 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2167                                      umode_t mode, dev_t dev, unsigned long flags)
2168 {
2169         struct inode *inode;
2170         struct shmem_inode_info *info;
2171         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2172
2173         if (shmem_reserve_inode(sb))
2174                 return NULL;
2175
2176         inode = new_inode(sb);
2177         if (inode) {
2178                 inode->i_ino = get_next_ino();
2179                 inode_init_owner(inode, dir, mode);
2180                 inode->i_blocks = 0;
2181                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2182                 inode->i_generation = get_seconds();
2183                 info = SHMEM_I(inode);
2184                 memset(info, 0, (char *)inode - (char *)info);
2185                 spin_lock_init(&info->lock);
2186                 info->seals = F_SEAL_SEAL;
2187                 info->flags = flags & VM_NORESERVE;
2188                 INIT_LIST_HEAD(&info->shrinklist);
2189                 INIT_LIST_HEAD(&info->swaplist);
2190                 simple_xattrs_init(&info->xattrs);
2191                 cache_no_acl(inode);
2192
2193                 switch (mode & S_IFMT) {
2194                 default:
2195                         inode->i_op = &shmem_special_inode_operations;
2196                         init_special_inode(inode, mode, dev);
2197                         break;
2198                 case S_IFREG:
2199                         inode->i_mapping->a_ops = &shmem_aops;
2200                         inode->i_op = &shmem_inode_operations;
2201                         inode->i_fop = &shmem_file_operations;
2202                         mpol_shared_policy_init(&info->policy,
2203                                                  shmem_get_sbmpol(sbinfo));
2204                         break;
2205                 case S_IFDIR:
2206                         inc_nlink(inode);
2207                         /* Some things misbehave if size == 0 on a directory */
2208                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2209                         inode->i_op = &shmem_dir_inode_operations;
2210                         inode->i_fop = &simple_dir_operations;
2211                         break;
2212                 case S_IFLNK:
2213                         /*
2214                          * Must not load anything in the rbtree,
2215                          * mpol_free_shared_policy will not be called.
2216                          */
2217                         mpol_shared_policy_init(&info->policy, NULL);
2218                         break;
2219                 }
2220
2221                 lockdep_annotate_inode_mutex_key(inode);
2222         } else
2223                 shmem_free_inode(sb);
2224         return inode;
2225 }
2226
2227 bool shmem_mapping(struct address_space *mapping)
2228 {
2229         return mapping->a_ops == &shmem_aops;
2230 }
2231
2232 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2233                                   pmd_t *dst_pmd,
2234                                   struct vm_area_struct *dst_vma,
2235                                   unsigned long dst_addr,
2236                                   unsigned long src_addr,
2237                                   bool zeropage,
2238                                   struct page **pagep)
2239 {
2240         struct inode *inode = file_inode(dst_vma->vm_file);
2241         struct shmem_inode_info *info = SHMEM_I(inode);
2242         struct address_space *mapping = inode->i_mapping;
2243         gfp_t gfp = mapping_gfp_mask(mapping);
2244         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2245         struct mem_cgroup *memcg;
2246         spinlock_t *ptl;
2247         void *page_kaddr;
2248         struct page *page;
2249         pte_t _dst_pte, *dst_pte;
2250         int ret;
2251         pgoff_t offset, max_off;
2252
2253         ret = -ENOMEM;
2254         if (!shmem_inode_acct_block(inode, 1)) {
2255                 /*
2256                  * We may have got a page, returned -ENOENT triggering a retry,
2257                  * and now we find ourselves with -ENOMEM. Release the page, to
2258                  * avoid a BUG_ON in our caller.
2259                  */
2260                 if (unlikely(*pagep)) {
2261                         put_page(*pagep);
2262                         *pagep = NULL;
2263                 }
2264                 goto out;
2265         }
2266
2267         if (!*pagep) {
2268                 page = shmem_alloc_page(gfp, info, pgoff);
2269                 if (!page)
2270                         goto out_unacct_blocks;
2271
2272                 if (!zeropage) {        /* mcopy_atomic */
2273                         page_kaddr = kmap_atomic(page);
2274                         ret = copy_from_user(page_kaddr,
2275                                              (const void __user *)src_addr,
2276                                              PAGE_SIZE);
2277                         kunmap_atomic(page_kaddr);
2278
2279                         /* fallback to copy_from_user outside mmap_sem */
2280                         if (unlikely(ret)) {
2281                                 *pagep = page;
2282                                 shmem_inode_unacct_blocks(inode, 1);
2283                                 /* don't free the page */
2284                                 return -ENOENT;
2285                         }
2286                 } else {                /* mfill_zeropage_atomic */
2287                         clear_highpage(page);
2288                 }
2289         } else {
2290                 page = *pagep;
2291                 *pagep = NULL;
2292         }
2293
2294         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2295         __SetPageLocked(page);
2296         __SetPageSwapBacked(page);
2297         __SetPageUptodate(page);
2298
2299         ret = -EFAULT;
2300         offset = linear_page_index(dst_vma, dst_addr);
2301         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2302         if (unlikely(offset >= max_off))
2303                 goto out_release;
2304
2305         ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2306         if (ret)
2307                 goto out_release;
2308
2309         ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2310         if (!ret) {
2311                 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2312                 radix_tree_preload_end();
2313         }
2314         if (ret)
2315                 goto out_release_uncharge;
2316
2317         mem_cgroup_commit_charge(page, memcg, false, false);
2318
2319         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2320         if (dst_vma->vm_flags & VM_WRITE)
2321                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2322         else {
2323                 /*
2324                  * We don't set the pte dirty if the vma has no
2325                  * VM_WRITE permission, so mark the page dirty or it
2326                  * could be freed from under us. We could do it
2327                  * unconditionally before unlock_page(), but doing it
2328                  * only if VM_WRITE is not set is faster.
2329                  */
2330                 set_page_dirty(page);
2331         }
2332
2333         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2334
2335         ret = -EFAULT;
2336         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2337         if (unlikely(offset >= max_off))
2338                 goto out_release_uncharge_unlock;
2339
2340         ret = -EEXIST;
2341         if (!pte_none(*dst_pte))
2342                 goto out_release_uncharge_unlock;
2343
2344         lru_cache_add_anon(page);
2345
2346         spin_lock_irq(&info->lock);
2347         info->alloced++;
2348         inode->i_blocks += BLOCKS_PER_PAGE;
2349         shmem_recalc_inode(inode);
2350         spin_unlock_irq(&info->lock);
2351
2352         inc_mm_counter(dst_mm, mm_counter_file(page));
2353         page_add_file_rmap(page, false);
2354         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2355
2356         /* No need to invalidate - it was non-present before */
2357         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2358         pte_unmap_unlock(dst_pte, ptl);
2359         unlock_page(page);
2360         ret = 0;
2361 out:
2362         return ret;
2363 out_release_uncharge_unlock:
2364         pte_unmap_unlock(dst_pte, ptl);
2365         ClearPageDirty(page);
2366         delete_from_page_cache(page);
2367 out_release_uncharge:
2368         mem_cgroup_cancel_charge(page, memcg, false);
2369 out_release:
2370         unlock_page(page);
2371         put_page(page);
2372 out_unacct_blocks:
2373         shmem_inode_unacct_blocks(inode, 1);
2374         goto out;
2375 }
2376
2377 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2378                            pmd_t *dst_pmd,
2379                            struct vm_area_struct *dst_vma,
2380                            unsigned long dst_addr,
2381                            unsigned long src_addr,
2382                            struct page **pagep)
2383 {
2384         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2385                                       dst_addr, src_addr, false, pagep);
2386 }
2387
2388 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2389                              pmd_t *dst_pmd,
2390                              struct vm_area_struct *dst_vma,
2391                              unsigned long dst_addr)
2392 {
2393         struct page *page = NULL;
2394
2395         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2396                                       dst_addr, 0, true, &page);
2397 }
2398
2399 #ifdef CONFIG_TMPFS
2400 static const struct inode_operations shmem_symlink_inode_operations;
2401 static const struct inode_operations shmem_short_symlink_operations;
2402
2403 #ifdef CONFIG_TMPFS_XATTR
2404 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2405 #else
2406 #define shmem_initxattrs NULL
2407 #endif
2408
2409 static int
2410 shmem_write_begin(struct file *file, struct address_space *mapping,
2411                         loff_t pos, unsigned len, unsigned flags,
2412                         struct page **pagep, void **fsdata)
2413 {
2414         struct inode *inode = mapping->host;
2415         struct shmem_inode_info *info = SHMEM_I(inode);
2416         pgoff_t index = pos >> PAGE_SHIFT;
2417
2418         /* i_mutex is held by caller */
2419         if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2420                 if (info->seals & F_SEAL_WRITE)
2421                         return -EPERM;
2422                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2423                         return -EPERM;
2424         }
2425
2426         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2427 }
2428
2429 static int
2430 shmem_write_end(struct file *file, struct address_space *mapping,
2431                         loff_t pos, unsigned len, unsigned copied,
2432                         struct page *page, void *fsdata)
2433 {
2434         struct inode *inode = mapping->host;
2435
2436         if (pos + copied > inode->i_size)
2437                 i_size_write(inode, pos + copied);
2438
2439         if (!PageUptodate(page)) {
2440                 struct page *head = compound_head(page);
2441                 if (PageTransCompound(page)) {
2442                         int i;
2443
2444                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2445                                 if (head + i == page)
2446                                         continue;
2447                                 clear_highpage(head + i);
2448                                 flush_dcache_page(head + i);
2449                         }
2450                 }
2451                 if (copied < PAGE_SIZE) {
2452                         unsigned from = pos & (PAGE_SIZE - 1);
2453                         zero_user_segments(page, 0, from,
2454                                         from + copied, PAGE_SIZE);
2455                 }
2456                 SetPageUptodate(head);
2457         }
2458         set_page_dirty(page);
2459         unlock_page(page);
2460         put_page(page);
2461
2462         return copied;
2463 }
2464
2465 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2466 {
2467         struct file *file = iocb->ki_filp;
2468         struct inode *inode = file_inode(file);
2469         struct address_space *mapping = inode->i_mapping;
2470         pgoff_t index;
2471         unsigned long offset;
2472         enum sgp_type sgp = SGP_READ;
2473         int error = 0;
2474         ssize_t retval = 0;
2475         loff_t *ppos = &iocb->ki_pos;
2476
2477         /*
2478          * Might this read be for a stacking filesystem?  Then when reading
2479          * holes of a sparse file, we actually need to allocate those pages,
2480          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2481          */
2482         if (!iter_is_iovec(to))
2483                 sgp = SGP_CACHE;
2484
2485         index = *ppos >> PAGE_SHIFT;
2486         offset = *ppos & ~PAGE_MASK;
2487
2488         for (;;) {
2489                 struct page *page = NULL;
2490                 pgoff_t end_index;
2491                 unsigned long nr, ret;
2492                 loff_t i_size = i_size_read(inode);
2493
2494                 end_index = i_size >> PAGE_SHIFT;
2495                 if (index > end_index)
2496                         break;
2497                 if (index == end_index) {
2498                         nr = i_size & ~PAGE_MASK;
2499                         if (nr <= offset)
2500                                 break;
2501                 }
2502
2503                 error = shmem_getpage(inode, index, &page, sgp);
2504                 if (error) {
2505                         if (error == -EINVAL)
2506                                 error = 0;
2507                         break;
2508                 }
2509                 if (page) {
2510                         if (sgp == SGP_CACHE)
2511                                 set_page_dirty(page);
2512                         unlock_page(page);
2513                 }
2514
2515                 /*
2516                  * We must evaluate after, since reads (unlike writes)
2517                  * are called without i_mutex protection against truncate
2518                  */
2519                 nr = PAGE_SIZE;
2520                 i_size = i_size_read(inode);
2521                 end_index = i_size >> PAGE_SHIFT;
2522                 if (index == end_index) {
2523                         nr = i_size & ~PAGE_MASK;
2524                         if (nr <= offset) {
2525                                 if (page)
2526                                         put_page(page);
2527                                 break;
2528                         }
2529                 }
2530                 nr -= offset;
2531
2532                 if (page) {
2533                         /*
2534                          * If users can be writing to this page using arbitrary
2535                          * virtual addresses, take care about potential aliasing
2536                          * before reading the page on the kernel side.
2537                          */
2538                         if (mapping_writably_mapped(mapping))
2539                                 flush_dcache_page(page);
2540                         /*
2541                          * Mark the page accessed if we read the beginning.
2542                          */
2543                         if (!offset)
2544                                 mark_page_accessed(page);
2545                 } else {
2546                         page = ZERO_PAGE(0);
2547                         get_page(page);
2548                 }
2549
2550                 /*
2551                  * Ok, we have the page, and it's up-to-date, so
2552                  * now we can copy it to user space...
2553                  */
2554                 ret = copy_page_to_iter(page, offset, nr, to);
2555                 retval += ret;
2556                 offset += ret;
2557                 index += offset >> PAGE_SHIFT;
2558                 offset &= ~PAGE_MASK;
2559
2560                 put_page(page);
2561                 if (!iov_iter_count(to))
2562                         break;
2563                 if (ret < nr) {
2564                         error = -EFAULT;
2565                         break;
2566                 }
2567                 cond_resched();
2568         }
2569
2570         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2571         file_accessed(file);
2572         return retval ? retval : error;
2573 }
2574
2575 /*
2576  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2577  */
2578 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2579                                     pgoff_t index, pgoff_t end, int whence)
2580 {
2581         struct page *page;
2582         struct pagevec pvec;
2583         pgoff_t indices[PAGEVEC_SIZE];
2584         bool done = false;
2585         int i;
2586
2587         pagevec_init(&pvec, 0);
2588         pvec.nr = 1;            /* start small: we may be there already */
2589         while (!done) {
2590                 pvec.nr = find_get_entries(mapping, index,
2591                                         pvec.nr, pvec.pages, indices);
2592                 if (!pvec.nr) {
2593                         if (whence == SEEK_DATA)
2594                                 index = end;
2595                         break;
2596                 }
2597                 for (i = 0; i < pvec.nr; i++, index++) {
2598                         if (index < indices[i]) {
2599                                 if (whence == SEEK_HOLE) {
2600                                         done = true;
2601                                         break;
2602                                 }
2603                                 index = indices[i];
2604                         }
2605                         page = pvec.pages[i];
2606                         if (page && !radix_tree_exceptional_entry(page)) {
2607                                 if (!PageUptodate(page))
2608                                         page = NULL;
2609                         }
2610                         if (index >= end ||
2611                             (page && whence == SEEK_DATA) ||
2612                             (!page && whence == SEEK_HOLE)) {
2613                                 done = true;
2614                                 break;
2615                         }
2616                 }
2617                 pagevec_remove_exceptionals(&pvec);
2618                 pagevec_release(&pvec);
2619                 pvec.nr = PAGEVEC_SIZE;
2620                 cond_resched();
2621         }
2622         return index;
2623 }
2624
2625 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2626 {
2627         struct address_space *mapping = file->f_mapping;
2628         struct inode *inode = mapping->host;
2629         pgoff_t start, end;
2630         loff_t new_offset;
2631
2632         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2633                 return generic_file_llseek_size(file, offset, whence,
2634                                         MAX_LFS_FILESIZE, i_size_read(inode));
2635         inode_lock(inode);
2636         /* We're holding i_mutex so we can access i_size directly */
2637
2638         if (offset < 0 || offset >= inode->i_size)
2639                 offset = -ENXIO;
2640         else {
2641                 start = offset >> PAGE_SHIFT;
2642                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2643                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2644                 new_offset <<= PAGE_SHIFT;
2645                 if (new_offset > offset) {
2646                         if (new_offset < inode->i_size)
2647                                 offset = new_offset;
2648                         else if (whence == SEEK_DATA)
2649                                 offset = -ENXIO;
2650                         else
2651                                 offset = inode->i_size;
2652                 }
2653         }
2654
2655         if (offset >= 0)
2656                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2657         inode_unlock(inode);
2658         return offset;
2659 }
2660
2661 /*
2662  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2663  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2664  */
2665 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2666 #define LAST_SCAN               4       /* about 150ms max */
2667
2668 static void shmem_tag_pins(struct address_space *mapping)
2669 {
2670         struct radix_tree_iter iter;
2671         void **slot;
2672         pgoff_t start;
2673         struct page *page;
2674         unsigned int tagged = 0;
2675
2676         lru_add_drain();
2677         start = 0;
2678
2679         spin_lock_irq(&mapping->tree_lock);
2680         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2681                 page = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
2682                 if (!page || radix_tree_exception(page)) {
2683                         if (radix_tree_deref_retry(page)) {
2684                                 slot = radix_tree_iter_retry(&iter);
2685                                 continue;
2686                         }
2687                 } else if (page_count(page) - page_mapcount(page) > 1) {
2688                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2689                                            SHMEM_TAG_PINNED);
2690                 }
2691
2692                 if (++tagged % 1024)
2693                         continue;
2694
2695                 slot = radix_tree_iter_resume(slot, &iter);
2696                 spin_unlock_irq(&mapping->tree_lock);
2697                 cond_resched();
2698                 spin_lock_irq(&mapping->tree_lock);
2699         }
2700         spin_unlock_irq(&mapping->tree_lock);
2701 }
2702
2703 /*
2704  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2705  * via get_user_pages(), drivers might have some pending I/O without any active
2706  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2707  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2708  * them to be dropped.
2709  * The caller must guarantee that no new user will acquire writable references
2710  * to those pages to avoid races.
2711  */
2712 static int shmem_wait_for_pins(struct address_space *mapping)
2713 {
2714         struct radix_tree_iter iter;
2715         void **slot;
2716         pgoff_t start;
2717         struct page *page;
2718         int error, scan;
2719
2720         shmem_tag_pins(mapping);
2721
2722         error = 0;
2723         for (scan = 0; scan <= LAST_SCAN; scan++) {
2724                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2725                         break;
2726
2727                 if (!scan)
2728                         lru_add_drain_all();
2729                 else if (schedule_timeout_killable((HZ << scan) / 200))
2730                         scan = LAST_SCAN;
2731
2732                 start = 0;
2733                 rcu_read_lock();
2734                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2735                                            start, SHMEM_TAG_PINNED) {
2736
2737                         page = radix_tree_deref_slot(slot);
2738                         if (radix_tree_exception(page)) {
2739                                 if (radix_tree_deref_retry(page)) {
2740                                         slot = radix_tree_iter_retry(&iter);
2741                                         continue;
2742                                 }
2743
2744                                 page = NULL;
2745                         }
2746
2747                         if (page &&
2748                             page_count(page) - page_mapcount(page) != 1) {
2749                                 if (scan < LAST_SCAN)
2750                                         goto continue_resched;
2751
2752                                 /*
2753                                  * On the last scan, we clean up all those tags
2754                                  * we inserted; but make a note that we still
2755                                  * found pages pinned.
2756                                  */
2757                                 error = -EBUSY;
2758                         }
2759
2760                         spin_lock_irq(&mapping->tree_lock);
2761                         radix_tree_tag_clear(&mapping->page_tree,
2762                                              iter.index, SHMEM_TAG_PINNED);
2763                         spin_unlock_irq(&mapping->tree_lock);
2764 continue_resched:
2765                         if (need_resched()) {
2766                                 slot = radix_tree_iter_resume(slot, &iter);
2767                                 cond_resched_rcu();
2768                         }
2769                 }
2770                 rcu_read_unlock();
2771         }
2772
2773         return error;
2774 }
2775
2776 #define F_ALL_SEALS (F_SEAL_SEAL | \
2777                      F_SEAL_SHRINK | \
2778                      F_SEAL_GROW | \
2779                      F_SEAL_WRITE)
2780
2781 int shmem_add_seals(struct file *file, unsigned int seals)
2782 {
2783         struct inode *inode = file_inode(file);
2784         struct shmem_inode_info *info = SHMEM_I(inode);
2785         int error;
2786
2787         /*
2788          * SEALING
2789          * Sealing allows multiple parties to share a shmem-file but restrict
2790          * access to a specific subset of file operations. Seals can only be
2791          * added, but never removed. This way, mutually untrusted parties can
2792          * share common memory regions with a well-defined policy. A malicious
2793          * peer can thus never perform unwanted operations on a shared object.
2794          *
2795          * Seals are only supported on special shmem-files and always affect
2796          * the whole underlying inode. Once a seal is set, it may prevent some
2797          * kinds of access to the file. Currently, the following seals are
2798          * defined:
2799          *   SEAL_SEAL: Prevent further seals from being set on this file
2800          *   SEAL_SHRINK: Prevent the file from shrinking
2801          *   SEAL_GROW: Prevent the file from growing
2802          *   SEAL_WRITE: Prevent write access to the file
2803          *
2804          * As we don't require any trust relationship between two parties, we
2805          * must prevent seals from being removed. Therefore, sealing a file
2806          * only adds a given set of seals to the file, it never touches
2807          * existing seals. Furthermore, the "setting seals"-operation can be
2808          * sealed itself, which basically prevents any further seal from being
2809          * added.
2810          *
2811          * Semantics of sealing are only defined on volatile files. Only
2812          * anonymous shmem files support sealing. More importantly, seals are
2813          * never written to disk. Therefore, there's no plan to support it on
2814          * other file types.
2815          */
2816
2817         if (file->f_op != &shmem_file_operations)
2818                 return -EINVAL;
2819         if (!(file->f_mode & FMODE_WRITE))
2820                 return -EPERM;
2821         if (seals & ~(unsigned int)F_ALL_SEALS)
2822                 return -EINVAL;
2823
2824         inode_lock(inode);
2825
2826         if (info->seals & F_SEAL_SEAL) {
2827                 error = -EPERM;
2828                 goto unlock;
2829         }
2830
2831         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2832                 error = mapping_deny_writable(file->f_mapping);
2833                 if (error)
2834                         goto unlock;
2835
2836                 error = shmem_wait_for_pins(file->f_mapping);
2837                 if (error) {
2838                         mapping_allow_writable(file->f_mapping);
2839                         goto unlock;
2840                 }
2841         }
2842
2843         info->seals |= seals;
2844         error = 0;
2845
2846 unlock:
2847         inode_unlock(inode);
2848         return error;
2849 }
2850 EXPORT_SYMBOL_GPL(shmem_add_seals);
2851
2852 int shmem_get_seals(struct file *file)
2853 {
2854         if (file->f_op != &shmem_file_operations)
2855                 return -EINVAL;
2856
2857         return SHMEM_I(file_inode(file))->seals;
2858 }
2859 EXPORT_SYMBOL_GPL(shmem_get_seals);
2860
2861 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2862 {
2863         long error;
2864
2865         switch (cmd) {
2866         case F_ADD_SEALS:
2867                 /* disallow upper 32bit */
2868                 if (arg > UINT_MAX)
2869                         return -EINVAL;
2870
2871                 error = shmem_add_seals(file, arg);
2872                 break;
2873         case F_GET_SEALS:
2874                 error = shmem_get_seals(file);
2875                 break;
2876         default:
2877                 error = -EINVAL;
2878                 break;
2879         }
2880
2881         return error;
2882 }
2883
2884 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2885                                                          loff_t len)
2886 {
2887         struct inode *inode = file_inode(file);
2888         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2889         struct shmem_inode_info *info = SHMEM_I(inode);
2890         struct shmem_falloc shmem_falloc;
2891         pgoff_t start, index, end;
2892         int error;
2893
2894         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2895                 return -EOPNOTSUPP;
2896
2897         inode_lock(inode);
2898
2899         if (mode & FALLOC_FL_PUNCH_HOLE) {
2900                 struct address_space *mapping = file->f_mapping;
2901                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2902                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2903                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2904
2905                 /* protected by i_mutex */
2906                 if (info->seals & F_SEAL_WRITE) {
2907                         error = -EPERM;
2908                         goto out;
2909                 }
2910
2911                 shmem_falloc.waitq = &shmem_falloc_waitq;
2912                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2913                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2914                 spin_lock(&inode->i_lock);
2915                 inode->i_private = &shmem_falloc;
2916                 spin_unlock(&inode->i_lock);
2917
2918                 if ((u64)unmap_end > (u64)unmap_start)
2919                         unmap_mapping_range(mapping, unmap_start,
2920                                             1 + unmap_end - unmap_start, 0);
2921                 shmem_truncate_range(inode, offset, offset + len - 1);
2922                 /* No need to unmap again: hole-punching leaves COWed pages */
2923
2924                 spin_lock(&inode->i_lock);
2925                 inode->i_private = NULL;
2926                 wake_up_all(&shmem_falloc_waitq);
2927                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2928                 spin_unlock(&inode->i_lock);
2929                 error = 0;
2930                 goto out;
2931         }
2932
2933         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2934         error = inode_newsize_ok(inode, offset + len);
2935         if (error)
2936                 goto out;
2937
2938         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2939                 error = -EPERM;
2940                 goto out;
2941         }
2942
2943         start = offset >> PAGE_SHIFT;
2944         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2945         /* Try to avoid a swapstorm if len is impossible to satisfy */
2946         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2947                 error = -ENOSPC;
2948                 goto out;
2949         }
2950
2951         shmem_falloc.waitq = NULL;
2952         shmem_falloc.start = start;
2953         shmem_falloc.next  = start;
2954         shmem_falloc.nr_falloced = 0;
2955         shmem_falloc.nr_unswapped = 0;
2956         spin_lock(&inode->i_lock);
2957         inode->i_private = &shmem_falloc;
2958         spin_unlock(&inode->i_lock);
2959
2960         for (index = start; index < end; index++) {
2961                 struct page *page;
2962
2963                 /*
2964                  * Good, the fallocate(2) manpage permits EINTR: we may have
2965                  * been interrupted because we are using up too much memory.
2966                  */
2967                 if (signal_pending(current))
2968                         error = -EINTR;
2969                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2970                         error = -ENOMEM;
2971                 else
2972                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2973                 if (error) {
2974                         /* Remove the !PageUptodate pages we added */
2975                         if (index > start) {
2976                                 shmem_undo_range(inode,
2977                                     (loff_t)start << PAGE_SHIFT,
2978                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2979                         }
2980                         goto undone;
2981                 }
2982
2983                 /*
2984                  * Inform shmem_writepage() how far we have reached.
2985                  * No need for lock or barrier: we have the page lock.
2986                  */
2987                 shmem_falloc.next++;
2988                 if (!PageUptodate(page))
2989                         shmem_falloc.nr_falloced++;
2990
2991                 /*
2992                  * If !PageUptodate, leave it that way so that freeable pages
2993                  * can be recognized if we need to rollback on error later.
2994                  * But set_page_dirty so that memory pressure will swap rather
2995                  * than free the pages we are allocating (and SGP_CACHE pages
2996                  * might still be clean: we now need to mark those dirty too).
2997                  */
2998                 set_page_dirty(page);
2999                 unlock_page(page);
3000                 put_page(page);
3001                 cond_resched();
3002         }
3003
3004         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3005                 i_size_write(inode, offset + len);
3006         inode->i_ctime = current_time(inode);
3007 undone:
3008         spin_lock(&inode->i_lock);
3009         inode->i_private = NULL;
3010         spin_unlock(&inode->i_lock);
3011 out:
3012         inode_unlock(inode);
3013         return error;
3014 }
3015
3016 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3017 {
3018         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3019
3020         buf->f_type = TMPFS_MAGIC;
3021         buf->f_bsize = PAGE_SIZE;
3022         buf->f_namelen = NAME_MAX;
3023         if (sbinfo->max_blocks) {
3024                 buf->f_blocks = sbinfo->max_blocks;
3025                 buf->f_bavail =
3026                 buf->f_bfree  = sbinfo->max_blocks -
3027                                 percpu_counter_sum(&sbinfo->used_blocks);
3028         }
3029         if (sbinfo->max_inodes) {
3030                 buf->f_files = sbinfo->max_inodes;
3031                 buf->f_ffree = sbinfo->free_inodes;
3032         }
3033         /* else leave those fields 0 like simple_statfs */
3034         return 0;
3035 }
3036
3037 /*
3038  * File creation. Allocate an inode, and we're done..
3039  */
3040 static int
3041 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3042 {
3043         struct inode *inode;
3044         int error = -ENOSPC;
3045
3046         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3047         if (inode) {
3048                 error = simple_acl_create(dir, inode);
3049                 if (error)
3050                         goto out_iput;
3051                 error = security_inode_init_security(inode, dir,
3052                                                      &dentry->d_name,
3053                                                      shmem_initxattrs, NULL);
3054                 if (error && error != -EOPNOTSUPP)
3055                         goto out_iput;
3056
3057                 error = 0;
3058                 dir->i_size += BOGO_DIRENT_SIZE;
3059                 dir->i_ctime = dir->i_mtime = current_time(dir);
3060                 d_instantiate(dentry, inode);
3061                 dget(dentry); /* Extra count - pin the dentry in core */
3062         }
3063         return error;
3064 out_iput:
3065         iput(inode);
3066         return error;
3067 }
3068
3069 static int
3070 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3071 {
3072         struct inode *inode;
3073         int error = -ENOSPC;
3074
3075         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3076         if (inode) {
3077                 error = security_inode_init_security(inode, dir,
3078                                                      NULL,
3079                                                      shmem_initxattrs, NULL);
3080                 if (error && error != -EOPNOTSUPP)
3081                         goto out_iput;
3082                 error = simple_acl_create(dir, inode);
3083                 if (error)
3084                         goto out_iput;
3085                 d_tmpfile(dentry, inode);
3086         }
3087         return error;
3088 out_iput:
3089         iput(inode);
3090         return error;
3091 }
3092
3093 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3094 {
3095         int error;
3096
3097         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3098                 return error;
3099         inc_nlink(dir);
3100         return 0;
3101 }
3102
3103 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3104                 bool excl)
3105 {
3106         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3107 }
3108
3109 /*
3110  * Link a file..
3111  */
3112 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3113 {
3114         struct inode *inode = d_inode(old_dentry);
3115         int ret = 0;
3116
3117         /*
3118          * No ordinary (disk based) filesystem counts links as inodes;
3119          * but each new link needs a new dentry, pinning lowmem, and
3120          * tmpfs dentries cannot be pruned until they are unlinked.
3121          * But if an O_TMPFILE file is linked into the tmpfs, the
3122          * first link must skip that, to get the accounting right.
3123          */
3124         if (inode->i_nlink) {
3125                 ret = shmem_reserve_inode(inode->i_sb);
3126                 if (ret)
3127                         goto out;
3128         }
3129
3130         dir->i_size += BOGO_DIRENT_SIZE;
3131         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3132         inc_nlink(inode);
3133         ihold(inode);   /* New dentry reference */
3134         dget(dentry);           /* Extra pinning count for the created dentry */
3135         d_instantiate(dentry, inode);
3136 out:
3137         return ret;
3138 }
3139
3140 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3141 {
3142         struct inode *inode = d_inode(dentry);
3143
3144         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3145                 shmem_free_inode(inode->i_sb);
3146
3147         dir->i_size -= BOGO_DIRENT_SIZE;
3148         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3149         drop_nlink(inode);
3150         dput(dentry);   /* Undo the count from "create" - this does all the work */
3151         return 0;
3152 }
3153
3154 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3155 {
3156         if (!simple_empty(dentry))
3157                 return -ENOTEMPTY;
3158
3159         drop_nlink(d_inode(dentry));
3160         drop_nlink(dir);
3161         return shmem_unlink(dir, dentry);
3162 }
3163
3164 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3165 {
3166         bool old_is_dir = d_is_dir(old_dentry);
3167         bool new_is_dir = d_is_dir(new_dentry);
3168
3169         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3170                 if (old_is_dir) {
3171                         drop_nlink(old_dir);
3172                         inc_nlink(new_dir);
3173                 } else {
3174                         drop_nlink(new_dir);
3175                         inc_nlink(old_dir);
3176                 }
3177         }
3178         old_dir->i_ctime = old_dir->i_mtime =
3179         new_dir->i_ctime = new_dir->i_mtime =
3180         d_inode(old_dentry)->i_ctime =
3181         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3182
3183         return 0;
3184 }
3185
3186 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3187 {
3188         struct dentry *whiteout;
3189         int error;
3190
3191         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3192         if (!whiteout)
3193                 return -ENOMEM;
3194
3195         error = shmem_mknod(old_dir, whiteout,
3196                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3197         dput(whiteout);
3198         if (error)
3199                 return error;
3200
3201         /*
3202          * Cheat and hash the whiteout while the old dentry is still in
3203          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3204          *
3205          * d_lookup() will consistently find one of them at this point,
3206          * not sure which one, but that isn't even important.
3207          */
3208         d_rehash(whiteout);
3209         return 0;
3210 }
3211
3212 /*
3213  * The VFS layer already does all the dentry stuff for rename,
3214  * we just have to decrement the usage count for the target if
3215  * it exists so that the VFS layer correctly free's it when it
3216  * gets overwritten.
3217  */
3218 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3219 {
3220         struct inode *inode = d_inode(old_dentry);
3221         int they_are_dirs = S_ISDIR(inode->i_mode);
3222
3223         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3224                 return -EINVAL;
3225
3226         if (flags & RENAME_EXCHANGE)
3227                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3228
3229         if (!simple_empty(new_dentry))
3230                 return -ENOTEMPTY;
3231
3232         if (flags & RENAME_WHITEOUT) {
3233                 int error;
3234
3235                 error = shmem_whiteout(old_dir, old_dentry);
3236                 if (error)
3237                         return error;
3238         }
3239
3240         if (d_really_is_positive(new_dentry)) {
3241                 (void) shmem_unlink(new_dir, new_dentry);
3242                 if (they_are_dirs) {
3243                         drop_nlink(d_inode(new_dentry));
3244                         drop_nlink(old_dir);
3245                 }
3246         } else if (they_are_dirs) {
3247                 drop_nlink(old_dir);
3248                 inc_nlink(new_dir);
3249         }
3250
3251         old_dir->i_size -= BOGO_DIRENT_SIZE;
3252         new_dir->i_size += BOGO_DIRENT_SIZE;
3253         old_dir->i_ctime = old_dir->i_mtime =
3254         new_dir->i_ctime = new_dir->i_mtime =
3255         inode->i_ctime = current_time(old_dir);
3256         return 0;
3257 }
3258
3259 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3260 {
3261         int error;
3262         int len;
3263         struct inode *inode;
3264         struct page *page;
3265         struct shmem_inode_info *info;
3266
3267         len = strlen(symname) + 1;
3268         if (len > PAGE_SIZE)
3269                 return -ENAMETOOLONG;
3270
3271         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3272         if (!inode)
3273                 return -ENOSPC;
3274
3275         error = security_inode_init_security(inode, dir, &dentry->d_name,
3276                                              shmem_initxattrs, NULL);
3277         if (error) {
3278                 if (error != -EOPNOTSUPP) {
3279                         iput(inode);
3280                         return error;
3281                 }
3282                 error = 0;
3283         }
3284
3285         info = SHMEM_I(inode);
3286         inode->i_size = len-1;
3287         if (len <= SHORT_SYMLINK_LEN) {
3288                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3289                 if (!inode->i_link) {
3290                         iput(inode);
3291                         return -ENOMEM;
3292                 }
3293                 inode->i_op = &shmem_short_symlink_operations;
3294         } else {
3295                 inode_nohighmem(inode);
3296                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3297                 if (error) {
3298                         iput(inode);
3299                         return error;
3300                 }
3301                 inode->i_mapping->a_ops = &shmem_aops;
3302                 inode->i_op = &shmem_symlink_inode_operations;
3303                 memcpy(page_address(page), symname, len);
3304                 SetPageUptodate(page);
3305                 set_page_dirty(page);
3306                 unlock_page(page);
3307                 put_page(page);
3308         }
3309         dir->i_size += BOGO_DIRENT_SIZE;
3310         dir->i_ctime = dir->i_mtime = current_time(dir);
3311         d_instantiate(dentry, inode);
3312         dget(dentry);
3313         return 0;
3314 }
3315
3316 static void shmem_put_link(void *arg)
3317 {
3318         mark_page_accessed(arg);
3319         put_page(arg);
3320 }
3321
3322 static const char *shmem_get_link(struct dentry *dentry,
3323                                   struct inode *inode,
3324                                   struct delayed_call *done)
3325 {
3326         struct page *page = NULL;
3327         int error;
3328         if (!dentry) {
3329                 page = find_get_page(inode->i_mapping, 0);
3330                 if (!page)
3331                         return ERR_PTR(-ECHILD);
3332                 if (!PageUptodate(page)) {
3333                         put_page(page);
3334                         return ERR_PTR(-ECHILD);
3335                 }
3336         } else {
3337                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3338                 if (error)
3339                         return ERR_PTR(error);
3340                 unlock_page(page);
3341         }
3342         set_delayed_call(done, shmem_put_link, page);
3343         return page_address(page);
3344 }
3345
3346 #ifdef CONFIG_TMPFS_XATTR
3347 /*
3348  * Superblocks without xattr inode operations may get some security.* xattr
3349  * support from the LSM "for free". As soon as we have any other xattrs
3350  * like ACLs, we also need to implement the security.* handlers at
3351  * filesystem level, though.
3352  */
3353
3354 /*
3355  * Callback for security_inode_init_security() for acquiring xattrs.
3356  */
3357 static int shmem_initxattrs(struct inode *inode,
3358                             const struct xattr *xattr_array,
3359                             void *fs_info)
3360 {
3361         struct shmem_inode_info *info = SHMEM_I(inode);
3362         const struct xattr *xattr;
3363         struct simple_xattr *new_xattr;
3364         size_t len;
3365
3366         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3367                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3368                 if (!new_xattr)
3369                         return -ENOMEM;
3370
3371                 len = strlen(xattr->name) + 1;
3372                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3373                                           GFP_KERNEL);
3374                 if (!new_xattr->name) {
3375                         kfree(new_xattr);
3376                         return -ENOMEM;
3377                 }
3378
3379                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3380                        XATTR_SECURITY_PREFIX_LEN);
3381                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3382                        xattr->name, len);
3383
3384                 simple_xattr_list_add(&info->xattrs, new_xattr);
3385         }
3386
3387         return 0;
3388 }
3389
3390 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3391                                    struct dentry *unused, struct inode *inode,
3392                                    const char *name, void *buffer, size_t size)
3393 {
3394         struct shmem_inode_info *info = SHMEM_I(inode);
3395
3396         name = xattr_full_name(handler, name);
3397         return simple_xattr_get(&info->xattrs, name, buffer, size);
3398 }
3399
3400 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3401                                    struct dentry *unused, struct inode *inode,
3402                                    const char *name, const void *value,
3403                                    size_t size, int flags)
3404 {
3405         struct shmem_inode_info *info = SHMEM_I(inode);
3406
3407         name = xattr_full_name(handler, name);
3408         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3409 }
3410
3411 static const struct xattr_handler shmem_security_xattr_handler = {
3412         .prefix = XATTR_SECURITY_PREFIX,
3413         .get = shmem_xattr_handler_get,
3414         .set = shmem_xattr_handler_set,
3415 };
3416
3417 static const struct xattr_handler shmem_trusted_xattr_handler = {
3418         .prefix = XATTR_TRUSTED_PREFIX,
3419         .get = shmem_xattr_handler_get,
3420         .set = shmem_xattr_handler_set,
3421 };
3422
3423 static const struct xattr_handler *shmem_xattr_handlers[] = {
3424 #ifdef CONFIG_TMPFS_POSIX_ACL
3425         &posix_acl_access_xattr_handler,
3426         &posix_acl_default_xattr_handler,
3427 #endif
3428         &shmem_security_xattr_handler,
3429         &shmem_trusted_xattr_handler,
3430         NULL
3431 };
3432
3433 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3434 {
3435         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3436         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3437 }
3438 #endif /* CONFIG_TMPFS_XATTR */
3439
3440 static const struct inode_operations shmem_short_symlink_operations = {
3441         .get_link       = simple_get_link,
3442 #ifdef CONFIG_TMPFS_XATTR
3443         .listxattr      = shmem_listxattr,
3444 #endif
3445 };
3446
3447 static const struct inode_operations shmem_symlink_inode_operations = {
3448         .get_link       = shmem_get_link,
3449 #ifdef CONFIG_TMPFS_XATTR
3450         .listxattr      = shmem_listxattr,
3451 #endif
3452 };
3453
3454 static struct dentry *shmem_get_parent(struct dentry *child)
3455 {
3456         return ERR_PTR(-ESTALE);
3457 }
3458
3459 static int shmem_match(struct inode *ino, void *vfh)
3460 {
3461         __u32 *fh = vfh;
3462         __u64 inum = fh[2];
3463         inum = (inum << 32) | fh[1];
3464         return ino->i_ino == inum && fh[0] == ino->i_generation;
3465 }
3466
3467 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3468                 struct fid *fid, int fh_len, int fh_type)
3469 {
3470         struct inode *inode;
3471         struct dentry *dentry = NULL;
3472         u64 inum;
3473
3474         if (fh_len < 3)
3475                 return NULL;
3476
3477         inum = fid->raw[2];
3478         inum = (inum << 32) | fid->raw[1];
3479
3480         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3481                         shmem_match, fid->raw);
3482         if (inode) {
3483                 dentry = d_find_alias(inode);
3484                 iput(inode);
3485         }
3486
3487         return dentry;
3488 }
3489
3490 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3491                                 struct inode *parent)
3492 {
3493         if (*len < 3) {
3494                 *len = 3;
3495                 return FILEID_INVALID;
3496         }
3497
3498         if (inode_unhashed(inode)) {
3499                 /* Unfortunately insert_inode_hash is not idempotent,
3500                  * so as we hash inodes here rather than at creation
3501                  * time, we need a lock to ensure we only try
3502                  * to do it once
3503                  */
3504                 static DEFINE_SPINLOCK(lock);
3505                 spin_lock(&lock);
3506                 if (inode_unhashed(inode))
3507                         __insert_inode_hash(inode,
3508                                             inode->i_ino + inode->i_generation);
3509                 spin_unlock(&lock);
3510         }
3511
3512         fh[0] = inode->i_generation;
3513         fh[1] = inode->i_ino;
3514         fh[2] = ((__u64)inode->i_ino) >> 32;
3515
3516         *len = 3;
3517         return 1;
3518 }
3519
3520 static const struct export_operations shmem_export_ops = {
3521         .get_parent     = shmem_get_parent,
3522         .encode_fh      = shmem_encode_fh,
3523         .fh_to_dentry   = shmem_fh_to_dentry,
3524 };
3525
3526 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3527                                bool remount)
3528 {
3529         char *this_char, *value, *rest;
3530         struct mempolicy *mpol = NULL;
3531         uid_t uid;
3532         gid_t gid;
3533
3534         while (options != NULL) {
3535                 this_char = options;
3536                 for (;;) {
3537                         /*
3538                          * NUL-terminate this option: unfortunately,
3539                          * mount options form a comma-separated list,
3540                          * but mpol's nodelist may also contain commas.
3541                          */
3542                         options = strchr(options, ',');
3543                         if (options == NULL)
3544                                 break;
3545                         options++;
3546                         if (!isdigit(*options)) {
3547                                 options[-1] = '\0';
3548                                 break;
3549                         }
3550                 }
3551                 if (!*this_char)
3552                         continue;
3553                 if ((value = strchr(this_char,'=')) != NULL) {
3554                         *value++ = 0;
3555                 } else {
3556                         pr_err("tmpfs: No value for mount option '%s'\n",
3557                                this_char);
3558                         goto error;
3559                 }
3560
3561                 if (!strcmp(this_char,"size")) {
3562                         unsigned long long size;
3563                         size = memparse(value,&rest);
3564                         if (*rest == '%') {
3565                                 size <<= PAGE_SHIFT;
3566                                 size *= totalram_pages;
3567                                 do_div(size, 100);
3568                                 rest++;
3569                         }
3570                         if (*rest)
3571                                 goto bad_val;
3572                         sbinfo->max_blocks =
3573                                 DIV_ROUND_UP(size, PAGE_SIZE);
3574                 } else if (!strcmp(this_char,"nr_blocks")) {
3575                         sbinfo->max_blocks = memparse(value, &rest);
3576                         if (*rest)
3577                                 goto bad_val;
3578                 } else if (!strcmp(this_char,"nr_inodes")) {
3579                         sbinfo->max_inodes = memparse(value, &rest);
3580                         if (*rest)
3581                                 goto bad_val;
3582                 } else if (!strcmp(this_char,"mode")) {
3583                         if (remount)
3584                                 continue;
3585                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3586                         if (*rest)
3587                                 goto bad_val;
3588                 } else if (!strcmp(this_char,"uid")) {
3589                         if (remount)
3590                                 continue;
3591                         uid = simple_strtoul(value, &rest, 0);
3592                         if (*rest)
3593                                 goto bad_val;
3594                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3595                         if (!uid_valid(sbinfo->uid))
3596                                 goto bad_val;
3597                 } else if (!strcmp(this_char,"gid")) {
3598                         if (remount)
3599                                 continue;
3600                         gid = simple_strtoul(value, &rest, 0);
3601                         if (*rest)
3602                                 goto bad_val;
3603                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3604                         if (!gid_valid(sbinfo->gid))
3605                                 goto bad_val;
3606 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3607                 } else if (!strcmp(this_char, "huge")) {
3608                         int huge;
3609                         huge = shmem_parse_huge(value);
3610                         if (huge < 0)
3611                                 goto bad_val;
3612                         if (!has_transparent_hugepage() &&
3613                                         huge != SHMEM_HUGE_NEVER)
3614                                 goto bad_val;
3615                         sbinfo->huge = huge;
3616 #endif
3617 #ifdef CONFIG_NUMA
3618                 } else if (!strcmp(this_char,"mpol")) {
3619                         mpol_put(mpol);
3620                         mpol = NULL;
3621                         if (mpol_parse_str(value, &mpol))
3622                                 goto bad_val;
3623 #endif
3624                 } else {
3625                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3626                         goto error;
3627                 }
3628         }
3629         sbinfo->mpol = mpol;
3630         return 0;
3631
3632 bad_val:
3633         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3634                value, this_char);
3635 error:
3636         mpol_put(mpol);
3637         return 1;
3638
3639 }
3640
3641 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3642 {
3643         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3644         struct shmem_sb_info config = *sbinfo;
3645         unsigned long inodes;
3646         int error = -EINVAL;
3647
3648         config.mpol = NULL;
3649         if (shmem_parse_options(data, &config, true))
3650                 return error;
3651
3652         spin_lock(&sbinfo->stat_lock);
3653         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3654         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3655                 goto out;
3656         if (config.max_inodes < inodes)
3657                 goto out;
3658         /*
3659          * Those tests disallow limited->unlimited while any are in use;
3660          * but we must separately disallow unlimited->limited, because
3661          * in that case we have no record of how much is already in use.
3662          */
3663         if (config.max_blocks && !sbinfo->max_blocks)
3664                 goto out;
3665         if (config.max_inodes && !sbinfo->max_inodes)
3666                 goto out;
3667
3668         error = 0;
3669         sbinfo->huge = config.huge;
3670         sbinfo->max_blocks  = config.max_blocks;
3671         sbinfo->max_inodes  = config.max_inodes;
3672         sbinfo->free_inodes = config.max_inodes - inodes;
3673
3674         /*
3675          * Preserve previous mempolicy unless mpol remount option was specified.
3676          */
3677         if (config.mpol) {
3678                 mpol_put(sbinfo->mpol);
3679                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3680         }
3681 out:
3682         spin_unlock(&sbinfo->stat_lock);
3683         return error;
3684 }
3685
3686 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3687 {
3688         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3689
3690         if (sbinfo->max_blocks != shmem_default_max_blocks())
3691                 seq_printf(seq, ",size=%luk",
3692                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3693         if (sbinfo->max_inodes != shmem_default_max_inodes())
3694                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3695         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3696                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3697         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3698                 seq_printf(seq, ",uid=%u",
3699                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3700         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3701                 seq_printf(seq, ",gid=%u",
3702                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3703 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3704         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3705         if (sbinfo->huge)
3706                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3707 #endif
3708         shmem_show_mpol(seq, sbinfo->mpol);
3709         return 0;
3710 }
3711
3712 #define MFD_NAME_PREFIX "memfd:"
3713 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3714 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3715
3716 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3717
3718 SYSCALL_DEFINE2(memfd_create,
3719                 const char __user *, uname,
3720                 unsigned int, flags)
3721 {
3722         struct shmem_inode_info *info;
3723         struct file *file;
3724         int fd, error;
3725         char *name;
3726         long len;
3727
3728         if (!(flags & MFD_HUGETLB)) {
3729                 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3730                         return -EINVAL;
3731         } else {
3732                 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3733                 if (flags & MFD_ALLOW_SEALING)
3734                         return -EINVAL;
3735                 /* Allow huge page size encoding in flags. */
3736                 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3737                                 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3738                         return -EINVAL;
3739         }
3740
3741         /* length includes terminating zero */
3742         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3743         if (len <= 0)
3744                 return -EFAULT;
3745         if (len > MFD_NAME_MAX_LEN + 1)
3746                 return -EINVAL;
3747
3748         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3749         if (!name)
3750                 return -ENOMEM;
3751
3752         strcpy(name, MFD_NAME_PREFIX);
3753         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3754                 error = -EFAULT;
3755                 goto err_name;
3756         }
3757
3758         /* terminating-zero may have changed after strnlen_user() returned */
3759         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3760                 error = -EFAULT;
3761                 goto err_name;
3762         }
3763
3764         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3765         if (fd < 0) {
3766                 error = fd;
3767                 goto err_name;
3768         }
3769
3770         if (flags & MFD_HUGETLB) {
3771                 struct user_struct *user = NULL;
3772
3773                 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3774                                         HUGETLB_ANONHUGE_INODE,
3775                                         (flags >> MFD_HUGE_SHIFT) &
3776                                         MFD_HUGE_MASK);
3777         } else
3778                 file = shmem_file_setup(name, 0, VM_NORESERVE);
3779         if (IS_ERR(file)) {
3780                 error = PTR_ERR(file);
3781                 goto err_fd;
3782         }
3783         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3784         file->f_flags |= O_RDWR | O_LARGEFILE;
3785
3786         if (flags & MFD_ALLOW_SEALING) {
3787                 /*
3788                  * flags check at beginning of function ensures
3789                  * this is not a hugetlbfs (MFD_HUGETLB) file.
3790                  */
3791                 info = SHMEM_I(file_inode(file));
3792                 info->seals &= ~F_SEAL_SEAL;
3793         }
3794
3795         fd_install(fd, file);
3796         kfree(name);
3797         return fd;
3798
3799 err_fd:
3800         put_unused_fd(fd);
3801 err_name:
3802         kfree(name);
3803         return error;
3804 }
3805
3806 #endif /* CONFIG_TMPFS */
3807
3808 static void shmem_put_super(struct super_block *sb)
3809 {
3810         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3811
3812         percpu_counter_destroy(&sbinfo->used_blocks);
3813         mpol_put(sbinfo->mpol);
3814         kfree(sbinfo);
3815         sb->s_fs_info = NULL;
3816 }
3817
3818 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3819 {
3820         struct inode *inode;
3821         struct shmem_sb_info *sbinfo;
3822         int err = -ENOMEM;
3823
3824         /* Round up to L1_CACHE_BYTES to resist false sharing */
3825         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3826                                 L1_CACHE_BYTES), GFP_KERNEL);
3827         if (!sbinfo)
3828                 return -ENOMEM;
3829
3830         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3831         sbinfo->uid = current_fsuid();
3832         sbinfo->gid = current_fsgid();
3833         sb->s_fs_info = sbinfo;
3834
3835 #ifdef CONFIG_TMPFS
3836         /*
3837          * Per default we only allow half of the physical ram per
3838          * tmpfs instance, limiting inodes to one per page of lowmem;
3839          * but the internal instance is left unlimited.
3840          */
3841         if (!(sb->s_flags & MS_KERNMOUNT)) {
3842                 sbinfo->max_blocks = shmem_default_max_blocks();
3843                 sbinfo->max_inodes = shmem_default_max_inodes();
3844                 if (shmem_parse_options(data, sbinfo, false)) {
3845                         err = -EINVAL;
3846                         goto failed;
3847                 }
3848         } else {
3849                 sb->s_flags |= MS_NOUSER;
3850         }
3851         sb->s_export_op = &shmem_export_ops;
3852         sb->s_flags |= MS_NOSEC;
3853 #else
3854         sb->s_flags |= MS_NOUSER;
3855 #endif
3856
3857         spin_lock_init(&sbinfo->stat_lock);
3858         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3859                 goto failed;
3860         sbinfo->free_inodes = sbinfo->max_inodes;
3861         spin_lock_init(&sbinfo->shrinklist_lock);
3862         INIT_LIST_HEAD(&sbinfo->shrinklist);
3863
3864         sb->s_maxbytes = MAX_LFS_FILESIZE;
3865         sb->s_blocksize = PAGE_SIZE;
3866         sb->s_blocksize_bits = PAGE_SHIFT;
3867         sb->s_magic = TMPFS_MAGIC;
3868         sb->s_op = &shmem_ops;
3869         sb->s_time_gran = 1;
3870 #ifdef CONFIG_TMPFS_XATTR
3871         sb->s_xattr = shmem_xattr_handlers;
3872 #endif
3873 #ifdef CONFIG_TMPFS_POSIX_ACL
3874         sb->s_flags |= MS_POSIXACL;
3875 #endif
3876         uuid_gen(&sb->s_uuid);
3877
3878         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3879         if (!inode)
3880                 goto failed;
3881         inode->i_uid = sbinfo->uid;
3882         inode->i_gid = sbinfo->gid;
3883         sb->s_root = d_make_root(inode);
3884         if (!sb->s_root)
3885                 goto failed;
3886         return 0;
3887
3888 failed:
3889         shmem_put_super(sb);
3890         return err;
3891 }
3892
3893 static struct kmem_cache *shmem_inode_cachep;
3894
3895 static struct inode *shmem_alloc_inode(struct super_block *sb)
3896 {
3897         struct shmem_inode_info *info;
3898         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3899         if (!info)
3900                 return NULL;
3901         return &info->vfs_inode;
3902 }
3903
3904 static void shmem_destroy_callback(struct rcu_head *head)
3905 {
3906         struct inode *inode = container_of(head, struct inode, i_rcu);
3907         if (S_ISLNK(inode->i_mode))
3908                 kfree(inode->i_link);
3909         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3910 }
3911
3912 static void shmem_destroy_inode(struct inode *inode)
3913 {
3914         if (S_ISREG(inode->i_mode))
3915                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3916         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3917 }
3918
3919 static void shmem_init_inode(void *foo)
3920 {
3921         struct shmem_inode_info *info = foo;
3922         inode_init_once(&info->vfs_inode);
3923 }
3924
3925 static int shmem_init_inodecache(void)
3926 {
3927         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3928                                 sizeof(struct shmem_inode_info),
3929                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3930         return 0;
3931 }
3932
3933 static void shmem_destroy_inodecache(void)
3934 {
3935         kmem_cache_destroy(shmem_inode_cachep);
3936 }
3937
3938 static const struct address_space_operations shmem_aops = {
3939         .writepage      = shmem_writepage,
3940         .set_page_dirty = __set_page_dirty_no_writeback,
3941 #ifdef CONFIG_TMPFS
3942         .write_begin    = shmem_write_begin,
3943         .write_end      = shmem_write_end,
3944 #endif
3945 #ifdef CONFIG_MIGRATION
3946         .migratepage    = migrate_page,
3947 #endif
3948         .error_remove_page = generic_error_remove_page,
3949 };
3950
3951 static const struct file_operations shmem_file_operations = {
3952         .mmap           = shmem_mmap,
3953         .get_unmapped_area = shmem_get_unmapped_area,
3954 #ifdef CONFIG_TMPFS
3955         .llseek         = shmem_file_llseek,
3956         .read_iter      = shmem_file_read_iter,
3957         .write_iter     = generic_file_write_iter,
3958         .fsync          = noop_fsync,
3959         .splice_read    = generic_file_splice_read,
3960         .splice_write   = iter_file_splice_write,
3961         .fallocate      = shmem_fallocate,
3962 #endif
3963 };
3964
3965 static const struct inode_operations shmem_inode_operations = {
3966         .getattr        = shmem_getattr,
3967         .setattr        = shmem_setattr,
3968 #ifdef CONFIG_TMPFS_XATTR
3969         .listxattr      = shmem_listxattr,
3970         .set_acl        = simple_set_acl,
3971 #endif
3972 };
3973
3974 static const struct inode_operations shmem_dir_inode_operations = {
3975 #ifdef CONFIG_TMPFS
3976         .create         = shmem_create,
3977         .lookup         = simple_lookup,
3978         .link           = shmem_link,
3979         .unlink         = shmem_unlink,
3980         .symlink        = shmem_symlink,
3981         .mkdir          = shmem_mkdir,
3982         .rmdir          = shmem_rmdir,
3983         .mknod          = shmem_mknod,
3984         .rename         = shmem_rename2,
3985         .tmpfile        = shmem_tmpfile,
3986 #endif
3987 #ifdef CONFIG_TMPFS_XATTR
3988         .listxattr      = shmem_listxattr,
3989 #endif
3990 #ifdef CONFIG_TMPFS_POSIX_ACL
3991         .setattr        = shmem_setattr,
3992         .set_acl        = simple_set_acl,
3993 #endif
3994 };
3995
3996 static const struct inode_operations shmem_special_inode_operations = {
3997 #ifdef CONFIG_TMPFS_XATTR
3998         .listxattr      = shmem_listxattr,
3999 #endif
4000 #ifdef CONFIG_TMPFS_POSIX_ACL
4001         .setattr        = shmem_setattr,
4002         .set_acl        = simple_set_acl,
4003 #endif
4004 };
4005
4006 static const struct super_operations shmem_ops = {
4007         .alloc_inode    = shmem_alloc_inode,
4008         .destroy_inode  = shmem_destroy_inode,
4009 #ifdef CONFIG_TMPFS
4010         .statfs         = shmem_statfs,
4011         .remount_fs     = shmem_remount_fs,
4012         .show_options   = shmem_show_options,
4013 #endif
4014         .evict_inode    = shmem_evict_inode,
4015         .drop_inode     = generic_delete_inode,
4016         .put_super      = shmem_put_super,
4017 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4018         .nr_cached_objects      = shmem_unused_huge_count,
4019         .free_cached_objects    = shmem_unused_huge_scan,
4020 #endif
4021 };
4022
4023 static const struct vm_operations_struct shmem_vm_ops = {
4024         .fault          = shmem_fault,
4025         .map_pages      = filemap_map_pages,
4026 #ifdef CONFIG_NUMA
4027         .set_policy     = shmem_set_policy,
4028         .get_policy     = shmem_get_policy,
4029 #endif
4030 };
4031
4032 static struct dentry *shmem_mount(struct file_system_type *fs_type,
4033         int flags, const char *dev_name, void *data)
4034 {
4035         return mount_nodev(fs_type, flags, data, shmem_fill_super);
4036 }
4037
4038 static struct file_system_type shmem_fs_type = {
4039         .owner          = THIS_MODULE,
4040         .name           = "tmpfs",
4041         .mount          = shmem_mount,
4042         .kill_sb        = kill_litter_super,
4043         .fs_flags       = FS_USERNS_MOUNT,
4044 };
4045
4046 int __init shmem_init(void)
4047 {
4048         int error;
4049
4050         /* If rootfs called this, don't re-init */
4051         if (shmem_inode_cachep)
4052                 return 0;
4053
4054         error = shmem_init_inodecache();
4055         if (error)
4056                 goto out3;
4057
4058         error = register_filesystem(&shmem_fs_type);
4059         if (error) {
4060                 pr_err("Could not register tmpfs\n");
4061                 goto out2;
4062         }
4063
4064         shm_mnt = kern_mount(&shmem_fs_type);
4065         if (IS_ERR(shm_mnt)) {
4066                 error = PTR_ERR(shm_mnt);
4067                 pr_err("Could not kern_mount tmpfs\n");
4068                 goto out1;
4069         }
4070
4071 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4072         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4073                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4074         else
4075                 shmem_huge = 0; /* just in case it was patched */
4076 #endif
4077         return 0;
4078
4079 out1:
4080         unregister_filesystem(&shmem_fs_type);
4081 out2:
4082         shmem_destroy_inodecache();
4083 out3:
4084         shm_mnt = ERR_PTR(error);
4085         return error;
4086 }
4087
4088 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4089 static ssize_t shmem_enabled_show(struct kobject *kobj,
4090                 struct kobj_attribute *attr, char *buf)
4091 {
4092         int values[] = {
4093                 SHMEM_HUGE_ALWAYS,
4094                 SHMEM_HUGE_WITHIN_SIZE,
4095                 SHMEM_HUGE_ADVISE,
4096                 SHMEM_HUGE_NEVER,
4097                 SHMEM_HUGE_DENY,
4098                 SHMEM_HUGE_FORCE,
4099         };
4100         int i, count;
4101
4102         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4103                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4104
4105                 count += sprintf(buf + count, fmt,
4106                                 shmem_format_huge(values[i]));
4107         }
4108         buf[count - 1] = '\n';
4109         return count;
4110 }
4111
4112 static ssize_t shmem_enabled_store(struct kobject *kobj,
4113                 struct kobj_attribute *attr, const char *buf, size_t count)
4114 {
4115         char tmp[16];
4116         int huge;
4117
4118         if (count + 1 > sizeof(tmp))
4119                 return -EINVAL;
4120         memcpy(tmp, buf, count);
4121         tmp[count] = '\0';
4122         if (count && tmp[count - 1] == '\n')
4123                 tmp[count - 1] = '\0';
4124
4125         huge = shmem_parse_huge(tmp);
4126         if (huge == -EINVAL)
4127                 return -EINVAL;
4128         if (!has_transparent_hugepage() &&
4129                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4130                 return -EINVAL;
4131
4132         shmem_huge = huge;
4133         if (shmem_huge > SHMEM_HUGE_DENY)
4134                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4135         return count;
4136 }
4137
4138 struct kobj_attribute shmem_enabled_attr =
4139         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4140 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4141
4142 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4143 bool shmem_huge_enabled(struct vm_area_struct *vma)
4144 {
4145         struct inode *inode = file_inode(vma->vm_file);
4146         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4147         loff_t i_size;
4148         pgoff_t off;
4149
4150         if (shmem_huge == SHMEM_HUGE_FORCE)
4151                 return true;
4152         if (shmem_huge == SHMEM_HUGE_DENY)
4153                 return false;
4154         switch (sbinfo->huge) {
4155                 case SHMEM_HUGE_NEVER:
4156                         return false;
4157                 case SHMEM_HUGE_ALWAYS:
4158                         return true;
4159                 case SHMEM_HUGE_WITHIN_SIZE:
4160                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4161                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4162                         if (i_size >= HPAGE_PMD_SIZE &&
4163                                         i_size >> PAGE_SHIFT >= off)
4164                                 return true;
4165                 case SHMEM_HUGE_ADVISE:
4166                         /* TODO: implement fadvise() hints */
4167                         return (vma->vm_flags & VM_HUGEPAGE);
4168                 default:
4169                         VM_BUG_ON(1);
4170                         return false;
4171         }
4172 }
4173 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4174
4175 #else /* !CONFIG_SHMEM */
4176
4177 /*
4178  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4179  *
4180  * This is intended for small system where the benefits of the full
4181  * shmem code (swap-backed and resource-limited) are outweighed by
4182  * their complexity. On systems without swap this code should be
4183  * effectively equivalent, but much lighter weight.
4184  */
4185
4186 static struct file_system_type shmem_fs_type = {
4187         .name           = "tmpfs",
4188         .mount          = ramfs_mount,
4189         .kill_sb        = kill_litter_super,
4190         .fs_flags       = FS_USERNS_MOUNT,
4191 };
4192
4193 int __init shmem_init(void)
4194 {
4195         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4196
4197         shm_mnt = kern_mount(&shmem_fs_type);
4198         BUG_ON(IS_ERR(shm_mnt));
4199
4200         return 0;
4201 }
4202
4203 int shmem_unuse(swp_entry_t swap, struct page *page)
4204 {
4205         return 0;
4206 }
4207
4208 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4209 {
4210         return 0;
4211 }
4212
4213 void shmem_unlock_mapping(struct address_space *mapping)
4214 {
4215 }
4216
4217 #ifdef CONFIG_MMU
4218 unsigned long shmem_get_unmapped_area(struct file *file,
4219                                       unsigned long addr, unsigned long len,
4220                                       unsigned long pgoff, unsigned long flags)
4221 {
4222         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4223 }
4224 #endif
4225
4226 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4227 {
4228         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4229 }
4230 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4231
4232 #define shmem_vm_ops                            generic_file_vm_ops
4233 #define shmem_file_operations                   ramfs_file_operations
4234 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4235 #define shmem_acct_size(flags, size)            0
4236 #define shmem_unacct_size(flags, size)          do {} while (0)
4237
4238 #endif /* CONFIG_SHMEM */
4239
4240 /* common code */
4241
4242 static const struct dentry_operations anon_ops = {
4243         .d_dname = simple_dname
4244 };
4245
4246 static struct file *__shmem_file_setup(const char *name, loff_t size,
4247                                        unsigned long flags, unsigned int i_flags)
4248 {
4249         struct file *res;
4250         struct inode *inode;
4251         struct path path;
4252         struct super_block *sb;
4253         struct qstr this;
4254
4255         if (IS_ERR(shm_mnt))
4256                 return ERR_CAST(shm_mnt);
4257
4258         if (size < 0 || size > MAX_LFS_FILESIZE)
4259                 return ERR_PTR(-EINVAL);
4260
4261         if (shmem_acct_size(flags, size))
4262                 return ERR_PTR(-ENOMEM);
4263
4264         res = ERR_PTR(-ENOMEM);
4265         this.name = name;
4266         this.len = strlen(name);
4267         this.hash = 0; /* will go */
4268         sb = shm_mnt->mnt_sb;
4269         path.mnt = mntget(shm_mnt);
4270         path.dentry = d_alloc_pseudo(sb, &this);
4271         if (!path.dentry)
4272                 goto put_memory;
4273         d_set_d_op(path.dentry, &anon_ops);
4274
4275         res = ERR_PTR(-ENOSPC);
4276         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4277         if (!inode)
4278                 goto put_memory;
4279
4280         inode->i_flags |= i_flags;
4281         d_instantiate(path.dentry, inode);
4282         inode->i_size = size;
4283         clear_nlink(inode);     /* It is unlinked */
4284         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4285         if (IS_ERR(res))
4286                 goto put_path;
4287
4288         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4289                   &shmem_file_operations);
4290         if (IS_ERR(res))
4291                 goto put_path;
4292
4293         return res;
4294
4295 put_memory:
4296         shmem_unacct_size(flags, size);
4297 put_path:
4298         path_put(&path);
4299         return res;
4300 }
4301
4302 /**
4303  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4304  *      kernel internal.  There will be NO LSM permission checks against the
4305  *      underlying inode.  So users of this interface must do LSM checks at a
4306  *      higher layer.  The users are the big_key and shm implementations.  LSM
4307  *      checks are provided at the key or shm level rather than the inode.
4308  * @name: name for dentry (to be seen in /proc/<pid>/maps
4309  * @size: size to be set for the file
4310  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4311  */
4312 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4313 {
4314         return __shmem_file_setup(name, size, flags, S_PRIVATE);
4315 }
4316
4317 /**
4318  * shmem_file_setup - get an unlinked file living in tmpfs
4319  * @name: name for dentry (to be seen in /proc/<pid>/maps
4320  * @size: size to be set for the file
4321  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4322  */
4323 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4324 {
4325         return __shmem_file_setup(name, size, flags, 0);
4326 }
4327 EXPORT_SYMBOL_GPL(shmem_file_setup);
4328
4329 /**
4330  * shmem_zero_setup - setup a shared anonymous mapping
4331  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4332  */
4333 int shmem_zero_setup(struct vm_area_struct *vma)
4334 {
4335         struct file *file;
4336         loff_t size = vma->vm_end - vma->vm_start;
4337
4338         /*
4339          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4340          * between XFS directory reading and selinux: since this file is only
4341          * accessible to the user through its mapping, use S_PRIVATE flag to
4342          * bypass file security, in the same way as shmem_kernel_file_setup().
4343          */
4344         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4345         if (IS_ERR(file))
4346                 return PTR_ERR(file);
4347
4348         if (vma->vm_file)
4349                 fput(vma->vm_file);
4350         vma->vm_file = file;
4351         vma->vm_ops = &shmem_vm_ops;
4352
4353         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4354                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4355                         (vma->vm_end & HPAGE_PMD_MASK)) {
4356                 khugepaged_enter(vma, vma->vm_flags);
4357         }
4358
4359         return 0;
4360 }
4361
4362 /**
4363  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4364  * @mapping:    the page's address_space
4365  * @index:      the page index
4366  * @gfp:        the page allocator flags to use if allocating
4367  *
4368  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4369  * with any new page allocations done using the specified allocation flags.
4370  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4371  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4372  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4373  *
4374  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4375  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4376  */
4377 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4378                                          pgoff_t index, gfp_t gfp)
4379 {
4380 #ifdef CONFIG_SHMEM
4381         struct inode *inode = mapping->host;
4382         struct page *page;
4383         int error;
4384
4385         BUG_ON(mapping->a_ops != &shmem_aops);
4386         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4387                                   gfp, NULL, NULL, NULL);
4388         if (error)
4389                 page = ERR_PTR(error);
4390         else
4391                 unlock_page(page);
4392         return page;
4393 #else
4394         /*
4395          * The tiny !SHMEM case uses ramfs without swap
4396          */
4397         return read_cache_page_gfp(mapping, index, gfp);
4398 #endif
4399 }
4400 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);