GNU Linux-libre 5.4.257-gnu1
[releases.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100  * inode->i_private (with i_mutex making sure that it has only one user at
101  * a time): we would prefer not to enlarge the shmem inode just for that.
102  */
103 struct shmem_falloc {
104         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105         pgoff_t start;          /* start of range currently being fallocated */
106         pgoff_t next;           /* the next page offset to be fallocated */
107         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
108         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112         unsigned long long blocks;
113         unsigned long long inodes;
114         struct mempolicy *mpol;
115         kuid_t uid;
116         kgid_t gid;
117         umode_t mode;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141                                 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143                              struct page **pagep, enum sgp_type sgp,
144                              gfp_t gfp, struct vm_area_struct *vma,
145                              vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147                 struct page **pagep, enum sgp_type sgp,
148                 gfp_t gfp, struct vm_area_struct *vma,
149                 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152                 struct page **pagep, enum sgp_type sgp)
153 {
154         return shmem_getpage_gfp(inode, index, pagep, sgp,
155                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160         return sb->s_fs_info;
161 }
162
163 /*
164  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165  * for shared memory and for shared anonymous (/dev/zero) mappings
166  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167  * consistent with the pre-accounting of private mappings ...
168  */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171         return (flags & VM_NORESERVE) ?
172                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177         if (!(flags & VM_NORESERVE))
178                 vm_unacct_memory(VM_ACCT(size));
179 }
180
181 static inline int shmem_reacct_size(unsigned long flags,
182                 loff_t oldsize, loff_t newsize)
183 {
184         if (!(flags & VM_NORESERVE)) {
185                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186                         return security_vm_enough_memory_mm(current->mm,
187                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
188                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190         }
191         return 0;
192 }
193
194 /*
195  * ... whereas tmpfs objects are accounted incrementally as
196  * pages are allocated, in order to allow large sparse files.
197  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199  */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202         if (!(flags & VM_NORESERVE))
203                 return 0;
204
205         return security_vm_enough_memory_mm(current->mm,
206                         pages * VM_ACCT(PAGE_SIZE));
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211         if (flags & VM_NORESERVE)
212                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (shmem_acct_block(info->flags, pages))
221                 return false;
222
223         if (sbinfo->max_blocks) {
224                 if (percpu_counter_compare(&sbinfo->used_blocks,
225                                            sbinfo->max_blocks - pages) > 0)
226                         goto unacct;
227                 percpu_counter_add(&sbinfo->used_blocks, pages);
228         }
229
230         return true;
231
232 unacct:
233         shmem_unacct_blocks(info->flags, pages);
234         return false;
235 }
236
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239         struct shmem_inode_info *info = SHMEM_I(inode);
240         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242         if (sbinfo->max_blocks)
243                 percpu_counter_sub(&sbinfo->used_blocks, pages);
244         shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258         return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267         if (sbinfo->max_inodes) {
268                 spin_lock(&sbinfo->stat_lock);
269                 if (!sbinfo->free_inodes) {
270                         spin_unlock(&sbinfo->stat_lock);
271                         return -ENOSPC;
272                 }
273                 sbinfo->free_inodes--;
274                 spin_unlock(&sbinfo->stat_lock);
275         }
276         return 0;
277 }
278
279 static void shmem_free_inode(struct super_block *sb)
280 {
281         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282         if (sbinfo->max_inodes) {
283                 spin_lock(&sbinfo->stat_lock);
284                 sbinfo->free_inodes++;
285                 spin_unlock(&sbinfo->stat_lock);
286         }
287 }
288
289 /**
290  * shmem_recalc_inode - recalculate the block usage of an inode
291  * @inode: inode to recalc
292  *
293  * We have to calculate the free blocks since the mm can drop
294  * undirtied hole pages behind our back.
295  *
296  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
297  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298  *
299  * It has to be called with the spinlock held.
300  */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303         struct shmem_inode_info *info = SHMEM_I(inode);
304         long freed;
305
306         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307         if (freed > 0) {
308                 info->alloced -= freed;
309                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310                 shmem_inode_unacct_blocks(inode, freed);
311         }
312 }
313
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316         struct shmem_inode_info *info = SHMEM_I(inode);
317         unsigned long flags;
318
319         if (!shmem_inode_acct_block(inode, pages))
320                 return false;
321
322         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323         inode->i_mapping->nrpages += pages;
324
325         spin_lock_irqsave(&info->lock, flags);
326         info->alloced += pages;
327         inode->i_blocks += pages * BLOCKS_PER_PAGE;
328         shmem_recalc_inode(inode);
329         spin_unlock_irqrestore(&info->lock, flags);
330
331         return true;
332 }
333
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336         struct shmem_inode_info *info = SHMEM_I(inode);
337         unsigned long flags;
338
339         /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341         spin_lock_irqsave(&info->lock, flags);
342         info->alloced -= pages;
343         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344         shmem_recalc_inode(inode);
345         spin_unlock_irqrestore(&info->lock, flags);
346
347         shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351  * Replace item expected in xarray by a new item, while holding xa_lock.
352  */
353 static int shmem_replace_entry(struct address_space *mapping,
354                         pgoff_t index, void *expected, void *replacement)
355 {
356         XA_STATE(xas, &mapping->i_pages, index);
357         void *item;
358
359         VM_BUG_ON(!expected);
360         VM_BUG_ON(!replacement);
361         item = xas_load(&xas);
362         if (item != expected)
363                 return -ENOENT;
364         xas_store(&xas, replacement);
365         return 0;
366 }
367
368 /*
369  * Sometimes, before we decide whether to proceed or to fail, we must check
370  * that an entry was not already brought back from swap by a racing thread.
371  *
372  * Checking page is not enough: by the time a SwapCache page is locked, it
373  * might be reused, and again be SwapCache, using the same swap as before.
374  */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376                                pgoff_t index, swp_entry_t swap)
377 {
378         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383  *
384  * SHMEM_HUGE_NEVER:
385  *      disables huge pages for the mount;
386  * SHMEM_HUGE_ALWAYS:
387  *      enables huge pages for the mount;
388  * SHMEM_HUGE_WITHIN_SIZE:
389  *      only allocate huge pages if the page will be fully within i_size,
390  *      also respect fadvise()/madvise() hints;
391  * SHMEM_HUGE_ADVISE:
392  *      only allocate huge pages if requested with fadvise()/madvise();
393  */
394
395 #define SHMEM_HUGE_NEVER        0
396 #define SHMEM_HUGE_ALWAYS       1
397 #define SHMEM_HUGE_WITHIN_SIZE  2
398 #define SHMEM_HUGE_ADVISE       3
399
400 /*
401  * Special values.
402  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403  *
404  * SHMEM_HUGE_DENY:
405  *      disables huge on shm_mnt and all mounts, for emergency use;
406  * SHMEM_HUGE_FORCE:
407  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408  *
409  */
410 #define SHMEM_HUGE_DENY         (-1)
411 #define SHMEM_HUGE_FORCE        (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421         if (!strcmp(str, "never"))
422                 return SHMEM_HUGE_NEVER;
423         if (!strcmp(str, "always"))
424                 return SHMEM_HUGE_ALWAYS;
425         if (!strcmp(str, "within_size"))
426                 return SHMEM_HUGE_WITHIN_SIZE;
427         if (!strcmp(str, "advise"))
428                 return SHMEM_HUGE_ADVISE;
429         if (!strcmp(str, "deny"))
430                 return SHMEM_HUGE_DENY;
431         if (!strcmp(str, "force"))
432                 return SHMEM_HUGE_FORCE;
433         return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440         switch (huge) {
441         case SHMEM_HUGE_NEVER:
442                 return "never";
443         case SHMEM_HUGE_ALWAYS:
444                 return "always";
445         case SHMEM_HUGE_WITHIN_SIZE:
446                 return "within_size";
447         case SHMEM_HUGE_ADVISE:
448                 return "advise";
449         case SHMEM_HUGE_DENY:
450                 return "deny";
451         case SHMEM_HUGE_FORCE:
452                 return "force";
453         default:
454                 VM_BUG_ON(1);
455                 return "bad_val";
456         }
457 }
458 #endif
459
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461                 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463         LIST_HEAD(list), *pos, *next;
464         LIST_HEAD(to_remove);
465         struct inode *inode;
466         struct shmem_inode_info *info;
467         struct page *page;
468         unsigned long batch = sc ? sc->nr_to_scan : 128;
469         int split = 0;
470
471         if (list_empty(&sbinfo->shrinklist))
472                 return SHRINK_STOP;
473
474         spin_lock(&sbinfo->shrinklist_lock);
475         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478                 /* pin the inode */
479                 inode = igrab(&info->vfs_inode);
480
481                 /* inode is about to be evicted */
482                 if (!inode) {
483                         list_del_init(&info->shrinklist);
484                         goto next;
485                 }
486
487                 /* Check if there's anything to gain */
488                 if (round_up(inode->i_size, PAGE_SIZE) ==
489                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
490                         list_move(&info->shrinklist, &to_remove);
491                         goto next;
492                 }
493
494                 list_move(&info->shrinklist, &list);
495 next:
496                 sbinfo->shrinklist_len--;
497                 if (!--batch)
498                         break;
499         }
500         spin_unlock(&sbinfo->shrinklist_lock);
501
502         list_for_each_safe(pos, next, &to_remove) {
503                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
504                 inode = &info->vfs_inode;
505                 list_del_init(&info->shrinklist);
506                 iput(inode);
507         }
508
509         list_for_each_safe(pos, next, &list) {
510                 int ret;
511
512                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
513                 inode = &info->vfs_inode;
514
515                 if (nr_to_split && split >= nr_to_split)
516                         goto move_back;
517
518                 page = find_get_page(inode->i_mapping,
519                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
520                 if (!page)
521                         goto drop;
522
523                 /* No huge page at the end of the file: nothing to split */
524                 if (!PageTransHuge(page)) {
525                         put_page(page);
526                         goto drop;
527                 }
528
529                 /*
530                  * Move the inode on the list back to shrinklist if we failed
531                  * to lock the page at this time.
532                  *
533                  * Waiting for the lock may lead to deadlock in the
534                  * reclaim path.
535                  */
536                 if (!trylock_page(page)) {
537                         put_page(page);
538                         goto move_back;
539                 }
540
541                 ret = split_huge_page(page);
542                 unlock_page(page);
543                 put_page(page);
544
545                 /* If split failed move the inode on the list back to shrinklist */
546                 if (ret)
547                         goto move_back;
548
549                 split++;
550 drop:
551                 list_del_init(&info->shrinklist);
552                 goto put;
553 move_back:
554                 /*
555                  * Make sure the inode is either on the global list or deleted
556                  * from any local list before iput() since it could be deleted
557                  * in another thread once we put the inode (then the local list
558                  * is corrupted).
559                  */
560                 spin_lock(&sbinfo->shrinklist_lock);
561                 list_move(&info->shrinklist, &sbinfo->shrinklist);
562                 sbinfo->shrinklist_len++;
563                 spin_unlock(&sbinfo->shrinklist_lock);
564 put:
565                 iput(inode);
566         }
567
568         return split;
569 }
570
571 static long shmem_unused_huge_scan(struct super_block *sb,
572                 struct shrink_control *sc)
573 {
574         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
575
576         if (!READ_ONCE(sbinfo->shrinklist_len))
577                 return SHRINK_STOP;
578
579         return shmem_unused_huge_shrink(sbinfo, sc, 0);
580 }
581
582 static long shmem_unused_huge_count(struct super_block *sb,
583                 struct shrink_control *sc)
584 {
585         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
586         return READ_ONCE(sbinfo->shrinklist_len);
587 }
588 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
589
590 #define shmem_huge SHMEM_HUGE_DENY
591
592 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
593                 struct shrink_control *sc, unsigned long nr_to_split)
594 {
595         return 0;
596 }
597 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
598
599 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
600 {
601         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
602             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
603             shmem_huge != SHMEM_HUGE_DENY)
604                 return true;
605         return false;
606 }
607
608 /*
609  * Like add_to_page_cache_locked, but error if expected item has gone.
610  */
611 static int shmem_add_to_page_cache(struct page *page,
612                                    struct address_space *mapping,
613                                    pgoff_t index, void *expected, gfp_t gfp)
614 {
615         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
616         unsigned long i = 0;
617         unsigned long nr = compound_nr(page);
618
619         VM_BUG_ON_PAGE(PageTail(page), page);
620         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
621         VM_BUG_ON_PAGE(!PageLocked(page), page);
622         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
623         VM_BUG_ON(expected && PageTransHuge(page));
624
625         page_ref_add(page, nr);
626         page->mapping = mapping;
627         page->index = index;
628
629         do {
630                 void *entry;
631                 xas_lock_irq(&xas);
632                 entry = xas_find_conflict(&xas);
633                 if (entry != expected)
634                         xas_set_err(&xas, -EEXIST);
635                 xas_create_range(&xas);
636                 if (xas_error(&xas))
637                         goto unlock;
638 next:
639                 xas_store(&xas, page);
640                 if (++i < nr) {
641                         xas_next(&xas);
642                         goto next;
643                 }
644                 if (PageTransHuge(page)) {
645                         count_vm_event(THP_FILE_ALLOC);
646                         __inc_node_page_state(page, NR_SHMEM_THPS);
647                 }
648                 mapping->nrpages += nr;
649                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
650                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
651 unlock:
652                 xas_unlock_irq(&xas);
653         } while (xas_nomem(&xas, gfp));
654
655         if (xas_error(&xas)) {
656                 page->mapping = NULL;
657                 page_ref_sub(page, nr);
658                 return xas_error(&xas);
659         }
660
661         return 0;
662 }
663
664 /*
665  * Like delete_from_page_cache, but substitutes swap for page.
666  */
667 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
668 {
669         struct address_space *mapping = page->mapping;
670         int error;
671
672         VM_BUG_ON_PAGE(PageCompound(page), page);
673
674         xa_lock_irq(&mapping->i_pages);
675         error = shmem_replace_entry(mapping, page->index, page, radswap);
676         page->mapping = NULL;
677         mapping->nrpages--;
678         __dec_node_page_state(page, NR_FILE_PAGES);
679         __dec_node_page_state(page, NR_SHMEM);
680         xa_unlock_irq(&mapping->i_pages);
681         put_page(page);
682         BUG_ON(error);
683 }
684
685 /*
686  * Remove swap entry from page cache, free the swap and its page cache.
687  */
688 static int shmem_free_swap(struct address_space *mapping,
689                            pgoff_t index, void *radswap)
690 {
691         void *old;
692
693         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
694         if (old != radswap)
695                 return -ENOENT;
696         free_swap_and_cache(radix_to_swp_entry(radswap));
697         return 0;
698 }
699
700 /*
701  * Determine (in bytes) how many of the shmem object's pages mapped by the
702  * given offsets are swapped out.
703  *
704  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
705  * as long as the inode doesn't go away and racy results are not a problem.
706  */
707 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
708                                                 pgoff_t start, pgoff_t end)
709 {
710         XA_STATE(xas, &mapping->i_pages, start);
711         struct page *page;
712         unsigned long swapped = 0;
713
714         rcu_read_lock();
715         xas_for_each(&xas, page, end - 1) {
716                 if (xas_retry(&xas, page))
717                         continue;
718                 if (xa_is_value(page))
719                         swapped++;
720
721                 if (need_resched()) {
722                         xas_pause(&xas);
723                         cond_resched_rcu();
724                 }
725         }
726
727         rcu_read_unlock();
728
729         return swapped << PAGE_SHIFT;
730 }
731
732 /*
733  * Determine (in bytes) how many of the shmem object's pages mapped by the
734  * given vma is swapped out.
735  *
736  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
737  * as long as the inode doesn't go away and racy results are not a problem.
738  */
739 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
740 {
741         struct inode *inode = file_inode(vma->vm_file);
742         struct shmem_inode_info *info = SHMEM_I(inode);
743         struct address_space *mapping = inode->i_mapping;
744         unsigned long swapped;
745
746         /* Be careful as we don't hold info->lock */
747         swapped = READ_ONCE(info->swapped);
748
749         /*
750          * The easier cases are when the shmem object has nothing in swap, or
751          * the vma maps it whole. Then we can simply use the stats that we
752          * already track.
753          */
754         if (!swapped)
755                 return 0;
756
757         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
758                 return swapped << PAGE_SHIFT;
759
760         /* Here comes the more involved part */
761         return shmem_partial_swap_usage(mapping,
762                         linear_page_index(vma, vma->vm_start),
763                         linear_page_index(vma, vma->vm_end));
764 }
765
766 /*
767  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
768  */
769 void shmem_unlock_mapping(struct address_space *mapping)
770 {
771         struct pagevec pvec;
772         pgoff_t indices[PAGEVEC_SIZE];
773         pgoff_t index = 0;
774
775         pagevec_init(&pvec);
776         /*
777          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
778          */
779         while (!mapping_unevictable(mapping)) {
780                 /*
781                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
782                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
783                  */
784                 pvec.nr = find_get_entries(mapping, index,
785                                            PAGEVEC_SIZE, pvec.pages, indices);
786                 if (!pvec.nr)
787                         break;
788                 index = indices[pvec.nr - 1] + 1;
789                 pagevec_remove_exceptionals(&pvec);
790                 check_move_unevictable_pages(&pvec);
791                 pagevec_release(&pvec);
792                 cond_resched();
793         }
794 }
795
796 /*
797  * Remove range of pages and swap entries from page cache, and free them.
798  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
799  */
800 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
801                                                                  bool unfalloc)
802 {
803         struct address_space *mapping = inode->i_mapping;
804         struct shmem_inode_info *info = SHMEM_I(inode);
805         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
806         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
807         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
808         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
809         struct pagevec pvec;
810         pgoff_t indices[PAGEVEC_SIZE];
811         long nr_swaps_freed = 0;
812         pgoff_t index;
813         int i;
814
815         if (lend == -1)
816                 end = -1;       /* unsigned, so actually very big */
817
818         pagevec_init(&pvec);
819         index = start;
820         while (index < end) {
821                 pvec.nr = find_get_entries(mapping, index,
822                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
823                         pvec.pages, indices);
824                 if (!pvec.nr)
825                         break;
826                 for (i = 0; i < pagevec_count(&pvec); i++) {
827                         struct page *page = pvec.pages[i];
828
829                         index = indices[i];
830                         if (index >= end)
831                                 break;
832
833                         if (xa_is_value(page)) {
834                                 if (unfalloc)
835                                         continue;
836                                 nr_swaps_freed += !shmem_free_swap(mapping,
837                                                                 index, page);
838                                 continue;
839                         }
840
841                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
842
843                         if (!trylock_page(page))
844                                 continue;
845
846                         if (PageTransTail(page)) {
847                                 /* Middle of THP: zero out the page */
848                                 clear_highpage(page);
849                                 unlock_page(page);
850                                 continue;
851                         } else if (PageTransHuge(page)) {
852                                 if (index == round_down(end, HPAGE_PMD_NR)) {
853                                         /*
854                                          * Range ends in the middle of THP:
855                                          * zero out the page
856                                          */
857                                         clear_highpage(page);
858                                         unlock_page(page);
859                                         continue;
860                                 }
861                                 index += HPAGE_PMD_NR - 1;
862                                 i += HPAGE_PMD_NR - 1;
863                         }
864
865                         if (!unfalloc || !PageUptodate(page)) {
866                                 VM_BUG_ON_PAGE(PageTail(page), page);
867                                 if (page_mapping(page) == mapping) {
868                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
869                                         truncate_inode_page(mapping, page);
870                                 }
871                         }
872                         unlock_page(page);
873                 }
874                 pagevec_remove_exceptionals(&pvec);
875                 pagevec_release(&pvec);
876                 cond_resched();
877                 index++;
878         }
879
880         if (partial_start) {
881                 struct page *page = NULL;
882                 shmem_getpage(inode, start - 1, &page, SGP_READ);
883                 if (page) {
884                         unsigned int top = PAGE_SIZE;
885                         if (start > end) {
886                                 top = partial_end;
887                                 partial_end = 0;
888                         }
889                         zero_user_segment(page, partial_start, top);
890                         set_page_dirty(page);
891                         unlock_page(page);
892                         put_page(page);
893                 }
894         }
895         if (partial_end) {
896                 struct page *page = NULL;
897                 shmem_getpage(inode, end, &page, SGP_READ);
898                 if (page) {
899                         zero_user_segment(page, 0, partial_end);
900                         set_page_dirty(page);
901                         unlock_page(page);
902                         put_page(page);
903                 }
904         }
905         if (start >= end)
906                 return;
907
908         index = start;
909         while (index < end) {
910                 cond_resched();
911
912                 pvec.nr = find_get_entries(mapping, index,
913                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
914                                 pvec.pages, indices);
915                 if (!pvec.nr) {
916                         /* If all gone or hole-punch or unfalloc, we're done */
917                         if (index == start || end != -1)
918                                 break;
919                         /* But if truncating, restart to make sure all gone */
920                         index = start;
921                         continue;
922                 }
923                 for (i = 0; i < pagevec_count(&pvec); i++) {
924                         struct page *page = pvec.pages[i];
925
926                         index = indices[i];
927                         if (index >= end)
928                                 break;
929
930                         if (xa_is_value(page)) {
931                                 if (unfalloc)
932                                         continue;
933                                 if (shmem_free_swap(mapping, index, page)) {
934                                         /* Swap was replaced by page: retry */
935                                         index--;
936                                         break;
937                                 }
938                                 nr_swaps_freed++;
939                                 continue;
940                         }
941
942                         lock_page(page);
943
944                         if (PageTransTail(page)) {
945                                 /* Middle of THP: zero out the page */
946                                 clear_highpage(page);
947                                 unlock_page(page);
948                                 /*
949                                  * Partial thp truncate due 'start' in middle
950                                  * of THP: don't need to look on these pages
951                                  * again on !pvec.nr restart.
952                                  */
953                                 if (index != round_down(end, HPAGE_PMD_NR))
954                                         start++;
955                                 continue;
956                         } else if (PageTransHuge(page)) {
957                                 if (index == round_down(end, HPAGE_PMD_NR)) {
958                                         /*
959                                          * Range ends in the middle of THP:
960                                          * zero out the page
961                                          */
962                                         clear_highpage(page);
963                                         unlock_page(page);
964                                         continue;
965                                 }
966                                 index += HPAGE_PMD_NR - 1;
967                                 i += HPAGE_PMD_NR - 1;
968                         }
969
970                         if (!unfalloc || !PageUptodate(page)) {
971                                 VM_BUG_ON_PAGE(PageTail(page), page);
972                                 if (page_mapping(page) == mapping) {
973                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
974                                         truncate_inode_page(mapping, page);
975                                 } else {
976                                         /* Page was replaced by swap: retry */
977                                         unlock_page(page);
978                                         index--;
979                                         break;
980                                 }
981                         }
982                         unlock_page(page);
983                 }
984                 pagevec_remove_exceptionals(&pvec);
985                 pagevec_release(&pvec);
986                 index++;
987         }
988
989         spin_lock_irq(&info->lock);
990         info->swapped -= nr_swaps_freed;
991         shmem_recalc_inode(inode);
992         spin_unlock_irq(&info->lock);
993 }
994
995 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
996 {
997         shmem_undo_range(inode, lstart, lend, false);
998         inode->i_ctime = inode->i_mtime = current_time(inode);
999 }
1000 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1001
1002 static int shmem_getattr(const struct path *path, struct kstat *stat,
1003                          u32 request_mask, unsigned int query_flags)
1004 {
1005         struct inode *inode = path->dentry->d_inode;
1006         struct shmem_inode_info *info = SHMEM_I(inode);
1007         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1008
1009         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1010                 spin_lock_irq(&info->lock);
1011                 shmem_recalc_inode(inode);
1012                 spin_unlock_irq(&info->lock);
1013         }
1014         generic_fillattr(inode, stat);
1015
1016         if (is_huge_enabled(sb_info))
1017                 stat->blksize = HPAGE_PMD_SIZE;
1018
1019         return 0;
1020 }
1021
1022 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1023 {
1024         struct inode *inode = d_inode(dentry);
1025         struct shmem_inode_info *info = SHMEM_I(inode);
1026         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1027         int error;
1028
1029         error = setattr_prepare(dentry, attr);
1030         if (error)
1031                 return error;
1032
1033         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1034                 loff_t oldsize = inode->i_size;
1035                 loff_t newsize = attr->ia_size;
1036
1037                 /* protected by i_mutex */
1038                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1039                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1040                         return -EPERM;
1041
1042                 if (newsize != oldsize) {
1043                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1044                                         oldsize, newsize);
1045                         if (error)
1046                                 return error;
1047                         i_size_write(inode, newsize);
1048                         inode->i_ctime = inode->i_mtime = current_time(inode);
1049                 }
1050                 if (newsize <= oldsize) {
1051                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1052                         if (oldsize > holebegin)
1053                                 unmap_mapping_range(inode->i_mapping,
1054                                                         holebegin, 0, 1);
1055                         if (info->alloced)
1056                                 shmem_truncate_range(inode,
1057                                                         newsize, (loff_t)-1);
1058                         /* unmap again to remove racily COWed private pages */
1059                         if (oldsize > holebegin)
1060                                 unmap_mapping_range(inode->i_mapping,
1061                                                         holebegin, 0, 1);
1062
1063                         /*
1064                          * Part of the huge page can be beyond i_size: subject
1065                          * to shrink under memory pressure.
1066                          */
1067                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1068                                 spin_lock(&sbinfo->shrinklist_lock);
1069                                 /*
1070                                  * _careful to defend against unlocked access to
1071                                  * ->shrink_list in shmem_unused_huge_shrink()
1072                                  */
1073                                 if (list_empty_careful(&info->shrinklist)) {
1074                                         list_add_tail(&info->shrinklist,
1075                                                         &sbinfo->shrinklist);
1076                                         sbinfo->shrinklist_len++;
1077                                 }
1078                                 spin_unlock(&sbinfo->shrinklist_lock);
1079                         }
1080                 }
1081         }
1082
1083         setattr_copy(inode, attr);
1084         if (attr->ia_valid & ATTR_MODE)
1085                 error = posix_acl_chmod(inode, inode->i_mode);
1086         return error;
1087 }
1088
1089 static void shmem_evict_inode(struct inode *inode)
1090 {
1091         struct shmem_inode_info *info = SHMEM_I(inode);
1092         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1093
1094         if (inode->i_mapping->a_ops == &shmem_aops) {
1095                 shmem_unacct_size(info->flags, inode->i_size);
1096                 inode->i_size = 0;
1097                 shmem_truncate_range(inode, 0, (loff_t)-1);
1098                 if (!list_empty(&info->shrinklist)) {
1099                         spin_lock(&sbinfo->shrinklist_lock);
1100                         if (!list_empty(&info->shrinklist)) {
1101                                 list_del_init(&info->shrinklist);
1102                                 sbinfo->shrinklist_len--;
1103                         }
1104                         spin_unlock(&sbinfo->shrinklist_lock);
1105                 }
1106                 while (!list_empty(&info->swaplist)) {
1107                         /* Wait while shmem_unuse() is scanning this inode... */
1108                         wait_var_event(&info->stop_eviction,
1109                                        !atomic_read(&info->stop_eviction));
1110                         mutex_lock(&shmem_swaplist_mutex);
1111                         /* ...but beware of the race if we peeked too early */
1112                         if (!atomic_read(&info->stop_eviction))
1113                                 list_del_init(&info->swaplist);
1114                         mutex_unlock(&shmem_swaplist_mutex);
1115                 }
1116         }
1117
1118         simple_xattrs_free(&info->xattrs);
1119         WARN_ON(inode->i_blocks);
1120         shmem_free_inode(inode->i_sb);
1121         clear_inode(inode);
1122 }
1123
1124 extern struct swap_info_struct *swap_info[];
1125
1126 static int shmem_find_swap_entries(struct address_space *mapping,
1127                                    pgoff_t start, unsigned int nr_entries,
1128                                    struct page **entries, pgoff_t *indices,
1129                                    unsigned int type, bool frontswap)
1130 {
1131         XA_STATE(xas, &mapping->i_pages, start);
1132         struct page *page;
1133         swp_entry_t entry;
1134         unsigned int ret = 0;
1135
1136         if (!nr_entries)
1137                 return 0;
1138
1139         rcu_read_lock();
1140         xas_for_each(&xas, page, ULONG_MAX) {
1141                 if (xas_retry(&xas, page))
1142                         continue;
1143
1144                 if (!xa_is_value(page))
1145                         continue;
1146
1147                 entry = radix_to_swp_entry(page);
1148                 if (swp_type(entry) != type)
1149                         continue;
1150                 if (frontswap &&
1151                     !frontswap_test(swap_info[type], swp_offset(entry)))
1152                         continue;
1153
1154                 indices[ret] = xas.xa_index;
1155                 entries[ret] = page;
1156
1157                 if (need_resched()) {
1158                         xas_pause(&xas);
1159                         cond_resched_rcu();
1160                 }
1161                 if (++ret == nr_entries)
1162                         break;
1163         }
1164         rcu_read_unlock();
1165
1166         return ret;
1167 }
1168
1169 /*
1170  * Move the swapped pages for an inode to page cache. Returns the count
1171  * of pages swapped in, or the error in case of failure.
1172  */
1173 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1174                                     pgoff_t *indices)
1175 {
1176         int i = 0;
1177         int ret = 0;
1178         int error = 0;
1179         struct address_space *mapping = inode->i_mapping;
1180
1181         for (i = 0; i < pvec.nr; i++) {
1182                 struct page *page = pvec.pages[i];
1183
1184                 if (!xa_is_value(page))
1185                         continue;
1186                 error = shmem_swapin_page(inode, indices[i],
1187                                           &page, SGP_CACHE,
1188                                           mapping_gfp_mask(mapping),
1189                                           NULL, NULL);
1190                 if (error == 0) {
1191                         unlock_page(page);
1192                         put_page(page);
1193                         ret++;
1194                 }
1195                 if (error == -ENOMEM)
1196                         break;
1197                 error = 0;
1198         }
1199         return error ? error : ret;
1200 }
1201
1202 /*
1203  * If swap found in inode, free it and move page from swapcache to filecache.
1204  */
1205 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1206                              bool frontswap, unsigned long *fs_pages_to_unuse)
1207 {
1208         struct address_space *mapping = inode->i_mapping;
1209         pgoff_t start = 0;
1210         struct pagevec pvec;
1211         pgoff_t indices[PAGEVEC_SIZE];
1212         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1213         int ret = 0;
1214
1215         pagevec_init(&pvec);
1216         do {
1217                 unsigned int nr_entries = PAGEVEC_SIZE;
1218
1219                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1220                         nr_entries = *fs_pages_to_unuse;
1221
1222                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1223                                                   pvec.pages, indices,
1224                                                   type, frontswap);
1225                 if (pvec.nr == 0) {
1226                         ret = 0;
1227                         break;
1228                 }
1229
1230                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1231                 if (ret < 0)
1232                         break;
1233
1234                 if (frontswap_partial) {
1235                         *fs_pages_to_unuse -= ret;
1236                         if (*fs_pages_to_unuse == 0) {
1237                                 ret = FRONTSWAP_PAGES_UNUSED;
1238                                 break;
1239                         }
1240                 }
1241
1242                 start = indices[pvec.nr - 1];
1243         } while (true);
1244
1245         return ret;
1246 }
1247
1248 /*
1249  * Read all the shared memory data that resides in the swap
1250  * device 'type' back into memory, so the swap device can be
1251  * unused.
1252  */
1253 int shmem_unuse(unsigned int type, bool frontswap,
1254                 unsigned long *fs_pages_to_unuse)
1255 {
1256         struct shmem_inode_info *info, *next;
1257         int error = 0;
1258
1259         if (list_empty(&shmem_swaplist))
1260                 return 0;
1261
1262         mutex_lock(&shmem_swaplist_mutex);
1263         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1264                 if (!info->swapped) {
1265                         list_del_init(&info->swaplist);
1266                         continue;
1267                 }
1268                 /*
1269                  * Drop the swaplist mutex while searching the inode for swap;
1270                  * but before doing so, make sure shmem_evict_inode() will not
1271                  * remove placeholder inode from swaplist, nor let it be freed
1272                  * (igrab() would protect from unlink, but not from unmount).
1273                  */
1274                 atomic_inc(&info->stop_eviction);
1275                 mutex_unlock(&shmem_swaplist_mutex);
1276
1277                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1278                                           fs_pages_to_unuse);
1279                 cond_resched();
1280
1281                 mutex_lock(&shmem_swaplist_mutex);
1282                 next = list_next_entry(info, swaplist);
1283                 if (!info->swapped)
1284                         list_del_init(&info->swaplist);
1285                 if (atomic_dec_and_test(&info->stop_eviction))
1286                         wake_up_var(&info->stop_eviction);
1287                 if (error)
1288                         break;
1289         }
1290         mutex_unlock(&shmem_swaplist_mutex);
1291
1292         return error;
1293 }
1294
1295 /*
1296  * Move the page from the page cache to the swap cache.
1297  */
1298 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1299 {
1300         struct shmem_inode_info *info;
1301         struct address_space *mapping;
1302         struct inode *inode;
1303         swp_entry_t swap;
1304         pgoff_t index;
1305
1306         VM_BUG_ON_PAGE(PageCompound(page), page);
1307         BUG_ON(!PageLocked(page));
1308         mapping = page->mapping;
1309         index = page->index;
1310         inode = mapping->host;
1311         info = SHMEM_I(inode);
1312         if (info->flags & VM_LOCKED)
1313                 goto redirty;
1314         if (!total_swap_pages)
1315                 goto redirty;
1316
1317         /*
1318          * Our capabilities prevent regular writeback or sync from ever calling
1319          * shmem_writepage; but a stacking filesystem might use ->writepage of
1320          * its underlying filesystem, in which case tmpfs should write out to
1321          * swap only in response to memory pressure, and not for the writeback
1322          * threads or sync.
1323          */
1324         if (!wbc->for_reclaim) {
1325                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1326                 goto redirty;
1327         }
1328
1329         /*
1330          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1331          * value into swapfile.c, the only way we can correctly account for a
1332          * fallocated page arriving here is now to initialize it and write it.
1333          *
1334          * That's okay for a page already fallocated earlier, but if we have
1335          * not yet completed the fallocation, then (a) we want to keep track
1336          * of this page in case we have to undo it, and (b) it may not be a
1337          * good idea to continue anyway, once we're pushing into swap.  So
1338          * reactivate the page, and let shmem_fallocate() quit when too many.
1339          */
1340         if (!PageUptodate(page)) {
1341                 if (inode->i_private) {
1342                         struct shmem_falloc *shmem_falloc;
1343                         spin_lock(&inode->i_lock);
1344                         shmem_falloc = inode->i_private;
1345                         if (shmem_falloc &&
1346                             !shmem_falloc->waitq &&
1347                             index >= shmem_falloc->start &&
1348                             index < shmem_falloc->next)
1349                                 shmem_falloc->nr_unswapped++;
1350                         else
1351                                 shmem_falloc = NULL;
1352                         spin_unlock(&inode->i_lock);
1353                         if (shmem_falloc)
1354                                 goto redirty;
1355                 }
1356                 clear_highpage(page);
1357                 flush_dcache_page(page);
1358                 SetPageUptodate(page);
1359         }
1360
1361         swap = get_swap_page(page);
1362         if (!swap.val)
1363                 goto redirty;
1364
1365         /*
1366          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1367          * if it's not already there.  Do it now before the page is
1368          * moved to swap cache, when its pagelock no longer protects
1369          * the inode from eviction.  But don't unlock the mutex until
1370          * we've incremented swapped, because shmem_unuse_inode() will
1371          * prune a !swapped inode from the swaplist under this mutex.
1372          */
1373         mutex_lock(&shmem_swaplist_mutex);
1374         if (list_empty(&info->swaplist))
1375                 list_add(&info->swaplist, &shmem_swaplist);
1376
1377         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1378                 spin_lock_irq(&info->lock);
1379                 shmem_recalc_inode(inode);
1380                 info->swapped++;
1381                 spin_unlock_irq(&info->lock);
1382
1383                 swap_shmem_alloc(swap);
1384                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1385
1386                 mutex_unlock(&shmem_swaplist_mutex);
1387                 BUG_ON(page_mapped(page));
1388                 swap_writepage(page, wbc);
1389                 return 0;
1390         }
1391
1392         mutex_unlock(&shmem_swaplist_mutex);
1393         put_swap_page(page, swap);
1394 redirty:
1395         set_page_dirty(page);
1396         if (wbc->for_reclaim)
1397                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1398         unlock_page(page);
1399         return 0;
1400 }
1401
1402 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1403 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1404 {
1405         char buffer[64];
1406
1407         if (!mpol || mpol->mode == MPOL_DEFAULT)
1408                 return;         /* show nothing */
1409
1410         mpol_to_str(buffer, sizeof(buffer), mpol);
1411
1412         seq_printf(seq, ",mpol=%s", buffer);
1413 }
1414
1415 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1416 {
1417         struct mempolicy *mpol = NULL;
1418         if (sbinfo->mpol) {
1419                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1420                 mpol = sbinfo->mpol;
1421                 mpol_get(mpol);
1422                 spin_unlock(&sbinfo->stat_lock);
1423         }
1424         return mpol;
1425 }
1426 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1427 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1428 {
1429 }
1430 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1431 {
1432         return NULL;
1433 }
1434 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1435 #ifndef CONFIG_NUMA
1436 #define vm_policy vm_private_data
1437 #endif
1438
1439 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1440                 struct shmem_inode_info *info, pgoff_t index)
1441 {
1442         /* Create a pseudo vma that just contains the policy */
1443         vma_init(vma, NULL);
1444         /* Bias interleave by inode number to distribute better across nodes */
1445         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1446         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1447 }
1448
1449 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1450 {
1451         /* Drop reference taken by mpol_shared_policy_lookup() */
1452         mpol_cond_put(vma->vm_policy);
1453 }
1454
1455 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1456                         struct shmem_inode_info *info, pgoff_t index)
1457 {
1458         struct vm_area_struct pvma;
1459         struct page *page;
1460         struct vm_fault vmf;
1461
1462         shmem_pseudo_vma_init(&pvma, info, index);
1463         vmf.vma = &pvma;
1464         vmf.address = 0;
1465         page = swap_cluster_readahead(swap, gfp, &vmf);
1466         shmem_pseudo_vma_destroy(&pvma);
1467
1468         return page;
1469 }
1470
1471 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1472                 struct shmem_inode_info *info, pgoff_t index)
1473 {
1474         struct vm_area_struct pvma;
1475         struct address_space *mapping = info->vfs_inode.i_mapping;
1476         pgoff_t hindex;
1477         struct page *page;
1478
1479         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1480                 return NULL;
1481
1482         hindex = round_down(index, HPAGE_PMD_NR);
1483         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1484                                                                 XA_PRESENT))
1485                 return NULL;
1486
1487         shmem_pseudo_vma_init(&pvma, info, hindex);
1488         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1489                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1490         shmem_pseudo_vma_destroy(&pvma);
1491         if (page)
1492                 prep_transhuge_page(page);
1493         return page;
1494 }
1495
1496 static struct page *shmem_alloc_page(gfp_t gfp,
1497                         struct shmem_inode_info *info, pgoff_t index)
1498 {
1499         struct vm_area_struct pvma;
1500         struct page *page;
1501
1502         shmem_pseudo_vma_init(&pvma, info, index);
1503         page = alloc_page_vma(gfp, &pvma, 0);
1504         shmem_pseudo_vma_destroy(&pvma);
1505
1506         return page;
1507 }
1508
1509 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1510                 struct inode *inode,
1511                 pgoff_t index, bool huge)
1512 {
1513         struct shmem_inode_info *info = SHMEM_I(inode);
1514         struct page *page;
1515         int nr;
1516         int err = -ENOSPC;
1517
1518         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1519                 huge = false;
1520         nr = huge ? HPAGE_PMD_NR : 1;
1521
1522         if (!shmem_inode_acct_block(inode, nr))
1523                 goto failed;
1524
1525         if (huge)
1526                 page = shmem_alloc_hugepage(gfp, info, index);
1527         else
1528                 page = shmem_alloc_page(gfp, info, index);
1529         if (page) {
1530                 __SetPageLocked(page);
1531                 __SetPageSwapBacked(page);
1532                 return page;
1533         }
1534
1535         err = -ENOMEM;
1536         shmem_inode_unacct_blocks(inode, nr);
1537 failed:
1538         return ERR_PTR(err);
1539 }
1540
1541 /*
1542  * When a page is moved from swapcache to shmem filecache (either by the
1543  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1544  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1545  * ignorance of the mapping it belongs to.  If that mapping has special
1546  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1547  * we may need to copy to a suitable page before moving to filecache.
1548  *
1549  * In a future release, this may well be extended to respect cpuset and
1550  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1551  * but for now it is a simple matter of zone.
1552  */
1553 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1554 {
1555         return page_zonenum(page) > gfp_zone(gfp);
1556 }
1557
1558 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1559                                 struct shmem_inode_info *info, pgoff_t index)
1560 {
1561         struct page *oldpage, *newpage;
1562         struct address_space *swap_mapping;
1563         swp_entry_t entry;
1564         pgoff_t swap_index;
1565         int error;
1566
1567         oldpage = *pagep;
1568         entry.val = page_private(oldpage);
1569         swap_index = swp_offset(entry);
1570         swap_mapping = page_mapping(oldpage);
1571
1572         /*
1573          * We have arrived here because our zones are constrained, so don't
1574          * limit chance of success by further cpuset and node constraints.
1575          */
1576         gfp &= ~GFP_CONSTRAINT_MASK;
1577         newpage = shmem_alloc_page(gfp, info, index);
1578         if (!newpage)
1579                 return -ENOMEM;
1580
1581         get_page(newpage);
1582         copy_highpage(newpage, oldpage);
1583         flush_dcache_page(newpage);
1584
1585         __SetPageLocked(newpage);
1586         __SetPageSwapBacked(newpage);
1587         SetPageUptodate(newpage);
1588         set_page_private(newpage, entry.val);
1589         SetPageSwapCache(newpage);
1590
1591         /*
1592          * Our caller will very soon move newpage out of swapcache, but it's
1593          * a nice clean interface for us to replace oldpage by newpage there.
1594          */
1595         xa_lock_irq(&swap_mapping->i_pages);
1596         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1597         if (!error) {
1598                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1599                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1600         }
1601         xa_unlock_irq(&swap_mapping->i_pages);
1602
1603         if (unlikely(error)) {
1604                 /*
1605                  * Is this possible?  I think not, now that our callers check
1606                  * both PageSwapCache and page_private after getting page lock;
1607                  * but be defensive.  Reverse old to newpage for clear and free.
1608                  */
1609                 oldpage = newpage;
1610         } else {
1611                 mem_cgroup_migrate(oldpage, newpage);
1612                 lru_cache_add_anon(newpage);
1613                 *pagep = newpage;
1614         }
1615
1616         ClearPageSwapCache(oldpage);
1617         set_page_private(oldpage, 0);
1618
1619         unlock_page(oldpage);
1620         put_page(oldpage);
1621         put_page(oldpage);
1622         return error;
1623 }
1624
1625 /*
1626  * Swap in the page pointed to by *pagep.
1627  * Caller has to make sure that *pagep contains a valid swapped page.
1628  * Returns 0 and the page in pagep if success. On failure, returns the
1629  * the error code and NULL in *pagep.
1630  */
1631 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1632                              struct page **pagep, enum sgp_type sgp,
1633                              gfp_t gfp, struct vm_area_struct *vma,
1634                              vm_fault_t *fault_type)
1635 {
1636         struct address_space *mapping = inode->i_mapping;
1637         struct shmem_inode_info *info = SHMEM_I(inode);
1638         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1639         struct mem_cgroup *memcg;
1640         struct page *page;
1641         swp_entry_t swap;
1642         int error;
1643
1644         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1645         swap = radix_to_swp_entry(*pagep);
1646         *pagep = NULL;
1647
1648         /* Look it up and read it in.. */
1649         page = lookup_swap_cache(swap, NULL, 0);
1650         if (!page) {
1651                 /* Or update major stats only when swapin succeeds?? */
1652                 if (fault_type) {
1653                         *fault_type |= VM_FAULT_MAJOR;
1654                         count_vm_event(PGMAJFAULT);
1655                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1656                 }
1657                 /* Here we actually start the io */
1658                 page = shmem_swapin(swap, gfp, info, index);
1659                 if (!page) {
1660                         error = -ENOMEM;
1661                         goto failed;
1662                 }
1663         }
1664
1665         /* We have to do this with page locked to prevent races */
1666         lock_page(page);
1667         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1668             !shmem_confirm_swap(mapping, index, swap)) {
1669                 error = -EEXIST;
1670                 goto unlock;
1671         }
1672         if (!PageUptodate(page)) {
1673                 error = -EIO;
1674                 goto failed;
1675         }
1676         wait_on_page_writeback(page);
1677
1678         if (shmem_should_replace_page(page, gfp)) {
1679                 error = shmem_replace_page(&page, gfp, info, index);
1680                 if (error)
1681                         goto failed;
1682         }
1683
1684         error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1685                                             false);
1686         if (!error) {
1687                 error = shmem_add_to_page_cache(page, mapping, index,
1688                                                 swp_to_radix_entry(swap), gfp);
1689                 /*
1690                  * We already confirmed swap under page lock, and make
1691                  * no memory allocation here, so usually no possibility
1692                  * of error; but free_swap_and_cache() only trylocks a
1693                  * page, so it is just possible that the entry has been
1694                  * truncated or holepunched since swap was confirmed.
1695                  * shmem_undo_range() will have done some of the
1696                  * unaccounting, now delete_from_swap_cache() will do
1697                  * the rest.
1698                  */
1699                 if (error) {
1700                         mem_cgroup_cancel_charge(page, memcg, false);
1701                         delete_from_swap_cache(page);
1702                 }
1703         }
1704         if (error)
1705                 goto failed;
1706
1707         mem_cgroup_commit_charge(page, memcg, true, false);
1708
1709         spin_lock_irq(&info->lock);
1710         info->swapped--;
1711         shmem_recalc_inode(inode);
1712         spin_unlock_irq(&info->lock);
1713
1714         if (sgp == SGP_WRITE)
1715                 mark_page_accessed(page);
1716
1717         delete_from_swap_cache(page);
1718         set_page_dirty(page);
1719         swap_free(swap);
1720
1721         *pagep = page;
1722         return 0;
1723 failed:
1724         if (!shmem_confirm_swap(mapping, index, swap))
1725                 error = -EEXIST;
1726 unlock:
1727         if (page) {
1728                 unlock_page(page);
1729                 put_page(page);
1730         }
1731
1732         return error;
1733 }
1734
1735 /*
1736  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1737  *
1738  * If we allocate a new one we do not mark it dirty. That's up to the
1739  * vm. If we swap it in we mark it dirty since we also free the swap
1740  * entry since a page cannot live in both the swap and page cache.
1741  *
1742  * vmf and fault_type are only supplied by shmem_fault:
1743  * otherwise they are NULL.
1744  */
1745 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1746         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1747         struct vm_area_struct *vma, struct vm_fault *vmf,
1748                         vm_fault_t *fault_type)
1749 {
1750         struct address_space *mapping = inode->i_mapping;
1751         struct shmem_inode_info *info = SHMEM_I(inode);
1752         struct shmem_sb_info *sbinfo;
1753         struct mm_struct *charge_mm;
1754         struct mem_cgroup *memcg;
1755         struct page *page;
1756         enum sgp_type sgp_huge = sgp;
1757         pgoff_t hindex = index;
1758         int error;
1759         int once = 0;
1760         int alloced = 0;
1761
1762         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1763                 return -EFBIG;
1764         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1765                 sgp = SGP_CACHE;
1766 repeat:
1767         if (sgp <= SGP_CACHE &&
1768             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1769                 return -EINVAL;
1770         }
1771
1772         sbinfo = SHMEM_SB(inode->i_sb);
1773         charge_mm = vma ? vma->vm_mm : current->mm;
1774
1775         page = find_lock_entry(mapping, index);
1776         if (xa_is_value(page)) {
1777                 error = shmem_swapin_page(inode, index, &page,
1778                                           sgp, gfp, vma, fault_type);
1779                 if (error == -EEXIST)
1780                         goto repeat;
1781
1782                 *pagep = page;
1783                 return error;
1784         }
1785
1786         if (page && sgp == SGP_WRITE)
1787                 mark_page_accessed(page);
1788
1789         /* fallocated page? */
1790         if (page && !PageUptodate(page)) {
1791                 if (sgp != SGP_READ)
1792                         goto clear;
1793                 unlock_page(page);
1794                 put_page(page);
1795                 page = NULL;
1796         }
1797         if (page || sgp == SGP_READ) {
1798                 *pagep = page;
1799                 return 0;
1800         }
1801
1802         /*
1803          * Fast cache lookup did not find it:
1804          * bring it back from swap or allocate.
1805          */
1806
1807         if (vma && userfaultfd_missing(vma)) {
1808                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1809                 return 0;
1810         }
1811
1812         /* shmem_symlink() */
1813         if (mapping->a_ops != &shmem_aops)
1814                 goto alloc_nohuge;
1815         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1816                 goto alloc_nohuge;
1817         if (shmem_huge == SHMEM_HUGE_FORCE)
1818                 goto alloc_huge;
1819         switch (sbinfo->huge) {
1820                 loff_t i_size;
1821                 pgoff_t off;
1822         case SHMEM_HUGE_NEVER:
1823                 goto alloc_nohuge;
1824         case SHMEM_HUGE_WITHIN_SIZE:
1825                 off = round_up(index, HPAGE_PMD_NR);
1826                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1827                 if (i_size >= HPAGE_PMD_SIZE &&
1828                     i_size >> PAGE_SHIFT >= off)
1829                         goto alloc_huge;
1830                 /* fallthrough */
1831         case SHMEM_HUGE_ADVISE:
1832                 if (sgp_huge == SGP_HUGE)
1833                         goto alloc_huge;
1834                 /* TODO: implement fadvise() hints */
1835                 goto alloc_nohuge;
1836         }
1837
1838 alloc_huge:
1839         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1840         if (IS_ERR(page)) {
1841 alloc_nohuge:
1842                 page = shmem_alloc_and_acct_page(gfp, inode,
1843                                                  index, false);
1844         }
1845         if (IS_ERR(page)) {
1846                 int retry = 5;
1847
1848                 error = PTR_ERR(page);
1849                 page = NULL;
1850                 if (error != -ENOSPC)
1851                         goto unlock;
1852                 /*
1853                  * Try to reclaim some space by splitting a huge page
1854                  * beyond i_size on the filesystem.
1855                  */
1856                 while (retry--) {
1857                         int ret;
1858
1859                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1860                         if (ret == SHRINK_STOP)
1861                                 break;
1862                         if (ret)
1863                                 goto alloc_nohuge;
1864                 }
1865                 goto unlock;
1866         }
1867
1868         if (PageTransHuge(page))
1869                 hindex = round_down(index, HPAGE_PMD_NR);
1870         else
1871                 hindex = index;
1872
1873         if (sgp == SGP_WRITE)
1874                 __SetPageReferenced(page);
1875
1876         error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1877                                             PageTransHuge(page));
1878         if (error)
1879                 goto unacct;
1880         error = shmem_add_to_page_cache(page, mapping, hindex,
1881                                         NULL, gfp & GFP_RECLAIM_MASK);
1882         if (error) {
1883                 mem_cgroup_cancel_charge(page, memcg,
1884                                          PageTransHuge(page));
1885                 goto unacct;
1886         }
1887         mem_cgroup_commit_charge(page, memcg, false,
1888                                  PageTransHuge(page));
1889         lru_cache_add_anon(page);
1890
1891         spin_lock_irq(&info->lock);
1892         info->alloced += compound_nr(page);
1893         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1894         shmem_recalc_inode(inode);
1895         spin_unlock_irq(&info->lock);
1896         alloced = true;
1897
1898         if (PageTransHuge(page) &&
1899             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1900                         hindex + HPAGE_PMD_NR - 1) {
1901                 /*
1902                  * Part of the huge page is beyond i_size: subject
1903                  * to shrink under memory pressure.
1904                  */
1905                 spin_lock(&sbinfo->shrinklist_lock);
1906                 /*
1907                  * _careful to defend against unlocked access to
1908                  * ->shrink_list in shmem_unused_huge_shrink()
1909                  */
1910                 if (list_empty_careful(&info->shrinklist)) {
1911                         list_add_tail(&info->shrinklist,
1912                                       &sbinfo->shrinklist);
1913                         sbinfo->shrinklist_len++;
1914                 }
1915                 spin_unlock(&sbinfo->shrinklist_lock);
1916         }
1917
1918         /*
1919          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1920          */
1921         if (sgp == SGP_FALLOC)
1922                 sgp = SGP_WRITE;
1923 clear:
1924         /*
1925          * Let SGP_WRITE caller clear ends if write does not fill page;
1926          * but SGP_FALLOC on a page fallocated earlier must initialize
1927          * it now, lest undo on failure cancel our earlier guarantee.
1928          */
1929         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1930                 struct page *head = compound_head(page);
1931                 int i;
1932
1933                 for (i = 0; i < compound_nr(head); i++) {
1934                         clear_highpage(head + i);
1935                         flush_dcache_page(head + i);
1936                 }
1937                 SetPageUptodate(head);
1938         }
1939
1940         /* Perhaps the file has been truncated since we checked */
1941         if (sgp <= SGP_CACHE &&
1942             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1943                 if (alloced) {
1944                         ClearPageDirty(page);
1945                         delete_from_page_cache(page);
1946                         spin_lock_irq(&info->lock);
1947                         shmem_recalc_inode(inode);
1948                         spin_unlock_irq(&info->lock);
1949                 }
1950                 error = -EINVAL;
1951                 goto unlock;
1952         }
1953         *pagep = page + index - hindex;
1954         return 0;
1955
1956         /*
1957          * Error recovery.
1958          */
1959 unacct:
1960         shmem_inode_unacct_blocks(inode, compound_nr(page));
1961
1962         if (PageTransHuge(page)) {
1963                 unlock_page(page);
1964                 put_page(page);
1965                 goto alloc_nohuge;
1966         }
1967 unlock:
1968         if (page) {
1969                 unlock_page(page);
1970                 put_page(page);
1971         }
1972         if (error == -ENOSPC && !once++) {
1973                 spin_lock_irq(&info->lock);
1974                 shmem_recalc_inode(inode);
1975                 spin_unlock_irq(&info->lock);
1976                 goto repeat;
1977         }
1978         if (error == -EEXIST)
1979                 goto repeat;
1980         return error;
1981 }
1982
1983 /*
1984  * This is like autoremove_wake_function, but it removes the wait queue
1985  * entry unconditionally - even if something else had already woken the
1986  * target.
1987  */
1988 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1989 {
1990         int ret = default_wake_function(wait, mode, sync, key);
1991         list_del_init(&wait->entry);
1992         return ret;
1993 }
1994
1995 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1996 {
1997         struct vm_area_struct *vma = vmf->vma;
1998         struct inode *inode = file_inode(vma->vm_file);
1999         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2000         enum sgp_type sgp;
2001         int err;
2002         vm_fault_t ret = VM_FAULT_LOCKED;
2003
2004         /*
2005          * Trinity finds that probing a hole which tmpfs is punching can
2006          * prevent the hole-punch from ever completing: which in turn
2007          * locks writers out with its hold on i_mutex.  So refrain from
2008          * faulting pages into the hole while it's being punched.  Although
2009          * shmem_undo_range() does remove the additions, it may be unable to
2010          * keep up, as each new page needs its own unmap_mapping_range() call,
2011          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2012          *
2013          * It does not matter if we sometimes reach this check just before the
2014          * hole-punch begins, so that one fault then races with the punch:
2015          * we just need to make racing faults a rare case.
2016          *
2017          * The implementation below would be much simpler if we just used a
2018          * standard mutex or completion: but we cannot take i_mutex in fault,
2019          * and bloating every shmem inode for this unlikely case would be sad.
2020          */
2021         if (unlikely(inode->i_private)) {
2022                 struct shmem_falloc *shmem_falloc;
2023
2024                 spin_lock(&inode->i_lock);
2025                 shmem_falloc = inode->i_private;
2026                 if (shmem_falloc &&
2027                     shmem_falloc->waitq &&
2028                     vmf->pgoff >= shmem_falloc->start &&
2029                     vmf->pgoff < shmem_falloc->next) {
2030                         struct file *fpin;
2031                         wait_queue_head_t *shmem_falloc_waitq;
2032                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2033
2034                         ret = VM_FAULT_NOPAGE;
2035                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2036                         if (fpin)
2037                                 ret = VM_FAULT_RETRY;
2038
2039                         shmem_falloc_waitq = shmem_falloc->waitq;
2040                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2041                                         TASK_UNINTERRUPTIBLE);
2042                         spin_unlock(&inode->i_lock);
2043                         schedule();
2044
2045                         /*
2046                          * shmem_falloc_waitq points into the shmem_fallocate()
2047                          * stack of the hole-punching task: shmem_falloc_waitq
2048                          * is usually invalid by the time we reach here, but
2049                          * finish_wait() does not dereference it in that case;
2050                          * though i_lock needed lest racing with wake_up_all().
2051                          */
2052                         spin_lock(&inode->i_lock);
2053                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2054                         spin_unlock(&inode->i_lock);
2055
2056                         if (fpin)
2057                                 fput(fpin);
2058                         return ret;
2059                 }
2060                 spin_unlock(&inode->i_lock);
2061         }
2062
2063         sgp = SGP_CACHE;
2064
2065         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2066             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2067                 sgp = SGP_NOHUGE;
2068         else if (vma->vm_flags & VM_HUGEPAGE)
2069                 sgp = SGP_HUGE;
2070
2071         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2072                                   gfp, vma, vmf, &ret);
2073         if (err)
2074                 return vmf_error(err);
2075         return ret;
2076 }
2077
2078 unsigned long shmem_get_unmapped_area(struct file *file,
2079                                       unsigned long uaddr, unsigned long len,
2080                                       unsigned long pgoff, unsigned long flags)
2081 {
2082         unsigned long (*get_area)(struct file *,
2083                 unsigned long, unsigned long, unsigned long, unsigned long);
2084         unsigned long addr;
2085         unsigned long offset;
2086         unsigned long inflated_len;
2087         unsigned long inflated_addr;
2088         unsigned long inflated_offset;
2089
2090         if (len > TASK_SIZE)
2091                 return -ENOMEM;
2092
2093         get_area = current->mm->get_unmapped_area;
2094         addr = get_area(file, uaddr, len, pgoff, flags);
2095
2096         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2097                 return addr;
2098         if (IS_ERR_VALUE(addr))
2099                 return addr;
2100         if (addr & ~PAGE_MASK)
2101                 return addr;
2102         if (addr > TASK_SIZE - len)
2103                 return addr;
2104
2105         if (shmem_huge == SHMEM_HUGE_DENY)
2106                 return addr;
2107         if (len < HPAGE_PMD_SIZE)
2108                 return addr;
2109         if (flags & MAP_FIXED)
2110                 return addr;
2111         /*
2112          * Our priority is to support MAP_SHARED mapped hugely;
2113          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2114          * But if caller specified an address hint and we allocated area there
2115          * successfully, respect that as before.
2116          */
2117         if (uaddr == addr)
2118                 return addr;
2119
2120         if (shmem_huge != SHMEM_HUGE_FORCE) {
2121                 struct super_block *sb;
2122
2123                 if (file) {
2124                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2125                         sb = file_inode(file)->i_sb;
2126                 } else {
2127                         /*
2128                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2129                          * for "/dev/zero", to create a shared anonymous object.
2130                          */
2131                         if (IS_ERR(shm_mnt))
2132                                 return addr;
2133                         sb = shm_mnt->mnt_sb;
2134                 }
2135                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2136                         return addr;
2137         }
2138
2139         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2140         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2141                 return addr;
2142         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2143                 return addr;
2144
2145         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2146         if (inflated_len > TASK_SIZE)
2147                 return addr;
2148         if (inflated_len < len)
2149                 return addr;
2150
2151         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2152         if (IS_ERR_VALUE(inflated_addr))
2153                 return addr;
2154         if (inflated_addr & ~PAGE_MASK)
2155                 return addr;
2156
2157         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2158         inflated_addr += offset - inflated_offset;
2159         if (inflated_offset > offset)
2160                 inflated_addr += HPAGE_PMD_SIZE;
2161
2162         if (inflated_addr > TASK_SIZE - len)
2163                 return addr;
2164         return inflated_addr;
2165 }
2166
2167 #ifdef CONFIG_NUMA
2168 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2169 {
2170         struct inode *inode = file_inode(vma->vm_file);
2171         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2172 }
2173
2174 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2175                                           unsigned long addr)
2176 {
2177         struct inode *inode = file_inode(vma->vm_file);
2178         pgoff_t index;
2179
2180         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2181         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2182 }
2183 #endif
2184
2185 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2186 {
2187         struct inode *inode = file_inode(file);
2188         struct shmem_inode_info *info = SHMEM_I(inode);
2189         int retval = -ENOMEM;
2190
2191         /*
2192          * What serializes the accesses to info->flags?
2193          * ipc_lock_object() when called from shmctl_do_lock(),
2194          * no serialization needed when called from shm_destroy().
2195          */
2196         if (lock && !(info->flags & VM_LOCKED)) {
2197                 if (!user_shm_lock(inode->i_size, user))
2198                         goto out_nomem;
2199                 info->flags |= VM_LOCKED;
2200                 mapping_set_unevictable(file->f_mapping);
2201         }
2202         if (!lock && (info->flags & VM_LOCKED) && user) {
2203                 user_shm_unlock(inode->i_size, user);
2204                 info->flags &= ~VM_LOCKED;
2205                 mapping_clear_unevictable(file->f_mapping);
2206         }
2207         retval = 0;
2208
2209 out_nomem:
2210         return retval;
2211 }
2212
2213 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2214 {
2215         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2216         int ret;
2217
2218         ret = seal_check_future_write(info->seals, vma);
2219         if (ret)
2220                 return ret;
2221
2222         file_accessed(file);
2223         vma->vm_ops = &shmem_vm_ops;
2224         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2225                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2226                         (vma->vm_end & HPAGE_PMD_MASK)) {
2227                 khugepaged_enter(vma, vma->vm_flags);
2228         }
2229         return 0;
2230 }
2231
2232 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2233                                      umode_t mode, dev_t dev, unsigned long flags)
2234 {
2235         struct inode *inode;
2236         struct shmem_inode_info *info;
2237         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2238
2239         if (shmem_reserve_inode(sb))
2240                 return NULL;
2241
2242         inode = new_inode(sb);
2243         if (inode) {
2244                 inode->i_ino = get_next_ino();
2245                 inode_init_owner(inode, dir, mode);
2246                 inode->i_blocks = 0;
2247                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2248                 inode->i_generation = prandom_u32();
2249                 info = SHMEM_I(inode);
2250                 memset(info, 0, (char *)inode - (char *)info);
2251                 spin_lock_init(&info->lock);
2252                 atomic_set(&info->stop_eviction, 0);
2253                 info->seals = F_SEAL_SEAL;
2254                 info->flags = flags & VM_NORESERVE;
2255                 INIT_LIST_HEAD(&info->shrinklist);
2256                 INIT_LIST_HEAD(&info->swaplist);
2257                 simple_xattrs_init(&info->xattrs);
2258                 cache_no_acl(inode);
2259
2260                 switch (mode & S_IFMT) {
2261                 default:
2262                         inode->i_op = &shmem_special_inode_operations;
2263                         init_special_inode(inode, mode, dev);
2264                         break;
2265                 case S_IFREG:
2266                         inode->i_mapping->a_ops = &shmem_aops;
2267                         inode->i_op = &shmem_inode_operations;
2268                         inode->i_fop = &shmem_file_operations;
2269                         mpol_shared_policy_init(&info->policy,
2270                                                  shmem_get_sbmpol(sbinfo));
2271                         break;
2272                 case S_IFDIR:
2273                         inc_nlink(inode);
2274                         /* Some things misbehave if size == 0 on a directory */
2275                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2276                         inode->i_op = &shmem_dir_inode_operations;
2277                         inode->i_fop = &simple_dir_operations;
2278                         break;
2279                 case S_IFLNK:
2280                         /*
2281                          * Must not load anything in the rbtree,
2282                          * mpol_free_shared_policy will not be called.
2283                          */
2284                         mpol_shared_policy_init(&info->policy, NULL);
2285                         break;
2286                 }
2287
2288                 lockdep_annotate_inode_mutex_key(inode);
2289         } else
2290                 shmem_free_inode(sb);
2291         return inode;
2292 }
2293
2294 bool shmem_mapping(struct address_space *mapping)
2295 {
2296         return mapping->a_ops == &shmem_aops;
2297 }
2298
2299 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2300                                   pmd_t *dst_pmd,
2301                                   struct vm_area_struct *dst_vma,
2302                                   unsigned long dst_addr,
2303                                   unsigned long src_addr,
2304                                   bool zeropage,
2305                                   struct page **pagep)
2306 {
2307         struct inode *inode = file_inode(dst_vma->vm_file);
2308         struct shmem_inode_info *info = SHMEM_I(inode);
2309         struct address_space *mapping = inode->i_mapping;
2310         gfp_t gfp = mapping_gfp_mask(mapping);
2311         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2312         struct mem_cgroup *memcg;
2313         spinlock_t *ptl;
2314         void *page_kaddr;
2315         struct page *page;
2316         pte_t _dst_pte, *dst_pte;
2317         int ret;
2318         pgoff_t offset, max_off;
2319
2320         ret = -ENOMEM;
2321         if (!shmem_inode_acct_block(inode, 1)) {
2322                 /*
2323                  * We may have got a page, returned -ENOENT triggering a retry,
2324                  * and now we find ourselves with -ENOMEM. Release the page, to
2325                  * avoid a BUG_ON in our caller.
2326                  */
2327                 if (unlikely(*pagep)) {
2328                         put_page(*pagep);
2329                         *pagep = NULL;
2330                 }
2331                 goto out;
2332         }
2333
2334         if (!*pagep) {
2335                 page = shmem_alloc_page(gfp, info, pgoff);
2336                 if (!page)
2337                         goto out_unacct_blocks;
2338
2339                 if (!zeropage) {        /* mcopy_atomic */
2340                         page_kaddr = kmap_atomic(page);
2341                         ret = copy_from_user(page_kaddr,
2342                                              (const void __user *)src_addr,
2343                                              PAGE_SIZE);
2344                         kunmap_atomic(page_kaddr);
2345
2346                         /* fallback to copy_from_user outside mmap_sem */
2347                         if (unlikely(ret)) {
2348                                 *pagep = page;
2349                                 shmem_inode_unacct_blocks(inode, 1);
2350                                 /* don't free the page */
2351                                 return -ENOENT;
2352                         }
2353                 } else {                /* mfill_zeropage_atomic */
2354                         clear_highpage(page);
2355                 }
2356         } else {
2357                 page = *pagep;
2358                 *pagep = NULL;
2359         }
2360
2361         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2362         __SetPageLocked(page);
2363         __SetPageSwapBacked(page);
2364         __SetPageUptodate(page);
2365
2366         ret = -EFAULT;
2367         offset = linear_page_index(dst_vma, dst_addr);
2368         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2369         if (unlikely(offset >= max_off))
2370                 goto out_release;
2371
2372         ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2373         if (ret)
2374                 goto out_release;
2375
2376         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2377                                                 gfp & GFP_RECLAIM_MASK);
2378         if (ret)
2379                 goto out_release_uncharge;
2380
2381         mem_cgroup_commit_charge(page, memcg, false, false);
2382
2383         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2384         if (dst_vma->vm_flags & VM_WRITE)
2385                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2386         else {
2387                 /*
2388                  * We don't set the pte dirty if the vma has no
2389                  * VM_WRITE permission, so mark the page dirty or it
2390                  * could be freed from under us. We could do it
2391                  * unconditionally before unlock_page(), but doing it
2392                  * only if VM_WRITE is not set is faster.
2393                  */
2394                 set_page_dirty(page);
2395         }
2396
2397         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2398
2399         ret = -EFAULT;
2400         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2401         if (unlikely(offset >= max_off))
2402                 goto out_release_uncharge_unlock;
2403
2404         ret = -EEXIST;
2405         if (!pte_none(*dst_pte))
2406                 goto out_release_uncharge_unlock;
2407
2408         lru_cache_add_anon(page);
2409
2410         spin_lock_irq(&info->lock);
2411         info->alloced++;
2412         inode->i_blocks += BLOCKS_PER_PAGE;
2413         shmem_recalc_inode(inode);
2414         spin_unlock_irq(&info->lock);
2415
2416         inc_mm_counter(dst_mm, mm_counter_file(page));
2417         page_add_file_rmap(page, false);
2418         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2419
2420         /* No need to invalidate - it was non-present before */
2421         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2422         pte_unmap_unlock(dst_pte, ptl);
2423         unlock_page(page);
2424         ret = 0;
2425 out:
2426         return ret;
2427 out_release_uncharge_unlock:
2428         pte_unmap_unlock(dst_pte, ptl);
2429         ClearPageDirty(page);
2430         delete_from_page_cache(page);
2431 out_release_uncharge:
2432         mem_cgroup_cancel_charge(page, memcg, false);
2433 out_release:
2434         unlock_page(page);
2435         put_page(page);
2436 out_unacct_blocks:
2437         shmem_inode_unacct_blocks(inode, 1);
2438         goto out;
2439 }
2440
2441 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2442                            pmd_t *dst_pmd,
2443                            struct vm_area_struct *dst_vma,
2444                            unsigned long dst_addr,
2445                            unsigned long src_addr,
2446                            struct page **pagep)
2447 {
2448         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2449                                       dst_addr, src_addr, false, pagep);
2450 }
2451
2452 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2453                              pmd_t *dst_pmd,
2454                              struct vm_area_struct *dst_vma,
2455                              unsigned long dst_addr)
2456 {
2457         struct page *page = NULL;
2458
2459         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2460                                       dst_addr, 0, true, &page);
2461 }
2462
2463 #ifdef CONFIG_TMPFS
2464 static const struct inode_operations shmem_symlink_inode_operations;
2465 static const struct inode_operations shmem_short_symlink_operations;
2466
2467 #ifdef CONFIG_TMPFS_XATTR
2468 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2469 #else
2470 #define shmem_initxattrs NULL
2471 #endif
2472
2473 static int
2474 shmem_write_begin(struct file *file, struct address_space *mapping,
2475                         loff_t pos, unsigned len, unsigned flags,
2476                         struct page **pagep, void **fsdata)
2477 {
2478         struct inode *inode = mapping->host;
2479         struct shmem_inode_info *info = SHMEM_I(inode);
2480         pgoff_t index = pos >> PAGE_SHIFT;
2481
2482         /* i_mutex is held by caller */
2483         if (unlikely(info->seals & (F_SEAL_GROW |
2484                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2485                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2486                         return -EPERM;
2487                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2488                         return -EPERM;
2489         }
2490
2491         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2492 }
2493
2494 static int
2495 shmem_write_end(struct file *file, struct address_space *mapping,
2496                         loff_t pos, unsigned len, unsigned copied,
2497                         struct page *page, void *fsdata)
2498 {
2499         struct inode *inode = mapping->host;
2500
2501         if (pos + copied > inode->i_size)
2502                 i_size_write(inode, pos + copied);
2503
2504         if (!PageUptodate(page)) {
2505                 struct page *head = compound_head(page);
2506                 if (PageTransCompound(page)) {
2507                         int i;
2508
2509                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2510                                 if (head + i == page)
2511                                         continue;
2512                                 clear_highpage(head + i);
2513                                 flush_dcache_page(head + i);
2514                         }
2515                 }
2516                 if (copied < PAGE_SIZE) {
2517                         unsigned from = pos & (PAGE_SIZE - 1);
2518                         zero_user_segments(page, 0, from,
2519                                         from + copied, PAGE_SIZE);
2520                 }
2521                 SetPageUptodate(head);
2522         }
2523         set_page_dirty(page);
2524         unlock_page(page);
2525         put_page(page);
2526
2527         return copied;
2528 }
2529
2530 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2531 {
2532         struct file *file = iocb->ki_filp;
2533         struct inode *inode = file_inode(file);
2534         struct address_space *mapping = inode->i_mapping;
2535         pgoff_t index;
2536         unsigned long offset;
2537         enum sgp_type sgp = SGP_READ;
2538         int error = 0;
2539         ssize_t retval = 0;
2540         loff_t *ppos = &iocb->ki_pos;
2541
2542         /*
2543          * Might this read be for a stacking filesystem?  Then when reading
2544          * holes of a sparse file, we actually need to allocate those pages,
2545          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2546          */
2547         if (!iter_is_iovec(to))
2548                 sgp = SGP_CACHE;
2549
2550         index = *ppos >> PAGE_SHIFT;
2551         offset = *ppos & ~PAGE_MASK;
2552
2553         for (;;) {
2554                 struct page *page = NULL;
2555                 pgoff_t end_index;
2556                 unsigned long nr, ret;
2557                 loff_t i_size = i_size_read(inode);
2558
2559                 end_index = i_size >> PAGE_SHIFT;
2560                 if (index > end_index)
2561                         break;
2562                 if (index == end_index) {
2563                         nr = i_size & ~PAGE_MASK;
2564                         if (nr <= offset)
2565                                 break;
2566                 }
2567
2568                 error = shmem_getpage(inode, index, &page, sgp);
2569                 if (error) {
2570                         if (error == -EINVAL)
2571                                 error = 0;
2572                         break;
2573                 }
2574                 if (page) {
2575                         if (sgp == SGP_CACHE)
2576                                 set_page_dirty(page);
2577                         unlock_page(page);
2578                 }
2579
2580                 /*
2581                  * We must evaluate after, since reads (unlike writes)
2582                  * are called without i_mutex protection against truncate
2583                  */
2584                 nr = PAGE_SIZE;
2585                 i_size = i_size_read(inode);
2586                 end_index = i_size >> PAGE_SHIFT;
2587                 if (index == end_index) {
2588                         nr = i_size & ~PAGE_MASK;
2589                         if (nr <= offset) {
2590                                 if (page)
2591                                         put_page(page);
2592                                 break;
2593                         }
2594                 }
2595                 nr -= offset;
2596
2597                 if (page) {
2598                         /*
2599                          * If users can be writing to this page using arbitrary
2600                          * virtual addresses, take care about potential aliasing
2601                          * before reading the page on the kernel side.
2602                          */
2603                         if (mapping_writably_mapped(mapping))
2604                                 flush_dcache_page(page);
2605                         /*
2606                          * Mark the page accessed if we read the beginning.
2607                          */
2608                         if (!offset)
2609                                 mark_page_accessed(page);
2610                 } else {
2611                         page = ZERO_PAGE(0);
2612                         get_page(page);
2613                 }
2614
2615                 /*
2616                  * Ok, we have the page, and it's up-to-date, so
2617                  * now we can copy it to user space...
2618                  */
2619                 ret = copy_page_to_iter(page, offset, nr, to);
2620                 retval += ret;
2621                 offset += ret;
2622                 index += offset >> PAGE_SHIFT;
2623                 offset &= ~PAGE_MASK;
2624
2625                 put_page(page);
2626                 if (!iov_iter_count(to))
2627                         break;
2628                 if (ret < nr) {
2629                         error = -EFAULT;
2630                         break;
2631                 }
2632                 cond_resched();
2633         }
2634
2635         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2636         file_accessed(file);
2637         return retval ? retval : error;
2638 }
2639
2640 /*
2641  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2642  */
2643 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2644                                     pgoff_t index, pgoff_t end, int whence)
2645 {
2646         struct page *page;
2647         struct pagevec pvec;
2648         pgoff_t indices[PAGEVEC_SIZE];
2649         bool done = false;
2650         int i;
2651
2652         pagevec_init(&pvec);
2653         pvec.nr = 1;            /* start small: we may be there already */
2654         while (!done) {
2655                 pvec.nr = find_get_entries(mapping, index,
2656                                         pvec.nr, pvec.pages, indices);
2657                 if (!pvec.nr) {
2658                         if (whence == SEEK_DATA)
2659                                 index = end;
2660                         break;
2661                 }
2662                 for (i = 0; i < pvec.nr; i++, index++) {
2663                         if (index < indices[i]) {
2664                                 if (whence == SEEK_HOLE) {
2665                                         done = true;
2666                                         break;
2667                                 }
2668                                 index = indices[i];
2669                         }
2670                         page = pvec.pages[i];
2671                         if (page && !xa_is_value(page)) {
2672                                 if (!PageUptodate(page))
2673                                         page = NULL;
2674                         }
2675                         if (index >= end ||
2676                             (page && whence == SEEK_DATA) ||
2677                             (!page && whence == SEEK_HOLE)) {
2678                                 done = true;
2679                                 break;
2680                         }
2681                 }
2682                 pagevec_remove_exceptionals(&pvec);
2683                 pagevec_release(&pvec);
2684                 pvec.nr = PAGEVEC_SIZE;
2685                 cond_resched();
2686         }
2687         return index;
2688 }
2689
2690 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2691 {
2692         struct address_space *mapping = file->f_mapping;
2693         struct inode *inode = mapping->host;
2694         pgoff_t start, end;
2695         loff_t new_offset;
2696
2697         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2698                 return generic_file_llseek_size(file, offset, whence,
2699                                         MAX_LFS_FILESIZE, i_size_read(inode));
2700         inode_lock(inode);
2701         /* We're holding i_mutex so we can access i_size directly */
2702
2703         if (offset < 0 || offset >= inode->i_size)
2704                 offset = -ENXIO;
2705         else {
2706                 start = offset >> PAGE_SHIFT;
2707                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2708                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2709                 new_offset <<= PAGE_SHIFT;
2710                 if (new_offset > offset) {
2711                         if (new_offset < inode->i_size)
2712                                 offset = new_offset;
2713                         else if (whence == SEEK_DATA)
2714                                 offset = -ENXIO;
2715                         else
2716                                 offset = inode->i_size;
2717                 }
2718         }
2719
2720         if (offset >= 0)
2721                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2722         inode_unlock(inode);
2723         return offset;
2724 }
2725
2726 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2727                                                          loff_t len)
2728 {
2729         struct inode *inode = file_inode(file);
2730         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2731         struct shmem_inode_info *info = SHMEM_I(inode);
2732         struct shmem_falloc shmem_falloc;
2733         pgoff_t start, index, end;
2734         int error;
2735
2736         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2737                 return -EOPNOTSUPP;
2738
2739         inode_lock(inode);
2740
2741         if (mode & FALLOC_FL_PUNCH_HOLE) {
2742                 struct address_space *mapping = file->f_mapping;
2743                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2744                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2745                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2746
2747                 /* protected by i_mutex */
2748                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2749                         error = -EPERM;
2750                         goto out;
2751                 }
2752
2753                 shmem_falloc.waitq = &shmem_falloc_waitq;
2754                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2755                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2756                 spin_lock(&inode->i_lock);
2757                 inode->i_private = &shmem_falloc;
2758                 spin_unlock(&inode->i_lock);
2759
2760                 if ((u64)unmap_end > (u64)unmap_start)
2761                         unmap_mapping_range(mapping, unmap_start,
2762                                             1 + unmap_end - unmap_start, 0);
2763                 shmem_truncate_range(inode, offset, offset + len - 1);
2764                 /* No need to unmap again: hole-punching leaves COWed pages */
2765
2766                 spin_lock(&inode->i_lock);
2767                 inode->i_private = NULL;
2768                 wake_up_all(&shmem_falloc_waitq);
2769                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2770                 spin_unlock(&inode->i_lock);
2771                 error = 0;
2772                 goto out;
2773         }
2774
2775         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2776         error = inode_newsize_ok(inode, offset + len);
2777         if (error)
2778                 goto out;
2779
2780         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2781                 error = -EPERM;
2782                 goto out;
2783         }
2784
2785         start = offset >> PAGE_SHIFT;
2786         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2787         /* Try to avoid a swapstorm if len is impossible to satisfy */
2788         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2789                 error = -ENOSPC;
2790                 goto out;
2791         }
2792
2793         shmem_falloc.waitq = NULL;
2794         shmem_falloc.start = start;
2795         shmem_falloc.next  = start;
2796         shmem_falloc.nr_falloced = 0;
2797         shmem_falloc.nr_unswapped = 0;
2798         spin_lock(&inode->i_lock);
2799         inode->i_private = &shmem_falloc;
2800         spin_unlock(&inode->i_lock);
2801
2802         for (index = start; index < end; index++) {
2803                 struct page *page;
2804
2805                 /*
2806                  * Good, the fallocate(2) manpage permits EINTR: we may have
2807                  * been interrupted because we are using up too much memory.
2808                  */
2809                 if (signal_pending(current))
2810                         error = -EINTR;
2811                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2812                         error = -ENOMEM;
2813                 else
2814                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2815                 if (error) {
2816                         /* Remove the !PageUptodate pages we added */
2817                         if (index > start) {
2818                                 shmem_undo_range(inode,
2819                                     (loff_t)start << PAGE_SHIFT,
2820                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2821                         }
2822                         goto undone;
2823                 }
2824
2825                 /*
2826                  * Inform shmem_writepage() how far we have reached.
2827                  * No need for lock or barrier: we have the page lock.
2828                  */
2829                 shmem_falloc.next++;
2830                 if (!PageUptodate(page))
2831                         shmem_falloc.nr_falloced++;
2832
2833                 /*
2834                  * If !PageUptodate, leave it that way so that freeable pages
2835                  * can be recognized if we need to rollback on error later.
2836                  * But set_page_dirty so that memory pressure will swap rather
2837                  * than free the pages we are allocating (and SGP_CACHE pages
2838                  * might still be clean: we now need to mark those dirty too).
2839                  */
2840                 set_page_dirty(page);
2841                 unlock_page(page);
2842                 put_page(page);
2843                 cond_resched();
2844         }
2845
2846         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2847                 i_size_write(inode, offset + len);
2848         inode->i_ctime = current_time(inode);
2849 undone:
2850         spin_lock(&inode->i_lock);
2851         inode->i_private = NULL;
2852         spin_unlock(&inode->i_lock);
2853 out:
2854         inode_unlock(inode);
2855         return error;
2856 }
2857
2858 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2859 {
2860         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2861
2862         buf->f_type = TMPFS_MAGIC;
2863         buf->f_bsize = PAGE_SIZE;
2864         buf->f_namelen = NAME_MAX;
2865         if (sbinfo->max_blocks) {
2866                 buf->f_blocks = sbinfo->max_blocks;
2867                 buf->f_bavail =
2868                 buf->f_bfree  = sbinfo->max_blocks -
2869                                 percpu_counter_sum(&sbinfo->used_blocks);
2870         }
2871         if (sbinfo->max_inodes) {
2872                 buf->f_files = sbinfo->max_inodes;
2873                 buf->f_ffree = sbinfo->free_inodes;
2874         }
2875         /* else leave those fields 0 like simple_statfs */
2876         return 0;
2877 }
2878
2879 /*
2880  * File creation. Allocate an inode, and we're done..
2881  */
2882 static int
2883 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2884 {
2885         struct inode *inode;
2886         int error = -ENOSPC;
2887
2888         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2889         if (inode) {
2890                 error = simple_acl_create(dir, inode);
2891                 if (error)
2892                         goto out_iput;
2893                 error = security_inode_init_security(inode, dir,
2894                                                      &dentry->d_name,
2895                                                      shmem_initxattrs, NULL);
2896                 if (error && error != -EOPNOTSUPP)
2897                         goto out_iput;
2898
2899                 error = 0;
2900                 dir->i_size += BOGO_DIRENT_SIZE;
2901                 dir->i_ctime = dir->i_mtime = current_time(dir);
2902                 d_instantiate(dentry, inode);
2903                 dget(dentry); /* Extra count - pin the dentry in core */
2904         }
2905         return error;
2906 out_iput:
2907         iput(inode);
2908         return error;
2909 }
2910
2911 static int
2912 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2913 {
2914         struct inode *inode;
2915         int error = -ENOSPC;
2916
2917         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2918         if (inode) {
2919                 error = security_inode_init_security(inode, dir,
2920                                                      NULL,
2921                                                      shmem_initxattrs, NULL);
2922                 if (error && error != -EOPNOTSUPP)
2923                         goto out_iput;
2924                 error = simple_acl_create(dir, inode);
2925                 if (error)
2926                         goto out_iput;
2927                 d_tmpfile(dentry, inode);
2928         }
2929         return error;
2930 out_iput:
2931         iput(inode);
2932         return error;
2933 }
2934
2935 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2936 {
2937         int error;
2938
2939         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2940                 return error;
2941         inc_nlink(dir);
2942         return 0;
2943 }
2944
2945 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2946                 bool excl)
2947 {
2948         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2949 }
2950
2951 /*
2952  * Link a file..
2953  */
2954 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2955 {
2956         struct inode *inode = d_inode(old_dentry);
2957         int ret = 0;
2958
2959         /*
2960          * No ordinary (disk based) filesystem counts links as inodes;
2961          * but each new link needs a new dentry, pinning lowmem, and
2962          * tmpfs dentries cannot be pruned until they are unlinked.
2963          * But if an O_TMPFILE file is linked into the tmpfs, the
2964          * first link must skip that, to get the accounting right.
2965          */
2966         if (inode->i_nlink) {
2967                 ret = shmem_reserve_inode(inode->i_sb);
2968                 if (ret)
2969                         goto out;
2970         }
2971
2972         dir->i_size += BOGO_DIRENT_SIZE;
2973         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2974         inc_nlink(inode);
2975         ihold(inode);   /* New dentry reference */
2976         dget(dentry);           /* Extra pinning count for the created dentry */
2977         d_instantiate(dentry, inode);
2978 out:
2979         return ret;
2980 }
2981
2982 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2983 {
2984         struct inode *inode = d_inode(dentry);
2985
2986         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2987                 shmem_free_inode(inode->i_sb);
2988
2989         dir->i_size -= BOGO_DIRENT_SIZE;
2990         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2991         drop_nlink(inode);
2992         dput(dentry);   /* Undo the count from "create" - this does all the work */
2993         return 0;
2994 }
2995
2996 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2997 {
2998         if (!simple_empty(dentry))
2999                 return -ENOTEMPTY;
3000
3001         drop_nlink(d_inode(dentry));
3002         drop_nlink(dir);
3003         return shmem_unlink(dir, dentry);
3004 }
3005
3006 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3007 {
3008         bool old_is_dir = d_is_dir(old_dentry);
3009         bool new_is_dir = d_is_dir(new_dentry);
3010
3011         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3012                 if (old_is_dir) {
3013                         drop_nlink(old_dir);
3014                         inc_nlink(new_dir);
3015                 } else {
3016                         drop_nlink(new_dir);
3017                         inc_nlink(old_dir);
3018                 }
3019         }
3020         old_dir->i_ctime = old_dir->i_mtime =
3021         new_dir->i_ctime = new_dir->i_mtime =
3022         d_inode(old_dentry)->i_ctime =
3023         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3024
3025         return 0;
3026 }
3027
3028 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3029 {
3030         struct dentry *whiteout;
3031         int error;
3032
3033         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3034         if (!whiteout)
3035                 return -ENOMEM;
3036
3037         error = shmem_mknod(old_dir, whiteout,
3038                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3039         dput(whiteout);
3040         if (error)
3041                 return error;
3042
3043         /*
3044          * Cheat and hash the whiteout while the old dentry is still in
3045          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3046          *
3047          * d_lookup() will consistently find one of them at this point,
3048          * not sure which one, but that isn't even important.
3049          */
3050         d_rehash(whiteout);
3051         return 0;
3052 }
3053
3054 /*
3055  * The VFS layer already does all the dentry stuff for rename,
3056  * we just have to decrement the usage count for the target if
3057  * it exists so that the VFS layer correctly free's it when it
3058  * gets overwritten.
3059  */
3060 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3061 {
3062         struct inode *inode = d_inode(old_dentry);
3063         int they_are_dirs = S_ISDIR(inode->i_mode);
3064
3065         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3066                 return -EINVAL;
3067
3068         if (flags & RENAME_EXCHANGE)
3069                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3070
3071         if (!simple_empty(new_dentry))
3072                 return -ENOTEMPTY;
3073
3074         if (flags & RENAME_WHITEOUT) {
3075                 int error;
3076
3077                 error = shmem_whiteout(old_dir, old_dentry);
3078                 if (error)
3079                         return error;
3080         }
3081
3082         if (d_really_is_positive(new_dentry)) {
3083                 (void) shmem_unlink(new_dir, new_dentry);
3084                 if (they_are_dirs) {
3085                         drop_nlink(d_inode(new_dentry));
3086                         drop_nlink(old_dir);
3087                 }
3088         } else if (they_are_dirs) {
3089                 drop_nlink(old_dir);
3090                 inc_nlink(new_dir);
3091         }
3092
3093         old_dir->i_size -= BOGO_DIRENT_SIZE;
3094         new_dir->i_size += BOGO_DIRENT_SIZE;
3095         old_dir->i_ctime = old_dir->i_mtime =
3096         new_dir->i_ctime = new_dir->i_mtime =
3097         inode->i_ctime = current_time(old_dir);
3098         return 0;
3099 }
3100
3101 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3102 {
3103         int error;
3104         int len;
3105         struct inode *inode;
3106         struct page *page;
3107
3108         len = strlen(symname) + 1;
3109         if (len > PAGE_SIZE)
3110                 return -ENAMETOOLONG;
3111
3112         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3113                                 VM_NORESERVE);
3114         if (!inode)
3115                 return -ENOSPC;
3116
3117         error = security_inode_init_security(inode, dir, &dentry->d_name,
3118                                              shmem_initxattrs, NULL);
3119         if (error) {
3120                 if (error != -EOPNOTSUPP) {
3121                         iput(inode);
3122                         return error;
3123                 }
3124                 error = 0;
3125         }
3126
3127         inode->i_size = len-1;
3128         if (len <= SHORT_SYMLINK_LEN) {
3129                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3130                 if (!inode->i_link) {
3131                         iput(inode);
3132                         return -ENOMEM;
3133                 }
3134                 inode->i_op = &shmem_short_symlink_operations;
3135         } else {
3136                 inode_nohighmem(inode);
3137                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3138                 if (error) {
3139                         iput(inode);
3140                         return error;
3141                 }
3142                 inode->i_mapping->a_ops = &shmem_aops;
3143                 inode->i_op = &shmem_symlink_inode_operations;
3144                 memcpy(page_address(page), symname, len);
3145                 SetPageUptodate(page);
3146                 set_page_dirty(page);
3147                 unlock_page(page);
3148                 put_page(page);
3149         }
3150         dir->i_size += BOGO_DIRENT_SIZE;
3151         dir->i_ctime = dir->i_mtime = current_time(dir);
3152         d_instantiate(dentry, inode);
3153         dget(dentry);
3154         return 0;
3155 }
3156
3157 static void shmem_put_link(void *arg)
3158 {
3159         mark_page_accessed(arg);
3160         put_page(arg);
3161 }
3162
3163 static const char *shmem_get_link(struct dentry *dentry,
3164                                   struct inode *inode,
3165                                   struct delayed_call *done)
3166 {
3167         struct page *page = NULL;
3168         int error;
3169         if (!dentry) {
3170                 page = find_get_page(inode->i_mapping, 0);
3171                 if (!page)
3172                         return ERR_PTR(-ECHILD);
3173                 if (!PageUptodate(page)) {
3174                         put_page(page);
3175                         return ERR_PTR(-ECHILD);
3176                 }
3177         } else {
3178                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3179                 if (error)
3180                         return ERR_PTR(error);
3181                 unlock_page(page);
3182         }
3183         set_delayed_call(done, shmem_put_link, page);
3184         return page_address(page);
3185 }
3186
3187 #ifdef CONFIG_TMPFS_XATTR
3188 /*
3189  * Superblocks without xattr inode operations may get some security.* xattr
3190  * support from the LSM "for free". As soon as we have any other xattrs
3191  * like ACLs, we also need to implement the security.* handlers at
3192  * filesystem level, though.
3193  */
3194
3195 /*
3196  * Callback for security_inode_init_security() for acquiring xattrs.
3197  */
3198 static int shmem_initxattrs(struct inode *inode,
3199                             const struct xattr *xattr_array,
3200                             void *fs_info)
3201 {
3202         struct shmem_inode_info *info = SHMEM_I(inode);
3203         const struct xattr *xattr;
3204         struct simple_xattr *new_xattr;
3205         size_t len;
3206
3207         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3208                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3209                 if (!new_xattr)
3210                         return -ENOMEM;
3211
3212                 len = strlen(xattr->name) + 1;
3213                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3214                                           GFP_KERNEL);
3215                 if (!new_xattr->name) {
3216                         kfree(new_xattr);
3217                         return -ENOMEM;
3218                 }
3219
3220                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3221                        XATTR_SECURITY_PREFIX_LEN);
3222                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3223                        xattr->name, len);
3224
3225                 simple_xattr_list_add(&info->xattrs, new_xattr);
3226         }
3227
3228         return 0;
3229 }
3230
3231 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3232                                    struct dentry *unused, struct inode *inode,
3233                                    const char *name, void *buffer, size_t size)
3234 {
3235         struct shmem_inode_info *info = SHMEM_I(inode);
3236
3237         name = xattr_full_name(handler, name);
3238         return simple_xattr_get(&info->xattrs, name, buffer, size);
3239 }
3240
3241 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3242                                    struct dentry *unused, struct inode *inode,
3243                                    const char *name, const void *value,
3244                                    size_t size, int flags)
3245 {
3246         struct shmem_inode_info *info = SHMEM_I(inode);
3247
3248         name = xattr_full_name(handler, name);
3249         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3250 }
3251
3252 static const struct xattr_handler shmem_security_xattr_handler = {
3253         .prefix = XATTR_SECURITY_PREFIX,
3254         .get = shmem_xattr_handler_get,
3255         .set = shmem_xattr_handler_set,
3256 };
3257
3258 static const struct xattr_handler shmem_trusted_xattr_handler = {
3259         .prefix = XATTR_TRUSTED_PREFIX,
3260         .get = shmem_xattr_handler_get,
3261         .set = shmem_xattr_handler_set,
3262 };
3263
3264 static const struct xattr_handler *shmem_xattr_handlers[] = {
3265 #ifdef CONFIG_TMPFS_POSIX_ACL
3266         &posix_acl_access_xattr_handler,
3267         &posix_acl_default_xattr_handler,
3268 #endif
3269         &shmem_security_xattr_handler,
3270         &shmem_trusted_xattr_handler,
3271         NULL
3272 };
3273
3274 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3275 {
3276         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3277         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3278 }
3279 #endif /* CONFIG_TMPFS_XATTR */
3280
3281 static const struct inode_operations shmem_short_symlink_operations = {
3282         .get_link       = simple_get_link,
3283 #ifdef CONFIG_TMPFS_XATTR
3284         .listxattr      = shmem_listxattr,
3285 #endif
3286 };
3287
3288 static const struct inode_operations shmem_symlink_inode_operations = {
3289         .get_link       = shmem_get_link,
3290 #ifdef CONFIG_TMPFS_XATTR
3291         .listxattr      = shmem_listxattr,
3292 #endif
3293 };
3294
3295 static struct dentry *shmem_get_parent(struct dentry *child)
3296 {
3297         return ERR_PTR(-ESTALE);
3298 }
3299
3300 static int shmem_match(struct inode *ino, void *vfh)
3301 {
3302         __u32 *fh = vfh;
3303         __u64 inum = fh[2];
3304         inum = (inum << 32) | fh[1];
3305         return ino->i_ino == inum && fh[0] == ino->i_generation;
3306 }
3307
3308 /* Find any alias of inode, but prefer a hashed alias */
3309 static struct dentry *shmem_find_alias(struct inode *inode)
3310 {
3311         struct dentry *alias = d_find_alias(inode);
3312
3313         return alias ?: d_find_any_alias(inode);
3314 }
3315
3316
3317 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3318                 struct fid *fid, int fh_len, int fh_type)
3319 {
3320         struct inode *inode;
3321         struct dentry *dentry = NULL;
3322         u64 inum;
3323
3324         if (fh_len < 3)
3325                 return NULL;
3326
3327         inum = fid->raw[2];
3328         inum = (inum << 32) | fid->raw[1];
3329
3330         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3331                         shmem_match, fid->raw);
3332         if (inode) {
3333                 dentry = shmem_find_alias(inode);
3334                 iput(inode);
3335         }
3336
3337         return dentry;
3338 }
3339
3340 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3341                                 struct inode *parent)
3342 {
3343         if (*len < 3) {
3344                 *len = 3;
3345                 return FILEID_INVALID;
3346         }
3347
3348         if (inode_unhashed(inode)) {
3349                 /* Unfortunately insert_inode_hash is not idempotent,
3350                  * so as we hash inodes here rather than at creation
3351                  * time, we need a lock to ensure we only try
3352                  * to do it once
3353                  */
3354                 static DEFINE_SPINLOCK(lock);
3355                 spin_lock(&lock);
3356                 if (inode_unhashed(inode))
3357                         __insert_inode_hash(inode,
3358                                             inode->i_ino + inode->i_generation);
3359                 spin_unlock(&lock);
3360         }
3361
3362         fh[0] = inode->i_generation;
3363         fh[1] = inode->i_ino;
3364         fh[2] = ((__u64)inode->i_ino) >> 32;
3365
3366         *len = 3;
3367         return 1;
3368 }
3369
3370 static const struct export_operations shmem_export_ops = {
3371         .get_parent     = shmem_get_parent,
3372         .encode_fh      = shmem_encode_fh,
3373         .fh_to_dentry   = shmem_fh_to_dentry,
3374 };
3375
3376 enum shmem_param {
3377         Opt_gid,
3378         Opt_huge,
3379         Opt_mode,
3380         Opt_mpol,
3381         Opt_nr_blocks,
3382         Opt_nr_inodes,
3383         Opt_size,
3384         Opt_uid,
3385 };
3386
3387 static const struct fs_parameter_spec shmem_param_specs[] = {
3388         fsparam_u32   ("gid",           Opt_gid),
3389         fsparam_enum  ("huge",          Opt_huge),
3390         fsparam_u32oct("mode",          Opt_mode),
3391         fsparam_string("mpol",          Opt_mpol),
3392         fsparam_string("nr_blocks",     Opt_nr_blocks),
3393         fsparam_string("nr_inodes",     Opt_nr_inodes),
3394         fsparam_string("size",          Opt_size),
3395         fsparam_u32   ("uid",           Opt_uid),
3396         {}
3397 };
3398
3399 static const struct fs_parameter_enum shmem_param_enums[] = {
3400         { Opt_huge,     "never",        SHMEM_HUGE_NEVER },
3401         { Opt_huge,     "always",       SHMEM_HUGE_ALWAYS },
3402         { Opt_huge,     "within_size",  SHMEM_HUGE_WITHIN_SIZE },
3403         { Opt_huge,     "advise",       SHMEM_HUGE_ADVISE },
3404         {}
3405 };
3406
3407 const struct fs_parameter_description shmem_fs_parameters = {
3408         .name           = "tmpfs",
3409         .specs          = shmem_param_specs,
3410         .enums          = shmem_param_enums,
3411 };
3412
3413 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3414 {
3415         struct shmem_options *ctx = fc->fs_private;
3416         struct fs_parse_result result;
3417         unsigned long long size;
3418         char *rest;
3419         int opt;
3420         kuid_t kuid;
3421         kgid_t kgid;
3422
3423         opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3424         if (opt < 0)
3425                 return opt;
3426
3427         switch (opt) {
3428         case Opt_size:
3429                 size = memparse(param->string, &rest);
3430                 if (*rest == '%') {
3431                         size <<= PAGE_SHIFT;
3432                         size *= totalram_pages();
3433                         do_div(size, 100);
3434                         rest++;
3435                 }
3436                 if (*rest)
3437                         goto bad_value;
3438                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3439                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3440                 break;
3441         case Opt_nr_blocks:
3442                 ctx->blocks = memparse(param->string, &rest);
3443                 if (*rest)
3444                         goto bad_value;
3445                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3446                 break;
3447         case Opt_nr_inodes:
3448                 ctx->inodes = memparse(param->string, &rest);
3449                 if (*rest)
3450                         goto bad_value;
3451                 ctx->seen |= SHMEM_SEEN_INODES;
3452                 break;
3453         case Opt_mode:
3454                 ctx->mode = result.uint_32 & 07777;
3455                 break;
3456         case Opt_uid:
3457                 kuid = make_kuid(current_user_ns(), result.uint_32);
3458                 if (!uid_valid(kuid))
3459                         goto bad_value;
3460
3461                 /*
3462                  * The requested uid must be representable in the
3463                  * filesystem's idmapping.
3464                  */
3465                 if (!kuid_has_mapping(fc->user_ns, kuid))
3466                         goto bad_value;
3467
3468                 ctx->uid = kuid;
3469                 break;
3470         case Opt_gid:
3471                 kgid = make_kgid(current_user_ns(), result.uint_32);
3472                 if (!gid_valid(kgid))
3473                         goto bad_value;
3474
3475                 /*
3476                  * The requested gid must be representable in the
3477                  * filesystem's idmapping.
3478                  */
3479                 if (!kgid_has_mapping(fc->user_ns, kgid))
3480                         goto bad_value;
3481
3482                 ctx->gid = kgid;
3483                 break;
3484         case Opt_huge:
3485                 ctx->huge = result.uint_32;
3486                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3487                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3488                       has_transparent_hugepage()))
3489                         goto unsupported_parameter;
3490                 ctx->seen |= SHMEM_SEEN_HUGE;
3491                 break;
3492         case Opt_mpol:
3493                 if (IS_ENABLED(CONFIG_NUMA)) {
3494                         mpol_put(ctx->mpol);
3495                         ctx->mpol = NULL;
3496                         if (mpol_parse_str(param->string, &ctx->mpol))
3497                                 goto bad_value;
3498                         break;
3499                 }
3500                 goto unsupported_parameter;
3501         }
3502         return 0;
3503
3504 unsupported_parameter:
3505         return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3506 bad_value:
3507         return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3508 }
3509
3510 static int shmem_parse_options(struct fs_context *fc, void *data)
3511 {
3512         char *options = data;
3513
3514         if (options) {
3515                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3516                 if (err)
3517                         return err;
3518         }
3519
3520         while (options != NULL) {
3521                 char *this_char = options;
3522                 for (;;) {
3523                         /*
3524                          * NUL-terminate this option: unfortunately,
3525                          * mount options form a comma-separated list,
3526                          * but mpol's nodelist may also contain commas.
3527                          */
3528                         options = strchr(options, ',');
3529                         if (options == NULL)
3530                                 break;
3531                         options++;
3532                         if (!isdigit(*options)) {
3533                                 options[-1] = '\0';
3534                                 break;
3535                         }
3536                 }
3537                 if (*this_char) {
3538                         char *value = strchr(this_char,'=');
3539                         size_t len = 0;
3540                         int err;
3541
3542                         if (value) {
3543                                 *value++ = '\0';
3544                                 len = strlen(value);
3545                         }
3546                         err = vfs_parse_fs_string(fc, this_char, value, len);
3547                         if (err < 0)
3548                                 return err;
3549                 }
3550         }
3551         return 0;
3552 }
3553
3554 /*
3555  * Reconfigure a shmem filesystem.
3556  *
3557  * Note that we disallow change from limited->unlimited blocks/inodes while any
3558  * are in use; but we must separately disallow unlimited->limited, because in
3559  * that case we have no record of how much is already in use.
3560  */
3561 static int shmem_reconfigure(struct fs_context *fc)
3562 {
3563         struct shmem_options *ctx = fc->fs_private;
3564         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3565         unsigned long inodes;
3566         const char *err;
3567
3568         spin_lock(&sbinfo->stat_lock);
3569         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3570         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3571                 if (!sbinfo->max_blocks) {
3572                         err = "Cannot retroactively limit size";
3573                         goto out;
3574                 }
3575                 if (percpu_counter_compare(&sbinfo->used_blocks,
3576                                            ctx->blocks) > 0) {
3577                         err = "Too small a size for current use";
3578                         goto out;
3579                 }
3580         }
3581         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3582                 if (!sbinfo->max_inodes) {
3583                         err = "Cannot retroactively limit inodes";
3584                         goto out;
3585                 }
3586                 if (ctx->inodes < inodes) {
3587                         err = "Too few inodes for current use";
3588                         goto out;
3589                 }
3590         }
3591
3592         if (ctx->seen & SHMEM_SEEN_HUGE)
3593                 sbinfo->huge = ctx->huge;
3594         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3595                 sbinfo->max_blocks  = ctx->blocks;
3596         if (ctx->seen & SHMEM_SEEN_INODES) {
3597                 sbinfo->max_inodes  = ctx->inodes;
3598                 sbinfo->free_inodes = ctx->inodes - inodes;
3599         }
3600
3601         /*
3602          * Preserve previous mempolicy unless mpol remount option was specified.
3603          */
3604         if (ctx->mpol) {
3605                 mpol_put(sbinfo->mpol);
3606                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3607                 ctx->mpol = NULL;
3608         }
3609         spin_unlock(&sbinfo->stat_lock);
3610         return 0;
3611 out:
3612         spin_unlock(&sbinfo->stat_lock);
3613         return invalf(fc, "tmpfs: %s", err);
3614 }
3615
3616 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3617 {
3618         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3619
3620         if (sbinfo->max_blocks != shmem_default_max_blocks())
3621                 seq_printf(seq, ",size=%luk",
3622                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3623         if (sbinfo->max_inodes != shmem_default_max_inodes())
3624                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3625         if (sbinfo->mode != (0777 | S_ISVTX))
3626                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3627         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3628                 seq_printf(seq, ",uid=%u",
3629                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3630         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3631                 seq_printf(seq, ",gid=%u",
3632                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3633 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3634         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3635         if (sbinfo->huge)
3636                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3637 #endif
3638         shmem_show_mpol(seq, sbinfo->mpol);
3639         return 0;
3640 }
3641
3642 #endif /* CONFIG_TMPFS */
3643
3644 static void shmem_put_super(struct super_block *sb)
3645 {
3646         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3647
3648         percpu_counter_destroy(&sbinfo->used_blocks);
3649         mpol_put(sbinfo->mpol);
3650         kfree(sbinfo);
3651         sb->s_fs_info = NULL;
3652 }
3653
3654 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3655 {
3656         struct shmem_options *ctx = fc->fs_private;
3657         struct inode *inode;
3658         struct shmem_sb_info *sbinfo;
3659         int err = -ENOMEM;
3660
3661         /* Round up to L1_CACHE_BYTES to resist false sharing */
3662         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3663                                 L1_CACHE_BYTES), GFP_KERNEL);
3664         if (!sbinfo)
3665                 return -ENOMEM;
3666
3667         sb->s_fs_info = sbinfo;
3668
3669 #ifdef CONFIG_TMPFS
3670         /*
3671          * Per default we only allow half of the physical ram per
3672          * tmpfs instance, limiting inodes to one per page of lowmem;
3673          * but the internal instance is left unlimited.
3674          */
3675         if (!(sb->s_flags & SB_KERNMOUNT)) {
3676                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3677                         ctx->blocks = shmem_default_max_blocks();
3678                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3679                         ctx->inodes = shmem_default_max_inodes();
3680         } else {
3681                 sb->s_flags |= SB_NOUSER;
3682         }
3683         sb->s_export_op = &shmem_export_ops;
3684         sb->s_flags |= SB_NOSEC;
3685 #else
3686         sb->s_flags |= SB_NOUSER;
3687 #endif
3688         sbinfo->max_blocks = ctx->blocks;
3689         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3690         sbinfo->uid = ctx->uid;
3691         sbinfo->gid = ctx->gid;
3692         sbinfo->mode = ctx->mode;
3693         sbinfo->huge = ctx->huge;
3694         sbinfo->mpol = ctx->mpol;
3695         ctx->mpol = NULL;
3696
3697         spin_lock_init(&sbinfo->stat_lock);
3698         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3699                 goto failed;
3700         spin_lock_init(&sbinfo->shrinklist_lock);
3701         INIT_LIST_HEAD(&sbinfo->shrinklist);
3702
3703         sb->s_maxbytes = MAX_LFS_FILESIZE;
3704         sb->s_blocksize = PAGE_SIZE;
3705         sb->s_blocksize_bits = PAGE_SHIFT;
3706         sb->s_magic = TMPFS_MAGIC;
3707         sb->s_op = &shmem_ops;
3708         sb->s_time_gran = 1;
3709 #ifdef CONFIG_TMPFS_XATTR
3710         sb->s_xattr = shmem_xattr_handlers;
3711 #endif
3712 #ifdef CONFIG_TMPFS_POSIX_ACL
3713         sb->s_flags |= SB_POSIXACL;
3714 #endif
3715         uuid_gen(&sb->s_uuid);
3716
3717         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3718         if (!inode)
3719                 goto failed;
3720         inode->i_uid = sbinfo->uid;
3721         inode->i_gid = sbinfo->gid;
3722         sb->s_root = d_make_root(inode);
3723         if (!sb->s_root)
3724                 goto failed;
3725         return 0;
3726
3727 failed:
3728         shmem_put_super(sb);
3729         return err;
3730 }
3731
3732 static int shmem_get_tree(struct fs_context *fc)
3733 {
3734         return get_tree_nodev(fc, shmem_fill_super);
3735 }
3736
3737 static void shmem_free_fc(struct fs_context *fc)
3738 {
3739         struct shmem_options *ctx = fc->fs_private;
3740
3741         if (ctx) {
3742                 mpol_put(ctx->mpol);
3743                 kfree(ctx);
3744         }
3745 }
3746
3747 static const struct fs_context_operations shmem_fs_context_ops = {
3748         .free                   = shmem_free_fc,
3749         .get_tree               = shmem_get_tree,
3750 #ifdef CONFIG_TMPFS
3751         .parse_monolithic       = shmem_parse_options,
3752         .parse_param            = shmem_parse_one,
3753         .reconfigure            = shmem_reconfigure,
3754 #endif
3755 };
3756
3757 static struct kmem_cache *shmem_inode_cachep;
3758
3759 static struct inode *shmem_alloc_inode(struct super_block *sb)
3760 {
3761         struct shmem_inode_info *info;
3762         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3763         if (!info)
3764                 return NULL;
3765         return &info->vfs_inode;
3766 }
3767
3768 static void shmem_free_in_core_inode(struct inode *inode)
3769 {
3770         if (S_ISLNK(inode->i_mode))
3771                 kfree(inode->i_link);
3772         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3773 }
3774
3775 static void shmem_destroy_inode(struct inode *inode)
3776 {
3777         if (S_ISREG(inode->i_mode))
3778                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3779 }
3780
3781 static void shmem_init_inode(void *foo)
3782 {
3783         struct shmem_inode_info *info = foo;
3784         inode_init_once(&info->vfs_inode);
3785 }
3786
3787 static void shmem_init_inodecache(void)
3788 {
3789         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3790                                 sizeof(struct shmem_inode_info),
3791                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3792 }
3793
3794 static void shmem_destroy_inodecache(void)
3795 {
3796         kmem_cache_destroy(shmem_inode_cachep);
3797 }
3798
3799 static const struct address_space_operations shmem_aops = {
3800         .writepage      = shmem_writepage,
3801         .set_page_dirty = __set_page_dirty_no_writeback,
3802 #ifdef CONFIG_TMPFS
3803         .write_begin    = shmem_write_begin,
3804         .write_end      = shmem_write_end,
3805 #endif
3806 #ifdef CONFIG_MIGRATION
3807         .migratepage    = migrate_page,
3808 #endif
3809         .error_remove_page = generic_error_remove_page,
3810 };
3811
3812 static const struct file_operations shmem_file_operations = {
3813         .mmap           = shmem_mmap,
3814         .get_unmapped_area = shmem_get_unmapped_area,
3815 #ifdef CONFIG_TMPFS
3816         .llseek         = shmem_file_llseek,
3817         .read_iter      = shmem_file_read_iter,
3818         .write_iter     = generic_file_write_iter,
3819         .fsync          = noop_fsync,
3820         .splice_read    = generic_file_splice_read,
3821         .splice_write   = iter_file_splice_write,
3822         .fallocate      = shmem_fallocate,
3823 #endif
3824 };
3825
3826 static const struct inode_operations shmem_inode_operations = {
3827         .getattr        = shmem_getattr,
3828         .setattr        = shmem_setattr,
3829 #ifdef CONFIG_TMPFS_XATTR
3830         .listxattr      = shmem_listxattr,
3831         .set_acl        = simple_set_acl,
3832 #endif
3833 };
3834
3835 static const struct inode_operations shmem_dir_inode_operations = {
3836 #ifdef CONFIG_TMPFS
3837         .create         = shmem_create,
3838         .lookup         = simple_lookup,
3839         .link           = shmem_link,
3840         .unlink         = shmem_unlink,
3841         .symlink        = shmem_symlink,
3842         .mkdir          = shmem_mkdir,
3843         .rmdir          = shmem_rmdir,
3844         .mknod          = shmem_mknod,
3845         .rename         = shmem_rename2,
3846         .tmpfile        = shmem_tmpfile,
3847 #endif
3848 #ifdef CONFIG_TMPFS_XATTR
3849         .listxattr      = shmem_listxattr,
3850 #endif
3851 #ifdef CONFIG_TMPFS_POSIX_ACL
3852         .setattr        = shmem_setattr,
3853         .set_acl        = simple_set_acl,
3854 #endif
3855 };
3856
3857 static const struct inode_operations shmem_special_inode_operations = {
3858 #ifdef CONFIG_TMPFS_XATTR
3859         .listxattr      = shmem_listxattr,
3860 #endif
3861 #ifdef CONFIG_TMPFS_POSIX_ACL
3862         .setattr        = shmem_setattr,
3863         .set_acl        = simple_set_acl,
3864 #endif
3865 };
3866
3867 static const struct super_operations shmem_ops = {
3868         .alloc_inode    = shmem_alloc_inode,
3869         .free_inode     = shmem_free_in_core_inode,
3870         .destroy_inode  = shmem_destroy_inode,
3871 #ifdef CONFIG_TMPFS
3872         .statfs         = shmem_statfs,
3873         .show_options   = shmem_show_options,
3874 #endif
3875         .evict_inode    = shmem_evict_inode,
3876         .drop_inode     = generic_delete_inode,
3877         .put_super      = shmem_put_super,
3878 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3879         .nr_cached_objects      = shmem_unused_huge_count,
3880         .free_cached_objects    = shmem_unused_huge_scan,
3881 #endif
3882 };
3883
3884 static const struct vm_operations_struct shmem_vm_ops = {
3885         .fault          = shmem_fault,
3886         .map_pages      = filemap_map_pages,
3887 #ifdef CONFIG_NUMA
3888         .set_policy     = shmem_set_policy,
3889         .get_policy     = shmem_get_policy,
3890 #endif
3891 };
3892
3893 int shmem_init_fs_context(struct fs_context *fc)
3894 {
3895         struct shmem_options *ctx;
3896
3897         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3898         if (!ctx)
3899                 return -ENOMEM;
3900
3901         ctx->mode = 0777 | S_ISVTX;
3902         ctx->uid = current_fsuid();
3903         ctx->gid = current_fsgid();
3904
3905         fc->fs_private = ctx;
3906         fc->ops = &shmem_fs_context_ops;
3907         return 0;
3908 }
3909
3910 static struct file_system_type shmem_fs_type = {
3911         .owner          = THIS_MODULE,
3912         .name           = "tmpfs",
3913         .init_fs_context = shmem_init_fs_context,
3914 #ifdef CONFIG_TMPFS
3915         .parameters     = &shmem_fs_parameters,
3916 #endif
3917         .kill_sb        = kill_litter_super,
3918         .fs_flags       = FS_USERNS_MOUNT,
3919 };
3920
3921 int __init shmem_init(void)
3922 {
3923         int error;
3924
3925         shmem_init_inodecache();
3926
3927         error = register_filesystem(&shmem_fs_type);
3928         if (error) {
3929                 pr_err("Could not register tmpfs\n");
3930                 goto out2;
3931         }
3932
3933         shm_mnt = kern_mount(&shmem_fs_type);
3934         if (IS_ERR(shm_mnt)) {
3935                 error = PTR_ERR(shm_mnt);
3936                 pr_err("Could not kern_mount tmpfs\n");
3937                 goto out1;
3938         }
3939
3940 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3941         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3942                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3943         else
3944                 shmem_huge = 0; /* just in case it was patched */
3945 #endif
3946         return 0;
3947
3948 out1:
3949         unregister_filesystem(&shmem_fs_type);
3950 out2:
3951         shmem_destroy_inodecache();
3952         shm_mnt = ERR_PTR(error);
3953         return error;
3954 }
3955
3956 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3957 static ssize_t shmem_enabled_show(struct kobject *kobj,
3958                 struct kobj_attribute *attr, char *buf)
3959 {
3960         int values[] = {
3961                 SHMEM_HUGE_ALWAYS,
3962                 SHMEM_HUGE_WITHIN_SIZE,
3963                 SHMEM_HUGE_ADVISE,
3964                 SHMEM_HUGE_NEVER,
3965                 SHMEM_HUGE_DENY,
3966                 SHMEM_HUGE_FORCE,
3967         };
3968         int i, count;
3969
3970         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3971                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3972
3973                 count += sprintf(buf + count, fmt,
3974                                 shmem_format_huge(values[i]));
3975         }
3976         buf[count - 1] = '\n';
3977         return count;
3978 }
3979
3980 static ssize_t shmem_enabled_store(struct kobject *kobj,
3981                 struct kobj_attribute *attr, const char *buf, size_t count)
3982 {
3983         char tmp[16];
3984         int huge;
3985
3986         if (count + 1 > sizeof(tmp))
3987                 return -EINVAL;
3988         memcpy(tmp, buf, count);
3989         tmp[count] = '\0';
3990         if (count && tmp[count - 1] == '\n')
3991                 tmp[count - 1] = '\0';
3992
3993         huge = shmem_parse_huge(tmp);
3994         if (huge == -EINVAL)
3995                 return -EINVAL;
3996         if (!has_transparent_hugepage() &&
3997                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3998                 return -EINVAL;
3999
4000         shmem_huge = huge;
4001         if (shmem_huge > SHMEM_HUGE_DENY)
4002                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4003         return count;
4004 }
4005
4006 struct kobj_attribute shmem_enabled_attr =
4007         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4008 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4009
4010 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4011 bool shmem_huge_enabled(struct vm_area_struct *vma)
4012 {
4013         struct inode *inode = file_inode(vma->vm_file);
4014         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4015         loff_t i_size;
4016         pgoff_t off;
4017
4018         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4019             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4020                 return false;
4021         if (shmem_huge == SHMEM_HUGE_FORCE)
4022                 return true;
4023         if (shmem_huge == SHMEM_HUGE_DENY)
4024                 return false;
4025         switch (sbinfo->huge) {
4026                 case SHMEM_HUGE_NEVER:
4027                         return false;
4028                 case SHMEM_HUGE_ALWAYS:
4029                         return true;
4030                 case SHMEM_HUGE_WITHIN_SIZE:
4031                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4032                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4033                         if (i_size >= HPAGE_PMD_SIZE &&
4034                                         i_size >> PAGE_SHIFT >= off)
4035                                 return true;
4036                         /* fall through */
4037                 case SHMEM_HUGE_ADVISE:
4038                         /* TODO: implement fadvise() hints */
4039                         return (vma->vm_flags & VM_HUGEPAGE);
4040                 default:
4041                         VM_BUG_ON(1);
4042                         return false;
4043         }
4044 }
4045 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4046
4047 #else /* !CONFIG_SHMEM */
4048
4049 /*
4050  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4051  *
4052  * This is intended for small system where the benefits of the full
4053  * shmem code (swap-backed and resource-limited) are outweighed by
4054  * their complexity. On systems without swap this code should be
4055  * effectively equivalent, but much lighter weight.
4056  */
4057
4058 static struct file_system_type shmem_fs_type = {
4059         .name           = "tmpfs",
4060         .init_fs_context = ramfs_init_fs_context,
4061         .parameters     = &ramfs_fs_parameters,
4062         .kill_sb        = kill_litter_super,
4063         .fs_flags       = FS_USERNS_MOUNT,
4064 };
4065
4066 int __init shmem_init(void)
4067 {
4068         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4069
4070         shm_mnt = kern_mount(&shmem_fs_type);
4071         BUG_ON(IS_ERR(shm_mnt));
4072
4073         return 0;
4074 }
4075
4076 int shmem_unuse(unsigned int type, bool frontswap,
4077                 unsigned long *fs_pages_to_unuse)
4078 {
4079         return 0;
4080 }
4081
4082 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4083 {
4084         return 0;
4085 }
4086
4087 void shmem_unlock_mapping(struct address_space *mapping)
4088 {
4089 }
4090
4091 #ifdef CONFIG_MMU
4092 unsigned long shmem_get_unmapped_area(struct file *file,
4093                                       unsigned long addr, unsigned long len,
4094                                       unsigned long pgoff, unsigned long flags)
4095 {
4096         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4097 }
4098 #endif
4099
4100 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4101 {
4102         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4103 }
4104 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4105
4106 #define shmem_vm_ops                            generic_file_vm_ops
4107 #define shmem_file_operations                   ramfs_file_operations
4108 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4109 #define shmem_acct_size(flags, size)            0
4110 #define shmem_unacct_size(flags, size)          do {} while (0)
4111
4112 #endif /* CONFIG_SHMEM */
4113
4114 /* common code */
4115
4116 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4117                                        unsigned long flags, unsigned int i_flags)
4118 {
4119         struct inode *inode;
4120         struct file *res;
4121
4122         if (IS_ERR(mnt))
4123                 return ERR_CAST(mnt);
4124
4125         if (size < 0 || size > MAX_LFS_FILESIZE)
4126                 return ERR_PTR(-EINVAL);
4127
4128         if (shmem_acct_size(flags, size))
4129                 return ERR_PTR(-ENOMEM);
4130
4131         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4132                                 flags);
4133         if (unlikely(!inode)) {
4134                 shmem_unacct_size(flags, size);
4135                 return ERR_PTR(-ENOSPC);
4136         }
4137         inode->i_flags |= i_flags;
4138         inode->i_size = size;
4139         clear_nlink(inode);     /* It is unlinked */
4140         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4141         if (!IS_ERR(res))
4142                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4143                                 &shmem_file_operations);
4144         if (IS_ERR(res))
4145                 iput(inode);
4146         return res;
4147 }
4148
4149 /**
4150  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4151  *      kernel internal.  There will be NO LSM permission checks against the
4152  *      underlying inode.  So users of this interface must do LSM checks at a
4153  *      higher layer.  The users are the big_key and shm implementations.  LSM
4154  *      checks are provided at the key or shm level rather than the inode.
4155  * @name: name for dentry (to be seen in /proc/<pid>/maps
4156  * @size: size to be set for the file
4157  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4158  */
4159 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4160 {
4161         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4162 }
4163
4164 /**
4165  * shmem_file_setup - get an unlinked file living in tmpfs
4166  * @name: name for dentry (to be seen in /proc/<pid>/maps
4167  * @size: size to be set for the file
4168  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4169  */
4170 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4171 {
4172         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4173 }
4174 EXPORT_SYMBOL_GPL(shmem_file_setup);
4175
4176 /**
4177  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4178  * @mnt: the tmpfs mount where the file will be created
4179  * @name: name for dentry (to be seen in /proc/<pid>/maps
4180  * @size: size to be set for the file
4181  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4182  */
4183 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4184                                        loff_t size, unsigned long flags)
4185 {
4186         return __shmem_file_setup(mnt, name, size, flags, 0);
4187 }
4188 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4189
4190 /**
4191  * shmem_zero_setup - setup a shared anonymous mapping
4192  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4193  */
4194 int shmem_zero_setup(struct vm_area_struct *vma)
4195 {
4196         struct file *file;
4197         loff_t size = vma->vm_end - vma->vm_start;
4198
4199         /*
4200          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4201          * between XFS directory reading and selinux: since this file is only
4202          * accessible to the user through its mapping, use S_PRIVATE flag to
4203          * bypass file security, in the same way as shmem_kernel_file_setup().
4204          */
4205         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4206         if (IS_ERR(file))
4207                 return PTR_ERR(file);
4208
4209         if (vma->vm_file)
4210                 fput(vma->vm_file);
4211         vma->vm_file = file;
4212         vma->vm_ops = &shmem_vm_ops;
4213
4214         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4215                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4216                         (vma->vm_end & HPAGE_PMD_MASK)) {
4217                 khugepaged_enter(vma, vma->vm_flags);
4218         }
4219
4220         return 0;
4221 }
4222
4223 /**
4224  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4225  * @mapping:    the page's address_space
4226  * @index:      the page index
4227  * @gfp:        the page allocator flags to use if allocating
4228  *
4229  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4230  * with any new page allocations done using the specified allocation flags.
4231  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4232  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4233  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4234  *
4235  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4236  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4237  */
4238 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4239                                          pgoff_t index, gfp_t gfp)
4240 {
4241 #ifdef CONFIG_SHMEM
4242         struct inode *inode = mapping->host;
4243         struct page *page;
4244         int error;
4245
4246         BUG_ON(mapping->a_ops != &shmem_aops);
4247         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4248                                   gfp, NULL, NULL, NULL);
4249         if (error)
4250                 page = ERR_PTR(error);
4251         else
4252                 unlock_page(page);
4253         return page;
4254 #else
4255         /*
4256          * The tiny !SHMEM case uses ramfs without swap
4257          */
4258         return read_cache_page_gfp(mapping, index, gfp);
4259 #endif
4260 }
4261 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);