GNU Linux-libre 4.9.294-gnu1
[releases.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <asm/uaccess.h>
39 #include <asm/tlb.h>
40 #include <asm/tlbflush.h>
41 #include <asm/mmu_context.h>
42 #include "internal.h"
43
44 void *high_memory;
45 EXPORT_SYMBOL(high_memory);
46 struct page *mem_map;
47 unsigned long max_mapnr;
48 EXPORT_SYMBOL(max_mapnr);
49 unsigned long highest_memmap_pfn;
50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
51 int heap_stack_gap = 0;
52
53 atomic_long_t mmap_pages_allocated;
54
55 EXPORT_SYMBOL(mem_map);
56
57 /* list of mapped, potentially shareable regions */
58 static struct kmem_cache *vm_region_jar;
59 struct rb_root nommu_region_tree = RB_ROOT;
60 DECLARE_RWSEM(nommu_region_sem);
61
62 const struct vm_operations_struct generic_file_vm_ops = {
63 };
64
65 /*
66  * Return the total memory allocated for this pointer, not
67  * just what the caller asked for.
68  *
69  * Doesn't have to be accurate, i.e. may have races.
70  */
71 unsigned int kobjsize(const void *objp)
72 {
73         struct page *page;
74
75         /*
76          * If the object we have should not have ksize performed on it,
77          * return size of 0
78          */
79         if (!objp || !virt_addr_valid(objp))
80                 return 0;
81
82         page = virt_to_head_page(objp);
83
84         /*
85          * If the allocator sets PageSlab, we know the pointer came from
86          * kmalloc().
87          */
88         if (PageSlab(page))
89                 return ksize(objp);
90
91         /*
92          * If it's not a compound page, see if we have a matching VMA
93          * region. This test is intentionally done in reverse order,
94          * so if there's no VMA, we still fall through and hand back
95          * PAGE_SIZE for 0-order pages.
96          */
97         if (!PageCompound(page)) {
98                 struct vm_area_struct *vma;
99
100                 vma = find_vma(current->mm, (unsigned long)objp);
101                 if (vma)
102                         return vma->vm_end - vma->vm_start;
103         }
104
105         /*
106          * The ksize() function is only guaranteed to work for pointers
107          * returned by kmalloc(). So handle arbitrary pointers here.
108          */
109         return PAGE_SIZE << compound_order(page);
110 }
111
112 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
113                       unsigned long start, unsigned long nr_pages,
114                       unsigned int foll_flags, struct page **pages,
115                       struct vm_area_struct **vmas, int *nonblocking)
116 {
117         struct vm_area_struct *vma;
118         unsigned long vm_flags;
119         int i;
120
121         /* calculate required read or write permissions.
122          * If FOLL_FORCE is set, we only require the "MAY" flags.
123          */
124         vm_flags  = (foll_flags & FOLL_WRITE) ?
125                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
126         vm_flags &= (foll_flags & FOLL_FORCE) ?
127                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
128
129         for (i = 0; i < nr_pages; i++) {
130                 vma = find_vma(mm, start);
131                 if (!vma)
132                         goto finish_or_fault;
133
134                 /* protect what we can, including chardevs */
135                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
136                     !(vm_flags & vma->vm_flags))
137                         goto finish_or_fault;
138
139                 if (pages) {
140                         pages[i] = virt_to_page(start);
141                         if (pages[i])
142                                 get_page(pages[i]);
143                 }
144                 if (vmas)
145                         vmas[i] = vma;
146                 start = (start + PAGE_SIZE) & PAGE_MASK;
147         }
148
149         return i;
150
151 finish_or_fault:
152         return i ? : -EFAULT;
153 }
154
155 /*
156  * get a list of pages in an address range belonging to the specified process
157  * and indicate the VMA that covers each page
158  * - this is potentially dodgy as we may end incrementing the page count of a
159  *   slab page or a secondary page from a compound page
160  * - don't permit access to VMAs that don't support it, such as I/O mappings
161  */
162 long get_user_pages(unsigned long start, unsigned long nr_pages,
163                     unsigned int gup_flags, struct page **pages,
164                     struct vm_area_struct **vmas)
165 {
166         return __get_user_pages(current, current->mm, start, nr_pages,
167                                 gup_flags, pages, vmas, NULL);
168 }
169 EXPORT_SYMBOL(get_user_pages);
170
171 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
172                             unsigned int gup_flags, struct page **pages,
173                             int *locked)
174 {
175         return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
176 }
177 EXPORT_SYMBOL(get_user_pages_locked);
178
179 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
180                                unsigned long start, unsigned long nr_pages,
181                                struct page **pages, unsigned int gup_flags)
182 {
183         long ret;
184         down_read(&mm->mmap_sem);
185         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
186                                 NULL, NULL);
187         up_read(&mm->mmap_sem);
188         return ret;
189 }
190 EXPORT_SYMBOL(__get_user_pages_unlocked);
191
192 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
193                              struct page **pages, unsigned int gup_flags)
194 {
195         return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
196                                          pages, gup_flags);
197 }
198 EXPORT_SYMBOL(get_user_pages_unlocked);
199
200 /**
201  * follow_pfn - look up PFN at a user virtual address
202  * @vma: memory mapping
203  * @address: user virtual address
204  * @pfn: location to store found PFN
205  *
206  * Only IO mappings and raw PFN mappings are allowed.
207  *
208  * Returns zero and the pfn at @pfn on success, -ve otherwise.
209  */
210 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
211         unsigned long *pfn)
212 {
213         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
214                 return -EINVAL;
215
216         *pfn = address >> PAGE_SHIFT;
217         return 0;
218 }
219 EXPORT_SYMBOL(follow_pfn);
220
221 LIST_HEAD(vmap_area_list);
222
223 void vfree(const void *addr)
224 {
225         kfree(addr);
226 }
227 EXPORT_SYMBOL(vfree);
228
229 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
230 {
231         /*
232          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
233          * returns only a logical address.
234          */
235         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
236 }
237 EXPORT_SYMBOL(__vmalloc);
238
239 void *vmalloc_user(unsigned long size)
240 {
241         void *ret;
242
243         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
244                         PAGE_KERNEL);
245         if (ret) {
246                 struct vm_area_struct *vma;
247
248                 down_write(&current->mm->mmap_sem);
249                 vma = find_vma(current->mm, (unsigned long)ret);
250                 if (vma)
251                         vma->vm_flags |= VM_USERMAP;
252                 up_write(&current->mm->mmap_sem);
253         }
254
255         return ret;
256 }
257 EXPORT_SYMBOL(vmalloc_user);
258
259 struct page *vmalloc_to_page(const void *addr)
260 {
261         return virt_to_page(addr);
262 }
263 EXPORT_SYMBOL(vmalloc_to_page);
264
265 unsigned long vmalloc_to_pfn(const void *addr)
266 {
267         return page_to_pfn(virt_to_page(addr));
268 }
269 EXPORT_SYMBOL(vmalloc_to_pfn);
270
271 long vread(char *buf, char *addr, unsigned long count)
272 {
273         /* Don't allow overflow */
274         if ((unsigned long) buf + count < count)
275                 count = -(unsigned long) buf;
276
277         memcpy(buf, addr, count);
278         return count;
279 }
280
281 long vwrite(char *buf, char *addr, unsigned long count)
282 {
283         /* Don't allow overflow */
284         if ((unsigned long) addr + count < count)
285                 count = -(unsigned long) addr;
286
287         memcpy(addr, buf, count);
288         return count;
289 }
290
291 /*
292  *      vmalloc  -  allocate virtually contiguous memory
293  *
294  *      @size:          allocation size
295  *
296  *      Allocate enough pages to cover @size from the page level
297  *      allocator and map them into contiguous kernel virtual space.
298  *
299  *      For tight control over page level allocator and protection flags
300  *      use __vmalloc() instead.
301  */
302 void *vmalloc(unsigned long size)
303 {
304        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
305 }
306 EXPORT_SYMBOL(vmalloc);
307
308 /*
309  *      vzalloc - allocate virtually contiguous memory with zero fill
310  *
311  *      @size:          allocation size
312  *
313  *      Allocate enough pages to cover @size from the page level
314  *      allocator and map them into contiguous kernel virtual space.
315  *      The memory allocated is set to zero.
316  *
317  *      For tight control over page level allocator and protection flags
318  *      use __vmalloc() instead.
319  */
320 void *vzalloc(unsigned long size)
321 {
322         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
323                         PAGE_KERNEL);
324 }
325 EXPORT_SYMBOL(vzalloc);
326
327 /**
328  * vmalloc_node - allocate memory on a specific node
329  * @size:       allocation size
330  * @node:       numa node
331  *
332  * Allocate enough pages to cover @size from the page level
333  * allocator and map them into contiguous kernel virtual space.
334  *
335  * For tight control over page level allocator and protection flags
336  * use __vmalloc() instead.
337  */
338 void *vmalloc_node(unsigned long size, int node)
339 {
340         return vmalloc(size);
341 }
342 EXPORT_SYMBOL(vmalloc_node);
343
344 /**
345  * vzalloc_node - allocate memory on a specific node with zero fill
346  * @size:       allocation size
347  * @node:       numa node
348  *
349  * Allocate enough pages to cover @size from the page level
350  * allocator and map them into contiguous kernel virtual space.
351  * The memory allocated is set to zero.
352  *
353  * For tight control over page level allocator and protection flags
354  * use __vmalloc() instead.
355  */
356 void *vzalloc_node(unsigned long size, int node)
357 {
358         return vzalloc(size);
359 }
360 EXPORT_SYMBOL(vzalloc_node);
361
362 #ifndef PAGE_KERNEL_EXEC
363 # define PAGE_KERNEL_EXEC PAGE_KERNEL
364 #endif
365
366 /**
367  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
368  *      @size:          allocation size
369  *
370  *      Kernel-internal function to allocate enough pages to cover @size
371  *      the page level allocator and map them into contiguous and
372  *      executable kernel virtual space.
373  *
374  *      For tight control over page level allocator and protection flags
375  *      use __vmalloc() instead.
376  */
377
378 void *vmalloc_exec(unsigned long size)
379 {
380         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
381 }
382
383 /**
384  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
385  *      @size:          allocation size
386  *
387  *      Allocate enough 32bit PA addressable pages to cover @size from the
388  *      page level allocator and map them into contiguous kernel virtual space.
389  */
390 void *vmalloc_32(unsigned long size)
391 {
392         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
393 }
394 EXPORT_SYMBOL(vmalloc_32);
395
396 /**
397  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
398  *      @size:          allocation size
399  *
400  * The resulting memory area is 32bit addressable and zeroed so it can be
401  * mapped to userspace without leaking data.
402  *
403  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
404  * remap_vmalloc_range() are permissible.
405  */
406 void *vmalloc_32_user(unsigned long size)
407 {
408         /*
409          * We'll have to sort out the ZONE_DMA bits for 64-bit,
410          * but for now this can simply use vmalloc_user() directly.
411          */
412         return vmalloc_user(size);
413 }
414 EXPORT_SYMBOL(vmalloc_32_user);
415
416 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
417 {
418         BUG();
419         return NULL;
420 }
421 EXPORT_SYMBOL(vmap);
422
423 void vunmap(const void *addr)
424 {
425         BUG();
426 }
427 EXPORT_SYMBOL(vunmap);
428
429 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
430 {
431         BUG();
432         return NULL;
433 }
434 EXPORT_SYMBOL(vm_map_ram);
435
436 void vm_unmap_ram(const void *mem, unsigned int count)
437 {
438         BUG();
439 }
440 EXPORT_SYMBOL(vm_unmap_ram);
441
442 void vm_unmap_aliases(void)
443 {
444 }
445 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
446
447 /*
448  * Implement a stub for vmalloc_sync_[un]mapping() if the architecture
449  * chose not to have one.
450  */
451 void __weak vmalloc_sync_mappings(void)
452 {
453 }
454
455 void __weak vmalloc_sync_unmappings(void)
456 {
457 }
458
459 /**
460  *      alloc_vm_area - allocate a range of kernel address space
461  *      @size:          size of the area
462  *
463  *      Returns:        NULL on failure, vm_struct on success
464  *
465  *      This function reserves a range of kernel address space, and
466  *      allocates pagetables to map that range.  No actual mappings
467  *      are created.  If the kernel address space is not shared
468  *      between processes, it syncs the pagetable across all
469  *      processes.
470  */
471 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
472 {
473         BUG();
474         return NULL;
475 }
476 EXPORT_SYMBOL_GPL(alloc_vm_area);
477
478 void free_vm_area(struct vm_struct *area)
479 {
480         BUG();
481 }
482 EXPORT_SYMBOL_GPL(free_vm_area);
483
484 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
485                    struct page *page)
486 {
487         return -EINVAL;
488 }
489 EXPORT_SYMBOL(vm_insert_page);
490
491 /*
492  *  sys_brk() for the most part doesn't need the global kernel
493  *  lock, except when an application is doing something nasty
494  *  like trying to un-brk an area that has already been mapped
495  *  to a regular file.  in this case, the unmapping will need
496  *  to invoke file system routines that need the global lock.
497  */
498 SYSCALL_DEFINE1(brk, unsigned long, brk)
499 {
500         struct mm_struct *mm = current->mm;
501
502         if (brk < mm->start_brk || brk > mm->context.end_brk)
503                 return mm->brk;
504
505         if (mm->brk == brk)
506                 return mm->brk;
507
508         /*
509          * Always allow shrinking brk
510          */
511         if (brk <= mm->brk) {
512                 mm->brk = brk;
513                 return brk;
514         }
515
516         /*
517          * Ok, looks good - let it rip.
518          */
519         flush_icache_range(mm->brk, brk);
520         return mm->brk = brk;
521 }
522
523 /*
524  * initialise the VMA and region record slabs
525  */
526 void __init mmap_init(void)
527 {
528         int ret;
529
530         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
531         VM_BUG_ON(ret);
532         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
533 }
534
535 /*
536  * validate the region tree
537  * - the caller must hold the region lock
538  */
539 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
540 static noinline void validate_nommu_regions(void)
541 {
542         struct vm_region *region, *last;
543         struct rb_node *p, *lastp;
544
545         lastp = rb_first(&nommu_region_tree);
546         if (!lastp)
547                 return;
548
549         last = rb_entry(lastp, struct vm_region, vm_rb);
550         BUG_ON(last->vm_end <= last->vm_start);
551         BUG_ON(last->vm_top < last->vm_end);
552
553         while ((p = rb_next(lastp))) {
554                 region = rb_entry(p, struct vm_region, vm_rb);
555                 last = rb_entry(lastp, struct vm_region, vm_rb);
556
557                 BUG_ON(region->vm_end <= region->vm_start);
558                 BUG_ON(region->vm_top < region->vm_end);
559                 BUG_ON(region->vm_start < last->vm_top);
560
561                 lastp = p;
562         }
563 }
564 #else
565 static void validate_nommu_regions(void)
566 {
567 }
568 #endif
569
570 /*
571  * add a region into the global tree
572  */
573 static void add_nommu_region(struct vm_region *region)
574 {
575         struct vm_region *pregion;
576         struct rb_node **p, *parent;
577
578         validate_nommu_regions();
579
580         parent = NULL;
581         p = &nommu_region_tree.rb_node;
582         while (*p) {
583                 parent = *p;
584                 pregion = rb_entry(parent, struct vm_region, vm_rb);
585                 if (region->vm_start < pregion->vm_start)
586                         p = &(*p)->rb_left;
587                 else if (region->vm_start > pregion->vm_start)
588                         p = &(*p)->rb_right;
589                 else if (pregion == region)
590                         return;
591                 else
592                         BUG();
593         }
594
595         rb_link_node(&region->vm_rb, parent, p);
596         rb_insert_color(&region->vm_rb, &nommu_region_tree);
597
598         validate_nommu_regions();
599 }
600
601 /*
602  * delete a region from the global tree
603  */
604 static void delete_nommu_region(struct vm_region *region)
605 {
606         BUG_ON(!nommu_region_tree.rb_node);
607
608         validate_nommu_regions();
609         rb_erase(&region->vm_rb, &nommu_region_tree);
610         validate_nommu_regions();
611 }
612
613 /*
614  * free a contiguous series of pages
615  */
616 static void free_page_series(unsigned long from, unsigned long to)
617 {
618         for (; from < to; from += PAGE_SIZE) {
619                 struct page *page = virt_to_page(from);
620
621                 atomic_long_dec(&mmap_pages_allocated);
622                 put_page(page);
623         }
624 }
625
626 /*
627  * release a reference to a region
628  * - the caller must hold the region semaphore for writing, which this releases
629  * - the region may not have been added to the tree yet, in which case vm_top
630  *   will equal vm_start
631  */
632 static void __put_nommu_region(struct vm_region *region)
633         __releases(nommu_region_sem)
634 {
635         BUG_ON(!nommu_region_tree.rb_node);
636
637         if (--region->vm_usage == 0) {
638                 if (region->vm_top > region->vm_start)
639                         delete_nommu_region(region);
640                 up_write(&nommu_region_sem);
641
642                 if (region->vm_file)
643                         fput(region->vm_file);
644
645                 /* IO memory and memory shared directly out of the pagecache
646                  * from ramfs/tmpfs mustn't be released here */
647                 if (region->vm_flags & VM_MAPPED_COPY)
648                         free_page_series(region->vm_start, region->vm_top);
649                 kmem_cache_free(vm_region_jar, region);
650         } else {
651                 up_write(&nommu_region_sem);
652         }
653 }
654
655 /*
656  * release a reference to a region
657  */
658 static void put_nommu_region(struct vm_region *region)
659 {
660         down_write(&nommu_region_sem);
661         __put_nommu_region(region);
662 }
663
664 /*
665  * update protection on a vma
666  */
667 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
668 {
669 #ifdef CONFIG_MPU
670         struct mm_struct *mm = vma->vm_mm;
671         long start = vma->vm_start & PAGE_MASK;
672         while (start < vma->vm_end) {
673                 protect_page(mm, start, flags);
674                 start += PAGE_SIZE;
675         }
676         update_protections(mm);
677 #endif
678 }
679
680 /*
681  * add a VMA into a process's mm_struct in the appropriate place in the list
682  * and tree and add to the address space's page tree also if not an anonymous
683  * page
684  * - should be called with mm->mmap_sem held writelocked
685  */
686 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
687 {
688         struct vm_area_struct *pvma, *prev;
689         struct address_space *mapping;
690         struct rb_node **p, *parent, *rb_prev;
691
692         BUG_ON(!vma->vm_region);
693
694         mm->map_count++;
695         vma->vm_mm = mm;
696
697         protect_vma(vma, vma->vm_flags);
698
699         /* add the VMA to the mapping */
700         if (vma->vm_file) {
701                 mapping = vma->vm_file->f_mapping;
702
703                 i_mmap_lock_write(mapping);
704                 flush_dcache_mmap_lock(mapping);
705                 vma_interval_tree_insert(vma, &mapping->i_mmap);
706                 flush_dcache_mmap_unlock(mapping);
707                 i_mmap_unlock_write(mapping);
708         }
709
710         /* add the VMA to the tree */
711         parent = rb_prev = NULL;
712         p = &mm->mm_rb.rb_node;
713         while (*p) {
714                 parent = *p;
715                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
716
717                 /* sort by: start addr, end addr, VMA struct addr in that order
718                  * (the latter is necessary as we may get identical VMAs) */
719                 if (vma->vm_start < pvma->vm_start)
720                         p = &(*p)->rb_left;
721                 else if (vma->vm_start > pvma->vm_start) {
722                         rb_prev = parent;
723                         p = &(*p)->rb_right;
724                 } else if (vma->vm_end < pvma->vm_end)
725                         p = &(*p)->rb_left;
726                 else if (vma->vm_end > pvma->vm_end) {
727                         rb_prev = parent;
728                         p = &(*p)->rb_right;
729                 } else if (vma < pvma)
730                         p = &(*p)->rb_left;
731                 else if (vma > pvma) {
732                         rb_prev = parent;
733                         p = &(*p)->rb_right;
734                 } else
735                         BUG();
736         }
737
738         rb_link_node(&vma->vm_rb, parent, p);
739         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
740
741         /* add VMA to the VMA list also */
742         prev = NULL;
743         if (rb_prev)
744                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
745
746         __vma_link_list(mm, vma, prev, parent);
747 }
748
749 /*
750  * delete a VMA from its owning mm_struct and address space
751  */
752 static void delete_vma_from_mm(struct vm_area_struct *vma)
753 {
754         int i;
755         struct address_space *mapping;
756         struct mm_struct *mm = vma->vm_mm;
757         struct task_struct *curr = current;
758
759         protect_vma(vma, 0);
760
761         mm->map_count--;
762         for (i = 0; i < VMACACHE_SIZE; i++) {
763                 /* if the vma is cached, invalidate the entire cache */
764                 if (curr->vmacache[i] == vma) {
765                         vmacache_invalidate(mm);
766                         break;
767                 }
768         }
769
770         /* remove the VMA from the mapping */
771         if (vma->vm_file) {
772                 mapping = vma->vm_file->f_mapping;
773
774                 i_mmap_lock_write(mapping);
775                 flush_dcache_mmap_lock(mapping);
776                 vma_interval_tree_remove(vma, &mapping->i_mmap);
777                 flush_dcache_mmap_unlock(mapping);
778                 i_mmap_unlock_write(mapping);
779         }
780
781         /* remove from the MM's tree and list */
782         rb_erase(&vma->vm_rb, &mm->mm_rb);
783
784         if (vma->vm_prev)
785                 vma->vm_prev->vm_next = vma->vm_next;
786         else
787                 mm->mmap = vma->vm_next;
788
789         if (vma->vm_next)
790                 vma->vm_next->vm_prev = vma->vm_prev;
791 }
792
793 /*
794  * destroy a VMA record
795  */
796 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
797 {
798         if (vma->vm_ops && vma->vm_ops->close)
799                 vma->vm_ops->close(vma);
800         if (vma->vm_file)
801                 fput(vma->vm_file);
802         put_nommu_region(vma->vm_region);
803         kmem_cache_free(vm_area_cachep, vma);
804 }
805
806 /*
807  * look up the first VMA in which addr resides, NULL if none
808  * - should be called with mm->mmap_sem at least held readlocked
809  */
810 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
811 {
812         struct vm_area_struct *vma;
813
814         /* check the cache first */
815         vma = vmacache_find(mm, addr);
816         if (likely(vma))
817                 return vma;
818
819         /* trawl the list (there may be multiple mappings in which addr
820          * resides) */
821         for (vma = mm->mmap; vma; vma = vma->vm_next) {
822                 if (vma->vm_start > addr)
823                         return NULL;
824                 if (vma->vm_end > addr) {
825                         vmacache_update(addr, vma);
826                         return vma;
827                 }
828         }
829
830         return NULL;
831 }
832 EXPORT_SYMBOL(find_vma);
833
834 /*
835  * find a VMA
836  * - we don't extend stack VMAs under NOMMU conditions
837  */
838 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
839 {
840         return find_vma(mm, addr);
841 }
842
843 /*
844  * expand a stack to a given address
845  * - not supported under NOMMU conditions
846  */
847 int expand_stack(struct vm_area_struct *vma, unsigned long address)
848 {
849         return -ENOMEM;
850 }
851
852 /*
853  * look up the first VMA exactly that exactly matches addr
854  * - should be called with mm->mmap_sem at least held readlocked
855  */
856 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
857                                              unsigned long addr,
858                                              unsigned long len)
859 {
860         struct vm_area_struct *vma;
861         unsigned long end = addr + len;
862
863         /* check the cache first */
864         vma = vmacache_find_exact(mm, addr, end);
865         if (vma)
866                 return vma;
867
868         /* trawl the list (there may be multiple mappings in which addr
869          * resides) */
870         for (vma = mm->mmap; vma; vma = vma->vm_next) {
871                 if (vma->vm_start < addr)
872                         continue;
873                 if (vma->vm_start > addr)
874                         return NULL;
875                 if (vma->vm_end == end) {
876                         vmacache_update(addr, vma);
877                         return vma;
878                 }
879         }
880
881         return NULL;
882 }
883
884 /*
885  * determine whether a mapping should be permitted and, if so, what sort of
886  * mapping we're capable of supporting
887  */
888 static int validate_mmap_request(struct file *file,
889                                  unsigned long addr,
890                                  unsigned long len,
891                                  unsigned long prot,
892                                  unsigned long flags,
893                                  unsigned long pgoff,
894                                  unsigned long *_capabilities)
895 {
896         unsigned long capabilities, rlen;
897         int ret;
898
899         /* do the simple checks first */
900         if (flags & MAP_FIXED)
901                 return -EINVAL;
902
903         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
904             (flags & MAP_TYPE) != MAP_SHARED)
905                 return -EINVAL;
906
907         if (!len)
908                 return -EINVAL;
909
910         /* Careful about overflows.. */
911         rlen = PAGE_ALIGN(len);
912         if (!rlen || rlen > TASK_SIZE)
913                 return -ENOMEM;
914
915         /* offset overflow? */
916         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
917                 return -EOVERFLOW;
918
919         if (file) {
920                 /* files must support mmap */
921                 if (!file->f_op->mmap)
922                         return -ENODEV;
923
924                 /* work out if what we've got could possibly be shared
925                  * - we support chardevs that provide their own "memory"
926                  * - we support files/blockdevs that are memory backed
927                  */
928                 if (file->f_op->mmap_capabilities) {
929                         capabilities = file->f_op->mmap_capabilities(file);
930                 } else {
931                         /* no explicit capabilities set, so assume some
932                          * defaults */
933                         switch (file_inode(file)->i_mode & S_IFMT) {
934                         case S_IFREG:
935                         case S_IFBLK:
936                                 capabilities = NOMMU_MAP_COPY;
937                                 break;
938
939                         case S_IFCHR:
940                                 capabilities =
941                                         NOMMU_MAP_DIRECT |
942                                         NOMMU_MAP_READ |
943                                         NOMMU_MAP_WRITE;
944                                 break;
945
946                         default:
947                                 return -EINVAL;
948                         }
949                 }
950
951                 /* eliminate any capabilities that we can't support on this
952                  * device */
953                 if (!file->f_op->get_unmapped_area)
954                         capabilities &= ~NOMMU_MAP_DIRECT;
955                 if (!(file->f_mode & FMODE_CAN_READ))
956                         capabilities &= ~NOMMU_MAP_COPY;
957
958                 /* The file shall have been opened with read permission. */
959                 if (!(file->f_mode & FMODE_READ))
960                         return -EACCES;
961
962                 if (flags & MAP_SHARED) {
963                         /* do checks for writing, appending and locking */
964                         if ((prot & PROT_WRITE) &&
965                             !(file->f_mode & FMODE_WRITE))
966                                 return -EACCES;
967
968                         if (IS_APPEND(file_inode(file)) &&
969                             (file->f_mode & FMODE_WRITE))
970                                 return -EACCES;
971
972                         if (locks_verify_locked(file))
973                                 return -EAGAIN;
974
975                         if (!(capabilities & NOMMU_MAP_DIRECT))
976                                 return -ENODEV;
977
978                         /* we mustn't privatise shared mappings */
979                         capabilities &= ~NOMMU_MAP_COPY;
980                 } else {
981                         /* we're going to read the file into private memory we
982                          * allocate */
983                         if (!(capabilities & NOMMU_MAP_COPY))
984                                 return -ENODEV;
985
986                         /* we don't permit a private writable mapping to be
987                          * shared with the backing device */
988                         if (prot & PROT_WRITE)
989                                 capabilities &= ~NOMMU_MAP_DIRECT;
990                 }
991
992                 if (capabilities & NOMMU_MAP_DIRECT) {
993                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
994                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
995                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
996                             ) {
997                                 capabilities &= ~NOMMU_MAP_DIRECT;
998                                 if (flags & MAP_SHARED) {
999                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
1000                                         return -EINVAL;
1001                                 }
1002                         }
1003                 }
1004
1005                 /* handle executable mappings and implied executable
1006                  * mappings */
1007                 if (path_noexec(&file->f_path)) {
1008                         if (prot & PROT_EXEC)
1009                                 return -EPERM;
1010                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1011                         /* handle implication of PROT_EXEC by PROT_READ */
1012                         if (current->personality & READ_IMPLIES_EXEC) {
1013                                 if (capabilities & NOMMU_MAP_EXEC)
1014                                         prot |= PROT_EXEC;
1015                         }
1016                 } else if ((prot & PROT_READ) &&
1017                          (prot & PROT_EXEC) &&
1018                          !(capabilities & NOMMU_MAP_EXEC)
1019                          ) {
1020                         /* backing file is not executable, try to copy */
1021                         capabilities &= ~NOMMU_MAP_DIRECT;
1022                 }
1023         } else {
1024                 /* anonymous mappings are always memory backed and can be
1025                  * privately mapped
1026                  */
1027                 capabilities = NOMMU_MAP_COPY;
1028
1029                 /* handle PROT_EXEC implication by PROT_READ */
1030                 if ((prot & PROT_READ) &&
1031                     (current->personality & READ_IMPLIES_EXEC))
1032                         prot |= PROT_EXEC;
1033         }
1034
1035         /* allow the security API to have its say */
1036         ret = security_mmap_addr(addr);
1037         if (ret < 0)
1038                 return ret;
1039
1040         /* looks okay */
1041         *_capabilities = capabilities;
1042         return 0;
1043 }
1044
1045 /*
1046  * we've determined that we can make the mapping, now translate what we
1047  * now know into VMA flags
1048  */
1049 static unsigned long determine_vm_flags(struct file *file,
1050                                         unsigned long prot,
1051                                         unsigned long flags,
1052                                         unsigned long capabilities)
1053 {
1054         unsigned long vm_flags;
1055
1056         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1057         /* vm_flags |= mm->def_flags; */
1058
1059         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1060                 /* attempt to share read-only copies of mapped file chunks */
1061                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1062                 if (file && !(prot & PROT_WRITE))
1063                         vm_flags |= VM_MAYSHARE;
1064         } else {
1065                 /* overlay a shareable mapping on the backing device or inode
1066                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1067                  * romfs/cramfs */
1068                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1069                 if (flags & MAP_SHARED)
1070                         vm_flags |= VM_SHARED;
1071         }
1072
1073         /* refuse to let anyone share private mappings with this process if
1074          * it's being traced - otherwise breakpoints set in it may interfere
1075          * with another untraced process
1076          */
1077         if ((flags & MAP_PRIVATE) && current->ptrace)
1078                 vm_flags &= ~VM_MAYSHARE;
1079
1080         return vm_flags;
1081 }
1082
1083 /*
1084  * set up a shared mapping on a file (the driver or filesystem provides and
1085  * pins the storage)
1086  */
1087 static int do_mmap_shared_file(struct vm_area_struct *vma)
1088 {
1089         int ret;
1090
1091         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1092         if (ret == 0) {
1093                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1094                 return 0;
1095         }
1096         if (ret != -ENOSYS)
1097                 return ret;
1098
1099         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1100          * opposed to tried but failed) so we can only give a suitable error as
1101          * it's not possible to make a private copy if MAP_SHARED was given */
1102         return -ENODEV;
1103 }
1104
1105 /*
1106  * set up a private mapping or an anonymous shared mapping
1107  */
1108 static int do_mmap_private(struct vm_area_struct *vma,
1109                            struct vm_region *region,
1110                            unsigned long len,
1111                            unsigned long capabilities)
1112 {
1113         unsigned long total, point;
1114         void *base;
1115         int ret, order;
1116
1117         /* invoke the file's mapping function so that it can keep track of
1118          * shared mappings on devices or memory
1119          * - VM_MAYSHARE will be set if it may attempt to share
1120          */
1121         if (capabilities & NOMMU_MAP_DIRECT) {
1122                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1123                 if (ret == 0) {
1124                         /* shouldn't return success if we're not sharing */
1125                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1126                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1127                         return 0;
1128                 }
1129                 if (ret != -ENOSYS)
1130                         return ret;
1131
1132                 /* getting an ENOSYS error indicates that direct mmap isn't
1133                  * possible (as opposed to tried but failed) so we'll try to
1134                  * make a private copy of the data and map that instead */
1135         }
1136
1137
1138         /* allocate some memory to hold the mapping
1139          * - note that this may not return a page-aligned address if the object
1140          *   we're allocating is smaller than a page
1141          */
1142         order = get_order(len);
1143         total = 1 << order;
1144         point = len >> PAGE_SHIFT;
1145
1146         /* we don't want to allocate a power-of-2 sized page set */
1147         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1148                 total = point;
1149
1150         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1151         if (!base)
1152                 goto enomem;
1153
1154         atomic_long_add(total, &mmap_pages_allocated);
1155
1156         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1157         region->vm_start = (unsigned long) base;
1158         region->vm_end   = region->vm_start + len;
1159         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1160
1161         vma->vm_start = region->vm_start;
1162         vma->vm_end   = region->vm_start + len;
1163
1164         if (vma->vm_file) {
1165                 /* read the contents of a file into the copy */
1166                 mm_segment_t old_fs;
1167                 loff_t fpos;
1168
1169                 fpos = vma->vm_pgoff;
1170                 fpos <<= PAGE_SHIFT;
1171
1172                 old_fs = get_fs();
1173                 set_fs(KERNEL_DS);
1174                 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1175                 set_fs(old_fs);
1176
1177                 if (ret < 0)
1178                         goto error_free;
1179
1180                 /* clear the last little bit */
1181                 if (ret < len)
1182                         memset(base + ret, 0, len - ret);
1183
1184         }
1185
1186         return 0;
1187
1188 error_free:
1189         free_page_series(region->vm_start, region->vm_top);
1190         region->vm_start = vma->vm_start = 0;
1191         region->vm_end   = vma->vm_end = 0;
1192         region->vm_top   = 0;
1193         return ret;
1194
1195 enomem:
1196         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1197                len, current->pid, current->comm);
1198         show_free_areas(0);
1199         return -ENOMEM;
1200 }
1201
1202 /*
1203  * handle mapping creation for uClinux
1204  */
1205 unsigned long do_mmap(struct file *file,
1206                         unsigned long addr,
1207                         unsigned long len,
1208                         unsigned long prot,
1209                         unsigned long flags,
1210                         vm_flags_t vm_flags,
1211                         unsigned long pgoff,
1212                         unsigned long *populate)
1213 {
1214         struct vm_area_struct *vma;
1215         struct vm_region *region;
1216         struct rb_node *rb;
1217         unsigned long capabilities, result;
1218         int ret;
1219
1220         *populate = 0;
1221
1222         /* decide whether we should attempt the mapping, and if so what sort of
1223          * mapping */
1224         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1225                                     &capabilities);
1226         if (ret < 0)
1227                 return ret;
1228
1229         /* we ignore the address hint */
1230         addr = 0;
1231         len = PAGE_ALIGN(len);
1232
1233         /* we've determined that we can make the mapping, now translate what we
1234          * now know into VMA flags */
1235         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1236
1237         /* we're going to need to record the mapping */
1238         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1239         if (!region)
1240                 goto error_getting_region;
1241
1242         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1243         if (!vma)
1244                 goto error_getting_vma;
1245
1246         region->vm_usage = 1;
1247         region->vm_flags = vm_flags;
1248         region->vm_pgoff = pgoff;
1249
1250         INIT_LIST_HEAD(&vma->anon_vma_chain);
1251         vma->vm_flags = vm_flags;
1252         vma->vm_pgoff = pgoff;
1253
1254         if (file) {
1255                 region->vm_file = get_file(file);
1256                 vma->vm_file = get_file(file);
1257         }
1258
1259         down_write(&nommu_region_sem);
1260
1261         /* if we want to share, we need to check for regions created by other
1262          * mmap() calls that overlap with our proposed mapping
1263          * - we can only share with a superset match on most regular files
1264          * - shared mappings on character devices and memory backed files are
1265          *   permitted to overlap inexactly as far as we are concerned for in
1266          *   these cases, sharing is handled in the driver or filesystem rather
1267          *   than here
1268          */
1269         if (vm_flags & VM_MAYSHARE) {
1270                 struct vm_region *pregion;
1271                 unsigned long pglen, rpglen, pgend, rpgend, start;
1272
1273                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1274                 pgend = pgoff + pglen;
1275
1276                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1277                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1278
1279                         if (!(pregion->vm_flags & VM_MAYSHARE))
1280                                 continue;
1281
1282                         /* search for overlapping mappings on the same file */
1283                         if (file_inode(pregion->vm_file) !=
1284                             file_inode(file))
1285                                 continue;
1286
1287                         if (pregion->vm_pgoff >= pgend)
1288                                 continue;
1289
1290                         rpglen = pregion->vm_end - pregion->vm_start;
1291                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1292                         rpgend = pregion->vm_pgoff + rpglen;
1293                         if (pgoff >= rpgend)
1294                                 continue;
1295
1296                         /* handle inexactly overlapping matches between
1297                          * mappings */
1298                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1299                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1300                                 /* new mapping is not a subset of the region */
1301                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1302                                         goto sharing_violation;
1303                                 continue;
1304                         }
1305
1306                         /* we've found a region we can share */
1307                         pregion->vm_usage++;
1308                         vma->vm_region = pregion;
1309                         start = pregion->vm_start;
1310                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1311                         vma->vm_start = start;
1312                         vma->vm_end = start + len;
1313
1314                         if (pregion->vm_flags & VM_MAPPED_COPY)
1315                                 vma->vm_flags |= VM_MAPPED_COPY;
1316                         else {
1317                                 ret = do_mmap_shared_file(vma);
1318                                 if (ret < 0) {
1319                                         vma->vm_region = NULL;
1320                                         vma->vm_start = 0;
1321                                         vma->vm_end = 0;
1322                                         pregion->vm_usage--;
1323                                         pregion = NULL;
1324                                         goto error_just_free;
1325                                 }
1326                         }
1327                         fput(region->vm_file);
1328                         kmem_cache_free(vm_region_jar, region);
1329                         region = pregion;
1330                         result = start;
1331                         goto share;
1332                 }
1333
1334                 /* obtain the address at which to make a shared mapping
1335                  * - this is the hook for quasi-memory character devices to
1336                  *   tell us the location of a shared mapping
1337                  */
1338                 if (capabilities & NOMMU_MAP_DIRECT) {
1339                         addr = file->f_op->get_unmapped_area(file, addr, len,
1340                                                              pgoff, flags);
1341                         if (IS_ERR_VALUE(addr)) {
1342                                 ret = addr;
1343                                 if (ret != -ENOSYS)
1344                                         goto error_just_free;
1345
1346                                 /* the driver refused to tell us where to site
1347                                  * the mapping so we'll have to attempt to copy
1348                                  * it */
1349                                 ret = -ENODEV;
1350                                 if (!(capabilities & NOMMU_MAP_COPY))
1351                                         goto error_just_free;
1352
1353                                 capabilities &= ~NOMMU_MAP_DIRECT;
1354                         } else {
1355                                 vma->vm_start = region->vm_start = addr;
1356                                 vma->vm_end = region->vm_end = addr + len;
1357                         }
1358                 }
1359         }
1360
1361         vma->vm_region = region;
1362
1363         /* set up the mapping
1364          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1365          */
1366         if (file && vma->vm_flags & VM_SHARED)
1367                 ret = do_mmap_shared_file(vma);
1368         else
1369                 ret = do_mmap_private(vma, region, len, capabilities);
1370         if (ret < 0)
1371                 goto error_just_free;
1372         add_nommu_region(region);
1373
1374         /* clear anonymous mappings that don't ask for uninitialized data */
1375         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1376                 memset((void *)region->vm_start, 0,
1377                        region->vm_end - region->vm_start);
1378
1379         /* okay... we have a mapping; now we have to register it */
1380         result = vma->vm_start;
1381
1382         current->mm->total_vm += len >> PAGE_SHIFT;
1383
1384 share:
1385         add_vma_to_mm(current->mm, vma);
1386
1387         /* we flush the region from the icache only when the first executable
1388          * mapping of it is made  */
1389         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1390                 flush_icache_range(region->vm_start, region->vm_end);
1391                 region->vm_icache_flushed = true;
1392         }
1393
1394         up_write(&nommu_region_sem);
1395
1396         return result;
1397
1398 error_just_free:
1399         up_write(&nommu_region_sem);
1400 error:
1401         if (region->vm_file)
1402                 fput(region->vm_file);
1403         kmem_cache_free(vm_region_jar, region);
1404         if (vma->vm_file)
1405                 fput(vma->vm_file);
1406         kmem_cache_free(vm_area_cachep, vma);
1407         return ret;
1408
1409 sharing_violation:
1410         up_write(&nommu_region_sem);
1411         pr_warn("Attempt to share mismatched mappings\n");
1412         ret = -EINVAL;
1413         goto error;
1414
1415 error_getting_vma:
1416         kmem_cache_free(vm_region_jar, region);
1417         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1418                         len, current->pid);
1419         show_free_areas(0);
1420         return -ENOMEM;
1421
1422 error_getting_region:
1423         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1424                         len, current->pid);
1425         show_free_areas(0);
1426         return -ENOMEM;
1427 }
1428
1429 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1430                 unsigned long, prot, unsigned long, flags,
1431                 unsigned long, fd, unsigned long, pgoff)
1432 {
1433         struct file *file = NULL;
1434         unsigned long retval = -EBADF;
1435
1436         audit_mmap_fd(fd, flags);
1437         if (!(flags & MAP_ANONYMOUS)) {
1438                 file = fget(fd);
1439                 if (!file)
1440                         goto out;
1441         }
1442
1443         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1444
1445         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1446
1447         if (file)
1448                 fput(file);
1449 out:
1450         return retval;
1451 }
1452
1453 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1454 struct mmap_arg_struct {
1455         unsigned long addr;
1456         unsigned long len;
1457         unsigned long prot;
1458         unsigned long flags;
1459         unsigned long fd;
1460         unsigned long offset;
1461 };
1462
1463 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1464 {
1465         struct mmap_arg_struct a;
1466
1467         if (copy_from_user(&a, arg, sizeof(a)))
1468                 return -EFAULT;
1469         if (offset_in_page(a.offset))
1470                 return -EINVAL;
1471
1472         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1473                               a.offset >> PAGE_SHIFT);
1474 }
1475 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1476
1477 /*
1478  * split a vma into two pieces at address 'addr', a new vma is allocated either
1479  * for the first part or the tail.
1480  */
1481 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1482               unsigned long addr, int new_below)
1483 {
1484         struct vm_area_struct *new;
1485         struct vm_region *region;
1486         unsigned long npages;
1487
1488         /* we're only permitted to split anonymous regions (these should have
1489          * only a single usage on the region) */
1490         if (vma->vm_file)
1491                 return -ENOMEM;
1492
1493         if (mm->map_count >= sysctl_max_map_count)
1494                 return -ENOMEM;
1495
1496         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1497         if (!region)
1498                 return -ENOMEM;
1499
1500         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1501         if (!new) {
1502                 kmem_cache_free(vm_region_jar, region);
1503                 return -ENOMEM;
1504         }
1505
1506         /* most fields are the same, copy all, and then fixup */
1507         *new = *vma;
1508         *region = *vma->vm_region;
1509         new->vm_region = region;
1510
1511         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1512
1513         if (new_below) {
1514                 region->vm_top = region->vm_end = new->vm_end = addr;
1515         } else {
1516                 region->vm_start = new->vm_start = addr;
1517                 region->vm_pgoff = new->vm_pgoff += npages;
1518         }
1519
1520         if (new->vm_ops && new->vm_ops->open)
1521                 new->vm_ops->open(new);
1522
1523         delete_vma_from_mm(vma);
1524         down_write(&nommu_region_sem);
1525         delete_nommu_region(vma->vm_region);
1526         if (new_below) {
1527                 vma->vm_region->vm_start = vma->vm_start = addr;
1528                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1529         } else {
1530                 vma->vm_region->vm_end = vma->vm_end = addr;
1531                 vma->vm_region->vm_top = addr;
1532         }
1533         add_nommu_region(vma->vm_region);
1534         add_nommu_region(new->vm_region);
1535         up_write(&nommu_region_sem);
1536         add_vma_to_mm(mm, vma);
1537         add_vma_to_mm(mm, new);
1538         return 0;
1539 }
1540
1541 /*
1542  * shrink a VMA by removing the specified chunk from either the beginning or
1543  * the end
1544  */
1545 static int shrink_vma(struct mm_struct *mm,
1546                       struct vm_area_struct *vma,
1547                       unsigned long from, unsigned long to)
1548 {
1549         struct vm_region *region;
1550
1551         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1552          * and list */
1553         delete_vma_from_mm(vma);
1554         if (from > vma->vm_start)
1555                 vma->vm_end = from;
1556         else
1557                 vma->vm_start = to;
1558         add_vma_to_mm(mm, vma);
1559
1560         /* cut the backing region down to size */
1561         region = vma->vm_region;
1562         BUG_ON(region->vm_usage != 1);
1563
1564         down_write(&nommu_region_sem);
1565         delete_nommu_region(region);
1566         if (from > region->vm_start) {
1567                 to = region->vm_top;
1568                 region->vm_top = region->vm_end = from;
1569         } else {
1570                 region->vm_start = to;
1571         }
1572         add_nommu_region(region);
1573         up_write(&nommu_region_sem);
1574
1575         free_page_series(from, to);
1576         return 0;
1577 }
1578
1579 /*
1580  * release a mapping
1581  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1582  *   VMA, though it need not cover the whole VMA
1583  */
1584 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1585 {
1586         struct vm_area_struct *vma;
1587         unsigned long end;
1588         int ret;
1589
1590         len = PAGE_ALIGN(len);
1591         if (len == 0)
1592                 return -EINVAL;
1593
1594         end = start + len;
1595
1596         /* find the first potentially overlapping VMA */
1597         vma = find_vma(mm, start);
1598         if (!vma) {
1599                 static int limit;
1600                 if (limit < 5) {
1601                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1602                                         current->pid, current->comm,
1603                                         start, start + len - 1);
1604                         limit++;
1605                 }
1606                 return -EINVAL;
1607         }
1608
1609         /* we're allowed to split an anonymous VMA but not a file-backed one */
1610         if (vma->vm_file) {
1611                 do {
1612                         if (start > vma->vm_start)
1613                                 return -EINVAL;
1614                         if (end == vma->vm_end)
1615                                 goto erase_whole_vma;
1616                         vma = vma->vm_next;
1617                 } while (vma);
1618                 return -EINVAL;
1619         } else {
1620                 /* the chunk must be a subset of the VMA found */
1621                 if (start == vma->vm_start && end == vma->vm_end)
1622                         goto erase_whole_vma;
1623                 if (start < vma->vm_start || end > vma->vm_end)
1624                         return -EINVAL;
1625                 if (offset_in_page(start))
1626                         return -EINVAL;
1627                 if (end != vma->vm_end && offset_in_page(end))
1628                         return -EINVAL;
1629                 if (start != vma->vm_start && end != vma->vm_end) {
1630                         ret = split_vma(mm, vma, start, 1);
1631                         if (ret < 0)
1632                                 return ret;
1633                 }
1634                 return shrink_vma(mm, vma, start, end);
1635         }
1636
1637 erase_whole_vma:
1638         delete_vma_from_mm(vma);
1639         delete_vma(mm, vma);
1640         return 0;
1641 }
1642 EXPORT_SYMBOL(do_munmap);
1643
1644 int vm_munmap(unsigned long addr, size_t len)
1645 {
1646         struct mm_struct *mm = current->mm;
1647         int ret;
1648
1649         down_write(&mm->mmap_sem);
1650         ret = do_munmap(mm, addr, len);
1651         up_write(&mm->mmap_sem);
1652         return ret;
1653 }
1654 EXPORT_SYMBOL(vm_munmap);
1655
1656 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1657 {
1658         return vm_munmap(addr, len);
1659 }
1660
1661 /*
1662  * release all the mappings made in a process's VM space
1663  */
1664 void exit_mmap(struct mm_struct *mm)
1665 {
1666         struct vm_area_struct *vma;
1667
1668         if (!mm)
1669                 return;
1670
1671         mm->total_vm = 0;
1672
1673         while ((vma = mm->mmap)) {
1674                 mm->mmap = vma->vm_next;
1675                 delete_vma_from_mm(vma);
1676                 delete_vma(mm, vma);
1677                 cond_resched();
1678         }
1679 }
1680
1681 int vm_brk(unsigned long addr, unsigned long len)
1682 {
1683         return -ENOMEM;
1684 }
1685
1686 /*
1687  * expand (or shrink) an existing mapping, potentially moving it at the same
1688  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1689  *
1690  * under NOMMU conditions, we only permit changing a mapping's size, and only
1691  * as long as it stays within the region allocated by do_mmap_private() and the
1692  * block is not shareable
1693  *
1694  * MREMAP_FIXED is not supported under NOMMU conditions
1695  */
1696 static unsigned long do_mremap(unsigned long addr,
1697                         unsigned long old_len, unsigned long new_len,
1698                         unsigned long flags, unsigned long new_addr)
1699 {
1700         struct vm_area_struct *vma;
1701
1702         /* insanity checks first */
1703         old_len = PAGE_ALIGN(old_len);
1704         new_len = PAGE_ALIGN(new_len);
1705         if (old_len == 0 || new_len == 0)
1706                 return (unsigned long) -EINVAL;
1707
1708         if (offset_in_page(addr))
1709                 return -EINVAL;
1710
1711         if (flags & MREMAP_FIXED && new_addr != addr)
1712                 return (unsigned long) -EINVAL;
1713
1714         vma = find_vma_exact(current->mm, addr, old_len);
1715         if (!vma)
1716                 return (unsigned long) -EINVAL;
1717
1718         if (vma->vm_end != vma->vm_start + old_len)
1719                 return (unsigned long) -EFAULT;
1720
1721         if (vma->vm_flags & VM_MAYSHARE)
1722                 return (unsigned long) -EPERM;
1723
1724         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1725                 return (unsigned long) -ENOMEM;
1726
1727         /* all checks complete - do it */
1728         vma->vm_end = vma->vm_start + new_len;
1729         return vma->vm_start;
1730 }
1731
1732 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1733                 unsigned long, new_len, unsigned long, flags,
1734                 unsigned long, new_addr)
1735 {
1736         unsigned long ret;
1737
1738         down_write(&current->mm->mmap_sem);
1739         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1740         up_write(&current->mm->mmap_sem);
1741         return ret;
1742 }
1743
1744 struct page *follow_page_mask(struct vm_area_struct *vma,
1745                               unsigned long address, unsigned int flags,
1746                               unsigned int *page_mask)
1747 {
1748         *page_mask = 0;
1749         return NULL;
1750 }
1751
1752 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1753                 unsigned long pfn, unsigned long size, pgprot_t prot)
1754 {
1755         if (addr != (pfn << PAGE_SHIFT))
1756                 return -EINVAL;
1757
1758         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1759         return 0;
1760 }
1761 EXPORT_SYMBOL(remap_pfn_range);
1762
1763 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1764 {
1765         unsigned long pfn = start >> PAGE_SHIFT;
1766         unsigned long vm_len = vma->vm_end - vma->vm_start;
1767
1768         pfn += vma->vm_pgoff;
1769         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1770 }
1771 EXPORT_SYMBOL(vm_iomap_memory);
1772
1773 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1774                         unsigned long pgoff)
1775 {
1776         unsigned int size = vma->vm_end - vma->vm_start;
1777
1778         if (!(vma->vm_flags & VM_USERMAP))
1779                 return -EINVAL;
1780
1781         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1782         vma->vm_end = vma->vm_start + size;
1783
1784         return 0;
1785 }
1786 EXPORT_SYMBOL(remap_vmalloc_range);
1787
1788 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1789         unsigned long len, unsigned long pgoff, unsigned long flags)
1790 {
1791         return -ENOMEM;
1792 }
1793
1794 void unmap_mapping_range(struct address_space *mapping,
1795                          loff_t const holebegin, loff_t const holelen,
1796                          int even_cows)
1797 {
1798 }
1799 EXPORT_SYMBOL(unmap_mapping_range);
1800
1801 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1802 {
1803         BUG();
1804         return 0;
1805 }
1806 EXPORT_SYMBOL(filemap_fault);
1807
1808 void filemap_map_pages(struct fault_env *fe,
1809                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1810 {
1811         BUG();
1812 }
1813 EXPORT_SYMBOL(filemap_map_pages);
1814
1815 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1816                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1817 {
1818         struct vm_area_struct *vma;
1819         int write = gup_flags & FOLL_WRITE;
1820
1821         down_read(&mm->mmap_sem);
1822
1823         /* the access must start within one of the target process's mappings */
1824         vma = find_vma(mm, addr);
1825         if (vma) {
1826                 /* don't overrun this mapping */
1827                 if (addr + len >= vma->vm_end)
1828                         len = vma->vm_end - addr;
1829
1830                 /* only read or write mappings where it is permitted */
1831                 if (write && vma->vm_flags & VM_MAYWRITE)
1832                         copy_to_user_page(vma, NULL, addr,
1833                                          (void *) addr, buf, len);
1834                 else if (!write && vma->vm_flags & VM_MAYREAD)
1835                         copy_from_user_page(vma, NULL, addr,
1836                                             buf, (void *) addr, len);
1837                 else
1838                         len = 0;
1839         } else {
1840                 len = 0;
1841         }
1842
1843         up_read(&mm->mmap_sem);
1844
1845         return len;
1846 }
1847
1848 /**
1849  * @access_remote_vm - access another process' address space
1850  * @mm:         the mm_struct of the target address space
1851  * @addr:       start address to access
1852  * @buf:        source or destination buffer
1853  * @len:        number of bytes to transfer
1854  * @gup_flags:  flags modifying lookup behaviour
1855  *
1856  * The caller must hold a reference on @mm.
1857  */
1858 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1859                 void *buf, int len, unsigned int gup_flags)
1860 {
1861         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1862 }
1863
1864 /*
1865  * Access another process' address space.
1866  * - source/target buffer must be kernel space
1867  */
1868 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1869                 unsigned int gup_flags)
1870 {
1871         struct mm_struct *mm;
1872
1873         if (addr + len < addr)
1874                 return 0;
1875
1876         mm = get_task_mm(tsk);
1877         if (!mm)
1878                 return 0;
1879
1880         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1881
1882         mmput(mm);
1883         return len;
1884 }
1885
1886 /**
1887  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1888  * @inode: The inode to check
1889  * @size: The current filesize of the inode
1890  * @newsize: The proposed filesize of the inode
1891  *
1892  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1893  * make sure that that any outstanding VMAs aren't broken and then shrink the
1894  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1895  * automatically grant mappings that are too large.
1896  */
1897 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1898                                 size_t newsize)
1899 {
1900         struct vm_area_struct *vma;
1901         struct vm_region *region;
1902         pgoff_t low, high;
1903         size_t r_size, r_top;
1904
1905         low = newsize >> PAGE_SHIFT;
1906         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1907
1908         down_write(&nommu_region_sem);
1909         i_mmap_lock_read(inode->i_mapping);
1910
1911         /* search for VMAs that fall within the dead zone */
1912         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1913                 /* found one - only interested if it's shared out of the page
1914                  * cache */
1915                 if (vma->vm_flags & VM_SHARED) {
1916                         i_mmap_unlock_read(inode->i_mapping);
1917                         up_write(&nommu_region_sem);
1918                         return -ETXTBSY; /* not quite true, but near enough */
1919                 }
1920         }
1921
1922         /* reduce any regions that overlap the dead zone - if in existence,
1923          * these will be pointed to by VMAs that don't overlap the dead zone
1924          *
1925          * we don't check for any regions that start beyond the EOF as there
1926          * shouldn't be any
1927          */
1928         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1929                 if (!(vma->vm_flags & VM_SHARED))
1930                         continue;
1931
1932                 region = vma->vm_region;
1933                 r_size = region->vm_top - region->vm_start;
1934                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1935
1936                 if (r_top > newsize) {
1937                         region->vm_top -= r_top - newsize;
1938                         if (region->vm_end > region->vm_top)
1939                                 region->vm_end = region->vm_top;
1940                 }
1941         }
1942
1943         i_mmap_unlock_read(inode->i_mapping);
1944         up_write(&nommu_region_sem);
1945         return 0;
1946 }
1947
1948 /*
1949  * Initialise sysctl_user_reserve_kbytes.
1950  *
1951  * This is intended to prevent a user from starting a single memory hogging
1952  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1953  * mode.
1954  *
1955  * The default value is min(3% of free memory, 128MB)
1956  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1957  */
1958 static int __meminit init_user_reserve(void)
1959 {
1960         unsigned long free_kbytes;
1961
1962         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1963
1964         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1965         return 0;
1966 }
1967 subsys_initcall(init_user_reserve);
1968
1969 /*
1970  * Initialise sysctl_admin_reserve_kbytes.
1971  *
1972  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1973  * to log in and kill a memory hogging process.
1974  *
1975  * Systems with more than 256MB will reserve 8MB, enough to recover
1976  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1977  * only reserve 3% of free pages by default.
1978  */
1979 static int __meminit init_admin_reserve(void)
1980 {
1981         unsigned long free_kbytes;
1982
1983         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1984
1985         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1986         return 0;
1987 }
1988 subsys_initcall(init_admin_reserve);