GNU Linux-libre 4.4.289-gnu1
[releases.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 struct percpu_counter vm_committed_as;
52 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
53 int sysctl_overcommit_ratio = 50; /* default is 50% */
54 unsigned long sysctl_overcommit_kbytes __read_mostly;
55 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
56 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
57 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
58 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
59 int heap_stack_gap = 0;
60
61 atomic_long_t mmap_pages_allocated;
62
63 /*
64  * The global memory commitment made in the system can be a metric
65  * that can be used to drive ballooning decisions when Linux is hosted
66  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
67  * balancing memory across competing virtual machines that are hosted.
68  * Several metrics drive this policy engine including the guest reported
69  * memory commitment.
70  */
71 unsigned long vm_memory_committed(void)
72 {
73         return percpu_counter_read_positive(&vm_committed_as);
74 }
75
76 EXPORT_SYMBOL_GPL(vm_memory_committed);
77
78 EXPORT_SYMBOL(mem_map);
79
80 /* list of mapped, potentially shareable regions */
81 static struct kmem_cache *vm_region_jar;
82 struct rb_root nommu_region_tree = RB_ROOT;
83 DECLARE_RWSEM(nommu_region_sem);
84
85 const struct vm_operations_struct generic_file_vm_ops = {
86 };
87
88 /*
89  * Return the total memory allocated for this pointer, not
90  * just what the caller asked for.
91  *
92  * Doesn't have to be accurate, i.e. may have races.
93  */
94 unsigned int kobjsize(const void *objp)
95 {
96         struct page *page;
97
98         /*
99          * If the object we have should not have ksize performed on it,
100          * return size of 0
101          */
102         if (!objp || !virt_addr_valid(objp))
103                 return 0;
104
105         page = virt_to_head_page(objp);
106
107         /*
108          * If the allocator sets PageSlab, we know the pointer came from
109          * kmalloc().
110          */
111         if (PageSlab(page))
112                 return ksize(objp);
113
114         /*
115          * If it's not a compound page, see if we have a matching VMA
116          * region. This test is intentionally done in reverse order,
117          * so if there's no VMA, we still fall through and hand back
118          * PAGE_SIZE for 0-order pages.
119          */
120         if (!PageCompound(page)) {
121                 struct vm_area_struct *vma;
122
123                 vma = find_vma(current->mm, (unsigned long)objp);
124                 if (vma)
125                         return vma->vm_end - vma->vm_start;
126         }
127
128         /*
129          * The ksize() function is only guaranteed to work for pointers
130          * returned by kmalloc(). So handle arbitrary pointers here.
131          */
132         return PAGE_SIZE << compound_order(page);
133 }
134
135 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
136                       unsigned long start, unsigned long nr_pages,
137                       unsigned int foll_flags, struct page **pages,
138                       struct vm_area_struct **vmas, int *nonblocking)
139 {
140         struct vm_area_struct *vma;
141         unsigned long vm_flags;
142         int i;
143
144         /* calculate required read or write permissions.
145          * If FOLL_FORCE is set, we only require the "MAY" flags.
146          */
147         vm_flags  = (foll_flags & FOLL_WRITE) ?
148                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
149         vm_flags &= (foll_flags & FOLL_FORCE) ?
150                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
151
152         for (i = 0; i < nr_pages; i++) {
153                 vma = find_vma(mm, start);
154                 if (!vma)
155                         goto finish_or_fault;
156
157                 /* protect what we can, including chardevs */
158                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
159                     !(vm_flags & vma->vm_flags))
160                         goto finish_or_fault;
161
162                 if (pages) {
163                         pages[i] = virt_to_page(start);
164                         if (pages[i])
165                                 page_cache_get(pages[i]);
166                 }
167                 if (vmas)
168                         vmas[i] = vma;
169                 start = (start + PAGE_SIZE) & PAGE_MASK;
170         }
171
172         return i;
173
174 finish_or_fault:
175         return i ? : -EFAULT;
176 }
177
178 /*
179  * get a list of pages in an address range belonging to the specified process
180  * and indicate the VMA that covers each page
181  * - this is potentially dodgy as we may end incrementing the page count of a
182  *   slab page or a secondary page from a compound page
183  * - don't permit access to VMAs that don't support it, such as I/O mappings
184  */
185 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
186                     unsigned long start, unsigned long nr_pages,
187                     unsigned int gup_flags, struct page **pages,
188                     struct vm_area_struct **vmas)
189 {
190         return __get_user_pages(tsk, mm, start, nr_pages,
191                                 gup_flags, pages, vmas, NULL);
192 }
193 EXPORT_SYMBOL(get_user_pages);
194
195 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
196                            unsigned long start, unsigned long nr_pages,
197                            unsigned int gup_flags, struct page **pages,
198                            int *locked)
199 {
200         return get_user_pages(tsk, mm, start, nr_pages, gup_flags,
201                               pages, NULL);
202 }
203 EXPORT_SYMBOL(get_user_pages_locked);
204
205 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
206                                unsigned long start, unsigned long nr_pages,
207                                struct page **pages, unsigned int gup_flags)
208 {
209         long ret;
210         down_read(&mm->mmap_sem);
211         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
212                                NULL, NULL);
213         up_read(&mm->mmap_sem);
214         return ret;
215 }
216 EXPORT_SYMBOL(__get_user_pages_unlocked);
217
218 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
219                              unsigned long start, unsigned long nr_pages,
220                              struct page **pages, unsigned int gup_flags)
221 {
222         return __get_user_pages_unlocked(tsk, mm, start, nr_pages,
223                                          pages, gup_flags);
224 }
225 EXPORT_SYMBOL(get_user_pages_unlocked);
226
227 /**
228  * follow_pfn - look up PFN at a user virtual address
229  * @vma: memory mapping
230  * @address: user virtual address
231  * @pfn: location to store found PFN
232  *
233  * Only IO mappings and raw PFN mappings are allowed.
234  *
235  * Returns zero and the pfn at @pfn on success, -ve otherwise.
236  */
237 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
238         unsigned long *pfn)
239 {
240         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
241                 return -EINVAL;
242
243         *pfn = address >> PAGE_SHIFT;
244         return 0;
245 }
246 EXPORT_SYMBOL(follow_pfn);
247
248 LIST_HEAD(vmap_area_list);
249
250 void vfree(const void *addr)
251 {
252         kfree(addr);
253 }
254 EXPORT_SYMBOL(vfree);
255
256 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
257 {
258         /*
259          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
260          * returns only a logical address.
261          */
262         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
263 }
264 EXPORT_SYMBOL(__vmalloc);
265
266 void *vmalloc_user(unsigned long size)
267 {
268         void *ret;
269
270         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
271                         PAGE_KERNEL);
272         if (ret) {
273                 struct vm_area_struct *vma;
274
275                 down_write(&current->mm->mmap_sem);
276                 vma = find_vma(current->mm, (unsigned long)ret);
277                 if (vma)
278                         vma->vm_flags |= VM_USERMAP;
279                 up_write(&current->mm->mmap_sem);
280         }
281
282         return ret;
283 }
284 EXPORT_SYMBOL(vmalloc_user);
285
286 struct page *vmalloc_to_page(const void *addr)
287 {
288         return virt_to_page(addr);
289 }
290 EXPORT_SYMBOL(vmalloc_to_page);
291
292 unsigned long vmalloc_to_pfn(const void *addr)
293 {
294         return page_to_pfn(virt_to_page(addr));
295 }
296 EXPORT_SYMBOL(vmalloc_to_pfn);
297
298 long vread(char *buf, char *addr, unsigned long count)
299 {
300         /* Don't allow overflow */
301         if ((unsigned long) buf + count < count)
302                 count = -(unsigned long) buf;
303
304         memcpy(buf, addr, count);
305         return count;
306 }
307
308 long vwrite(char *buf, char *addr, unsigned long count)
309 {
310         /* Don't allow overflow */
311         if ((unsigned long) addr + count < count)
312                 count = -(unsigned long) addr;
313
314         memcpy(addr, buf, count);
315         return count;
316 }
317
318 /*
319  *      vmalloc  -  allocate virtually contiguous memory
320  *
321  *      @size:          allocation size
322  *
323  *      Allocate enough pages to cover @size from the page level
324  *      allocator and map them into contiguous kernel virtual space.
325  *
326  *      For tight control over page level allocator and protection flags
327  *      use __vmalloc() instead.
328  */
329 void *vmalloc(unsigned long size)
330 {
331        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
332 }
333 EXPORT_SYMBOL(vmalloc);
334
335 /*
336  *      vzalloc - allocate virtually contiguous memory with zero fill
337  *
338  *      @size:          allocation size
339  *
340  *      Allocate enough pages to cover @size from the page level
341  *      allocator and map them into contiguous kernel virtual space.
342  *      The memory allocated is set to zero.
343  *
344  *      For tight control over page level allocator and protection flags
345  *      use __vmalloc() instead.
346  */
347 void *vzalloc(unsigned long size)
348 {
349         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
350                         PAGE_KERNEL);
351 }
352 EXPORT_SYMBOL(vzalloc);
353
354 /**
355  * vmalloc_node - allocate memory on a specific node
356  * @size:       allocation size
357  * @node:       numa node
358  *
359  * Allocate enough pages to cover @size from the page level
360  * allocator and map them into contiguous kernel virtual space.
361  *
362  * For tight control over page level allocator and protection flags
363  * use __vmalloc() instead.
364  */
365 void *vmalloc_node(unsigned long size, int node)
366 {
367         return vmalloc(size);
368 }
369 EXPORT_SYMBOL(vmalloc_node);
370
371 /**
372  * vzalloc_node - allocate memory on a specific node with zero fill
373  * @size:       allocation size
374  * @node:       numa node
375  *
376  * Allocate enough pages to cover @size from the page level
377  * allocator and map them into contiguous kernel virtual space.
378  * The memory allocated is set to zero.
379  *
380  * For tight control over page level allocator and protection flags
381  * use __vmalloc() instead.
382  */
383 void *vzalloc_node(unsigned long size, int node)
384 {
385         return vzalloc(size);
386 }
387 EXPORT_SYMBOL(vzalloc_node);
388
389 #ifndef PAGE_KERNEL_EXEC
390 # define PAGE_KERNEL_EXEC PAGE_KERNEL
391 #endif
392
393 /**
394  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
395  *      @size:          allocation size
396  *
397  *      Kernel-internal function to allocate enough pages to cover @size
398  *      the page level allocator and map them into contiguous and
399  *      executable kernel virtual space.
400  *
401  *      For tight control over page level allocator and protection flags
402  *      use __vmalloc() instead.
403  */
404
405 void *vmalloc_exec(unsigned long size)
406 {
407         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
408 }
409
410 /**
411  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
412  *      @size:          allocation size
413  *
414  *      Allocate enough 32bit PA addressable pages to cover @size from the
415  *      page level allocator and map them into contiguous kernel virtual space.
416  */
417 void *vmalloc_32(unsigned long size)
418 {
419         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
420 }
421 EXPORT_SYMBOL(vmalloc_32);
422
423 /**
424  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
425  *      @size:          allocation size
426  *
427  * The resulting memory area is 32bit addressable and zeroed so it can be
428  * mapped to userspace without leaking data.
429  *
430  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
431  * remap_vmalloc_range() are permissible.
432  */
433 void *vmalloc_32_user(unsigned long size)
434 {
435         /*
436          * We'll have to sort out the ZONE_DMA bits for 64-bit,
437          * but for now this can simply use vmalloc_user() directly.
438          */
439         return vmalloc_user(size);
440 }
441 EXPORT_SYMBOL(vmalloc_32_user);
442
443 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
444 {
445         BUG();
446         return NULL;
447 }
448 EXPORT_SYMBOL(vmap);
449
450 void vunmap(const void *addr)
451 {
452         BUG();
453 }
454 EXPORT_SYMBOL(vunmap);
455
456 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
457 {
458         BUG();
459         return NULL;
460 }
461 EXPORT_SYMBOL(vm_map_ram);
462
463 void vm_unmap_ram(const void *mem, unsigned int count)
464 {
465         BUG();
466 }
467 EXPORT_SYMBOL(vm_unmap_ram);
468
469 void vm_unmap_aliases(void)
470 {
471 }
472 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
473
474 /*
475  * Implement a stub for vmalloc_sync_[un]mapping() if the architecture
476  * chose not to have one.
477  */
478 void __weak vmalloc_sync_mappings(void)
479 {
480 }
481
482 void __weak vmalloc_sync_unmappings(void)
483 {
484 }
485
486 /**
487  *      alloc_vm_area - allocate a range of kernel address space
488  *      @size:          size of the area
489  *
490  *      Returns:        NULL on failure, vm_struct on success
491  *
492  *      This function reserves a range of kernel address space, and
493  *      allocates pagetables to map that range.  No actual mappings
494  *      are created.  If the kernel address space is not shared
495  *      between processes, it syncs the pagetable across all
496  *      processes.
497  */
498 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
499 {
500         BUG();
501         return NULL;
502 }
503 EXPORT_SYMBOL_GPL(alloc_vm_area);
504
505 void free_vm_area(struct vm_struct *area)
506 {
507         BUG();
508 }
509 EXPORT_SYMBOL_GPL(free_vm_area);
510
511 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
512                    struct page *page)
513 {
514         return -EINVAL;
515 }
516 EXPORT_SYMBOL(vm_insert_page);
517
518 /*
519  *  sys_brk() for the most part doesn't need the global kernel
520  *  lock, except when an application is doing something nasty
521  *  like trying to un-brk an area that has already been mapped
522  *  to a regular file.  in this case, the unmapping will need
523  *  to invoke file system routines that need the global lock.
524  */
525 SYSCALL_DEFINE1(brk, unsigned long, brk)
526 {
527         struct mm_struct *mm = current->mm;
528
529         if (brk < mm->start_brk || brk > mm->context.end_brk)
530                 return mm->brk;
531
532         if (mm->brk == brk)
533                 return mm->brk;
534
535         /*
536          * Always allow shrinking brk
537          */
538         if (brk <= mm->brk) {
539                 mm->brk = brk;
540                 return brk;
541         }
542
543         /*
544          * Ok, looks good - let it rip.
545          */
546         flush_icache_range(mm->brk, brk);
547         return mm->brk = brk;
548 }
549
550 /*
551  * initialise the VMA and region record slabs
552  */
553 void __init mmap_init(void)
554 {
555         int ret;
556
557         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
558         VM_BUG_ON(ret);
559         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
560 }
561
562 /*
563  * validate the region tree
564  * - the caller must hold the region lock
565  */
566 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
567 static noinline void validate_nommu_regions(void)
568 {
569         struct vm_region *region, *last;
570         struct rb_node *p, *lastp;
571
572         lastp = rb_first(&nommu_region_tree);
573         if (!lastp)
574                 return;
575
576         last = rb_entry(lastp, struct vm_region, vm_rb);
577         BUG_ON(last->vm_end <= last->vm_start);
578         BUG_ON(last->vm_top < last->vm_end);
579
580         while ((p = rb_next(lastp))) {
581                 region = rb_entry(p, struct vm_region, vm_rb);
582                 last = rb_entry(lastp, struct vm_region, vm_rb);
583
584                 BUG_ON(region->vm_end <= region->vm_start);
585                 BUG_ON(region->vm_top < region->vm_end);
586                 BUG_ON(region->vm_start < last->vm_top);
587
588                 lastp = p;
589         }
590 }
591 #else
592 static void validate_nommu_regions(void)
593 {
594 }
595 #endif
596
597 /*
598  * add a region into the global tree
599  */
600 static void add_nommu_region(struct vm_region *region)
601 {
602         struct vm_region *pregion;
603         struct rb_node **p, *parent;
604
605         validate_nommu_regions();
606
607         parent = NULL;
608         p = &nommu_region_tree.rb_node;
609         while (*p) {
610                 parent = *p;
611                 pregion = rb_entry(parent, struct vm_region, vm_rb);
612                 if (region->vm_start < pregion->vm_start)
613                         p = &(*p)->rb_left;
614                 else if (region->vm_start > pregion->vm_start)
615                         p = &(*p)->rb_right;
616                 else if (pregion == region)
617                         return;
618                 else
619                         BUG();
620         }
621
622         rb_link_node(&region->vm_rb, parent, p);
623         rb_insert_color(&region->vm_rb, &nommu_region_tree);
624
625         validate_nommu_regions();
626 }
627
628 /*
629  * delete a region from the global tree
630  */
631 static void delete_nommu_region(struct vm_region *region)
632 {
633         BUG_ON(!nommu_region_tree.rb_node);
634
635         validate_nommu_regions();
636         rb_erase(&region->vm_rb, &nommu_region_tree);
637         validate_nommu_regions();
638 }
639
640 /*
641  * free a contiguous series of pages
642  */
643 static void free_page_series(unsigned long from, unsigned long to)
644 {
645         for (; from < to; from += PAGE_SIZE) {
646                 struct page *page = virt_to_page(from);
647
648                 atomic_long_dec(&mmap_pages_allocated);
649                 put_page(page);
650         }
651 }
652
653 /*
654  * release a reference to a region
655  * - the caller must hold the region semaphore for writing, which this releases
656  * - the region may not have been added to the tree yet, in which case vm_top
657  *   will equal vm_start
658  */
659 static void __put_nommu_region(struct vm_region *region)
660         __releases(nommu_region_sem)
661 {
662         BUG_ON(!nommu_region_tree.rb_node);
663
664         if (--region->vm_usage == 0) {
665                 if (region->vm_top > region->vm_start)
666                         delete_nommu_region(region);
667                 up_write(&nommu_region_sem);
668
669                 if (region->vm_file)
670                         fput(region->vm_file);
671
672                 /* IO memory and memory shared directly out of the pagecache
673                  * from ramfs/tmpfs mustn't be released here */
674                 if (region->vm_flags & VM_MAPPED_COPY)
675                         free_page_series(region->vm_start, region->vm_top);
676                 kmem_cache_free(vm_region_jar, region);
677         } else {
678                 up_write(&nommu_region_sem);
679         }
680 }
681
682 /*
683  * release a reference to a region
684  */
685 static void put_nommu_region(struct vm_region *region)
686 {
687         down_write(&nommu_region_sem);
688         __put_nommu_region(region);
689 }
690
691 /*
692  * update protection on a vma
693  */
694 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
695 {
696 #ifdef CONFIG_MPU
697         struct mm_struct *mm = vma->vm_mm;
698         long start = vma->vm_start & PAGE_MASK;
699         while (start < vma->vm_end) {
700                 protect_page(mm, start, flags);
701                 start += PAGE_SIZE;
702         }
703         update_protections(mm);
704 #endif
705 }
706
707 /*
708  * add a VMA into a process's mm_struct in the appropriate place in the list
709  * and tree and add to the address space's page tree also if not an anonymous
710  * page
711  * - should be called with mm->mmap_sem held writelocked
712  */
713 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
714 {
715         struct vm_area_struct *pvma, *prev;
716         struct address_space *mapping;
717         struct rb_node **p, *parent, *rb_prev;
718
719         BUG_ON(!vma->vm_region);
720
721         mm->map_count++;
722         vma->vm_mm = mm;
723
724         protect_vma(vma, vma->vm_flags);
725
726         /* add the VMA to the mapping */
727         if (vma->vm_file) {
728                 mapping = vma->vm_file->f_mapping;
729
730                 i_mmap_lock_write(mapping);
731                 flush_dcache_mmap_lock(mapping);
732                 vma_interval_tree_insert(vma, &mapping->i_mmap);
733                 flush_dcache_mmap_unlock(mapping);
734                 i_mmap_unlock_write(mapping);
735         }
736
737         /* add the VMA to the tree */
738         parent = rb_prev = NULL;
739         p = &mm->mm_rb.rb_node;
740         while (*p) {
741                 parent = *p;
742                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
743
744                 /* sort by: start addr, end addr, VMA struct addr in that order
745                  * (the latter is necessary as we may get identical VMAs) */
746                 if (vma->vm_start < pvma->vm_start)
747                         p = &(*p)->rb_left;
748                 else if (vma->vm_start > pvma->vm_start) {
749                         rb_prev = parent;
750                         p = &(*p)->rb_right;
751                 } else if (vma->vm_end < pvma->vm_end)
752                         p = &(*p)->rb_left;
753                 else if (vma->vm_end > pvma->vm_end) {
754                         rb_prev = parent;
755                         p = &(*p)->rb_right;
756                 } else if (vma < pvma)
757                         p = &(*p)->rb_left;
758                 else if (vma > pvma) {
759                         rb_prev = parent;
760                         p = &(*p)->rb_right;
761                 } else
762                         BUG();
763         }
764
765         rb_link_node(&vma->vm_rb, parent, p);
766         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
767
768         /* add VMA to the VMA list also */
769         prev = NULL;
770         if (rb_prev)
771                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
772
773         __vma_link_list(mm, vma, prev, parent);
774 }
775
776 /*
777  * delete a VMA from its owning mm_struct and address space
778  */
779 static void delete_vma_from_mm(struct vm_area_struct *vma)
780 {
781         int i;
782         struct address_space *mapping;
783         struct mm_struct *mm = vma->vm_mm;
784         struct task_struct *curr = current;
785
786         protect_vma(vma, 0);
787
788         mm->map_count--;
789         for (i = 0; i < VMACACHE_SIZE; i++) {
790                 /* if the vma is cached, invalidate the entire cache */
791                 if (curr->vmacache[i] == vma) {
792                         vmacache_invalidate(mm);
793                         break;
794                 }
795         }
796
797         /* remove the VMA from the mapping */
798         if (vma->vm_file) {
799                 mapping = vma->vm_file->f_mapping;
800
801                 i_mmap_lock_write(mapping);
802                 flush_dcache_mmap_lock(mapping);
803                 vma_interval_tree_remove(vma, &mapping->i_mmap);
804                 flush_dcache_mmap_unlock(mapping);
805                 i_mmap_unlock_write(mapping);
806         }
807
808         /* remove from the MM's tree and list */
809         rb_erase(&vma->vm_rb, &mm->mm_rb);
810
811         if (vma->vm_prev)
812                 vma->vm_prev->vm_next = vma->vm_next;
813         else
814                 mm->mmap = vma->vm_next;
815
816         if (vma->vm_next)
817                 vma->vm_next->vm_prev = vma->vm_prev;
818 }
819
820 /*
821  * destroy a VMA record
822  */
823 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
824 {
825         if (vma->vm_ops && vma->vm_ops->close)
826                 vma->vm_ops->close(vma);
827         if (vma->vm_file)
828                 fput(vma->vm_file);
829         put_nommu_region(vma->vm_region);
830         kmem_cache_free(vm_area_cachep, vma);
831 }
832
833 /*
834  * look up the first VMA in which addr resides, NULL if none
835  * - should be called with mm->mmap_sem at least held readlocked
836  */
837 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
838 {
839         struct vm_area_struct *vma;
840
841         /* check the cache first */
842         vma = vmacache_find(mm, addr);
843         if (likely(vma))
844                 return vma;
845
846         /* trawl the list (there may be multiple mappings in which addr
847          * resides) */
848         for (vma = mm->mmap; vma; vma = vma->vm_next) {
849                 if (vma->vm_start > addr)
850                         return NULL;
851                 if (vma->vm_end > addr) {
852                         vmacache_update(addr, vma);
853                         return vma;
854                 }
855         }
856
857         return NULL;
858 }
859 EXPORT_SYMBOL(find_vma);
860
861 /*
862  * find a VMA
863  * - we don't extend stack VMAs under NOMMU conditions
864  */
865 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
866 {
867         return find_vma(mm, addr);
868 }
869
870 /*
871  * expand a stack to a given address
872  * - not supported under NOMMU conditions
873  */
874 int expand_stack(struct vm_area_struct *vma, unsigned long address)
875 {
876         return -ENOMEM;
877 }
878
879 /*
880  * look up the first VMA exactly that exactly matches addr
881  * - should be called with mm->mmap_sem at least held readlocked
882  */
883 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
884                                              unsigned long addr,
885                                              unsigned long len)
886 {
887         struct vm_area_struct *vma;
888         unsigned long end = addr + len;
889
890         /* check the cache first */
891         vma = vmacache_find_exact(mm, addr, end);
892         if (vma)
893                 return vma;
894
895         /* trawl the list (there may be multiple mappings in which addr
896          * resides) */
897         for (vma = mm->mmap; vma; vma = vma->vm_next) {
898                 if (vma->vm_start < addr)
899                         continue;
900                 if (vma->vm_start > addr)
901                         return NULL;
902                 if (vma->vm_end == end) {
903                         vmacache_update(addr, vma);
904                         return vma;
905                 }
906         }
907
908         return NULL;
909 }
910
911 /*
912  * determine whether a mapping should be permitted and, if so, what sort of
913  * mapping we're capable of supporting
914  */
915 static int validate_mmap_request(struct file *file,
916                                  unsigned long addr,
917                                  unsigned long len,
918                                  unsigned long prot,
919                                  unsigned long flags,
920                                  unsigned long pgoff,
921                                  unsigned long *_capabilities)
922 {
923         unsigned long capabilities, rlen;
924         int ret;
925
926         /* do the simple checks first */
927         if (flags & MAP_FIXED)
928                 return -EINVAL;
929
930         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
931             (flags & MAP_TYPE) != MAP_SHARED)
932                 return -EINVAL;
933
934         if (!len)
935                 return -EINVAL;
936
937         /* Careful about overflows.. */
938         rlen = PAGE_ALIGN(len);
939         if (!rlen || rlen > TASK_SIZE)
940                 return -ENOMEM;
941
942         /* offset overflow? */
943         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
944                 return -EOVERFLOW;
945
946         if (file) {
947                 /* files must support mmap */
948                 if (!file->f_op->mmap)
949                         return -ENODEV;
950
951                 /* work out if what we've got could possibly be shared
952                  * - we support chardevs that provide their own "memory"
953                  * - we support files/blockdevs that are memory backed
954                  */
955                 if (file->f_op->mmap_capabilities) {
956                         capabilities = file->f_op->mmap_capabilities(file);
957                 } else {
958                         /* no explicit capabilities set, so assume some
959                          * defaults */
960                         switch (file_inode(file)->i_mode & S_IFMT) {
961                         case S_IFREG:
962                         case S_IFBLK:
963                                 capabilities = NOMMU_MAP_COPY;
964                                 break;
965
966                         case S_IFCHR:
967                                 capabilities =
968                                         NOMMU_MAP_DIRECT |
969                                         NOMMU_MAP_READ |
970                                         NOMMU_MAP_WRITE;
971                                 break;
972
973                         default:
974                                 return -EINVAL;
975                         }
976                 }
977
978                 /* eliminate any capabilities that we can't support on this
979                  * device */
980                 if (!file->f_op->get_unmapped_area)
981                         capabilities &= ~NOMMU_MAP_DIRECT;
982                 if (!(file->f_mode & FMODE_CAN_READ))
983                         capabilities &= ~NOMMU_MAP_COPY;
984
985                 /* The file shall have been opened with read permission. */
986                 if (!(file->f_mode & FMODE_READ))
987                         return -EACCES;
988
989                 if (flags & MAP_SHARED) {
990                         /* do checks for writing, appending and locking */
991                         if ((prot & PROT_WRITE) &&
992                             !(file->f_mode & FMODE_WRITE))
993                                 return -EACCES;
994
995                         if (IS_APPEND(file_inode(file)) &&
996                             (file->f_mode & FMODE_WRITE))
997                                 return -EACCES;
998
999                         if (locks_verify_locked(file))
1000                                 return -EAGAIN;
1001
1002                         if (!(capabilities & NOMMU_MAP_DIRECT))
1003                                 return -ENODEV;
1004
1005                         /* we mustn't privatise shared mappings */
1006                         capabilities &= ~NOMMU_MAP_COPY;
1007                 } else {
1008                         /* we're going to read the file into private memory we
1009                          * allocate */
1010                         if (!(capabilities & NOMMU_MAP_COPY))
1011                                 return -ENODEV;
1012
1013                         /* we don't permit a private writable mapping to be
1014                          * shared with the backing device */
1015                         if (prot & PROT_WRITE)
1016                                 capabilities &= ~NOMMU_MAP_DIRECT;
1017                 }
1018
1019                 if (capabilities & NOMMU_MAP_DIRECT) {
1020                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1021                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1022                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1023                             ) {
1024                                 capabilities &= ~NOMMU_MAP_DIRECT;
1025                                 if (flags & MAP_SHARED) {
1026                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
1027                                         return -EINVAL;
1028                                 }
1029                         }
1030                 }
1031
1032                 /* handle executable mappings and implied executable
1033                  * mappings */
1034                 if (path_noexec(&file->f_path)) {
1035                         if (prot & PROT_EXEC)
1036                                 return -EPERM;
1037                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1038                         /* handle implication of PROT_EXEC by PROT_READ */
1039                         if (current->personality & READ_IMPLIES_EXEC) {
1040                                 if (capabilities & NOMMU_MAP_EXEC)
1041                                         prot |= PROT_EXEC;
1042                         }
1043                 } else if ((prot & PROT_READ) &&
1044                          (prot & PROT_EXEC) &&
1045                          !(capabilities & NOMMU_MAP_EXEC)
1046                          ) {
1047                         /* backing file is not executable, try to copy */
1048                         capabilities &= ~NOMMU_MAP_DIRECT;
1049                 }
1050         } else {
1051                 /* anonymous mappings are always memory backed and can be
1052                  * privately mapped
1053                  */
1054                 capabilities = NOMMU_MAP_COPY;
1055
1056                 /* handle PROT_EXEC implication by PROT_READ */
1057                 if ((prot & PROT_READ) &&
1058                     (current->personality & READ_IMPLIES_EXEC))
1059                         prot |= PROT_EXEC;
1060         }
1061
1062         /* allow the security API to have its say */
1063         ret = security_mmap_addr(addr);
1064         if (ret < 0)
1065                 return ret;
1066
1067         /* looks okay */
1068         *_capabilities = capabilities;
1069         return 0;
1070 }
1071
1072 /*
1073  * we've determined that we can make the mapping, now translate what we
1074  * now know into VMA flags
1075  */
1076 static unsigned long determine_vm_flags(struct file *file,
1077                                         unsigned long prot,
1078                                         unsigned long flags,
1079                                         unsigned long capabilities)
1080 {
1081         unsigned long vm_flags;
1082
1083         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1084         /* vm_flags |= mm->def_flags; */
1085
1086         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1087                 /* attempt to share read-only copies of mapped file chunks */
1088                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1089                 if (file && !(prot & PROT_WRITE))
1090                         vm_flags |= VM_MAYSHARE;
1091         } else {
1092                 /* overlay a shareable mapping on the backing device or inode
1093                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1094                  * romfs/cramfs */
1095                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1096                 if (flags & MAP_SHARED)
1097                         vm_flags |= VM_SHARED;
1098         }
1099
1100         /* refuse to let anyone share private mappings with this process if
1101          * it's being traced - otherwise breakpoints set in it may interfere
1102          * with another untraced process
1103          */
1104         if ((flags & MAP_PRIVATE) && current->ptrace)
1105                 vm_flags &= ~VM_MAYSHARE;
1106
1107         return vm_flags;
1108 }
1109
1110 /*
1111  * set up a shared mapping on a file (the driver or filesystem provides and
1112  * pins the storage)
1113  */
1114 static int do_mmap_shared_file(struct vm_area_struct *vma)
1115 {
1116         int ret;
1117
1118         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1119         if (ret == 0) {
1120                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1121                 return 0;
1122         }
1123         if (ret != -ENOSYS)
1124                 return ret;
1125
1126         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1127          * opposed to tried but failed) so we can only give a suitable error as
1128          * it's not possible to make a private copy if MAP_SHARED was given */
1129         return -ENODEV;
1130 }
1131
1132 /*
1133  * set up a private mapping or an anonymous shared mapping
1134  */
1135 static int do_mmap_private(struct vm_area_struct *vma,
1136                            struct vm_region *region,
1137                            unsigned long len,
1138                            unsigned long capabilities)
1139 {
1140         unsigned long total, point;
1141         void *base;
1142         int ret, order;
1143
1144         /* invoke the file's mapping function so that it can keep track of
1145          * shared mappings on devices or memory
1146          * - VM_MAYSHARE will be set if it may attempt to share
1147          */
1148         if (capabilities & NOMMU_MAP_DIRECT) {
1149                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1150                 if (ret == 0) {
1151                         /* shouldn't return success if we're not sharing */
1152                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1153                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1154                         return 0;
1155                 }
1156                 if (ret != -ENOSYS)
1157                         return ret;
1158
1159                 /* getting an ENOSYS error indicates that direct mmap isn't
1160                  * possible (as opposed to tried but failed) so we'll try to
1161                  * make a private copy of the data and map that instead */
1162         }
1163
1164
1165         /* allocate some memory to hold the mapping
1166          * - note that this may not return a page-aligned address if the object
1167          *   we're allocating is smaller than a page
1168          */
1169         order = get_order(len);
1170         total = 1 << order;
1171         point = len >> PAGE_SHIFT;
1172
1173         /* we don't want to allocate a power-of-2 sized page set */
1174         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1175                 total = point;
1176
1177         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1178         if (!base)
1179                 goto enomem;
1180
1181         atomic_long_add(total, &mmap_pages_allocated);
1182
1183         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1184         region->vm_start = (unsigned long) base;
1185         region->vm_end   = region->vm_start + len;
1186         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1187
1188         vma->vm_start = region->vm_start;
1189         vma->vm_end   = region->vm_start + len;
1190
1191         if (vma->vm_file) {
1192                 /* read the contents of a file into the copy */
1193                 mm_segment_t old_fs;
1194                 loff_t fpos;
1195
1196                 fpos = vma->vm_pgoff;
1197                 fpos <<= PAGE_SHIFT;
1198
1199                 old_fs = get_fs();
1200                 set_fs(KERNEL_DS);
1201                 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1202                 set_fs(old_fs);
1203
1204                 if (ret < 0)
1205                         goto error_free;
1206
1207                 /* clear the last little bit */
1208                 if (ret < len)
1209                         memset(base + ret, 0, len - ret);
1210
1211         }
1212
1213         return 0;
1214
1215 error_free:
1216         free_page_series(region->vm_start, region->vm_top);
1217         region->vm_start = vma->vm_start = 0;
1218         region->vm_end   = vma->vm_end = 0;
1219         region->vm_top   = 0;
1220         return ret;
1221
1222 enomem:
1223         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1224                len, current->pid, current->comm);
1225         show_free_areas(0);
1226         return -ENOMEM;
1227 }
1228
1229 /*
1230  * handle mapping creation for uClinux
1231  */
1232 unsigned long do_mmap(struct file *file,
1233                         unsigned long addr,
1234                         unsigned long len,
1235                         unsigned long prot,
1236                         unsigned long flags,
1237                         vm_flags_t vm_flags,
1238                         unsigned long pgoff,
1239                         unsigned long *populate)
1240 {
1241         struct vm_area_struct *vma;
1242         struct vm_region *region;
1243         struct rb_node *rb;
1244         unsigned long capabilities, result;
1245         int ret;
1246
1247         *populate = 0;
1248
1249         /* decide whether we should attempt the mapping, and if so what sort of
1250          * mapping */
1251         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1252                                     &capabilities);
1253         if (ret < 0)
1254                 return ret;
1255
1256         /* we ignore the address hint */
1257         addr = 0;
1258         len = PAGE_ALIGN(len);
1259
1260         /* we've determined that we can make the mapping, now translate what we
1261          * now know into VMA flags */
1262         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1263
1264         /* we're going to need to record the mapping */
1265         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1266         if (!region)
1267                 goto error_getting_region;
1268
1269         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1270         if (!vma)
1271                 goto error_getting_vma;
1272
1273         region->vm_usage = 1;
1274         region->vm_flags = vm_flags;
1275         region->vm_pgoff = pgoff;
1276
1277         INIT_LIST_HEAD(&vma->anon_vma_chain);
1278         vma->vm_flags = vm_flags;
1279         vma->vm_pgoff = pgoff;
1280
1281         if (file) {
1282                 region->vm_file = get_file(file);
1283                 vma->vm_file = get_file(file);
1284         }
1285
1286         down_write(&nommu_region_sem);
1287
1288         /* if we want to share, we need to check for regions created by other
1289          * mmap() calls that overlap with our proposed mapping
1290          * - we can only share with a superset match on most regular files
1291          * - shared mappings on character devices and memory backed files are
1292          *   permitted to overlap inexactly as far as we are concerned for in
1293          *   these cases, sharing is handled in the driver or filesystem rather
1294          *   than here
1295          */
1296         if (vm_flags & VM_MAYSHARE) {
1297                 struct vm_region *pregion;
1298                 unsigned long pglen, rpglen, pgend, rpgend, start;
1299
1300                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1301                 pgend = pgoff + pglen;
1302
1303                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1304                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1305
1306                         if (!(pregion->vm_flags & VM_MAYSHARE))
1307                                 continue;
1308
1309                         /* search for overlapping mappings on the same file */
1310                         if (file_inode(pregion->vm_file) !=
1311                             file_inode(file))
1312                                 continue;
1313
1314                         if (pregion->vm_pgoff >= pgend)
1315                                 continue;
1316
1317                         rpglen = pregion->vm_end - pregion->vm_start;
1318                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1319                         rpgend = pregion->vm_pgoff + rpglen;
1320                         if (pgoff >= rpgend)
1321                                 continue;
1322
1323                         /* handle inexactly overlapping matches between
1324                          * mappings */
1325                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1326                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1327                                 /* new mapping is not a subset of the region */
1328                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1329                                         goto sharing_violation;
1330                                 continue;
1331                         }
1332
1333                         /* we've found a region we can share */
1334                         pregion->vm_usage++;
1335                         vma->vm_region = pregion;
1336                         start = pregion->vm_start;
1337                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1338                         vma->vm_start = start;
1339                         vma->vm_end = start + len;
1340
1341                         if (pregion->vm_flags & VM_MAPPED_COPY)
1342                                 vma->vm_flags |= VM_MAPPED_COPY;
1343                         else {
1344                                 ret = do_mmap_shared_file(vma);
1345                                 if (ret < 0) {
1346                                         vma->vm_region = NULL;
1347                                         vma->vm_start = 0;
1348                                         vma->vm_end = 0;
1349                                         pregion->vm_usage--;
1350                                         pregion = NULL;
1351                                         goto error_just_free;
1352                                 }
1353                         }
1354                         fput(region->vm_file);
1355                         kmem_cache_free(vm_region_jar, region);
1356                         region = pregion;
1357                         result = start;
1358                         goto share;
1359                 }
1360
1361                 /* obtain the address at which to make a shared mapping
1362                  * - this is the hook for quasi-memory character devices to
1363                  *   tell us the location of a shared mapping
1364                  */
1365                 if (capabilities & NOMMU_MAP_DIRECT) {
1366                         addr = file->f_op->get_unmapped_area(file, addr, len,
1367                                                              pgoff, flags);
1368                         if (IS_ERR_VALUE(addr)) {
1369                                 ret = addr;
1370                                 if (ret != -ENOSYS)
1371                                         goto error_just_free;
1372
1373                                 /* the driver refused to tell us where to site
1374                                  * the mapping so we'll have to attempt to copy
1375                                  * it */
1376                                 ret = -ENODEV;
1377                                 if (!(capabilities & NOMMU_MAP_COPY))
1378                                         goto error_just_free;
1379
1380                                 capabilities &= ~NOMMU_MAP_DIRECT;
1381                         } else {
1382                                 vma->vm_start = region->vm_start = addr;
1383                                 vma->vm_end = region->vm_end = addr + len;
1384                         }
1385                 }
1386         }
1387
1388         vma->vm_region = region;
1389
1390         /* set up the mapping
1391          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1392          */
1393         if (file && vma->vm_flags & VM_SHARED)
1394                 ret = do_mmap_shared_file(vma);
1395         else
1396                 ret = do_mmap_private(vma, region, len, capabilities);
1397         if (ret < 0)
1398                 goto error_just_free;
1399         add_nommu_region(region);
1400
1401         /* clear anonymous mappings that don't ask for uninitialized data */
1402         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1403                 memset((void *)region->vm_start, 0,
1404                        region->vm_end - region->vm_start);
1405
1406         /* okay... we have a mapping; now we have to register it */
1407         result = vma->vm_start;
1408
1409         current->mm->total_vm += len >> PAGE_SHIFT;
1410
1411 share:
1412         add_vma_to_mm(current->mm, vma);
1413
1414         /* we flush the region from the icache only when the first executable
1415          * mapping of it is made  */
1416         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1417                 flush_icache_range(region->vm_start, region->vm_end);
1418                 region->vm_icache_flushed = true;
1419         }
1420
1421         up_write(&nommu_region_sem);
1422
1423         return result;
1424
1425 error_just_free:
1426         up_write(&nommu_region_sem);
1427 error:
1428         if (region->vm_file)
1429                 fput(region->vm_file);
1430         kmem_cache_free(vm_region_jar, region);
1431         if (vma->vm_file)
1432                 fput(vma->vm_file);
1433         kmem_cache_free(vm_area_cachep, vma);
1434         return ret;
1435
1436 sharing_violation:
1437         up_write(&nommu_region_sem);
1438         pr_warn("Attempt to share mismatched mappings\n");
1439         ret = -EINVAL;
1440         goto error;
1441
1442 error_getting_vma:
1443         kmem_cache_free(vm_region_jar, region);
1444         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1445                         len, current->pid);
1446         show_free_areas(0);
1447         return -ENOMEM;
1448
1449 error_getting_region:
1450         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1451                         len, current->pid);
1452         show_free_areas(0);
1453         return -ENOMEM;
1454 }
1455
1456 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1457                 unsigned long, prot, unsigned long, flags,
1458                 unsigned long, fd, unsigned long, pgoff)
1459 {
1460         struct file *file = NULL;
1461         unsigned long retval = -EBADF;
1462
1463         audit_mmap_fd(fd, flags);
1464         if (!(flags & MAP_ANONYMOUS)) {
1465                 file = fget(fd);
1466                 if (!file)
1467                         goto out;
1468         }
1469
1470         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1471
1472         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1473
1474         if (file)
1475                 fput(file);
1476 out:
1477         return retval;
1478 }
1479
1480 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1481 struct mmap_arg_struct {
1482         unsigned long addr;
1483         unsigned long len;
1484         unsigned long prot;
1485         unsigned long flags;
1486         unsigned long fd;
1487         unsigned long offset;
1488 };
1489
1490 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1491 {
1492         struct mmap_arg_struct a;
1493
1494         if (copy_from_user(&a, arg, sizeof(a)))
1495                 return -EFAULT;
1496         if (offset_in_page(a.offset))
1497                 return -EINVAL;
1498
1499         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1500                               a.offset >> PAGE_SHIFT);
1501 }
1502 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1503
1504 /*
1505  * split a vma into two pieces at address 'addr', a new vma is allocated either
1506  * for the first part or the tail.
1507  */
1508 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1509               unsigned long addr, int new_below)
1510 {
1511         struct vm_area_struct *new;
1512         struct vm_region *region;
1513         unsigned long npages;
1514
1515         /* we're only permitted to split anonymous regions (these should have
1516          * only a single usage on the region) */
1517         if (vma->vm_file)
1518                 return -ENOMEM;
1519
1520         if (mm->map_count >= sysctl_max_map_count)
1521                 return -ENOMEM;
1522
1523         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1524         if (!region)
1525                 return -ENOMEM;
1526
1527         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1528         if (!new) {
1529                 kmem_cache_free(vm_region_jar, region);
1530                 return -ENOMEM;
1531         }
1532
1533         /* most fields are the same, copy all, and then fixup */
1534         *new = *vma;
1535         *region = *vma->vm_region;
1536         new->vm_region = region;
1537
1538         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1539
1540         if (new_below) {
1541                 region->vm_top = region->vm_end = new->vm_end = addr;
1542         } else {
1543                 region->vm_start = new->vm_start = addr;
1544                 region->vm_pgoff = new->vm_pgoff += npages;
1545         }
1546
1547         if (new->vm_ops && new->vm_ops->open)
1548                 new->vm_ops->open(new);
1549
1550         delete_vma_from_mm(vma);
1551         down_write(&nommu_region_sem);
1552         delete_nommu_region(vma->vm_region);
1553         if (new_below) {
1554                 vma->vm_region->vm_start = vma->vm_start = addr;
1555                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1556         } else {
1557                 vma->vm_region->vm_end = vma->vm_end = addr;
1558                 vma->vm_region->vm_top = addr;
1559         }
1560         add_nommu_region(vma->vm_region);
1561         add_nommu_region(new->vm_region);
1562         up_write(&nommu_region_sem);
1563         add_vma_to_mm(mm, vma);
1564         add_vma_to_mm(mm, new);
1565         return 0;
1566 }
1567
1568 /*
1569  * shrink a VMA by removing the specified chunk from either the beginning or
1570  * the end
1571  */
1572 static int shrink_vma(struct mm_struct *mm,
1573                       struct vm_area_struct *vma,
1574                       unsigned long from, unsigned long to)
1575 {
1576         struct vm_region *region;
1577
1578         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1579          * and list */
1580         delete_vma_from_mm(vma);
1581         if (from > vma->vm_start)
1582                 vma->vm_end = from;
1583         else
1584                 vma->vm_start = to;
1585         add_vma_to_mm(mm, vma);
1586
1587         /* cut the backing region down to size */
1588         region = vma->vm_region;
1589         BUG_ON(region->vm_usage != 1);
1590
1591         down_write(&nommu_region_sem);
1592         delete_nommu_region(region);
1593         if (from > region->vm_start) {
1594                 to = region->vm_top;
1595                 region->vm_top = region->vm_end = from;
1596         } else {
1597                 region->vm_start = to;
1598         }
1599         add_nommu_region(region);
1600         up_write(&nommu_region_sem);
1601
1602         free_page_series(from, to);
1603         return 0;
1604 }
1605
1606 /*
1607  * release a mapping
1608  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1609  *   VMA, though it need not cover the whole VMA
1610  */
1611 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1612 {
1613         struct vm_area_struct *vma;
1614         unsigned long end;
1615         int ret;
1616
1617         len = PAGE_ALIGN(len);
1618         if (len == 0)
1619                 return -EINVAL;
1620
1621         end = start + len;
1622
1623         /* find the first potentially overlapping VMA */
1624         vma = find_vma(mm, start);
1625         if (!vma) {
1626                 static int limit;
1627                 if (limit < 5) {
1628                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1629                                         current->pid, current->comm,
1630                                         start, start + len - 1);
1631                         limit++;
1632                 }
1633                 return -EINVAL;
1634         }
1635
1636         /* we're allowed to split an anonymous VMA but not a file-backed one */
1637         if (vma->vm_file) {
1638                 do {
1639                         if (start > vma->vm_start)
1640                                 return -EINVAL;
1641                         if (end == vma->vm_end)
1642                                 goto erase_whole_vma;
1643                         vma = vma->vm_next;
1644                 } while (vma);
1645                 return -EINVAL;
1646         } else {
1647                 /* the chunk must be a subset of the VMA found */
1648                 if (start == vma->vm_start && end == vma->vm_end)
1649                         goto erase_whole_vma;
1650                 if (start < vma->vm_start || end > vma->vm_end)
1651                         return -EINVAL;
1652                 if (offset_in_page(start))
1653                         return -EINVAL;
1654                 if (end != vma->vm_end && offset_in_page(end))
1655                         return -EINVAL;
1656                 if (start != vma->vm_start && end != vma->vm_end) {
1657                         ret = split_vma(mm, vma, start, 1);
1658                         if (ret < 0)
1659                                 return ret;
1660                 }
1661                 return shrink_vma(mm, vma, start, end);
1662         }
1663
1664 erase_whole_vma:
1665         delete_vma_from_mm(vma);
1666         delete_vma(mm, vma);
1667         return 0;
1668 }
1669 EXPORT_SYMBOL(do_munmap);
1670
1671 int vm_munmap(unsigned long addr, size_t len)
1672 {
1673         struct mm_struct *mm = current->mm;
1674         int ret;
1675
1676         down_write(&mm->mmap_sem);
1677         ret = do_munmap(mm, addr, len);
1678         up_write(&mm->mmap_sem);
1679         return ret;
1680 }
1681 EXPORT_SYMBOL(vm_munmap);
1682
1683 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1684 {
1685         return vm_munmap(addr, len);
1686 }
1687
1688 /*
1689  * release all the mappings made in a process's VM space
1690  */
1691 void exit_mmap(struct mm_struct *mm)
1692 {
1693         struct vm_area_struct *vma;
1694
1695         if (!mm)
1696                 return;
1697
1698         mm->total_vm = 0;
1699
1700         while ((vma = mm->mmap)) {
1701                 mm->mmap = vma->vm_next;
1702                 delete_vma_from_mm(vma);
1703                 delete_vma(mm, vma);
1704                 cond_resched();
1705         }
1706 }
1707
1708 unsigned long vm_brk(unsigned long addr, unsigned long len)
1709 {
1710         return -ENOMEM;
1711 }
1712
1713 /*
1714  * expand (or shrink) an existing mapping, potentially moving it at the same
1715  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1716  *
1717  * under NOMMU conditions, we only permit changing a mapping's size, and only
1718  * as long as it stays within the region allocated by do_mmap_private() and the
1719  * block is not shareable
1720  *
1721  * MREMAP_FIXED is not supported under NOMMU conditions
1722  */
1723 static unsigned long do_mremap(unsigned long addr,
1724                         unsigned long old_len, unsigned long new_len,
1725                         unsigned long flags, unsigned long new_addr)
1726 {
1727         struct vm_area_struct *vma;
1728
1729         /* insanity checks first */
1730         old_len = PAGE_ALIGN(old_len);
1731         new_len = PAGE_ALIGN(new_len);
1732         if (old_len == 0 || new_len == 0)
1733                 return (unsigned long) -EINVAL;
1734
1735         if (offset_in_page(addr))
1736                 return -EINVAL;
1737
1738         if (flags & MREMAP_FIXED && new_addr != addr)
1739                 return (unsigned long) -EINVAL;
1740
1741         vma = find_vma_exact(current->mm, addr, old_len);
1742         if (!vma)
1743                 return (unsigned long) -EINVAL;
1744
1745         if (vma->vm_end != vma->vm_start + old_len)
1746                 return (unsigned long) -EFAULT;
1747
1748         if (vma->vm_flags & VM_MAYSHARE)
1749                 return (unsigned long) -EPERM;
1750
1751         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1752                 return (unsigned long) -ENOMEM;
1753
1754         /* all checks complete - do it */
1755         vma->vm_end = vma->vm_start + new_len;
1756         return vma->vm_start;
1757 }
1758
1759 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1760                 unsigned long, new_len, unsigned long, flags,
1761                 unsigned long, new_addr)
1762 {
1763         unsigned long ret;
1764
1765         down_write(&current->mm->mmap_sem);
1766         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1767         up_write(&current->mm->mmap_sem);
1768         return ret;
1769 }
1770
1771 struct page *follow_page_mask(struct vm_area_struct *vma,
1772                               unsigned long address, unsigned int flags,
1773                               unsigned int *page_mask)
1774 {
1775         *page_mask = 0;
1776         return NULL;
1777 }
1778
1779 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1780                 unsigned long pfn, unsigned long size, pgprot_t prot)
1781 {
1782         if (addr != (pfn << PAGE_SHIFT))
1783                 return -EINVAL;
1784
1785         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1786         return 0;
1787 }
1788 EXPORT_SYMBOL(remap_pfn_range);
1789
1790 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1791 {
1792         unsigned long pfn = start >> PAGE_SHIFT;
1793         unsigned long vm_len = vma->vm_end - vma->vm_start;
1794
1795         pfn += vma->vm_pgoff;
1796         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1797 }
1798 EXPORT_SYMBOL(vm_iomap_memory);
1799
1800 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1801                         unsigned long pgoff)
1802 {
1803         unsigned int size = vma->vm_end - vma->vm_start;
1804
1805         if (!(vma->vm_flags & VM_USERMAP))
1806                 return -EINVAL;
1807
1808         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1809         vma->vm_end = vma->vm_start + size;
1810
1811         return 0;
1812 }
1813 EXPORT_SYMBOL(remap_vmalloc_range);
1814
1815 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1816         unsigned long len, unsigned long pgoff, unsigned long flags)
1817 {
1818         return -ENOMEM;
1819 }
1820
1821 void unmap_mapping_range(struct address_space *mapping,
1822                          loff_t const holebegin, loff_t const holelen,
1823                          int even_cows)
1824 {
1825 }
1826 EXPORT_SYMBOL(unmap_mapping_range);
1827
1828 /*
1829  * Check that a process has enough memory to allocate a new virtual
1830  * mapping. 0 means there is enough memory for the allocation to
1831  * succeed and -ENOMEM implies there is not.
1832  *
1833  * We currently support three overcommit policies, which are set via the
1834  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1835  *
1836  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1837  * Additional code 2002 Jul 20 by Robert Love.
1838  *
1839  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1840  *
1841  * Note this is a helper function intended to be used by LSMs which
1842  * wish to use this logic.
1843  */
1844 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1845 {
1846         long free, allowed, reserve;
1847
1848         vm_acct_memory(pages);
1849
1850         /*
1851          * Sometimes we want to use more memory than we have
1852          */
1853         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1854                 return 0;
1855
1856         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1857                 free = global_page_state(NR_FREE_PAGES);
1858                 free += global_page_state(NR_FILE_PAGES);
1859
1860                 /*
1861                  * shmem pages shouldn't be counted as free in this
1862                  * case, they can't be purged, only swapped out, and
1863                  * that won't affect the overall amount of available
1864                  * memory in the system.
1865                  */
1866                 free -= global_page_state(NR_SHMEM);
1867
1868                 free += get_nr_swap_pages();
1869
1870                 /*
1871                  * Any slabs which are created with the
1872                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1873                  * which are reclaimable, under pressure.  The dentry
1874                  * cache and most inode caches should fall into this
1875                  */
1876                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1877
1878                 /*
1879                  * Leave reserved pages. The pages are not for anonymous pages.
1880                  */
1881                 if (free <= totalreserve_pages)
1882                         goto error;
1883                 else
1884                         free -= totalreserve_pages;
1885
1886                 /*
1887                  * Reserve some for root
1888                  */
1889                 if (!cap_sys_admin)
1890                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1891
1892                 if (free > pages)
1893                         return 0;
1894
1895                 goto error;
1896         }
1897
1898         allowed = vm_commit_limit();
1899         /*
1900          * Reserve some 3% for root
1901          */
1902         if (!cap_sys_admin)
1903                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1904
1905         /*
1906          * Don't let a single process grow so big a user can't recover
1907          */
1908         if (mm) {
1909                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1910                 allowed -= min_t(long, mm->total_vm / 32, reserve);
1911         }
1912
1913         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1914                 return 0;
1915
1916 error:
1917         vm_unacct_memory(pages);
1918
1919         return -ENOMEM;
1920 }
1921
1922 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1923 {
1924         BUG();
1925         return 0;
1926 }
1927 EXPORT_SYMBOL(filemap_fault);
1928
1929 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1930 {
1931         BUG();
1932 }
1933 EXPORT_SYMBOL(filemap_map_pages);
1934
1935 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1936                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1937 {
1938         struct vm_area_struct *vma;
1939         int write = gup_flags & FOLL_WRITE;
1940
1941         down_read(&mm->mmap_sem);
1942
1943         /* the access must start within one of the target process's mappings */
1944         vma = find_vma(mm, addr);
1945         if (vma) {
1946                 /* don't overrun this mapping */
1947                 if (addr + len >= vma->vm_end)
1948                         len = vma->vm_end - addr;
1949
1950                 /* only read or write mappings where it is permitted */
1951                 if (write && vma->vm_flags & VM_MAYWRITE)
1952                         copy_to_user_page(vma, NULL, addr,
1953                                          (void *) addr, buf, len);
1954                 else if (!write && vma->vm_flags & VM_MAYREAD)
1955                         copy_from_user_page(vma, NULL, addr,
1956                                             buf, (void *) addr, len);
1957                 else
1958                         len = 0;
1959         } else {
1960                 len = 0;
1961         }
1962
1963         up_read(&mm->mmap_sem);
1964
1965         return len;
1966 }
1967
1968 /**
1969  * @access_remote_vm - access another process' address space
1970  * @mm:         the mm_struct of the target address space
1971  * @addr:       start address to access
1972  * @buf:        source or destination buffer
1973  * @len:        number of bytes to transfer
1974  * @gup_flags:  flags modifying lookup behaviour
1975  *
1976  * The caller must hold a reference on @mm.
1977  */
1978 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1979                 void *buf, int len, unsigned int gup_flags)
1980 {
1981         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1982 }
1983
1984 /*
1985  * Access another process' address space.
1986  * - source/target buffer must be kernel space
1987  */
1988 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1989 {
1990         struct mm_struct *mm;
1991
1992         if (addr + len < addr)
1993                 return 0;
1994
1995         mm = get_task_mm(tsk);
1996         if (!mm)
1997                 return 0;
1998
1999         len = __access_remote_vm(tsk, mm, addr, buf, len,
2000                         write ? FOLL_WRITE : 0);
2001
2002         mmput(mm);
2003         return len;
2004 }
2005
2006 /**
2007  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2008  * @inode: The inode to check
2009  * @size: The current filesize of the inode
2010  * @newsize: The proposed filesize of the inode
2011  *
2012  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2013  * make sure that that any outstanding VMAs aren't broken and then shrink the
2014  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2015  * automatically grant mappings that are too large.
2016  */
2017 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2018                                 size_t newsize)
2019 {
2020         struct vm_area_struct *vma;
2021         struct vm_region *region;
2022         pgoff_t low, high;
2023         size_t r_size, r_top;
2024
2025         low = newsize >> PAGE_SHIFT;
2026         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2027
2028         down_write(&nommu_region_sem);
2029         i_mmap_lock_read(inode->i_mapping);
2030
2031         /* search for VMAs that fall within the dead zone */
2032         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2033                 /* found one - only interested if it's shared out of the page
2034                  * cache */
2035                 if (vma->vm_flags & VM_SHARED) {
2036                         i_mmap_unlock_read(inode->i_mapping);
2037                         up_write(&nommu_region_sem);
2038                         return -ETXTBSY; /* not quite true, but near enough */
2039                 }
2040         }
2041
2042         /* reduce any regions that overlap the dead zone - if in existence,
2043          * these will be pointed to by VMAs that don't overlap the dead zone
2044          *
2045          * we don't check for any regions that start beyond the EOF as there
2046          * shouldn't be any
2047          */
2048         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2049                 if (!(vma->vm_flags & VM_SHARED))
2050                         continue;
2051
2052                 region = vma->vm_region;
2053                 r_size = region->vm_top - region->vm_start;
2054                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2055
2056                 if (r_top > newsize) {
2057                         region->vm_top -= r_top - newsize;
2058                         if (region->vm_end > region->vm_top)
2059                                 region->vm_end = region->vm_top;
2060                 }
2061         }
2062
2063         i_mmap_unlock_read(inode->i_mapping);
2064         up_write(&nommu_region_sem);
2065         return 0;
2066 }
2067
2068 /*
2069  * Initialise sysctl_user_reserve_kbytes.
2070  *
2071  * This is intended to prevent a user from starting a single memory hogging
2072  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2073  * mode.
2074  *
2075  * The default value is min(3% of free memory, 128MB)
2076  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2077  */
2078 static int __meminit init_user_reserve(void)
2079 {
2080         unsigned long free_kbytes;
2081
2082         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2083
2084         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2085         return 0;
2086 }
2087 subsys_initcall(init_user_reserve);
2088
2089 /*
2090  * Initialise sysctl_admin_reserve_kbytes.
2091  *
2092  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2093  * to log in and kill a memory hogging process.
2094  *
2095  * Systems with more than 256MB will reserve 8MB, enough to recover
2096  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2097  * only reserve 3% of free pages by default.
2098  */
2099 static int __meminit init_admin_reserve(void)
2100 {
2101         unsigned long free_kbytes;
2102
2103         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2104
2105         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2106         return 0;
2107 }
2108 subsys_initcall(init_admin_reserve);