GNU Linux-libre 5.4.200-gnu1
[releases.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75         struct page *page;
76
77         /*
78          * If the object we have should not have ksize performed on it,
79          * return size of 0
80          */
81         if (!objp || !virt_addr_valid(objp))
82                 return 0;
83
84         page = virt_to_head_page(objp);
85
86         /*
87          * If the allocator sets PageSlab, we know the pointer came from
88          * kmalloc().
89          */
90         if (PageSlab(page))
91                 return ksize(objp);
92
93         /*
94          * If it's not a compound page, see if we have a matching VMA
95          * region. This test is intentionally done in reverse order,
96          * so if there's no VMA, we still fall through and hand back
97          * PAGE_SIZE for 0-order pages.
98          */
99         if (!PageCompound(page)) {
100                 struct vm_area_struct *vma;
101
102                 vma = find_vma(current->mm, (unsigned long)objp);
103                 if (vma)
104                         return vma->vm_end - vma->vm_start;
105         }
106
107         /*
108          * The ksize() function is only guaranteed to work for pointers
109          * returned by kmalloc(). So handle arbitrary pointers here.
110          */
111         return page_size(page);
112 }
113
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125         unsigned long *pfn)
126 {
127         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128                 return -EINVAL;
129
130         *pfn = address >> PAGE_SHIFT;
131         return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139         kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145         /*
146          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147          * returns only a logical address.
148          */
149         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155         return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157
158 void *vmalloc_user(unsigned long size)
159 {
160         void *ret;
161
162         ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
163         if (ret) {
164                 struct vm_area_struct *vma;
165
166                 down_write(&current->mm->mmap_sem);
167                 vma = find_vma(current->mm, (unsigned long)ret);
168                 if (vma)
169                         vma->vm_flags |= VM_USERMAP;
170                 up_write(&current->mm->mmap_sem);
171         }
172
173         return ret;
174 }
175 EXPORT_SYMBOL(vmalloc_user);
176
177 struct page *vmalloc_to_page(const void *addr)
178 {
179         return virt_to_page(addr);
180 }
181 EXPORT_SYMBOL(vmalloc_to_page);
182
183 unsigned long vmalloc_to_pfn(const void *addr)
184 {
185         return page_to_pfn(virt_to_page(addr));
186 }
187 EXPORT_SYMBOL(vmalloc_to_pfn);
188
189 long vread(char *buf, char *addr, unsigned long count)
190 {
191         /* Don't allow overflow */
192         if ((unsigned long) buf + count < count)
193                 count = -(unsigned long) buf;
194
195         memcpy(buf, addr, count);
196         return count;
197 }
198
199 long vwrite(char *buf, char *addr, unsigned long count)
200 {
201         /* Don't allow overflow */
202         if ((unsigned long) addr + count < count)
203                 count = -(unsigned long) addr;
204
205         memcpy(addr, buf, count);
206         return count;
207 }
208
209 /*
210  *      vmalloc  -  allocate virtually contiguous memory
211  *
212  *      @size:          allocation size
213  *
214  *      Allocate enough pages to cover @size from the page level
215  *      allocator and map them into contiguous kernel virtual space.
216  *
217  *      For tight control over page level allocator and protection flags
218  *      use __vmalloc() instead.
219  */
220 void *vmalloc(unsigned long size)
221 {
222        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
223 }
224 EXPORT_SYMBOL(vmalloc);
225
226 /*
227  *      vzalloc - allocate virtually contiguous memory with zero fill
228  *
229  *      @size:          allocation size
230  *
231  *      Allocate enough pages to cover @size from the page level
232  *      allocator and map them into contiguous kernel virtual space.
233  *      The memory allocated is set to zero.
234  *
235  *      For tight control over page level allocator and protection flags
236  *      use __vmalloc() instead.
237  */
238 void *vzalloc(unsigned long size)
239 {
240         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241                         PAGE_KERNEL);
242 }
243 EXPORT_SYMBOL(vzalloc);
244
245 /**
246  * vmalloc_node - allocate memory on a specific node
247  * @size:       allocation size
248  * @node:       numa node
249  *
250  * Allocate enough pages to cover @size from the page level
251  * allocator and map them into contiguous kernel virtual space.
252  *
253  * For tight control over page level allocator and protection flags
254  * use __vmalloc() instead.
255  */
256 void *vmalloc_node(unsigned long size, int node)
257 {
258         return vmalloc(size);
259 }
260 EXPORT_SYMBOL(vmalloc_node);
261
262 /**
263  * vzalloc_node - allocate memory on a specific node with zero fill
264  * @size:       allocation size
265  * @node:       numa node
266  *
267  * Allocate enough pages to cover @size from the page level
268  * allocator and map them into contiguous kernel virtual space.
269  * The memory allocated is set to zero.
270  *
271  * For tight control over page level allocator and protection flags
272  * use __vmalloc() instead.
273  */
274 void *vzalloc_node(unsigned long size, int node)
275 {
276         return vzalloc(size);
277 }
278 EXPORT_SYMBOL(vzalloc_node);
279
280 /**
281  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
282  *      @size:          allocation size
283  *
284  *      Kernel-internal function to allocate enough pages to cover @size
285  *      the page level allocator and map them into contiguous and
286  *      executable kernel virtual space.
287  *
288  *      For tight control over page level allocator and protection flags
289  *      use __vmalloc() instead.
290  */
291
292 void *vmalloc_exec(unsigned long size)
293 {
294         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
295 }
296
297 /**
298  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
299  *      @size:          allocation size
300  *
301  *      Allocate enough 32bit PA addressable pages to cover @size from the
302  *      page level allocator and map them into contiguous kernel virtual space.
303  */
304 void *vmalloc_32(unsigned long size)
305 {
306         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
307 }
308 EXPORT_SYMBOL(vmalloc_32);
309
310 /**
311  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
312  *      @size:          allocation size
313  *
314  * The resulting memory area is 32bit addressable and zeroed so it can be
315  * mapped to userspace without leaking data.
316  *
317  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
318  * remap_vmalloc_range() are permissible.
319  */
320 void *vmalloc_32_user(unsigned long size)
321 {
322         /*
323          * We'll have to sort out the ZONE_DMA bits for 64-bit,
324          * but for now this can simply use vmalloc_user() directly.
325          */
326         return vmalloc_user(size);
327 }
328 EXPORT_SYMBOL(vmalloc_32_user);
329
330 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
331 {
332         BUG();
333         return NULL;
334 }
335 EXPORT_SYMBOL(vmap);
336
337 void vunmap(const void *addr)
338 {
339         BUG();
340 }
341 EXPORT_SYMBOL(vunmap);
342
343 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
344 {
345         BUG();
346         return NULL;
347 }
348 EXPORT_SYMBOL(vm_map_ram);
349
350 void vm_unmap_ram(const void *mem, unsigned int count)
351 {
352         BUG();
353 }
354 EXPORT_SYMBOL(vm_unmap_ram);
355
356 void vm_unmap_aliases(void)
357 {
358 }
359 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
360
361 /*
362  * Implement a stub for vmalloc_sync_[un]mapping() if the architecture
363  * chose not to have one.
364  */
365 void __weak vmalloc_sync_mappings(void)
366 {
367 }
368
369 void __weak vmalloc_sync_unmappings(void)
370 {
371 }
372
373 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
374 {
375         BUG();
376         return NULL;
377 }
378 EXPORT_SYMBOL_GPL(alloc_vm_area);
379
380 void free_vm_area(struct vm_struct *area)
381 {
382         BUG();
383 }
384 EXPORT_SYMBOL_GPL(free_vm_area);
385
386 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
387                    struct page *page)
388 {
389         return -EINVAL;
390 }
391 EXPORT_SYMBOL(vm_insert_page);
392
393 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
394                         unsigned long num)
395 {
396         return -EINVAL;
397 }
398 EXPORT_SYMBOL(vm_map_pages);
399
400 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
401                                 unsigned long num)
402 {
403         return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_map_pages_zero);
406
407 /*
408  *  sys_brk() for the most part doesn't need the global kernel
409  *  lock, except when an application is doing something nasty
410  *  like trying to un-brk an area that has already been mapped
411  *  to a regular file.  in this case, the unmapping will need
412  *  to invoke file system routines that need the global lock.
413  */
414 SYSCALL_DEFINE1(brk, unsigned long, brk)
415 {
416         struct mm_struct *mm = current->mm;
417
418         if (brk < mm->start_brk || brk > mm->context.end_brk)
419                 return mm->brk;
420
421         if (mm->brk == brk)
422                 return mm->brk;
423
424         /*
425          * Always allow shrinking brk
426          */
427         if (brk <= mm->brk) {
428                 mm->brk = brk;
429                 return brk;
430         }
431
432         /*
433          * Ok, looks good - let it rip.
434          */
435         flush_icache_range(mm->brk, brk);
436         return mm->brk = brk;
437 }
438
439 /*
440  * initialise the percpu counter for VM and region record slabs
441  */
442 void __init mmap_init(void)
443 {
444         int ret;
445
446         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
447         VM_BUG_ON(ret);
448         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
449 }
450
451 /*
452  * validate the region tree
453  * - the caller must hold the region lock
454  */
455 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
456 static noinline void validate_nommu_regions(void)
457 {
458         struct vm_region *region, *last;
459         struct rb_node *p, *lastp;
460
461         lastp = rb_first(&nommu_region_tree);
462         if (!lastp)
463                 return;
464
465         last = rb_entry(lastp, struct vm_region, vm_rb);
466         BUG_ON(last->vm_end <= last->vm_start);
467         BUG_ON(last->vm_top < last->vm_end);
468
469         while ((p = rb_next(lastp))) {
470                 region = rb_entry(p, struct vm_region, vm_rb);
471                 last = rb_entry(lastp, struct vm_region, vm_rb);
472
473                 BUG_ON(region->vm_end <= region->vm_start);
474                 BUG_ON(region->vm_top < region->vm_end);
475                 BUG_ON(region->vm_start < last->vm_top);
476
477                 lastp = p;
478         }
479 }
480 #else
481 static void validate_nommu_regions(void)
482 {
483 }
484 #endif
485
486 /*
487  * add a region into the global tree
488  */
489 static void add_nommu_region(struct vm_region *region)
490 {
491         struct vm_region *pregion;
492         struct rb_node **p, *parent;
493
494         validate_nommu_regions();
495
496         parent = NULL;
497         p = &nommu_region_tree.rb_node;
498         while (*p) {
499                 parent = *p;
500                 pregion = rb_entry(parent, struct vm_region, vm_rb);
501                 if (region->vm_start < pregion->vm_start)
502                         p = &(*p)->rb_left;
503                 else if (region->vm_start > pregion->vm_start)
504                         p = &(*p)->rb_right;
505                 else if (pregion == region)
506                         return;
507                 else
508                         BUG();
509         }
510
511         rb_link_node(&region->vm_rb, parent, p);
512         rb_insert_color(&region->vm_rb, &nommu_region_tree);
513
514         validate_nommu_regions();
515 }
516
517 /*
518  * delete a region from the global tree
519  */
520 static void delete_nommu_region(struct vm_region *region)
521 {
522         BUG_ON(!nommu_region_tree.rb_node);
523
524         validate_nommu_regions();
525         rb_erase(&region->vm_rb, &nommu_region_tree);
526         validate_nommu_regions();
527 }
528
529 /*
530  * free a contiguous series of pages
531  */
532 static void free_page_series(unsigned long from, unsigned long to)
533 {
534         for (; from < to; from += PAGE_SIZE) {
535                 struct page *page = virt_to_page(from);
536
537                 atomic_long_dec(&mmap_pages_allocated);
538                 put_page(page);
539         }
540 }
541
542 /*
543  * release a reference to a region
544  * - the caller must hold the region semaphore for writing, which this releases
545  * - the region may not have been added to the tree yet, in which case vm_top
546  *   will equal vm_start
547  */
548 static void __put_nommu_region(struct vm_region *region)
549         __releases(nommu_region_sem)
550 {
551         BUG_ON(!nommu_region_tree.rb_node);
552
553         if (--region->vm_usage == 0) {
554                 if (region->vm_top > region->vm_start)
555                         delete_nommu_region(region);
556                 up_write(&nommu_region_sem);
557
558                 if (region->vm_file)
559                         fput(region->vm_file);
560
561                 /* IO memory and memory shared directly out of the pagecache
562                  * from ramfs/tmpfs mustn't be released here */
563                 if (region->vm_flags & VM_MAPPED_COPY)
564                         free_page_series(region->vm_start, region->vm_top);
565                 kmem_cache_free(vm_region_jar, region);
566         } else {
567                 up_write(&nommu_region_sem);
568         }
569 }
570
571 /*
572  * release a reference to a region
573  */
574 static void put_nommu_region(struct vm_region *region)
575 {
576         down_write(&nommu_region_sem);
577         __put_nommu_region(region);
578 }
579
580 /*
581  * add a VMA into a process's mm_struct in the appropriate place in the list
582  * and tree and add to the address space's page tree also if not an anonymous
583  * page
584  * - should be called with mm->mmap_sem held writelocked
585  */
586 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
587 {
588         struct vm_area_struct *pvma, *prev;
589         struct address_space *mapping;
590         struct rb_node **p, *parent, *rb_prev;
591
592         BUG_ON(!vma->vm_region);
593
594         mm->map_count++;
595         vma->vm_mm = mm;
596
597         /* add the VMA to the mapping */
598         if (vma->vm_file) {
599                 mapping = vma->vm_file->f_mapping;
600
601                 i_mmap_lock_write(mapping);
602                 flush_dcache_mmap_lock(mapping);
603                 vma_interval_tree_insert(vma, &mapping->i_mmap);
604                 flush_dcache_mmap_unlock(mapping);
605                 i_mmap_unlock_write(mapping);
606         }
607
608         /* add the VMA to the tree */
609         parent = rb_prev = NULL;
610         p = &mm->mm_rb.rb_node;
611         while (*p) {
612                 parent = *p;
613                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
614
615                 /* sort by: start addr, end addr, VMA struct addr in that order
616                  * (the latter is necessary as we may get identical VMAs) */
617                 if (vma->vm_start < pvma->vm_start)
618                         p = &(*p)->rb_left;
619                 else if (vma->vm_start > pvma->vm_start) {
620                         rb_prev = parent;
621                         p = &(*p)->rb_right;
622                 } else if (vma->vm_end < pvma->vm_end)
623                         p = &(*p)->rb_left;
624                 else if (vma->vm_end > pvma->vm_end) {
625                         rb_prev = parent;
626                         p = &(*p)->rb_right;
627                 } else if (vma < pvma)
628                         p = &(*p)->rb_left;
629                 else if (vma > pvma) {
630                         rb_prev = parent;
631                         p = &(*p)->rb_right;
632                 } else
633                         BUG();
634         }
635
636         rb_link_node(&vma->vm_rb, parent, p);
637         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
638
639         /* add VMA to the VMA list also */
640         prev = NULL;
641         if (rb_prev)
642                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
643
644         __vma_link_list(mm, vma, prev, parent);
645 }
646
647 /*
648  * delete a VMA from its owning mm_struct and address space
649  */
650 static void delete_vma_from_mm(struct vm_area_struct *vma)
651 {
652         int i;
653         struct address_space *mapping;
654         struct mm_struct *mm = vma->vm_mm;
655         struct task_struct *curr = current;
656
657         mm->map_count--;
658         for (i = 0; i < VMACACHE_SIZE; i++) {
659                 /* if the vma is cached, invalidate the entire cache */
660                 if (curr->vmacache.vmas[i] == vma) {
661                         vmacache_invalidate(mm);
662                         break;
663                 }
664         }
665
666         /* remove the VMA from the mapping */
667         if (vma->vm_file) {
668                 mapping = vma->vm_file->f_mapping;
669
670                 i_mmap_lock_write(mapping);
671                 flush_dcache_mmap_lock(mapping);
672                 vma_interval_tree_remove(vma, &mapping->i_mmap);
673                 flush_dcache_mmap_unlock(mapping);
674                 i_mmap_unlock_write(mapping);
675         }
676
677         /* remove from the MM's tree and list */
678         rb_erase(&vma->vm_rb, &mm->mm_rb);
679
680         if (vma->vm_prev)
681                 vma->vm_prev->vm_next = vma->vm_next;
682         else
683                 mm->mmap = vma->vm_next;
684
685         if (vma->vm_next)
686                 vma->vm_next->vm_prev = vma->vm_prev;
687 }
688
689 /*
690  * destroy a VMA record
691  */
692 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
693 {
694         if (vma->vm_ops && vma->vm_ops->close)
695                 vma->vm_ops->close(vma);
696         if (vma->vm_file)
697                 fput(vma->vm_file);
698         put_nommu_region(vma->vm_region);
699         vm_area_free(vma);
700 }
701
702 /*
703  * look up the first VMA in which addr resides, NULL if none
704  * - should be called with mm->mmap_sem at least held readlocked
705  */
706 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
707 {
708         struct vm_area_struct *vma;
709
710         /* check the cache first */
711         vma = vmacache_find(mm, addr);
712         if (likely(vma))
713                 return vma;
714
715         /* trawl the list (there may be multiple mappings in which addr
716          * resides) */
717         for (vma = mm->mmap; vma; vma = vma->vm_next) {
718                 if (vma->vm_start > addr)
719                         return NULL;
720                 if (vma->vm_end > addr) {
721                         vmacache_update(addr, vma);
722                         return vma;
723                 }
724         }
725
726         return NULL;
727 }
728 EXPORT_SYMBOL(find_vma);
729
730 /*
731  * find a VMA
732  * - we don't extend stack VMAs under NOMMU conditions
733  */
734 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
735 {
736         return find_vma(mm, addr);
737 }
738
739 /*
740  * expand a stack to a given address
741  * - not supported under NOMMU conditions
742  */
743 int expand_stack(struct vm_area_struct *vma, unsigned long address)
744 {
745         return -ENOMEM;
746 }
747
748 /*
749  * look up the first VMA exactly that exactly matches addr
750  * - should be called with mm->mmap_sem at least held readlocked
751  */
752 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
753                                              unsigned long addr,
754                                              unsigned long len)
755 {
756         struct vm_area_struct *vma;
757         unsigned long end = addr + len;
758
759         /* check the cache first */
760         vma = vmacache_find_exact(mm, addr, end);
761         if (vma)
762                 return vma;
763
764         /* trawl the list (there may be multiple mappings in which addr
765          * resides) */
766         for (vma = mm->mmap; vma; vma = vma->vm_next) {
767                 if (vma->vm_start < addr)
768                         continue;
769                 if (vma->vm_start > addr)
770                         return NULL;
771                 if (vma->vm_end == end) {
772                         vmacache_update(addr, vma);
773                         return vma;
774                 }
775         }
776
777         return NULL;
778 }
779
780 /*
781  * determine whether a mapping should be permitted and, if so, what sort of
782  * mapping we're capable of supporting
783  */
784 static int validate_mmap_request(struct file *file,
785                                  unsigned long addr,
786                                  unsigned long len,
787                                  unsigned long prot,
788                                  unsigned long flags,
789                                  unsigned long pgoff,
790                                  unsigned long *_capabilities)
791 {
792         unsigned long capabilities, rlen;
793         int ret;
794
795         /* do the simple checks first */
796         if (flags & MAP_FIXED)
797                 return -EINVAL;
798
799         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
800             (flags & MAP_TYPE) != MAP_SHARED)
801                 return -EINVAL;
802
803         if (!len)
804                 return -EINVAL;
805
806         /* Careful about overflows.. */
807         rlen = PAGE_ALIGN(len);
808         if (!rlen || rlen > TASK_SIZE)
809                 return -ENOMEM;
810
811         /* offset overflow? */
812         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
813                 return -EOVERFLOW;
814
815         if (file) {
816                 /* files must support mmap */
817                 if (!file->f_op->mmap)
818                         return -ENODEV;
819
820                 /* work out if what we've got could possibly be shared
821                  * - we support chardevs that provide their own "memory"
822                  * - we support files/blockdevs that are memory backed
823                  */
824                 if (file->f_op->mmap_capabilities) {
825                         capabilities = file->f_op->mmap_capabilities(file);
826                 } else {
827                         /* no explicit capabilities set, so assume some
828                          * defaults */
829                         switch (file_inode(file)->i_mode & S_IFMT) {
830                         case S_IFREG:
831                         case S_IFBLK:
832                                 capabilities = NOMMU_MAP_COPY;
833                                 break;
834
835                         case S_IFCHR:
836                                 capabilities =
837                                         NOMMU_MAP_DIRECT |
838                                         NOMMU_MAP_READ |
839                                         NOMMU_MAP_WRITE;
840                                 break;
841
842                         default:
843                                 return -EINVAL;
844                         }
845                 }
846
847                 /* eliminate any capabilities that we can't support on this
848                  * device */
849                 if (!file->f_op->get_unmapped_area)
850                         capabilities &= ~NOMMU_MAP_DIRECT;
851                 if (!(file->f_mode & FMODE_CAN_READ))
852                         capabilities &= ~NOMMU_MAP_COPY;
853
854                 /* The file shall have been opened with read permission. */
855                 if (!(file->f_mode & FMODE_READ))
856                         return -EACCES;
857
858                 if (flags & MAP_SHARED) {
859                         /* do checks for writing, appending and locking */
860                         if ((prot & PROT_WRITE) &&
861                             !(file->f_mode & FMODE_WRITE))
862                                 return -EACCES;
863
864                         if (IS_APPEND(file_inode(file)) &&
865                             (file->f_mode & FMODE_WRITE))
866                                 return -EACCES;
867
868                         if (locks_verify_locked(file))
869                                 return -EAGAIN;
870
871                         if (!(capabilities & NOMMU_MAP_DIRECT))
872                                 return -ENODEV;
873
874                         /* we mustn't privatise shared mappings */
875                         capabilities &= ~NOMMU_MAP_COPY;
876                 } else {
877                         /* we're going to read the file into private memory we
878                          * allocate */
879                         if (!(capabilities & NOMMU_MAP_COPY))
880                                 return -ENODEV;
881
882                         /* we don't permit a private writable mapping to be
883                          * shared with the backing device */
884                         if (prot & PROT_WRITE)
885                                 capabilities &= ~NOMMU_MAP_DIRECT;
886                 }
887
888                 if (capabilities & NOMMU_MAP_DIRECT) {
889                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
890                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
891                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
892                             ) {
893                                 capabilities &= ~NOMMU_MAP_DIRECT;
894                                 if (flags & MAP_SHARED) {
895                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
896                                         return -EINVAL;
897                                 }
898                         }
899                 }
900
901                 /* handle executable mappings and implied executable
902                  * mappings */
903                 if (path_noexec(&file->f_path)) {
904                         if (prot & PROT_EXEC)
905                                 return -EPERM;
906                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
907                         /* handle implication of PROT_EXEC by PROT_READ */
908                         if (current->personality & READ_IMPLIES_EXEC) {
909                                 if (capabilities & NOMMU_MAP_EXEC)
910                                         prot |= PROT_EXEC;
911                         }
912                 } else if ((prot & PROT_READ) &&
913                          (prot & PROT_EXEC) &&
914                          !(capabilities & NOMMU_MAP_EXEC)
915                          ) {
916                         /* backing file is not executable, try to copy */
917                         capabilities &= ~NOMMU_MAP_DIRECT;
918                 }
919         } else {
920                 /* anonymous mappings are always memory backed and can be
921                  * privately mapped
922                  */
923                 capabilities = NOMMU_MAP_COPY;
924
925                 /* handle PROT_EXEC implication by PROT_READ */
926                 if ((prot & PROT_READ) &&
927                     (current->personality & READ_IMPLIES_EXEC))
928                         prot |= PROT_EXEC;
929         }
930
931         /* allow the security API to have its say */
932         ret = security_mmap_addr(addr);
933         if (ret < 0)
934                 return ret;
935
936         /* looks okay */
937         *_capabilities = capabilities;
938         return 0;
939 }
940
941 /*
942  * we've determined that we can make the mapping, now translate what we
943  * now know into VMA flags
944  */
945 static unsigned long determine_vm_flags(struct file *file,
946                                         unsigned long prot,
947                                         unsigned long flags,
948                                         unsigned long capabilities)
949 {
950         unsigned long vm_flags;
951
952         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
953         /* vm_flags |= mm->def_flags; */
954
955         if (!(capabilities & NOMMU_MAP_DIRECT)) {
956                 /* attempt to share read-only copies of mapped file chunks */
957                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
958                 if (file && !(prot & PROT_WRITE))
959                         vm_flags |= VM_MAYSHARE;
960         } else {
961                 /* overlay a shareable mapping on the backing device or inode
962                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
963                  * romfs/cramfs */
964                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
965                 if (flags & MAP_SHARED)
966                         vm_flags |= VM_SHARED;
967         }
968
969         /* refuse to let anyone share private mappings with this process if
970          * it's being traced - otherwise breakpoints set in it may interfere
971          * with another untraced process
972          */
973         if ((flags & MAP_PRIVATE) && current->ptrace)
974                 vm_flags &= ~VM_MAYSHARE;
975
976         return vm_flags;
977 }
978
979 /*
980  * set up a shared mapping on a file (the driver or filesystem provides and
981  * pins the storage)
982  */
983 static int do_mmap_shared_file(struct vm_area_struct *vma)
984 {
985         int ret;
986
987         ret = call_mmap(vma->vm_file, vma);
988         if (ret == 0) {
989                 vma->vm_region->vm_top = vma->vm_region->vm_end;
990                 return 0;
991         }
992         if (ret != -ENOSYS)
993                 return ret;
994
995         /* getting -ENOSYS indicates that direct mmap isn't possible (as
996          * opposed to tried but failed) so we can only give a suitable error as
997          * it's not possible to make a private copy if MAP_SHARED was given */
998         return -ENODEV;
999 }
1000
1001 /*
1002  * set up a private mapping or an anonymous shared mapping
1003  */
1004 static int do_mmap_private(struct vm_area_struct *vma,
1005                            struct vm_region *region,
1006                            unsigned long len,
1007                            unsigned long capabilities)
1008 {
1009         unsigned long total, point;
1010         void *base;
1011         int ret, order;
1012
1013         /* invoke the file's mapping function so that it can keep track of
1014          * shared mappings on devices or memory
1015          * - VM_MAYSHARE will be set if it may attempt to share
1016          */
1017         if (capabilities & NOMMU_MAP_DIRECT) {
1018                 ret = call_mmap(vma->vm_file, vma);
1019                 if (ret == 0) {
1020                         /* shouldn't return success if we're not sharing */
1021                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1022                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1023                         return 0;
1024                 }
1025                 if (ret != -ENOSYS)
1026                         return ret;
1027
1028                 /* getting an ENOSYS error indicates that direct mmap isn't
1029                  * possible (as opposed to tried but failed) so we'll try to
1030                  * make a private copy of the data and map that instead */
1031         }
1032
1033
1034         /* allocate some memory to hold the mapping
1035          * - note that this may not return a page-aligned address if the object
1036          *   we're allocating is smaller than a page
1037          */
1038         order = get_order(len);
1039         total = 1 << order;
1040         point = len >> PAGE_SHIFT;
1041
1042         /* we don't want to allocate a power-of-2 sized page set */
1043         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1044                 total = point;
1045
1046         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1047         if (!base)
1048                 goto enomem;
1049
1050         atomic_long_add(total, &mmap_pages_allocated);
1051
1052         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1053         region->vm_start = (unsigned long) base;
1054         region->vm_end   = region->vm_start + len;
1055         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1056
1057         vma->vm_start = region->vm_start;
1058         vma->vm_end   = region->vm_start + len;
1059
1060         if (vma->vm_file) {
1061                 /* read the contents of a file into the copy */
1062                 loff_t fpos;
1063
1064                 fpos = vma->vm_pgoff;
1065                 fpos <<= PAGE_SHIFT;
1066
1067                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1068                 if (ret < 0)
1069                         goto error_free;
1070
1071                 /* clear the last little bit */
1072                 if (ret < len)
1073                         memset(base + ret, 0, len - ret);
1074
1075         } else {
1076                 vma_set_anonymous(vma);
1077         }
1078
1079         return 0;
1080
1081 error_free:
1082         free_page_series(region->vm_start, region->vm_top);
1083         region->vm_start = vma->vm_start = 0;
1084         region->vm_end   = vma->vm_end = 0;
1085         region->vm_top   = 0;
1086         return ret;
1087
1088 enomem:
1089         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1090                len, current->pid, current->comm);
1091         show_free_areas(0, NULL);
1092         return -ENOMEM;
1093 }
1094
1095 /*
1096  * handle mapping creation for uClinux
1097  */
1098 unsigned long do_mmap(struct file *file,
1099                         unsigned long addr,
1100                         unsigned long len,
1101                         unsigned long prot,
1102                         unsigned long flags,
1103                         vm_flags_t vm_flags,
1104                         unsigned long pgoff,
1105                         unsigned long *populate,
1106                         struct list_head *uf)
1107 {
1108         struct vm_area_struct *vma;
1109         struct vm_region *region;
1110         struct rb_node *rb;
1111         unsigned long capabilities, result;
1112         int ret;
1113
1114         *populate = 0;
1115
1116         /* decide whether we should attempt the mapping, and if so what sort of
1117          * mapping */
1118         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1119                                     &capabilities);
1120         if (ret < 0)
1121                 return ret;
1122
1123         /* we ignore the address hint */
1124         addr = 0;
1125         len = PAGE_ALIGN(len);
1126
1127         /* we've determined that we can make the mapping, now translate what we
1128          * now know into VMA flags */
1129         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1130
1131         /* we're going to need to record the mapping */
1132         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1133         if (!region)
1134                 goto error_getting_region;
1135
1136         vma = vm_area_alloc(current->mm);
1137         if (!vma)
1138                 goto error_getting_vma;
1139
1140         region->vm_usage = 1;
1141         region->vm_flags = vm_flags;
1142         region->vm_pgoff = pgoff;
1143
1144         vma->vm_flags = vm_flags;
1145         vma->vm_pgoff = pgoff;
1146
1147         if (file) {
1148                 region->vm_file = get_file(file);
1149                 vma->vm_file = get_file(file);
1150         }
1151
1152         down_write(&nommu_region_sem);
1153
1154         /* if we want to share, we need to check for regions created by other
1155          * mmap() calls that overlap with our proposed mapping
1156          * - we can only share with a superset match on most regular files
1157          * - shared mappings on character devices and memory backed files are
1158          *   permitted to overlap inexactly as far as we are concerned for in
1159          *   these cases, sharing is handled in the driver or filesystem rather
1160          *   than here
1161          */
1162         if (vm_flags & VM_MAYSHARE) {
1163                 struct vm_region *pregion;
1164                 unsigned long pglen, rpglen, pgend, rpgend, start;
1165
1166                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1167                 pgend = pgoff + pglen;
1168
1169                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1170                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1171
1172                         if (!(pregion->vm_flags & VM_MAYSHARE))
1173                                 continue;
1174
1175                         /* search for overlapping mappings on the same file */
1176                         if (file_inode(pregion->vm_file) !=
1177                             file_inode(file))
1178                                 continue;
1179
1180                         if (pregion->vm_pgoff >= pgend)
1181                                 continue;
1182
1183                         rpglen = pregion->vm_end - pregion->vm_start;
1184                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185                         rpgend = pregion->vm_pgoff + rpglen;
1186                         if (pgoff >= rpgend)
1187                                 continue;
1188
1189                         /* handle inexactly overlapping matches between
1190                          * mappings */
1191                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1192                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1193                                 /* new mapping is not a subset of the region */
1194                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1195                                         goto sharing_violation;
1196                                 continue;
1197                         }
1198
1199                         /* we've found a region we can share */
1200                         pregion->vm_usage++;
1201                         vma->vm_region = pregion;
1202                         start = pregion->vm_start;
1203                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1204                         vma->vm_start = start;
1205                         vma->vm_end = start + len;
1206
1207                         if (pregion->vm_flags & VM_MAPPED_COPY)
1208                                 vma->vm_flags |= VM_MAPPED_COPY;
1209                         else {
1210                                 ret = do_mmap_shared_file(vma);
1211                                 if (ret < 0) {
1212                                         vma->vm_region = NULL;
1213                                         vma->vm_start = 0;
1214                                         vma->vm_end = 0;
1215                                         pregion->vm_usage--;
1216                                         pregion = NULL;
1217                                         goto error_just_free;
1218                                 }
1219                         }
1220                         fput(region->vm_file);
1221                         kmem_cache_free(vm_region_jar, region);
1222                         region = pregion;
1223                         result = start;
1224                         goto share;
1225                 }
1226
1227                 /* obtain the address at which to make a shared mapping
1228                  * - this is the hook for quasi-memory character devices to
1229                  *   tell us the location of a shared mapping
1230                  */
1231                 if (capabilities & NOMMU_MAP_DIRECT) {
1232                         addr = file->f_op->get_unmapped_area(file, addr, len,
1233                                                              pgoff, flags);
1234                         if (IS_ERR_VALUE(addr)) {
1235                                 ret = addr;
1236                                 if (ret != -ENOSYS)
1237                                         goto error_just_free;
1238
1239                                 /* the driver refused to tell us where to site
1240                                  * the mapping so we'll have to attempt to copy
1241                                  * it */
1242                                 ret = -ENODEV;
1243                                 if (!(capabilities & NOMMU_MAP_COPY))
1244                                         goto error_just_free;
1245
1246                                 capabilities &= ~NOMMU_MAP_DIRECT;
1247                         } else {
1248                                 vma->vm_start = region->vm_start = addr;
1249                                 vma->vm_end = region->vm_end = addr + len;
1250                         }
1251                 }
1252         }
1253
1254         vma->vm_region = region;
1255
1256         /* set up the mapping
1257          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1258          */
1259         if (file && vma->vm_flags & VM_SHARED)
1260                 ret = do_mmap_shared_file(vma);
1261         else
1262                 ret = do_mmap_private(vma, region, len, capabilities);
1263         if (ret < 0)
1264                 goto error_just_free;
1265         add_nommu_region(region);
1266
1267         /* clear anonymous mappings that don't ask for uninitialized data */
1268         if (!vma->vm_file &&
1269             (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1270              !(flags & MAP_UNINITIALIZED)))
1271                 memset((void *)region->vm_start, 0,
1272                        region->vm_end - region->vm_start);
1273
1274         /* okay... we have a mapping; now we have to register it */
1275         result = vma->vm_start;
1276
1277         current->mm->total_vm += len >> PAGE_SHIFT;
1278
1279 share:
1280         add_vma_to_mm(current->mm, vma);
1281
1282         /* we flush the region from the icache only when the first executable
1283          * mapping of it is made  */
1284         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1285                 flush_icache_range(region->vm_start, region->vm_end);
1286                 region->vm_icache_flushed = true;
1287         }
1288
1289         up_write(&nommu_region_sem);
1290
1291         return result;
1292
1293 error_just_free:
1294         up_write(&nommu_region_sem);
1295 error:
1296         if (region->vm_file)
1297                 fput(region->vm_file);
1298         kmem_cache_free(vm_region_jar, region);
1299         if (vma->vm_file)
1300                 fput(vma->vm_file);
1301         vm_area_free(vma);
1302         return ret;
1303
1304 sharing_violation:
1305         up_write(&nommu_region_sem);
1306         pr_warn("Attempt to share mismatched mappings\n");
1307         ret = -EINVAL;
1308         goto error;
1309
1310 error_getting_vma:
1311         kmem_cache_free(vm_region_jar, region);
1312         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1313                         len, current->pid);
1314         show_free_areas(0, NULL);
1315         return -ENOMEM;
1316
1317 error_getting_region:
1318         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1319                         len, current->pid);
1320         show_free_areas(0, NULL);
1321         return -ENOMEM;
1322 }
1323
1324 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1325                               unsigned long prot, unsigned long flags,
1326                               unsigned long fd, unsigned long pgoff)
1327 {
1328         struct file *file = NULL;
1329         unsigned long retval = -EBADF;
1330
1331         audit_mmap_fd(fd, flags);
1332         if (!(flags & MAP_ANONYMOUS)) {
1333                 file = fget(fd);
1334                 if (!file)
1335                         goto out;
1336         }
1337
1338         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1339
1340         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1341
1342         if (file)
1343                 fput(file);
1344 out:
1345         return retval;
1346 }
1347
1348 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1349                 unsigned long, prot, unsigned long, flags,
1350                 unsigned long, fd, unsigned long, pgoff)
1351 {
1352         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1353 }
1354
1355 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1356 struct mmap_arg_struct {
1357         unsigned long addr;
1358         unsigned long len;
1359         unsigned long prot;
1360         unsigned long flags;
1361         unsigned long fd;
1362         unsigned long offset;
1363 };
1364
1365 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1366 {
1367         struct mmap_arg_struct a;
1368
1369         if (copy_from_user(&a, arg, sizeof(a)))
1370                 return -EFAULT;
1371         if (offset_in_page(a.offset))
1372                 return -EINVAL;
1373
1374         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1375                                a.offset >> PAGE_SHIFT);
1376 }
1377 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1378
1379 /*
1380  * split a vma into two pieces at address 'addr', a new vma is allocated either
1381  * for the first part or the tail.
1382  */
1383 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1384               unsigned long addr, int new_below)
1385 {
1386         struct vm_area_struct *new;
1387         struct vm_region *region;
1388         unsigned long npages;
1389
1390         /* we're only permitted to split anonymous regions (these should have
1391          * only a single usage on the region) */
1392         if (vma->vm_file)
1393                 return -ENOMEM;
1394
1395         if (mm->map_count >= sysctl_max_map_count)
1396                 return -ENOMEM;
1397
1398         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1399         if (!region)
1400                 return -ENOMEM;
1401
1402         new = vm_area_dup(vma);
1403         if (!new) {
1404                 kmem_cache_free(vm_region_jar, region);
1405                 return -ENOMEM;
1406         }
1407
1408         /* most fields are the same, copy all, and then fixup */
1409         *region = *vma->vm_region;
1410         new->vm_region = region;
1411
1412         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1413
1414         if (new_below) {
1415                 region->vm_top = region->vm_end = new->vm_end = addr;
1416         } else {
1417                 region->vm_start = new->vm_start = addr;
1418                 region->vm_pgoff = new->vm_pgoff += npages;
1419         }
1420
1421         if (new->vm_ops && new->vm_ops->open)
1422                 new->vm_ops->open(new);
1423
1424         delete_vma_from_mm(vma);
1425         down_write(&nommu_region_sem);
1426         delete_nommu_region(vma->vm_region);
1427         if (new_below) {
1428                 vma->vm_region->vm_start = vma->vm_start = addr;
1429                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1430         } else {
1431                 vma->vm_region->vm_end = vma->vm_end = addr;
1432                 vma->vm_region->vm_top = addr;
1433         }
1434         add_nommu_region(vma->vm_region);
1435         add_nommu_region(new->vm_region);
1436         up_write(&nommu_region_sem);
1437         add_vma_to_mm(mm, vma);
1438         add_vma_to_mm(mm, new);
1439         return 0;
1440 }
1441
1442 /*
1443  * shrink a VMA by removing the specified chunk from either the beginning or
1444  * the end
1445  */
1446 static int shrink_vma(struct mm_struct *mm,
1447                       struct vm_area_struct *vma,
1448                       unsigned long from, unsigned long to)
1449 {
1450         struct vm_region *region;
1451
1452         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1453          * and list */
1454         delete_vma_from_mm(vma);
1455         if (from > vma->vm_start)
1456                 vma->vm_end = from;
1457         else
1458                 vma->vm_start = to;
1459         add_vma_to_mm(mm, vma);
1460
1461         /* cut the backing region down to size */
1462         region = vma->vm_region;
1463         BUG_ON(region->vm_usage != 1);
1464
1465         down_write(&nommu_region_sem);
1466         delete_nommu_region(region);
1467         if (from > region->vm_start) {
1468                 to = region->vm_top;
1469                 region->vm_top = region->vm_end = from;
1470         } else {
1471                 region->vm_start = to;
1472         }
1473         add_nommu_region(region);
1474         up_write(&nommu_region_sem);
1475
1476         free_page_series(from, to);
1477         return 0;
1478 }
1479
1480 /*
1481  * release a mapping
1482  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1483  *   VMA, though it need not cover the whole VMA
1484  */
1485 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1486 {
1487         struct vm_area_struct *vma;
1488         unsigned long end;
1489         int ret;
1490
1491         len = PAGE_ALIGN(len);
1492         if (len == 0)
1493                 return -EINVAL;
1494
1495         end = start + len;
1496
1497         /* find the first potentially overlapping VMA */
1498         vma = find_vma(mm, start);
1499         if (!vma) {
1500                 static int limit;
1501                 if (limit < 5) {
1502                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1503                                         current->pid, current->comm,
1504                                         start, start + len - 1);
1505                         limit++;
1506                 }
1507                 return -EINVAL;
1508         }
1509
1510         /* we're allowed to split an anonymous VMA but not a file-backed one */
1511         if (vma->vm_file) {
1512                 do {
1513                         if (start > vma->vm_start)
1514                                 return -EINVAL;
1515                         if (end == vma->vm_end)
1516                                 goto erase_whole_vma;
1517                         vma = vma->vm_next;
1518                 } while (vma);
1519                 return -EINVAL;
1520         } else {
1521                 /* the chunk must be a subset of the VMA found */
1522                 if (start == vma->vm_start && end == vma->vm_end)
1523                         goto erase_whole_vma;
1524                 if (start < vma->vm_start || end > vma->vm_end)
1525                         return -EINVAL;
1526                 if (offset_in_page(start))
1527                         return -EINVAL;
1528                 if (end != vma->vm_end && offset_in_page(end))
1529                         return -EINVAL;
1530                 if (start != vma->vm_start && end != vma->vm_end) {
1531                         ret = split_vma(mm, vma, start, 1);
1532                         if (ret < 0)
1533                                 return ret;
1534                 }
1535                 return shrink_vma(mm, vma, start, end);
1536         }
1537
1538 erase_whole_vma:
1539         delete_vma_from_mm(vma);
1540         delete_vma(mm, vma);
1541         return 0;
1542 }
1543 EXPORT_SYMBOL(do_munmap);
1544
1545 int vm_munmap(unsigned long addr, size_t len)
1546 {
1547         struct mm_struct *mm = current->mm;
1548         int ret;
1549
1550         down_write(&mm->mmap_sem);
1551         ret = do_munmap(mm, addr, len, NULL);
1552         up_write(&mm->mmap_sem);
1553         return ret;
1554 }
1555 EXPORT_SYMBOL(vm_munmap);
1556
1557 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1558 {
1559         return vm_munmap(addr, len);
1560 }
1561
1562 /*
1563  * release all the mappings made in a process's VM space
1564  */
1565 void exit_mmap(struct mm_struct *mm)
1566 {
1567         struct vm_area_struct *vma;
1568
1569         if (!mm)
1570                 return;
1571
1572         mm->total_vm = 0;
1573
1574         while ((vma = mm->mmap)) {
1575                 mm->mmap = vma->vm_next;
1576                 delete_vma_from_mm(vma);
1577                 delete_vma(mm, vma);
1578                 cond_resched();
1579         }
1580 }
1581
1582 int vm_brk(unsigned long addr, unsigned long len)
1583 {
1584         return -ENOMEM;
1585 }
1586
1587 /*
1588  * expand (or shrink) an existing mapping, potentially moving it at the same
1589  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1590  *
1591  * under NOMMU conditions, we only permit changing a mapping's size, and only
1592  * as long as it stays within the region allocated by do_mmap_private() and the
1593  * block is not shareable
1594  *
1595  * MREMAP_FIXED is not supported under NOMMU conditions
1596  */
1597 static unsigned long do_mremap(unsigned long addr,
1598                         unsigned long old_len, unsigned long new_len,
1599                         unsigned long flags, unsigned long new_addr)
1600 {
1601         struct vm_area_struct *vma;
1602
1603         /* insanity checks first */
1604         old_len = PAGE_ALIGN(old_len);
1605         new_len = PAGE_ALIGN(new_len);
1606         if (old_len == 0 || new_len == 0)
1607                 return (unsigned long) -EINVAL;
1608
1609         if (offset_in_page(addr))
1610                 return -EINVAL;
1611
1612         if (flags & MREMAP_FIXED && new_addr != addr)
1613                 return (unsigned long) -EINVAL;
1614
1615         vma = find_vma_exact(current->mm, addr, old_len);
1616         if (!vma)
1617                 return (unsigned long) -EINVAL;
1618
1619         if (vma->vm_end != vma->vm_start + old_len)
1620                 return (unsigned long) -EFAULT;
1621
1622         if (vma->vm_flags & VM_MAYSHARE)
1623                 return (unsigned long) -EPERM;
1624
1625         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1626                 return (unsigned long) -ENOMEM;
1627
1628         /* all checks complete - do it */
1629         vma->vm_end = vma->vm_start + new_len;
1630         return vma->vm_start;
1631 }
1632
1633 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1634                 unsigned long, new_len, unsigned long, flags,
1635                 unsigned long, new_addr)
1636 {
1637         unsigned long ret;
1638
1639         down_write(&current->mm->mmap_sem);
1640         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1641         up_write(&current->mm->mmap_sem);
1642         return ret;
1643 }
1644
1645 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1646                          unsigned int foll_flags)
1647 {
1648         return NULL;
1649 }
1650
1651 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1652                 unsigned long pfn, unsigned long size, pgprot_t prot)
1653 {
1654         if (addr != (pfn << PAGE_SHIFT))
1655                 return -EINVAL;
1656
1657         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1658         return 0;
1659 }
1660 EXPORT_SYMBOL(remap_pfn_range);
1661
1662 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1663 {
1664         unsigned long pfn = start >> PAGE_SHIFT;
1665         unsigned long vm_len = vma->vm_end - vma->vm_start;
1666
1667         pfn += vma->vm_pgoff;
1668         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1669 }
1670 EXPORT_SYMBOL(vm_iomap_memory);
1671
1672 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1673                         unsigned long pgoff)
1674 {
1675         unsigned int size = vma->vm_end - vma->vm_start;
1676
1677         if (!(vma->vm_flags & VM_USERMAP))
1678                 return -EINVAL;
1679
1680         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1681         vma->vm_end = vma->vm_start + size;
1682
1683         return 0;
1684 }
1685 EXPORT_SYMBOL(remap_vmalloc_range);
1686
1687 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1688         unsigned long len, unsigned long pgoff, unsigned long flags)
1689 {
1690         return -ENOMEM;
1691 }
1692
1693 vm_fault_t filemap_fault(struct vm_fault *vmf)
1694 {
1695         BUG();
1696         return 0;
1697 }
1698 EXPORT_SYMBOL(filemap_fault);
1699
1700 void filemap_map_pages(struct vm_fault *vmf,
1701                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1702 {
1703         BUG();
1704 }
1705 EXPORT_SYMBOL(filemap_map_pages);
1706
1707 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1708                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1709 {
1710         struct vm_area_struct *vma;
1711         int write = gup_flags & FOLL_WRITE;
1712
1713         if (down_read_killable(&mm->mmap_sem))
1714                 return 0;
1715
1716         /* the access must start within one of the target process's mappings */
1717         vma = find_vma(mm, addr);
1718         if (vma) {
1719                 /* don't overrun this mapping */
1720                 if (addr + len >= vma->vm_end)
1721                         len = vma->vm_end - addr;
1722
1723                 /* only read or write mappings where it is permitted */
1724                 if (write && vma->vm_flags & VM_MAYWRITE)
1725                         copy_to_user_page(vma, NULL, addr,
1726                                          (void *) addr, buf, len);
1727                 else if (!write && vma->vm_flags & VM_MAYREAD)
1728                         copy_from_user_page(vma, NULL, addr,
1729                                             buf, (void *) addr, len);
1730                 else
1731                         len = 0;
1732         } else {
1733                 len = 0;
1734         }
1735
1736         up_read(&mm->mmap_sem);
1737
1738         return len;
1739 }
1740
1741 /**
1742  * access_remote_vm - access another process' address space
1743  * @mm:         the mm_struct of the target address space
1744  * @addr:       start address to access
1745  * @buf:        source or destination buffer
1746  * @len:        number of bytes to transfer
1747  * @gup_flags:  flags modifying lookup behaviour
1748  *
1749  * The caller must hold a reference on @mm.
1750  */
1751 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1752                 void *buf, int len, unsigned int gup_flags)
1753 {
1754         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1755 }
1756
1757 /*
1758  * Access another process' address space.
1759  * - source/target buffer must be kernel space
1760  */
1761 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1762                 unsigned int gup_flags)
1763 {
1764         struct mm_struct *mm;
1765
1766         if (addr + len < addr)
1767                 return 0;
1768
1769         mm = get_task_mm(tsk);
1770         if (!mm)
1771                 return 0;
1772
1773         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1774
1775         mmput(mm);
1776         return len;
1777 }
1778 EXPORT_SYMBOL_GPL(access_process_vm);
1779
1780 /**
1781  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1782  * @inode: The inode to check
1783  * @size: The current filesize of the inode
1784  * @newsize: The proposed filesize of the inode
1785  *
1786  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1787  * make sure that that any outstanding VMAs aren't broken and then shrink the
1788  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1789  * automatically grant mappings that are too large.
1790  */
1791 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1792                                 size_t newsize)
1793 {
1794         struct vm_area_struct *vma;
1795         struct vm_region *region;
1796         pgoff_t low, high;
1797         size_t r_size, r_top;
1798
1799         low = newsize >> PAGE_SHIFT;
1800         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1801
1802         down_write(&nommu_region_sem);
1803         i_mmap_lock_read(inode->i_mapping);
1804
1805         /* search for VMAs that fall within the dead zone */
1806         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1807                 /* found one - only interested if it's shared out of the page
1808                  * cache */
1809                 if (vma->vm_flags & VM_SHARED) {
1810                         i_mmap_unlock_read(inode->i_mapping);
1811                         up_write(&nommu_region_sem);
1812                         return -ETXTBSY; /* not quite true, but near enough */
1813                 }
1814         }
1815
1816         /* reduce any regions that overlap the dead zone - if in existence,
1817          * these will be pointed to by VMAs that don't overlap the dead zone
1818          *
1819          * we don't check for any regions that start beyond the EOF as there
1820          * shouldn't be any
1821          */
1822         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1823                 if (!(vma->vm_flags & VM_SHARED))
1824                         continue;
1825
1826                 region = vma->vm_region;
1827                 r_size = region->vm_top - region->vm_start;
1828                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1829
1830                 if (r_top > newsize) {
1831                         region->vm_top -= r_top - newsize;
1832                         if (region->vm_end > region->vm_top)
1833                                 region->vm_end = region->vm_top;
1834                 }
1835         }
1836
1837         i_mmap_unlock_read(inode->i_mapping);
1838         up_write(&nommu_region_sem);
1839         return 0;
1840 }
1841
1842 /*
1843  * Initialise sysctl_user_reserve_kbytes.
1844  *
1845  * This is intended to prevent a user from starting a single memory hogging
1846  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1847  * mode.
1848  *
1849  * The default value is min(3% of free memory, 128MB)
1850  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1851  */
1852 static int __meminit init_user_reserve(void)
1853 {
1854         unsigned long free_kbytes;
1855
1856         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1857
1858         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1859         return 0;
1860 }
1861 subsys_initcall(init_user_reserve);
1862
1863 /*
1864  * Initialise sysctl_admin_reserve_kbytes.
1865  *
1866  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1867  * to log in and kill a memory hogging process.
1868  *
1869  * Systems with more than 256MB will reserve 8MB, enough to recover
1870  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1871  * only reserve 3% of free pages by default.
1872  */
1873 static int __meminit init_admin_reserve(void)
1874 {
1875         unsigned long free_kbytes;
1876
1877         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1878
1879         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1880         return 0;
1881 }
1882 subsys_initcall(init_admin_reserve);