GNU Linux-libre 4.14.332-gnu1
[releases.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74         struct page *page;
75
76         /*
77          * If the object we have should not have ksize performed on it,
78          * return size of 0
79          */
80         if (!objp || !virt_addr_valid(objp))
81                 return 0;
82
83         page = virt_to_head_page(objp);
84
85         /*
86          * If the allocator sets PageSlab, we know the pointer came from
87          * kmalloc().
88          */
89         if (PageSlab(page))
90                 return ksize(objp);
91
92         /*
93          * If it's not a compound page, see if we have a matching VMA
94          * region. This test is intentionally done in reverse order,
95          * so if there's no VMA, we still fall through and hand back
96          * PAGE_SIZE for 0-order pages.
97          */
98         if (!PageCompound(page)) {
99                 struct vm_area_struct *vma;
100
101                 vma = find_vma(current->mm, (unsigned long)objp);
102                 if (vma)
103                         return vma->vm_end - vma->vm_start;
104         }
105
106         /*
107          * The ksize() function is only guaranteed to work for pointers
108          * returned by kmalloc(). So handle arbitrary pointers here.
109          */
110         return PAGE_SIZE << compound_order(page);
111 }
112
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114                       unsigned long start, unsigned long nr_pages,
115                       unsigned int foll_flags, struct page **pages,
116                       struct vm_area_struct **vmas, int *nonblocking)
117 {
118         struct vm_area_struct *vma;
119         unsigned long vm_flags;
120         int i;
121
122         /* calculate required read or write permissions.
123          * If FOLL_FORCE is set, we only require the "MAY" flags.
124          */
125         vm_flags  = (foll_flags & FOLL_WRITE) ?
126                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127         vm_flags &= (foll_flags & FOLL_FORCE) ?
128                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129
130         for (i = 0; i < nr_pages; i++) {
131                 vma = find_vma(mm, start);
132                 if (!vma)
133                         goto finish_or_fault;
134
135                 /* protect what we can, including chardevs */
136                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137                     !(vm_flags & vma->vm_flags))
138                         goto finish_or_fault;
139
140                 if (pages) {
141                         pages[i] = virt_to_page(start);
142                         if (pages[i])
143                                 get_page(pages[i]);
144                 }
145                 if (vmas)
146                         vmas[i] = vma;
147                 start = (start + PAGE_SIZE) & PAGE_MASK;
148         }
149
150         return i;
151
152 finish_or_fault:
153         return i ? : -EFAULT;
154 }
155
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164                     unsigned int gup_flags, struct page **pages,
165                     struct vm_area_struct **vmas)
166 {
167         return __get_user_pages(current, current->mm, start, nr_pages,
168                                 gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173                             unsigned int gup_flags, struct page **pages,
174                             int *locked)
175 {
176         return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181                         struct mm_struct *mm, unsigned long start,
182                         unsigned long nr_pages, struct page **pages,
183                         unsigned int gup_flags)
184 {
185         long ret;
186         down_read(&mm->mmap_sem);
187         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188                                 NULL, NULL);
189         up_read(&mm->mmap_sem);
190         return ret;
191 }
192
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194                              struct page **pages, unsigned int gup_flags)
195 {
196         return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197                                          pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212         unsigned long *pfn)
213 {
214         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215                 return -EINVAL;
216
217         *pfn = address >> PAGE_SHIFT;
218         return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221
222 LIST_HEAD(vmap_area_list);
223
224 void vfree(const void *addr)
225 {
226         kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232         /*
233          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234          * returns only a logical address.
235          */
236         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242         return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244
245 void *vmalloc_user(unsigned long size)
246 {
247         void *ret;
248
249         ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250         if (ret) {
251                 struct vm_area_struct *vma;
252
253                 down_write(&current->mm->mmap_sem);
254                 vma = find_vma(current->mm, (unsigned long)ret);
255                 if (vma)
256                         vma->vm_flags |= VM_USERMAP;
257                 up_write(&current->mm->mmap_sem);
258         }
259
260         return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263
264 struct page *vmalloc_to_page(const void *addr)
265 {
266         return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272         return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278         /* Don't allow overflow */
279         if ((unsigned long) buf + count < count)
280                 count = -(unsigned long) buf;
281
282         memcpy(buf, addr, count);
283         return count;
284 }
285
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288         /* Don't allow overflow */
289         if ((unsigned long) addr + count < count)
290                 count = -(unsigned long) addr;
291
292         memcpy(addr, buf, count);
293         return count;
294 }
295
296 /*
297  *      vmalloc  -  allocate virtually contiguous memory
298  *
299  *      @size:          allocation size
300  *
301  *      Allocate enough pages to cover @size from the page level
302  *      allocator and map them into contiguous kernel virtual space.
303  *
304  *      For tight control over page level allocator and protection flags
305  *      use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312
313 /*
314  *      vzalloc - allocate virtually contiguous memory with zero fill
315  *
316  *      @size:          allocation size
317  *
318  *      Allocate enough pages to cover @size from the page level
319  *      allocator and map them into contiguous kernel virtual space.
320  *      The memory allocated is set to zero.
321  *
322  *      For tight control over page level allocator and protection flags
323  *      use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328                         PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:       allocation size
335  * @node:       numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345         return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:       allocation size
352  * @node:       numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363         return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366
367 #ifndef PAGE_KERNEL_EXEC
368 # define PAGE_KERNEL_EXEC PAGE_KERNEL
369 #endif
370
371 /**
372  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
373  *      @size:          allocation size
374  *
375  *      Kernel-internal function to allocate enough pages to cover @size
376  *      the page level allocator and map them into contiguous and
377  *      executable kernel virtual space.
378  *
379  *      For tight control over page level allocator and protection flags
380  *      use __vmalloc() instead.
381  */
382
383 void *vmalloc_exec(unsigned long size)
384 {
385         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
386 }
387
388 /**
389  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
390  *      @size:          allocation size
391  *
392  *      Allocate enough 32bit PA addressable pages to cover @size from the
393  *      page level allocator and map them into contiguous kernel virtual space.
394  */
395 void *vmalloc_32(unsigned long size)
396 {
397         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
398 }
399 EXPORT_SYMBOL(vmalloc_32);
400
401 /**
402  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403  *      @size:          allocation size
404  *
405  * The resulting memory area is 32bit addressable and zeroed so it can be
406  * mapped to userspace without leaking data.
407  *
408  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409  * remap_vmalloc_range() are permissible.
410  */
411 void *vmalloc_32_user(unsigned long size)
412 {
413         /*
414          * We'll have to sort out the ZONE_DMA bits for 64-bit,
415          * but for now this can simply use vmalloc_user() directly.
416          */
417         return vmalloc_user(size);
418 }
419 EXPORT_SYMBOL(vmalloc_32_user);
420
421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
422 {
423         BUG();
424         return NULL;
425 }
426 EXPORT_SYMBOL(vmap);
427
428 void vunmap(const void *addr)
429 {
430         BUG();
431 }
432 EXPORT_SYMBOL(vunmap);
433
434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
435 {
436         BUG();
437         return NULL;
438 }
439 EXPORT_SYMBOL(vm_map_ram);
440
441 void vm_unmap_ram(const void *mem, unsigned int count)
442 {
443         BUG();
444 }
445 EXPORT_SYMBOL(vm_unmap_ram);
446
447 void vm_unmap_aliases(void)
448 {
449 }
450 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
451
452 /*
453  * Implement a stub for vmalloc_sync_[un]mapping() if the architecture
454  * chose not to have one.
455  */
456 void __weak vmalloc_sync_mappings(void)
457 {
458 }
459
460 void __weak vmalloc_sync_unmappings(void)
461 {
462 }
463
464 /**
465  *      alloc_vm_area - allocate a range of kernel address space
466  *      @size:          size of the area
467  *
468  *      Returns:        NULL on failure, vm_struct on success
469  *
470  *      This function reserves a range of kernel address space, and
471  *      allocates pagetables to map that range.  No actual mappings
472  *      are created.  If the kernel address space is not shared
473  *      between processes, it syncs the pagetable across all
474  *      processes.
475  */
476 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
477 {
478         BUG();
479         return NULL;
480 }
481 EXPORT_SYMBOL_GPL(alloc_vm_area);
482
483 void free_vm_area(struct vm_struct *area)
484 {
485         BUG();
486 }
487 EXPORT_SYMBOL_GPL(free_vm_area);
488
489 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
490                    struct page *page)
491 {
492         return -EINVAL;
493 }
494 EXPORT_SYMBOL(vm_insert_page);
495
496 /*
497  *  sys_brk() for the most part doesn't need the global kernel
498  *  lock, except when an application is doing something nasty
499  *  like trying to un-brk an area that has already been mapped
500  *  to a regular file.  in this case, the unmapping will need
501  *  to invoke file system routines that need the global lock.
502  */
503 SYSCALL_DEFINE1(brk, unsigned long, brk)
504 {
505         struct mm_struct *mm = current->mm;
506
507         if (brk < mm->start_brk || brk > mm->context.end_brk)
508                 return mm->brk;
509
510         if (mm->brk == brk)
511                 return mm->brk;
512
513         /*
514          * Always allow shrinking brk
515          */
516         if (brk <= mm->brk) {
517                 mm->brk = brk;
518                 return brk;
519         }
520
521         /*
522          * Ok, looks good - let it rip.
523          */
524         flush_icache_range(mm->brk, brk);
525         return mm->brk = brk;
526 }
527
528 /*
529  * initialise the percpu counter for VM and region record slabs
530  */
531 void __init mmap_init(void)
532 {
533         int ret;
534
535         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
536         VM_BUG_ON(ret);
537         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
538 }
539
540 /*
541  * validate the region tree
542  * - the caller must hold the region lock
543  */
544 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
545 static noinline void validate_nommu_regions(void)
546 {
547         struct vm_region *region, *last;
548         struct rb_node *p, *lastp;
549
550         lastp = rb_first(&nommu_region_tree);
551         if (!lastp)
552                 return;
553
554         last = rb_entry(lastp, struct vm_region, vm_rb);
555         BUG_ON(last->vm_end <= last->vm_start);
556         BUG_ON(last->vm_top < last->vm_end);
557
558         while ((p = rb_next(lastp))) {
559                 region = rb_entry(p, struct vm_region, vm_rb);
560                 last = rb_entry(lastp, struct vm_region, vm_rb);
561
562                 BUG_ON(region->vm_end <= region->vm_start);
563                 BUG_ON(region->vm_top < region->vm_end);
564                 BUG_ON(region->vm_start < last->vm_top);
565
566                 lastp = p;
567         }
568 }
569 #else
570 static void validate_nommu_regions(void)
571 {
572 }
573 #endif
574
575 /*
576  * add a region into the global tree
577  */
578 static void add_nommu_region(struct vm_region *region)
579 {
580         struct vm_region *pregion;
581         struct rb_node **p, *parent;
582
583         validate_nommu_regions();
584
585         parent = NULL;
586         p = &nommu_region_tree.rb_node;
587         while (*p) {
588                 parent = *p;
589                 pregion = rb_entry(parent, struct vm_region, vm_rb);
590                 if (region->vm_start < pregion->vm_start)
591                         p = &(*p)->rb_left;
592                 else if (region->vm_start > pregion->vm_start)
593                         p = &(*p)->rb_right;
594                 else if (pregion == region)
595                         return;
596                 else
597                         BUG();
598         }
599
600         rb_link_node(&region->vm_rb, parent, p);
601         rb_insert_color(&region->vm_rb, &nommu_region_tree);
602
603         validate_nommu_regions();
604 }
605
606 /*
607  * delete a region from the global tree
608  */
609 static void delete_nommu_region(struct vm_region *region)
610 {
611         BUG_ON(!nommu_region_tree.rb_node);
612
613         validate_nommu_regions();
614         rb_erase(&region->vm_rb, &nommu_region_tree);
615         validate_nommu_regions();
616 }
617
618 /*
619  * free a contiguous series of pages
620  */
621 static void free_page_series(unsigned long from, unsigned long to)
622 {
623         for (; from < to; from += PAGE_SIZE) {
624                 struct page *page = virt_to_page(from);
625
626                 atomic_long_dec(&mmap_pages_allocated);
627                 put_page(page);
628         }
629 }
630
631 /*
632  * release a reference to a region
633  * - the caller must hold the region semaphore for writing, which this releases
634  * - the region may not have been added to the tree yet, in which case vm_top
635  *   will equal vm_start
636  */
637 static void __put_nommu_region(struct vm_region *region)
638         __releases(nommu_region_sem)
639 {
640         BUG_ON(!nommu_region_tree.rb_node);
641
642         if (--region->vm_usage == 0) {
643                 if (region->vm_top > region->vm_start)
644                         delete_nommu_region(region);
645                 up_write(&nommu_region_sem);
646
647                 if (region->vm_file)
648                         fput(region->vm_file);
649
650                 /* IO memory and memory shared directly out of the pagecache
651                  * from ramfs/tmpfs mustn't be released here */
652                 if (region->vm_flags & VM_MAPPED_COPY)
653                         free_page_series(region->vm_start, region->vm_top);
654                 kmem_cache_free(vm_region_jar, region);
655         } else {
656                 up_write(&nommu_region_sem);
657         }
658 }
659
660 /*
661  * release a reference to a region
662  */
663 static void put_nommu_region(struct vm_region *region)
664 {
665         down_write(&nommu_region_sem);
666         __put_nommu_region(region);
667 }
668
669 /*
670  * update protection on a vma
671  */
672 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
673 {
674 #ifdef CONFIG_MPU
675         struct mm_struct *mm = vma->vm_mm;
676         long start = vma->vm_start & PAGE_MASK;
677         while (start < vma->vm_end) {
678                 protect_page(mm, start, flags);
679                 start += PAGE_SIZE;
680         }
681         update_protections(mm);
682 #endif
683 }
684
685 /*
686  * add a VMA into a process's mm_struct in the appropriate place in the list
687  * and tree and add to the address space's page tree also if not an anonymous
688  * page
689  * - should be called with mm->mmap_sem held writelocked
690  */
691 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
692 {
693         struct vm_area_struct *pvma, *prev;
694         struct address_space *mapping;
695         struct rb_node **p, *parent, *rb_prev;
696
697         BUG_ON(!vma->vm_region);
698
699         mm->map_count++;
700         vma->vm_mm = mm;
701
702         protect_vma(vma, vma->vm_flags);
703
704         /* add the VMA to the mapping */
705         if (vma->vm_file) {
706                 mapping = vma->vm_file->f_mapping;
707
708                 i_mmap_lock_write(mapping);
709                 flush_dcache_mmap_lock(mapping);
710                 vma_interval_tree_insert(vma, &mapping->i_mmap);
711                 flush_dcache_mmap_unlock(mapping);
712                 i_mmap_unlock_write(mapping);
713         }
714
715         /* add the VMA to the tree */
716         parent = rb_prev = NULL;
717         p = &mm->mm_rb.rb_node;
718         while (*p) {
719                 parent = *p;
720                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
721
722                 /* sort by: start addr, end addr, VMA struct addr in that order
723                  * (the latter is necessary as we may get identical VMAs) */
724                 if (vma->vm_start < pvma->vm_start)
725                         p = &(*p)->rb_left;
726                 else if (vma->vm_start > pvma->vm_start) {
727                         rb_prev = parent;
728                         p = &(*p)->rb_right;
729                 } else if (vma->vm_end < pvma->vm_end)
730                         p = &(*p)->rb_left;
731                 else if (vma->vm_end > pvma->vm_end) {
732                         rb_prev = parent;
733                         p = &(*p)->rb_right;
734                 } else if (vma < pvma)
735                         p = &(*p)->rb_left;
736                 else if (vma > pvma) {
737                         rb_prev = parent;
738                         p = &(*p)->rb_right;
739                 } else
740                         BUG();
741         }
742
743         rb_link_node(&vma->vm_rb, parent, p);
744         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
745
746         /* add VMA to the VMA list also */
747         prev = NULL;
748         if (rb_prev)
749                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
750
751         __vma_link_list(mm, vma, prev, parent);
752 }
753
754 /*
755  * delete a VMA from its owning mm_struct and address space
756  */
757 static void delete_vma_from_mm(struct vm_area_struct *vma)
758 {
759         int i;
760         struct address_space *mapping;
761         struct mm_struct *mm = vma->vm_mm;
762         struct task_struct *curr = current;
763
764         protect_vma(vma, 0);
765
766         mm->map_count--;
767         for (i = 0; i < VMACACHE_SIZE; i++) {
768                 /* if the vma is cached, invalidate the entire cache */
769                 if (curr->vmacache.vmas[i] == vma) {
770                         vmacache_invalidate(mm);
771                         break;
772                 }
773         }
774
775         /* remove the VMA from the mapping */
776         if (vma->vm_file) {
777                 mapping = vma->vm_file->f_mapping;
778
779                 i_mmap_lock_write(mapping);
780                 flush_dcache_mmap_lock(mapping);
781                 vma_interval_tree_remove(vma, &mapping->i_mmap);
782                 flush_dcache_mmap_unlock(mapping);
783                 i_mmap_unlock_write(mapping);
784         }
785
786         /* remove from the MM's tree and list */
787         rb_erase(&vma->vm_rb, &mm->mm_rb);
788
789         if (vma->vm_prev)
790                 vma->vm_prev->vm_next = vma->vm_next;
791         else
792                 mm->mmap = vma->vm_next;
793
794         if (vma->vm_next)
795                 vma->vm_next->vm_prev = vma->vm_prev;
796 }
797
798 /*
799  * destroy a VMA record
800  */
801 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
802 {
803         if (vma->vm_ops && vma->vm_ops->close)
804                 vma->vm_ops->close(vma);
805         if (vma->vm_file)
806                 fput(vma->vm_file);
807         put_nommu_region(vma->vm_region);
808         kmem_cache_free(vm_area_cachep, vma);
809 }
810
811 /*
812  * look up the first VMA in which addr resides, NULL if none
813  * - should be called with mm->mmap_sem at least held readlocked
814  */
815 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
816 {
817         struct vm_area_struct *vma;
818
819         /* check the cache first */
820         vma = vmacache_find(mm, addr);
821         if (likely(vma))
822                 return vma;
823
824         /* trawl the list (there may be multiple mappings in which addr
825          * resides) */
826         for (vma = mm->mmap; vma; vma = vma->vm_next) {
827                 if (vma->vm_start > addr)
828                         return NULL;
829                 if (vma->vm_end > addr) {
830                         vmacache_update(addr, vma);
831                         return vma;
832                 }
833         }
834
835         return NULL;
836 }
837 EXPORT_SYMBOL(find_vma);
838
839 /*
840  * find a VMA
841  * - we don't extend stack VMAs under NOMMU conditions
842  */
843 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
844 {
845         return find_vma(mm, addr);
846 }
847
848 /*
849  * expand a stack to a given address
850  * - not supported under NOMMU conditions
851  */
852 int expand_stack(struct vm_area_struct *vma, unsigned long address)
853 {
854         return -ENOMEM;
855 }
856
857 /*
858  * look up the first VMA exactly that exactly matches addr
859  * - should be called with mm->mmap_sem at least held readlocked
860  */
861 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
862                                              unsigned long addr,
863                                              unsigned long len)
864 {
865         struct vm_area_struct *vma;
866         unsigned long end = addr + len;
867
868         /* check the cache first */
869         vma = vmacache_find_exact(mm, addr, end);
870         if (vma)
871                 return vma;
872
873         /* trawl the list (there may be multiple mappings in which addr
874          * resides) */
875         for (vma = mm->mmap; vma; vma = vma->vm_next) {
876                 if (vma->vm_start < addr)
877                         continue;
878                 if (vma->vm_start > addr)
879                         return NULL;
880                 if (vma->vm_end == end) {
881                         vmacache_update(addr, vma);
882                         return vma;
883                 }
884         }
885
886         return NULL;
887 }
888
889 /*
890  * determine whether a mapping should be permitted and, if so, what sort of
891  * mapping we're capable of supporting
892  */
893 static int validate_mmap_request(struct file *file,
894                                  unsigned long addr,
895                                  unsigned long len,
896                                  unsigned long prot,
897                                  unsigned long flags,
898                                  unsigned long pgoff,
899                                  unsigned long *_capabilities)
900 {
901         unsigned long capabilities, rlen;
902         int ret;
903
904         /* do the simple checks first */
905         if (flags & MAP_FIXED)
906                 return -EINVAL;
907
908         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
909             (flags & MAP_TYPE) != MAP_SHARED)
910                 return -EINVAL;
911
912         if (!len)
913                 return -EINVAL;
914
915         /* Careful about overflows.. */
916         rlen = PAGE_ALIGN(len);
917         if (!rlen || rlen > TASK_SIZE)
918                 return -ENOMEM;
919
920         /* offset overflow? */
921         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
922                 return -EOVERFLOW;
923
924         if (file) {
925                 /* files must support mmap */
926                 if (!file->f_op->mmap)
927                         return -ENODEV;
928
929                 /* work out if what we've got could possibly be shared
930                  * - we support chardevs that provide their own "memory"
931                  * - we support files/blockdevs that are memory backed
932                  */
933                 if (file->f_op->mmap_capabilities) {
934                         capabilities = file->f_op->mmap_capabilities(file);
935                 } else {
936                         /* no explicit capabilities set, so assume some
937                          * defaults */
938                         switch (file_inode(file)->i_mode & S_IFMT) {
939                         case S_IFREG:
940                         case S_IFBLK:
941                                 capabilities = NOMMU_MAP_COPY;
942                                 break;
943
944                         case S_IFCHR:
945                                 capabilities =
946                                         NOMMU_MAP_DIRECT |
947                                         NOMMU_MAP_READ |
948                                         NOMMU_MAP_WRITE;
949                                 break;
950
951                         default:
952                                 return -EINVAL;
953                         }
954                 }
955
956                 /* eliminate any capabilities that we can't support on this
957                  * device */
958                 if (!file->f_op->get_unmapped_area)
959                         capabilities &= ~NOMMU_MAP_DIRECT;
960                 if (!(file->f_mode & FMODE_CAN_READ))
961                         capabilities &= ~NOMMU_MAP_COPY;
962
963                 /* The file shall have been opened with read permission. */
964                 if (!(file->f_mode & FMODE_READ))
965                         return -EACCES;
966
967                 if (flags & MAP_SHARED) {
968                         /* do checks for writing, appending and locking */
969                         if ((prot & PROT_WRITE) &&
970                             !(file->f_mode & FMODE_WRITE))
971                                 return -EACCES;
972
973                         if (IS_APPEND(file_inode(file)) &&
974                             (file->f_mode & FMODE_WRITE))
975                                 return -EACCES;
976
977                         if (locks_verify_locked(file))
978                                 return -EAGAIN;
979
980                         if (!(capabilities & NOMMU_MAP_DIRECT))
981                                 return -ENODEV;
982
983                         /* we mustn't privatise shared mappings */
984                         capabilities &= ~NOMMU_MAP_COPY;
985                 } else {
986                         /* we're going to read the file into private memory we
987                          * allocate */
988                         if (!(capabilities & NOMMU_MAP_COPY))
989                                 return -ENODEV;
990
991                         /* we don't permit a private writable mapping to be
992                          * shared with the backing device */
993                         if (prot & PROT_WRITE)
994                                 capabilities &= ~NOMMU_MAP_DIRECT;
995                 }
996
997                 if (capabilities & NOMMU_MAP_DIRECT) {
998                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
999                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1000                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1001                             ) {
1002                                 capabilities &= ~NOMMU_MAP_DIRECT;
1003                                 if (flags & MAP_SHARED) {
1004                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
1005                                         return -EINVAL;
1006                                 }
1007                         }
1008                 }
1009
1010                 /* handle executable mappings and implied executable
1011                  * mappings */
1012                 if (path_noexec(&file->f_path)) {
1013                         if (prot & PROT_EXEC)
1014                                 return -EPERM;
1015                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1016                         /* handle implication of PROT_EXEC by PROT_READ */
1017                         if (current->personality & READ_IMPLIES_EXEC) {
1018                                 if (capabilities & NOMMU_MAP_EXEC)
1019                                         prot |= PROT_EXEC;
1020                         }
1021                 } else if ((prot & PROT_READ) &&
1022                          (prot & PROT_EXEC) &&
1023                          !(capabilities & NOMMU_MAP_EXEC)
1024                          ) {
1025                         /* backing file is not executable, try to copy */
1026                         capabilities &= ~NOMMU_MAP_DIRECT;
1027                 }
1028         } else {
1029                 /* anonymous mappings are always memory backed and can be
1030                  * privately mapped
1031                  */
1032                 capabilities = NOMMU_MAP_COPY;
1033
1034                 /* handle PROT_EXEC implication by PROT_READ */
1035                 if ((prot & PROT_READ) &&
1036                     (current->personality & READ_IMPLIES_EXEC))
1037                         prot |= PROT_EXEC;
1038         }
1039
1040         /* allow the security API to have its say */
1041         ret = security_mmap_addr(addr);
1042         if (ret < 0)
1043                 return ret;
1044
1045         /* looks okay */
1046         *_capabilities = capabilities;
1047         return 0;
1048 }
1049
1050 /*
1051  * we've determined that we can make the mapping, now translate what we
1052  * now know into VMA flags
1053  */
1054 static unsigned long determine_vm_flags(struct file *file,
1055                                         unsigned long prot,
1056                                         unsigned long flags,
1057                                         unsigned long capabilities)
1058 {
1059         unsigned long vm_flags;
1060
1061         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1062         /* vm_flags |= mm->def_flags; */
1063
1064         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1065                 /* attempt to share read-only copies of mapped file chunks */
1066                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1067                 if (file && !(prot & PROT_WRITE))
1068                         vm_flags |= VM_MAYSHARE;
1069         } else {
1070                 /* overlay a shareable mapping on the backing device or inode
1071                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1072                  * romfs/cramfs */
1073                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1074                 if (flags & MAP_SHARED)
1075                         vm_flags |= VM_SHARED;
1076         }
1077
1078         /* refuse to let anyone share private mappings with this process if
1079          * it's being traced - otherwise breakpoints set in it may interfere
1080          * with another untraced process
1081          */
1082         if ((flags & MAP_PRIVATE) && current->ptrace)
1083                 vm_flags &= ~VM_MAYSHARE;
1084
1085         return vm_flags;
1086 }
1087
1088 /*
1089  * set up a shared mapping on a file (the driver or filesystem provides and
1090  * pins the storage)
1091  */
1092 static int do_mmap_shared_file(struct vm_area_struct *vma)
1093 {
1094         int ret;
1095
1096         ret = call_mmap(vma->vm_file, vma);
1097         if (ret == 0) {
1098                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1099                 return 0;
1100         }
1101         if (ret != -ENOSYS)
1102                 return ret;
1103
1104         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1105          * opposed to tried but failed) so we can only give a suitable error as
1106          * it's not possible to make a private copy if MAP_SHARED was given */
1107         return -ENODEV;
1108 }
1109
1110 /*
1111  * set up a private mapping or an anonymous shared mapping
1112  */
1113 static int do_mmap_private(struct vm_area_struct *vma,
1114                            struct vm_region *region,
1115                            unsigned long len,
1116                            unsigned long capabilities)
1117 {
1118         unsigned long total, point;
1119         void *base;
1120         int ret, order;
1121
1122         /* invoke the file's mapping function so that it can keep track of
1123          * shared mappings on devices or memory
1124          * - VM_MAYSHARE will be set if it may attempt to share
1125          */
1126         if (capabilities & NOMMU_MAP_DIRECT) {
1127                 ret = call_mmap(vma->vm_file, vma);
1128                 if (ret == 0) {
1129                         /* shouldn't return success if we're not sharing */
1130                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1131                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1132                         return 0;
1133                 }
1134                 if (ret != -ENOSYS)
1135                         return ret;
1136
1137                 /* getting an ENOSYS error indicates that direct mmap isn't
1138                  * possible (as opposed to tried but failed) so we'll try to
1139                  * make a private copy of the data and map that instead */
1140         }
1141
1142
1143         /* allocate some memory to hold the mapping
1144          * - note that this may not return a page-aligned address if the object
1145          *   we're allocating is smaller than a page
1146          */
1147         order = get_order(len);
1148         total = 1 << order;
1149         point = len >> PAGE_SHIFT;
1150
1151         /* we don't want to allocate a power-of-2 sized page set */
1152         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1153                 total = point;
1154
1155         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1156         if (!base)
1157                 goto enomem;
1158
1159         atomic_long_add(total, &mmap_pages_allocated);
1160
1161         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1162         region->vm_start = (unsigned long) base;
1163         region->vm_end   = region->vm_start + len;
1164         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1165
1166         vma->vm_start = region->vm_start;
1167         vma->vm_end   = region->vm_start + len;
1168
1169         if (vma->vm_file) {
1170                 /* read the contents of a file into the copy */
1171                 loff_t fpos;
1172
1173                 fpos = vma->vm_pgoff;
1174                 fpos <<= PAGE_SHIFT;
1175
1176                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1177                 if (ret < 0)
1178                         goto error_free;
1179
1180                 /* clear the last little bit */
1181                 if (ret < len)
1182                         memset(base + ret, 0, len - ret);
1183
1184         }
1185
1186         return 0;
1187
1188 error_free:
1189         free_page_series(region->vm_start, region->vm_top);
1190         region->vm_start = vma->vm_start = 0;
1191         region->vm_end   = vma->vm_end = 0;
1192         region->vm_top   = 0;
1193         return ret;
1194
1195 enomem:
1196         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1197                len, current->pid, current->comm);
1198         show_free_areas(0, NULL);
1199         return -ENOMEM;
1200 }
1201
1202 /*
1203  * handle mapping creation for uClinux
1204  */
1205 unsigned long do_mmap(struct file *file,
1206                         unsigned long addr,
1207                         unsigned long len,
1208                         unsigned long prot,
1209                         unsigned long flags,
1210                         vm_flags_t vm_flags,
1211                         unsigned long pgoff,
1212                         unsigned long *populate,
1213                         struct list_head *uf)
1214 {
1215         struct vm_area_struct *vma;
1216         struct vm_region *region;
1217         struct rb_node *rb;
1218         unsigned long capabilities, result;
1219         int ret;
1220
1221         *populate = 0;
1222
1223         /* decide whether we should attempt the mapping, and if so what sort of
1224          * mapping */
1225         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1226                                     &capabilities);
1227         if (ret < 0)
1228                 return ret;
1229
1230         /* we ignore the address hint */
1231         addr = 0;
1232         len = PAGE_ALIGN(len);
1233
1234         /* we've determined that we can make the mapping, now translate what we
1235          * now know into VMA flags */
1236         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1237
1238         /* we're going to need to record the mapping */
1239         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1240         if (!region)
1241                 goto error_getting_region;
1242
1243         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1244         if (!vma)
1245                 goto error_getting_vma;
1246
1247         region->vm_usage = 1;
1248         region->vm_flags = vm_flags;
1249         region->vm_pgoff = pgoff;
1250
1251         INIT_LIST_HEAD(&vma->anon_vma_chain);
1252         vma->vm_flags = vm_flags;
1253         vma->vm_pgoff = pgoff;
1254
1255         if (file) {
1256                 region->vm_file = get_file(file);
1257                 vma->vm_file = get_file(file);
1258         }
1259
1260         down_write(&nommu_region_sem);
1261
1262         /* if we want to share, we need to check for regions created by other
1263          * mmap() calls that overlap with our proposed mapping
1264          * - we can only share with a superset match on most regular files
1265          * - shared mappings on character devices and memory backed files are
1266          *   permitted to overlap inexactly as far as we are concerned for in
1267          *   these cases, sharing is handled in the driver or filesystem rather
1268          *   than here
1269          */
1270         if (vm_flags & VM_MAYSHARE) {
1271                 struct vm_region *pregion;
1272                 unsigned long pglen, rpglen, pgend, rpgend, start;
1273
1274                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1275                 pgend = pgoff + pglen;
1276
1277                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1278                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1279
1280                         if (!(pregion->vm_flags & VM_MAYSHARE))
1281                                 continue;
1282
1283                         /* search for overlapping mappings on the same file */
1284                         if (file_inode(pregion->vm_file) !=
1285                             file_inode(file))
1286                                 continue;
1287
1288                         if (pregion->vm_pgoff >= pgend)
1289                                 continue;
1290
1291                         rpglen = pregion->vm_end - pregion->vm_start;
1292                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1293                         rpgend = pregion->vm_pgoff + rpglen;
1294                         if (pgoff >= rpgend)
1295                                 continue;
1296
1297                         /* handle inexactly overlapping matches between
1298                          * mappings */
1299                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1300                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1301                                 /* new mapping is not a subset of the region */
1302                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1303                                         goto sharing_violation;
1304                                 continue;
1305                         }
1306
1307                         /* we've found a region we can share */
1308                         pregion->vm_usage++;
1309                         vma->vm_region = pregion;
1310                         start = pregion->vm_start;
1311                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1312                         vma->vm_start = start;
1313                         vma->vm_end = start + len;
1314
1315                         if (pregion->vm_flags & VM_MAPPED_COPY)
1316                                 vma->vm_flags |= VM_MAPPED_COPY;
1317                         else {
1318                                 ret = do_mmap_shared_file(vma);
1319                                 if (ret < 0) {
1320                                         vma->vm_region = NULL;
1321                                         vma->vm_start = 0;
1322                                         vma->vm_end = 0;
1323                                         pregion->vm_usage--;
1324                                         pregion = NULL;
1325                                         goto error_just_free;
1326                                 }
1327                         }
1328                         fput(region->vm_file);
1329                         kmem_cache_free(vm_region_jar, region);
1330                         region = pregion;
1331                         result = start;
1332                         goto share;
1333                 }
1334
1335                 /* obtain the address at which to make a shared mapping
1336                  * - this is the hook for quasi-memory character devices to
1337                  *   tell us the location of a shared mapping
1338                  */
1339                 if (capabilities & NOMMU_MAP_DIRECT) {
1340                         addr = file->f_op->get_unmapped_area(file, addr, len,
1341                                                              pgoff, flags);
1342                         if (IS_ERR_VALUE(addr)) {
1343                                 ret = addr;
1344                                 if (ret != -ENOSYS)
1345                                         goto error_just_free;
1346
1347                                 /* the driver refused to tell us where to site
1348                                  * the mapping so we'll have to attempt to copy
1349                                  * it */
1350                                 ret = -ENODEV;
1351                                 if (!(capabilities & NOMMU_MAP_COPY))
1352                                         goto error_just_free;
1353
1354                                 capabilities &= ~NOMMU_MAP_DIRECT;
1355                         } else {
1356                                 vma->vm_start = region->vm_start = addr;
1357                                 vma->vm_end = region->vm_end = addr + len;
1358                         }
1359                 }
1360         }
1361
1362         vma->vm_region = region;
1363
1364         /* set up the mapping
1365          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1366          */
1367         if (file && vma->vm_flags & VM_SHARED)
1368                 ret = do_mmap_shared_file(vma);
1369         else
1370                 ret = do_mmap_private(vma, region, len, capabilities);
1371         if (ret < 0)
1372                 goto error_just_free;
1373         add_nommu_region(region);
1374
1375         /* clear anonymous mappings that don't ask for uninitialized data */
1376         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1377                 memset((void *)region->vm_start, 0,
1378                        region->vm_end - region->vm_start);
1379
1380         /* okay... we have a mapping; now we have to register it */
1381         result = vma->vm_start;
1382
1383         current->mm->total_vm += len >> PAGE_SHIFT;
1384
1385 share:
1386         add_vma_to_mm(current->mm, vma);
1387
1388         /* we flush the region from the icache only when the first executable
1389          * mapping of it is made  */
1390         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1391                 flush_icache_range(region->vm_start, region->vm_end);
1392                 region->vm_icache_flushed = true;
1393         }
1394
1395         up_write(&nommu_region_sem);
1396
1397         return result;
1398
1399 error_just_free:
1400         up_write(&nommu_region_sem);
1401 error:
1402         if (region->vm_file)
1403                 fput(region->vm_file);
1404         kmem_cache_free(vm_region_jar, region);
1405         if (vma->vm_file)
1406                 fput(vma->vm_file);
1407         kmem_cache_free(vm_area_cachep, vma);
1408         return ret;
1409
1410 sharing_violation:
1411         up_write(&nommu_region_sem);
1412         pr_warn("Attempt to share mismatched mappings\n");
1413         ret = -EINVAL;
1414         goto error;
1415
1416 error_getting_vma:
1417         kmem_cache_free(vm_region_jar, region);
1418         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1419                         len, current->pid);
1420         show_free_areas(0, NULL);
1421         return -ENOMEM;
1422
1423 error_getting_region:
1424         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1425                         len, current->pid);
1426         show_free_areas(0, NULL);
1427         return -ENOMEM;
1428 }
1429
1430 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1431                 unsigned long, prot, unsigned long, flags,
1432                 unsigned long, fd, unsigned long, pgoff)
1433 {
1434         struct file *file = NULL;
1435         unsigned long retval = -EBADF;
1436
1437         audit_mmap_fd(fd, flags);
1438         if (!(flags & MAP_ANONYMOUS)) {
1439                 file = fget(fd);
1440                 if (!file)
1441                         goto out;
1442         }
1443
1444         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1445
1446         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1447
1448         if (file)
1449                 fput(file);
1450 out:
1451         return retval;
1452 }
1453
1454 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1455 struct mmap_arg_struct {
1456         unsigned long addr;
1457         unsigned long len;
1458         unsigned long prot;
1459         unsigned long flags;
1460         unsigned long fd;
1461         unsigned long offset;
1462 };
1463
1464 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1465 {
1466         struct mmap_arg_struct a;
1467
1468         if (copy_from_user(&a, arg, sizeof(a)))
1469                 return -EFAULT;
1470         if (offset_in_page(a.offset))
1471                 return -EINVAL;
1472
1473         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1474                               a.offset >> PAGE_SHIFT);
1475 }
1476 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1477
1478 /*
1479  * split a vma into two pieces at address 'addr', a new vma is allocated either
1480  * for the first part or the tail.
1481  */
1482 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1483               unsigned long addr, int new_below)
1484 {
1485         struct vm_area_struct *new;
1486         struct vm_region *region;
1487         unsigned long npages;
1488
1489         /* we're only permitted to split anonymous regions (these should have
1490          * only a single usage on the region) */
1491         if (vma->vm_file)
1492                 return -ENOMEM;
1493
1494         if (mm->map_count >= sysctl_max_map_count)
1495                 return -ENOMEM;
1496
1497         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1498         if (!region)
1499                 return -ENOMEM;
1500
1501         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1502         if (!new) {
1503                 kmem_cache_free(vm_region_jar, region);
1504                 return -ENOMEM;
1505         }
1506
1507         /* most fields are the same, copy all, and then fixup */
1508         *new = *vma;
1509         *region = *vma->vm_region;
1510         new->vm_region = region;
1511
1512         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1513
1514         if (new_below) {
1515                 region->vm_top = region->vm_end = new->vm_end = addr;
1516         } else {
1517                 region->vm_start = new->vm_start = addr;
1518                 region->vm_pgoff = new->vm_pgoff += npages;
1519         }
1520
1521         if (new->vm_ops && new->vm_ops->open)
1522                 new->vm_ops->open(new);
1523
1524         delete_vma_from_mm(vma);
1525         down_write(&nommu_region_sem);
1526         delete_nommu_region(vma->vm_region);
1527         if (new_below) {
1528                 vma->vm_region->vm_start = vma->vm_start = addr;
1529                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1530         } else {
1531                 vma->vm_region->vm_end = vma->vm_end = addr;
1532                 vma->vm_region->vm_top = addr;
1533         }
1534         add_nommu_region(vma->vm_region);
1535         add_nommu_region(new->vm_region);
1536         up_write(&nommu_region_sem);
1537         add_vma_to_mm(mm, vma);
1538         add_vma_to_mm(mm, new);
1539         return 0;
1540 }
1541
1542 /*
1543  * shrink a VMA by removing the specified chunk from either the beginning or
1544  * the end
1545  */
1546 static int shrink_vma(struct mm_struct *mm,
1547                       struct vm_area_struct *vma,
1548                       unsigned long from, unsigned long to)
1549 {
1550         struct vm_region *region;
1551
1552         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1553          * and list */
1554         delete_vma_from_mm(vma);
1555         if (from > vma->vm_start)
1556                 vma->vm_end = from;
1557         else
1558                 vma->vm_start = to;
1559         add_vma_to_mm(mm, vma);
1560
1561         /* cut the backing region down to size */
1562         region = vma->vm_region;
1563         BUG_ON(region->vm_usage != 1);
1564
1565         down_write(&nommu_region_sem);
1566         delete_nommu_region(region);
1567         if (from > region->vm_start) {
1568                 to = region->vm_top;
1569                 region->vm_top = region->vm_end = from;
1570         } else {
1571                 region->vm_start = to;
1572         }
1573         add_nommu_region(region);
1574         up_write(&nommu_region_sem);
1575
1576         free_page_series(from, to);
1577         return 0;
1578 }
1579
1580 /*
1581  * release a mapping
1582  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1583  *   VMA, though it need not cover the whole VMA
1584  */
1585 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1586 {
1587         struct vm_area_struct *vma;
1588         unsigned long end;
1589         int ret;
1590
1591         len = PAGE_ALIGN(len);
1592         if (len == 0)
1593                 return -EINVAL;
1594
1595         end = start + len;
1596
1597         /* find the first potentially overlapping VMA */
1598         vma = find_vma(mm, start);
1599         if (!vma) {
1600                 static int limit;
1601                 if (limit < 5) {
1602                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1603                                         current->pid, current->comm,
1604                                         start, start + len - 1);
1605                         limit++;
1606                 }
1607                 return -EINVAL;
1608         }
1609
1610         /* we're allowed to split an anonymous VMA but not a file-backed one */
1611         if (vma->vm_file) {
1612                 do {
1613                         if (start > vma->vm_start)
1614                                 return -EINVAL;
1615                         if (end == vma->vm_end)
1616                                 goto erase_whole_vma;
1617                         vma = vma->vm_next;
1618                 } while (vma);
1619                 return -EINVAL;
1620         } else {
1621                 /* the chunk must be a subset of the VMA found */
1622                 if (start == vma->vm_start && end == vma->vm_end)
1623                         goto erase_whole_vma;
1624                 if (start < vma->vm_start || end > vma->vm_end)
1625                         return -EINVAL;
1626                 if (offset_in_page(start))
1627                         return -EINVAL;
1628                 if (end != vma->vm_end && offset_in_page(end))
1629                         return -EINVAL;
1630                 if (start != vma->vm_start && end != vma->vm_end) {
1631                         ret = split_vma(mm, vma, start, 1);
1632                         if (ret < 0)
1633                                 return ret;
1634                 }
1635                 return shrink_vma(mm, vma, start, end);
1636         }
1637
1638 erase_whole_vma:
1639         delete_vma_from_mm(vma);
1640         delete_vma(mm, vma);
1641         return 0;
1642 }
1643 EXPORT_SYMBOL(do_munmap);
1644
1645 int vm_munmap(unsigned long addr, size_t len)
1646 {
1647         struct mm_struct *mm = current->mm;
1648         int ret;
1649
1650         down_write(&mm->mmap_sem);
1651         ret = do_munmap(mm, addr, len, NULL);
1652         up_write(&mm->mmap_sem);
1653         return ret;
1654 }
1655 EXPORT_SYMBOL(vm_munmap);
1656
1657 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1658 {
1659         return vm_munmap(addr, len);
1660 }
1661
1662 /*
1663  * release all the mappings made in a process's VM space
1664  */
1665 void exit_mmap(struct mm_struct *mm)
1666 {
1667         struct vm_area_struct *vma;
1668
1669         if (!mm)
1670                 return;
1671
1672         mm->total_vm = 0;
1673
1674         while ((vma = mm->mmap)) {
1675                 mm->mmap = vma->vm_next;
1676                 delete_vma_from_mm(vma);
1677                 delete_vma(mm, vma);
1678                 cond_resched();
1679         }
1680 }
1681
1682 int vm_brk(unsigned long addr, unsigned long len)
1683 {
1684         return -ENOMEM;
1685 }
1686
1687 /*
1688  * expand (or shrink) an existing mapping, potentially moving it at the same
1689  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1690  *
1691  * under NOMMU conditions, we only permit changing a mapping's size, and only
1692  * as long as it stays within the region allocated by do_mmap_private() and the
1693  * block is not shareable
1694  *
1695  * MREMAP_FIXED is not supported under NOMMU conditions
1696  */
1697 static unsigned long do_mremap(unsigned long addr,
1698                         unsigned long old_len, unsigned long new_len,
1699                         unsigned long flags, unsigned long new_addr)
1700 {
1701         struct vm_area_struct *vma;
1702
1703         /* insanity checks first */
1704         old_len = PAGE_ALIGN(old_len);
1705         new_len = PAGE_ALIGN(new_len);
1706         if (old_len == 0 || new_len == 0)
1707                 return (unsigned long) -EINVAL;
1708
1709         if (offset_in_page(addr))
1710                 return -EINVAL;
1711
1712         if (flags & MREMAP_FIXED && new_addr != addr)
1713                 return (unsigned long) -EINVAL;
1714
1715         vma = find_vma_exact(current->mm, addr, old_len);
1716         if (!vma)
1717                 return (unsigned long) -EINVAL;
1718
1719         if (vma->vm_end != vma->vm_start + old_len)
1720                 return (unsigned long) -EFAULT;
1721
1722         if (vma->vm_flags & VM_MAYSHARE)
1723                 return (unsigned long) -EPERM;
1724
1725         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1726                 return (unsigned long) -ENOMEM;
1727
1728         /* all checks complete - do it */
1729         vma->vm_end = vma->vm_start + new_len;
1730         return vma->vm_start;
1731 }
1732
1733 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1734                 unsigned long, new_len, unsigned long, flags,
1735                 unsigned long, new_addr)
1736 {
1737         unsigned long ret;
1738
1739         down_write(&current->mm->mmap_sem);
1740         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1741         up_write(&current->mm->mmap_sem);
1742         return ret;
1743 }
1744
1745 struct page *follow_page_mask(struct vm_area_struct *vma,
1746                               unsigned long address, unsigned int flags,
1747                               unsigned int *page_mask)
1748 {
1749         *page_mask = 0;
1750         return NULL;
1751 }
1752
1753 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1754                 unsigned long pfn, unsigned long size, pgprot_t prot)
1755 {
1756         if (addr != (pfn << PAGE_SHIFT))
1757                 return -EINVAL;
1758
1759         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1760         return 0;
1761 }
1762 EXPORT_SYMBOL(remap_pfn_range);
1763
1764 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1765 {
1766         unsigned long pfn = start >> PAGE_SHIFT;
1767         unsigned long vm_len = vma->vm_end - vma->vm_start;
1768
1769         pfn += vma->vm_pgoff;
1770         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1771 }
1772 EXPORT_SYMBOL(vm_iomap_memory);
1773
1774 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1775                         unsigned long pgoff)
1776 {
1777         unsigned int size = vma->vm_end - vma->vm_start;
1778
1779         if (!(vma->vm_flags & VM_USERMAP))
1780                 return -EINVAL;
1781
1782         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1783         vma->vm_end = vma->vm_start + size;
1784
1785         return 0;
1786 }
1787 EXPORT_SYMBOL(remap_vmalloc_range);
1788
1789 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1790         unsigned long len, unsigned long pgoff, unsigned long flags)
1791 {
1792         return -ENOMEM;
1793 }
1794
1795 void unmap_mapping_range(struct address_space *mapping,
1796                          loff_t const holebegin, loff_t const holelen,
1797                          int even_cows)
1798 {
1799 }
1800 EXPORT_SYMBOL(unmap_mapping_range);
1801
1802 int filemap_fault(struct vm_fault *vmf)
1803 {
1804         BUG();
1805         return 0;
1806 }
1807 EXPORT_SYMBOL(filemap_fault);
1808
1809 void filemap_map_pages(struct vm_fault *vmf,
1810                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1811 {
1812         BUG();
1813 }
1814 EXPORT_SYMBOL(filemap_map_pages);
1815
1816 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1817                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1818 {
1819         struct vm_area_struct *vma;
1820         int write = gup_flags & FOLL_WRITE;
1821
1822         down_read(&mm->mmap_sem);
1823
1824         /* the access must start within one of the target process's mappings */
1825         vma = find_vma(mm, addr);
1826         if (vma) {
1827                 /* don't overrun this mapping */
1828                 if (addr + len >= vma->vm_end)
1829                         len = vma->vm_end - addr;
1830
1831                 /* only read or write mappings where it is permitted */
1832                 if (write && vma->vm_flags & VM_MAYWRITE)
1833                         copy_to_user_page(vma, NULL, addr,
1834                                          (void *) addr, buf, len);
1835                 else if (!write && vma->vm_flags & VM_MAYREAD)
1836                         copy_from_user_page(vma, NULL, addr,
1837                                             buf, (void *) addr, len);
1838                 else
1839                         len = 0;
1840         } else {
1841                 len = 0;
1842         }
1843
1844         up_read(&mm->mmap_sem);
1845
1846         return len;
1847 }
1848
1849 /**
1850  * @access_remote_vm - access another process' address space
1851  * @mm:         the mm_struct of the target address space
1852  * @addr:       start address to access
1853  * @buf:        source or destination buffer
1854  * @len:        number of bytes to transfer
1855  * @gup_flags:  flags modifying lookup behaviour
1856  *
1857  * The caller must hold a reference on @mm.
1858  */
1859 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1860                 void *buf, int len, unsigned int gup_flags)
1861 {
1862         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1863 }
1864
1865 /*
1866  * Access another process' address space.
1867  * - source/target buffer must be kernel space
1868  */
1869 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1870                 unsigned int gup_flags)
1871 {
1872         struct mm_struct *mm;
1873
1874         if (addr + len < addr)
1875                 return 0;
1876
1877         mm = get_task_mm(tsk);
1878         if (!mm)
1879                 return 0;
1880
1881         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1882
1883         mmput(mm);
1884         return len;
1885 }
1886 EXPORT_SYMBOL_GPL(access_process_vm);
1887
1888 /**
1889  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1890  * @inode: The inode to check
1891  * @size: The current filesize of the inode
1892  * @newsize: The proposed filesize of the inode
1893  *
1894  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1895  * make sure that that any outstanding VMAs aren't broken and then shrink the
1896  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1897  * automatically grant mappings that are too large.
1898  */
1899 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1900                                 size_t newsize)
1901 {
1902         struct vm_area_struct *vma;
1903         struct vm_region *region;
1904         pgoff_t low, high;
1905         size_t r_size, r_top;
1906
1907         low = newsize >> PAGE_SHIFT;
1908         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1909
1910         down_write(&nommu_region_sem);
1911         i_mmap_lock_read(inode->i_mapping);
1912
1913         /* search for VMAs that fall within the dead zone */
1914         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1915                 /* found one - only interested if it's shared out of the page
1916                  * cache */
1917                 if (vma->vm_flags & VM_SHARED) {
1918                         i_mmap_unlock_read(inode->i_mapping);
1919                         up_write(&nommu_region_sem);
1920                         return -ETXTBSY; /* not quite true, but near enough */
1921                 }
1922         }
1923
1924         /* reduce any regions that overlap the dead zone - if in existence,
1925          * these will be pointed to by VMAs that don't overlap the dead zone
1926          *
1927          * we don't check for any regions that start beyond the EOF as there
1928          * shouldn't be any
1929          */
1930         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1931                 if (!(vma->vm_flags & VM_SHARED))
1932                         continue;
1933
1934                 region = vma->vm_region;
1935                 r_size = region->vm_top - region->vm_start;
1936                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1937
1938                 if (r_top > newsize) {
1939                         region->vm_top -= r_top - newsize;
1940                         if (region->vm_end > region->vm_top)
1941                                 region->vm_end = region->vm_top;
1942                 }
1943         }
1944
1945         i_mmap_unlock_read(inode->i_mapping);
1946         up_write(&nommu_region_sem);
1947         return 0;
1948 }
1949
1950 /*
1951  * Initialise sysctl_user_reserve_kbytes.
1952  *
1953  * This is intended to prevent a user from starting a single memory hogging
1954  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1955  * mode.
1956  *
1957  * The default value is min(3% of free memory, 128MB)
1958  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1959  */
1960 static int __meminit init_user_reserve(void)
1961 {
1962         unsigned long free_kbytes;
1963
1964         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1965
1966         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1967         return 0;
1968 }
1969 subsys_initcall(init_user_reserve);
1970
1971 /*
1972  * Initialise sysctl_admin_reserve_kbytes.
1973  *
1974  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1975  * to log in and kill a memory hogging process.
1976  *
1977  * Systems with more than 256MB will reserve 8MB, enough to recover
1978  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1979  * only reserve 3% of free pages by default.
1980  */
1981 static int __meminit init_admin_reserve(void)
1982 {
1983         unsigned long free_kbytes;
1984
1985         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1986
1987         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1988         return 0;
1989 }
1990 subsys_initcall(init_admin_reserve);