GNU Linux-libre 5.4.257-gnu1
[releases.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #include "internal.h"
57
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags)       (0)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75
76 static void unmap_region(struct mm_struct *mm,
77                 struct vm_area_struct *vma, struct vm_area_struct *prev,
78                 unsigned long start, unsigned long end);
79
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type     prot
85  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
86  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
87  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
88  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
89  *
90  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
91  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
92  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
93  */
94 pgprot_t protection_map[16] __ro_after_init = {
95         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 };
98
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
101 {
102         return prot;
103 }
104 #endif
105
106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
107 {
108         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
111
112         return arch_filter_pgprot(ret);
113 }
114 EXPORT_SYMBOL(vm_get_page_prot);
115
116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
117 {
118         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
119 }
120
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
122 void vma_set_page_prot(struct vm_area_struct *vma)
123 {
124         unsigned long vm_flags = vma->vm_flags;
125         pgprot_t vm_page_prot;
126
127         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128         if (vma_wants_writenotify(vma, vm_page_prot)) {
129                 vm_flags &= ~VM_SHARED;
130                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
131         }
132         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
134 }
135
136 /*
137  * Requires inode->i_mapping->i_mmap_rwsem
138  */
139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140                 struct file *file, struct address_space *mapping)
141 {
142         if (vma->vm_flags & VM_DENYWRITE)
143                 atomic_inc(&file_inode(file)->i_writecount);
144         if (vma->vm_flags & VM_SHARED)
145                 mapping_unmap_writable(mapping);
146
147         flush_dcache_mmap_lock(mapping);
148         vma_interval_tree_remove(vma, &mapping->i_mmap);
149         flush_dcache_mmap_unlock(mapping);
150 }
151
152 /*
153  * Unlink a file-based vm structure from its interval tree, to hide
154  * vma from rmap and vmtruncate before freeing its page tables.
155  */
156 void unlink_file_vma(struct vm_area_struct *vma)
157 {
158         struct file *file = vma->vm_file;
159
160         if (file) {
161                 struct address_space *mapping = file->f_mapping;
162                 i_mmap_lock_write(mapping);
163                 __remove_shared_vm_struct(vma, file, mapping);
164                 i_mmap_unlock_write(mapping);
165         }
166 }
167
168 /*
169  * Close a vm structure and free it, returning the next.
170  */
171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
172 {
173         struct vm_area_struct *next = vma->vm_next;
174
175         might_sleep();
176         if (vma->vm_ops && vma->vm_ops->close)
177                 vma->vm_ops->close(vma);
178         if (vma->vm_file)
179                 fput(vma->vm_file);
180         mpol_put(vma_policy(vma));
181         vm_area_free(vma);
182         return next;
183 }
184
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186                 struct list_head *uf);
187 SYSCALL_DEFINE1(brk, unsigned long, brk)
188 {
189         unsigned long retval;
190         unsigned long newbrk, oldbrk, origbrk;
191         struct mm_struct *mm = current->mm;
192         struct vm_area_struct *next;
193         unsigned long min_brk;
194         bool populate;
195         bool downgraded = false;
196         LIST_HEAD(uf);
197
198         if (down_write_killable(&mm->mmap_sem))
199                 return -EINTR;
200
201         origbrk = mm->brk;
202
203 #ifdef CONFIG_COMPAT_BRK
204         /*
205          * CONFIG_COMPAT_BRK can still be overridden by setting
206          * randomize_va_space to 2, which will still cause mm->start_brk
207          * to be arbitrarily shifted
208          */
209         if (current->brk_randomized)
210                 min_brk = mm->start_brk;
211         else
212                 min_brk = mm->end_data;
213 #else
214         min_brk = mm->start_brk;
215 #endif
216         if (brk < min_brk)
217                 goto out;
218
219         /*
220          * Check against rlimit here. If this check is done later after the test
221          * of oldbrk with newbrk then it can escape the test and let the data
222          * segment grow beyond its set limit the in case where the limit is
223          * not page aligned -Ram Gupta
224          */
225         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
226                               mm->end_data, mm->start_data))
227                 goto out;
228
229         newbrk = PAGE_ALIGN(brk);
230         oldbrk = PAGE_ALIGN(mm->brk);
231         if (oldbrk == newbrk) {
232                 mm->brk = brk;
233                 goto success;
234         }
235
236         /*
237          * Always allow shrinking brk.
238          * __do_munmap() may downgrade mmap_sem to read.
239          */
240         if (brk <= mm->brk) {
241                 int ret;
242
243                 /*
244                  * mm->brk must to be protected by write mmap_sem so update it
245                  * before downgrading mmap_sem. When __do_munmap() fails,
246                  * mm->brk will be restored from origbrk.
247                  */
248                 mm->brk = brk;
249                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
250                 if (ret < 0) {
251                         mm->brk = origbrk;
252                         goto out;
253                 } else if (ret == 1) {
254                         downgraded = true;
255                 }
256                 goto success;
257         }
258
259         /* Check against existing mmap mappings. */
260         next = find_vma(mm, oldbrk);
261         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
262                 goto out;
263
264         /* Ok, looks good - let it rip. */
265         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
266                 goto out;
267         mm->brk = brk;
268
269 success:
270         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
271         if (downgraded)
272                 up_read(&mm->mmap_sem);
273         else
274                 up_write(&mm->mmap_sem);
275         userfaultfd_unmap_complete(mm, &uf);
276         if (populate)
277                 mm_populate(oldbrk, newbrk - oldbrk);
278         return brk;
279
280 out:
281         retval = origbrk;
282         up_write(&mm->mmap_sem);
283         return retval;
284 }
285
286 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
287 {
288         unsigned long gap, prev_end;
289
290         /*
291          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
292          * allow two stack_guard_gaps between them here, and when choosing
293          * an unmapped area; whereas when expanding we only require one.
294          * That's a little inconsistent, but keeps the code here simpler.
295          */
296         gap = vm_start_gap(vma);
297         if (vma->vm_prev) {
298                 prev_end = vm_end_gap(vma->vm_prev);
299                 if (gap > prev_end)
300                         gap -= prev_end;
301                 else
302                         gap = 0;
303         }
304         return gap;
305 }
306
307 #ifdef CONFIG_DEBUG_VM_RB
308 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
309 {
310         unsigned long max = vma_compute_gap(vma), subtree_gap;
311         if (vma->vm_rb.rb_left) {
312                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
313                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
314                 if (subtree_gap > max)
315                         max = subtree_gap;
316         }
317         if (vma->vm_rb.rb_right) {
318                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
319                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
320                 if (subtree_gap > max)
321                         max = subtree_gap;
322         }
323         return max;
324 }
325
326 static int browse_rb(struct mm_struct *mm)
327 {
328         struct rb_root *root = &mm->mm_rb;
329         int i = 0, j, bug = 0;
330         struct rb_node *nd, *pn = NULL;
331         unsigned long prev = 0, pend = 0;
332
333         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
334                 struct vm_area_struct *vma;
335                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
336                 if (vma->vm_start < prev) {
337                         pr_emerg("vm_start %lx < prev %lx\n",
338                                   vma->vm_start, prev);
339                         bug = 1;
340                 }
341                 if (vma->vm_start < pend) {
342                         pr_emerg("vm_start %lx < pend %lx\n",
343                                   vma->vm_start, pend);
344                         bug = 1;
345                 }
346                 if (vma->vm_start > vma->vm_end) {
347                         pr_emerg("vm_start %lx > vm_end %lx\n",
348                                   vma->vm_start, vma->vm_end);
349                         bug = 1;
350                 }
351                 spin_lock(&mm->page_table_lock);
352                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
353                         pr_emerg("free gap %lx, correct %lx\n",
354                                vma->rb_subtree_gap,
355                                vma_compute_subtree_gap(vma));
356                         bug = 1;
357                 }
358                 spin_unlock(&mm->page_table_lock);
359                 i++;
360                 pn = nd;
361                 prev = vma->vm_start;
362                 pend = vma->vm_end;
363         }
364         j = 0;
365         for (nd = pn; nd; nd = rb_prev(nd))
366                 j++;
367         if (i != j) {
368                 pr_emerg("backwards %d, forwards %d\n", j, i);
369                 bug = 1;
370         }
371         return bug ? -1 : i;
372 }
373
374 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
375 {
376         struct rb_node *nd;
377
378         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
379                 struct vm_area_struct *vma;
380                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
381                 VM_BUG_ON_VMA(vma != ignore &&
382                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
383                         vma);
384         }
385 }
386
387 static void validate_mm(struct mm_struct *mm)
388 {
389         int bug = 0;
390         int i = 0;
391         unsigned long highest_address = 0;
392         struct vm_area_struct *vma = mm->mmap;
393
394         while (vma) {
395                 struct anon_vma *anon_vma = vma->anon_vma;
396                 struct anon_vma_chain *avc;
397
398                 if (anon_vma) {
399                         anon_vma_lock_read(anon_vma);
400                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
401                                 anon_vma_interval_tree_verify(avc);
402                         anon_vma_unlock_read(anon_vma);
403                 }
404
405                 highest_address = vm_end_gap(vma);
406                 vma = vma->vm_next;
407                 i++;
408         }
409         if (i != mm->map_count) {
410                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
411                 bug = 1;
412         }
413         if (highest_address != mm->highest_vm_end) {
414                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
415                           mm->highest_vm_end, highest_address);
416                 bug = 1;
417         }
418         i = browse_rb(mm);
419         if (i != mm->map_count) {
420                 if (i != -1)
421                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
422                 bug = 1;
423         }
424         VM_BUG_ON_MM(bug, mm);
425 }
426 #else
427 #define validate_mm_rb(root, ignore) do { } while (0)
428 #define validate_mm(mm) do { } while (0)
429 #endif
430
431 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
432                          struct vm_area_struct, vm_rb,
433                          unsigned long, rb_subtree_gap, vma_compute_gap)
434
435 /*
436  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
437  * vma->vm_prev->vm_end values changed, without modifying the vma's position
438  * in the rbtree.
439  */
440 static void vma_gap_update(struct vm_area_struct *vma)
441 {
442         /*
443          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
444          * a callback function that does exactly what we want.
445          */
446         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
447 }
448
449 static inline void vma_rb_insert(struct vm_area_struct *vma,
450                                  struct rb_root *root)
451 {
452         /* All rb_subtree_gap values must be consistent prior to insertion */
453         validate_mm_rb(root, NULL);
454
455         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
456 }
457
458 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
459 {
460         /*
461          * Note rb_erase_augmented is a fairly large inline function,
462          * so make sure we instantiate it only once with our desired
463          * augmented rbtree callbacks.
464          */
465         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
466 }
467
468 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
469                                                 struct rb_root *root,
470                                                 struct vm_area_struct *ignore)
471 {
472         /*
473          * All rb_subtree_gap values must be consistent prior to erase,
474          * with the possible exception of the "next" vma being erased if
475          * next->vm_start was reduced.
476          */
477         validate_mm_rb(root, ignore);
478
479         __vma_rb_erase(vma, root);
480 }
481
482 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
483                                          struct rb_root *root)
484 {
485         /*
486          * All rb_subtree_gap values must be consistent prior to erase,
487          * with the possible exception of the vma being erased.
488          */
489         validate_mm_rb(root, vma);
490
491         __vma_rb_erase(vma, root);
492 }
493
494 /*
495  * vma has some anon_vma assigned, and is already inserted on that
496  * anon_vma's interval trees.
497  *
498  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
499  * vma must be removed from the anon_vma's interval trees using
500  * anon_vma_interval_tree_pre_update_vma().
501  *
502  * After the update, the vma will be reinserted using
503  * anon_vma_interval_tree_post_update_vma().
504  *
505  * The entire update must be protected by exclusive mmap_sem and by
506  * the root anon_vma's mutex.
507  */
508 static inline void
509 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
510 {
511         struct anon_vma_chain *avc;
512
513         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
514                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
515 }
516
517 static inline void
518 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
519 {
520         struct anon_vma_chain *avc;
521
522         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
523                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
524 }
525
526 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
527                 unsigned long end, struct vm_area_struct **pprev,
528                 struct rb_node ***rb_link, struct rb_node **rb_parent)
529 {
530         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
531
532         __rb_link = &mm->mm_rb.rb_node;
533         rb_prev = __rb_parent = NULL;
534
535         while (*__rb_link) {
536                 struct vm_area_struct *vma_tmp;
537
538                 __rb_parent = *__rb_link;
539                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
540
541                 if (vma_tmp->vm_end > addr) {
542                         /* Fail if an existing vma overlaps the area */
543                         if (vma_tmp->vm_start < end)
544                                 return -ENOMEM;
545                         __rb_link = &__rb_parent->rb_left;
546                 } else {
547                         rb_prev = __rb_parent;
548                         __rb_link = &__rb_parent->rb_right;
549                 }
550         }
551
552         *pprev = NULL;
553         if (rb_prev)
554                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
555         *rb_link = __rb_link;
556         *rb_parent = __rb_parent;
557         return 0;
558 }
559
560 static unsigned long count_vma_pages_range(struct mm_struct *mm,
561                 unsigned long addr, unsigned long end)
562 {
563         unsigned long nr_pages = 0;
564         struct vm_area_struct *vma;
565
566         /* Find first overlaping mapping */
567         vma = find_vma_intersection(mm, addr, end);
568         if (!vma)
569                 return 0;
570
571         nr_pages = (min(end, vma->vm_end) -
572                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
573
574         /* Iterate over the rest of the overlaps */
575         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
576                 unsigned long overlap_len;
577
578                 if (vma->vm_start > end)
579                         break;
580
581                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
582                 nr_pages += overlap_len >> PAGE_SHIFT;
583         }
584
585         return nr_pages;
586 }
587
588 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
589                 struct rb_node **rb_link, struct rb_node *rb_parent)
590 {
591         /* Update tracking information for the gap following the new vma. */
592         if (vma->vm_next)
593                 vma_gap_update(vma->vm_next);
594         else
595                 mm->highest_vm_end = vm_end_gap(vma);
596
597         /*
598          * vma->vm_prev wasn't known when we followed the rbtree to find the
599          * correct insertion point for that vma. As a result, we could not
600          * update the vma vm_rb parents rb_subtree_gap values on the way down.
601          * So, we first insert the vma with a zero rb_subtree_gap value
602          * (to be consistent with what we did on the way down), and then
603          * immediately update the gap to the correct value. Finally we
604          * rebalance the rbtree after all augmented values have been set.
605          */
606         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
607         vma->rb_subtree_gap = 0;
608         vma_gap_update(vma);
609         vma_rb_insert(vma, &mm->mm_rb);
610 }
611
612 static void __vma_link_file(struct vm_area_struct *vma)
613 {
614         struct file *file;
615
616         file = vma->vm_file;
617         if (file) {
618                 struct address_space *mapping = file->f_mapping;
619
620                 if (vma->vm_flags & VM_DENYWRITE)
621                         atomic_dec(&file_inode(file)->i_writecount);
622                 if (vma->vm_flags & VM_SHARED)
623                         atomic_inc(&mapping->i_mmap_writable);
624
625                 flush_dcache_mmap_lock(mapping);
626                 vma_interval_tree_insert(vma, &mapping->i_mmap);
627                 flush_dcache_mmap_unlock(mapping);
628         }
629 }
630
631 static void
632 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
633         struct vm_area_struct *prev, struct rb_node **rb_link,
634         struct rb_node *rb_parent)
635 {
636         __vma_link_list(mm, vma, prev, rb_parent);
637         __vma_link_rb(mm, vma, rb_link, rb_parent);
638 }
639
640 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641                         struct vm_area_struct *prev, struct rb_node **rb_link,
642                         struct rb_node *rb_parent)
643 {
644         struct address_space *mapping = NULL;
645
646         if (vma->vm_file) {
647                 mapping = vma->vm_file->f_mapping;
648                 i_mmap_lock_write(mapping);
649         }
650
651         __vma_link(mm, vma, prev, rb_link, rb_parent);
652         __vma_link_file(vma);
653
654         if (mapping)
655                 i_mmap_unlock_write(mapping);
656
657         mm->map_count++;
658         validate_mm(mm);
659 }
660
661 /*
662  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
663  * mm's list and rbtree.  It has already been inserted into the interval tree.
664  */
665 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
666 {
667         struct vm_area_struct *prev;
668         struct rb_node **rb_link, *rb_parent;
669
670         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
671                            &prev, &rb_link, &rb_parent))
672                 BUG();
673         __vma_link(mm, vma, prev, rb_link, rb_parent);
674         mm->map_count++;
675 }
676
677 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
678                                                 struct vm_area_struct *vma,
679                                                 struct vm_area_struct *prev,
680                                                 bool has_prev,
681                                                 struct vm_area_struct *ignore)
682 {
683         struct vm_area_struct *next;
684
685         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
686         next = vma->vm_next;
687         if (has_prev)
688                 prev->vm_next = next;
689         else {
690                 prev = vma->vm_prev;
691                 if (prev)
692                         prev->vm_next = next;
693                 else
694                         mm->mmap = next;
695         }
696         if (next)
697                 next->vm_prev = prev;
698
699         /* Kill the cache */
700         vmacache_invalidate(mm);
701 }
702
703 static inline void __vma_unlink_prev(struct mm_struct *mm,
704                                      struct vm_area_struct *vma,
705                                      struct vm_area_struct *prev)
706 {
707         __vma_unlink_common(mm, vma, prev, true, vma);
708 }
709
710 /*
711  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
712  * is already present in an i_mmap tree without adjusting the tree.
713  * The following helper function should be used when such adjustments
714  * are necessary.  The "insert" vma (if any) is to be inserted
715  * before we drop the necessary locks.
716  */
717 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
718         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
719         struct vm_area_struct *expand)
720 {
721         struct mm_struct *mm = vma->vm_mm;
722         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
723         struct address_space *mapping = NULL;
724         struct rb_root_cached *root = NULL;
725         struct anon_vma *anon_vma = NULL;
726         struct file *file = vma->vm_file;
727         bool start_changed = false, end_changed = false;
728         long adjust_next = 0;
729         int remove_next = 0;
730
731         if (next && !insert) {
732                 struct vm_area_struct *exporter = NULL, *importer = NULL;
733
734                 if (end >= next->vm_end) {
735                         /*
736                          * vma expands, overlapping all the next, and
737                          * perhaps the one after too (mprotect case 6).
738                          * The only other cases that gets here are
739                          * case 1, case 7 and case 8.
740                          */
741                         if (next == expand) {
742                                 /*
743                                  * The only case where we don't expand "vma"
744                                  * and we expand "next" instead is case 8.
745                                  */
746                                 VM_WARN_ON(end != next->vm_end);
747                                 /*
748                                  * remove_next == 3 means we're
749                                  * removing "vma" and that to do so we
750                                  * swapped "vma" and "next".
751                                  */
752                                 remove_next = 3;
753                                 VM_WARN_ON(file != next->vm_file);
754                                 swap(vma, next);
755                         } else {
756                                 VM_WARN_ON(expand != vma);
757                                 /*
758                                  * case 1, 6, 7, remove_next == 2 is case 6,
759                                  * remove_next == 1 is case 1 or 7.
760                                  */
761                                 remove_next = 1 + (end > next->vm_end);
762                                 VM_WARN_ON(remove_next == 2 &&
763                                            end != next->vm_next->vm_end);
764                                 VM_WARN_ON(remove_next == 1 &&
765                                            end != next->vm_end);
766                                 /* trim end to next, for case 6 first pass */
767                                 end = next->vm_end;
768                         }
769
770                         exporter = next;
771                         importer = vma;
772
773                         /*
774                          * If next doesn't have anon_vma, import from vma after
775                          * next, if the vma overlaps with it.
776                          */
777                         if (remove_next == 2 && !next->anon_vma)
778                                 exporter = next->vm_next;
779
780                 } else if (end > next->vm_start) {
781                         /*
782                          * vma expands, overlapping part of the next:
783                          * mprotect case 5 shifting the boundary up.
784                          */
785                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
786                         exporter = next;
787                         importer = vma;
788                         VM_WARN_ON(expand != importer);
789                 } else if (end < vma->vm_end) {
790                         /*
791                          * vma shrinks, and !insert tells it's not
792                          * split_vma inserting another: so it must be
793                          * mprotect case 4 shifting the boundary down.
794                          */
795                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
796                         exporter = vma;
797                         importer = next;
798                         VM_WARN_ON(expand != importer);
799                 }
800
801                 /*
802                  * Easily overlooked: when mprotect shifts the boundary,
803                  * make sure the expanding vma has anon_vma set if the
804                  * shrinking vma had, to cover any anon pages imported.
805                  */
806                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
807                         int error;
808
809                         importer->anon_vma = exporter->anon_vma;
810                         error = anon_vma_clone(importer, exporter);
811                         if (error)
812                                 return error;
813                 }
814         }
815 again:
816         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
817
818         if (file) {
819                 mapping = file->f_mapping;
820                 root = &mapping->i_mmap;
821                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
822
823                 if (adjust_next)
824                         uprobe_munmap(next, next->vm_start, next->vm_end);
825
826                 i_mmap_lock_write(mapping);
827                 if (insert) {
828                         /*
829                          * Put into interval tree now, so instantiated pages
830                          * are visible to arm/parisc __flush_dcache_page
831                          * throughout; but we cannot insert into address
832                          * space until vma start or end is updated.
833                          */
834                         __vma_link_file(insert);
835                 }
836         }
837
838         anon_vma = vma->anon_vma;
839         if (!anon_vma && adjust_next)
840                 anon_vma = next->anon_vma;
841         if (anon_vma) {
842                 VM_WARN_ON(adjust_next && next->anon_vma &&
843                            anon_vma != next->anon_vma);
844                 anon_vma_lock_write(anon_vma);
845                 anon_vma_interval_tree_pre_update_vma(vma);
846                 if (adjust_next)
847                         anon_vma_interval_tree_pre_update_vma(next);
848         }
849
850         if (root) {
851                 flush_dcache_mmap_lock(mapping);
852                 vma_interval_tree_remove(vma, root);
853                 if (adjust_next)
854                         vma_interval_tree_remove(next, root);
855         }
856
857         if (start != vma->vm_start) {
858                 vma->vm_start = start;
859                 start_changed = true;
860         }
861         if (end != vma->vm_end) {
862                 vma->vm_end = end;
863                 end_changed = true;
864         }
865         vma->vm_pgoff = pgoff;
866         if (adjust_next) {
867                 next->vm_start += adjust_next << PAGE_SHIFT;
868                 next->vm_pgoff += adjust_next;
869         }
870
871         if (root) {
872                 if (adjust_next)
873                         vma_interval_tree_insert(next, root);
874                 vma_interval_tree_insert(vma, root);
875                 flush_dcache_mmap_unlock(mapping);
876         }
877
878         if (remove_next) {
879                 /*
880                  * vma_merge has merged next into vma, and needs
881                  * us to remove next before dropping the locks.
882                  */
883                 if (remove_next != 3)
884                         __vma_unlink_prev(mm, next, vma);
885                 else
886                         /*
887                          * vma is not before next if they've been
888                          * swapped.
889                          *
890                          * pre-swap() next->vm_start was reduced so
891                          * tell validate_mm_rb to ignore pre-swap()
892                          * "next" (which is stored in post-swap()
893                          * "vma").
894                          */
895                         __vma_unlink_common(mm, next, NULL, false, vma);
896                 if (file)
897                         __remove_shared_vm_struct(next, file, mapping);
898         } else if (insert) {
899                 /*
900                  * split_vma has split insert from vma, and needs
901                  * us to insert it before dropping the locks
902                  * (it may either follow vma or precede it).
903                  */
904                 __insert_vm_struct(mm, insert);
905         } else {
906                 if (start_changed)
907                         vma_gap_update(vma);
908                 if (end_changed) {
909                         if (!next)
910                                 mm->highest_vm_end = vm_end_gap(vma);
911                         else if (!adjust_next)
912                                 vma_gap_update(next);
913                 }
914         }
915
916         if (anon_vma) {
917                 anon_vma_interval_tree_post_update_vma(vma);
918                 if (adjust_next)
919                         anon_vma_interval_tree_post_update_vma(next);
920                 anon_vma_unlock_write(anon_vma);
921         }
922         if (mapping)
923                 i_mmap_unlock_write(mapping);
924
925         if (root) {
926                 uprobe_mmap(vma);
927
928                 if (adjust_next)
929                         uprobe_mmap(next);
930         }
931
932         if (remove_next) {
933                 if (file) {
934                         uprobe_munmap(next, next->vm_start, next->vm_end);
935                         fput(file);
936                 }
937                 if (next->anon_vma)
938                         anon_vma_merge(vma, next);
939                 mm->map_count--;
940                 mpol_put(vma_policy(next));
941                 vm_area_free(next);
942                 /*
943                  * In mprotect's case 6 (see comments on vma_merge),
944                  * we must remove another next too. It would clutter
945                  * up the code too much to do both in one go.
946                  */
947                 if (remove_next != 3) {
948                         /*
949                          * If "next" was removed and vma->vm_end was
950                          * expanded (up) over it, in turn
951                          * "next->vm_prev->vm_end" changed and the
952                          * "vma->vm_next" gap must be updated.
953                          */
954                         next = vma->vm_next;
955                 } else {
956                         /*
957                          * For the scope of the comment "next" and
958                          * "vma" considered pre-swap(): if "vma" was
959                          * removed, next->vm_start was expanded (down)
960                          * over it and the "next" gap must be updated.
961                          * Because of the swap() the post-swap() "vma"
962                          * actually points to pre-swap() "next"
963                          * (post-swap() "next" as opposed is now a
964                          * dangling pointer).
965                          */
966                         next = vma;
967                 }
968                 if (remove_next == 2) {
969                         remove_next = 1;
970                         end = next->vm_end;
971                         goto again;
972                 }
973                 else if (next)
974                         vma_gap_update(next);
975                 else {
976                         /*
977                          * If remove_next == 2 we obviously can't
978                          * reach this path.
979                          *
980                          * If remove_next == 3 we can't reach this
981                          * path because pre-swap() next is always not
982                          * NULL. pre-swap() "next" is not being
983                          * removed and its next->vm_end is not altered
984                          * (and furthermore "end" already matches
985                          * next->vm_end in remove_next == 3).
986                          *
987                          * We reach this only in the remove_next == 1
988                          * case if the "next" vma that was removed was
989                          * the highest vma of the mm. However in such
990                          * case next->vm_end == "end" and the extended
991                          * "vma" has vma->vm_end == next->vm_end so
992                          * mm->highest_vm_end doesn't need any update
993                          * in remove_next == 1 case.
994                          */
995                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
996                 }
997         }
998         if (insert && file)
999                 uprobe_mmap(insert);
1000
1001         validate_mm(mm);
1002
1003         return 0;
1004 }
1005
1006 /*
1007  * If the vma has a ->close operation then the driver probably needs to release
1008  * per-vma resources, so we don't attempt to merge those.
1009  */
1010 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1011                                 struct file *file, unsigned long vm_flags,
1012                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1013 {
1014         /*
1015          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1016          * match the flags but dirty bit -- the caller should mark
1017          * merged VMA as dirty. If dirty bit won't be excluded from
1018          * comparison, we increase pressure on the memory system forcing
1019          * the kernel to generate new VMAs when old one could be
1020          * extended instead.
1021          */
1022         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1023                 return 0;
1024         if (vma->vm_file != file)
1025                 return 0;
1026         if (vma->vm_ops && vma->vm_ops->close)
1027                 return 0;
1028         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1029                 return 0;
1030         return 1;
1031 }
1032
1033 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1034                                         struct anon_vma *anon_vma2,
1035                                         struct vm_area_struct *vma)
1036 {
1037         /*
1038          * The list_is_singular() test is to avoid merging VMA cloned from
1039          * parents. This can improve scalability caused by anon_vma lock.
1040          */
1041         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1042                 list_is_singular(&vma->anon_vma_chain)))
1043                 return 1;
1044         return anon_vma1 == anon_vma2;
1045 }
1046
1047 /*
1048  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1049  * in front of (at a lower virtual address and file offset than) the vma.
1050  *
1051  * We cannot merge two vmas if they have differently assigned (non-NULL)
1052  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1053  *
1054  * We don't check here for the merged mmap wrapping around the end of pagecache
1055  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1056  * wrap, nor mmaps which cover the final page at index -1UL.
1057  */
1058 static int
1059 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1060                      struct anon_vma *anon_vma, struct file *file,
1061                      pgoff_t vm_pgoff,
1062                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1063 {
1064         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1065             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1066                 if (vma->vm_pgoff == vm_pgoff)
1067                         return 1;
1068         }
1069         return 0;
1070 }
1071
1072 /*
1073  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1074  * beyond (at a higher virtual address and file offset than) the vma.
1075  *
1076  * We cannot merge two vmas if they have differently assigned (non-NULL)
1077  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1078  */
1079 static int
1080 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1081                     struct anon_vma *anon_vma, struct file *file,
1082                     pgoff_t vm_pgoff,
1083                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1084 {
1085         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1086             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1087                 pgoff_t vm_pglen;
1088                 vm_pglen = vma_pages(vma);
1089                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1090                         return 1;
1091         }
1092         return 0;
1093 }
1094
1095 /*
1096  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1097  * whether that can be merged with its predecessor or its successor.
1098  * Or both (it neatly fills a hole).
1099  *
1100  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1101  * certain not to be mapped by the time vma_merge is called; but when
1102  * called for mprotect, it is certain to be already mapped (either at
1103  * an offset within prev, or at the start of next), and the flags of
1104  * this area are about to be changed to vm_flags - and the no-change
1105  * case has already been eliminated.
1106  *
1107  * The following mprotect cases have to be considered, where AAAA is
1108  * the area passed down from mprotect_fixup, never extending beyond one
1109  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1110  *
1111  *     AAAA             AAAA                AAAA          AAAA
1112  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1113  *    cannot merge    might become    might become    might become
1114  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1115  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1116  *    mremap move:                                    PPPPXXXXXXXX 8
1117  *        AAAA
1118  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1119  *    might become    case 1 below    case 2 below    case 3 below
1120  *
1121  * It is important for case 8 that the vma NNNN overlapping the
1122  * region AAAA is never going to extended over XXXX. Instead XXXX must
1123  * be extended in region AAAA and NNNN must be removed. This way in
1124  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1125  * rmap_locks, the properties of the merged vma will be already
1126  * correct for the whole merged range. Some of those properties like
1127  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1128  * be correct for the whole merged range immediately after the
1129  * rmap_locks are released. Otherwise if XXXX would be removed and
1130  * NNNN would be extended over the XXXX range, remove_migration_ptes
1131  * or other rmap walkers (if working on addresses beyond the "end"
1132  * parameter) may establish ptes with the wrong permissions of NNNN
1133  * instead of the right permissions of XXXX.
1134  */
1135 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1136                         struct vm_area_struct *prev, unsigned long addr,
1137                         unsigned long end, unsigned long vm_flags,
1138                         struct anon_vma *anon_vma, struct file *file,
1139                         pgoff_t pgoff, struct mempolicy *policy,
1140                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1141 {
1142         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1143         struct vm_area_struct *area, *next;
1144         int err;
1145
1146         /*
1147          * We later require that vma->vm_flags == vm_flags,
1148          * so this tests vma->vm_flags & VM_SPECIAL, too.
1149          */
1150         if (vm_flags & VM_SPECIAL)
1151                 return NULL;
1152
1153         if (prev)
1154                 next = prev->vm_next;
1155         else
1156                 next = mm->mmap;
1157         area = next;
1158         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1159                 next = next->vm_next;
1160
1161         /* verify some invariant that must be enforced by the caller */
1162         VM_WARN_ON(prev && addr <= prev->vm_start);
1163         VM_WARN_ON(area && end > area->vm_end);
1164         VM_WARN_ON(addr >= end);
1165
1166         /*
1167          * Can it merge with the predecessor?
1168          */
1169         if (prev && prev->vm_end == addr &&
1170                         mpol_equal(vma_policy(prev), policy) &&
1171                         can_vma_merge_after(prev, vm_flags,
1172                                             anon_vma, file, pgoff,
1173                                             vm_userfaultfd_ctx)) {
1174                 /*
1175                  * OK, it can.  Can we now merge in the successor as well?
1176                  */
1177                 if (next && end == next->vm_start &&
1178                                 mpol_equal(policy, vma_policy(next)) &&
1179                                 can_vma_merge_before(next, vm_flags,
1180                                                      anon_vma, file,
1181                                                      pgoff+pglen,
1182                                                      vm_userfaultfd_ctx) &&
1183                                 is_mergeable_anon_vma(prev->anon_vma,
1184                                                       next->anon_vma, NULL)) {
1185                                                         /* cases 1, 6 */
1186                         err = __vma_adjust(prev, prev->vm_start,
1187                                          next->vm_end, prev->vm_pgoff, NULL,
1188                                          prev);
1189                 } else                                  /* cases 2, 5, 7 */
1190                         err = __vma_adjust(prev, prev->vm_start,
1191                                          end, prev->vm_pgoff, NULL, prev);
1192                 if (err)
1193                         return NULL;
1194                 khugepaged_enter_vma_merge(prev, vm_flags);
1195                 return prev;
1196         }
1197
1198         /*
1199          * Can this new request be merged in front of next?
1200          */
1201         if (next && end == next->vm_start &&
1202                         mpol_equal(policy, vma_policy(next)) &&
1203                         can_vma_merge_before(next, vm_flags,
1204                                              anon_vma, file, pgoff+pglen,
1205                                              vm_userfaultfd_ctx)) {
1206                 if (prev && addr < prev->vm_end)        /* case 4 */
1207                         err = __vma_adjust(prev, prev->vm_start,
1208                                          addr, prev->vm_pgoff, NULL, next);
1209                 else {                                  /* cases 3, 8 */
1210                         err = __vma_adjust(area, addr, next->vm_end,
1211                                          next->vm_pgoff - pglen, NULL, next);
1212                         /*
1213                          * In case 3 area is already equal to next and
1214                          * this is a noop, but in case 8 "area" has
1215                          * been removed and next was expanded over it.
1216                          */
1217                         area = next;
1218                 }
1219                 if (err)
1220                         return NULL;
1221                 khugepaged_enter_vma_merge(area, vm_flags);
1222                 return area;
1223         }
1224
1225         return NULL;
1226 }
1227
1228 /*
1229  * Rough compatbility check to quickly see if it's even worth looking
1230  * at sharing an anon_vma.
1231  *
1232  * They need to have the same vm_file, and the flags can only differ
1233  * in things that mprotect may change.
1234  *
1235  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1236  * we can merge the two vma's. For example, we refuse to merge a vma if
1237  * there is a vm_ops->close() function, because that indicates that the
1238  * driver is doing some kind of reference counting. But that doesn't
1239  * really matter for the anon_vma sharing case.
1240  */
1241 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1242 {
1243         return a->vm_end == b->vm_start &&
1244                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1245                 a->vm_file == b->vm_file &&
1246                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1247                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1248 }
1249
1250 /*
1251  * Do some basic sanity checking to see if we can re-use the anon_vma
1252  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1253  * the same as 'old', the other will be the new one that is trying
1254  * to share the anon_vma.
1255  *
1256  * NOTE! This runs with mm_sem held for reading, so it is possible that
1257  * the anon_vma of 'old' is concurrently in the process of being set up
1258  * by another page fault trying to merge _that_. But that's ok: if it
1259  * is being set up, that automatically means that it will be a singleton
1260  * acceptable for merging, so we can do all of this optimistically. But
1261  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1262  *
1263  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1264  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1265  * is to return an anon_vma that is "complex" due to having gone through
1266  * a fork).
1267  *
1268  * We also make sure that the two vma's are compatible (adjacent,
1269  * and with the same memory policies). That's all stable, even with just
1270  * a read lock on the mm_sem.
1271  */
1272 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1273 {
1274         if (anon_vma_compatible(a, b)) {
1275                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1276
1277                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1278                         return anon_vma;
1279         }
1280         return NULL;
1281 }
1282
1283 /*
1284  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1285  * neighbouring vmas for a suitable anon_vma, before it goes off
1286  * to allocate a new anon_vma.  It checks because a repetitive
1287  * sequence of mprotects and faults may otherwise lead to distinct
1288  * anon_vmas being allocated, preventing vma merge in subsequent
1289  * mprotect.
1290  */
1291 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1292 {
1293         struct anon_vma *anon_vma;
1294         struct vm_area_struct *near;
1295
1296         near = vma->vm_next;
1297         if (!near)
1298                 goto try_prev;
1299
1300         anon_vma = reusable_anon_vma(near, vma, near);
1301         if (anon_vma)
1302                 return anon_vma;
1303 try_prev:
1304         near = vma->vm_prev;
1305         if (!near)
1306                 goto none;
1307
1308         anon_vma = reusable_anon_vma(near, near, vma);
1309         if (anon_vma)
1310                 return anon_vma;
1311 none:
1312         /*
1313          * There's no absolute need to look only at touching neighbours:
1314          * we could search further afield for "compatible" anon_vmas.
1315          * But it would probably just be a waste of time searching,
1316          * or lead to too many vmas hanging off the same anon_vma.
1317          * We're trying to allow mprotect remerging later on,
1318          * not trying to minimize memory used for anon_vmas.
1319          */
1320         return NULL;
1321 }
1322
1323 /*
1324  * If a hint addr is less than mmap_min_addr change hint to be as
1325  * low as possible but still greater than mmap_min_addr
1326  */
1327 static inline unsigned long round_hint_to_min(unsigned long hint)
1328 {
1329         hint &= PAGE_MASK;
1330         if (((void *)hint != NULL) &&
1331             (hint < mmap_min_addr))
1332                 return PAGE_ALIGN(mmap_min_addr);
1333         return hint;
1334 }
1335
1336 static inline int mlock_future_check(struct mm_struct *mm,
1337                                      unsigned long flags,
1338                                      unsigned long len)
1339 {
1340         unsigned long locked, lock_limit;
1341
1342         /*  mlock MCL_FUTURE? */
1343         if (flags & VM_LOCKED) {
1344                 locked = len >> PAGE_SHIFT;
1345                 locked += mm->locked_vm;
1346                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1347                 lock_limit >>= PAGE_SHIFT;
1348                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1349                         return -EAGAIN;
1350         }
1351         return 0;
1352 }
1353
1354 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1355 {
1356         if (S_ISREG(inode->i_mode))
1357                 return MAX_LFS_FILESIZE;
1358
1359         if (S_ISBLK(inode->i_mode))
1360                 return MAX_LFS_FILESIZE;
1361
1362         if (S_ISSOCK(inode->i_mode))
1363                 return MAX_LFS_FILESIZE;
1364
1365         /* Special "we do even unsigned file positions" case */
1366         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1367                 return 0;
1368
1369         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1370         return ULONG_MAX;
1371 }
1372
1373 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1374                                 unsigned long pgoff, unsigned long len)
1375 {
1376         u64 maxsize = file_mmap_size_max(file, inode);
1377
1378         if (maxsize && len > maxsize)
1379                 return false;
1380         maxsize -= len;
1381         if (pgoff > maxsize >> PAGE_SHIFT)
1382                 return false;
1383         return true;
1384 }
1385
1386 /*
1387  * The caller must hold down_write(&current->mm->mmap_sem).
1388  */
1389 unsigned long do_mmap(struct file *file, unsigned long addr,
1390                         unsigned long len, unsigned long prot,
1391                         unsigned long flags, vm_flags_t vm_flags,
1392                         unsigned long pgoff, unsigned long *populate,
1393                         struct list_head *uf)
1394 {
1395         struct mm_struct *mm = current->mm;
1396         int pkey = 0;
1397
1398         *populate = 0;
1399
1400         if (!len)
1401                 return -EINVAL;
1402
1403         /*
1404          * Does the application expect PROT_READ to imply PROT_EXEC?
1405          *
1406          * (the exception is when the underlying filesystem is noexec
1407          *  mounted, in which case we dont add PROT_EXEC.)
1408          */
1409         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1410                 if (!(file && path_noexec(&file->f_path)))
1411                         prot |= PROT_EXEC;
1412
1413         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1414         if (flags & MAP_FIXED_NOREPLACE)
1415                 flags |= MAP_FIXED;
1416
1417         if (!(flags & MAP_FIXED))
1418                 addr = round_hint_to_min(addr);
1419
1420         /* Careful about overflows.. */
1421         len = PAGE_ALIGN(len);
1422         if (!len)
1423                 return -ENOMEM;
1424
1425         /* offset overflow? */
1426         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1427                 return -EOVERFLOW;
1428
1429         /* Too many mappings? */
1430         if (mm->map_count > sysctl_max_map_count)
1431                 return -ENOMEM;
1432
1433         /* Obtain the address to map to. we verify (or select) it and ensure
1434          * that it represents a valid section of the address space.
1435          */
1436         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1437         if (offset_in_page(addr))
1438                 return addr;
1439
1440         if (flags & MAP_FIXED_NOREPLACE) {
1441                 struct vm_area_struct *vma = find_vma(mm, addr);
1442
1443                 if (vma && vma->vm_start < addr + len)
1444                         return -EEXIST;
1445         }
1446
1447         if (prot == PROT_EXEC) {
1448                 pkey = execute_only_pkey(mm);
1449                 if (pkey < 0)
1450                         pkey = 0;
1451         }
1452
1453         /* Do simple checking here so the lower-level routines won't have
1454          * to. we assume access permissions have been handled by the open
1455          * of the memory object, so we don't do any here.
1456          */
1457         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1458                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1459
1460         if (flags & MAP_LOCKED)
1461                 if (!can_do_mlock())
1462                         return -EPERM;
1463
1464         if (mlock_future_check(mm, vm_flags, len))
1465                 return -EAGAIN;
1466
1467         if (file) {
1468                 struct inode *inode = file_inode(file);
1469                 unsigned long flags_mask;
1470
1471                 if (!file_mmap_ok(file, inode, pgoff, len))
1472                         return -EOVERFLOW;
1473
1474                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1475
1476                 switch (flags & MAP_TYPE) {
1477                 case MAP_SHARED:
1478                         /*
1479                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1480                          * flags. E.g. MAP_SYNC is dangerous to use with
1481                          * MAP_SHARED as you don't know which consistency model
1482                          * you will get. We silently ignore unsupported flags
1483                          * with MAP_SHARED to preserve backward compatibility.
1484                          */
1485                         flags &= LEGACY_MAP_MASK;
1486                         /* fall through */
1487                 case MAP_SHARED_VALIDATE:
1488                         if (flags & ~flags_mask)
1489                                 return -EOPNOTSUPP;
1490                         if (prot & PROT_WRITE) {
1491                                 if (!(file->f_mode & FMODE_WRITE))
1492                                         return -EACCES;
1493                                 if (IS_SWAPFILE(file->f_mapping->host))
1494                                         return -ETXTBSY;
1495                         }
1496
1497                         /*
1498                          * Make sure we don't allow writing to an append-only
1499                          * file..
1500                          */
1501                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1502                                 return -EACCES;
1503
1504                         /*
1505                          * Make sure there are no mandatory locks on the file.
1506                          */
1507                         if (locks_verify_locked(file))
1508                                 return -EAGAIN;
1509
1510                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1511                         if (!(file->f_mode & FMODE_WRITE))
1512                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1513
1514                         /* fall through */
1515                 case MAP_PRIVATE:
1516                         if (!(file->f_mode & FMODE_READ))
1517                                 return -EACCES;
1518                         if (path_noexec(&file->f_path)) {
1519                                 if (vm_flags & VM_EXEC)
1520                                         return -EPERM;
1521                                 vm_flags &= ~VM_MAYEXEC;
1522                         }
1523
1524                         if (!file->f_op->mmap)
1525                                 return -ENODEV;
1526                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1527                                 return -EINVAL;
1528                         break;
1529
1530                 default:
1531                         return -EINVAL;
1532                 }
1533         } else {
1534                 switch (flags & MAP_TYPE) {
1535                 case MAP_SHARED:
1536                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1537                                 return -EINVAL;
1538                         /*
1539                          * Ignore pgoff.
1540                          */
1541                         pgoff = 0;
1542                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1543                         break;
1544                 case MAP_PRIVATE:
1545                         /*
1546                          * Set pgoff according to addr for anon_vma.
1547                          */
1548                         pgoff = addr >> PAGE_SHIFT;
1549                         break;
1550                 default:
1551                         return -EINVAL;
1552                 }
1553         }
1554
1555         /*
1556          * Set 'VM_NORESERVE' if we should not account for the
1557          * memory use of this mapping.
1558          */
1559         if (flags & MAP_NORESERVE) {
1560                 /* We honor MAP_NORESERVE if allowed to overcommit */
1561                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1562                         vm_flags |= VM_NORESERVE;
1563
1564                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1565                 if (file && is_file_hugepages(file))
1566                         vm_flags |= VM_NORESERVE;
1567         }
1568
1569         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1570         if (!IS_ERR_VALUE(addr) &&
1571             ((vm_flags & VM_LOCKED) ||
1572              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1573                 *populate = len;
1574         return addr;
1575 }
1576
1577 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1578                               unsigned long prot, unsigned long flags,
1579                               unsigned long fd, unsigned long pgoff)
1580 {
1581         struct file *file = NULL;
1582         unsigned long retval;
1583
1584         if (!(flags & MAP_ANONYMOUS)) {
1585                 audit_mmap_fd(fd, flags);
1586                 file = fget(fd);
1587                 if (!file)
1588                         return -EBADF;
1589                 if (is_file_hugepages(file))
1590                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1591                 retval = -EINVAL;
1592                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1593                         goto out_fput;
1594         } else if (flags & MAP_HUGETLB) {
1595                 struct user_struct *user = NULL;
1596                 struct hstate *hs;
1597
1598                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1599                 if (!hs)
1600                         return -EINVAL;
1601
1602                 len = ALIGN(len, huge_page_size(hs));
1603                 /*
1604                  * VM_NORESERVE is used because the reservations will be
1605                  * taken when vm_ops->mmap() is called
1606                  * A dummy user value is used because we are not locking
1607                  * memory so no accounting is necessary
1608                  */
1609                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1610                                 VM_NORESERVE,
1611                                 &user, HUGETLB_ANONHUGE_INODE,
1612                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1613                 if (IS_ERR(file))
1614                         return PTR_ERR(file);
1615         }
1616
1617         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1618
1619         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1620 out_fput:
1621         if (file)
1622                 fput(file);
1623         return retval;
1624 }
1625
1626 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1627                 unsigned long, prot, unsigned long, flags,
1628                 unsigned long, fd, unsigned long, pgoff)
1629 {
1630         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1631 }
1632
1633 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1634 struct mmap_arg_struct {
1635         unsigned long addr;
1636         unsigned long len;
1637         unsigned long prot;
1638         unsigned long flags;
1639         unsigned long fd;
1640         unsigned long offset;
1641 };
1642
1643 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1644 {
1645         struct mmap_arg_struct a;
1646
1647         if (copy_from_user(&a, arg, sizeof(a)))
1648                 return -EFAULT;
1649         if (offset_in_page(a.offset))
1650                 return -EINVAL;
1651
1652         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1653                                a.offset >> PAGE_SHIFT);
1654 }
1655 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1656
1657 /*
1658  * Some shared mappings will want the pages marked read-only
1659  * to track write events. If so, we'll downgrade vm_page_prot
1660  * to the private version (using protection_map[] without the
1661  * VM_SHARED bit).
1662  */
1663 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1664 {
1665         vm_flags_t vm_flags = vma->vm_flags;
1666         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1667
1668         /* If it was private or non-writable, the write bit is already clear */
1669         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1670                 return 0;
1671
1672         /* The backer wishes to know when pages are first written to? */
1673         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1674                 return 1;
1675
1676         /* The open routine did something to the protections that pgprot_modify
1677          * won't preserve? */
1678         if (pgprot_val(vm_page_prot) !=
1679             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1680                 return 0;
1681
1682         /*
1683          * Do we need to track softdirty? hugetlb does not support softdirty
1684          * tracking yet.
1685          */
1686         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1687             !is_vm_hugetlb_page(vma))
1688                 return 1;
1689
1690         /* Specialty mapping? */
1691         if (vm_flags & VM_PFNMAP)
1692                 return 0;
1693
1694         /* Can the mapping track the dirty pages? */
1695         return vma->vm_file && vma->vm_file->f_mapping &&
1696                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1697 }
1698
1699 /*
1700  * We account for memory if it's a private writeable mapping,
1701  * not hugepages and VM_NORESERVE wasn't set.
1702  */
1703 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1704 {
1705         /*
1706          * hugetlb has its own accounting separate from the core VM
1707          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1708          */
1709         if (file && is_file_hugepages(file))
1710                 return 0;
1711
1712         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1713 }
1714
1715 unsigned long mmap_region(struct file *file, unsigned long addr,
1716                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1717                 struct list_head *uf)
1718 {
1719         struct mm_struct *mm = current->mm;
1720         struct vm_area_struct *vma, *prev;
1721         int error;
1722         struct rb_node **rb_link, *rb_parent;
1723         unsigned long charged = 0;
1724
1725         /* Check against address space limit. */
1726         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1727                 unsigned long nr_pages;
1728
1729                 /*
1730                  * MAP_FIXED may remove pages of mappings that intersects with
1731                  * requested mapping. Account for the pages it would unmap.
1732                  */
1733                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1734
1735                 if (!may_expand_vm(mm, vm_flags,
1736                                         (len >> PAGE_SHIFT) - nr_pages))
1737                         return -ENOMEM;
1738         }
1739
1740         /* Clear old maps */
1741         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1742                               &rb_parent)) {
1743                 if (do_munmap(mm, addr, len, uf))
1744                         return -ENOMEM;
1745         }
1746
1747         /*
1748          * Private writable mapping: check memory availability
1749          */
1750         if (accountable_mapping(file, vm_flags)) {
1751                 charged = len >> PAGE_SHIFT;
1752                 if (security_vm_enough_memory_mm(mm, charged))
1753                         return -ENOMEM;
1754                 vm_flags |= VM_ACCOUNT;
1755         }
1756
1757         /*
1758          * Can we just expand an old mapping?
1759          */
1760         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1761                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1762         if (vma)
1763                 goto out;
1764
1765         /*
1766          * Determine the object being mapped and call the appropriate
1767          * specific mapper. the address has already been validated, but
1768          * not unmapped, but the maps are removed from the list.
1769          */
1770         vma = vm_area_alloc(mm);
1771         if (!vma) {
1772                 error = -ENOMEM;
1773                 goto unacct_error;
1774         }
1775
1776         vma->vm_start = addr;
1777         vma->vm_end = addr + len;
1778         vma->vm_flags = vm_flags;
1779         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1780         vma->vm_pgoff = pgoff;
1781
1782         if (file) {
1783                 if (vm_flags & VM_DENYWRITE) {
1784                         error = deny_write_access(file);
1785                         if (error)
1786                                 goto free_vma;
1787                 }
1788                 if (vm_flags & VM_SHARED) {
1789                         error = mapping_map_writable(file->f_mapping);
1790                         if (error)
1791                                 goto allow_write_and_free_vma;
1792                 }
1793
1794                 /* ->mmap() can change vma->vm_file, but must guarantee that
1795                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1796                  * and map writably if VM_SHARED is set. This usually means the
1797                  * new file must not have been exposed to user-space, yet.
1798                  */
1799                 vma->vm_file = get_file(file);
1800                 error = call_mmap(file, vma);
1801                 if (error)
1802                         goto unmap_and_free_vma;
1803
1804                 /* Can addr have changed??
1805                  *
1806                  * Answer: Yes, several device drivers can do it in their
1807                  *         f_op->mmap method. -DaveM
1808                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1809                  *      be updated for vma_link()
1810                  */
1811                 WARN_ON_ONCE(addr != vma->vm_start);
1812
1813                 addr = vma->vm_start;
1814                 vm_flags = vma->vm_flags;
1815         } else if (vm_flags & VM_SHARED) {
1816                 error = shmem_zero_setup(vma);
1817                 if (error)
1818                         goto free_vma;
1819         } else {
1820                 vma_set_anonymous(vma);
1821         }
1822
1823         vma_link(mm, vma, prev, rb_link, rb_parent);
1824         /* Once vma denies write, undo our temporary denial count */
1825         if (file) {
1826                 if (vm_flags & VM_SHARED)
1827                         mapping_unmap_writable(file->f_mapping);
1828                 if (vm_flags & VM_DENYWRITE)
1829                         allow_write_access(file);
1830         }
1831         file = vma->vm_file;
1832 out:
1833         perf_event_mmap(vma);
1834
1835         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1836         if (vm_flags & VM_LOCKED) {
1837                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1838                                         is_vm_hugetlb_page(vma) ||
1839                                         vma == get_gate_vma(current->mm))
1840                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1841                 else
1842                         mm->locked_vm += (len >> PAGE_SHIFT);
1843         }
1844
1845         if (file)
1846                 uprobe_mmap(vma);
1847
1848         /*
1849          * New (or expanded) vma always get soft dirty status.
1850          * Otherwise user-space soft-dirty page tracker won't
1851          * be able to distinguish situation when vma area unmapped,
1852          * then new mapped in-place (which must be aimed as
1853          * a completely new data area).
1854          */
1855         vma->vm_flags |= VM_SOFTDIRTY;
1856
1857         vma_set_page_prot(vma);
1858
1859         return addr;
1860
1861 unmap_and_free_vma:
1862         vma->vm_file = NULL;
1863         fput(file);
1864
1865         /* Undo any partial mapping done by a device driver. */
1866         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1867         if (vm_flags & VM_SHARED)
1868                 mapping_unmap_writable(file->f_mapping);
1869 allow_write_and_free_vma:
1870         if (vm_flags & VM_DENYWRITE)
1871                 allow_write_access(file);
1872 free_vma:
1873         vm_area_free(vma);
1874 unacct_error:
1875         if (charged)
1876                 vm_unacct_memory(charged);
1877         return error;
1878 }
1879
1880 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1881 {
1882         /*
1883          * We implement the search by looking for an rbtree node that
1884          * immediately follows a suitable gap. That is,
1885          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1886          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1887          * - gap_end - gap_start >= length
1888          */
1889
1890         struct mm_struct *mm = current->mm;
1891         struct vm_area_struct *vma;
1892         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1893
1894         /* Adjust search length to account for worst case alignment overhead */
1895         length = info->length + info->align_mask;
1896         if (length < info->length)
1897                 return -ENOMEM;
1898
1899         /* Adjust search limits by the desired length */
1900         if (info->high_limit < length)
1901                 return -ENOMEM;
1902         high_limit = info->high_limit - length;
1903
1904         if (info->low_limit > high_limit)
1905                 return -ENOMEM;
1906         low_limit = info->low_limit + length;
1907
1908         /* Check if rbtree root looks promising */
1909         if (RB_EMPTY_ROOT(&mm->mm_rb))
1910                 goto check_highest;
1911         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1912         if (vma->rb_subtree_gap < length)
1913                 goto check_highest;
1914
1915         while (true) {
1916                 /* Visit left subtree if it looks promising */
1917                 gap_end = vm_start_gap(vma);
1918                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1919                         struct vm_area_struct *left =
1920                                 rb_entry(vma->vm_rb.rb_left,
1921                                          struct vm_area_struct, vm_rb);
1922                         if (left->rb_subtree_gap >= length) {
1923                                 vma = left;
1924                                 continue;
1925                         }
1926                 }
1927
1928                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1929 check_current:
1930                 /* Check if current node has a suitable gap */
1931                 if (gap_start > high_limit)
1932                         return -ENOMEM;
1933                 if (gap_end >= low_limit &&
1934                     gap_end > gap_start && gap_end - gap_start >= length)
1935                         goto found;
1936
1937                 /* Visit right subtree if it looks promising */
1938                 if (vma->vm_rb.rb_right) {
1939                         struct vm_area_struct *right =
1940                                 rb_entry(vma->vm_rb.rb_right,
1941                                          struct vm_area_struct, vm_rb);
1942                         if (right->rb_subtree_gap >= length) {
1943                                 vma = right;
1944                                 continue;
1945                         }
1946                 }
1947
1948                 /* Go back up the rbtree to find next candidate node */
1949                 while (true) {
1950                         struct rb_node *prev = &vma->vm_rb;
1951                         if (!rb_parent(prev))
1952                                 goto check_highest;
1953                         vma = rb_entry(rb_parent(prev),
1954                                        struct vm_area_struct, vm_rb);
1955                         if (prev == vma->vm_rb.rb_left) {
1956                                 gap_start = vm_end_gap(vma->vm_prev);
1957                                 gap_end = vm_start_gap(vma);
1958                                 goto check_current;
1959                         }
1960                 }
1961         }
1962
1963 check_highest:
1964         /* Check highest gap, which does not precede any rbtree node */
1965         gap_start = mm->highest_vm_end;
1966         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1967         if (gap_start > high_limit)
1968                 return -ENOMEM;
1969
1970 found:
1971         /* We found a suitable gap. Clip it with the original low_limit. */
1972         if (gap_start < info->low_limit)
1973                 gap_start = info->low_limit;
1974
1975         /* Adjust gap address to the desired alignment */
1976         gap_start += (info->align_offset - gap_start) & info->align_mask;
1977
1978         VM_BUG_ON(gap_start + info->length > info->high_limit);
1979         VM_BUG_ON(gap_start + info->length > gap_end);
1980         return gap_start;
1981 }
1982
1983 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1984 {
1985         struct mm_struct *mm = current->mm;
1986         struct vm_area_struct *vma;
1987         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1988
1989         /* Adjust search length to account for worst case alignment overhead */
1990         length = info->length + info->align_mask;
1991         if (length < info->length)
1992                 return -ENOMEM;
1993
1994         /*
1995          * Adjust search limits by the desired length.
1996          * See implementation comment at top of unmapped_area().
1997          */
1998         gap_end = info->high_limit;
1999         if (gap_end < length)
2000                 return -ENOMEM;
2001         high_limit = gap_end - length;
2002
2003         if (info->low_limit > high_limit)
2004                 return -ENOMEM;
2005         low_limit = info->low_limit + length;
2006
2007         /* Check highest gap, which does not precede any rbtree node */
2008         gap_start = mm->highest_vm_end;
2009         if (gap_start <= high_limit)
2010                 goto found_highest;
2011
2012         /* Check if rbtree root looks promising */
2013         if (RB_EMPTY_ROOT(&mm->mm_rb))
2014                 return -ENOMEM;
2015         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2016         if (vma->rb_subtree_gap < length)
2017                 return -ENOMEM;
2018
2019         while (true) {
2020                 /* Visit right subtree if it looks promising */
2021                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2022                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2023                         struct vm_area_struct *right =
2024                                 rb_entry(vma->vm_rb.rb_right,
2025                                          struct vm_area_struct, vm_rb);
2026                         if (right->rb_subtree_gap >= length) {
2027                                 vma = right;
2028                                 continue;
2029                         }
2030                 }
2031
2032 check_current:
2033                 /* Check if current node has a suitable gap */
2034                 gap_end = vm_start_gap(vma);
2035                 if (gap_end < low_limit)
2036                         return -ENOMEM;
2037                 if (gap_start <= high_limit &&
2038                     gap_end > gap_start && gap_end - gap_start >= length)
2039                         goto found;
2040
2041                 /* Visit left subtree if it looks promising */
2042                 if (vma->vm_rb.rb_left) {
2043                         struct vm_area_struct *left =
2044                                 rb_entry(vma->vm_rb.rb_left,
2045                                          struct vm_area_struct, vm_rb);
2046                         if (left->rb_subtree_gap >= length) {
2047                                 vma = left;
2048                                 continue;
2049                         }
2050                 }
2051
2052                 /* Go back up the rbtree to find next candidate node */
2053                 while (true) {
2054                         struct rb_node *prev = &vma->vm_rb;
2055                         if (!rb_parent(prev))
2056                                 return -ENOMEM;
2057                         vma = rb_entry(rb_parent(prev),
2058                                        struct vm_area_struct, vm_rb);
2059                         if (prev == vma->vm_rb.rb_right) {
2060                                 gap_start = vma->vm_prev ?
2061                                         vm_end_gap(vma->vm_prev) : 0;
2062                                 goto check_current;
2063                         }
2064                 }
2065         }
2066
2067 found:
2068         /* We found a suitable gap. Clip it with the original high_limit. */
2069         if (gap_end > info->high_limit)
2070                 gap_end = info->high_limit;
2071
2072 found_highest:
2073         /* Compute highest gap address at the desired alignment */
2074         gap_end -= info->length;
2075         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2076
2077         VM_BUG_ON(gap_end < info->low_limit);
2078         VM_BUG_ON(gap_end < gap_start);
2079         return gap_end;
2080 }
2081
2082
2083 /* Get an address range which is currently unmapped.
2084  * For shmat() with addr=0.
2085  *
2086  * Ugly calling convention alert:
2087  * Return value with the low bits set means error value,
2088  * ie
2089  *      if (ret & ~PAGE_MASK)
2090  *              error = ret;
2091  *
2092  * This function "knows" that -ENOMEM has the bits set.
2093  */
2094 #ifndef HAVE_ARCH_UNMAPPED_AREA
2095 unsigned long
2096 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2097                 unsigned long len, unsigned long pgoff, unsigned long flags)
2098 {
2099         struct mm_struct *mm = current->mm;
2100         struct vm_area_struct *vma, *prev;
2101         struct vm_unmapped_area_info info;
2102         const unsigned long mmap_end = arch_get_mmap_end(addr);
2103
2104         if (len > mmap_end - mmap_min_addr)
2105                 return -ENOMEM;
2106
2107         if (flags & MAP_FIXED)
2108                 return addr;
2109
2110         if (addr) {
2111                 addr = PAGE_ALIGN(addr);
2112                 vma = find_vma_prev(mm, addr, &prev);
2113                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2114                     (!vma || addr + len <= vm_start_gap(vma)) &&
2115                     (!prev || addr >= vm_end_gap(prev)))
2116                         return addr;
2117         }
2118
2119         info.flags = 0;
2120         info.length = len;
2121         info.low_limit = mm->mmap_base;
2122         info.high_limit = mmap_end;
2123         info.align_mask = 0;
2124         info.align_offset = 0;
2125         return vm_unmapped_area(&info);
2126 }
2127 #endif
2128
2129 /*
2130  * This mmap-allocator allocates new areas top-down from below the
2131  * stack's low limit (the base):
2132  */
2133 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2134 unsigned long
2135 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2136                           unsigned long len, unsigned long pgoff,
2137                           unsigned long flags)
2138 {
2139         struct vm_area_struct *vma, *prev;
2140         struct mm_struct *mm = current->mm;
2141         struct vm_unmapped_area_info info;
2142         const unsigned long mmap_end = arch_get_mmap_end(addr);
2143
2144         /* requested length too big for entire address space */
2145         if (len > mmap_end - mmap_min_addr)
2146                 return -ENOMEM;
2147
2148         if (flags & MAP_FIXED)
2149                 return addr;
2150
2151         /* requesting a specific address */
2152         if (addr) {
2153                 addr = PAGE_ALIGN(addr);
2154                 vma = find_vma_prev(mm, addr, &prev);
2155                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2156                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2157                                 (!prev || addr >= vm_end_gap(prev)))
2158                         return addr;
2159         }
2160
2161         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2162         info.length = len;
2163         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2164         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2165         info.align_mask = 0;
2166         info.align_offset = 0;
2167         addr = vm_unmapped_area(&info);
2168
2169         /*
2170          * A failed mmap() very likely causes application failure,
2171          * so fall back to the bottom-up function here. This scenario
2172          * can happen with large stack limits and large mmap()
2173          * allocations.
2174          */
2175         if (offset_in_page(addr)) {
2176                 VM_BUG_ON(addr != -ENOMEM);
2177                 info.flags = 0;
2178                 info.low_limit = TASK_UNMAPPED_BASE;
2179                 info.high_limit = mmap_end;
2180                 addr = vm_unmapped_area(&info);
2181         }
2182
2183         return addr;
2184 }
2185 #endif
2186
2187 unsigned long
2188 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2189                 unsigned long pgoff, unsigned long flags)
2190 {
2191         unsigned long (*get_area)(struct file *, unsigned long,
2192                                   unsigned long, unsigned long, unsigned long);
2193
2194         unsigned long error = arch_mmap_check(addr, len, flags);
2195         if (error)
2196                 return error;
2197
2198         /* Careful about overflows.. */
2199         if (len > TASK_SIZE)
2200                 return -ENOMEM;
2201
2202         get_area = current->mm->get_unmapped_area;
2203         if (file) {
2204                 if (file->f_op->get_unmapped_area)
2205                         get_area = file->f_op->get_unmapped_area;
2206         } else if (flags & MAP_SHARED) {
2207                 /*
2208                  * mmap_region() will call shmem_zero_setup() to create a file,
2209                  * so use shmem's get_unmapped_area in case it can be huge.
2210                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2211                  */
2212                 pgoff = 0;
2213                 get_area = shmem_get_unmapped_area;
2214         }
2215
2216         addr = get_area(file, addr, len, pgoff, flags);
2217         if (IS_ERR_VALUE(addr))
2218                 return addr;
2219
2220         if (addr > TASK_SIZE - len)
2221                 return -ENOMEM;
2222         if (offset_in_page(addr))
2223                 return -EINVAL;
2224
2225         error = security_mmap_addr(addr);
2226         return error ? error : addr;
2227 }
2228
2229 EXPORT_SYMBOL(get_unmapped_area);
2230
2231 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2232 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2233 {
2234         struct rb_node *rb_node;
2235         struct vm_area_struct *vma;
2236
2237         /* Check the cache first. */
2238         vma = vmacache_find(mm, addr);
2239         if (likely(vma))
2240                 return vma;
2241
2242         rb_node = mm->mm_rb.rb_node;
2243
2244         while (rb_node) {
2245                 struct vm_area_struct *tmp;
2246
2247                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2248
2249                 if (tmp->vm_end > addr) {
2250                         vma = tmp;
2251                         if (tmp->vm_start <= addr)
2252                                 break;
2253                         rb_node = rb_node->rb_left;
2254                 } else
2255                         rb_node = rb_node->rb_right;
2256         }
2257
2258         if (vma)
2259                 vmacache_update(addr, vma);
2260         return vma;
2261 }
2262
2263 EXPORT_SYMBOL(find_vma);
2264
2265 /*
2266  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2267  */
2268 struct vm_area_struct *
2269 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2270                         struct vm_area_struct **pprev)
2271 {
2272         struct vm_area_struct *vma;
2273
2274         vma = find_vma(mm, addr);
2275         if (vma) {
2276                 *pprev = vma->vm_prev;
2277         } else {
2278                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2279
2280                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2281         }
2282         return vma;
2283 }
2284
2285 /*
2286  * Verify that the stack growth is acceptable and
2287  * update accounting. This is shared with both the
2288  * grow-up and grow-down cases.
2289  */
2290 static int acct_stack_growth(struct vm_area_struct *vma,
2291                              unsigned long size, unsigned long grow)
2292 {
2293         struct mm_struct *mm = vma->vm_mm;
2294         unsigned long new_start;
2295
2296         /* address space limit tests */
2297         if (!may_expand_vm(mm, vma->vm_flags, grow))
2298                 return -ENOMEM;
2299
2300         /* Stack limit test */
2301         if (size > rlimit(RLIMIT_STACK))
2302                 return -ENOMEM;
2303
2304         /* mlock limit tests */
2305         if (vma->vm_flags & VM_LOCKED) {
2306                 unsigned long locked;
2307                 unsigned long limit;
2308                 locked = mm->locked_vm + grow;
2309                 limit = rlimit(RLIMIT_MEMLOCK);
2310                 limit >>= PAGE_SHIFT;
2311                 if (locked > limit && !capable(CAP_IPC_LOCK))
2312                         return -ENOMEM;
2313         }
2314
2315         /* Check to ensure the stack will not grow into a hugetlb-only region */
2316         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2317                         vma->vm_end - size;
2318         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2319                 return -EFAULT;
2320
2321         /*
2322          * Overcommit..  This must be the final test, as it will
2323          * update security statistics.
2324          */
2325         if (security_vm_enough_memory_mm(mm, grow))
2326                 return -ENOMEM;
2327
2328         return 0;
2329 }
2330
2331 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2332 /*
2333  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2334  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2335  */
2336 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2337 {
2338         struct mm_struct *mm = vma->vm_mm;
2339         struct vm_area_struct *next;
2340         unsigned long gap_addr;
2341         int error = 0;
2342
2343         if (!(vma->vm_flags & VM_GROWSUP))
2344                 return -EFAULT;
2345
2346         /* Guard against exceeding limits of the address space. */
2347         address &= PAGE_MASK;
2348         if (address >= (TASK_SIZE & PAGE_MASK))
2349                 return -ENOMEM;
2350         address += PAGE_SIZE;
2351
2352         /* Enforce stack_guard_gap */
2353         gap_addr = address + stack_guard_gap;
2354
2355         /* Guard against overflow */
2356         if (gap_addr < address || gap_addr > TASK_SIZE)
2357                 gap_addr = TASK_SIZE;
2358
2359         next = vma->vm_next;
2360         if (next && next->vm_start < gap_addr &&
2361                         (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2362                 if (!(next->vm_flags & VM_GROWSUP))
2363                         return -ENOMEM;
2364                 /* Check that both stack segments have the same anon_vma? */
2365         }
2366
2367         /* We must make sure the anon_vma is allocated. */
2368         if (unlikely(anon_vma_prepare(vma)))
2369                 return -ENOMEM;
2370
2371         /*
2372          * vma->vm_start/vm_end cannot change under us because the caller
2373          * is required to hold the mmap_sem in read mode.  We need the
2374          * anon_vma lock to serialize against concurrent expand_stacks.
2375          */
2376         anon_vma_lock_write(vma->anon_vma);
2377
2378         /* Somebody else might have raced and expanded it already */
2379         if (address > vma->vm_end) {
2380                 unsigned long size, grow;
2381
2382                 size = address - vma->vm_start;
2383                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2384
2385                 error = -ENOMEM;
2386                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2387                         error = acct_stack_growth(vma, size, grow);
2388                         if (!error) {
2389                                 /*
2390                                  * vma_gap_update() doesn't support concurrent
2391                                  * updates, but we only hold a shared mmap_sem
2392                                  * lock here, so we need to protect against
2393                                  * concurrent vma expansions.
2394                                  * anon_vma_lock_write() doesn't help here, as
2395                                  * we don't guarantee that all growable vmas
2396                                  * in a mm share the same root anon vma.
2397                                  * So, we reuse mm->page_table_lock to guard
2398                                  * against concurrent vma expansions.
2399                                  */
2400                                 spin_lock(&mm->page_table_lock);
2401                                 if (vma->vm_flags & VM_LOCKED)
2402                                         mm->locked_vm += grow;
2403                                 vm_stat_account(mm, vma->vm_flags, grow);
2404                                 anon_vma_interval_tree_pre_update_vma(vma);
2405                                 vma->vm_end = address;
2406                                 anon_vma_interval_tree_post_update_vma(vma);
2407                                 if (vma->vm_next)
2408                                         vma_gap_update(vma->vm_next);
2409                                 else
2410                                         mm->highest_vm_end = vm_end_gap(vma);
2411                                 spin_unlock(&mm->page_table_lock);
2412
2413                                 perf_event_mmap(vma);
2414                         }
2415                 }
2416         }
2417         anon_vma_unlock_write(vma->anon_vma);
2418         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2419         validate_mm(mm);
2420         return error;
2421 }
2422 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2423
2424 /*
2425  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2426  */
2427 int expand_downwards(struct vm_area_struct *vma,
2428                                    unsigned long address)
2429 {
2430         struct mm_struct *mm = vma->vm_mm;
2431         struct vm_area_struct *prev;
2432         int error = 0;
2433
2434         address &= PAGE_MASK;
2435         if (address < mmap_min_addr)
2436                 return -EPERM;
2437
2438         /* Enforce stack_guard_gap */
2439         prev = vma->vm_prev;
2440         /* Check that both stack segments have the same anon_vma? */
2441         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2442                         (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2443                 if (address - prev->vm_end < stack_guard_gap)
2444                         return -ENOMEM;
2445         }
2446
2447         /* We must make sure the anon_vma is allocated. */
2448         if (unlikely(anon_vma_prepare(vma)))
2449                 return -ENOMEM;
2450
2451         /*
2452          * vma->vm_start/vm_end cannot change under us because the caller
2453          * is required to hold the mmap_sem in read mode.  We need the
2454          * anon_vma lock to serialize against concurrent expand_stacks.
2455          */
2456         anon_vma_lock_write(vma->anon_vma);
2457
2458         /* Somebody else might have raced and expanded it already */
2459         if (address < vma->vm_start) {
2460                 unsigned long size, grow;
2461
2462                 size = vma->vm_end - address;
2463                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2464
2465                 error = -ENOMEM;
2466                 if (grow <= vma->vm_pgoff) {
2467                         error = acct_stack_growth(vma, size, grow);
2468                         if (!error) {
2469                                 /*
2470                                  * vma_gap_update() doesn't support concurrent
2471                                  * updates, but we only hold a shared mmap_sem
2472                                  * lock here, so we need to protect against
2473                                  * concurrent vma expansions.
2474                                  * anon_vma_lock_write() doesn't help here, as
2475                                  * we don't guarantee that all growable vmas
2476                                  * in a mm share the same root anon vma.
2477                                  * So, we reuse mm->page_table_lock to guard
2478                                  * against concurrent vma expansions.
2479                                  */
2480                                 spin_lock(&mm->page_table_lock);
2481                                 if (vma->vm_flags & VM_LOCKED)
2482                                         mm->locked_vm += grow;
2483                                 vm_stat_account(mm, vma->vm_flags, grow);
2484                                 anon_vma_interval_tree_pre_update_vma(vma);
2485                                 vma->vm_start = address;
2486                                 vma->vm_pgoff -= grow;
2487                                 anon_vma_interval_tree_post_update_vma(vma);
2488                                 vma_gap_update(vma);
2489                                 spin_unlock(&mm->page_table_lock);
2490
2491                                 perf_event_mmap(vma);
2492                         }
2493                 }
2494         }
2495         anon_vma_unlock_write(vma->anon_vma);
2496         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2497         validate_mm(mm);
2498         return error;
2499 }
2500
2501 /* enforced gap between the expanding stack and other mappings. */
2502 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2503
2504 static int __init cmdline_parse_stack_guard_gap(char *p)
2505 {
2506         unsigned long val;
2507         char *endptr;
2508
2509         val = simple_strtoul(p, &endptr, 10);
2510         if (!*endptr)
2511                 stack_guard_gap = val << PAGE_SHIFT;
2512
2513         return 1;
2514 }
2515 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2516
2517 #ifdef CONFIG_STACK_GROWSUP
2518 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2519 {
2520         return expand_upwards(vma, address);
2521 }
2522
2523 struct vm_area_struct *
2524 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2525 {
2526         struct vm_area_struct *vma, *prev;
2527
2528         addr &= PAGE_MASK;
2529         vma = find_vma_prev(mm, addr, &prev);
2530         if (vma && (vma->vm_start <= addr))
2531                 return vma;
2532         /* don't alter vm_end if the coredump is running */
2533         if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2534                 return NULL;
2535         if (prev->vm_flags & VM_LOCKED)
2536                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2537         return prev;
2538 }
2539 #else
2540 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2541 {
2542         return expand_downwards(vma, address);
2543 }
2544
2545 struct vm_area_struct *
2546 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2547 {
2548         struct vm_area_struct *vma;
2549         unsigned long start;
2550
2551         addr &= PAGE_MASK;
2552         vma = find_vma(mm, addr);
2553         if (!vma)
2554                 return NULL;
2555         if (vma->vm_start <= addr)
2556                 return vma;
2557         if (!(vma->vm_flags & VM_GROWSDOWN))
2558                 return NULL;
2559         /* don't alter vm_start if the coredump is running */
2560         if (!mmget_still_valid(mm))
2561                 return NULL;
2562         start = vma->vm_start;
2563         if (expand_stack(vma, addr))
2564                 return NULL;
2565         if (vma->vm_flags & VM_LOCKED)
2566                 populate_vma_page_range(vma, addr, start, NULL);
2567         return vma;
2568 }
2569 #endif
2570
2571 EXPORT_SYMBOL_GPL(find_extend_vma);
2572
2573 /*
2574  * Ok - we have the memory areas we should free on the vma list,
2575  * so release them, and do the vma updates.
2576  *
2577  * Called with the mm semaphore held.
2578  */
2579 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2580 {
2581         unsigned long nr_accounted = 0;
2582
2583         /* Update high watermark before we lower total_vm */
2584         update_hiwater_vm(mm);
2585         do {
2586                 long nrpages = vma_pages(vma);
2587
2588                 if (vma->vm_flags & VM_ACCOUNT)
2589                         nr_accounted += nrpages;
2590                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2591                 vma = remove_vma(vma);
2592         } while (vma);
2593         vm_unacct_memory(nr_accounted);
2594         validate_mm(mm);
2595 }
2596
2597 /*
2598  * Get rid of page table information in the indicated region.
2599  *
2600  * Called with the mm semaphore held.
2601  */
2602 static void unmap_region(struct mm_struct *mm,
2603                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2604                 unsigned long start, unsigned long end)
2605 {
2606         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2607         struct mmu_gather tlb;
2608         struct vm_area_struct *cur_vma;
2609
2610         lru_add_drain();
2611         tlb_gather_mmu(&tlb, mm, start, end);
2612         update_hiwater_rss(mm);
2613         unmap_vmas(&tlb, vma, start, end);
2614
2615         /*
2616          * Ensure we have no stale TLB entries by the time this mapping is
2617          * removed from the rmap.
2618          * Note that we don't have to worry about nested flushes here because
2619          * we're holding the mm semaphore for removing the mapping - so any
2620          * concurrent flush in this region has to be coming through the rmap,
2621          * and we synchronize against that using the rmap lock.
2622          */
2623         for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2624                 if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2625                         tlb_flush_mmu(&tlb);
2626                         break;
2627                 }
2628         }
2629
2630         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2631                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2632         tlb_finish_mmu(&tlb, start, end);
2633 }
2634
2635 /*
2636  * Create a list of vma's touched by the unmap, removing them from the mm's
2637  * vma list as we go..
2638  */
2639 static bool
2640 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2641         struct vm_area_struct *prev, unsigned long end)
2642 {
2643         struct vm_area_struct **insertion_point;
2644         struct vm_area_struct *tail_vma = NULL;
2645
2646         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2647         vma->vm_prev = NULL;
2648         do {
2649                 vma_rb_erase(vma, &mm->mm_rb);
2650                 mm->map_count--;
2651                 tail_vma = vma;
2652                 vma = vma->vm_next;
2653         } while (vma && vma->vm_start < end);
2654         *insertion_point = vma;
2655         if (vma) {
2656                 vma->vm_prev = prev;
2657                 vma_gap_update(vma);
2658         } else
2659                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2660         tail_vma->vm_next = NULL;
2661
2662         /* Kill the cache */
2663         vmacache_invalidate(mm);
2664
2665         /*
2666          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2667          * VM_GROWSUP VMA. Such VMAs can change their size under
2668          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2669          */
2670         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2671                 return false;
2672         if (prev && (prev->vm_flags & VM_GROWSUP))
2673                 return false;
2674         return true;
2675 }
2676
2677 /*
2678  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2679  * has already been checked or doesn't make sense to fail.
2680  */
2681 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2682                 unsigned long addr, int new_below)
2683 {
2684         struct vm_area_struct *new;
2685         int err;
2686
2687         if (vma->vm_ops && vma->vm_ops->split) {
2688                 err = vma->vm_ops->split(vma, addr);
2689                 if (err)
2690                         return err;
2691         }
2692
2693         new = vm_area_dup(vma);
2694         if (!new)
2695                 return -ENOMEM;
2696
2697         if (new_below)
2698                 new->vm_end = addr;
2699         else {
2700                 new->vm_start = addr;
2701                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2702         }
2703
2704         err = vma_dup_policy(vma, new);
2705         if (err)
2706                 goto out_free_vma;
2707
2708         err = anon_vma_clone(new, vma);
2709         if (err)
2710                 goto out_free_mpol;
2711
2712         if (new->vm_file)
2713                 get_file(new->vm_file);
2714
2715         if (new->vm_ops && new->vm_ops->open)
2716                 new->vm_ops->open(new);
2717
2718         if (new_below)
2719                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2720                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2721         else
2722                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2723
2724         /* Success. */
2725         if (!err)
2726                 return 0;
2727
2728         /* Clean everything up if vma_adjust failed. */
2729         if (new->vm_ops && new->vm_ops->close)
2730                 new->vm_ops->close(new);
2731         if (new->vm_file)
2732                 fput(new->vm_file);
2733         unlink_anon_vmas(new);
2734  out_free_mpol:
2735         mpol_put(vma_policy(new));
2736  out_free_vma:
2737         vm_area_free(new);
2738         return err;
2739 }
2740
2741 /*
2742  * Split a vma into two pieces at address 'addr', a new vma is allocated
2743  * either for the first part or the tail.
2744  */
2745 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2746               unsigned long addr, int new_below)
2747 {
2748         if (mm->map_count >= sysctl_max_map_count)
2749                 return -ENOMEM;
2750
2751         return __split_vma(mm, vma, addr, new_below);
2752 }
2753
2754 /* Munmap is split into 2 main parts -- this part which finds
2755  * what needs doing, and the areas themselves, which do the
2756  * work.  This now handles partial unmappings.
2757  * Jeremy Fitzhardinge <jeremy@goop.org>
2758  */
2759 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2760                 struct list_head *uf, bool downgrade)
2761 {
2762         unsigned long end;
2763         struct vm_area_struct *vma, *prev, *last;
2764
2765         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2766                 return -EINVAL;
2767
2768         len = PAGE_ALIGN(len);
2769         end = start + len;
2770         if (len == 0)
2771                 return -EINVAL;
2772
2773         /*
2774          * arch_unmap() might do unmaps itself.  It must be called
2775          * and finish any rbtree manipulation before this code
2776          * runs and also starts to manipulate the rbtree.
2777          */
2778         arch_unmap(mm, start, end);
2779
2780         /* Find the first overlapping VMA */
2781         vma = find_vma(mm, start);
2782         if (!vma)
2783                 return 0;
2784         prev = vma->vm_prev;
2785         /* we have  start < vma->vm_end  */
2786
2787         /* if it doesn't overlap, we have nothing.. */
2788         if (vma->vm_start >= end)
2789                 return 0;
2790
2791         /*
2792          * If we need to split any vma, do it now to save pain later.
2793          *
2794          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2795          * unmapped vm_area_struct will remain in use: so lower split_vma
2796          * places tmp vma above, and higher split_vma places tmp vma below.
2797          */
2798         if (start > vma->vm_start) {
2799                 int error;
2800
2801                 /*
2802                  * Make sure that map_count on return from munmap() will
2803                  * not exceed its limit; but let map_count go just above
2804                  * its limit temporarily, to help free resources as expected.
2805                  */
2806                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2807                         return -ENOMEM;
2808
2809                 error = __split_vma(mm, vma, start, 0);
2810                 if (error)
2811                         return error;
2812                 prev = vma;
2813         }
2814
2815         /* Does it split the last one? */
2816         last = find_vma(mm, end);
2817         if (last && end > last->vm_start) {
2818                 int error = __split_vma(mm, last, end, 1);
2819                 if (error)
2820                         return error;
2821         }
2822         vma = prev ? prev->vm_next : mm->mmap;
2823
2824         if (unlikely(uf)) {
2825                 /*
2826                  * If userfaultfd_unmap_prep returns an error the vmas
2827                  * will remain splitted, but userland will get a
2828                  * highly unexpected error anyway. This is no
2829                  * different than the case where the first of the two
2830                  * __split_vma fails, but we don't undo the first
2831                  * split, despite we could. This is unlikely enough
2832                  * failure that it's not worth optimizing it for.
2833                  */
2834                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2835                 if (error)
2836                         return error;
2837         }
2838
2839         /*
2840          * unlock any mlock()ed ranges before detaching vmas
2841          */
2842         if (mm->locked_vm) {
2843                 struct vm_area_struct *tmp = vma;
2844                 while (tmp && tmp->vm_start < end) {
2845                         if (tmp->vm_flags & VM_LOCKED) {
2846                                 mm->locked_vm -= vma_pages(tmp);
2847                                 munlock_vma_pages_all(tmp);
2848                         }
2849
2850                         tmp = tmp->vm_next;
2851                 }
2852         }
2853
2854         /* Detach vmas from rbtree */
2855         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2856                 downgrade = false;
2857
2858         if (downgrade)
2859                 downgrade_write(&mm->mmap_sem);
2860
2861         unmap_region(mm, vma, prev, start, end);
2862
2863         /* Fix up all other VM information */
2864         remove_vma_list(mm, vma);
2865
2866         return downgrade ? 1 : 0;
2867 }
2868
2869 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2870               struct list_head *uf)
2871 {
2872         return __do_munmap(mm, start, len, uf, false);
2873 }
2874
2875 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2876 {
2877         int ret;
2878         struct mm_struct *mm = current->mm;
2879         LIST_HEAD(uf);
2880
2881         if (down_write_killable(&mm->mmap_sem))
2882                 return -EINTR;
2883
2884         ret = __do_munmap(mm, start, len, &uf, downgrade);
2885         /*
2886          * Returning 1 indicates mmap_sem is downgraded.
2887          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2888          * it to 0 before return.
2889          */
2890         if (ret == 1) {
2891                 up_read(&mm->mmap_sem);
2892                 ret = 0;
2893         } else
2894                 up_write(&mm->mmap_sem);
2895
2896         userfaultfd_unmap_complete(mm, &uf);
2897         return ret;
2898 }
2899
2900 int vm_munmap(unsigned long start, size_t len)
2901 {
2902         return __vm_munmap(start, len, false);
2903 }
2904 EXPORT_SYMBOL(vm_munmap);
2905
2906 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2907 {
2908         addr = untagged_addr(addr);
2909         profile_munmap(addr);
2910         return __vm_munmap(addr, len, true);
2911 }
2912
2913
2914 /*
2915  * Emulation of deprecated remap_file_pages() syscall.
2916  */
2917 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2918                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2919 {
2920
2921         struct mm_struct *mm = current->mm;
2922         struct vm_area_struct *vma;
2923         unsigned long populate = 0;
2924         unsigned long ret = -EINVAL;
2925         struct file *file;
2926
2927         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2928                      current->comm, current->pid);
2929
2930         if (prot)
2931                 return ret;
2932         start = start & PAGE_MASK;
2933         size = size & PAGE_MASK;
2934
2935         if (start + size <= start)
2936                 return ret;
2937
2938         /* Does pgoff wrap? */
2939         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2940                 return ret;
2941
2942         if (down_write_killable(&mm->mmap_sem))
2943                 return -EINTR;
2944
2945         vma = find_vma(mm, start);
2946
2947         if (!vma || !(vma->vm_flags & VM_SHARED))
2948                 goto out;
2949
2950         if (start < vma->vm_start)
2951                 goto out;
2952
2953         if (start + size > vma->vm_end) {
2954                 struct vm_area_struct *next;
2955
2956                 for (next = vma->vm_next; next; next = next->vm_next) {
2957                         /* hole between vmas ? */
2958                         if (next->vm_start != next->vm_prev->vm_end)
2959                                 goto out;
2960
2961                         if (next->vm_file != vma->vm_file)
2962                                 goto out;
2963
2964                         if (next->vm_flags != vma->vm_flags)
2965                                 goto out;
2966
2967                         if (start + size <= next->vm_end)
2968                                 break;
2969                 }
2970
2971                 if (!next)
2972                         goto out;
2973         }
2974
2975         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2976         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2977         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2978
2979         flags &= MAP_NONBLOCK;
2980         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2981         if (vma->vm_flags & VM_LOCKED) {
2982                 struct vm_area_struct *tmp;
2983                 flags |= MAP_LOCKED;
2984
2985                 /* drop PG_Mlocked flag for over-mapped range */
2986                 for (tmp = vma; tmp->vm_start >= start + size;
2987                                 tmp = tmp->vm_next) {
2988                         /*
2989                          * Split pmd and munlock page on the border
2990                          * of the range.
2991                          */
2992                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2993
2994                         munlock_vma_pages_range(tmp,
2995                                         max(tmp->vm_start, start),
2996                                         min(tmp->vm_end, start + size));
2997                 }
2998         }
2999
3000         file = get_file(vma->vm_file);
3001         ret = do_mmap_pgoff(vma->vm_file, start, size,
3002                         prot, flags, pgoff, &populate, NULL);
3003         fput(file);
3004 out:
3005         up_write(&mm->mmap_sem);
3006         if (populate)
3007                 mm_populate(ret, populate);
3008         if (!IS_ERR_VALUE(ret))
3009                 ret = 0;
3010         return ret;
3011 }
3012
3013 /*
3014  *  this is really a simplified "do_mmap".  it only handles
3015  *  anonymous maps.  eventually we may be able to do some
3016  *  brk-specific accounting here.
3017  */
3018 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3019 {
3020         struct mm_struct *mm = current->mm;
3021         struct vm_area_struct *vma, *prev;
3022         struct rb_node **rb_link, *rb_parent;
3023         pgoff_t pgoff = addr >> PAGE_SHIFT;
3024         int error;
3025
3026         /* Until we need other flags, refuse anything except VM_EXEC. */
3027         if ((flags & (~VM_EXEC)) != 0)
3028                 return -EINVAL;
3029         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3030
3031         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3032         if (offset_in_page(error))
3033                 return error;
3034
3035         error = mlock_future_check(mm, mm->def_flags, len);
3036         if (error)
3037                 return error;
3038
3039         /*
3040          * Clear old maps.  this also does some error checking for us
3041          */
3042         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3043                               &rb_parent)) {
3044                 if (do_munmap(mm, addr, len, uf))
3045                         return -ENOMEM;
3046         }
3047
3048         /* Check against address space limits *after* clearing old maps... */
3049         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3050                 return -ENOMEM;
3051
3052         if (mm->map_count > sysctl_max_map_count)
3053                 return -ENOMEM;
3054
3055         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3056                 return -ENOMEM;
3057
3058         /* Can we just expand an old private anonymous mapping? */
3059         vma = vma_merge(mm, prev, addr, addr + len, flags,
3060                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3061         if (vma)
3062                 goto out;
3063
3064         /*
3065          * create a vma struct for an anonymous mapping
3066          */
3067         vma = vm_area_alloc(mm);
3068         if (!vma) {
3069                 vm_unacct_memory(len >> PAGE_SHIFT);
3070                 return -ENOMEM;
3071         }
3072
3073         vma_set_anonymous(vma);
3074         vma->vm_start = addr;
3075         vma->vm_end = addr + len;
3076         vma->vm_pgoff = pgoff;
3077         vma->vm_flags = flags;
3078         vma->vm_page_prot = vm_get_page_prot(flags);
3079         vma_link(mm, vma, prev, rb_link, rb_parent);
3080 out:
3081         perf_event_mmap(vma);
3082         mm->total_vm += len >> PAGE_SHIFT;
3083         mm->data_vm += len >> PAGE_SHIFT;
3084         if (flags & VM_LOCKED)
3085                 mm->locked_vm += (len >> PAGE_SHIFT);
3086         vma->vm_flags |= VM_SOFTDIRTY;
3087         return 0;
3088 }
3089
3090 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3091 {
3092         struct mm_struct *mm = current->mm;
3093         unsigned long len;
3094         int ret;
3095         bool populate;
3096         LIST_HEAD(uf);
3097
3098         len = PAGE_ALIGN(request);
3099         if (len < request)
3100                 return -ENOMEM;
3101         if (!len)
3102                 return 0;
3103
3104         if (down_write_killable(&mm->mmap_sem))
3105                 return -EINTR;
3106
3107         ret = do_brk_flags(addr, len, flags, &uf);
3108         populate = ((mm->def_flags & VM_LOCKED) != 0);
3109         up_write(&mm->mmap_sem);
3110         userfaultfd_unmap_complete(mm, &uf);
3111         if (populate && !ret)
3112                 mm_populate(addr, len);
3113         return ret;
3114 }
3115 EXPORT_SYMBOL(vm_brk_flags);
3116
3117 int vm_brk(unsigned long addr, unsigned long len)
3118 {
3119         return vm_brk_flags(addr, len, 0);
3120 }
3121 EXPORT_SYMBOL(vm_brk);
3122
3123 /* Release all mmaps. */
3124 void exit_mmap(struct mm_struct *mm)
3125 {
3126         struct mmu_gather tlb;
3127         struct vm_area_struct *vma;
3128         unsigned long nr_accounted = 0;
3129
3130         /* mm's last user has gone, and its about to be pulled down */
3131         mmu_notifier_release(mm);
3132
3133         if (unlikely(mm_is_oom_victim(mm))) {
3134                 /*
3135                  * Manually reap the mm to free as much memory as possible.
3136                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3137                  * this mm from further consideration.  Taking mm->mmap_sem for
3138                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3139                  * reaper will not run on this mm again after mmap_sem is
3140                  * dropped.
3141                  *
3142                  * Nothing can be holding mm->mmap_sem here and the above call
3143                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3144                  * __oom_reap_task_mm() will not block.
3145                  *
3146                  * This needs to be done before calling munlock_vma_pages_all(),
3147                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3148                  * reliably test it.
3149                  */
3150                 (void)__oom_reap_task_mm(mm);
3151
3152                 set_bit(MMF_OOM_SKIP, &mm->flags);
3153                 down_write(&mm->mmap_sem);
3154                 up_write(&mm->mmap_sem);
3155         }
3156
3157         if (mm->locked_vm) {
3158                 vma = mm->mmap;
3159                 while (vma) {
3160                         if (vma->vm_flags & VM_LOCKED)
3161                                 munlock_vma_pages_all(vma);
3162                         vma = vma->vm_next;
3163                 }
3164         }
3165
3166         arch_exit_mmap(mm);
3167
3168         vma = mm->mmap;
3169         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3170                 return;
3171
3172         lru_add_drain();
3173         flush_cache_mm(mm);
3174         tlb_gather_mmu(&tlb, mm, 0, -1);
3175         /* update_hiwater_rss(mm) here? but nobody should be looking */
3176         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3177         unmap_vmas(&tlb, vma, 0, -1);
3178         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3179         tlb_finish_mmu(&tlb, 0, -1);
3180
3181         /*
3182          * Walk the list again, actually closing and freeing it,
3183          * with preemption enabled, without holding any MM locks.
3184          */
3185         while (vma) {
3186                 if (vma->vm_flags & VM_ACCOUNT)
3187                         nr_accounted += vma_pages(vma);
3188                 vma = remove_vma(vma);
3189                 cond_resched();
3190         }
3191         vm_unacct_memory(nr_accounted);
3192 }
3193
3194 /* Insert vm structure into process list sorted by address
3195  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3196  * then i_mmap_rwsem is taken here.
3197  */
3198 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3199 {
3200         struct vm_area_struct *prev;
3201         struct rb_node **rb_link, *rb_parent;
3202
3203         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3204                            &prev, &rb_link, &rb_parent))
3205                 return -ENOMEM;
3206         if ((vma->vm_flags & VM_ACCOUNT) &&
3207              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3208                 return -ENOMEM;
3209
3210         /*
3211          * The vm_pgoff of a purely anonymous vma should be irrelevant
3212          * until its first write fault, when page's anon_vma and index
3213          * are set.  But now set the vm_pgoff it will almost certainly
3214          * end up with (unless mremap moves it elsewhere before that
3215          * first wfault), so /proc/pid/maps tells a consistent story.
3216          *
3217          * By setting it to reflect the virtual start address of the
3218          * vma, merges and splits can happen in a seamless way, just
3219          * using the existing file pgoff checks and manipulations.
3220          * Similarly in do_mmap_pgoff and in do_brk.
3221          */
3222         if (vma_is_anonymous(vma)) {
3223                 BUG_ON(vma->anon_vma);
3224                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3225         }
3226
3227         vma_link(mm, vma, prev, rb_link, rb_parent);
3228         return 0;
3229 }
3230
3231 /*
3232  * Copy the vma structure to a new location in the same mm,
3233  * prior to moving page table entries, to effect an mremap move.
3234  */
3235 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3236         unsigned long addr, unsigned long len, pgoff_t pgoff,
3237         bool *need_rmap_locks)
3238 {
3239         struct vm_area_struct *vma = *vmap;
3240         unsigned long vma_start = vma->vm_start;
3241         struct mm_struct *mm = vma->vm_mm;
3242         struct vm_area_struct *new_vma, *prev;
3243         struct rb_node **rb_link, *rb_parent;
3244         bool faulted_in_anon_vma = true;
3245
3246         /*
3247          * If anonymous vma has not yet been faulted, update new pgoff
3248          * to match new location, to increase its chance of merging.
3249          */
3250         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3251                 pgoff = addr >> PAGE_SHIFT;
3252                 faulted_in_anon_vma = false;
3253         }
3254
3255         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3256                 return NULL;    /* should never get here */
3257         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3258                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3259                             vma->vm_userfaultfd_ctx);
3260         if (new_vma) {
3261                 /*
3262                  * Source vma may have been merged into new_vma
3263                  */
3264                 if (unlikely(vma_start >= new_vma->vm_start &&
3265                              vma_start < new_vma->vm_end)) {
3266                         /*
3267                          * The only way we can get a vma_merge with
3268                          * self during an mremap is if the vma hasn't
3269                          * been faulted in yet and we were allowed to
3270                          * reset the dst vma->vm_pgoff to the
3271                          * destination address of the mremap to allow
3272                          * the merge to happen. mremap must change the
3273                          * vm_pgoff linearity between src and dst vmas
3274                          * (in turn preventing a vma_merge) to be
3275                          * safe. It is only safe to keep the vm_pgoff
3276                          * linear if there are no pages mapped yet.
3277                          */
3278                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3279                         *vmap = vma = new_vma;
3280                 }
3281                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3282         } else {
3283                 new_vma = vm_area_dup(vma);
3284                 if (!new_vma)
3285                         goto out;
3286                 new_vma->vm_start = addr;
3287                 new_vma->vm_end = addr + len;
3288                 new_vma->vm_pgoff = pgoff;
3289                 if (vma_dup_policy(vma, new_vma))
3290                         goto out_free_vma;
3291                 if (anon_vma_clone(new_vma, vma))
3292                         goto out_free_mempol;
3293                 if (new_vma->vm_file)
3294                         get_file(new_vma->vm_file);
3295                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3296                         new_vma->vm_ops->open(new_vma);
3297                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3298                 *need_rmap_locks = false;
3299         }
3300         return new_vma;
3301
3302 out_free_mempol:
3303         mpol_put(vma_policy(new_vma));
3304 out_free_vma:
3305         vm_area_free(new_vma);
3306 out:
3307         return NULL;
3308 }
3309
3310 /*
3311  * Return true if the calling process may expand its vm space by the passed
3312  * number of pages
3313  */
3314 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3315 {
3316         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3317                 return false;
3318
3319         if (is_data_mapping(flags) &&
3320             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3321                 /* Workaround for Valgrind */
3322                 if (rlimit(RLIMIT_DATA) == 0 &&
3323                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3324                         return true;
3325
3326                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3327                              current->comm, current->pid,
3328                              (mm->data_vm + npages) << PAGE_SHIFT,
3329                              rlimit(RLIMIT_DATA),
3330                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3331
3332                 if (!ignore_rlimit_data)
3333                         return false;
3334         }
3335
3336         return true;
3337 }
3338
3339 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3340 {
3341         mm->total_vm += npages;
3342
3343         if (is_exec_mapping(flags))
3344                 mm->exec_vm += npages;
3345         else if (is_stack_mapping(flags))
3346                 mm->stack_vm += npages;
3347         else if (is_data_mapping(flags))
3348                 mm->data_vm += npages;
3349 }
3350
3351 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3352
3353 /*
3354  * Having a close hook prevents vma merging regardless of flags.
3355  */
3356 static void special_mapping_close(struct vm_area_struct *vma)
3357 {
3358 }
3359
3360 static const char *special_mapping_name(struct vm_area_struct *vma)
3361 {
3362         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3363 }
3364
3365 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3366 {
3367         struct vm_special_mapping *sm = new_vma->vm_private_data;
3368
3369         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3370                 return -EFAULT;
3371
3372         if (sm->mremap)
3373                 return sm->mremap(sm, new_vma);
3374
3375         return 0;
3376 }
3377
3378 static const struct vm_operations_struct special_mapping_vmops = {
3379         .close = special_mapping_close,
3380         .fault = special_mapping_fault,
3381         .mremap = special_mapping_mremap,
3382         .name = special_mapping_name,
3383 };
3384
3385 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3386         .close = special_mapping_close,
3387         .fault = special_mapping_fault,
3388 };
3389
3390 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3391 {
3392         struct vm_area_struct *vma = vmf->vma;
3393         pgoff_t pgoff;
3394         struct page **pages;
3395
3396         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3397                 pages = vma->vm_private_data;
3398         } else {
3399                 struct vm_special_mapping *sm = vma->vm_private_data;
3400
3401                 if (sm->fault)
3402                         return sm->fault(sm, vmf->vma, vmf);
3403
3404                 pages = sm->pages;
3405         }
3406
3407         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3408                 pgoff--;
3409
3410         if (*pages) {
3411                 struct page *page = *pages;
3412                 get_page(page);
3413                 vmf->page = page;
3414                 return 0;
3415         }
3416
3417         return VM_FAULT_SIGBUS;
3418 }
3419
3420 static struct vm_area_struct *__install_special_mapping(
3421         struct mm_struct *mm,
3422         unsigned long addr, unsigned long len,
3423         unsigned long vm_flags, void *priv,
3424         const struct vm_operations_struct *ops)
3425 {
3426         int ret;
3427         struct vm_area_struct *vma;
3428
3429         vma = vm_area_alloc(mm);
3430         if (unlikely(vma == NULL))
3431                 return ERR_PTR(-ENOMEM);
3432
3433         vma->vm_start = addr;
3434         vma->vm_end = addr + len;
3435
3436         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3437         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3438
3439         vma->vm_ops = ops;
3440         vma->vm_private_data = priv;
3441
3442         ret = insert_vm_struct(mm, vma);
3443         if (ret)
3444                 goto out;
3445
3446         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3447
3448         perf_event_mmap(vma);
3449
3450         return vma;
3451
3452 out:
3453         vm_area_free(vma);
3454         return ERR_PTR(ret);
3455 }
3456
3457 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3458         const struct vm_special_mapping *sm)
3459 {
3460         return vma->vm_private_data == sm &&
3461                 (vma->vm_ops == &special_mapping_vmops ||
3462                  vma->vm_ops == &legacy_special_mapping_vmops);
3463 }
3464
3465 /*
3466  * Called with mm->mmap_sem held for writing.
3467  * Insert a new vma covering the given region, with the given flags.
3468  * Its pages are supplied by the given array of struct page *.
3469  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3470  * The region past the last page supplied will always produce SIGBUS.
3471  * The array pointer and the pages it points to are assumed to stay alive
3472  * for as long as this mapping might exist.
3473  */
3474 struct vm_area_struct *_install_special_mapping(
3475         struct mm_struct *mm,
3476         unsigned long addr, unsigned long len,
3477         unsigned long vm_flags, const struct vm_special_mapping *spec)
3478 {
3479         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3480                                         &special_mapping_vmops);
3481 }
3482
3483 int install_special_mapping(struct mm_struct *mm,
3484                             unsigned long addr, unsigned long len,
3485                             unsigned long vm_flags, struct page **pages)
3486 {
3487         struct vm_area_struct *vma = __install_special_mapping(
3488                 mm, addr, len, vm_flags, (void *)pages,
3489                 &legacy_special_mapping_vmops);
3490
3491         return PTR_ERR_OR_ZERO(vma);
3492 }
3493
3494 static DEFINE_MUTEX(mm_all_locks_mutex);
3495
3496 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3497 {
3498         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3499                 /*
3500                  * The LSB of head.next can't change from under us
3501                  * because we hold the mm_all_locks_mutex.
3502                  */
3503                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3504                 /*
3505                  * We can safely modify head.next after taking the
3506                  * anon_vma->root->rwsem. If some other vma in this mm shares
3507                  * the same anon_vma we won't take it again.
3508                  *
3509                  * No need of atomic instructions here, head.next
3510                  * can't change from under us thanks to the
3511                  * anon_vma->root->rwsem.
3512                  */
3513                 if (__test_and_set_bit(0, (unsigned long *)
3514                                        &anon_vma->root->rb_root.rb_root.rb_node))
3515                         BUG();
3516         }
3517 }
3518
3519 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3520 {
3521         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3522                 /*
3523                  * AS_MM_ALL_LOCKS can't change from under us because
3524                  * we hold the mm_all_locks_mutex.
3525                  *
3526                  * Operations on ->flags have to be atomic because
3527                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3528                  * mm_all_locks_mutex, there may be other cpus
3529                  * changing other bitflags in parallel to us.
3530                  */
3531                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3532                         BUG();
3533                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3534         }
3535 }
3536
3537 /*
3538  * This operation locks against the VM for all pte/vma/mm related
3539  * operations that could ever happen on a certain mm. This includes
3540  * vmtruncate, try_to_unmap, and all page faults.
3541  *
3542  * The caller must take the mmap_sem in write mode before calling
3543  * mm_take_all_locks(). The caller isn't allowed to release the
3544  * mmap_sem until mm_drop_all_locks() returns.
3545  *
3546  * mmap_sem in write mode is required in order to block all operations
3547  * that could modify pagetables and free pages without need of
3548  * altering the vma layout. It's also needed in write mode to avoid new
3549  * anon_vmas to be associated with existing vmas.
3550  *
3551  * A single task can't take more than one mm_take_all_locks() in a row
3552  * or it would deadlock.
3553  *
3554  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3555  * mapping->flags avoid to take the same lock twice, if more than one
3556  * vma in this mm is backed by the same anon_vma or address_space.
3557  *
3558  * We take locks in following order, accordingly to comment at beginning
3559  * of mm/rmap.c:
3560  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3561  *     hugetlb mapping);
3562  *   - all i_mmap_rwsem locks;
3563  *   - all anon_vma->rwseml
3564  *
3565  * We can take all locks within these types randomly because the VM code
3566  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3567  * mm_all_locks_mutex.
3568  *
3569  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3570  * that may have to take thousand of locks.
3571  *
3572  * mm_take_all_locks() can fail if it's interrupted by signals.
3573  */
3574 int mm_take_all_locks(struct mm_struct *mm)
3575 {
3576         struct vm_area_struct *vma;
3577         struct anon_vma_chain *avc;
3578
3579         BUG_ON(down_read_trylock(&mm->mmap_sem));
3580
3581         mutex_lock(&mm_all_locks_mutex);
3582
3583         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3584                 if (signal_pending(current))
3585                         goto out_unlock;
3586                 if (vma->vm_file && vma->vm_file->f_mapping &&
3587                                 is_vm_hugetlb_page(vma))
3588                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3589         }
3590
3591         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3592                 if (signal_pending(current))
3593                         goto out_unlock;
3594                 if (vma->vm_file && vma->vm_file->f_mapping &&
3595                                 !is_vm_hugetlb_page(vma))
3596                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3597         }
3598
3599         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3600                 if (signal_pending(current))
3601                         goto out_unlock;
3602                 if (vma->anon_vma)
3603                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3604                                 vm_lock_anon_vma(mm, avc->anon_vma);
3605         }
3606
3607         return 0;
3608
3609 out_unlock:
3610         mm_drop_all_locks(mm);
3611         return -EINTR;
3612 }
3613
3614 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3615 {
3616         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3617                 /*
3618                  * The LSB of head.next can't change to 0 from under
3619                  * us because we hold the mm_all_locks_mutex.
3620                  *
3621                  * We must however clear the bitflag before unlocking
3622                  * the vma so the users using the anon_vma->rb_root will
3623                  * never see our bitflag.
3624                  *
3625                  * No need of atomic instructions here, head.next
3626                  * can't change from under us until we release the
3627                  * anon_vma->root->rwsem.
3628                  */
3629                 if (!__test_and_clear_bit(0, (unsigned long *)
3630                                           &anon_vma->root->rb_root.rb_root.rb_node))
3631                         BUG();
3632                 anon_vma_unlock_write(anon_vma);
3633         }
3634 }
3635
3636 static void vm_unlock_mapping(struct address_space *mapping)
3637 {
3638         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3639                 /*
3640                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3641                  * because we hold the mm_all_locks_mutex.
3642                  */
3643                 i_mmap_unlock_write(mapping);
3644                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3645                                         &mapping->flags))
3646                         BUG();
3647         }
3648 }
3649
3650 /*
3651  * The mmap_sem cannot be released by the caller until
3652  * mm_drop_all_locks() returns.
3653  */
3654 void mm_drop_all_locks(struct mm_struct *mm)
3655 {
3656         struct vm_area_struct *vma;
3657         struct anon_vma_chain *avc;
3658
3659         BUG_ON(down_read_trylock(&mm->mmap_sem));
3660         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3661
3662         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3663                 if (vma->anon_vma)
3664                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3665                                 vm_unlock_anon_vma(avc->anon_vma);
3666                 if (vma->vm_file && vma->vm_file->f_mapping)
3667                         vm_unlock_mapping(vma->vm_file->f_mapping);
3668         }
3669
3670         mutex_unlock(&mm_all_locks_mutex);
3671 }
3672
3673 /*
3674  * initialise the percpu counter for VM
3675  */
3676 void __init mmap_init(void)
3677 {
3678         int ret;
3679
3680         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3681         VM_BUG_ON(ret);
3682 }
3683
3684 /*
3685  * Initialise sysctl_user_reserve_kbytes.
3686  *
3687  * This is intended to prevent a user from starting a single memory hogging
3688  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3689  * mode.
3690  *
3691  * The default value is min(3% of free memory, 128MB)
3692  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3693  */
3694 static int init_user_reserve(void)
3695 {
3696         unsigned long free_kbytes;
3697
3698         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3699
3700         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3701         return 0;
3702 }
3703 subsys_initcall(init_user_reserve);
3704
3705 /*
3706  * Initialise sysctl_admin_reserve_kbytes.
3707  *
3708  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3709  * to log in and kill a memory hogging process.
3710  *
3711  * Systems with more than 256MB will reserve 8MB, enough to recover
3712  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3713  * only reserve 3% of free pages by default.
3714  */
3715 static int init_admin_reserve(void)
3716 {
3717         unsigned long free_kbytes;
3718
3719         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3720
3721         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3722         return 0;
3723 }
3724 subsys_initcall(init_admin_reserve);
3725
3726 /*
3727  * Reinititalise user and admin reserves if memory is added or removed.
3728  *
3729  * The default user reserve max is 128MB, and the default max for the
3730  * admin reserve is 8MB. These are usually, but not always, enough to
3731  * enable recovery from a memory hogging process using login/sshd, a shell,
3732  * and tools like top. It may make sense to increase or even disable the
3733  * reserve depending on the existence of swap or variations in the recovery
3734  * tools. So, the admin may have changed them.
3735  *
3736  * If memory is added and the reserves have been eliminated or increased above
3737  * the default max, then we'll trust the admin.
3738  *
3739  * If memory is removed and there isn't enough free memory, then we
3740  * need to reset the reserves.
3741  *
3742  * Otherwise keep the reserve set by the admin.
3743  */
3744 static int reserve_mem_notifier(struct notifier_block *nb,
3745                              unsigned long action, void *data)
3746 {
3747         unsigned long tmp, free_kbytes;
3748
3749         switch (action) {
3750         case MEM_ONLINE:
3751                 /* Default max is 128MB. Leave alone if modified by operator. */
3752                 tmp = sysctl_user_reserve_kbytes;
3753                 if (0 < tmp && tmp < (1UL << 17))
3754                         init_user_reserve();
3755
3756                 /* Default max is 8MB.  Leave alone if modified by operator. */
3757                 tmp = sysctl_admin_reserve_kbytes;
3758                 if (0 < tmp && tmp < (1UL << 13))
3759                         init_admin_reserve();
3760
3761                 break;
3762         case MEM_OFFLINE:
3763                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3764
3765                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3766                         init_user_reserve();
3767                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3768                                 sysctl_user_reserve_kbytes);
3769                 }
3770
3771                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3772                         init_admin_reserve();
3773                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3774                                 sysctl_admin_reserve_kbytes);
3775                 }
3776                 break;
3777         default:
3778                 break;
3779         }
3780         return NOTIFY_OK;
3781 }
3782
3783 static struct notifier_block reserve_mem_nb = {
3784         .notifier_call = reserve_mem_notifier,
3785 };
3786
3787 static int __meminit init_reserve_notifier(void)
3788 {
3789         if (register_hotmemory_notifier(&reserve_mem_nb))
3790                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3791
3792         return 0;
3793 }
3794 subsys_initcall(init_reserve_notifier);