GNU Linux-libre 4.14.332-gnu1
[releases.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54
55 #include "internal.h"
56
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags)       (0)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74
75 static void unmap_region(struct mm_struct *mm,
76                 struct vm_area_struct *vma, struct vm_area_struct *prev,
77                 unsigned long start, unsigned long end);
78
79 /* description of effects of mapping type and prot in current implementation.
80  * this is due to the limited x86 page protection hardware.  The expected
81  * behavior is in parens:
82  *
83  * map_type     prot
84  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
85  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
86  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
87  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
88  *
89  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  */
93 pgprot_t protection_map[16] __ro_after_init = {
94         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
96 };
97
98 pgprot_t vm_get_page_prot(unsigned long vm_flags)
99 {
100         return __pgprot(pgprot_val(protection_map[vm_flags &
101                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
102                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
103 }
104 EXPORT_SYMBOL(vm_get_page_prot);
105
106 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
107 {
108         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
109 }
110
111 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
112 void vma_set_page_prot(struct vm_area_struct *vma)
113 {
114         unsigned long vm_flags = vma->vm_flags;
115         pgprot_t vm_page_prot;
116
117         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
118         if (vma_wants_writenotify(vma, vm_page_prot)) {
119                 vm_flags &= ~VM_SHARED;
120                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
121         }
122         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
123         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
124 }
125
126 /*
127  * Requires inode->i_mapping->i_mmap_rwsem
128  */
129 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
130                 struct file *file, struct address_space *mapping)
131 {
132         if (vma->vm_flags & VM_DENYWRITE)
133                 atomic_inc(&file_inode(file)->i_writecount);
134         if (vma->vm_flags & VM_SHARED)
135                 mapping_unmap_writable(mapping);
136
137         flush_dcache_mmap_lock(mapping);
138         vma_interval_tree_remove(vma, &mapping->i_mmap);
139         flush_dcache_mmap_unlock(mapping);
140 }
141
142 /*
143  * Unlink a file-based vm structure from its interval tree, to hide
144  * vma from rmap and vmtruncate before freeing its page tables.
145  */
146 void unlink_file_vma(struct vm_area_struct *vma)
147 {
148         struct file *file = vma->vm_file;
149
150         if (file) {
151                 struct address_space *mapping = file->f_mapping;
152                 i_mmap_lock_write(mapping);
153                 __remove_shared_vm_struct(vma, file, mapping);
154                 i_mmap_unlock_write(mapping);
155         }
156 }
157
158 /*
159  * Close a vm structure and free it, returning the next.
160  */
161 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
162 {
163         struct vm_area_struct *next = vma->vm_next;
164
165         might_sleep();
166         if (vma->vm_ops && vma->vm_ops->close)
167                 vma->vm_ops->close(vma);
168         if (vma->vm_file)
169                 fput(vma->vm_file);
170         mpol_put(vma_policy(vma));
171         kmem_cache_free(vm_area_cachep, vma);
172         return next;
173 }
174
175 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
176                 struct list_head *uf);
177 SYSCALL_DEFINE1(brk, unsigned long, brk)
178 {
179         unsigned long retval;
180         unsigned long newbrk, oldbrk;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *next;
183         unsigned long min_brk;
184         bool populate;
185         LIST_HEAD(uf);
186
187         if (down_write_killable(&mm->mmap_sem))
188                 return -EINTR;
189
190 #ifdef CONFIG_COMPAT_BRK
191         /*
192          * CONFIG_COMPAT_BRK can still be overridden by setting
193          * randomize_va_space to 2, which will still cause mm->start_brk
194          * to be arbitrarily shifted
195          */
196         if (current->brk_randomized)
197                 min_brk = mm->start_brk;
198         else
199                 min_brk = mm->end_data;
200 #else
201         min_brk = mm->start_brk;
202 #endif
203         if (brk < min_brk)
204                 goto out;
205
206         /*
207          * Check against rlimit here. If this check is done later after the test
208          * of oldbrk with newbrk then it can escape the test and let the data
209          * segment grow beyond its set limit the in case where the limit is
210          * not page aligned -Ram Gupta
211          */
212         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
213                               mm->end_data, mm->start_data))
214                 goto out;
215
216         newbrk = PAGE_ALIGN(brk);
217         oldbrk = PAGE_ALIGN(mm->brk);
218         if (oldbrk == newbrk)
219                 goto set_brk;
220
221         /* Always allow shrinking brk. */
222         if (brk <= mm->brk) {
223                 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
224                         goto set_brk;
225                 goto out;
226         }
227
228         /* Check against existing mmap mappings. */
229         next = find_vma(mm, oldbrk);
230         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
231                 goto out;
232
233         /* Ok, looks good - let it rip. */
234         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
235                 goto out;
236
237 set_brk:
238         mm->brk = brk;
239         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
240         up_write(&mm->mmap_sem);
241         userfaultfd_unmap_complete(mm, &uf);
242         if (populate)
243                 mm_populate(oldbrk, newbrk - oldbrk);
244         return brk;
245
246 out:
247         retval = mm->brk;
248         up_write(&mm->mmap_sem);
249         return retval;
250 }
251
252 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
253 {
254         unsigned long max, prev_end, subtree_gap;
255
256         /*
257          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
258          * allow two stack_guard_gaps between them here, and when choosing
259          * an unmapped area; whereas when expanding we only require one.
260          * That's a little inconsistent, but keeps the code here simpler.
261          */
262         max = vm_start_gap(vma);
263         if (vma->vm_prev) {
264                 prev_end = vm_end_gap(vma->vm_prev);
265                 if (max > prev_end)
266                         max -= prev_end;
267                 else
268                         max = 0;
269         }
270         if (vma->vm_rb.rb_left) {
271                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
272                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
273                 if (subtree_gap > max)
274                         max = subtree_gap;
275         }
276         if (vma->vm_rb.rb_right) {
277                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
278                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
279                 if (subtree_gap > max)
280                         max = subtree_gap;
281         }
282         return max;
283 }
284
285 #ifdef CONFIG_DEBUG_VM_RB
286 static int browse_rb(struct mm_struct *mm)
287 {
288         struct rb_root *root = &mm->mm_rb;
289         int i = 0, j, bug = 0;
290         struct rb_node *nd, *pn = NULL;
291         unsigned long prev = 0, pend = 0;
292
293         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
294                 struct vm_area_struct *vma;
295                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
296                 if (vma->vm_start < prev) {
297                         pr_emerg("vm_start %lx < prev %lx\n",
298                                   vma->vm_start, prev);
299                         bug = 1;
300                 }
301                 if (vma->vm_start < pend) {
302                         pr_emerg("vm_start %lx < pend %lx\n",
303                                   vma->vm_start, pend);
304                         bug = 1;
305                 }
306                 if (vma->vm_start > vma->vm_end) {
307                         pr_emerg("vm_start %lx > vm_end %lx\n",
308                                   vma->vm_start, vma->vm_end);
309                         bug = 1;
310                 }
311                 spin_lock(&mm->page_table_lock);
312                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
313                         pr_emerg("free gap %lx, correct %lx\n",
314                                vma->rb_subtree_gap,
315                                vma_compute_subtree_gap(vma));
316                         bug = 1;
317                 }
318                 spin_unlock(&mm->page_table_lock);
319                 i++;
320                 pn = nd;
321                 prev = vma->vm_start;
322                 pend = vma->vm_end;
323         }
324         j = 0;
325         for (nd = pn; nd; nd = rb_prev(nd))
326                 j++;
327         if (i != j) {
328                 pr_emerg("backwards %d, forwards %d\n", j, i);
329                 bug = 1;
330         }
331         return bug ? -1 : i;
332 }
333
334 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
335 {
336         struct rb_node *nd;
337
338         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339                 struct vm_area_struct *vma;
340                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341                 VM_BUG_ON_VMA(vma != ignore &&
342                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
343                         vma);
344         }
345 }
346
347 static void validate_mm(struct mm_struct *mm)
348 {
349         int bug = 0;
350         int i = 0;
351         unsigned long highest_address = 0;
352         struct vm_area_struct *vma = mm->mmap;
353
354         while (vma) {
355                 struct anon_vma *anon_vma = vma->anon_vma;
356                 struct anon_vma_chain *avc;
357
358                 if (anon_vma) {
359                         anon_vma_lock_read(anon_vma);
360                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
361                                 anon_vma_interval_tree_verify(avc);
362                         anon_vma_unlock_read(anon_vma);
363                 }
364
365                 highest_address = vm_end_gap(vma);
366                 vma = vma->vm_next;
367                 i++;
368         }
369         if (i != mm->map_count) {
370                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
371                 bug = 1;
372         }
373         if (highest_address != mm->highest_vm_end) {
374                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
375                           mm->highest_vm_end, highest_address);
376                 bug = 1;
377         }
378         i = browse_rb(mm);
379         if (i != mm->map_count) {
380                 if (i != -1)
381                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
382                 bug = 1;
383         }
384         VM_BUG_ON_MM(bug, mm);
385 }
386 #else
387 #define validate_mm_rb(root, ignore) do { } while (0)
388 #define validate_mm(mm) do { } while (0)
389 #endif
390
391 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
392                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
393
394 /*
395  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
396  * vma->vm_prev->vm_end values changed, without modifying the vma's position
397  * in the rbtree.
398  */
399 static void vma_gap_update(struct vm_area_struct *vma)
400 {
401         /*
402          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
403          * function that does exacltly what we want.
404          */
405         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
406 }
407
408 static inline void vma_rb_insert(struct vm_area_struct *vma,
409                                  struct rb_root *root)
410 {
411         /* All rb_subtree_gap values must be consistent prior to insertion */
412         validate_mm_rb(root, NULL);
413
414         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
415 }
416
417 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
418 {
419         /*
420          * Note rb_erase_augmented is a fairly large inline function,
421          * so make sure we instantiate it only once with our desired
422          * augmented rbtree callbacks.
423          */
424         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
425 }
426
427 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
428                                                 struct rb_root *root,
429                                                 struct vm_area_struct *ignore)
430 {
431         /*
432          * All rb_subtree_gap values must be consistent prior to erase,
433          * with the possible exception of the "next" vma being erased if
434          * next->vm_start was reduced.
435          */
436         validate_mm_rb(root, ignore);
437
438         __vma_rb_erase(vma, root);
439 }
440
441 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
442                                          struct rb_root *root)
443 {
444         /*
445          * All rb_subtree_gap values must be consistent prior to erase,
446          * with the possible exception of the vma being erased.
447          */
448         validate_mm_rb(root, vma);
449
450         __vma_rb_erase(vma, root);
451 }
452
453 /*
454  * vma has some anon_vma assigned, and is already inserted on that
455  * anon_vma's interval trees.
456  *
457  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
458  * vma must be removed from the anon_vma's interval trees using
459  * anon_vma_interval_tree_pre_update_vma().
460  *
461  * After the update, the vma will be reinserted using
462  * anon_vma_interval_tree_post_update_vma().
463  *
464  * The entire update must be protected by exclusive mmap_sem and by
465  * the root anon_vma's mutex.
466  */
467 static inline void
468 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
469 {
470         struct anon_vma_chain *avc;
471
472         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
473                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
474 }
475
476 static inline void
477 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
478 {
479         struct anon_vma_chain *avc;
480
481         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
483 }
484
485 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
486                 unsigned long end, struct vm_area_struct **pprev,
487                 struct rb_node ***rb_link, struct rb_node **rb_parent)
488 {
489         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
490
491         __rb_link = &mm->mm_rb.rb_node;
492         rb_prev = __rb_parent = NULL;
493
494         while (*__rb_link) {
495                 struct vm_area_struct *vma_tmp;
496
497                 __rb_parent = *__rb_link;
498                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
499
500                 if (vma_tmp->vm_end > addr) {
501                         /* Fail if an existing vma overlaps the area */
502                         if (vma_tmp->vm_start < end)
503                                 return -ENOMEM;
504                         __rb_link = &__rb_parent->rb_left;
505                 } else {
506                         rb_prev = __rb_parent;
507                         __rb_link = &__rb_parent->rb_right;
508                 }
509         }
510
511         *pprev = NULL;
512         if (rb_prev)
513                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
514         *rb_link = __rb_link;
515         *rb_parent = __rb_parent;
516         return 0;
517 }
518
519 static unsigned long count_vma_pages_range(struct mm_struct *mm,
520                 unsigned long addr, unsigned long end)
521 {
522         unsigned long nr_pages = 0;
523         struct vm_area_struct *vma;
524
525         /* Find first overlaping mapping */
526         vma = find_vma_intersection(mm, addr, end);
527         if (!vma)
528                 return 0;
529
530         nr_pages = (min(end, vma->vm_end) -
531                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
532
533         /* Iterate over the rest of the overlaps */
534         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
535                 unsigned long overlap_len;
536
537                 if (vma->vm_start > end)
538                         break;
539
540                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
541                 nr_pages += overlap_len >> PAGE_SHIFT;
542         }
543
544         return nr_pages;
545 }
546
547 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
548                 struct rb_node **rb_link, struct rb_node *rb_parent)
549 {
550         /* Update tracking information for the gap following the new vma. */
551         if (vma->vm_next)
552                 vma_gap_update(vma->vm_next);
553         else
554                 mm->highest_vm_end = vm_end_gap(vma);
555
556         /*
557          * vma->vm_prev wasn't known when we followed the rbtree to find the
558          * correct insertion point for that vma. As a result, we could not
559          * update the vma vm_rb parents rb_subtree_gap values on the way down.
560          * So, we first insert the vma with a zero rb_subtree_gap value
561          * (to be consistent with what we did on the way down), and then
562          * immediately update the gap to the correct value. Finally we
563          * rebalance the rbtree after all augmented values have been set.
564          */
565         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
566         vma->rb_subtree_gap = 0;
567         vma_gap_update(vma);
568         vma_rb_insert(vma, &mm->mm_rb);
569 }
570
571 static void __vma_link_file(struct vm_area_struct *vma)
572 {
573         struct file *file;
574
575         file = vma->vm_file;
576         if (file) {
577                 struct address_space *mapping = file->f_mapping;
578
579                 if (vma->vm_flags & VM_DENYWRITE)
580                         atomic_dec(&file_inode(file)->i_writecount);
581                 if (vma->vm_flags & VM_SHARED)
582                         atomic_inc(&mapping->i_mmap_writable);
583
584                 flush_dcache_mmap_lock(mapping);
585                 vma_interval_tree_insert(vma, &mapping->i_mmap);
586                 flush_dcache_mmap_unlock(mapping);
587         }
588 }
589
590 static void
591 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
592         struct vm_area_struct *prev, struct rb_node **rb_link,
593         struct rb_node *rb_parent)
594 {
595         __vma_link_list(mm, vma, prev, rb_parent);
596         __vma_link_rb(mm, vma, rb_link, rb_parent);
597 }
598
599 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
600                         struct vm_area_struct *prev, struct rb_node **rb_link,
601                         struct rb_node *rb_parent)
602 {
603         struct address_space *mapping = NULL;
604
605         if (vma->vm_file) {
606                 mapping = vma->vm_file->f_mapping;
607                 i_mmap_lock_write(mapping);
608         }
609
610         __vma_link(mm, vma, prev, rb_link, rb_parent);
611         __vma_link_file(vma);
612
613         if (mapping)
614                 i_mmap_unlock_write(mapping);
615
616         mm->map_count++;
617         validate_mm(mm);
618 }
619
620 /*
621  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
622  * mm's list and rbtree.  It has already been inserted into the interval tree.
623  */
624 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
625 {
626         struct vm_area_struct *prev;
627         struct rb_node **rb_link, *rb_parent;
628
629         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
630                            &prev, &rb_link, &rb_parent))
631                 BUG();
632         __vma_link(mm, vma, prev, rb_link, rb_parent);
633         mm->map_count++;
634 }
635
636 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
637                                                 struct vm_area_struct *vma,
638                                                 struct vm_area_struct *prev,
639                                                 bool has_prev,
640                                                 struct vm_area_struct *ignore)
641 {
642         struct vm_area_struct *next;
643
644         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
645         next = vma->vm_next;
646         if (has_prev)
647                 prev->vm_next = next;
648         else {
649                 prev = vma->vm_prev;
650                 if (prev)
651                         prev->vm_next = next;
652                 else
653                         mm->mmap = next;
654         }
655         if (next)
656                 next->vm_prev = prev;
657
658         /* Kill the cache */
659         vmacache_invalidate(mm);
660 }
661
662 static inline void __vma_unlink_prev(struct mm_struct *mm,
663                                      struct vm_area_struct *vma,
664                                      struct vm_area_struct *prev)
665 {
666         __vma_unlink_common(mm, vma, prev, true, vma);
667 }
668
669 /*
670  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
671  * is already present in an i_mmap tree without adjusting the tree.
672  * The following helper function should be used when such adjustments
673  * are necessary.  The "insert" vma (if any) is to be inserted
674  * before we drop the necessary locks.
675  */
676 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
677         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
678         struct vm_area_struct *expand)
679 {
680         struct mm_struct *mm = vma->vm_mm;
681         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
682         struct address_space *mapping = NULL;
683         struct rb_root_cached *root = NULL;
684         struct anon_vma *anon_vma = NULL;
685         struct file *file = vma->vm_file;
686         bool start_changed = false, end_changed = false;
687         long adjust_next = 0;
688         int remove_next = 0;
689
690         if (next && !insert) {
691                 struct vm_area_struct *exporter = NULL, *importer = NULL;
692
693                 if (end >= next->vm_end) {
694                         /*
695                          * vma expands, overlapping all the next, and
696                          * perhaps the one after too (mprotect case 6).
697                          * The only other cases that gets here are
698                          * case 1, case 7 and case 8.
699                          */
700                         if (next == expand) {
701                                 /*
702                                  * The only case where we don't expand "vma"
703                                  * and we expand "next" instead is case 8.
704                                  */
705                                 VM_WARN_ON(end != next->vm_end);
706                                 /*
707                                  * remove_next == 3 means we're
708                                  * removing "vma" and that to do so we
709                                  * swapped "vma" and "next".
710                                  */
711                                 remove_next = 3;
712                                 VM_WARN_ON(file != next->vm_file);
713                                 swap(vma, next);
714                         } else {
715                                 VM_WARN_ON(expand != vma);
716                                 /*
717                                  * case 1, 6, 7, remove_next == 2 is case 6,
718                                  * remove_next == 1 is case 1 or 7.
719                                  */
720                                 remove_next = 1 + (end > next->vm_end);
721                                 VM_WARN_ON(remove_next == 2 &&
722                                            end != next->vm_next->vm_end);
723                                 VM_WARN_ON(remove_next == 1 &&
724                                            end != next->vm_end);
725                                 /* trim end to next, for case 6 first pass */
726                                 end = next->vm_end;
727                         }
728
729                         exporter = next;
730                         importer = vma;
731
732                         /*
733                          * If next doesn't have anon_vma, import from vma after
734                          * next, if the vma overlaps with it.
735                          */
736                         if (remove_next == 2 && !next->anon_vma)
737                                 exporter = next->vm_next;
738
739                 } else if (end > next->vm_start) {
740                         /*
741                          * vma expands, overlapping part of the next:
742                          * mprotect case 5 shifting the boundary up.
743                          */
744                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
745                         exporter = next;
746                         importer = vma;
747                         VM_WARN_ON(expand != importer);
748                 } else if (end < vma->vm_end) {
749                         /*
750                          * vma shrinks, and !insert tells it's not
751                          * split_vma inserting another: so it must be
752                          * mprotect case 4 shifting the boundary down.
753                          */
754                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
755                         exporter = vma;
756                         importer = next;
757                         VM_WARN_ON(expand != importer);
758                 }
759
760                 /*
761                  * Easily overlooked: when mprotect shifts the boundary,
762                  * make sure the expanding vma has anon_vma set if the
763                  * shrinking vma had, to cover any anon pages imported.
764                  */
765                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
766                         int error;
767
768                         importer->anon_vma = exporter->anon_vma;
769                         error = anon_vma_clone(importer, exporter);
770                         if (error)
771                                 return error;
772                 }
773         }
774 again:
775         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
776
777         if (file) {
778                 mapping = file->f_mapping;
779                 root = &mapping->i_mmap;
780                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
781
782                 if (adjust_next)
783                         uprobe_munmap(next, next->vm_start, next->vm_end);
784
785                 i_mmap_lock_write(mapping);
786                 if (insert) {
787                         /*
788                          * Put into interval tree now, so instantiated pages
789                          * are visible to arm/parisc __flush_dcache_page
790                          * throughout; but we cannot insert into address
791                          * space until vma start or end is updated.
792                          */
793                         __vma_link_file(insert);
794                 }
795         }
796
797         anon_vma = vma->anon_vma;
798         if (!anon_vma && adjust_next)
799                 anon_vma = next->anon_vma;
800         if (anon_vma) {
801                 VM_WARN_ON(adjust_next && next->anon_vma &&
802                            anon_vma != next->anon_vma);
803                 anon_vma_lock_write(anon_vma);
804                 anon_vma_interval_tree_pre_update_vma(vma);
805                 if (adjust_next)
806                         anon_vma_interval_tree_pre_update_vma(next);
807         }
808
809         if (root) {
810                 flush_dcache_mmap_lock(mapping);
811                 vma_interval_tree_remove(vma, root);
812                 if (adjust_next)
813                         vma_interval_tree_remove(next, root);
814         }
815
816         if (start != vma->vm_start) {
817                 vma->vm_start = start;
818                 start_changed = true;
819         }
820         if (end != vma->vm_end) {
821                 vma->vm_end = end;
822                 end_changed = true;
823         }
824         vma->vm_pgoff = pgoff;
825         if (adjust_next) {
826                 next->vm_start += adjust_next << PAGE_SHIFT;
827                 next->vm_pgoff += adjust_next;
828         }
829
830         if (root) {
831                 if (adjust_next)
832                         vma_interval_tree_insert(next, root);
833                 vma_interval_tree_insert(vma, root);
834                 flush_dcache_mmap_unlock(mapping);
835         }
836
837         if (remove_next) {
838                 /*
839                  * vma_merge has merged next into vma, and needs
840                  * us to remove next before dropping the locks.
841                  */
842                 if (remove_next != 3)
843                         __vma_unlink_prev(mm, next, vma);
844                 else
845                         /*
846                          * vma is not before next if they've been
847                          * swapped.
848                          *
849                          * pre-swap() next->vm_start was reduced so
850                          * tell validate_mm_rb to ignore pre-swap()
851                          * "next" (which is stored in post-swap()
852                          * "vma").
853                          */
854                         __vma_unlink_common(mm, next, NULL, false, vma);
855                 if (file)
856                         __remove_shared_vm_struct(next, file, mapping);
857         } else if (insert) {
858                 /*
859                  * split_vma has split insert from vma, and needs
860                  * us to insert it before dropping the locks
861                  * (it may either follow vma or precede it).
862                  */
863                 __insert_vm_struct(mm, insert);
864         } else {
865                 if (start_changed)
866                         vma_gap_update(vma);
867                 if (end_changed) {
868                         if (!next)
869                                 mm->highest_vm_end = vm_end_gap(vma);
870                         else if (!adjust_next)
871                                 vma_gap_update(next);
872                 }
873         }
874
875         if (anon_vma) {
876                 anon_vma_interval_tree_post_update_vma(vma);
877                 if (adjust_next)
878                         anon_vma_interval_tree_post_update_vma(next);
879                 anon_vma_unlock_write(anon_vma);
880         }
881         if (mapping)
882                 i_mmap_unlock_write(mapping);
883
884         if (root) {
885                 uprobe_mmap(vma);
886
887                 if (adjust_next)
888                         uprobe_mmap(next);
889         }
890
891         if (remove_next) {
892                 if (file) {
893                         uprobe_munmap(next, next->vm_start, next->vm_end);
894                         fput(file);
895                 }
896                 if (next->anon_vma)
897                         anon_vma_merge(vma, next);
898                 mm->map_count--;
899                 mpol_put(vma_policy(next));
900                 kmem_cache_free(vm_area_cachep, next);
901                 /*
902                  * In mprotect's case 6 (see comments on vma_merge),
903                  * we must remove another next too. It would clutter
904                  * up the code too much to do both in one go.
905                  */
906                 if (remove_next != 3) {
907                         /*
908                          * If "next" was removed and vma->vm_end was
909                          * expanded (up) over it, in turn
910                          * "next->vm_prev->vm_end" changed and the
911                          * "vma->vm_next" gap must be updated.
912                          */
913                         next = vma->vm_next;
914                 } else {
915                         /*
916                          * For the scope of the comment "next" and
917                          * "vma" considered pre-swap(): if "vma" was
918                          * removed, next->vm_start was expanded (down)
919                          * over it and the "next" gap must be updated.
920                          * Because of the swap() the post-swap() "vma"
921                          * actually points to pre-swap() "next"
922                          * (post-swap() "next" as opposed is now a
923                          * dangling pointer).
924                          */
925                         next = vma;
926                 }
927                 if (remove_next == 2) {
928                         remove_next = 1;
929                         end = next->vm_end;
930                         goto again;
931                 }
932                 else if (next)
933                         vma_gap_update(next);
934                 else {
935                         /*
936                          * If remove_next == 2 we obviously can't
937                          * reach this path.
938                          *
939                          * If remove_next == 3 we can't reach this
940                          * path because pre-swap() next is always not
941                          * NULL. pre-swap() "next" is not being
942                          * removed and its next->vm_end is not altered
943                          * (and furthermore "end" already matches
944                          * next->vm_end in remove_next == 3).
945                          *
946                          * We reach this only in the remove_next == 1
947                          * case if the "next" vma that was removed was
948                          * the highest vma of the mm. However in such
949                          * case next->vm_end == "end" and the extended
950                          * "vma" has vma->vm_end == next->vm_end so
951                          * mm->highest_vm_end doesn't need any update
952                          * in remove_next == 1 case.
953                          */
954                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
955                 }
956         }
957         if (insert && file)
958                 uprobe_mmap(insert);
959
960         validate_mm(mm);
961
962         return 0;
963 }
964
965 /*
966  * If the vma has a ->close operation then the driver probably needs to release
967  * per-vma resources, so we don't attempt to merge those.
968  */
969 static inline int is_mergeable_vma(struct vm_area_struct *vma,
970                                 struct file *file, unsigned long vm_flags,
971                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
972 {
973         /*
974          * VM_SOFTDIRTY should not prevent from VMA merging, if we
975          * match the flags but dirty bit -- the caller should mark
976          * merged VMA as dirty. If dirty bit won't be excluded from
977          * comparison, we increase pressue on the memory system forcing
978          * the kernel to generate new VMAs when old one could be
979          * extended instead.
980          */
981         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
982                 return 0;
983         if (vma->vm_file != file)
984                 return 0;
985         if (vma->vm_ops && vma->vm_ops->close)
986                 return 0;
987         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
988                 return 0;
989         return 1;
990 }
991
992 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
993                                         struct anon_vma *anon_vma2,
994                                         struct vm_area_struct *vma)
995 {
996         /*
997          * The list_is_singular() test is to avoid merging VMA cloned from
998          * parents. This can improve scalability caused by anon_vma lock.
999          */
1000         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1001                 list_is_singular(&vma->anon_vma_chain)))
1002                 return 1;
1003         return anon_vma1 == anon_vma2;
1004 }
1005
1006 /*
1007  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1008  * in front of (at a lower virtual address and file offset than) the vma.
1009  *
1010  * We cannot merge two vmas if they have differently assigned (non-NULL)
1011  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1012  *
1013  * We don't check here for the merged mmap wrapping around the end of pagecache
1014  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1015  * wrap, nor mmaps which cover the final page at index -1UL.
1016  */
1017 static int
1018 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1019                      struct anon_vma *anon_vma, struct file *file,
1020                      pgoff_t vm_pgoff,
1021                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1022 {
1023         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1024             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1025                 if (vma->vm_pgoff == vm_pgoff)
1026                         return 1;
1027         }
1028         return 0;
1029 }
1030
1031 /*
1032  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1033  * beyond (at a higher virtual address and file offset than) the vma.
1034  *
1035  * We cannot merge two vmas if they have differently assigned (non-NULL)
1036  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1037  */
1038 static int
1039 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1040                     struct anon_vma *anon_vma, struct file *file,
1041                     pgoff_t vm_pgoff,
1042                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1043 {
1044         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1045             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1046                 pgoff_t vm_pglen;
1047                 vm_pglen = vma_pages(vma);
1048                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1049                         return 1;
1050         }
1051         return 0;
1052 }
1053
1054 /*
1055  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1056  * whether that can be merged with its predecessor or its successor.
1057  * Or both (it neatly fills a hole).
1058  *
1059  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1060  * certain not to be mapped by the time vma_merge is called; but when
1061  * called for mprotect, it is certain to be already mapped (either at
1062  * an offset within prev, or at the start of next), and the flags of
1063  * this area are about to be changed to vm_flags - and the no-change
1064  * case has already been eliminated.
1065  *
1066  * The following mprotect cases have to be considered, where AAAA is
1067  * the area passed down from mprotect_fixup, never extending beyond one
1068  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1069  *
1070  *     AAAA             AAAA                AAAA          AAAA
1071  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1072  *    cannot merge    might become    might become    might become
1073  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1074  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1075  *    mremap move:                                    PPPPXXXXXXXX 8
1076  *        AAAA
1077  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1078  *    might become    case 1 below    case 2 below    case 3 below
1079  *
1080  * It is important for case 8 that the the vma NNNN overlapping the
1081  * region AAAA is never going to extended over XXXX. Instead XXXX must
1082  * be extended in region AAAA and NNNN must be removed. This way in
1083  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1084  * rmap_locks, the properties of the merged vma will be already
1085  * correct for the whole merged range. Some of those properties like
1086  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1087  * be correct for the whole merged range immediately after the
1088  * rmap_locks are released. Otherwise if XXXX would be removed and
1089  * NNNN would be extended over the XXXX range, remove_migration_ptes
1090  * or other rmap walkers (if working on addresses beyond the "end"
1091  * parameter) may establish ptes with the wrong permissions of NNNN
1092  * instead of the right permissions of XXXX.
1093  */
1094 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1095                         struct vm_area_struct *prev, unsigned long addr,
1096                         unsigned long end, unsigned long vm_flags,
1097                         struct anon_vma *anon_vma, struct file *file,
1098                         pgoff_t pgoff, struct mempolicy *policy,
1099                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1100 {
1101         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1102         struct vm_area_struct *area, *next;
1103         int err;
1104
1105         /*
1106          * We later require that vma->vm_flags == vm_flags,
1107          * so this tests vma->vm_flags & VM_SPECIAL, too.
1108          */
1109         if (vm_flags & VM_SPECIAL)
1110                 return NULL;
1111
1112         if (prev)
1113                 next = prev->vm_next;
1114         else
1115                 next = mm->mmap;
1116         area = next;
1117         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1118                 next = next->vm_next;
1119
1120         /* verify some invariant that must be enforced by the caller */
1121         VM_WARN_ON(prev && addr <= prev->vm_start);
1122         VM_WARN_ON(area && end > area->vm_end);
1123         VM_WARN_ON(addr >= end);
1124
1125         /*
1126          * Can it merge with the predecessor?
1127          */
1128         if (prev && prev->vm_end == addr &&
1129                         mpol_equal(vma_policy(prev), policy) &&
1130                         can_vma_merge_after(prev, vm_flags,
1131                                             anon_vma, file, pgoff,
1132                                             vm_userfaultfd_ctx)) {
1133                 /*
1134                  * OK, it can.  Can we now merge in the successor as well?
1135                  */
1136                 if (next && end == next->vm_start &&
1137                                 mpol_equal(policy, vma_policy(next)) &&
1138                                 can_vma_merge_before(next, vm_flags,
1139                                                      anon_vma, file,
1140                                                      pgoff+pglen,
1141                                                      vm_userfaultfd_ctx) &&
1142                                 is_mergeable_anon_vma(prev->anon_vma,
1143                                                       next->anon_vma, NULL)) {
1144                                                         /* cases 1, 6 */
1145                         err = __vma_adjust(prev, prev->vm_start,
1146                                          next->vm_end, prev->vm_pgoff, NULL,
1147                                          prev);
1148                 } else                                  /* cases 2, 5, 7 */
1149                         err = __vma_adjust(prev, prev->vm_start,
1150                                          end, prev->vm_pgoff, NULL, prev);
1151                 if (err)
1152                         return NULL;
1153                 khugepaged_enter_vma_merge(prev, vm_flags);
1154                 return prev;
1155         }
1156
1157         /*
1158          * Can this new request be merged in front of next?
1159          */
1160         if (next && end == next->vm_start &&
1161                         mpol_equal(policy, vma_policy(next)) &&
1162                         can_vma_merge_before(next, vm_flags,
1163                                              anon_vma, file, pgoff+pglen,
1164                                              vm_userfaultfd_ctx)) {
1165                 if (prev && addr < prev->vm_end)        /* case 4 */
1166                         err = __vma_adjust(prev, prev->vm_start,
1167                                          addr, prev->vm_pgoff, NULL, next);
1168                 else {                                  /* cases 3, 8 */
1169                         err = __vma_adjust(area, addr, next->vm_end,
1170                                          next->vm_pgoff - pglen, NULL, next);
1171                         /*
1172                          * In case 3 area is already equal to next and
1173                          * this is a noop, but in case 8 "area" has
1174                          * been removed and next was expanded over it.
1175                          */
1176                         area = next;
1177                 }
1178                 if (err)
1179                         return NULL;
1180                 khugepaged_enter_vma_merge(area, vm_flags);
1181                 return area;
1182         }
1183
1184         return NULL;
1185 }
1186
1187 /*
1188  * Rough compatbility check to quickly see if it's even worth looking
1189  * at sharing an anon_vma.
1190  *
1191  * They need to have the same vm_file, and the flags can only differ
1192  * in things that mprotect may change.
1193  *
1194  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1195  * we can merge the two vma's. For example, we refuse to merge a vma if
1196  * there is a vm_ops->close() function, because that indicates that the
1197  * driver is doing some kind of reference counting. But that doesn't
1198  * really matter for the anon_vma sharing case.
1199  */
1200 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1201 {
1202         return a->vm_end == b->vm_start &&
1203                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1204                 a->vm_file == b->vm_file &&
1205                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1206                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1207 }
1208
1209 /*
1210  * Do some basic sanity checking to see if we can re-use the anon_vma
1211  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1212  * the same as 'old', the other will be the new one that is trying
1213  * to share the anon_vma.
1214  *
1215  * NOTE! This runs with mm_sem held for reading, so it is possible that
1216  * the anon_vma of 'old' is concurrently in the process of being set up
1217  * by another page fault trying to merge _that_. But that's ok: if it
1218  * is being set up, that automatically means that it will be a singleton
1219  * acceptable for merging, so we can do all of this optimistically. But
1220  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1221  *
1222  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1223  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1224  * is to return an anon_vma that is "complex" due to having gone through
1225  * a fork).
1226  *
1227  * We also make sure that the two vma's are compatible (adjacent,
1228  * and with the same memory policies). That's all stable, even with just
1229  * a read lock on the mm_sem.
1230  */
1231 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1232 {
1233         if (anon_vma_compatible(a, b)) {
1234                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1235
1236                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1237                         return anon_vma;
1238         }
1239         return NULL;
1240 }
1241
1242 /*
1243  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1244  * neighbouring vmas for a suitable anon_vma, before it goes off
1245  * to allocate a new anon_vma.  It checks because a repetitive
1246  * sequence of mprotects and faults may otherwise lead to distinct
1247  * anon_vmas being allocated, preventing vma merge in subsequent
1248  * mprotect.
1249  */
1250 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1251 {
1252         struct anon_vma *anon_vma;
1253         struct vm_area_struct *near;
1254
1255         near = vma->vm_next;
1256         if (!near)
1257                 goto try_prev;
1258
1259         anon_vma = reusable_anon_vma(near, vma, near);
1260         if (anon_vma)
1261                 return anon_vma;
1262 try_prev:
1263         near = vma->vm_prev;
1264         if (!near)
1265                 goto none;
1266
1267         anon_vma = reusable_anon_vma(near, near, vma);
1268         if (anon_vma)
1269                 return anon_vma;
1270 none:
1271         /*
1272          * There's no absolute need to look only at touching neighbours:
1273          * we could search further afield for "compatible" anon_vmas.
1274          * But it would probably just be a waste of time searching,
1275          * or lead to too many vmas hanging off the same anon_vma.
1276          * We're trying to allow mprotect remerging later on,
1277          * not trying to minimize memory used for anon_vmas.
1278          */
1279         return NULL;
1280 }
1281
1282 /*
1283  * If a hint addr is less than mmap_min_addr change hint to be as
1284  * low as possible but still greater than mmap_min_addr
1285  */
1286 static inline unsigned long round_hint_to_min(unsigned long hint)
1287 {
1288         hint &= PAGE_MASK;
1289         if (((void *)hint != NULL) &&
1290             (hint < mmap_min_addr))
1291                 return PAGE_ALIGN(mmap_min_addr);
1292         return hint;
1293 }
1294
1295 static inline int mlock_future_check(struct mm_struct *mm,
1296                                      unsigned long flags,
1297                                      unsigned long len)
1298 {
1299         unsigned long locked, lock_limit;
1300
1301         /*  mlock MCL_FUTURE? */
1302         if (flags & VM_LOCKED) {
1303                 locked = len >> PAGE_SHIFT;
1304                 locked += mm->locked_vm;
1305                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1306                 lock_limit >>= PAGE_SHIFT;
1307                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1308                         return -EAGAIN;
1309         }
1310         return 0;
1311 }
1312
1313 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1314 {
1315         if (S_ISREG(inode->i_mode))
1316                 return MAX_LFS_FILESIZE;
1317
1318         if (S_ISBLK(inode->i_mode))
1319                 return MAX_LFS_FILESIZE;
1320
1321         /* Special "we do even unsigned file positions" case */
1322         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1323                 return 0;
1324
1325         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1326         return ULONG_MAX;
1327 }
1328
1329 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1330                                 unsigned long pgoff, unsigned long len)
1331 {
1332         u64 maxsize = file_mmap_size_max(file, inode);
1333
1334         if (maxsize && len > maxsize)
1335                 return false;
1336         maxsize -= len;
1337         if (pgoff > maxsize >> PAGE_SHIFT)
1338                 return false;
1339         return true;
1340 }
1341
1342 /*
1343  * The caller must hold down_write(&current->mm->mmap_sem).
1344  */
1345 unsigned long do_mmap(struct file *file, unsigned long addr,
1346                         unsigned long len, unsigned long prot,
1347                         unsigned long flags, vm_flags_t vm_flags,
1348                         unsigned long pgoff, unsigned long *populate,
1349                         struct list_head *uf)
1350 {
1351         struct mm_struct *mm = current->mm;
1352         int pkey = 0;
1353
1354         *populate = 0;
1355
1356         if (!len)
1357                 return -EINVAL;
1358
1359         /*
1360          * Does the application expect PROT_READ to imply PROT_EXEC?
1361          *
1362          * (the exception is when the underlying filesystem is noexec
1363          *  mounted, in which case we dont add PROT_EXEC.)
1364          */
1365         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1366                 if (!(file && path_noexec(&file->f_path)))
1367                         prot |= PROT_EXEC;
1368
1369         if (!(flags & MAP_FIXED))
1370                 addr = round_hint_to_min(addr);
1371
1372         /* Careful about overflows.. */
1373         len = PAGE_ALIGN(len);
1374         if (!len)
1375                 return -ENOMEM;
1376
1377         /* offset overflow? */
1378         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1379                 return -EOVERFLOW;
1380
1381         /* Too many mappings? */
1382         if (mm->map_count > sysctl_max_map_count)
1383                 return -ENOMEM;
1384
1385         /* Obtain the address to map to. we verify (or select) it and ensure
1386          * that it represents a valid section of the address space.
1387          */
1388         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1389         if (offset_in_page(addr))
1390                 return addr;
1391
1392         if (prot == PROT_EXEC) {
1393                 pkey = execute_only_pkey(mm);
1394                 if (pkey < 0)
1395                         pkey = 0;
1396         }
1397
1398         /* Do simple checking here so the lower-level routines won't have
1399          * to. we assume access permissions have been handled by the open
1400          * of the memory object, so we don't do any here.
1401          */
1402         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1403                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1404
1405         if (flags & MAP_LOCKED)
1406                 if (!can_do_mlock())
1407                         return -EPERM;
1408
1409         if (mlock_future_check(mm, vm_flags, len))
1410                 return -EAGAIN;
1411
1412         if (file) {
1413                 struct inode *inode = file_inode(file);
1414
1415                 if (!file_mmap_ok(file, inode, pgoff, len))
1416                         return -EOVERFLOW;
1417
1418                 switch (flags & MAP_TYPE) {
1419                 case MAP_SHARED:
1420                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1421                                 return -EACCES;
1422
1423                         /*
1424                          * Make sure we don't allow writing to an append-only
1425                          * file..
1426                          */
1427                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1428                                 return -EACCES;
1429
1430                         /*
1431                          * Make sure there are no mandatory locks on the file.
1432                          */
1433                         if (locks_verify_locked(file))
1434                                 return -EAGAIN;
1435
1436                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1437                         if (!(file->f_mode & FMODE_WRITE))
1438                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1439
1440                         /* fall through */
1441                 case MAP_PRIVATE:
1442                         if (!(file->f_mode & FMODE_READ))
1443                                 return -EACCES;
1444                         if (path_noexec(&file->f_path)) {
1445                                 if (vm_flags & VM_EXEC)
1446                                         return -EPERM;
1447                                 vm_flags &= ~VM_MAYEXEC;
1448                         }
1449
1450                         if (!file->f_op->mmap)
1451                                 return -ENODEV;
1452                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1453                                 return -EINVAL;
1454                         break;
1455
1456                 default:
1457                         return -EINVAL;
1458                 }
1459         } else {
1460                 switch (flags & MAP_TYPE) {
1461                 case MAP_SHARED:
1462                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1463                                 return -EINVAL;
1464                         /*
1465                          * Ignore pgoff.
1466                          */
1467                         pgoff = 0;
1468                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1469                         break;
1470                 case MAP_PRIVATE:
1471                         /*
1472                          * Set pgoff according to addr for anon_vma.
1473                          */
1474                         pgoff = addr >> PAGE_SHIFT;
1475                         break;
1476                 default:
1477                         return -EINVAL;
1478                 }
1479         }
1480
1481         /*
1482          * Set 'VM_NORESERVE' if we should not account for the
1483          * memory use of this mapping.
1484          */
1485         if (flags & MAP_NORESERVE) {
1486                 /* We honor MAP_NORESERVE if allowed to overcommit */
1487                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1488                         vm_flags |= VM_NORESERVE;
1489
1490                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1491                 if (file && is_file_hugepages(file))
1492                         vm_flags |= VM_NORESERVE;
1493         }
1494
1495         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1496         if (!IS_ERR_VALUE(addr) &&
1497             ((vm_flags & VM_LOCKED) ||
1498              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1499                 *populate = len;
1500         return addr;
1501 }
1502
1503 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1504                 unsigned long, prot, unsigned long, flags,
1505                 unsigned long, fd, unsigned long, pgoff)
1506 {
1507         struct file *file = NULL;
1508         unsigned long retval;
1509
1510         if (!(flags & MAP_ANONYMOUS)) {
1511                 audit_mmap_fd(fd, flags);
1512                 file = fget(fd);
1513                 if (!file)
1514                         return -EBADF;
1515                 if (is_file_hugepages(file))
1516                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1517                 retval = -EINVAL;
1518                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1519                         goto out_fput;
1520         } else if (flags & MAP_HUGETLB) {
1521                 struct user_struct *user = NULL;
1522                 struct hstate *hs;
1523
1524                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1525                 if (!hs)
1526                         return -EINVAL;
1527
1528                 len = ALIGN(len, huge_page_size(hs));
1529                 /*
1530                  * VM_NORESERVE is used because the reservations will be
1531                  * taken when vm_ops->mmap() is called
1532                  * A dummy user value is used because we are not locking
1533                  * memory so no accounting is necessary
1534                  */
1535                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1536                                 VM_NORESERVE,
1537                                 &user, HUGETLB_ANONHUGE_INODE,
1538                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1539                 if (IS_ERR(file))
1540                         return PTR_ERR(file);
1541         }
1542
1543         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1544
1545         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1546 out_fput:
1547         if (file)
1548                 fput(file);
1549         return retval;
1550 }
1551
1552 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1553 struct mmap_arg_struct {
1554         unsigned long addr;
1555         unsigned long len;
1556         unsigned long prot;
1557         unsigned long flags;
1558         unsigned long fd;
1559         unsigned long offset;
1560 };
1561
1562 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1563 {
1564         struct mmap_arg_struct a;
1565
1566         if (copy_from_user(&a, arg, sizeof(a)))
1567                 return -EFAULT;
1568         if (offset_in_page(a.offset))
1569                 return -EINVAL;
1570
1571         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1572                               a.offset >> PAGE_SHIFT);
1573 }
1574 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1575
1576 /*
1577  * Some shared mappigns will want the pages marked read-only
1578  * to track write events. If so, we'll downgrade vm_page_prot
1579  * to the private version (using protection_map[] without the
1580  * VM_SHARED bit).
1581  */
1582 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1583 {
1584         vm_flags_t vm_flags = vma->vm_flags;
1585         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1586
1587         /* If it was private or non-writable, the write bit is already clear */
1588         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1589                 return 0;
1590
1591         /* The backer wishes to know when pages are first written to? */
1592         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1593                 return 1;
1594
1595         /* The open routine did something to the protections that pgprot_modify
1596          * won't preserve? */
1597         if (pgprot_val(vm_page_prot) !=
1598             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1599                 return 0;
1600
1601         /*
1602          * Do we need to track softdirty? hugetlb does not support softdirty
1603          * tracking yet.
1604          */
1605         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1606             !is_vm_hugetlb_page(vma))
1607                 return 1;
1608
1609         /* Specialty mapping? */
1610         if (vm_flags & VM_PFNMAP)
1611                 return 0;
1612
1613         /* Can the mapping track the dirty pages? */
1614         return vma->vm_file && vma->vm_file->f_mapping &&
1615                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1616 }
1617
1618 /*
1619  * We account for memory if it's a private writeable mapping,
1620  * not hugepages and VM_NORESERVE wasn't set.
1621  */
1622 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1623 {
1624         /*
1625          * hugetlb has its own accounting separate from the core VM
1626          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1627          */
1628         if (file && is_file_hugepages(file))
1629                 return 0;
1630
1631         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1632 }
1633
1634 unsigned long mmap_region(struct file *file, unsigned long addr,
1635                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1636                 struct list_head *uf)
1637 {
1638         struct mm_struct *mm = current->mm;
1639         struct vm_area_struct *vma, *prev;
1640         int error;
1641         struct rb_node **rb_link, *rb_parent;
1642         unsigned long charged = 0;
1643
1644         /* Check against address space limit. */
1645         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1646                 unsigned long nr_pages;
1647
1648                 /*
1649                  * MAP_FIXED may remove pages of mappings that intersects with
1650                  * requested mapping. Account for the pages it would unmap.
1651                  */
1652                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1653
1654                 if (!may_expand_vm(mm, vm_flags,
1655                                         (len >> PAGE_SHIFT) - nr_pages))
1656                         return -ENOMEM;
1657         }
1658
1659         /* Clear old maps */
1660         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1661                               &rb_parent)) {
1662                 if (do_munmap(mm, addr, len, uf))
1663                         return -ENOMEM;
1664         }
1665
1666         /*
1667          * Private writable mapping: check memory availability
1668          */
1669         if (accountable_mapping(file, vm_flags)) {
1670                 charged = len >> PAGE_SHIFT;
1671                 if (security_vm_enough_memory_mm(mm, charged))
1672                         return -ENOMEM;
1673                 vm_flags |= VM_ACCOUNT;
1674         }
1675
1676         /*
1677          * Can we just expand an old mapping?
1678          */
1679         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1680                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1681         if (vma)
1682                 goto out;
1683
1684         /*
1685          * Determine the object being mapped and call the appropriate
1686          * specific mapper. the address has already been validated, but
1687          * not unmapped, but the maps are removed from the list.
1688          */
1689         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1690         if (!vma) {
1691                 error = -ENOMEM;
1692                 goto unacct_error;
1693         }
1694
1695         vma->vm_mm = mm;
1696         vma->vm_start = addr;
1697         vma->vm_end = addr + len;
1698         vma->vm_flags = vm_flags;
1699         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1700         vma->vm_pgoff = pgoff;
1701         INIT_LIST_HEAD(&vma->anon_vma_chain);
1702
1703         if (file) {
1704                 if (vm_flags & VM_DENYWRITE) {
1705                         error = deny_write_access(file);
1706                         if (error)
1707                                 goto free_vma;
1708                 }
1709                 if (vm_flags & VM_SHARED) {
1710                         error = mapping_map_writable(file->f_mapping);
1711                         if (error)
1712                                 goto allow_write_and_free_vma;
1713                 }
1714
1715                 /* ->mmap() can change vma->vm_file, but must guarantee that
1716                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1717                  * and map writably if VM_SHARED is set. This usually means the
1718                  * new file must not have been exposed to user-space, yet.
1719                  */
1720                 vma->vm_file = get_file(file);
1721                 error = call_mmap(file, vma);
1722                 if (error)
1723                         goto unmap_and_free_vma;
1724
1725                 /* Can addr have changed??
1726                  *
1727                  * Answer: Yes, several device drivers can do it in their
1728                  *         f_op->mmap method. -DaveM
1729                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1730                  *      be updated for vma_link()
1731                  */
1732                 WARN_ON_ONCE(addr != vma->vm_start);
1733
1734                 addr = vma->vm_start;
1735                 vm_flags = vma->vm_flags;
1736         } else if (vm_flags & VM_SHARED) {
1737                 error = shmem_zero_setup(vma);
1738                 if (error)
1739                         goto free_vma;
1740         }
1741
1742         vma_link(mm, vma, prev, rb_link, rb_parent);
1743         /* Once vma denies write, undo our temporary denial count */
1744         if (file) {
1745                 if (vm_flags & VM_SHARED)
1746                         mapping_unmap_writable(file->f_mapping);
1747                 if (vm_flags & VM_DENYWRITE)
1748                         allow_write_access(file);
1749         }
1750         file = vma->vm_file;
1751 out:
1752         perf_event_mmap(vma);
1753
1754         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1755         if (vm_flags & VM_LOCKED) {
1756                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1757                                         vma == get_gate_vma(current->mm)))
1758                         mm->locked_vm += (len >> PAGE_SHIFT);
1759                 else
1760                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1761         }
1762
1763         if (file)
1764                 uprobe_mmap(vma);
1765
1766         /*
1767          * New (or expanded) vma always get soft dirty status.
1768          * Otherwise user-space soft-dirty page tracker won't
1769          * be able to distinguish situation when vma area unmapped,
1770          * then new mapped in-place (which must be aimed as
1771          * a completely new data area).
1772          */
1773         vma->vm_flags |= VM_SOFTDIRTY;
1774
1775         vma_set_page_prot(vma);
1776
1777         return addr;
1778
1779 unmap_and_free_vma:
1780         vma->vm_file = NULL;
1781         fput(file);
1782
1783         /* Undo any partial mapping done by a device driver. */
1784         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1785         if (vm_flags & VM_SHARED)
1786                 mapping_unmap_writable(file->f_mapping);
1787 allow_write_and_free_vma:
1788         if (vm_flags & VM_DENYWRITE)
1789                 allow_write_access(file);
1790 free_vma:
1791         kmem_cache_free(vm_area_cachep, vma);
1792 unacct_error:
1793         if (charged)
1794                 vm_unacct_memory(charged);
1795         return error;
1796 }
1797
1798 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1799 {
1800         /*
1801          * We implement the search by looking for an rbtree node that
1802          * immediately follows a suitable gap. That is,
1803          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1804          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1805          * - gap_end - gap_start >= length
1806          */
1807
1808         struct mm_struct *mm = current->mm;
1809         struct vm_area_struct *vma;
1810         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1811
1812         /* Adjust search length to account for worst case alignment overhead */
1813         length = info->length + info->align_mask;
1814         if (length < info->length)
1815                 return -ENOMEM;
1816
1817         /* Adjust search limits by the desired length */
1818         if (info->high_limit < length)
1819                 return -ENOMEM;
1820         high_limit = info->high_limit - length;
1821
1822         if (info->low_limit > high_limit)
1823                 return -ENOMEM;
1824         low_limit = info->low_limit + length;
1825
1826         /* Check if rbtree root looks promising */
1827         if (RB_EMPTY_ROOT(&mm->mm_rb))
1828                 goto check_highest;
1829         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1830         if (vma->rb_subtree_gap < length)
1831                 goto check_highest;
1832
1833         while (true) {
1834                 /* Visit left subtree if it looks promising */
1835                 gap_end = vm_start_gap(vma);
1836                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1837                         struct vm_area_struct *left =
1838                                 rb_entry(vma->vm_rb.rb_left,
1839                                          struct vm_area_struct, vm_rb);
1840                         if (left->rb_subtree_gap >= length) {
1841                                 vma = left;
1842                                 continue;
1843                         }
1844                 }
1845
1846                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1847 check_current:
1848                 /* Check if current node has a suitable gap */
1849                 if (gap_start > high_limit)
1850                         return -ENOMEM;
1851                 if (gap_end >= low_limit &&
1852                     gap_end > gap_start && gap_end - gap_start >= length)
1853                         goto found;
1854
1855                 /* Visit right subtree if it looks promising */
1856                 if (vma->vm_rb.rb_right) {
1857                         struct vm_area_struct *right =
1858                                 rb_entry(vma->vm_rb.rb_right,
1859                                          struct vm_area_struct, vm_rb);
1860                         if (right->rb_subtree_gap >= length) {
1861                                 vma = right;
1862                                 continue;
1863                         }
1864                 }
1865
1866                 /* Go back up the rbtree to find next candidate node */
1867                 while (true) {
1868                         struct rb_node *prev = &vma->vm_rb;
1869                         if (!rb_parent(prev))
1870                                 goto check_highest;
1871                         vma = rb_entry(rb_parent(prev),
1872                                        struct vm_area_struct, vm_rb);
1873                         if (prev == vma->vm_rb.rb_left) {
1874                                 gap_start = vm_end_gap(vma->vm_prev);
1875                                 gap_end = vm_start_gap(vma);
1876                                 goto check_current;
1877                         }
1878                 }
1879         }
1880
1881 check_highest:
1882         /* Check highest gap, which does not precede any rbtree node */
1883         gap_start = mm->highest_vm_end;
1884         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1885         if (gap_start > high_limit)
1886                 return -ENOMEM;
1887
1888 found:
1889         /* We found a suitable gap. Clip it with the original low_limit. */
1890         if (gap_start < info->low_limit)
1891                 gap_start = info->low_limit;
1892
1893         /* Adjust gap address to the desired alignment */
1894         gap_start += (info->align_offset - gap_start) & info->align_mask;
1895
1896         VM_BUG_ON(gap_start + info->length > info->high_limit);
1897         VM_BUG_ON(gap_start + info->length > gap_end);
1898         return gap_start;
1899 }
1900
1901 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1902 {
1903         struct mm_struct *mm = current->mm;
1904         struct vm_area_struct *vma;
1905         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1906
1907         /* Adjust search length to account for worst case alignment overhead */
1908         length = info->length + info->align_mask;
1909         if (length < info->length)
1910                 return -ENOMEM;
1911
1912         /*
1913          * Adjust search limits by the desired length.
1914          * See implementation comment at top of unmapped_area().
1915          */
1916         gap_end = info->high_limit;
1917         if (gap_end < length)
1918                 return -ENOMEM;
1919         high_limit = gap_end - length;
1920
1921         if (info->low_limit > high_limit)
1922                 return -ENOMEM;
1923         low_limit = info->low_limit + length;
1924
1925         /* Check highest gap, which does not precede any rbtree node */
1926         gap_start = mm->highest_vm_end;
1927         if (gap_start <= high_limit)
1928                 goto found_highest;
1929
1930         /* Check if rbtree root looks promising */
1931         if (RB_EMPTY_ROOT(&mm->mm_rb))
1932                 return -ENOMEM;
1933         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1934         if (vma->rb_subtree_gap < length)
1935                 return -ENOMEM;
1936
1937         while (true) {
1938                 /* Visit right subtree if it looks promising */
1939                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1940                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1941                         struct vm_area_struct *right =
1942                                 rb_entry(vma->vm_rb.rb_right,
1943                                          struct vm_area_struct, vm_rb);
1944                         if (right->rb_subtree_gap >= length) {
1945                                 vma = right;
1946                                 continue;
1947                         }
1948                 }
1949
1950 check_current:
1951                 /* Check if current node has a suitable gap */
1952                 gap_end = vm_start_gap(vma);
1953                 if (gap_end < low_limit)
1954                         return -ENOMEM;
1955                 if (gap_start <= high_limit &&
1956                     gap_end > gap_start && gap_end - gap_start >= length)
1957                         goto found;
1958
1959                 /* Visit left subtree if it looks promising */
1960                 if (vma->vm_rb.rb_left) {
1961                         struct vm_area_struct *left =
1962                                 rb_entry(vma->vm_rb.rb_left,
1963                                          struct vm_area_struct, vm_rb);
1964                         if (left->rb_subtree_gap >= length) {
1965                                 vma = left;
1966                                 continue;
1967                         }
1968                 }
1969
1970                 /* Go back up the rbtree to find next candidate node */
1971                 while (true) {
1972                         struct rb_node *prev = &vma->vm_rb;
1973                         if (!rb_parent(prev))
1974                                 return -ENOMEM;
1975                         vma = rb_entry(rb_parent(prev),
1976                                        struct vm_area_struct, vm_rb);
1977                         if (prev == vma->vm_rb.rb_right) {
1978                                 gap_start = vma->vm_prev ?
1979                                         vm_end_gap(vma->vm_prev) : 0;
1980                                 goto check_current;
1981                         }
1982                 }
1983         }
1984
1985 found:
1986         /* We found a suitable gap. Clip it with the original high_limit. */
1987         if (gap_end > info->high_limit)
1988                 gap_end = info->high_limit;
1989
1990 found_highest:
1991         /* Compute highest gap address at the desired alignment */
1992         gap_end -= info->length;
1993         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1994
1995         VM_BUG_ON(gap_end < info->low_limit);
1996         VM_BUG_ON(gap_end < gap_start);
1997         return gap_end;
1998 }
1999
2000 /* Get an address range which is currently unmapped.
2001  * For shmat() with addr=0.
2002  *
2003  * Ugly calling convention alert:
2004  * Return value with the low bits set means error value,
2005  * ie
2006  *      if (ret & ~PAGE_MASK)
2007  *              error = ret;
2008  *
2009  * This function "knows" that -ENOMEM has the bits set.
2010  */
2011 #ifndef HAVE_ARCH_UNMAPPED_AREA
2012 unsigned long
2013 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2014                 unsigned long len, unsigned long pgoff, unsigned long flags)
2015 {
2016         struct mm_struct *mm = current->mm;
2017         struct vm_area_struct *vma, *prev;
2018         struct vm_unmapped_area_info info;
2019
2020         if (len > TASK_SIZE - mmap_min_addr)
2021                 return -ENOMEM;
2022
2023         if (flags & MAP_FIXED)
2024                 return addr;
2025
2026         if (addr) {
2027                 addr = PAGE_ALIGN(addr);
2028                 vma = find_vma_prev(mm, addr, &prev);
2029                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2030                     (!vma || addr + len <= vm_start_gap(vma)) &&
2031                     (!prev || addr >= vm_end_gap(prev)))
2032                         return addr;
2033         }
2034
2035         info.flags = 0;
2036         info.length = len;
2037         info.low_limit = mm->mmap_base;
2038         info.high_limit = TASK_SIZE;
2039         info.align_mask = 0;
2040         info.align_offset = 0;
2041         return vm_unmapped_area(&info);
2042 }
2043 #endif
2044
2045 /*
2046  * This mmap-allocator allocates new areas top-down from below the
2047  * stack's low limit (the base):
2048  */
2049 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2050 unsigned long
2051 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2052                           const unsigned long len, const unsigned long pgoff,
2053                           const unsigned long flags)
2054 {
2055         struct vm_area_struct *vma, *prev;
2056         struct mm_struct *mm = current->mm;
2057         unsigned long addr = addr0;
2058         struct vm_unmapped_area_info info;
2059
2060         /* requested length too big for entire address space */
2061         if (len > TASK_SIZE - mmap_min_addr)
2062                 return -ENOMEM;
2063
2064         if (flags & MAP_FIXED)
2065                 return addr;
2066
2067         /* requesting a specific address */
2068         if (addr) {
2069                 addr = PAGE_ALIGN(addr);
2070                 vma = find_vma_prev(mm, addr, &prev);
2071                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2072                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2073                                 (!prev || addr >= vm_end_gap(prev)))
2074                         return addr;
2075         }
2076
2077         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2078         info.length = len;
2079         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2080         info.high_limit = mm->mmap_base;
2081         info.align_mask = 0;
2082         info.align_offset = 0;
2083         addr = vm_unmapped_area(&info);
2084
2085         /*
2086          * A failed mmap() very likely causes application failure,
2087          * so fall back to the bottom-up function here. This scenario
2088          * can happen with large stack limits and large mmap()
2089          * allocations.
2090          */
2091         if (offset_in_page(addr)) {
2092                 VM_BUG_ON(addr != -ENOMEM);
2093                 info.flags = 0;
2094                 info.low_limit = TASK_UNMAPPED_BASE;
2095                 info.high_limit = TASK_SIZE;
2096                 addr = vm_unmapped_area(&info);
2097         }
2098
2099         return addr;
2100 }
2101 #endif
2102
2103 unsigned long
2104 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2105                 unsigned long pgoff, unsigned long flags)
2106 {
2107         unsigned long (*get_area)(struct file *, unsigned long,
2108                                   unsigned long, unsigned long, unsigned long);
2109
2110         unsigned long error = arch_mmap_check(addr, len, flags);
2111         if (error)
2112                 return error;
2113
2114         /* Careful about overflows.. */
2115         if (len > TASK_SIZE)
2116                 return -ENOMEM;
2117
2118         get_area = current->mm->get_unmapped_area;
2119         if (file) {
2120                 if (file->f_op->get_unmapped_area)
2121                         get_area = file->f_op->get_unmapped_area;
2122         } else if (flags & MAP_SHARED) {
2123                 /*
2124                  * mmap_region() will call shmem_zero_setup() to create a file,
2125                  * so use shmem's get_unmapped_area in case it can be huge.
2126                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2127                  */
2128                 pgoff = 0;
2129                 get_area = shmem_get_unmapped_area;
2130         }
2131
2132         addr = get_area(file, addr, len, pgoff, flags);
2133         if (IS_ERR_VALUE(addr))
2134                 return addr;
2135
2136         if (addr > TASK_SIZE - len)
2137                 return -ENOMEM;
2138         if (offset_in_page(addr))
2139                 return -EINVAL;
2140
2141         error = security_mmap_addr(addr);
2142         return error ? error : addr;
2143 }
2144
2145 EXPORT_SYMBOL(get_unmapped_area);
2146
2147 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2148 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2149 {
2150         struct rb_node *rb_node;
2151         struct vm_area_struct *vma;
2152
2153         /* Check the cache first. */
2154         vma = vmacache_find(mm, addr);
2155         if (likely(vma))
2156                 return vma;
2157
2158         rb_node = mm->mm_rb.rb_node;
2159
2160         while (rb_node) {
2161                 struct vm_area_struct *tmp;
2162
2163                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2164
2165                 if (tmp->vm_end > addr) {
2166                         vma = tmp;
2167                         if (tmp->vm_start <= addr)
2168                                 break;
2169                         rb_node = rb_node->rb_left;
2170                 } else
2171                         rb_node = rb_node->rb_right;
2172         }
2173
2174         if (vma)
2175                 vmacache_update(addr, vma);
2176         return vma;
2177 }
2178
2179 EXPORT_SYMBOL(find_vma);
2180
2181 /*
2182  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2183  */
2184 struct vm_area_struct *
2185 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2186                         struct vm_area_struct **pprev)
2187 {
2188         struct vm_area_struct *vma;
2189
2190         vma = find_vma(mm, addr);
2191         if (vma) {
2192                 *pprev = vma->vm_prev;
2193         } else {
2194                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2195                 *pprev = NULL;
2196                 while (rb_node) {
2197                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2198                         rb_node = rb_node->rb_right;
2199                 }
2200         }
2201         return vma;
2202 }
2203
2204 /*
2205  * Verify that the stack growth is acceptable and
2206  * update accounting. This is shared with both the
2207  * grow-up and grow-down cases.
2208  */
2209 static int acct_stack_growth(struct vm_area_struct *vma,
2210                              unsigned long size, unsigned long grow)
2211 {
2212         struct mm_struct *mm = vma->vm_mm;
2213         unsigned long new_start;
2214
2215         /* address space limit tests */
2216         if (!may_expand_vm(mm, vma->vm_flags, grow))
2217                 return -ENOMEM;
2218
2219         /* Stack limit test */
2220         if (size > rlimit(RLIMIT_STACK))
2221                 return -ENOMEM;
2222
2223         /* mlock limit tests */
2224         if (vma->vm_flags & VM_LOCKED) {
2225                 unsigned long locked;
2226                 unsigned long limit;
2227                 locked = mm->locked_vm + grow;
2228                 limit = rlimit(RLIMIT_MEMLOCK);
2229                 limit >>= PAGE_SHIFT;
2230                 if (locked > limit && !capable(CAP_IPC_LOCK))
2231                         return -ENOMEM;
2232         }
2233
2234         /* Check to ensure the stack will not grow into a hugetlb-only region */
2235         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2236                         vma->vm_end - size;
2237         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2238                 return -EFAULT;
2239
2240         /*
2241          * Overcommit..  This must be the final test, as it will
2242          * update security statistics.
2243          */
2244         if (security_vm_enough_memory_mm(mm, grow))
2245                 return -ENOMEM;
2246
2247         return 0;
2248 }
2249
2250 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2251 /*
2252  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2253  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2254  */
2255 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2256 {
2257         struct mm_struct *mm = vma->vm_mm;
2258         struct vm_area_struct *next;
2259         unsigned long gap_addr;
2260         int error = 0;
2261
2262         if (!(vma->vm_flags & VM_GROWSUP))
2263                 return -EFAULT;
2264
2265         /* Guard against exceeding limits of the address space. */
2266         address &= PAGE_MASK;
2267         if (address >= (TASK_SIZE & PAGE_MASK))
2268                 return -ENOMEM;
2269         address += PAGE_SIZE;
2270
2271         /* Enforce stack_guard_gap */
2272         gap_addr = address + stack_guard_gap;
2273
2274         /* Guard against overflow */
2275         if (gap_addr < address || gap_addr > TASK_SIZE)
2276                 gap_addr = TASK_SIZE;
2277
2278         next = vma->vm_next;
2279         if (next && next->vm_start < gap_addr &&
2280                         (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2281                 if (!(next->vm_flags & VM_GROWSUP))
2282                         return -ENOMEM;
2283                 /* Check that both stack segments have the same anon_vma? */
2284         }
2285
2286         /* We must make sure the anon_vma is allocated. */
2287         if (unlikely(anon_vma_prepare(vma)))
2288                 return -ENOMEM;
2289
2290         /*
2291          * vma->vm_start/vm_end cannot change under us because the caller
2292          * is required to hold the mmap_sem in read mode.  We need the
2293          * anon_vma lock to serialize against concurrent expand_stacks.
2294          */
2295         anon_vma_lock_write(vma->anon_vma);
2296
2297         /* Somebody else might have raced and expanded it already */
2298         if (address > vma->vm_end) {
2299                 unsigned long size, grow;
2300
2301                 size = address - vma->vm_start;
2302                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2303
2304                 error = -ENOMEM;
2305                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2306                         error = acct_stack_growth(vma, size, grow);
2307                         if (!error) {
2308                                 /*
2309                                  * vma_gap_update() doesn't support concurrent
2310                                  * updates, but we only hold a shared mmap_sem
2311                                  * lock here, so we need to protect against
2312                                  * concurrent vma expansions.
2313                                  * anon_vma_lock_write() doesn't help here, as
2314                                  * we don't guarantee that all growable vmas
2315                                  * in a mm share the same root anon vma.
2316                                  * So, we reuse mm->page_table_lock to guard
2317                                  * against concurrent vma expansions.
2318                                  */
2319                                 spin_lock(&mm->page_table_lock);
2320                                 if (vma->vm_flags & VM_LOCKED)
2321                                         mm->locked_vm += grow;
2322                                 vm_stat_account(mm, vma->vm_flags, grow);
2323                                 anon_vma_interval_tree_pre_update_vma(vma);
2324                                 vma->vm_end = address;
2325                                 anon_vma_interval_tree_post_update_vma(vma);
2326                                 if (vma->vm_next)
2327                                         vma_gap_update(vma->vm_next);
2328                                 else
2329                                         mm->highest_vm_end = vm_end_gap(vma);
2330                                 spin_unlock(&mm->page_table_lock);
2331
2332                                 perf_event_mmap(vma);
2333                         }
2334                 }
2335         }
2336         anon_vma_unlock_write(vma->anon_vma);
2337         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2338         validate_mm(mm);
2339         return error;
2340 }
2341 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2342
2343 /*
2344  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2345  */
2346 int expand_downwards(struct vm_area_struct *vma,
2347                                    unsigned long address)
2348 {
2349         struct mm_struct *mm = vma->vm_mm;
2350         struct vm_area_struct *prev;
2351         int error = 0;
2352
2353         address &= PAGE_MASK;
2354         if (address < mmap_min_addr)
2355                 return -EPERM;
2356
2357         /* Enforce stack_guard_gap */
2358         prev = vma->vm_prev;
2359         /* Check that both stack segments have the same anon_vma? */
2360         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2361                         (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2362                 if (address - prev->vm_end < stack_guard_gap)
2363                         return -ENOMEM;
2364         }
2365
2366         /* We must make sure the anon_vma is allocated. */
2367         if (unlikely(anon_vma_prepare(vma)))
2368                 return -ENOMEM;
2369
2370         /*
2371          * vma->vm_start/vm_end cannot change under us because the caller
2372          * is required to hold the mmap_sem in read mode.  We need the
2373          * anon_vma lock to serialize against concurrent expand_stacks.
2374          */
2375         anon_vma_lock_write(vma->anon_vma);
2376
2377         /* Somebody else might have raced and expanded it already */
2378         if (address < vma->vm_start) {
2379                 unsigned long size, grow;
2380
2381                 size = vma->vm_end - address;
2382                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2383
2384                 error = -ENOMEM;
2385                 if (grow <= vma->vm_pgoff) {
2386                         error = acct_stack_growth(vma, size, grow);
2387                         if (!error) {
2388                                 /*
2389                                  * vma_gap_update() doesn't support concurrent
2390                                  * updates, but we only hold a shared mmap_sem
2391                                  * lock here, so we need to protect against
2392                                  * concurrent vma expansions.
2393                                  * anon_vma_lock_write() doesn't help here, as
2394                                  * we don't guarantee that all growable vmas
2395                                  * in a mm share the same root anon vma.
2396                                  * So, we reuse mm->page_table_lock to guard
2397                                  * against concurrent vma expansions.
2398                                  */
2399                                 spin_lock(&mm->page_table_lock);
2400                                 if (vma->vm_flags & VM_LOCKED)
2401                                         mm->locked_vm += grow;
2402                                 vm_stat_account(mm, vma->vm_flags, grow);
2403                                 anon_vma_interval_tree_pre_update_vma(vma);
2404                                 vma->vm_start = address;
2405                                 vma->vm_pgoff -= grow;
2406                                 anon_vma_interval_tree_post_update_vma(vma);
2407                                 vma_gap_update(vma);
2408                                 spin_unlock(&mm->page_table_lock);
2409
2410                                 perf_event_mmap(vma);
2411                         }
2412                 }
2413         }
2414         anon_vma_unlock_write(vma->anon_vma);
2415         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2416         validate_mm(mm);
2417         return error;
2418 }
2419
2420 /* enforced gap between the expanding stack and other mappings. */
2421 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2422
2423 static int __init cmdline_parse_stack_guard_gap(char *p)
2424 {
2425         unsigned long val;
2426         char *endptr;
2427
2428         val = simple_strtoul(p, &endptr, 10);
2429         if (!*endptr)
2430                 stack_guard_gap = val << PAGE_SHIFT;
2431
2432         return 1;
2433 }
2434 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2435
2436 #ifdef CONFIG_STACK_GROWSUP
2437 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2438 {
2439         return expand_upwards(vma, address);
2440 }
2441
2442 struct vm_area_struct *
2443 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2444 {
2445         struct vm_area_struct *vma, *prev;
2446
2447         addr &= PAGE_MASK;
2448         vma = find_vma_prev(mm, addr, &prev);
2449         if (vma && (vma->vm_start <= addr))
2450                 return vma;
2451         /* don't alter vm_end if the coredump is running */
2452         if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2453                 return NULL;
2454         if (prev->vm_flags & VM_LOCKED)
2455                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2456         return prev;
2457 }
2458 #else
2459 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2460 {
2461         return expand_downwards(vma, address);
2462 }
2463
2464 struct vm_area_struct *
2465 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2466 {
2467         struct vm_area_struct *vma;
2468         unsigned long start;
2469
2470         addr &= PAGE_MASK;
2471         vma = find_vma(mm, addr);
2472         if (!vma)
2473                 return NULL;
2474         if (vma->vm_start <= addr)
2475                 return vma;
2476         if (!(vma->vm_flags & VM_GROWSDOWN))
2477                 return NULL;
2478         /* don't alter vm_start if the coredump is running */
2479         if (!mmget_still_valid(mm))
2480                 return NULL;
2481         start = vma->vm_start;
2482         if (expand_stack(vma, addr))
2483                 return NULL;
2484         if (vma->vm_flags & VM_LOCKED)
2485                 populate_vma_page_range(vma, addr, start, NULL);
2486         return vma;
2487 }
2488 #endif
2489
2490 EXPORT_SYMBOL_GPL(find_extend_vma);
2491
2492 /*
2493  * Ok - we have the memory areas we should free on the vma list,
2494  * so release them, and do the vma updates.
2495  *
2496  * Called with the mm semaphore held.
2497  */
2498 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2499 {
2500         unsigned long nr_accounted = 0;
2501
2502         /* Update high watermark before we lower total_vm */
2503         update_hiwater_vm(mm);
2504         do {
2505                 long nrpages = vma_pages(vma);
2506
2507                 if (vma->vm_flags & VM_ACCOUNT)
2508                         nr_accounted += nrpages;
2509                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2510                 vma = remove_vma(vma);
2511         } while (vma);
2512         vm_unacct_memory(nr_accounted);
2513         validate_mm(mm);
2514 }
2515
2516 /*
2517  * Get rid of page table information in the indicated region.
2518  *
2519  * Called with the mm semaphore held.
2520  */
2521 static void unmap_region(struct mm_struct *mm,
2522                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2523                 unsigned long start, unsigned long end)
2524 {
2525         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2526         struct mmu_gather tlb;
2527         struct vm_area_struct *cur_vma;
2528
2529         lru_add_drain();
2530         tlb_gather_mmu(&tlb, mm, start, end);
2531         update_hiwater_rss(mm);
2532         unmap_vmas(&tlb, vma, start, end);
2533
2534         /*
2535          * Ensure we have no stale TLB entries by the time this mapping is
2536          * removed from the rmap.
2537          * Note that we don't have to worry about nested flushes here because
2538          * we're holding the mm semaphore for removing the mapping - so any
2539          * concurrent flush in this region has to be coming through the rmap,
2540          * and we synchronize against that using the rmap lock.
2541          */
2542         for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2543                 if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2544                         tlb_flush_mmu(&tlb);
2545                         break;
2546                 }
2547         }
2548
2549         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2550                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2551         tlb_finish_mmu(&tlb, start, end);
2552 }
2553
2554 /*
2555  * Create a list of vma's touched by the unmap, removing them from the mm's
2556  * vma list as we go..
2557  */
2558 static void
2559 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2560         struct vm_area_struct *prev, unsigned long end)
2561 {
2562         struct vm_area_struct **insertion_point;
2563         struct vm_area_struct *tail_vma = NULL;
2564
2565         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2566         vma->vm_prev = NULL;
2567         do {
2568                 vma_rb_erase(vma, &mm->mm_rb);
2569                 mm->map_count--;
2570                 tail_vma = vma;
2571                 vma = vma->vm_next;
2572         } while (vma && vma->vm_start < end);
2573         *insertion_point = vma;
2574         if (vma) {
2575                 vma->vm_prev = prev;
2576                 vma_gap_update(vma);
2577         } else
2578                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2579         tail_vma->vm_next = NULL;
2580
2581         /* Kill the cache */
2582         vmacache_invalidate(mm);
2583 }
2584
2585 /*
2586  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2587  * has already been checked or doesn't make sense to fail.
2588  */
2589 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2590                 unsigned long addr, int new_below)
2591 {
2592         struct vm_area_struct *new;
2593         int err;
2594
2595         if (vma->vm_ops && vma->vm_ops->split) {
2596                 err = vma->vm_ops->split(vma, addr);
2597                 if (err)
2598                         return err;
2599         }
2600
2601         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2602         if (!new)
2603                 return -ENOMEM;
2604
2605         /* most fields are the same, copy all, and then fixup */
2606         *new = *vma;
2607
2608         INIT_LIST_HEAD(&new->anon_vma_chain);
2609
2610         if (new_below)
2611                 new->vm_end = addr;
2612         else {
2613                 new->vm_start = addr;
2614                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2615         }
2616
2617         err = vma_dup_policy(vma, new);
2618         if (err)
2619                 goto out_free_vma;
2620
2621         err = anon_vma_clone(new, vma);
2622         if (err)
2623                 goto out_free_mpol;
2624
2625         if (new->vm_file)
2626                 get_file(new->vm_file);
2627
2628         if (new->vm_ops && new->vm_ops->open)
2629                 new->vm_ops->open(new);
2630
2631         if (new_below)
2632                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2633                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2634         else
2635                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2636
2637         /* Success. */
2638         if (!err)
2639                 return 0;
2640
2641         /* Clean everything up if vma_adjust failed. */
2642         if (new->vm_ops && new->vm_ops->close)
2643                 new->vm_ops->close(new);
2644         if (new->vm_file)
2645                 fput(new->vm_file);
2646         unlink_anon_vmas(new);
2647  out_free_mpol:
2648         mpol_put(vma_policy(new));
2649  out_free_vma:
2650         kmem_cache_free(vm_area_cachep, new);
2651         return err;
2652 }
2653
2654 /*
2655  * Split a vma into two pieces at address 'addr', a new vma is allocated
2656  * either for the first part or the tail.
2657  */
2658 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2659               unsigned long addr, int new_below)
2660 {
2661         if (mm->map_count >= sysctl_max_map_count)
2662                 return -ENOMEM;
2663
2664         return __split_vma(mm, vma, addr, new_below);
2665 }
2666
2667 /* Munmap is split into 2 main parts -- this part which finds
2668  * what needs doing, and the areas themselves, which do the
2669  * work.  This now handles partial unmappings.
2670  * Jeremy Fitzhardinge <jeremy@goop.org>
2671  */
2672 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2673               struct list_head *uf)
2674 {
2675         unsigned long end;
2676         struct vm_area_struct *vma, *prev, *last;
2677
2678         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2679                 return -EINVAL;
2680
2681         len = PAGE_ALIGN(len);
2682         if (len == 0)
2683                 return -EINVAL;
2684
2685         /* Find the first overlapping VMA */
2686         vma = find_vma(mm, start);
2687         if (!vma)
2688                 return 0;
2689         prev = vma->vm_prev;
2690         /* we have  start < vma->vm_end  */
2691
2692         /* if it doesn't overlap, we have nothing.. */
2693         end = start + len;
2694         if (vma->vm_start >= end)
2695                 return 0;
2696
2697         /*
2698          * If we need to split any vma, do it now to save pain later.
2699          *
2700          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2701          * unmapped vm_area_struct will remain in use: so lower split_vma
2702          * places tmp vma above, and higher split_vma places tmp vma below.
2703          */
2704         if (start > vma->vm_start) {
2705                 int error;
2706
2707                 /*
2708                  * Make sure that map_count on return from munmap() will
2709                  * not exceed its limit; but let map_count go just above
2710                  * its limit temporarily, to help free resources as expected.
2711                  */
2712                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2713                         return -ENOMEM;
2714
2715                 error = __split_vma(mm, vma, start, 0);
2716                 if (error)
2717                         return error;
2718                 prev = vma;
2719         }
2720
2721         /* Does it split the last one? */
2722         last = find_vma(mm, end);
2723         if (last && end > last->vm_start) {
2724                 int error = __split_vma(mm, last, end, 1);
2725                 if (error)
2726                         return error;
2727         }
2728         vma = prev ? prev->vm_next : mm->mmap;
2729
2730         if (unlikely(uf)) {
2731                 /*
2732                  * If userfaultfd_unmap_prep returns an error the vmas
2733                  * will remain splitted, but userland will get a
2734                  * highly unexpected error anyway. This is no
2735                  * different than the case where the first of the two
2736                  * __split_vma fails, but we don't undo the first
2737                  * split, despite we could. This is unlikely enough
2738                  * failure that it's not worth optimizing it for.
2739                  */
2740                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2741                 if (error)
2742                         return error;
2743         }
2744
2745         /*
2746          * unlock any mlock()ed ranges before detaching vmas
2747          */
2748         if (mm->locked_vm) {
2749                 struct vm_area_struct *tmp = vma;
2750                 while (tmp && tmp->vm_start < end) {
2751                         if (tmp->vm_flags & VM_LOCKED) {
2752                                 mm->locked_vm -= vma_pages(tmp);
2753                                 munlock_vma_pages_all(tmp);
2754                         }
2755                         tmp = tmp->vm_next;
2756                 }
2757         }
2758
2759         /*
2760          * Remove the vma's, and unmap the actual pages
2761          */
2762         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2763         unmap_region(mm, vma, prev, start, end);
2764
2765         arch_unmap(mm, vma, start, end);
2766
2767         /* Fix up all other VM information */
2768         remove_vma_list(mm, vma);
2769
2770         return 0;
2771 }
2772
2773 int vm_munmap(unsigned long start, size_t len)
2774 {
2775         int ret;
2776         struct mm_struct *mm = current->mm;
2777         LIST_HEAD(uf);
2778
2779         if (down_write_killable(&mm->mmap_sem))
2780                 return -EINTR;
2781
2782         ret = do_munmap(mm, start, len, &uf);
2783         up_write(&mm->mmap_sem);
2784         userfaultfd_unmap_complete(mm, &uf);
2785         return ret;
2786 }
2787 EXPORT_SYMBOL(vm_munmap);
2788
2789 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2790 {
2791         profile_munmap(addr);
2792         return vm_munmap(addr, len);
2793 }
2794
2795
2796 /*
2797  * Emulation of deprecated remap_file_pages() syscall.
2798  */
2799 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2800                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2801 {
2802
2803         struct mm_struct *mm = current->mm;
2804         struct vm_area_struct *vma;
2805         unsigned long populate = 0;
2806         unsigned long ret = -EINVAL;
2807         struct file *file;
2808
2809         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2810                      current->comm, current->pid);
2811
2812         if (prot)
2813                 return ret;
2814         start = start & PAGE_MASK;
2815         size = size & PAGE_MASK;
2816
2817         if (start + size <= start)
2818                 return ret;
2819
2820         /* Does pgoff wrap? */
2821         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2822                 return ret;
2823
2824         if (down_write_killable(&mm->mmap_sem))
2825                 return -EINTR;
2826
2827         vma = find_vma(mm, start);
2828
2829         if (!vma || !(vma->vm_flags & VM_SHARED))
2830                 goto out;
2831
2832         if (start < vma->vm_start)
2833                 goto out;
2834
2835         if (start + size > vma->vm_end) {
2836                 struct vm_area_struct *next;
2837
2838                 for (next = vma->vm_next; next; next = next->vm_next) {
2839                         /* hole between vmas ? */
2840                         if (next->vm_start != next->vm_prev->vm_end)
2841                                 goto out;
2842
2843                         if (next->vm_file != vma->vm_file)
2844                                 goto out;
2845
2846                         if (next->vm_flags != vma->vm_flags)
2847                                 goto out;
2848
2849                         if (start + size <= next->vm_end)
2850                                 break;
2851                 }
2852
2853                 if (!next)
2854                         goto out;
2855         }
2856
2857         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2858         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2859         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2860
2861         flags &= MAP_NONBLOCK;
2862         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2863         if (vma->vm_flags & VM_LOCKED) {
2864                 struct vm_area_struct *tmp;
2865                 flags |= MAP_LOCKED;
2866
2867                 /* drop PG_Mlocked flag for over-mapped range */
2868                 for (tmp = vma; tmp->vm_start >= start + size;
2869                                 tmp = tmp->vm_next) {
2870                         /*
2871                          * Split pmd and munlock page on the border
2872                          * of the range.
2873                          */
2874                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2875
2876                         munlock_vma_pages_range(tmp,
2877                                         max(tmp->vm_start, start),
2878                                         min(tmp->vm_end, start + size));
2879                 }
2880         }
2881
2882         file = get_file(vma->vm_file);
2883         ret = do_mmap_pgoff(vma->vm_file, start, size,
2884                         prot, flags, pgoff, &populate, NULL);
2885         fput(file);
2886 out:
2887         up_write(&mm->mmap_sem);
2888         if (populate)
2889                 mm_populate(ret, populate);
2890         if (!IS_ERR_VALUE(ret))
2891                 ret = 0;
2892         return ret;
2893 }
2894
2895 static inline void verify_mm_writelocked(struct mm_struct *mm)
2896 {
2897 #ifdef CONFIG_DEBUG_VM
2898         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2899                 WARN_ON(1);
2900                 up_read(&mm->mmap_sem);
2901         }
2902 #endif
2903 }
2904
2905 /*
2906  *  this is really a simplified "do_mmap".  it only handles
2907  *  anonymous maps.  eventually we may be able to do some
2908  *  brk-specific accounting here.
2909  */
2910 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2911 {
2912         struct mm_struct *mm = current->mm;
2913         struct vm_area_struct *vma, *prev;
2914         struct rb_node **rb_link, *rb_parent;
2915         pgoff_t pgoff = addr >> PAGE_SHIFT;
2916         int error;
2917
2918         /* Until we need other flags, refuse anything except VM_EXEC. */
2919         if ((flags & (~VM_EXEC)) != 0)
2920                 return -EINVAL;
2921         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2922
2923         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2924         if (offset_in_page(error))
2925                 return error;
2926
2927         error = mlock_future_check(mm, mm->def_flags, len);
2928         if (error)
2929                 return error;
2930
2931         /*
2932          * mm->mmap_sem is required to protect against another thread
2933          * changing the mappings in case we sleep.
2934          */
2935         verify_mm_writelocked(mm);
2936
2937         /*
2938          * Clear old maps.  this also does some error checking for us
2939          */
2940         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2941                               &rb_parent)) {
2942                 if (do_munmap(mm, addr, len, uf))
2943                         return -ENOMEM;
2944         }
2945
2946         /* Check against address space limits *after* clearing old maps... */
2947         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2948                 return -ENOMEM;
2949
2950         if (mm->map_count > sysctl_max_map_count)
2951                 return -ENOMEM;
2952
2953         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2954                 return -ENOMEM;
2955
2956         /* Can we just expand an old private anonymous mapping? */
2957         vma = vma_merge(mm, prev, addr, addr + len, flags,
2958                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2959         if (vma)
2960                 goto out;
2961
2962         /*
2963          * create a vma struct for an anonymous mapping
2964          */
2965         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2966         if (!vma) {
2967                 vm_unacct_memory(len >> PAGE_SHIFT);
2968                 return -ENOMEM;
2969         }
2970
2971         INIT_LIST_HEAD(&vma->anon_vma_chain);
2972         vma->vm_mm = mm;
2973         vma->vm_start = addr;
2974         vma->vm_end = addr + len;
2975         vma->vm_pgoff = pgoff;
2976         vma->vm_flags = flags;
2977         vma->vm_page_prot = vm_get_page_prot(flags);
2978         vma_link(mm, vma, prev, rb_link, rb_parent);
2979 out:
2980         perf_event_mmap(vma);
2981         mm->total_vm += len >> PAGE_SHIFT;
2982         mm->data_vm += len >> PAGE_SHIFT;
2983         if (flags & VM_LOCKED)
2984                 mm->locked_vm += (len >> PAGE_SHIFT);
2985         vma->vm_flags |= VM_SOFTDIRTY;
2986         return 0;
2987 }
2988
2989 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
2990 {
2991         struct mm_struct *mm = current->mm;
2992         unsigned long len;
2993         int ret;
2994         bool populate;
2995         LIST_HEAD(uf);
2996
2997         len = PAGE_ALIGN(request);
2998         if (len < request)
2999                 return -ENOMEM;
3000         if (!len)
3001                 return 0;
3002
3003         if (down_write_killable(&mm->mmap_sem))
3004                 return -EINTR;
3005
3006         ret = do_brk_flags(addr, len, flags, &uf);
3007         populate = ((mm->def_flags & VM_LOCKED) != 0);
3008         up_write(&mm->mmap_sem);
3009         userfaultfd_unmap_complete(mm, &uf);
3010         if (populate && !ret)
3011                 mm_populate(addr, len);
3012         return ret;
3013 }
3014 EXPORT_SYMBOL(vm_brk_flags);
3015
3016 int vm_brk(unsigned long addr, unsigned long len)
3017 {
3018         return vm_brk_flags(addr, len, 0);
3019 }
3020 EXPORT_SYMBOL(vm_brk);
3021
3022 /* Release all mmaps. */
3023 void exit_mmap(struct mm_struct *mm)
3024 {
3025         struct mmu_gather tlb;
3026         struct vm_area_struct *vma;
3027         unsigned long nr_accounted = 0;
3028
3029         /* mm's last user has gone, and its about to be pulled down */
3030         mmu_notifier_release(mm);
3031
3032         if (unlikely(mm_is_oom_victim(mm))) {
3033                 /*
3034                  * Manually reap the mm to free as much memory as possible.
3035                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3036                  * this mm from further consideration.  Taking mm->mmap_sem for
3037                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3038                  * reaper will not run on this mm again after mmap_sem is
3039                  * dropped.
3040                  *
3041                  * Nothing can be holding mm->mmap_sem here and the above call
3042                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3043                  * __oom_reap_task_mm() will not block.
3044                  *
3045                  * This needs to be done before calling munlock_vma_pages_all(),
3046                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3047                  * reliably test it.
3048                  */
3049                 mutex_lock(&oom_lock);
3050                 __oom_reap_task_mm(mm);
3051                 mutex_unlock(&oom_lock);
3052
3053                 set_bit(MMF_OOM_SKIP, &mm->flags);
3054                 down_write(&mm->mmap_sem);
3055                 up_write(&mm->mmap_sem);
3056         }
3057
3058         if (mm->locked_vm) {
3059                 vma = mm->mmap;
3060                 while (vma) {
3061                         if (vma->vm_flags & VM_LOCKED)
3062                                 munlock_vma_pages_all(vma);
3063                         vma = vma->vm_next;
3064                 }
3065         }
3066
3067         arch_exit_mmap(mm);
3068
3069         vma = mm->mmap;
3070         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3071                 return;
3072
3073         lru_add_drain();
3074         flush_cache_mm(mm);
3075         tlb_gather_mmu(&tlb, mm, 0, -1);
3076         /* update_hiwater_rss(mm) here? but nobody should be looking */
3077         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3078         unmap_vmas(&tlb, vma, 0, -1);
3079         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3080         tlb_finish_mmu(&tlb, 0, -1);
3081
3082         /*
3083          * Walk the list again, actually closing and freeing it,
3084          * with preemption enabled, without holding any MM locks.
3085          */
3086         while (vma) {
3087                 if (vma->vm_flags & VM_ACCOUNT)
3088                         nr_accounted += vma_pages(vma);
3089                 vma = remove_vma(vma);
3090                 cond_resched();
3091         }
3092         vm_unacct_memory(nr_accounted);
3093 }
3094
3095 /* Insert vm structure into process list sorted by address
3096  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3097  * then i_mmap_rwsem is taken here.
3098  */
3099 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3100 {
3101         struct vm_area_struct *prev;
3102         struct rb_node **rb_link, *rb_parent;
3103
3104         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3105                            &prev, &rb_link, &rb_parent))
3106                 return -ENOMEM;
3107         if ((vma->vm_flags & VM_ACCOUNT) &&
3108              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3109                 return -ENOMEM;
3110
3111         /*
3112          * The vm_pgoff of a purely anonymous vma should be irrelevant
3113          * until its first write fault, when page's anon_vma and index
3114          * are set.  But now set the vm_pgoff it will almost certainly
3115          * end up with (unless mremap moves it elsewhere before that
3116          * first wfault), so /proc/pid/maps tells a consistent story.
3117          *
3118          * By setting it to reflect the virtual start address of the
3119          * vma, merges and splits can happen in a seamless way, just
3120          * using the existing file pgoff checks and manipulations.
3121          * Similarly in do_mmap_pgoff and in do_brk.
3122          */
3123         if (vma_is_anonymous(vma)) {
3124                 BUG_ON(vma->anon_vma);
3125                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3126         }
3127
3128         vma_link(mm, vma, prev, rb_link, rb_parent);
3129         return 0;
3130 }
3131
3132 /*
3133  * Copy the vma structure to a new location in the same mm,
3134  * prior to moving page table entries, to effect an mremap move.
3135  */
3136 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3137         unsigned long addr, unsigned long len, pgoff_t pgoff,
3138         bool *need_rmap_locks)
3139 {
3140         struct vm_area_struct *vma = *vmap;
3141         unsigned long vma_start = vma->vm_start;
3142         struct mm_struct *mm = vma->vm_mm;
3143         struct vm_area_struct *new_vma, *prev;
3144         struct rb_node **rb_link, *rb_parent;
3145         bool faulted_in_anon_vma = true;
3146
3147         /*
3148          * If anonymous vma has not yet been faulted, update new pgoff
3149          * to match new location, to increase its chance of merging.
3150          */
3151         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3152                 pgoff = addr >> PAGE_SHIFT;
3153                 faulted_in_anon_vma = false;
3154         }
3155
3156         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3157                 return NULL;    /* should never get here */
3158         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3159                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3160                             vma->vm_userfaultfd_ctx);
3161         if (new_vma) {
3162                 /*
3163                  * Source vma may have been merged into new_vma
3164                  */
3165                 if (unlikely(vma_start >= new_vma->vm_start &&
3166                              vma_start < new_vma->vm_end)) {
3167                         /*
3168                          * The only way we can get a vma_merge with
3169                          * self during an mremap is if the vma hasn't
3170                          * been faulted in yet and we were allowed to
3171                          * reset the dst vma->vm_pgoff to the
3172                          * destination address of the mremap to allow
3173                          * the merge to happen. mremap must change the
3174                          * vm_pgoff linearity between src and dst vmas
3175                          * (in turn preventing a vma_merge) to be
3176                          * safe. It is only safe to keep the vm_pgoff
3177                          * linear if there are no pages mapped yet.
3178                          */
3179                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3180                         *vmap = vma = new_vma;
3181                 }
3182                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3183         } else {
3184                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3185                 if (!new_vma)
3186                         goto out;
3187                 *new_vma = *vma;
3188                 new_vma->vm_start = addr;
3189                 new_vma->vm_end = addr + len;
3190                 new_vma->vm_pgoff = pgoff;
3191                 if (vma_dup_policy(vma, new_vma))
3192                         goto out_free_vma;
3193                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3194                 if (anon_vma_clone(new_vma, vma))
3195                         goto out_free_mempol;
3196                 if (new_vma->vm_file)
3197                         get_file(new_vma->vm_file);
3198                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3199                         new_vma->vm_ops->open(new_vma);
3200                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3201                 *need_rmap_locks = false;
3202         }
3203         return new_vma;
3204
3205 out_free_mempol:
3206         mpol_put(vma_policy(new_vma));
3207 out_free_vma:
3208         kmem_cache_free(vm_area_cachep, new_vma);
3209 out:
3210         return NULL;
3211 }
3212
3213 /*
3214  * Return true if the calling process may expand its vm space by the passed
3215  * number of pages
3216  */
3217 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3218 {
3219         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3220                 return false;
3221
3222         if (is_data_mapping(flags) &&
3223             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3224                 /* Workaround for Valgrind */
3225                 if (rlimit(RLIMIT_DATA) == 0 &&
3226                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3227                         return true;
3228                 if (!ignore_rlimit_data) {
3229                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3230                                      current->comm, current->pid,
3231                                      (mm->data_vm + npages) << PAGE_SHIFT,
3232                                      rlimit(RLIMIT_DATA));
3233                         return false;
3234                 }
3235         }
3236
3237         return true;
3238 }
3239
3240 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3241 {
3242         mm->total_vm += npages;
3243
3244         if (is_exec_mapping(flags))
3245                 mm->exec_vm += npages;
3246         else if (is_stack_mapping(flags))
3247                 mm->stack_vm += npages;
3248         else if (is_data_mapping(flags))
3249                 mm->data_vm += npages;
3250 }
3251
3252 static int special_mapping_fault(struct vm_fault *vmf);
3253
3254 /*
3255  * Having a close hook prevents vma merging regardless of flags.
3256  */
3257 static void special_mapping_close(struct vm_area_struct *vma)
3258 {
3259 }
3260
3261 static const char *special_mapping_name(struct vm_area_struct *vma)
3262 {
3263         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3264 }
3265
3266 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3267 {
3268         struct vm_special_mapping *sm = new_vma->vm_private_data;
3269
3270         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3271                 return -EFAULT;
3272
3273         if (sm->mremap)
3274                 return sm->mremap(sm, new_vma);
3275
3276         return 0;
3277 }
3278
3279 static const struct vm_operations_struct special_mapping_vmops = {
3280         .close = special_mapping_close,
3281         .fault = special_mapping_fault,
3282         .mremap = special_mapping_mremap,
3283         .name = special_mapping_name,
3284 };
3285
3286 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3287         .close = special_mapping_close,
3288         .fault = special_mapping_fault,
3289 };
3290
3291 static int special_mapping_fault(struct vm_fault *vmf)
3292 {
3293         struct vm_area_struct *vma = vmf->vma;
3294         pgoff_t pgoff;
3295         struct page **pages;
3296
3297         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3298                 pages = vma->vm_private_data;
3299         } else {
3300                 struct vm_special_mapping *sm = vma->vm_private_data;
3301
3302                 if (sm->fault)
3303                         return sm->fault(sm, vmf->vma, vmf);
3304
3305                 pages = sm->pages;
3306         }
3307
3308         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3309                 pgoff--;
3310
3311         if (*pages) {
3312                 struct page *page = *pages;
3313                 get_page(page);
3314                 vmf->page = page;
3315                 return 0;
3316         }
3317
3318         return VM_FAULT_SIGBUS;
3319 }
3320
3321 static struct vm_area_struct *__install_special_mapping(
3322         struct mm_struct *mm,
3323         unsigned long addr, unsigned long len,
3324         unsigned long vm_flags, void *priv,
3325         const struct vm_operations_struct *ops)
3326 {
3327         int ret;
3328         struct vm_area_struct *vma;
3329
3330         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3331         if (unlikely(vma == NULL))
3332                 return ERR_PTR(-ENOMEM);
3333
3334         INIT_LIST_HEAD(&vma->anon_vma_chain);
3335         vma->vm_mm = mm;
3336         vma->vm_start = addr;
3337         vma->vm_end = addr + len;
3338
3339         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3340         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3341
3342         vma->vm_ops = ops;
3343         vma->vm_private_data = priv;
3344
3345         ret = insert_vm_struct(mm, vma);
3346         if (ret)
3347                 goto out;
3348
3349         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3350
3351         perf_event_mmap(vma);
3352
3353         return vma;
3354
3355 out:
3356         kmem_cache_free(vm_area_cachep, vma);
3357         return ERR_PTR(ret);
3358 }
3359
3360 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3361         const struct vm_special_mapping *sm)
3362 {
3363         return vma->vm_private_data == sm &&
3364                 (vma->vm_ops == &special_mapping_vmops ||
3365                  vma->vm_ops == &legacy_special_mapping_vmops);
3366 }
3367
3368 /*
3369  * Called with mm->mmap_sem held for writing.
3370  * Insert a new vma covering the given region, with the given flags.
3371  * Its pages are supplied by the given array of struct page *.
3372  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3373  * The region past the last page supplied will always produce SIGBUS.
3374  * The array pointer and the pages it points to are assumed to stay alive
3375  * for as long as this mapping might exist.
3376  */
3377 struct vm_area_struct *_install_special_mapping(
3378         struct mm_struct *mm,
3379         unsigned long addr, unsigned long len,
3380         unsigned long vm_flags, const struct vm_special_mapping *spec)
3381 {
3382         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3383                                         &special_mapping_vmops);
3384 }
3385
3386 int install_special_mapping(struct mm_struct *mm,
3387                             unsigned long addr, unsigned long len,
3388                             unsigned long vm_flags, struct page **pages)
3389 {
3390         struct vm_area_struct *vma = __install_special_mapping(
3391                 mm, addr, len, vm_flags, (void *)pages,
3392                 &legacy_special_mapping_vmops);
3393
3394         return PTR_ERR_OR_ZERO(vma);
3395 }
3396
3397 static DEFINE_MUTEX(mm_all_locks_mutex);
3398
3399 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3400 {
3401         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3402                 /*
3403                  * The LSB of head.next can't change from under us
3404                  * because we hold the mm_all_locks_mutex.
3405                  */
3406                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3407                 /*
3408                  * We can safely modify head.next after taking the
3409                  * anon_vma->root->rwsem. If some other vma in this mm shares
3410                  * the same anon_vma we won't take it again.
3411                  *
3412                  * No need of atomic instructions here, head.next
3413                  * can't change from under us thanks to the
3414                  * anon_vma->root->rwsem.
3415                  */
3416                 if (__test_and_set_bit(0, (unsigned long *)
3417                                        &anon_vma->root->rb_root.rb_root.rb_node))
3418                         BUG();
3419         }
3420 }
3421
3422 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3423 {
3424         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3425                 /*
3426                  * AS_MM_ALL_LOCKS can't change from under us because
3427                  * we hold the mm_all_locks_mutex.
3428                  *
3429                  * Operations on ->flags have to be atomic because
3430                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3431                  * mm_all_locks_mutex, there may be other cpus
3432                  * changing other bitflags in parallel to us.
3433                  */
3434                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3435                         BUG();
3436                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3437         }
3438 }
3439
3440 /*
3441  * This operation locks against the VM for all pte/vma/mm related
3442  * operations that could ever happen on a certain mm. This includes
3443  * vmtruncate, try_to_unmap, and all page faults.
3444  *
3445  * The caller must take the mmap_sem in write mode before calling
3446  * mm_take_all_locks(). The caller isn't allowed to release the
3447  * mmap_sem until mm_drop_all_locks() returns.
3448  *
3449  * mmap_sem in write mode is required in order to block all operations
3450  * that could modify pagetables and free pages without need of
3451  * altering the vma layout. It's also needed in write mode to avoid new
3452  * anon_vmas to be associated with existing vmas.
3453  *
3454  * A single task can't take more than one mm_take_all_locks() in a row
3455  * or it would deadlock.
3456  *
3457  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3458  * mapping->flags avoid to take the same lock twice, if more than one
3459  * vma in this mm is backed by the same anon_vma or address_space.
3460  *
3461  * We take locks in following order, accordingly to comment at beginning
3462  * of mm/rmap.c:
3463  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3464  *     hugetlb mapping);
3465  *   - all i_mmap_rwsem locks;
3466  *   - all anon_vma->rwseml
3467  *
3468  * We can take all locks within these types randomly because the VM code
3469  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3470  * mm_all_locks_mutex.
3471  *
3472  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3473  * that may have to take thousand of locks.
3474  *
3475  * mm_take_all_locks() can fail if it's interrupted by signals.
3476  */
3477 int mm_take_all_locks(struct mm_struct *mm)
3478 {
3479         struct vm_area_struct *vma;
3480         struct anon_vma_chain *avc;
3481
3482         BUG_ON(down_read_trylock(&mm->mmap_sem));
3483
3484         mutex_lock(&mm_all_locks_mutex);
3485
3486         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3487                 if (signal_pending(current))
3488                         goto out_unlock;
3489                 if (vma->vm_file && vma->vm_file->f_mapping &&
3490                                 is_vm_hugetlb_page(vma))
3491                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3492         }
3493
3494         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3495                 if (signal_pending(current))
3496                         goto out_unlock;
3497                 if (vma->vm_file && vma->vm_file->f_mapping &&
3498                                 !is_vm_hugetlb_page(vma))
3499                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3500         }
3501
3502         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3503                 if (signal_pending(current))
3504                         goto out_unlock;
3505                 if (vma->anon_vma)
3506                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3507                                 vm_lock_anon_vma(mm, avc->anon_vma);
3508         }
3509
3510         return 0;
3511
3512 out_unlock:
3513         mm_drop_all_locks(mm);
3514         return -EINTR;
3515 }
3516
3517 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3518 {
3519         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3520                 /*
3521                  * The LSB of head.next can't change to 0 from under
3522                  * us because we hold the mm_all_locks_mutex.
3523                  *
3524                  * We must however clear the bitflag before unlocking
3525                  * the vma so the users using the anon_vma->rb_root will
3526                  * never see our bitflag.
3527                  *
3528                  * No need of atomic instructions here, head.next
3529                  * can't change from under us until we release the
3530                  * anon_vma->root->rwsem.
3531                  */
3532                 if (!__test_and_clear_bit(0, (unsigned long *)
3533                                           &anon_vma->root->rb_root.rb_root.rb_node))
3534                         BUG();
3535                 anon_vma_unlock_write(anon_vma);
3536         }
3537 }
3538
3539 static void vm_unlock_mapping(struct address_space *mapping)
3540 {
3541         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3542                 /*
3543                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3544                  * because we hold the mm_all_locks_mutex.
3545                  */
3546                 i_mmap_unlock_write(mapping);
3547                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3548                                         &mapping->flags))
3549                         BUG();
3550         }
3551 }
3552
3553 /*
3554  * The mmap_sem cannot be released by the caller until
3555  * mm_drop_all_locks() returns.
3556  */
3557 void mm_drop_all_locks(struct mm_struct *mm)
3558 {
3559         struct vm_area_struct *vma;
3560         struct anon_vma_chain *avc;
3561
3562         BUG_ON(down_read_trylock(&mm->mmap_sem));
3563         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3564
3565         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3566                 if (vma->anon_vma)
3567                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3568                                 vm_unlock_anon_vma(avc->anon_vma);
3569                 if (vma->vm_file && vma->vm_file->f_mapping)
3570                         vm_unlock_mapping(vma->vm_file->f_mapping);
3571         }
3572
3573         mutex_unlock(&mm_all_locks_mutex);
3574 }
3575
3576 /*
3577  * initialise the percpu counter for VM
3578  */
3579 void __init mmap_init(void)
3580 {
3581         int ret;
3582
3583         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3584         VM_BUG_ON(ret);
3585 }
3586
3587 /*
3588  * Initialise sysctl_user_reserve_kbytes.
3589  *
3590  * This is intended to prevent a user from starting a single memory hogging
3591  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3592  * mode.
3593  *
3594  * The default value is min(3% of free memory, 128MB)
3595  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3596  */
3597 static int init_user_reserve(void)
3598 {
3599         unsigned long free_kbytes;
3600
3601         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3602
3603         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3604         return 0;
3605 }
3606 subsys_initcall(init_user_reserve);
3607
3608 /*
3609  * Initialise sysctl_admin_reserve_kbytes.
3610  *
3611  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3612  * to log in and kill a memory hogging process.
3613  *
3614  * Systems with more than 256MB will reserve 8MB, enough to recover
3615  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3616  * only reserve 3% of free pages by default.
3617  */
3618 static int init_admin_reserve(void)
3619 {
3620         unsigned long free_kbytes;
3621
3622         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3623
3624         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3625         return 0;
3626 }
3627 subsys_initcall(init_admin_reserve);
3628
3629 /*
3630  * Reinititalise user and admin reserves if memory is added or removed.
3631  *
3632  * The default user reserve max is 128MB, and the default max for the
3633  * admin reserve is 8MB. These are usually, but not always, enough to
3634  * enable recovery from a memory hogging process using login/sshd, a shell,
3635  * and tools like top. It may make sense to increase or even disable the
3636  * reserve depending on the existence of swap or variations in the recovery
3637  * tools. So, the admin may have changed them.
3638  *
3639  * If memory is added and the reserves have been eliminated or increased above
3640  * the default max, then we'll trust the admin.
3641  *
3642  * If memory is removed and there isn't enough free memory, then we
3643  * need to reset the reserves.
3644  *
3645  * Otherwise keep the reserve set by the admin.
3646  */
3647 static int reserve_mem_notifier(struct notifier_block *nb,
3648                              unsigned long action, void *data)
3649 {
3650         unsigned long tmp, free_kbytes;
3651
3652         switch (action) {
3653         case MEM_ONLINE:
3654                 /* Default max is 128MB. Leave alone if modified by operator. */
3655                 tmp = sysctl_user_reserve_kbytes;
3656                 if (0 < tmp && tmp < (1UL << 17))
3657                         init_user_reserve();
3658
3659                 /* Default max is 8MB.  Leave alone if modified by operator. */
3660                 tmp = sysctl_admin_reserve_kbytes;
3661                 if (0 < tmp && tmp < (1UL << 13))
3662                         init_admin_reserve();
3663
3664                 break;
3665         case MEM_OFFLINE:
3666                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3667
3668                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3669                         init_user_reserve();
3670                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3671                                 sysctl_user_reserve_kbytes);
3672                 }
3673
3674                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3675                         init_admin_reserve();
3676                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3677                                 sysctl_admin_reserve_kbytes);
3678                 }
3679                 break;
3680         default:
3681                 break;
3682         }
3683         return NOTIFY_OK;
3684 }
3685
3686 static struct notifier_block reserve_mem_nb = {
3687         .notifier_call = reserve_mem_notifier,
3688 };
3689
3690 static int __meminit init_reserve_notifier(void)
3691 {
3692         if (register_hotmemory_notifier(&reserve_mem_nb))
3693                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3694
3695         return 0;
3696 }
3697 subsys_initcall(init_reserve_notifier);