GNU Linux-libre 4.4.297-gnu1
[releases.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/mm.h>
46
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51
52 #include "internal.h"
53
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags)       (0)
56 #endif
57
58 #ifndef arch_rebalance_pgtables
59 #define arch_rebalance_pgtables(addr, len)              (addr)
60 #endif
61
62 static void unmap_region(struct mm_struct *mm,
63                 struct vm_area_struct *vma, struct vm_area_struct *prev,
64                 unsigned long start, unsigned long end);
65
66 /* description of effects of mapping type and prot in current implementation.
67  * this is due to the limited x86 page protection hardware.  The expected
68  * behavior is in parens:
69  *
70  * map_type     prot
71  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
72  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
73  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
74  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
75  *
76  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
77  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
78  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
79  *
80  */
81 pgprot_t protection_map[16] = {
82         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
83         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
84 };
85
86 pgprot_t vm_get_page_prot(unsigned long vm_flags)
87 {
88         return __pgprot(pgprot_val(protection_map[vm_flags &
89                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
90                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
91 }
92 EXPORT_SYMBOL(vm_get_page_prot);
93
94 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
95 {
96         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
97 }
98
99 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
100 void vma_set_page_prot(struct vm_area_struct *vma)
101 {
102         unsigned long vm_flags = vma->vm_flags;
103
104         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
105         if (vma_wants_writenotify(vma)) {
106                 vm_flags &= ~VM_SHARED;
107                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
108                                                      vm_flags);
109         }
110 }
111
112
113 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
114 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
115 unsigned long sysctl_overcommit_kbytes __read_mostly;
116 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
117 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
118 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
119 /*
120  * Make sure vm_committed_as in one cacheline and not cacheline shared with
121  * other variables. It can be updated by several CPUs frequently.
122  */
123 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
124
125 /*
126  * The global memory commitment made in the system can be a metric
127  * that can be used to drive ballooning decisions when Linux is hosted
128  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
129  * balancing memory across competing virtual machines that are hosted.
130  * Several metrics drive this policy engine including the guest reported
131  * memory commitment.
132  */
133 unsigned long vm_memory_committed(void)
134 {
135         return percpu_counter_read_positive(&vm_committed_as);
136 }
137 EXPORT_SYMBOL_GPL(vm_memory_committed);
138
139 /*
140  * Check that a process has enough memory to allocate a new virtual
141  * mapping. 0 means there is enough memory for the allocation to
142  * succeed and -ENOMEM implies there is not.
143  *
144  * We currently support three overcommit policies, which are set via the
145  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
146  *
147  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
148  * Additional code 2002 Jul 20 by Robert Love.
149  *
150  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
151  *
152  * Note this is a helper function intended to be used by LSMs which
153  * wish to use this logic.
154  */
155 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
156 {
157         long free, allowed, reserve;
158
159         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
160                         -(s64)vm_committed_as_batch * num_online_cpus(),
161                         "memory commitment underflow");
162
163         vm_acct_memory(pages);
164
165         /*
166          * Sometimes we want to use more memory than we have
167          */
168         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
169                 return 0;
170
171         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
172                 free = global_page_state(NR_FREE_PAGES);
173                 free += global_page_state(NR_FILE_PAGES);
174
175                 /*
176                  * shmem pages shouldn't be counted as free in this
177                  * case, they can't be purged, only swapped out, and
178                  * that won't affect the overall amount of available
179                  * memory in the system.
180                  */
181                 free -= global_page_state(NR_SHMEM);
182
183                 free += get_nr_swap_pages();
184
185                 /*
186                  * Any slabs which are created with the
187                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
188                  * which are reclaimable, under pressure.  The dentry
189                  * cache and most inode caches should fall into this
190                  */
191                 free += global_page_state(NR_SLAB_RECLAIMABLE);
192
193                 /*
194                  * Leave reserved pages. The pages are not for anonymous pages.
195                  */
196                 if (free <= totalreserve_pages)
197                         goto error;
198                 else
199                         free -= totalreserve_pages;
200
201                 /*
202                  * Reserve some for root
203                  */
204                 if (!cap_sys_admin)
205                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
206
207                 if (free > pages)
208                         return 0;
209
210                 goto error;
211         }
212
213         allowed = vm_commit_limit();
214         /*
215          * Reserve some for root
216          */
217         if (!cap_sys_admin)
218                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
219
220         /*
221          * Don't let a single process grow so big a user can't recover
222          */
223         if (mm) {
224                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
225                 allowed -= min_t(long, mm->total_vm / 32, reserve);
226         }
227
228         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
229                 return 0;
230 error:
231         vm_unacct_memory(pages);
232
233         return -ENOMEM;
234 }
235
236 /*
237  * Requires inode->i_mapping->i_mmap_rwsem
238  */
239 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
240                 struct file *file, struct address_space *mapping)
241 {
242         if (vma->vm_flags & VM_DENYWRITE)
243                 atomic_inc(&file_inode(file)->i_writecount);
244         if (vma->vm_flags & VM_SHARED)
245                 mapping_unmap_writable(mapping);
246
247         flush_dcache_mmap_lock(mapping);
248         vma_interval_tree_remove(vma, &mapping->i_mmap);
249         flush_dcache_mmap_unlock(mapping);
250 }
251
252 /*
253  * Unlink a file-based vm structure from its interval tree, to hide
254  * vma from rmap and vmtruncate before freeing its page tables.
255  */
256 void unlink_file_vma(struct vm_area_struct *vma)
257 {
258         struct file *file = vma->vm_file;
259
260         if (file) {
261                 struct address_space *mapping = file->f_mapping;
262                 i_mmap_lock_write(mapping);
263                 __remove_shared_vm_struct(vma, file, mapping);
264                 i_mmap_unlock_write(mapping);
265         }
266 }
267
268 /*
269  * Close a vm structure and free it, returning the next.
270  */
271 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
272 {
273         struct vm_area_struct *next = vma->vm_next;
274
275         might_sleep();
276         if (vma->vm_ops && vma->vm_ops->close)
277                 vma->vm_ops->close(vma);
278         if (vma->vm_file)
279                 fput(vma->vm_file);
280         mpol_put(vma_policy(vma));
281         kmem_cache_free(vm_area_cachep, vma);
282         return next;
283 }
284
285 static unsigned long do_brk(unsigned long addr, unsigned long len);
286
287 SYSCALL_DEFINE1(brk, unsigned long, brk)
288 {
289         unsigned long retval;
290         unsigned long newbrk, oldbrk;
291         struct mm_struct *mm = current->mm;
292         struct vm_area_struct *next;
293         unsigned long min_brk;
294         bool populate;
295
296         down_write(&mm->mmap_sem);
297
298 #ifdef CONFIG_COMPAT_BRK
299         /*
300          * CONFIG_COMPAT_BRK can still be overridden by setting
301          * randomize_va_space to 2, which will still cause mm->start_brk
302          * to be arbitrarily shifted
303          */
304         if (current->brk_randomized)
305                 min_brk = mm->start_brk;
306         else
307                 min_brk = mm->end_data;
308 #else
309         min_brk = mm->start_brk;
310 #endif
311         if (brk < min_brk)
312                 goto out;
313
314         /*
315          * Check against rlimit here. If this check is done later after the test
316          * of oldbrk with newbrk then it can escape the test and let the data
317          * segment grow beyond its set limit the in case where the limit is
318          * not page aligned -Ram Gupta
319          */
320         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
321                               mm->end_data, mm->start_data))
322                 goto out;
323
324         newbrk = PAGE_ALIGN(brk);
325         oldbrk = PAGE_ALIGN(mm->brk);
326         if (oldbrk == newbrk)
327                 goto set_brk;
328
329         /* Always allow shrinking brk. */
330         if (brk <= mm->brk) {
331                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
332                         goto set_brk;
333                 goto out;
334         }
335
336         /* Check against existing mmap mappings. */
337         next = find_vma(mm, oldbrk);
338         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
339                 goto out;
340
341         /* Ok, looks good - let it rip. */
342         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
343                 goto out;
344
345 set_brk:
346         mm->brk = brk;
347         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
348         up_write(&mm->mmap_sem);
349         if (populate)
350                 mm_populate(oldbrk, newbrk - oldbrk);
351         return brk;
352
353 out:
354         retval = mm->brk;
355         up_write(&mm->mmap_sem);
356         return retval;
357 }
358
359 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
360 {
361         unsigned long max, prev_end, subtree_gap;
362
363         /*
364          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
365          * allow two stack_guard_gaps between them here, and when choosing
366          * an unmapped area; whereas when expanding we only require one.
367          * That's a little inconsistent, but keeps the code here simpler.
368          */
369         max = vm_start_gap(vma);
370         if (vma->vm_prev) {
371                 prev_end = vm_end_gap(vma->vm_prev);
372                 if (max > prev_end)
373                         max -= prev_end;
374                 else
375                         max = 0;
376         }
377         if (vma->vm_rb.rb_left) {
378                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
379                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
380                 if (subtree_gap > max)
381                         max = subtree_gap;
382         }
383         if (vma->vm_rb.rb_right) {
384                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
385                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
386                 if (subtree_gap > max)
387                         max = subtree_gap;
388         }
389         return max;
390 }
391
392 #ifdef CONFIG_DEBUG_VM_RB
393 static int browse_rb(struct rb_root *root)
394 {
395         int i = 0, j, bug = 0;
396         struct rb_node *nd, *pn = NULL;
397         unsigned long prev = 0, pend = 0;
398
399         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
400                 struct vm_area_struct *vma;
401                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
402                 if (vma->vm_start < prev) {
403                         pr_emerg("vm_start %lx < prev %lx\n",
404                                   vma->vm_start, prev);
405                         bug = 1;
406                 }
407                 if (vma->vm_start < pend) {
408                         pr_emerg("vm_start %lx < pend %lx\n",
409                                   vma->vm_start, pend);
410                         bug = 1;
411                 }
412                 if (vma->vm_start > vma->vm_end) {
413                         pr_emerg("vm_start %lx > vm_end %lx\n",
414                                   vma->vm_start, vma->vm_end);
415                         bug = 1;
416                 }
417                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
418                         pr_emerg("free gap %lx, correct %lx\n",
419                                vma->rb_subtree_gap,
420                                vma_compute_subtree_gap(vma));
421                         bug = 1;
422                 }
423                 i++;
424                 pn = nd;
425                 prev = vma->vm_start;
426                 pend = vma->vm_end;
427         }
428         j = 0;
429         for (nd = pn; nd; nd = rb_prev(nd))
430                 j++;
431         if (i != j) {
432                 pr_emerg("backwards %d, forwards %d\n", j, i);
433                 bug = 1;
434         }
435         return bug ? -1 : i;
436 }
437
438 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
439 {
440         struct rb_node *nd;
441
442         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
443                 struct vm_area_struct *vma;
444                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
445                 VM_BUG_ON_VMA(vma != ignore &&
446                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
447                         vma);
448         }
449 }
450
451 static void validate_mm(struct mm_struct *mm)
452 {
453         int bug = 0;
454         int i = 0;
455         unsigned long highest_address = 0;
456         struct vm_area_struct *vma = mm->mmap;
457
458         while (vma) {
459                 struct anon_vma *anon_vma = vma->anon_vma;
460                 struct anon_vma_chain *avc;
461
462                 if (anon_vma) {
463                         anon_vma_lock_read(anon_vma);
464                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
465                                 anon_vma_interval_tree_verify(avc);
466                         anon_vma_unlock_read(anon_vma);
467                 }
468
469                 highest_address = vm_end_gap(vma);
470                 vma = vma->vm_next;
471                 i++;
472         }
473         if (i != mm->map_count) {
474                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
475                 bug = 1;
476         }
477         if (highest_address != mm->highest_vm_end) {
478                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
479                           mm->highest_vm_end, highest_address);
480                 bug = 1;
481         }
482         i = browse_rb(&mm->mm_rb);
483         if (i != mm->map_count) {
484                 if (i != -1)
485                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
486                 bug = 1;
487         }
488         VM_BUG_ON_MM(bug, mm);
489 }
490 #else
491 #define validate_mm_rb(root, ignore) do { } while (0)
492 #define validate_mm(mm) do { } while (0)
493 #endif
494
495 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
496                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
497
498 /*
499  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
500  * vma->vm_prev->vm_end values changed, without modifying the vma's position
501  * in the rbtree.
502  */
503 static void vma_gap_update(struct vm_area_struct *vma)
504 {
505         /*
506          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
507          * function that does exacltly what we want.
508          */
509         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
510 }
511
512 static inline void vma_rb_insert(struct vm_area_struct *vma,
513                                  struct rb_root *root)
514 {
515         /* All rb_subtree_gap values must be consistent prior to insertion */
516         validate_mm_rb(root, NULL);
517
518         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
519 }
520
521 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
522 {
523         /*
524          * All rb_subtree_gap values must be consistent prior to erase,
525          * with the possible exception of the vma being erased.
526          */
527         validate_mm_rb(root, vma);
528
529         /*
530          * Note rb_erase_augmented is a fairly large inline function,
531          * so make sure we instantiate it only once with our desired
532          * augmented rbtree callbacks.
533          */
534         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
535 }
536
537 /*
538  * vma has some anon_vma assigned, and is already inserted on that
539  * anon_vma's interval trees.
540  *
541  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
542  * vma must be removed from the anon_vma's interval trees using
543  * anon_vma_interval_tree_pre_update_vma().
544  *
545  * After the update, the vma will be reinserted using
546  * anon_vma_interval_tree_post_update_vma().
547  *
548  * The entire update must be protected by exclusive mmap_sem and by
549  * the root anon_vma's mutex.
550  */
551 static inline void
552 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
553 {
554         struct anon_vma_chain *avc;
555
556         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
557                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
558 }
559
560 static inline void
561 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
562 {
563         struct anon_vma_chain *avc;
564
565         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
566                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
567 }
568
569 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
570                 unsigned long end, struct vm_area_struct **pprev,
571                 struct rb_node ***rb_link, struct rb_node **rb_parent)
572 {
573         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
574
575         __rb_link = &mm->mm_rb.rb_node;
576         rb_prev = __rb_parent = NULL;
577
578         while (*__rb_link) {
579                 struct vm_area_struct *vma_tmp;
580
581                 __rb_parent = *__rb_link;
582                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
583
584                 if (vma_tmp->vm_end > addr) {
585                         /* Fail if an existing vma overlaps the area */
586                         if (vma_tmp->vm_start < end)
587                                 return -ENOMEM;
588                         __rb_link = &__rb_parent->rb_left;
589                 } else {
590                         rb_prev = __rb_parent;
591                         __rb_link = &__rb_parent->rb_right;
592                 }
593         }
594
595         *pprev = NULL;
596         if (rb_prev)
597                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
598         *rb_link = __rb_link;
599         *rb_parent = __rb_parent;
600         return 0;
601 }
602
603 static unsigned long count_vma_pages_range(struct mm_struct *mm,
604                 unsigned long addr, unsigned long end)
605 {
606         unsigned long nr_pages = 0;
607         struct vm_area_struct *vma;
608
609         /* Find first overlaping mapping */
610         vma = find_vma_intersection(mm, addr, end);
611         if (!vma)
612                 return 0;
613
614         nr_pages = (min(end, vma->vm_end) -
615                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
616
617         /* Iterate over the rest of the overlaps */
618         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
619                 unsigned long overlap_len;
620
621                 if (vma->vm_start > end)
622                         break;
623
624                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
625                 nr_pages += overlap_len >> PAGE_SHIFT;
626         }
627
628         return nr_pages;
629 }
630
631 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
632                 struct rb_node **rb_link, struct rb_node *rb_parent)
633 {
634         /* Update tracking information for the gap following the new vma. */
635         if (vma->vm_next)
636                 vma_gap_update(vma->vm_next);
637         else
638                 mm->highest_vm_end = vm_end_gap(vma);
639
640         /*
641          * vma->vm_prev wasn't known when we followed the rbtree to find the
642          * correct insertion point for that vma. As a result, we could not
643          * update the vma vm_rb parents rb_subtree_gap values on the way down.
644          * So, we first insert the vma with a zero rb_subtree_gap value
645          * (to be consistent with what we did on the way down), and then
646          * immediately update the gap to the correct value. Finally we
647          * rebalance the rbtree after all augmented values have been set.
648          */
649         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
650         vma->rb_subtree_gap = 0;
651         vma_gap_update(vma);
652         vma_rb_insert(vma, &mm->mm_rb);
653 }
654
655 static void __vma_link_file(struct vm_area_struct *vma)
656 {
657         struct file *file;
658
659         file = vma->vm_file;
660         if (file) {
661                 struct address_space *mapping = file->f_mapping;
662
663                 if (vma->vm_flags & VM_DENYWRITE)
664                         atomic_dec(&file_inode(file)->i_writecount);
665                 if (vma->vm_flags & VM_SHARED)
666                         atomic_inc(&mapping->i_mmap_writable);
667
668                 flush_dcache_mmap_lock(mapping);
669                 vma_interval_tree_insert(vma, &mapping->i_mmap);
670                 flush_dcache_mmap_unlock(mapping);
671         }
672 }
673
674 static void
675 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
676         struct vm_area_struct *prev, struct rb_node **rb_link,
677         struct rb_node *rb_parent)
678 {
679         __vma_link_list(mm, vma, prev, rb_parent);
680         __vma_link_rb(mm, vma, rb_link, rb_parent);
681 }
682
683 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
684                         struct vm_area_struct *prev, struct rb_node **rb_link,
685                         struct rb_node *rb_parent)
686 {
687         struct address_space *mapping = NULL;
688
689         if (vma->vm_file) {
690                 mapping = vma->vm_file->f_mapping;
691                 i_mmap_lock_write(mapping);
692         }
693
694         __vma_link(mm, vma, prev, rb_link, rb_parent);
695         __vma_link_file(vma);
696
697         if (mapping)
698                 i_mmap_unlock_write(mapping);
699
700         mm->map_count++;
701         validate_mm(mm);
702 }
703
704 /*
705  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
706  * mm's list and rbtree.  It has already been inserted into the interval tree.
707  */
708 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
709 {
710         struct vm_area_struct *prev;
711         struct rb_node **rb_link, *rb_parent;
712
713         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
714                            &prev, &rb_link, &rb_parent))
715                 BUG();
716         __vma_link(mm, vma, prev, rb_link, rb_parent);
717         mm->map_count++;
718 }
719
720 static inline void
721 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
722                 struct vm_area_struct *prev)
723 {
724         struct vm_area_struct *next;
725
726         vma_rb_erase(vma, &mm->mm_rb);
727         prev->vm_next = next = vma->vm_next;
728         if (next)
729                 next->vm_prev = prev;
730
731         /* Kill the cache */
732         vmacache_invalidate(mm);
733 }
734
735 /*
736  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
737  * is already present in an i_mmap tree without adjusting the tree.
738  * The following helper function should be used when such adjustments
739  * are necessary.  The "insert" vma (if any) is to be inserted
740  * before we drop the necessary locks.
741  */
742 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
743         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
744 {
745         struct mm_struct *mm = vma->vm_mm;
746         struct vm_area_struct *next = vma->vm_next;
747         struct vm_area_struct *importer = NULL;
748         struct address_space *mapping = NULL;
749         struct rb_root *root = NULL;
750         struct anon_vma *anon_vma = NULL;
751         struct file *file = vma->vm_file;
752         bool start_changed = false, end_changed = false;
753         long adjust_next = 0;
754         int remove_next = 0;
755
756         if (next && !insert) {
757                 struct vm_area_struct *exporter = NULL;
758
759                 if (end >= next->vm_end) {
760                         /*
761                          * vma expands, overlapping all the next, and
762                          * perhaps the one after too (mprotect case 6).
763                          */
764 again:                  remove_next = 1 + (end > next->vm_end);
765                         end = next->vm_end;
766                         exporter = next;
767                         importer = vma;
768                 } else if (end > next->vm_start) {
769                         /*
770                          * vma expands, overlapping part of the next:
771                          * mprotect case 5 shifting the boundary up.
772                          */
773                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
774                         exporter = next;
775                         importer = vma;
776                 } else if (end < vma->vm_end) {
777                         /*
778                          * vma shrinks, and !insert tells it's not
779                          * split_vma inserting another: so it must be
780                          * mprotect case 4 shifting the boundary down.
781                          */
782                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
783                         exporter = vma;
784                         importer = next;
785                 }
786
787                 /*
788                  * Easily overlooked: when mprotect shifts the boundary,
789                  * make sure the expanding vma has anon_vma set if the
790                  * shrinking vma had, to cover any anon pages imported.
791                  */
792                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
793                         int error;
794
795                         importer->anon_vma = exporter->anon_vma;
796                         error = anon_vma_clone(importer, exporter);
797                         if (error)
798                                 return error;
799                 }
800         }
801
802         if (file) {
803                 mapping = file->f_mapping;
804                 root = &mapping->i_mmap;
805                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
806
807                 if (adjust_next)
808                         uprobe_munmap(next, next->vm_start, next->vm_end);
809
810                 i_mmap_lock_write(mapping);
811                 if (insert) {
812                         /*
813                          * Put into interval tree now, so instantiated pages
814                          * are visible to arm/parisc __flush_dcache_page
815                          * throughout; but we cannot insert into address
816                          * space until vma start or end is updated.
817                          */
818                         __vma_link_file(insert);
819                 }
820         }
821
822         vma_adjust_trans_huge(vma, start, end, adjust_next);
823
824         anon_vma = vma->anon_vma;
825         if (!anon_vma && adjust_next)
826                 anon_vma = next->anon_vma;
827         if (anon_vma) {
828                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
829                           anon_vma != next->anon_vma, next);
830                 anon_vma_lock_write(anon_vma);
831                 anon_vma_interval_tree_pre_update_vma(vma);
832                 if (adjust_next)
833                         anon_vma_interval_tree_pre_update_vma(next);
834         }
835
836         if (root) {
837                 flush_dcache_mmap_lock(mapping);
838                 vma_interval_tree_remove(vma, root);
839                 if (adjust_next)
840                         vma_interval_tree_remove(next, root);
841         }
842
843         if (start != vma->vm_start) {
844                 vma->vm_start = start;
845                 start_changed = true;
846         }
847         if (end != vma->vm_end) {
848                 vma->vm_end = end;
849                 end_changed = true;
850         }
851         vma->vm_pgoff = pgoff;
852         if (adjust_next) {
853                 next->vm_start += adjust_next << PAGE_SHIFT;
854                 next->vm_pgoff += adjust_next;
855         }
856
857         if (root) {
858                 if (adjust_next)
859                         vma_interval_tree_insert(next, root);
860                 vma_interval_tree_insert(vma, root);
861                 flush_dcache_mmap_unlock(mapping);
862         }
863
864         if (remove_next) {
865                 /*
866                  * vma_merge has merged next into vma, and needs
867                  * us to remove next before dropping the locks.
868                  */
869                 __vma_unlink(mm, next, vma);
870                 if (file)
871                         __remove_shared_vm_struct(next, file, mapping);
872         } else if (insert) {
873                 /*
874                  * split_vma has split insert from vma, and needs
875                  * us to insert it before dropping the locks
876                  * (it may either follow vma or precede it).
877                  */
878                 __insert_vm_struct(mm, insert);
879         } else {
880                 if (start_changed)
881                         vma_gap_update(vma);
882                 if (end_changed) {
883                         if (!next)
884                                 mm->highest_vm_end = vm_end_gap(vma);
885                         else if (!adjust_next)
886                                 vma_gap_update(next);
887                 }
888         }
889
890         if (anon_vma) {
891                 anon_vma_interval_tree_post_update_vma(vma);
892                 if (adjust_next)
893                         anon_vma_interval_tree_post_update_vma(next);
894                 anon_vma_unlock_write(anon_vma);
895         }
896         if (mapping)
897                 i_mmap_unlock_write(mapping);
898
899         if (root) {
900                 uprobe_mmap(vma);
901
902                 if (adjust_next)
903                         uprobe_mmap(next);
904         }
905
906         if (remove_next) {
907                 if (file) {
908                         uprobe_munmap(next, next->vm_start, next->vm_end);
909                         fput(file);
910                 }
911                 if (next->anon_vma)
912                         anon_vma_merge(vma, next);
913                 mm->map_count--;
914                 mpol_put(vma_policy(next));
915                 kmem_cache_free(vm_area_cachep, next);
916                 /*
917                  * In mprotect's case 6 (see comments on vma_merge),
918                  * we must remove another next too. It would clutter
919                  * up the code too much to do both in one go.
920                  */
921                 next = vma->vm_next;
922                 if (remove_next == 2)
923                         goto again;
924                 else if (next)
925                         vma_gap_update(next);
926                 else
927                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
928         }
929         if (insert && file)
930                 uprobe_mmap(insert);
931
932         validate_mm(mm);
933
934         return 0;
935 }
936
937 /*
938  * If the vma has a ->close operation then the driver probably needs to release
939  * per-vma resources, so we don't attempt to merge those.
940  */
941 static inline int is_mergeable_vma(struct vm_area_struct *vma,
942                                 struct file *file, unsigned long vm_flags,
943                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
944 {
945         /*
946          * VM_SOFTDIRTY should not prevent from VMA merging, if we
947          * match the flags but dirty bit -- the caller should mark
948          * merged VMA as dirty. If dirty bit won't be excluded from
949          * comparison, we increase pressue on the memory system forcing
950          * the kernel to generate new VMAs when old one could be
951          * extended instead.
952          */
953         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
954                 return 0;
955         if (vma->vm_file != file)
956                 return 0;
957         if (vma->vm_ops && vma->vm_ops->close)
958                 return 0;
959         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
960                 return 0;
961         return 1;
962 }
963
964 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
965                                         struct anon_vma *anon_vma2,
966                                         struct vm_area_struct *vma)
967 {
968         /*
969          * The list_is_singular() test is to avoid merging VMA cloned from
970          * parents. This can improve scalability caused by anon_vma lock.
971          */
972         if ((!anon_vma1 || !anon_vma2) && (!vma ||
973                 list_is_singular(&vma->anon_vma_chain)))
974                 return 1;
975         return anon_vma1 == anon_vma2;
976 }
977
978 /*
979  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
980  * in front of (at a lower virtual address and file offset than) the vma.
981  *
982  * We cannot merge two vmas if they have differently assigned (non-NULL)
983  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
984  *
985  * We don't check here for the merged mmap wrapping around the end of pagecache
986  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
987  * wrap, nor mmaps which cover the final page at index -1UL.
988  */
989 static int
990 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
991                      struct anon_vma *anon_vma, struct file *file,
992                      pgoff_t vm_pgoff,
993                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
994 {
995         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
996             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
997                 if (vma->vm_pgoff == vm_pgoff)
998                         return 1;
999         }
1000         return 0;
1001 }
1002
1003 /*
1004  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1005  * beyond (at a higher virtual address and file offset than) the vma.
1006  *
1007  * We cannot merge two vmas if they have differently assigned (non-NULL)
1008  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1009  */
1010 static int
1011 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1012                     struct anon_vma *anon_vma, struct file *file,
1013                     pgoff_t vm_pgoff,
1014                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1015 {
1016         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1017             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1018                 pgoff_t vm_pglen;
1019                 vm_pglen = vma_pages(vma);
1020                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1021                         return 1;
1022         }
1023         return 0;
1024 }
1025
1026 /*
1027  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1028  * whether that can be merged with its predecessor or its successor.
1029  * Or both (it neatly fills a hole).
1030  *
1031  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1032  * certain not to be mapped by the time vma_merge is called; but when
1033  * called for mprotect, it is certain to be already mapped (either at
1034  * an offset within prev, or at the start of next), and the flags of
1035  * this area are about to be changed to vm_flags - and the no-change
1036  * case has already been eliminated.
1037  *
1038  * The following mprotect cases have to be considered, where AAAA is
1039  * the area passed down from mprotect_fixup, never extending beyond one
1040  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1041  *
1042  *     AAAA             AAAA                AAAA          AAAA
1043  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1044  *    cannot merge    might become    might become    might become
1045  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1046  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1047  *    mremap move:                                    PPPPNNNNNNNN 8
1048  *        AAAA
1049  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1050  *    might become    case 1 below    case 2 below    case 3 below
1051  *
1052  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1053  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1054  */
1055 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1056                         struct vm_area_struct *prev, unsigned long addr,
1057                         unsigned long end, unsigned long vm_flags,
1058                         struct anon_vma *anon_vma, struct file *file,
1059                         pgoff_t pgoff, struct mempolicy *policy,
1060                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1061 {
1062         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1063         struct vm_area_struct *area, *next;
1064         int err;
1065
1066         /*
1067          * We later require that vma->vm_flags == vm_flags,
1068          * so this tests vma->vm_flags & VM_SPECIAL, too.
1069          */
1070         if (vm_flags & VM_SPECIAL)
1071                 return NULL;
1072
1073         if (prev)
1074                 next = prev->vm_next;
1075         else
1076                 next = mm->mmap;
1077         area = next;
1078         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1079                 next = next->vm_next;
1080
1081         /*
1082          * Can it merge with the predecessor?
1083          */
1084         if (prev && prev->vm_end == addr &&
1085                         mpol_equal(vma_policy(prev), policy) &&
1086                         can_vma_merge_after(prev, vm_flags,
1087                                             anon_vma, file, pgoff,
1088                                             vm_userfaultfd_ctx)) {
1089                 /*
1090                  * OK, it can.  Can we now merge in the successor as well?
1091                  */
1092                 if (next && end == next->vm_start &&
1093                                 mpol_equal(policy, vma_policy(next)) &&
1094                                 can_vma_merge_before(next, vm_flags,
1095                                                      anon_vma, file,
1096                                                      pgoff+pglen,
1097                                                      vm_userfaultfd_ctx) &&
1098                                 is_mergeable_anon_vma(prev->anon_vma,
1099                                                       next->anon_vma, NULL)) {
1100                                                         /* cases 1, 6 */
1101                         err = vma_adjust(prev, prev->vm_start,
1102                                 next->vm_end, prev->vm_pgoff, NULL);
1103                 } else                                  /* cases 2, 5, 7 */
1104                         err = vma_adjust(prev, prev->vm_start,
1105                                 end, prev->vm_pgoff, NULL);
1106                 if (err)
1107                         return NULL;
1108                 khugepaged_enter_vma_merge(prev, vm_flags);
1109                 return prev;
1110         }
1111
1112         /*
1113          * Can this new request be merged in front of next?
1114          */
1115         if (next && end == next->vm_start &&
1116                         mpol_equal(policy, vma_policy(next)) &&
1117                         can_vma_merge_before(next, vm_flags,
1118                                              anon_vma, file, pgoff+pglen,
1119                                              vm_userfaultfd_ctx)) {
1120                 if (prev && addr < prev->vm_end)        /* case 4 */
1121                         err = vma_adjust(prev, prev->vm_start,
1122                                 addr, prev->vm_pgoff, NULL);
1123                 else                                    /* cases 3, 8 */
1124                         err = vma_adjust(area, addr, next->vm_end,
1125                                 next->vm_pgoff - pglen, NULL);
1126                 if (err)
1127                         return NULL;
1128                 khugepaged_enter_vma_merge(area, vm_flags);
1129                 return area;
1130         }
1131
1132         return NULL;
1133 }
1134
1135 /*
1136  * Rough compatbility check to quickly see if it's even worth looking
1137  * at sharing an anon_vma.
1138  *
1139  * They need to have the same vm_file, and the flags can only differ
1140  * in things that mprotect may change.
1141  *
1142  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1143  * we can merge the two vma's. For example, we refuse to merge a vma if
1144  * there is a vm_ops->close() function, because that indicates that the
1145  * driver is doing some kind of reference counting. But that doesn't
1146  * really matter for the anon_vma sharing case.
1147  */
1148 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1149 {
1150         return a->vm_end == b->vm_start &&
1151                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1152                 a->vm_file == b->vm_file &&
1153                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1154                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1155 }
1156
1157 /*
1158  * Do some basic sanity checking to see if we can re-use the anon_vma
1159  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1160  * the same as 'old', the other will be the new one that is trying
1161  * to share the anon_vma.
1162  *
1163  * NOTE! This runs with mm_sem held for reading, so it is possible that
1164  * the anon_vma of 'old' is concurrently in the process of being set up
1165  * by another page fault trying to merge _that_. But that's ok: if it
1166  * is being set up, that automatically means that it will be a singleton
1167  * acceptable for merging, so we can do all of this optimistically. But
1168  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1169  *
1170  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1171  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1172  * is to return an anon_vma that is "complex" due to having gone through
1173  * a fork).
1174  *
1175  * We also make sure that the two vma's are compatible (adjacent,
1176  * and with the same memory policies). That's all stable, even with just
1177  * a read lock on the mm_sem.
1178  */
1179 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1180 {
1181         if (anon_vma_compatible(a, b)) {
1182                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1183
1184                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1185                         return anon_vma;
1186         }
1187         return NULL;
1188 }
1189
1190 /*
1191  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1192  * neighbouring vmas for a suitable anon_vma, before it goes off
1193  * to allocate a new anon_vma.  It checks because a repetitive
1194  * sequence of mprotects and faults may otherwise lead to distinct
1195  * anon_vmas being allocated, preventing vma merge in subsequent
1196  * mprotect.
1197  */
1198 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1199 {
1200         struct anon_vma *anon_vma;
1201         struct vm_area_struct *near;
1202
1203         near = vma->vm_next;
1204         if (!near)
1205                 goto try_prev;
1206
1207         anon_vma = reusable_anon_vma(near, vma, near);
1208         if (anon_vma)
1209                 return anon_vma;
1210 try_prev:
1211         near = vma->vm_prev;
1212         if (!near)
1213                 goto none;
1214
1215         anon_vma = reusable_anon_vma(near, near, vma);
1216         if (anon_vma)
1217                 return anon_vma;
1218 none:
1219         /*
1220          * There's no absolute need to look only at touching neighbours:
1221          * we could search further afield for "compatible" anon_vmas.
1222          * But it would probably just be a waste of time searching,
1223          * or lead to too many vmas hanging off the same anon_vma.
1224          * We're trying to allow mprotect remerging later on,
1225          * not trying to minimize memory used for anon_vmas.
1226          */
1227         return NULL;
1228 }
1229
1230 #ifdef CONFIG_PROC_FS
1231 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1232                                                 struct file *file, long pages)
1233 {
1234         const unsigned long stack_flags
1235                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1236
1237         mm->total_vm += pages;
1238
1239         if (file) {
1240                 mm->shared_vm += pages;
1241                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1242                         mm->exec_vm += pages;
1243         } else if (flags & stack_flags)
1244                 mm->stack_vm += pages;
1245 }
1246 #endif /* CONFIG_PROC_FS */
1247
1248 /*
1249  * If a hint addr is less than mmap_min_addr change hint to be as
1250  * low as possible but still greater than mmap_min_addr
1251  */
1252 static inline unsigned long round_hint_to_min(unsigned long hint)
1253 {
1254         hint &= PAGE_MASK;
1255         if (((void *)hint != NULL) &&
1256             (hint < mmap_min_addr))
1257                 return PAGE_ALIGN(mmap_min_addr);
1258         return hint;
1259 }
1260
1261 static inline int mlock_future_check(struct mm_struct *mm,
1262                                      unsigned long flags,
1263                                      unsigned long len)
1264 {
1265         unsigned long locked, lock_limit;
1266
1267         /*  mlock MCL_FUTURE? */
1268         if (flags & VM_LOCKED) {
1269                 locked = len >> PAGE_SHIFT;
1270                 locked += mm->locked_vm;
1271                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1272                 lock_limit >>= PAGE_SHIFT;
1273                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1274                         return -EAGAIN;
1275         }
1276         return 0;
1277 }
1278
1279 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1280 {
1281         if (S_ISREG(inode->i_mode))
1282                 return MAX_LFS_FILESIZE;
1283
1284         if (S_ISBLK(inode->i_mode))
1285                 return MAX_LFS_FILESIZE;
1286
1287         /* Special "we do even unsigned file positions" case */
1288         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1289                 return 0;
1290
1291         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1292         return ULONG_MAX;
1293 }
1294
1295 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1296                                 unsigned long pgoff, unsigned long len)
1297 {
1298         u64 maxsize = file_mmap_size_max(file, inode);
1299
1300         if (maxsize && len > maxsize)
1301                 return false;
1302         maxsize -= len;
1303         if (pgoff > maxsize >> PAGE_SHIFT)
1304                 return false;
1305         return true;
1306 }
1307
1308 /*
1309  * The caller must hold down_write(&current->mm->mmap_sem).
1310  */
1311 unsigned long do_mmap(struct file *file, unsigned long addr,
1312                         unsigned long len, unsigned long prot,
1313                         unsigned long flags, vm_flags_t vm_flags,
1314                         unsigned long pgoff, unsigned long *populate)
1315 {
1316         struct mm_struct *mm = current->mm;
1317
1318         *populate = 0;
1319
1320         if (!len)
1321                 return -EINVAL;
1322
1323         /*
1324          * Does the application expect PROT_READ to imply PROT_EXEC?
1325          *
1326          * (the exception is when the underlying filesystem is noexec
1327          *  mounted, in which case we dont add PROT_EXEC.)
1328          */
1329         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1330                 if (!(file && path_noexec(&file->f_path)))
1331                         prot |= PROT_EXEC;
1332
1333         if (!(flags & MAP_FIXED))
1334                 addr = round_hint_to_min(addr);
1335
1336         /* Careful about overflows.. */
1337         len = PAGE_ALIGN(len);
1338         if (!len)
1339                 return -ENOMEM;
1340
1341         /* offset overflow? */
1342         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1343                 return -EOVERFLOW;
1344
1345         /* Too many mappings? */
1346         if (mm->map_count > sysctl_max_map_count)
1347                 return -ENOMEM;
1348
1349         /* Obtain the address to map to. we verify (or select) it and ensure
1350          * that it represents a valid section of the address space.
1351          */
1352         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1353         if (offset_in_page(addr))
1354                 return addr;
1355
1356         /* Do simple checking here so the lower-level routines won't have
1357          * to. we assume access permissions have been handled by the open
1358          * of the memory object, so we don't do any here.
1359          */
1360         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1361                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1362
1363         if (flags & MAP_LOCKED)
1364                 if (!can_do_mlock())
1365                         return -EPERM;
1366
1367         if (mlock_future_check(mm, vm_flags, len))
1368                 return -EAGAIN;
1369
1370         if (file) {
1371                 struct inode *inode = file_inode(file);
1372
1373                 if (!file_mmap_ok(file, inode, pgoff, len))
1374                         return -EOVERFLOW;
1375
1376                 switch (flags & MAP_TYPE) {
1377                 case MAP_SHARED:
1378                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1379                                 return -EACCES;
1380
1381                         /*
1382                          * Make sure we don't allow writing to an append-only
1383                          * file..
1384                          */
1385                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1386                                 return -EACCES;
1387
1388                         /*
1389                          * Make sure there are no mandatory locks on the file.
1390                          */
1391                         if (locks_verify_locked(file))
1392                                 return -EAGAIN;
1393
1394                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1395                         if (!(file->f_mode & FMODE_WRITE))
1396                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1397
1398                         /* fall through */
1399                 case MAP_PRIVATE:
1400                         if (!(file->f_mode & FMODE_READ))
1401                                 return -EACCES;
1402                         if (path_noexec(&file->f_path)) {
1403                                 if (vm_flags & VM_EXEC)
1404                                         return -EPERM;
1405                                 vm_flags &= ~VM_MAYEXEC;
1406                         }
1407
1408                         if (!file->f_op->mmap)
1409                                 return -ENODEV;
1410                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1411                                 return -EINVAL;
1412                         break;
1413
1414                 default:
1415                         return -EINVAL;
1416                 }
1417         } else {
1418                 switch (flags & MAP_TYPE) {
1419                 case MAP_SHARED:
1420                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1421                                 return -EINVAL;
1422                         /*
1423                          * Ignore pgoff.
1424                          */
1425                         pgoff = 0;
1426                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1427                         break;
1428                 case MAP_PRIVATE:
1429                         /*
1430                          * Set pgoff according to addr for anon_vma.
1431                          */
1432                         pgoff = addr >> PAGE_SHIFT;
1433                         break;
1434                 default:
1435                         return -EINVAL;
1436                 }
1437         }
1438
1439         /*
1440          * Set 'VM_NORESERVE' if we should not account for the
1441          * memory use of this mapping.
1442          */
1443         if (flags & MAP_NORESERVE) {
1444                 /* We honor MAP_NORESERVE if allowed to overcommit */
1445                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1446                         vm_flags |= VM_NORESERVE;
1447
1448                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1449                 if (file && is_file_hugepages(file))
1450                         vm_flags |= VM_NORESERVE;
1451         }
1452
1453         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1454         if (!IS_ERR_VALUE(addr) &&
1455             ((vm_flags & VM_LOCKED) ||
1456              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1457                 *populate = len;
1458         return addr;
1459 }
1460
1461 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1462                 unsigned long, prot, unsigned long, flags,
1463                 unsigned long, fd, unsigned long, pgoff)
1464 {
1465         struct file *file = NULL;
1466         unsigned long retval;
1467
1468         if (!(flags & MAP_ANONYMOUS)) {
1469                 audit_mmap_fd(fd, flags);
1470                 file = fget(fd);
1471                 if (!file)
1472                         return -EBADF;
1473                 if (is_file_hugepages(file))
1474                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1475                 retval = -EINVAL;
1476                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1477                         goto out_fput;
1478         } else if (flags & MAP_HUGETLB) {
1479                 struct user_struct *user = NULL;
1480                 struct hstate *hs;
1481
1482                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1483                 if (!hs)
1484                         return -EINVAL;
1485
1486                 len = ALIGN(len, huge_page_size(hs));
1487                 /*
1488                  * VM_NORESERVE is used because the reservations will be
1489                  * taken when vm_ops->mmap() is called
1490                  * A dummy user value is used because we are not locking
1491                  * memory so no accounting is necessary
1492                  */
1493                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1494                                 VM_NORESERVE,
1495                                 &user, HUGETLB_ANONHUGE_INODE,
1496                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1497                 if (IS_ERR(file))
1498                         return PTR_ERR(file);
1499         }
1500
1501         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1502
1503         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1504 out_fput:
1505         if (file)
1506                 fput(file);
1507         return retval;
1508 }
1509
1510 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1511 struct mmap_arg_struct {
1512         unsigned long addr;
1513         unsigned long len;
1514         unsigned long prot;
1515         unsigned long flags;
1516         unsigned long fd;
1517         unsigned long offset;
1518 };
1519
1520 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1521 {
1522         struct mmap_arg_struct a;
1523
1524         if (copy_from_user(&a, arg, sizeof(a)))
1525                 return -EFAULT;
1526         if (offset_in_page(a.offset))
1527                 return -EINVAL;
1528
1529         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1530                               a.offset >> PAGE_SHIFT);
1531 }
1532 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1533
1534 /*
1535  * Some shared mappigns will want the pages marked read-only
1536  * to track write events. If so, we'll downgrade vm_page_prot
1537  * to the private version (using protection_map[] without the
1538  * VM_SHARED bit).
1539  */
1540 int vma_wants_writenotify(struct vm_area_struct *vma)
1541 {
1542         vm_flags_t vm_flags = vma->vm_flags;
1543         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1544
1545         /* If it was private or non-writable, the write bit is already clear */
1546         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1547                 return 0;
1548
1549         /* The backer wishes to know when pages are first written to? */
1550         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1551                 return 1;
1552
1553         /* The open routine did something to the protections that pgprot_modify
1554          * won't preserve? */
1555         if (pgprot_val(vma->vm_page_prot) !=
1556             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1557                 return 0;
1558
1559         /* Do we need to track softdirty? */
1560         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1561                 return 1;
1562
1563         /* Specialty mapping? */
1564         if (vm_flags & VM_PFNMAP)
1565                 return 0;
1566
1567         /* Can the mapping track the dirty pages? */
1568         return vma->vm_file && vma->vm_file->f_mapping &&
1569                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1570 }
1571
1572 /*
1573  * We account for memory if it's a private writeable mapping,
1574  * not hugepages and VM_NORESERVE wasn't set.
1575  */
1576 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1577 {
1578         /*
1579          * hugetlb has its own accounting separate from the core VM
1580          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1581          */
1582         if (file && is_file_hugepages(file))
1583                 return 0;
1584
1585         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1586 }
1587
1588 unsigned long mmap_region(struct file *file, unsigned long addr,
1589                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1590 {
1591         struct mm_struct *mm = current->mm;
1592         struct vm_area_struct *vma, *prev;
1593         int error;
1594         struct rb_node **rb_link, *rb_parent;
1595         unsigned long charged = 0;
1596
1597         /* Check against address space limit. */
1598         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1599                 unsigned long nr_pages;
1600
1601                 /*
1602                  * MAP_FIXED may remove pages of mappings that intersects with
1603                  * requested mapping. Account for the pages it would unmap.
1604                  */
1605                 if (!(vm_flags & MAP_FIXED))
1606                         return -ENOMEM;
1607
1608                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1609
1610                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1611                         return -ENOMEM;
1612         }
1613
1614         /* Clear old maps */
1615         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1616                               &rb_parent)) {
1617                 if (do_munmap(mm, addr, len))
1618                         return -ENOMEM;
1619         }
1620
1621         /*
1622          * Private writable mapping: check memory availability
1623          */
1624         if (accountable_mapping(file, vm_flags)) {
1625                 charged = len >> PAGE_SHIFT;
1626                 if (security_vm_enough_memory_mm(mm, charged))
1627                         return -ENOMEM;
1628                 vm_flags |= VM_ACCOUNT;
1629         }
1630
1631         /*
1632          * Can we just expand an old mapping?
1633          */
1634         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1635                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1636         if (vma)
1637                 goto out;
1638
1639         /*
1640          * Determine the object being mapped and call the appropriate
1641          * specific mapper. the address has already been validated, but
1642          * not unmapped, but the maps are removed from the list.
1643          */
1644         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1645         if (!vma) {
1646                 error = -ENOMEM;
1647                 goto unacct_error;
1648         }
1649
1650         vma->vm_mm = mm;
1651         vma->vm_start = addr;
1652         vma->vm_end = addr + len;
1653         vma->vm_flags = vm_flags;
1654         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1655         vma->vm_pgoff = pgoff;
1656         INIT_LIST_HEAD(&vma->anon_vma_chain);
1657
1658         if (file) {
1659                 if (vm_flags & VM_DENYWRITE) {
1660                         error = deny_write_access(file);
1661                         if (error)
1662                                 goto free_vma;
1663                 }
1664                 if (vm_flags & VM_SHARED) {
1665                         error = mapping_map_writable(file->f_mapping);
1666                         if (error)
1667                                 goto allow_write_and_free_vma;
1668                 }
1669
1670                 /* ->mmap() can change vma->vm_file, but must guarantee that
1671                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1672                  * and map writably if VM_SHARED is set. This usually means the
1673                  * new file must not have been exposed to user-space, yet.
1674                  */
1675                 vma->vm_file = get_file(file);
1676                 error = file->f_op->mmap(file, vma);
1677                 if (error)
1678                         goto unmap_and_free_vma;
1679
1680                 /* Can addr have changed??
1681                  *
1682                  * Answer: Yes, several device drivers can do it in their
1683                  *         f_op->mmap method. -DaveM
1684                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1685                  *      be updated for vma_link()
1686                  */
1687                 WARN_ON_ONCE(addr != vma->vm_start);
1688
1689                 addr = vma->vm_start;
1690                 vm_flags = vma->vm_flags;
1691         } else if (vm_flags & VM_SHARED) {
1692                 error = shmem_zero_setup(vma);
1693                 if (error)
1694                         goto free_vma;
1695         }
1696
1697         vma_link(mm, vma, prev, rb_link, rb_parent);
1698         /* Once vma denies write, undo our temporary denial count */
1699         if (file) {
1700                 if (vm_flags & VM_SHARED)
1701                         mapping_unmap_writable(file->f_mapping);
1702                 if (vm_flags & VM_DENYWRITE)
1703                         allow_write_access(file);
1704         }
1705         file = vma->vm_file;
1706 out:
1707         perf_event_mmap(vma);
1708
1709         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1710         if (vm_flags & VM_LOCKED) {
1711                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1712                                         vma == get_gate_vma(current->mm)))
1713                         mm->locked_vm += (len >> PAGE_SHIFT);
1714                 else
1715                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1716         }
1717
1718         if (file)
1719                 uprobe_mmap(vma);
1720
1721         /*
1722          * New (or expanded) vma always get soft dirty status.
1723          * Otherwise user-space soft-dirty page tracker won't
1724          * be able to distinguish situation when vma area unmapped,
1725          * then new mapped in-place (which must be aimed as
1726          * a completely new data area).
1727          */
1728         vma->vm_flags |= VM_SOFTDIRTY;
1729
1730         vma_set_page_prot(vma);
1731
1732         return addr;
1733
1734 unmap_and_free_vma:
1735         vma->vm_file = NULL;
1736         fput(file);
1737
1738         /* Undo any partial mapping done by a device driver. */
1739         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1740         charged = 0;
1741         if (vm_flags & VM_SHARED)
1742                 mapping_unmap_writable(file->f_mapping);
1743 allow_write_and_free_vma:
1744         if (vm_flags & VM_DENYWRITE)
1745                 allow_write_access(file);
1746 free_vma:
1747         kmem_cache_free(vm_area_cachep, vma);
1748 unacct_error:
1749         if (charged)
1750                 vm_unacct_memory(charged);
1751         return error;
1752 }
1753
1754 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1755 {
1756         /*
1757          * We implement the search by looking for an rbtree node that
1758          * immediately follows a suitable gap. That is,
1759          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1760          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1761          * - gap_end - gap_start >= length
1762          */
1763
1764         struct mm_struct *mm = current->mm;
1765         struct vm_area_struct *vma;
1766         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1767
1768         /* Adjust search length to account for worst case alignment overhead */
1769         length = info->length + info->align_mask;
1770         if (length < info->length)
1771                 return -ENOMEM;
1772
1773         /* Adjust search limits by the desired length */
1774         if (info->high_limit < length)
1775                 return -ENOMEM;
1776         high_limit = info->high_limit - length;
1777
1778         if (info->low_limit > high_limit)
1779                 return -ENOMEM;
1780         low_limit = info->low_limit + length;
1781
1782         /* Check if rbtree root looks promising */
1783         if (RB_EMPTY_ROOT(&mm->mm_rb))
1784                 goto check_highest;
1785         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1786         if (vma->rb_subtree_gap < length)
1787                 goto check_highest;
1788
1789         while (true) {
1790                 /* Visit left subtree if it looks promising */
1791                 gap_end = vm_start_gap(vma);
1792                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1793                         struct vm_area_struct *left =
1794                                 rb_entry(vma->vm_rb.rb_left,
1795                                          struct vm_area_struct, vm_rb);
1796                         if (left->rb_subtree_gap >= length) {
1797                                 vma = left;
1798                                 continue;
1799                         }
1800                 }
1801
1802                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1803 check_current:
1804                 /* Check if current node has a suitable gap */
1805                 if (gap_start > high_limit)
1806                         return -ENOMEM;
1807                 if (gap_end >= low_limit &&
1808                     gap_end > gap_start && gap_end - gap_start >= length)
1809                         goto found;
1810
1811                 /* Visit right subtree if it looks promising */
1812                 if (vma->vm_rb.rb_right) {
1813                         struct vm_area_struct *right =
1814                                 rb_entry(vma->vm_rb.rb_right,
1815                                          struct vm_area_struct, vm_rb);
1816                         if (right->rb_subtree_gap >= length) {
1817                                 vma = right;
1818                                 continue;
1819                         }
1820                 }
1821
1822                 /* Go back up the rbtree to find next candidate node */
1823                 while (true) {
1824                         struct rb_node *prev = &vma->vm_rb;
1825                         if (!rb_parent(prev))
1826                                 goto check_highest;
1827                         vma = rb_entry(rb_parent(prev),
1828                                        struct vm_area_struct, vm_rb);
1829                         if (prev == vma->vm_rb.rb_left) {
1830                                 gap_start = vm_end_gap(vma->vm_prev);
1831                                 gap_end = vm_start_gap(vma);
1832                                 goto check_current;
1833                         }
1834                 }
1835         }
1836
1837 check_highest:
1838         /* Check highest gap, which does not precede any rbtree node */
1839         gap_start = mm->highest_vm_end;
1840         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1841         if (gap_start > high_limit)
1842                 return -ENOMEM;
1843
1844 found:
1845         /* We found a suitable gap. Clip it with the original low_limit. */
1846         if (gap_start < info->low_limit)
1847                 gap_start = info->low_limit;
1848
1849         /* Adjust gap address to the desired alignment */
1850         gap_start += (info->align_offset - gap_start) & info->align_mask;
1851
1852         VM_BUG_ON(gap_start + info->length > info->high_limit);
1853         VM_BUG_ON(gap_start + info->length > gap_end);
1854         return gap_start;
1855 }
1856
1857 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1858 {
1859         struct mm_struct *mm = current->mm;
1860         struct vm_area_struct *vma;
1861         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1862
1863         /* Adjust search length to account for worst case alignment overhead */
1864         length = info->length + info->align_mask;
1865         if (length < info->length)
1866                 return -ENOMEM;
1867
1868         /*
1869          * Adjust search limits by the desired length.
1870          * See implementation comment at top of unmapped_area().
1871          */
1872         gap_end = info->high_limit;
1873         if (gap_end < length)
1874                 return -ENOMEM;
1875         high_limit = gap_end - length;
1876
1877         if (info->low_limit > high_limit)
1878                 return -ENOMEM;
1879         low_limit = info->low_limit + length;
1880
1881         /* Check highest gap, which does not precede any rbtree node */
1882         gap_start = mm->highest_vm_end;
1883         if (gap_start <= high_limit)
1884                 goto found_highest;
1885
1886         /* Check if rbtree root looks promising */
1887         if (RB_EMPTY_ROOT(&mm->mm_rb))
1888                 return -ENOMEM;
1889         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1890         if (vma->rb_subtree_gap < length)
1891                 return -ENOMEM;
1892
1893         while (true) {
1894                 /* Visit right subtree if it looks promising */
1895                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1896                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1897                         struct vm_area_struct *right =
1898                                 rb_entry(vma->vm_rb.rb_right,
1899                                          struct vm_area_struct, vm_rb);
1900                         if (right->rb_subtree_gap >= length) {
1901                                 vma = right;
1902                                 continue;
1903                         }
1904                 }
1905
1906 check_current:
1907                 /* Check if current node has a suitable gap */
1908                 gap_end = vm_start_gap(vma);
1909                 if (gap_end < low_limit)
1910                         return -ENOMEM;
1911                 if (gap_start <= high_limit &&
1912                     gap_end > gap_start && gap_end - gap_start >= length)
1913                         goto found;
1914
1915                 /* Visit left subtree if it looks promising */
1916                 if (vma->vm_rb.rb_left) {
1917                         struct vm_area_struct *left =
1918                                 rb_entry(vma->vm_rb.rb_left,
1919                                          struct vm_area_struct, vm_rb);
1920                         if (left->rb_subtree_gap >= length) {
1921                                 vma = left;
1922                                 continue;
1923                         }
1924                 }
1925
1926                 /* Go back up the rbtree to find next candidate node */
1927                 while (true) {
1928                         struct rb_node *prev = &vma->vm_rb;
1929                         if (!rb_parent(prev))
1930                                 return -ENOMEM;
1931                         vma = rb_entry(rb_parent(prev),
1932                                        struct vm_area_struct, vm_rb);
1933                         if (prev == vma->vm_rb.rb_right) {
1934                                 gap_start = vma->vm_prev ?
1935                                         vm_end_gap(vma->vm_prev) : 0;
1936                                 goto check_current;
1937                         }
1938                 }
1939         }
1940
1941 found:
1942         /* We found a suitable gap. Clip it with the original high_limit. */
1943         if (gap_end > info->high_limit)
1944                 gap_end = info->high_limit;
1945
1946 found_highest:
1947         /* Compute highest gap address at the desired alignment */
1948         gap_end -= info->length;
1949         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1950
1951         VM_BUG_ON(gap_end < info->low_limit);
1952         VM_BUG_ON(gap_end < gap_start);
1953         return gap_end;
1954 }
1955
1956 /* Get an address range which is currently unmapped.
1957  * For shmat() with addr=0.
1958  *
1959  * Ugly calling convention alert:
1960  * Return value with the low bits set means error value,
1961  * ie
1962  *      if (ret & ~PAGE_MASK)
1963  *              error = ret;
1964  *
1965  * This function "knows" that -ENOMEM has the bits set.
1966  */
1967 #ifndef HAVE_ARCH_UNMAPPED_AREA
1968 unsigned long
1969 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1970                 unsigned long len, unsigned long pgoff, unsigned long flags)
1971 {
1972         struct mm_struct *mm = current->mm;
1973         struct vm_area_struct *vma, *prev;
1974         struct vm_unmapped_area_info info;
1975
1976         if (len > TASK_SIZE - mmap_min_addr)
1977                 return -ENOMEM;
1978
1979         if (flags & MAP_FIXED)
1980                 return addr;
1981
1982         if (addr) {
1983                 addr = PAGE_ALIGN(addr);
1984                 vma = find_vma_prev(mm, addr, &prev);
1985                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1986                     (!vma || addr + len <= vm_start_gap(vma)) &&
1987                     (!prev || addr >= vm_end_gap(prev)))
1988                         return addr;
1989         }
1990
1991         info.flags = 0;
1992         info.length = len;
1993         info.low_limit = mm->mmap_base;
1994         info.high_limit = TASK_SIZE;
1995         info.align_mask = 0;
1996         info.align_offset = 0;
1997         return vm_unmapped_area(&info);
1998 }
1999 #endif
2000
2001 /*
2002  * This mmap-allocator allocates new areas top-down from below the
2003  * stack's low limit (the base):
2004  */
2005 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2006 unsigned long
2007 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2008                           const unsigned long len, const unsigned long pgoff,
2009                           const unsigned long flags)
2010 {
2011         struct vm_area_struct *vma, *prev;
2012         struct mm_struct *mm = current->mm;
2013         unsigned long addr = addr0;
2014         struct vm_unmapped_area_info info;
2015
2016         /* requested length too big for entire address space */
2017         if (len > TASK_SIZE - mmap_min_addr)
2018                 return -ENOMEM;
2019
2020         if (flags & MAP_FIXED)
2021                 return addr;
2022
2023         /* requesting a specific address */
2024         if (addr) {
2025                 addr = PAGE_ALIGN(addr);
2026                 vma = find_vma_prev(mm, addr, &prev);
2027                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2028                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2029                                 (!prev || addr >= vm_end_gap(prev)))
2030                         return addr;
2031         }
2032
2033         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2034         info.length = len;
2035         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2036         info.high_limit = mm->mmap_base;
2037         info.align_mask = 0;
2038         info.align_offset = 0;
2039         addr = vm_unmapped_area(&info);
2040
2041         /*
2042          * A failed mmap() very likely causes application failure,
2043          * so fall back to the bottom-up function here. This scenario
2044          * can happen with large stack limits and large mmap()
2045          * allocations.
2046          */
2047         if (offset_in_page(addr)) {
2048                 VM_BUG_ON(addr != -ENOMEM);
2049                 info.flags = 0;
2050                 info.low_limit = TASK_UNMAPPED_BASE;
2051                 info.high_limit = TASK_SIZE;
2052                 addr = vm_unmapped_area(&info);
2053         }
2054
2055         return addr;
2056 }
2057 #endif
2058
2059 unsigned long
2060 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2061                 unsigned long pgoff, unsigned long flags)
2062 {
2063         unsigned long (*get_area)(struct file *, unsigned long,
2064                                   unsigned long, unsigned long, unsigned long);
2065
2066         unsigned long error = arch_mmap_check(addr, len, flags);
2067         if (error)
2068                 return error;
2069
2070         /* Careful about overflows.. */
2071         if (len > TASK_SIZE)
2072                 return -ENOMEM;
2073
2074         get_area = current->mm->get_unmapped_area;
2075         if (file && file->f_op->get_unmapped_area)
2076                 get_area = file->f_op->get_unmapped_area;
2077         addr = get_area(file, addr, len, pgoff, flags);
2078         if (IS_ERR_VALUE(addr))
2079                 return addr;
2080
2081         if (addr > TASK_SIZE - len)
2082                 return -ENOMEM;
2083         if (offset_in_page(addr))
2084                 return -EINVAL;
2085
2086         addr = arch_rebalance_pgtables(addr, len);
2087         error = security_mmap_addr(addr);
2088         return error ? error : addr;
2089 }
2090
2091 EXPORT_SYMBOL(get_unmapped_area);
2092
2093 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2094 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2095 {
2096         struct rb_node *rb_node;
2097         struct vm_area_struct *vma;
2098
2099         /* Check the cache first. */
2100         vma = vmacache_find(mm, addr);
2101         if (likely(vma))
2102                 return vma;
2103
2104         rb_node = mm->mm_rb.rb_node;
2105
2106         while (rb_node) {
2107                 struct vm_area_struct *tmp;
2108
2109                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2110
2111                 if (tmp->vm_end > addr) {
2112                         vma = tmp;
2113                         if (tmp->vm_start <= addr)
2114                                 break;
2115                         rb_node = rb_node->rb_left;
2116                 } else
2117                         rb_node = rb_node->rb_right;
2118         }
2119
2120         if (vma)
2121                 vmacache_update(addr, vma);
2122         return vma;
2123 }
2124
2125 EXPORT_SYMBOL(find_vma);
2126
2127 /*
2128  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2129  */
2130 struct vm_area_struct *
2131 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2132                         struct vm_area_struct **pprev)
2133 {
2134         struct vm_area_struct *vma;
2135
2136         vma = find_vma(mm, addr);
2137         if (vma) {
2138                 *pprev = vma->vm_prev;
2139         } else {
2140                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2141                 *pprev = NULL;
2142                 while (rb_node) {
2143                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2144                         rb_node = rb_node->rb_right;
2145                 }
2146         }
2147         return vma;
2148 }
2149
2150 /*
2151  * Verify that the stack growth is acceptable and
2152  * update accounting. This is shared with both the
2153  * grow-up and grow-down cases.
2154  */
2155 static int acct_stack_growth(struct vm_area_struct *vma,
2156                              unsigned long size, unsigned long grow)
2157 {
2158         struct mm_struct *mm = vma->vm_mm;
2159         struct rlimit *rlim = current->signal->rlim;
2160         unsigned long new_start;
2161
2162         /* address space limit tests */
2163         if (!may_expand_vm(mm, grow))
2164                 return -ENOMEM;
2165
2166         /* Stack limit test */
2167         if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2168                 return -ENOMEM;
2169
2170         /* mlock limit tests */
2171         if (vma->vm_flags & VM_LOCKED) {
2172                 unsigned long locked;
2173                 unsigned long limit;
2174                 locked = mm->locked_vm + grow;
2175                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2176                 limit >>= PAGE_SHIFT;
2177                 if (locked > limit && !capable(CAP_IPC_LOCK))
2178                         return -ENOMEM;
2179         }
2180
2181         /* Check to ensure the stack will not grow into a hugetlb-only region */
2182         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2183                         vma->vm_end - size;
2184         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2185                 return -EFAULT;
2186
2187         /*
2188          * Overcommit..  This must be the final test, as it will
2189          * update security statistics.
2190          */
2191         if (security_vm_enough_memory_mm(mm, grow))
2192                 return -ENOMEM;
2193
2194         return 0;
2195 }
2196
2197 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2198 /*
2199  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2200  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2201  */
2202 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2203 {
2204         struct mm_struct *mm = vma->vm_mm;
2205         struct vm_area_struct *next;
2206         unsigned long gap_addr;
2207         int error = 0;
2208
2209         if (!(vma->vm_flags & VM_GROWSUP))
2210                 return -EFAULT;
2211
2212         /* Guard against exceeding limits of the address space. */
2213         address &= PAGE_MASK;
2214         if (address >= (TASK_SIZE & PAGE_MASK))
2215                 return -ENOMEM;
2216         address += PAGE_SIZE;
2217
2218         /* Enforce stack_guard_gap */
2219         gap_addr = address + stack_guard_gap;
2220
2221         /* Guard against overflow */
2222         if (gap_addr < address || gap_addr > TASK_SIZE)
2223                 gap_addr = TASK_SIZE;
2224
2225         next = vma->vm_next;
2226         if (next && next->vm_start < gap_addr &&
2227                         (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2228                 if (!(next->vm_flags & VM_GROWSUP))
2229                         return -ENOMEM;
2230                 /* Check that both stack segments have the same anon_vma? */
2231         }
2232
2233         /* We must make sure the anon_vma is allocated. */
2234         if (unlikely(anon_vma_prepare(vma)))
2235                 return -ENOMEM;
2236
2237         /*
2238          * vma->vm_start/vm_end cannot change under us because the caller
2239          * is required to hold the mmap_sem in read mode.  We need the
2240          * anon_vma lock to serialize against concurrent expand_stacks.
2241          */
2242         anon_vma_lock_write(vma->anon_vma);
2243
2244         /* Somebody else might have raced and expanded it already */
2245         if (address > vma->vm_end) {
2246                 unsigned long size, grow;
2247
2248                 size = address - vma->vm_start;
2249                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2250
2251                 error = -ENOMEM;
2252                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2253                         error = acct_stack_growth(vma, size, grow);
2254                         if (!error) {
2255                                 /*
2256                                  * vma_gap_update() doesn't support concurrent
2257                                  * updates, but we only hold a shared mmap_sem
2258                                  * lock here, so we need to protect against
2259                                  * concurrent vma expansions.
2260                                  * anon_vma_lock_write() doesn't help here, as
2261                                  * we don't guarantee that all growable vmas
2262                                  * in a mm share the same root anon vma.
2263                                  * So, we reuse mm->page_table_lock to guard
2264                                  * against concurrent vma expansions.
2265                                  */
2266                                 spin_lock(&mm->page_table_lock);
2267                                 if (vma->vm_flags & VM_LOCKED)
2268                                         mm->locked_vm += grow;
2269                                 vm_stat_account(mm, vma->vm_flags,
2270                                                 vma->vm_file, grow);
2271                                 anon_vma_interval_tree_pre_update_vma(vma);
2272                                 vma->vm_end = address;
2273                                 anon_vma_interval_tree_post_update_vma(vma);
2274                                 if (vma->vm_next)
2275                                         vma_gap_update(vma->vm_next);
2276                                 else
2277                                         mm->highest_vm_end = vm_end_gap(vma);
2278                                 spin_unlock(&mm->page_table_lock);
2279
2280                                 perf_event_mmap(vma);
2281                         }
2282                 }
2283         }
2284         anon_vma_unlock_write(vma->anon_vma);
2285         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2286         validate_mm(mm);
2287         return error;
2288 }
2289 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2290
2291 /*
2292  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2293  */
2294 int expand_downwards(struct vm_area_struct *vma,
2295                                    unsigned long address)
2296 {
2297         struct mm_struct *mm = vma->vm_mm;
2298         struct vm_area_struct *prev;
2299         unsigned long gap_addr;
2300         int error = 0;
2301
2302         address &= PAGE_MASK;
2303         if (address < mmap_min_addr)
2304                 return -EPERM;
2305
2306         /* Enforce stack_guard_gap */
2307         gap_addr = address - stack_guard_gap;
2308         if (gap_addr > address)
2309                 return -ENOMEM;
2310         prev = vma->vm_prev;
2311         if (prev && prev->vm_end > gap_addr &&
2312                         (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2313                 if (!(prev->vm_flags & VM_GROWSDOWN))
2314                         return -ENOMEM;
2315                 /* Check that both stack segments have the same anon_vma? */
2316         }
2317
2318         /* We must make sure the anon_vma is allocated. */
2319         if (unlikely(anon_vma_prepare(vma)))
2320                 return -ENOMEM;
2321
2322         /*
2323          * vma->vm_start/vm_end cannot change under us because the caller
2324          * is required to hold the mmap_sem in read mode.  We need the
2325          * anon_vma lock to serialize against concurrent expand_stacks.
2326          */
2327         anon_vma_lock_write(vma->anon_vma);
2328
2329         /* Somebody else might have raced and expanded it already */
2330         if (address < vma->vm_start) {
2331                 unsigned long size, grow;
2332
2333                 size = vma->vm_end - address;
2334                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2335
2336                 error = -ENOMEM;
2337                 if (grow <= vma->vm_pgoff) {
2338                         error = acct_stack_growth(vma, size, grow);
2339                         if (!error) {
2340                                 /*
2341                                  * vma_gap_update() doesn't support concurrent
2342                                  * updates, but we only hold a shared mmap_sem
2343                                  * lock here, so we need to protect against
2344                                  * concurrent vma expansions.
2345                                  * anon_vma_lock_write() doesn't help here, as
2346                                  * we don't guarantee that all growable vmas
2347                                  * in a mm share the same root anon vma.
2348                                  * So, we reuse mm->page_table_lock to guard
2349                                  * against concurrent vma expansions.
2350                                  */
2351                                 spin_lock(&mm->page_table_lock);
2352                                 if (vma->vm_flags & VM_LOCKED)
2353                                         mm->locked_vm += grow;
2354                                 vm_stat_account(mm, vma->vm_flags,
2355                                                 vma->vm_file, grow);
2356                                 anon_vma_interval_tree_pre_update_vma(vma);
2357                                 vma->vm_start = address;
2358                                 vma->vm_pgoff -= grow;
2359                                 anon_vma_interval_tree_post_update_vma(vma);
2360                                 vma_gap_update(vma);
2361                                 spin_unlock(&mm->page_table_lock);
2362
2363                                 perf_event_mmap(vma);
2364                         }
2365                 }
2366         }
2367         anon_vma_unlock_write(vma->anon_vma);
2368         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2369         validate_mm(mm);
2370         return error;
2371 }
2372
2373 /* enforced gap between the expanding stack and other mappings. */
2374 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2375
2376 static int __init cmdline_parse_stack_guard_gap(char *p)
2377 {
2378         unsigned long val;
2379         char *endptr;
2380
2381         val = simple_strtoul(p, &endptr, 10);
2382         if (!*endptr)
2383                 stack_guard_gap = val << PAGE_SHIFT;
2384
2385         return 0;
2386 }
2387 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2388
2389 #ifdef CONFIG_STACK_GROWSUP
2390 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2391 {
2392         return expand_upwards(vma, address);
2393 }
2394
2395 struct vm_area_struct *
2396 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2397 {
2398         struct vm_area_struct *vma, *prev;
2399
2400         addr &= PAGE_MASK;
2401         vma = find_vma_prev(mm, addr, &prev);
2402         if (vma && (vma->vm_start <= addr))
2403                 return vma;
2404         /* don't alter vm_end if the coredump is running */
2405         if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2406                 return NULL;
2407         if (prev->vm_flags & VM_LOCKED)
2408                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2409         return prev;
2410 }
2411 #else
2412 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2413 {
2414         return expand_downwards(vma, address);
2415 }
2416
2417 struct vm_area_struct *
2418 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2419 {
2420         struct vm_area_struct *vma;
2421         unsigned long start;
2422
2423         addr &= PAGE_MASK;
2424         vma = find_vma(mm, addr);
2425         if (!vma)
2426                 return NULL;
2427         if (vma->vm_start <= addr)
2428                 return vma;
2429         if (!(vma->vm_flags & VM_GROWSDOWN))
2430                 return NULL;
2431         /* don't alter vm_start if the coredump is running */
2432         if (!mmget_still_valid(mm))
2433                 return NULL;
2434         start = vma->vm_start;
2435         if (expand_stack(vma, addr))
2436                 return NULL;
2437         if (vma->vm_flags & VM_LOCKED)
2438                 populate_vma_page_range(vma, addr, start, NULL);
2439         return vma;
2440 }
2441 #endif
2442
2443 EXPORT_SYMBOL_GPL(find_extend_vma);
2444
2445 /*
2446  * Ok - we have the memory areas we should free on the vma list,
2447  * so release them, and do the vma updates.
2448  *
2449  * Called with the mm semaphore held.
2450  */
2451 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2452 {
2453         unsigned long nr_accounted = 0;
2454
2455         /* Update high watermark before we lower total_vm */
2456         update_hiwater_vm(mm);
2457         do {
2458                 long nrpages = vma_pages(vma);
2459
2460                 if (vma->vm_flags & VM_ACCOUNT)
2461                         nr_accounted += nrpages;
2462                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2463                 vma = remove_vma(vma);
2464         } while (vma);
2465         vm_unacct_memory(nr_accounted);
2466         validate_mm(mm);
2467 }
2468
2469 /*
2470  * Get rid of page table information in the indicated region.
2471  *
2472  * Called with the mm semaphore held.
2473  */
2474 static void unmap_region(struct mm_struct *mm,
2475                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2476                 unsigned long start, unsigned long end)
2477 {
2478         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2479         struct mmu_gather tlb;
2480
2481         lru_add_drain();
2482         tlb_gather_mmu(&tlb, mm, start, end);
2483         update_hiwater_rss(mm);
2484         unmap_vmas(&tlb, vma, start, end);
2485         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2486                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2487         tlb_finish_mmu(&tlb, start, end);
2488 }
2489
2490 /*
2491  * Create a list of vma's touched by the unmap, removing them from the mm's
2492  * vma list as we go..
2493  */
2494 static void
2495 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2496         struct vm_area_struct *prev, unsigned long end)
2497 {
2498         struct vm_area_struct **insertion_point;
2499         struct vm_area_struct *tail_vma = NULL;
2500
2501         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2502         vma->vm_prev = NULL;
2503         do {
2504                 vma_rb_erase(vma, &mm->mm_rb);
2505                 mm->map_count--;
2506                 tail_vma = vma;
2507                 vma = vma->vm_next;
2508         } while (vma && vma->vm_start < end);
2509         *insertion_point = vma;
2510         if (vma) {
2511                 vma->vm_prev = prev;
2512                 vma_gap_update(vma);
2513         } else
2514                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2515         tail_vma->vm_next = NULL;
2516
2517         /* Kill the cache */
2518         vmacache_invalidate(mm);
2519 }
2520
2521 /*
2522  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2523  * munmap path where it doesn't make sense to fail.
2524  */
2525 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2526               unsigned long addr, int new_below)
2527 {
2528         struct vm_area_struct *new;
2529         int err;
2530
2531         if (is_vm_hugetlb_page(vma) && (addr &
2532                                         ~(huge_page_mask(hstate_vma(vma)))))
2533                 return -EINVAL;
2534
2535         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2536         if (!new)
2537                 return -ENOMEM;
2538
2539         /* most fields are the same, copy all, and then fixup */
2540         *new = *vma;
2541
2542         INIT_LIST_HEAD(&new->anon_vma_chain);
2543
2544         if (new_below)
2545                 new->vm_end = addr;
2546         else {
2547                 new->vm_start = addr;
2548                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2549         }
2550
2551         err = vma_dup_policy(vma, new);
2552         if (err)
2553                 goto out_free_vma;
2554
2555         err = anon_vma_clone(new, vma);
2556         if (err)
2557                 goto out_free_mpol;
2558
2559         if (new->vm_file)
2560                 get_file(new->vm_file);
2561
2562         if (new->vm_ops && new->vm_ops->open)
2563                 new->vm_ops->open(new);
2564
2565         if (new_below)
2566                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2567                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2568         else
2569                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2570
2571         /* Success. */
2572         if (!err)
2573                 return 0;
2574
2575         /* Clean everything up if vma_adjust failed. */
2576         if (new->vm_ops && new->vm_ops->close)
2577                 new->vm_ops->close(new);
2578         if (new->vm_file)
2579                 fput(new->vm_file);
2580         unlink_anon_vmas(new);
2581  out_free_mpol:
2582         mpol_put(vma_policy(new));
2583  out_free_vma:
2584         kmem_cache_free(vm_area_cachep, new);
2585         return err;
2586 }
2587
2588 /*
2589  * Split a vma into two pieces at address 'addr', a new vma is allocated
2590  * either for the first part or the tail.
2591  */
2592 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2593               unsigned long addr, int new_below)
2594 {
2595         if (mm->map_count >= sysctl_max_map_count)
2596                 return -ENOMEM;
2597
2598         return __split_vma(mm, vma, addr, new_below);
2599 }
2600
2601 /* Munmap is split into 2 main parts -- this part which finds
2602  * what needs doing, and the areas themselves, which do the
2603  * work.  This now handles partial unmappings.
2604  * Jeremy Fitzhardinge <jeremy@goop.org>
2605  */
2606 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2607 {
2608         unsigned long end;
2609         struct vm_area_struct *vma, *prev, *last;
2610
2611         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2612                 return -EINVAL;
2613
2614         len = PAGE_ALIGN(len);
2615         if (len == 0)
2616                 return -EINVAL;
2617
2618         /* Find the first overlapping VMA */
2619         vma = find_vma(mm, start);
2620         if (!vma)
2621                 return 0;
2622         prev = vma->vm_prev;
2623         /* we have  start < vma->vm_end  */
2624
2625         /* if it doesn't overlap, we have nothing.. */
2626         end = start + len;
2627         if (vma->vm_start >= end)
2628                 return 0;
2629
2630         /*
2631          * If we need to split any vma, do it now to save pain later.
2632          *
2633          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2634          * unmapped vm_area_struct will remain in use: so lower split_vma
2635          * places tmp vma above, and higher split_vma places tmp vma below.
2636          */
2637         if (start > vma->vm_start) {
2638                 int error;
2639
2640                 /*
2641                  * Make sure that map_count on return from munmap() will
2642                  * not exceed its limit; but let map_count go just above
2643                  * its limit temporarily, to help free resources as expected.
2644                  */
2645                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2646                         return -ENOMEM;
2647
2648                 error = __split_vma(mm, vma, start, 0);
2649                 if (error)
2650                         return error;
2651                 prev = vma;
2652         }
2653
2654         /* Does it split the last one? */
2655         last = find_vma(mm, end);
2656         if (last && end > last->vm_start) {
2657                 int error = __split_vma(mm, last, end, 1);
2658                 if (error)
2659                         return error;
2660         }
2661         vma = prev ? prev->vm_next : mm->mmap;
2662
2663         /*
2664          * unlock any mlock()ed ranges before detaching vmas
2665          */
2666         if (mm->locked_vm) {
2667                 struct vm_area_struct *tmp = vma;
2668                 while (tmp && tmp->vm_start < end) {
2669                         if (tmp->vm_flags & VM_LOCKED) {
2670                                 mm->locked_vm -= vma_pages(tmp);
2671                                 munlock_vma_pages_all(tmp);
2672                         }
2673                         tmp = tmp->vm_next;
2674                 }
2675         }
2676
2677         /*
2678          * Remove the vma's, and unmap the actual pages
2679          */
2680         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2681         unmap_region(mm, vma, prev, start, end);
2682
2683         arch_unmap(mm, vma, start, end);
2684
2685         /* Fix up all other VM information */
2686         remove_vma_list(mm, vma);
2687
2688         return 0;
2689 }
2690
2691 int vm_munmap(unsigned long start, size_t len)
2692 {
2693         int ret;
2694         struct mm_struct *mm = current->mm;
2695
2696         down_write(&mm->mmap_sem);
2697         ret = do_munmap(mm, start, len);
2698         up_write(&mm->mmap_sem);
2699         return ret;
2700 }
2701 EXPORT_SYMBOL(vm_munmap);
2702
2703 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2704 {
2705         profile_munmap(addr);
2706         return vm_munmap(addr, len);
2707 }
2708
2709
2710 /*
2711  * Emulation of deprecated remap_file_pages() syscall.
2712  */
2713 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2714                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2715 {
2716
2717         struct mm_struct *mm = current->mm;
2718         struct vm_area_struct *vma;
2719         unsigned long populate = 0;
2720         unsigned long ret = -EINVAL;
2721         struct file *file;
2722
2723         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2724                         "See Documentation/vm/remap_file_pages.txt.\n",
2725                         current->comm, current->pid);
2726
2727         if (prot)
2728                 return ret;
2729         start = start & PAGE_MASK;
2730         size = size & PAGE_MASK;
2731
2732         if (start + size <= start)
2733                 return ret;
2734
2735         /* Does pgoff wrap? */
2736         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2737                 return ret;
2738
2739         down_write(&mm->mmap_sem);
2740         vma = find_vma(mm, start);
2741
2742         if (!vma || !(vma->vm_flags & VM_SHARED))
2743                 goto out;
2744
2745         if (start < vma->vm_start)
2746                 goto out;
2747
2748         if (start + size > vma->vm_end) {
2749                 struct vm_area_struct *next;
2750
2751                 for (next = vma->vm_next; next; next = next->vm_next) {
2752                         /* hole between vmas ? */
2753                         if (next->vm_start != next->vm_prev->vm_end)
2754                                 goto out;
2755
2756                         if (next->vm_file != vma->vm_file)
2757                                 goto out;
2758
2759                         if (next->vm_flags != vma->vm_flags)
2760                                 goto out;
2761
2762                         if (start + size <= next->vm_end)
2763                                 break;
2764                 }
2765
2766                 if (!next)
2767                         goto out;
2768         }
2769
2770         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2771         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2772         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2773
2774         flags &= MAP_NONBLOCK;
2775         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2776         if (vma->vm_flags & VM_LOCKED) {
2777                 struct vm_area_struct *tmp;
2778                 flags |= MAP_LOCKED;
2779
2780                 /* drop PG_Mlocked flag for over-mapped range */
2781                 for (tmp = vma; tmp->vm_start >= start + size;
2782                                 tmp = tmp->vm_next) {
2783                         munlock_vma_pages_range(tmp,
2784                                         max(tmp->vm_start, start),
2785                                         min(tmp->vm_end, start + size));
2786                 }
2787         }
2788
2789         file = get_file(vma->vm_file);
2790         ret = do_mmap_pgoff(vma->vm_file, start, size,
2791                         prot, flags, pgoff, &populate);
2792         fput(file);
2793 out:
2794         up_write(&mm->mmap_sem);
2795         if (populate)
2796                 mm_populate(ret, populate);
2797         if (!IS_ERR_VALUE(ret))
2798                 ret = 0;
2799         return ret;
2800 }
2801
2802 static inline void verify_mm_writelocked(struct mm_struct *mm)
2803 {
2804 #ifdef CONFIG_DEBUG_VM
2805         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2806                 WARN_ON(1);
2807                 up_read(&mm->mmap_sem);
2808         }
2809 #endif
2810 }
2811
2812 /*
2813  *  this is really a simplified "do_mmap".  it only handles
2814  *  anonymous maps.  eventually we may be able to do some
2815  *  brk-specific accounting here.
2816  */
2817 static unsigned long do_brk(unsigned long addr, unsigned long len)
2818 {
2819         struct mm_struct *mm = current->mm;
2820         struct vm_area_struct *vma, *prev;
2821         unsigned long flags;
2822         struct rb_node **rb_link, *rb_parent;
2823         pgoff_t pgoff = addr >> PAGE_SHIFT;
2824         int error;
2825
2826         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2827
2828         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2829         if (offset_in_page(error))
2830                 return error;
2831
2832         error = mlock_future_check(mm, mm->def_flags, len);
2833         if (error)
2834                 return error;
2835
2836         /*
2837          * mm->mmap_sem is required to protect against another thread
2838          * changing the mappings in case we sleep.
2839          */
2840         verify_mm_writelocked(mm);
2841
2842         /*
2843          * Clear old maps.  this also does some error checking for us
2844          */
2845         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2846                               &rb_parent)) {
2847                 if (do_munmap(mm, addr, len))
2848                         return -ENOMEM;
2849         }
2850
2851         /* Check against address space limits *after* clearing old maps... */
2852         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2853                 return -ENOMEM;
2854
2855         if (mm->map_count > sysctl_max_map_count)
2856                 return -ENOMEM;
2857
2858         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2859                 return -ENOMEM;
2860
2861         /* Can we just expand an old private anonymous mapping? */
2862         vma = vma_merge(mm, prev, addr, addr + len, flags,
2863                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2864         if (vma)
2865                 goto out;
2866
2867         /*
2868          * create a vma struct for an anonymous mapping
2869          */
2870         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2871         if (!vma) {
2872                 vm_unacct_memory(len >> PAGE_SHIFT);
2873                 return -ENOMEM;
2874         }
2875
2876         INIT_LIST_HEAD(&vma->anon_vma_chain);
2877         vma->vm_mm = mm;
2878         vma->vm_start = addr;
2879         vma->vm_end = addr + len;
2880         vma->vm_pgoff = pgoff;
2881         vma->vm_flags = flags;
2882         vma->vm_page_prot = vm_get_page_prot(flags);
2883         vma_link(mm, vma, prev, rb_link, rb_parent);
2884 out:
2885         perf_event_mmap(vma);
2886         mm->total_vm += len >> PAGE_SHIFT;
2887         if (flags & VM_LOCKED)
2888                 mm->locked_vm += (len >> PAGE_SHIFT);
2889         vma->vm_flags |= VM_SOFTDIRTY;
2890         return addr;
2891 }
2892
2893 unsigned long vm_brk(unsigned long addr, unsigned long request)
2894 {
2895         struct mm_struct *mm = current->mm;
2896         unsigned long len;
2897         unsigned long ret;
2898         bool populate;
2899
2900         len = PAGE_ALIGN(request);
2901         if (len < request)
2902                 return -ENOMEM;
2903         if (!len)
2904                 return addr;
2905
2906         down_write(&mm->mmap_sem);
2907         ret = do_brk(addr, len);
2908         populate = ((mm->def_flags & VM_LOCKED) != 0);
2909         up_write(&mm->mmap_sem);
2910         if (populate)
2911                 mm_populate(addr, len);
2912         return ret;
2913 }
2914 EXPORT_SYMBOL(vm_brk);
2915
2916 /* Release all mmaps. */
2917 void exit_mmap(struct mm_struct *mm)
2918 {
2919         struct mmu_gather tlb;
2920         struct vm_area_struct *vma;
2921         unsigned long nr_accounted = 0;
2922
2923         /* mm's last user has gone, and its about to be pulled down */
2924         mmu_notifier_release(mm);
2925
2926         if (mm->locked_vm) {
2927                 vma = mm->mmap;
2928                 while (vma) {
2929                         if (vma->vm_flags & VM_LOCKED)
2930                                 munlock_vma_pages_all(vma);
2931                         vma = vma->vm_next;
2932                 }
2933         }
2934
2935         arch_exit_mmap(mm);
2936
2937         vma = mm->mmap;
2938         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2939                 return;
2940
2941         lru_add_drain();
2942         flush_cache_mm(mm);
2943         tlb_gather_mmu(&tlb, mm, 0, -1);
2944         /* update_hiwater_rss(mm) here? but nobody should be looking */
2945         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2946         unmap_vmas(&tlb, vma, 0, -1);
2947
2948         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2949         tlb_finish_mmu(&tlb, 0, -1);
2950
2951         /*
2952          * Walk the list again, actually closing and freeing it,
2953          * with preemption enabled, without holding any MM locks.
2954          */
2955         while (vma) {
2956                 if (vma->vm_flags & VM_ACCOUNT)
2957                         nr_accounted += vma_pages(vma);
2958                 vma = remove_vma(vma);
2959                 cond_resched();
2960         }
2961         vm_unacct_memory(nr_accounted);
2962 }
2963
2964 /* Insert vm structure into process list sorted by address
2965  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2966  * then i_mmap_rwsem is taken here.
2967  */
2968 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2969 {
2970         struct vm_area_struct *prev;
2971         struct rb_node **rb_link, *rb_parent;
2972
2973         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2974                            &prev, &rb_link, &rb_parent))
2975                 return -ENOMEM;
2976         if ((vma->vm_flags & VM_ACCOUNT) &&
2977              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2978                 return -ENOMEM;
2979
2980         /*
2981          * The vm_pgoff of a purely anonymous vma should be irrelevant
2982          * until its first write fault, when page's anon_vma and index
2983          * are set.  But now set the vm_pgoff it will almost certainly
2984          * end up with (unless mremap moves it elsewhere before that
2985          * first wfault), so /proc/pid/maps tells a consistent story.
2986          *
2987          * By setting it to reflect the virtual start address of the
2988          * vma, merges and splits can happen in a seamless way, just
2989          * using the existing file pgoff checks and manipulations.
2990          * Similarly in do_mmap_pgoff and in do_brk.
2991          */
2992         if (vma_is_anonymous(vma)) {
2993                 BUG_ON(vma->anon_vma);
2994                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2995         }
2996
2997         vma_link(mm, vma, prev, rb_link, rb_parent);
2998         return 0;
2999 }
3000
3001 /*
3002  * Copy the vma structure to a new location in the same mm,
3003  * prior to moving page table entries, to effect an mremap move.
3004  */
3005 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3006         unsigned long addr, unsigned long len, pgoff_t pgoff,
3007         bool *need_rmap_locks)
3008 {
3009         struct vm_area_struct *vma = *vmap;
3010         unsigned long vma_start = vma->vm_start;
3011         struct mm_struct *mm = vma->vm_mm;
3012         struct vm_area_struct *new_vma, *prev;
3013         struct rb_node **rb_link, *rb_parent;
3014         bool faulted_in_anon_vma = true;
3015
3016         /*
3017          * If anonymous vma has not yet been faulted, update new pgoff
3018          * to match new location, to increase its chance of merging.
3019          */
3020         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3021                 pgoff = addr >> PAGE_SHIFT;
3022                 faulted_in_anon_vma = false;
3023         }
3024
3025         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3026                 return NULL;    /* should never get here */
3027         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3028                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3029                             vma->vm_userfaultfd_ctx);
3030         if (new_vma) {
3031                 /*
3032                  * Source vma may have been merged into new_vma
3033                  */
3034                 if (unlikely(vma_start >= new_vma->vm_start &&
3035                              vma_start < new_vma->vm_end)) {
3036                         /*
3037                          * The only way we can get a vma_merge with
3038                          * self during an mremap is if the vma hasn't
3039                          * been faulted in yet and we were allowed to
3040                          * reset the dst vma->vm_pgoff to the
3041                          * destination address of the mremap to allow
3042                          * the merge to happen. mremap must change the
3043                          * vm_pgoff linearity between src and dst vmas
3044                          * (in turn preventing a vma_merge) to be
3045                          * safe. It is only safe to keep the vm_pgoff
3046                          * linear if there are no pages mapped yet.
3047                          */
3048                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3049                         *vmap = vma = new_vma;
3050                 }
3051                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3052         } else {
3053                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3054                 if (!new_vma)
3055                         goto out;
3056                 *new_vma = *vma;
3057                 new_vma->vm_start = addr;
3058                 new_vma->vm_end = addr + len;
3059                 new_vma->vm_pgoff = pgoff;
3060                 if (vma_dup_policy(vma, new_vma))
3061                         goto out_free_vma;
3062                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3063                 if (anon_vma_clone(new_vma, vma))
3064                         goto out_free_mempol;
3065                 if (new_vma->vm_file)
3066                         get_file(new_vma->vm_file);
3067                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3068                         new_vma->vm_ops->open(new_vma);
3069                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3070                 *need_rmap_locks = false;
3071         }
3072         return new_vma;
3073
3074 out_free_mempol:
3075         mpol_put(vma_policy(new_vma));
3076 out_free_vma:
3077         kmem_cache_free(vm_area_cachep, new_vma);
3078 out:
3079         return NULL;
3080 }
3081
3082 /*
3083  * Return true if the calling process may expand its vm space by the passed
3084  * number of pages
3085  */
3086 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3087 {
3088         unsigned long cur = mm->total_vm;       /* pages */
3089         unsigned long lim;
3090
3091         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3092
3093         if (cur + npages > lim)
3094                 return 0;
3095         return 1;
3096 }
3097
3098 static int special_mapping_fault(struct vm_area_struct *vma,
3099                                  struct vm_fault *vmf);
3100
3101 /*
3102  * Having a close hook prevents vma merging regardless of flags.
3103  */
3104 static void special_mapping_close(struct vm_area_struct *vma)
3105 {
3106 }
3107
3108 static const char *special_mapping_name(struct vm_area_struct *vma)
3109 {
3110         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3111 }
3112
3113 static const struct vm_operations_struct special_mapping_vmops = {
3114         .close = special_mapping_close,
3115         .fault = special_mapping_fault,
3116         .name = special_mapping_name,
3117 };
3118
3119 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3120         .close = special_mapping_close,
3121         .fault = special_mapping_fault,
3122 };
3123
3124 static int special_mapping_fault(struct vm_area_struct *vma,
3125                                 struct vm_fault *vmf)
3126 {
3127         pgoff_t pgoff;
3128         struct page **pages;
3129
3130         if (vma->vm_ops == &legacy_special_mapping_vmops)
3131                 pages = vma->vm_private_data;
3132         else
3133                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3134                         pages;
3135
3136         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3137                 pgoff--;
3138
3139         if (*pages) {
3140                 struct page *page = *pages;
3141                 get_page(page);
3142                 vmf->page = page;
3143                 return 0;
3144         }
3145
3146         return VM_FAULT_SIGBUS;
3147 }
3148
3149 static struct vm_area_struct *__install_special_mapping(
3150         struct mm_struct *mm,
3151         unsigned long addr, unsigned long len,
3152         unsigned long vm_flags, void *priv,
3153         const struct vm_operations_struct *ops)
3154 {
3155         int ret;
3156         struct vm_area_struct *vma;
3157
3158         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3159         if (unlikely(vma == NULL))
3160                 return ERR_PTR(-ENOMEM);
3161
3162         INIT_LIST_HEAD(&vma->anon_vma_chain);
3163         vma->vm_mm = mm;
3164         vma->vm_start = addr;
3165         vma->vm_end = addr + len;
3166
3167         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3168         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3169
3170         vma->vm_ops = ops;
3171         vma->vm_private_data = priv;
3172
3173         ret = insert_vm_struct(mm, vma);
3174         if (ret)
3175                 goto out;
3176
3177         mm->total_vm += len >> PAGE_SHIFT;
3178
3179         perf_event_mmap(vma);
3180
3181         return vma;
3182
3183 out:
3184         kmem_cache_free(vm_area_cachep, vma);
3185         return ERR_PTR(ret);
3186 }
3187
3188 /*
3189  * Called with mm->mmap_sem held for writing.
3190  * Insert a new vma covering the given region, with the given flags.
3191  * Its pages are supplied by the given array of struct page *.
3192  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3193  * The region past the last page supplied will always produce SIGBUS.
3194  * The array pointer and the pages it points to are assumed to stay alive
3195  * for as long as this mapping might exist.
3196  */
3197 struct vm_area_struct *_install_special_mapping(
3198         struct mm_struct *mm,
3199         unsigned long addr, unsigned long len,
3200         unsigned long vm_flags, const struct vm_special_mapping *spec)
3201 {
3202         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3203                                         &special_mapping_vmops);
3204 }
3205
3206 int install_special_mapping(struct mm_struct *mm,
3207                             unsigned long addr, unsigned long len,
3208                             unsigned long vm_flags, struct page **pages)
3209 {
3210         struct vm_area_struct *vma = __install_special_mapping(
3211                 mm, addr, len, vm_flags, (void *)pages,
3212                 &legacy_special_mapping_vmops);
3213
3214         return PTR_ERR_OR_ZERO(vma);
3215 }
3216
3217 static DEFINE_MUTEX(mm_all_locks_mutex);
3218
3219 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3220 {
3221         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3222                 /*
3223                  * The LSB of head.next can't change from under us
3224                  * because we hold the mm_all_locks_mutex.
3225                  */
3226                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3227                 /*
3228                  * We can safely modify head.next after taking the
3229                  * anon_vma->root->rwsem. If some other vma in this mm shares
3230                  * the same anon_vma we won't take it again.
3231                  *
3232                  * No need of atomic instructions here, head.next
3233                  * can't change from under us thanks to the
3234                  * anon_vma->root->rwsem.
3235                  */
3236                 if (__test_and_set_bit(0, (unsigned long *)
3237                                        &anon_vma->root->rb_root.rb_node))
3238                         BUG();
3239         }
3240 }
3241
3242 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3243 {
3244         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3245                 /*
3246                  * AS_MM_ALL_LOCKS can't change from under us because
3247                  * we hold the mm_all_locks_mutex.
3248                  *
3249                  * Operations on ->flags have to be atomic because
3250                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3251                  * mm_all_locks_mutex, there may be other cpus
3252                  * changing other bitflags in parallel to us.
3253                  */
3254                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3255                         BUG();
3256                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3257         }
3258 }
3259
3260 /*
3261  * This operation locks against the VM for all pte/vma/mm related
3262  * operations that could ever happen on a certain mm. This includes
3263  * vmtruncate, try_to_unmap, and all page faults.
3264  *
3265  * The caller must take the mmap_sem in write mode before calling
3266  * mm_take_all_locks(). The caller isn't allowed to release the
3267  * mmap_sem until mm_drop_all_locks() returns.
3268  *
3269  * mmap_sem in write mode is required in order to block all operations
3270  * that could modify pagetables and free pages without need of
3271  * altering the vma layout. It's also needed in write mode to avoid new
3272  * anon_vmas to be associated with existing vmas.
3273  *
3274  * A single task can't take more than one mm_take_all_locks() in a row
3275  * or it would deadlock.
3276  *
3277  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3278  * mapping->flags avoid to take the same lock twice, if more than one
3279  * vma in this mm is backed by the same anon_vma or address_space.
3280  *
3281  * We can take all the locks in random order because the VM code
3282  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3283  * takes more than one of them in a row. Secondly we're protected
3284  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3285  *
3286  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3287  * that may have to take thousand of locks.
3288  *
3289  * mm_take_all_locks() can fail if it's interrupted by signals.
3290  */
3291 int mm_take_all_locks(struct mm_struct *mm)
3292 {
3293         struct vm_area_struct *vma;
3294         struct anon_vma_chain *avc;
3295
3296         BUG_ON(down_read_trylock(&mm->mmap_sem));
3297
3298         mutex_lock(&mm_all_locks_mutex);
3299
3300         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3301                 if (signal_pending(current))
3302                         goto out_unlock;
3303                 if (vma->vm_file && vma->vm_file->f_mapping)
3304                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3305         }
3306
3307         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3308                 if (signal_pending(current))
3309                         goto out_unlock;
3310                 if (vma->anon_vma)
3311                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3312                                 vm_lock_anon_vma(mm, avc->anon_vma);
3313         }
3314
3315         return 0;
3316
3317 out_unlock:
3318         mm_drop_all_locks(mm);
3319         return -EINTR;
3320 }
3321
3322 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3323 {
3324         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3325                 /*
3326                  * The LSB of head.next can't change to 0 from under
3327                  * us because we hold the mm_all_locks_mutex.
3328                  *
3329                  * We must however clear the bitflag before unlocking
3330                  * the vma so the users using the anon_vma->rb_root will
3331                  * never see our bitflag.
3332                  *
3333                  * No need of atomic instructions here, head.next
3334                  * can't change from under us until we release the
3335                  * anon_vma->root->rwsem.
3336                  */
3337                 if (!__test_and_clear_bit(0, (unsigned long *)
3338                                           &anon_vma->root->rb_root.rb_node))
3339                         BUG();
3340                 anon_vma_unlock_write(anon_vma);
3341         }
3342 }
3343
3344 static void vm_unlock_mapping(struct address_space *mapping)
3345 {
3346         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3347                 /*
3348                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3349                  * because we hold the mm_all_locks_mutex.
3350                  */
3351                 i_mmap_unlock_write(mapping);
3352                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3353                                         &mapping->flags))
3354                         BUG();
3355         }
3356 }
3357
3358 /*
3359  * The mmap_sem cannot be released by the caller until
3360  * mm_drop_all_locks() returns.
3361  */
3362 void mm_drop_all_locks(struct mm_struct *mm)
3363 {
3364         struct vm_area_struct *vma;
3365         struct anon_vma_chain *avc;
3366
3367         BUG_ON(down_read_trylock(&mm->mmap_sem));
3368         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3369
3370         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3371                 if (vma->anon_vma)
3372                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3373                                 vm_unlock_anon_vma(avc->anon_vma);
3374                 if (vma->vm_file && vma->vm_file->f_mapping)
3375                         vm_unlock_mapping(vma->vm_file->f_mapping);
3376         }
3377
3378         mutex_unlock(&mm_all_locks_mutex);
3379 }
3380
3381 /*
3382  * initialise the VMA slab
3383  */
3384 void __init mmap_init(void)
3385 {
3386         int ret;
3387
3388         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3389         VM_BUG_ON(ret);
3390 }
3391
3392 /*
3393  * Initialise sysctl_user_reserve_kbytes.
3394  *
3395  * This is intended to prevent a user from starting a single memory hogging
3396  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3397  * mode.
3398  *
3399  * The default value is min(3% of free memory, 128MB)
3400  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3401  */
3402 static int init_user_reserve(void)
3403 {
3404         unsigned long free_kbytes;
3405
3406         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3407
3408         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3409         return 0;
3410 }
3411 subsys_initcall(init_user_reserve);
3412
3413 /*
3414  * Initialise sysctl_admin_reserve_kbytes.
3415  *
3416  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3417  * to log in and kill a memory hogging process.
3418  *
3419  * Systems with more than 256MB will reserve 8MB, enough to recover
3420  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3421  * only reserve 3% of free pages by default.
3422  */
3423 static int init_admin_reserve(void)
3424 {
3425         unsigned long free_kbytes;
3426
3427         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3428
3429         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3430         return 0;
3431 }
3432 subsys_initcall(init_admin_reserve);
3433
3434 /*
3435  * Reinititalise user and admin reserves if memory is added or removed.
3436  *
3437  * The default user reserve max is 128MB, and the default max for the
3438  * admin reserve is 8MB. These are usually, but not always, enough to
3439  * enable recovery from a memory hogging process using login/sshd, a shell,
3440  * and tools like top. It may make sense to increase or even disable the
3441  * reserve depending on the existence of swap or variations in the recovery
3442  * tools. So, the admin may have changed them.
3443  *
3444  * If memory is added and the reserves have been eliminated or increased above
3445  * the default max, then we'll trust the admin.
3446  *
3447  * If memory is removed and there isn't enough free memory, then we
3448  * need to reset the reserves.
3449  *
3450  * Otherwise keep the reserve set by the admin.
3451  */
3452 static int reserve_mem_notifier(struct notifier_block *nb,
3453                              unsigned long action, void *data)
3454 {
3455         unsigned long tmp, free_kbytes;
3456
3457         switch (action) {
3458         case MEM_ONLINE:
3459                 /* Default max is 128MB. Leave alone if modified by operator. */
3460                 tmp = sysctl_user_reserve_kbytes;
3461                 if (0 < tmp && tmp < (1UL << 17))
3462                         init_user_reserve();
3463
3464                 /* Default max is 8MB.  Leave alone if modified by operator. */
3465                 tmp = sysctl_admin_reserve_kbytes;
3466                 if (0 < tmp && tmp < (1UL << 13))
3467                         init_admin_reserve();
3468
3469                 break;
3470         case MEM_OFFLINE:
3471                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3472
3473                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3474                         init_user_reserve();
3475                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3476                                 sysctl_user_reserve_kbytes);
3477                 }
3478
3479                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3480                         init_admin_reserve();
3481                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3482                                 sysctl_admin_reserve_kbytes);
3483                 }
3484                 break;
3485         default:
3486                 break;
3487         }
3488         return NOTIFY_OK;
3489 }
3490
3491 static struct notifier_block reserve_mem_nb = {
3492         .notifier_call = reserve_mem_notifier,
3493 };
3494
3495 static int __meminit init_reserve_notifier(void)
3496 {
3497         if (register_hotmemory_notifier(&reserve_mem_nb))
3498                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3499
3500         return 0;
3501 }
3502 subsys_initcall(init_reserve_notifier);