GNU Linux-libre 5.10.217-gnu1
[releases.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type     prot
88  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
89  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
94  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
95  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
96  */
97 pgprot_t protection_map[16] __ro_after_init = {
98         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105         return prot;
106 }
107 #endif
108
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
114
115         return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127         unsigned long vm_flags = vma->vm_flags;
128         pgprot_t vm_page_prot;
129
130         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131         if (vma_wants_writenotify(vma, vm_page_prot)) {
132                 vm_flags &= ~VM_SHARED;
133                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134         }
135         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138
139 /*
140  * Requires inode->i_mapping->i_mmap_rwsem
141  */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143                 struct file *file, struct address_space *mapping)
144 {
145         if (vma->vm_flags & VM_DENYWRITE)
146                 allow_write_access(file);
147         if (vma->vm_flags & VM_SHARED)
148                 mapping_unmap_writable(mapping);
149
150         flush_dcache_mmap_lock(mapping);
151         vma_interval_tree_remove(vma, &mapping->i_mmap);
152         flush_dcache_mmap_unlock(mapping);
153 }
154
155 /*
156  * Unlink a file-based vm structure from its interval tree, to hide
157  * vma from rmap and vmtruncate before freeing its page tables.
158  */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161         struct file *file = vma->vm_file;
162
163         if (file) {
164                 struct address_space *mapping = file->f_mapping;
165                 i_mmap_lock_write(mapping);
166                 __remove_shared_vm_struct(vma, file, mapping);
167                 i_mmap_unlock_write(mapping);
168         }
169 }
170
171 /*
172  * Close a vm structure and free it, returning the next.
173  */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176         struct vm_area_struct *next = vma->vm_next;
177
178         might_sleep();
179         if (vma->vm_ops && vma->vm_ops->close)
180                 vma->vm_ops->close(vma);
181         if (vma->vm_file)
182                 fput(vma->vm_file);
183         mpol_put(vma_policy(vma));
184         vm_area_free(vma);
185         return next;
186 }
187
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189                 struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192         unsigned long retval;
193         unsigned long newbrk, oldbrk, origbrk;
194         struct mm_struct *mm = current->mm;
195         struct vm_area_struct *next;
196         unsigned long min_brk;
197         bool populate;
198         bool downgraded = false;
199         LIST_HEAD(uf);
200
201         if (mmap_write_lock_killable(mm))
202                 return -EINTR;
203
204         origbrk = mm->brk;
205
206 #ifdef CONFIG_COMPAT_BRK
207         /*
208          * CONFIG_COMPAT_BRK can still be overridden by setting
209          * randomize_va_space to 2, which will still cause mm->start_brk
210          * to be arbitrarily shifted
211          */
212         if (current->brk_randomized)
213                 min_brk = mm->start_brk;
214         else
215                 min_brk = mm->end_data;
216 #else
217         min_brk = mm->start_brk;
218 #endif
219         if (brk < min_brk)
220                 goto out;
221
222         /*
223          * Check against rlimit here. If this check is done later after the test
224          * of oldbrk with newbrk then it can escape the test and let the data
225          * segment grow beyond its set limit the in case where the limit is
226          * not page aligned -Ram Gupta
227          */
228         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229                               mm->end_data, mm->start_data))
230                 goto out;
231
232         newbrk = PAGE_ALIGN(brk);
233         oldbrk = PAGE_ALIGN(mm->brk);
234         if (oldbrk == newbrk) {
235                 mm->brk = brk;
236                 goto success;
237         }
238
239         /*
240          * Always allow shrinking brk.
241          * __do_munmap() may downgrade mmap_lock to read.
242          */
243         if (brk <= mm->brk) {
244                 int ret;
245
246                 /*
247                  * mm->brk must to be protected by write mmap_lock so update it
248                  * before downgrading mmap_lock. When __do_munmap() fails,
249                  * mm->brk will be restored from origbrk.
250                  */
251                 mm->brk = brk;
252                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253                 if (ret < 0) {
254                         mm->brk = origbrk;
255                         goto out;
256                 } else if (ret == 1) {
257                         downgraded = true;
258                 }
259                 goto success;
260         }
261
262         /* Check against existing mmap mappings. */
263         next = find_vma(mm, oldbrk);
264         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265                 goto out;
266
267         /* Ok, looks good - let it rip. */
268         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269                 goto out;
270         mm->brk = brk;
271
272 success:
273         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274         if (downgraded)
275                 mmap_read_unlock(mm);
276         else
277                 mmap_write_unlock(mm);
278         userfaultfd_unmap_complete(mm, &uf);
279         if (populate)
280                 mm_populate(oldbrk, newbrk - oldbrk);
281         return brk;
282
283 out:
284         retval = origbrk;
285         mmap_write_unlock(mm);
286         return retval;
287 }
288
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291         unsigned long gap, prev_end;
292
293         /*
294          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295          * allow two stack_guard_gaps between them here, and when choosing
296          * an unmapped area; whereas when expanding we only require one.
297          * That's a little inconsistent, but keeps the code here simpler.
298          */
299         gap = vm_start_gap(vma);
300         if (vma->vm_prev) {
301                 prev_end = vm_end_gap(vma->vm_prev);
302                 if (gap > prev_end)
303                         gap -= prev_end;
304                 else
305                         gap = 0;
306         }
307         return gap;
308 }
309
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313         unsigned long max = vma_compute_gap(vma), subtree_gap;
314         if (vma->vm_rb.rb_left) {
315                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
316                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317                 if (subtree_gap > max)
318                         max = subtree_gap;
319         }
320         if (vma->vm_rb.rb_right) {
321                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
322                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
323                 if (subtree_gap > max)
324                         max = subtree_gap;
325         }
326         return max;
327 }
328
329 static int browse_rb(struct mm_struct *mm)
330 {
331         struct rb_root *root = &mm->mm_rb;
332         int i = 0, j, bug = 0;
333         struct rb_node *nd, *pn = NULL;
334         unsigned long prev = 0, pend = 0;
335
336         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337                 struct vm_area_struct *vma;
338                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339                 if (vma->vm_start < prev) {
340                         pr_emerg("vm_start %lx < prev %lx\n",
341                                   vma->vm_start, prev);
342                         bug = 1;
343                 }
344                 if (vma->vm_start < pend) {
345                         pr_emerg("vm_start %lx < pend %lx\n",
346                                   vma->vm_start, pend);
347                         bug = 1;
348                 }
349                 if (vma->vm_start > vma->vm_end) {
350                         pr_emerg("vm_start %lx > vm_end %lx\n",
351                                   vma->vm_start, vma->vm_end);
352                         bug = 1;
353                 }
354                 spin_lock(&mm->page_table_lock);
355                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356                         pr_emerg("free gap %lx, correct %lx\n",
357                                vma->rb_subtree_gap,
358                                vma_compute_subtree_gap(vma));
359                         bug = 1;
360                 }
361                 spin_unlock(&mm->page_table_lock);
362                 i++;
363                 pn = nd;
364                 prev = vma->vm_start;
365                 pend = vma->vm_end;
366         }
367         j = 0;
368         for (nd = pn; nd; nd = rb_prev(nd))
369                 j++;
370         if (i != j) {
371                 pr_emerg("backwards %d, forwards %d\n", j, i);
372                 bug = 1;
373         }
374         return bug ? -1 : i;
375 }
376
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379         struct rb_node *nd;
380
381         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382                 struct vm_area_struct *vma;
383                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384                 VM_BUG_ON_VMA(vma != ignore &&
385                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386                         vma);
387         }
388 }
389
390 static void validate_mm(struct mm_struct *mm)
391 {
392         int bug = 0;
393         int i = 0;
394         unsigned long highest_address = 0;
395         struct vm_area_struct *vma = mm->mmap;
396
397         while (vma) {
398                 struct anon_vma *anon_vma = vma->anon_vma;
399                 struct anon_vma_chain *avc;
400
401                 if (anon_vma) {
402                         anon_vma_lock_read(anon_vma);
403                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404                                 anon_vma_interval_tree_verify(avc);
405                         anon_vma_unlock_read(anon_vma);
406                 }
407
408                 highest_address = vm_end_gap(vma);
409                 vma = vma->vm_next;
410                 i++;
411         }
412         if (i != mm->map_count) {
413                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414                 bug = 1;
415         }
416         if (highest_address != mm->highest_vm_end) {
417                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418                           mm->highest_vm_end, highest_address);
419                 bug = 1;
420         }
421         i = browse_rb(mm);
422         if (i != mm->map_count) {
423                 if (i != -1)
424                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425                 bug = 1;
426         }
427         VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435                          struct vm_area_struct, vm_rb,
436                          unsigned long, rb_subtree_gap, vma_compute_gap)
437
438 /*
439  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440  * vma->vm_prev->vm_end values changed, without modifying the vma's position
441  * in the rbtree.
442  */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445         /*
446          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447          * a callback function that does exactly what we want.
448          */
449         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453                                  struct rb_root *root)
454 {
455         /* All rb_subtree_gap values must be consistent prior to insertion */
456         validate_mm_rb(root, NULL);
457
458         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463         /*
464          * Note rb_erase_augmented is a fairly large inline function,
465          * so make sure we instantiate it only once with our desired
466          * augmented rbtree callbacks.
467          */
468         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472                                                 struct rb_root *root,
473                                                 struct vm_area_struct *ignore)
474 {
475         /*
476          * All rb_subtree_gap values must be consistent prior to erase,
477          * with the possible exception of
478          *
479          * a. the "next" vma being erased if next->vm_start was reduced in
480          *    __vma_adjust() -> __vma_unlink()
481          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
482          *    vma_rb_erase()
483          */
484         validate_mm_rb(root, ignore);
485
486         __vma_rb_erase(vma, root);
487 }
488
489 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
490                                          struct rb_root *root)
491 {
492         vma_rb_erase_ignore(vma, root, vma);
493 }
494
495 /*
496  * vma has some anon_vma assigned, and is already inserted on that
497  * anon_vma's interval trees.
498  *
499  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
500  * vma must be removed from the anon_vma's interval trees using
501  * anon_vma_interval_tree_pre_update_vma().
502  *
503  * After the update, the vma will be reinserted using
504  * anon_vma_interval_tree_post_update_vma().
505  *
506  * The entire update must be protected by exclusive mmap_lock and by
507  * the root anon_vma's mutex.
508  */
509 static inline void
510 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
511 {
512         struct anon_vma_chain *avc;
513
514         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
516 }
517
518 static inline void
519 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
520 {
521         struct anon_vma_chain *avc;
522
523         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
524                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
525 }
526
527 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
528                 unsigned long end, struct vm_area_struct **pprev,
529                 struct rb_node ***rb_link, struct rb_node **rb_parent)
530 {
531         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
532
533         __rb_link = &mm->mm_rb.rb_node;
534         rb_prev = __rb_parent = NULL;
535
536         while (*__rb_link) {
537                 struct vm_area_struct *vma_tmp;
538
539                 __rb_parent = *__rb_link;
540                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
541
542                 if (vma_tmp->vm_end > addr) {
543                         /* Fail if an existing vma overlaps the area */
544                         if (vma_tmp->vm_start < end)
545                                 return -ENOMEM;
546                         __rb_link = &__rb_parent->rb_left;
547                 } else {
548                         rb_prev = __rb_parent;
549                         __rb_link = &__rb_parent->rb_right;
550                 }
551         }
552
553         *pprev = NULL;
554         if (rb_prev)
555                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
556         *rb_link = __rb_link;
557         *rb_parent = __rb_parent;
558         return 0;
559 }
560
561 /*
562  * vma_next() - Get the next VMA.
563  * @mm: The mm_struct.
564  * @vma: The current vma.
565  *
566  * If @vma is NULL, return the first vma in the mm.
567  *
568  * Returns: The next VMA after @vma.
569  */
570 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
571                                          struct vm_area_struct *vma)
572 {
573         if (!vma)
574                 return mm->mmap;
575
576         return vma->vm_next;
577 }
578
579 /*
580  * munmap_vma_range() - munmap VMAs that overlap a range.
581  * @mm: The mm struct
582  * @start: The start of the range.
583  * @len: The length of the range.
584  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
585  * @rb_link: the rb_node
586  * @rb_parent: the parent rb_node
587  *
588  * Find all the vm_area_struct that overlap from @start to
589  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
590  *
591  * Returns: -ENOMEM on munmap failure or 0 on success.
592  */
593 static inline int
594 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
595                  struct vm_area_struct **pprev, struct rb_node ***link,
596                  struct rb_node **parent, struct list_head *uf)
597 {
598
599         while (find_vma_links(mm, start, start + len, pprev, link, parent))
600                 if (do_munmap(mm, start, len, uf))
601                         return -ENOMEM;
602
603         return 0;
604 }
605 static unsigned long count_vma_pages_range(struct mm_struct *mm,
606                 unsigned long addr, unsigned long end)
607 {
608         unsigned long nr_pages = 0;
609         struct vm_area_struct *vma;
610
611         /* Find first overlaping mapping */
612         vma = find_vma_intersection(mm, addr, end);
613         if (!vma)
614                 return 0;
615
616         nr_pages = (min(end, vma->vm_end) -
617                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
618
619         /* Iterate over the rest of the overlaps */
620         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
621                 unsigned long overlap_len;
622
623                 if (vma->vm_start > end)
624                         break;
625
626                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
627                 nr_pages += overlap_len >> PAGE_SHIFT;
628         }
629
630         return nr_pages;
631 }
632
633 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
634                 struct rb_node **rb_link, struct rb_node *rb_parent)
635 {
636         /* Update tracking information for the gap following the new vma. */
637         if (vma->vm_next)
638                 vma_gap_update(vma->vm_next);
639         else
640                 mm->highest_vm_end = vm_end_gap(vma);
641
642         /*
643          * vma->vm_prev wasn't known when we followed the rbtree to find the
644          * correct insertion point for that vma. As a result, we could not
645          * update the vma vm_rb parents rb_subtree_gap values on the way down.
646          * So, we first insert the vma with a zero rb_subtree_gap value
647          * (to be consistent with what we did on the way down), and then
648          * immediately update the gap to the correct value. Finally we
649          * rebalance the rbtree after all augmented values have been set.
650          */
651         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
652         vma->rb_subtree_gap = 0;
653         vma_gap_update(vma);
654         vma_rb_insert(vma, &mm->mm_rb);
655 }
656
657 static void __vma_link_file(struct vm_area_struct *vma)
658 {
659         struct file *file;
660
661         file = vma->vm_file;
662         if (file) {
663                 struct address_space *mapping = file->f_mapping;
664
665                 if (vma->vm_flags & VM_DENYWRITE)
666                         put_write_access(file_inode(file));
667                 if (vma->vm_flags & VM_SHARED)
668                         mapping_allow_writable(mapping);
669
670                 flush_dcache_mmap_lock(mapping);
671                 vma_interval_tree_insert(vma, &mapping->i_mmap);
672                 flush_dcache_mmap_unlock(mapping);
673         }
674 }
675
676 static void
677 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
678         struct vm_area_struct *prev, struct rb_node **rb_link,
679         struct rb_node *rb_parent)
680 {
681         __vma_link_list(mm, vma, prev);
682         __vma_link_rb(mm, vma, rb_link, rb_parent);
683 }
684
685 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
686                         struct vm_area_struct *prev, struct rb_node **rb_link,
687                         struct rb_node *rb_parent)
688 {
689         struct address_space *mapping = NULL;
690
691         if (vma->vm_file) {
692                 mapping = vma->vm_file->f_mapping;
693                 i_mmap_lock_write(mapping);
694         }
695
696         __vma_link(mm, vma, prev, rb_link, rb_parent);
697         __vma_link_file(vma);
698
699         if (mapping)
700                 i_mmap_unlock_write(mapping);
701
702         mm->map_count++;
703         validate_mm(mm);
704 }
705
706 /*
707  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
708  * mm's list and rbtree.  It has already been inserted into the interval tree.
709  */
710 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
711 {
712         struct vm_area_struct *prev;
713         struct rb_node **rb_link, *rb_parent;
714
715         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
716                            &prev, &rb_link, &rb_parent))
717                 BUG();
718         __vma_link(mm, vma, prev, rb_link, rb_parent);
719         mm->map_count++;
720 }
721
722 static __always_inline void __vma_unlink(struct mm_struct *mm,
723                                                 struct vm_area_struct *vma,
724                                                 struct vm_area_struct *ignore)
725 {
726         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
727         __vma_unlink_list(mm, vma);
728         /* Kill the cache */
729         vmacache_invalidate(mm);
730 }
731
732 /*
733  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
734  * is already present in an i_mmap tree without adjusting the tree.
735  * The following helper function should be used when such adjustments
736  * are necessary.  The "insert" vma (if any) is to be inserted
737  * before we drop the necessary locks.
738  */
739 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
740         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
741         struct vm_area_struct *expand)
742 {
743         struct mm_struct *mm = vma->vm_mm;
744         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
745         struct address_space *mapping = NULL;
746         struct rb_root_cached *root = NULL;
747         struct anon_vma *anon_vma = NULL;
748         struct file *file = vma->vm_file;
749         bool start_changed = false, end_changed = false;
750         long adjust_next = 0;
751         int remove_next = 0;
752
753         if (next && !insert) {
754                 struct vm_area_struct *exporter = NULL, *importer = NULL;
755
756                 if (end >= next->vm_end) {
757                         /*
758                          * vma expands, overlapping all the next, and
759                          * perhaps the one after too (mprotect case 6).
760                          * The only other cases that gets here are
761                          * case 1, case 7 and case 8.
762                          */
763                         if (next == expand) {
764                                 /*
765                                  * The only case where we don't expand "vma"
766                                  * and we expand "next" instead is case 8.
767                                  */
768                                 VM_WARN_ON(end != next->vm_end);
769                                 /*
770                                  * remove_next == 3 means we're
771                                  * removing "vma" and that to do so we
772                                  * swapped "vma" and "next".
773                                  */
774                                 remove_next = 3;
775                                 VM_WARN_ON(file != next->vm_file);
776                                 swap(vma, next);
777                         } else {
778                                 VM_WARN_ON(expand != vma);
779                                 /*
780                                  * case 1, 6, 7, remove_next == 2 is case 6,
781                                  * remove_next == 1 is case 1 or 7.
782                                  */
783                                 remove_next = 1 + (end > next->vm_end);
784                                 VM_WARN_ON(remove_next == 2 &&
785                                            end != next->vm_next->vm_end);
786                                 /* trim end to next, for case 6 first pass */
787                                 end = next->vm_end;
788                         }
789
790                         exporter = next;
791                         importer = vma;
792
793                         /*
794                          * If next doesn't have anon_vma, import from vma after
795                          * next, if the vma overlaps with it.
796                          */
797                         if (remove_next == 2 && !next->anon_vma)
798                                 exporter = next->vm_next;
799
800                 } else if (end > next->vm_start) {
801                         /*
802                          * vma expands, overlapping part of the next:
803                          * mprotect case 5 shifting the boundary up.
804                          */
805                         adjust_next = (end - next->vm_start);
806                         exporter = next;
807                         importer = vma;
808                         VM_WARN_ON(expand != importer);
809                 } else if (end < vma->vm_end) {
810                         /*
811                          * vma shrinks, and !insert tells it's not
812                          * split_vma inserting another: so it must be
813                          * mprotect case 4 shifting the boundary down.
814                          */
815                         adjust_next = -(vma->vm_end - end);
816                         exporter = vma;
817                         importer = next;
818                         VM_WARN_ON(expand != importer);
819                 }
820
821                 /*
822                  * Easily overlooked: when mprotect shifts the boundary,
823                  * make sure the expanding vma has anon_vma set if the
824                  * shrinking vma had, to cover any anon pages imported.
825                  */
826                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
827                         int error;
828
829                         importer->anon_vma = exporter->anon_vma;
830                         error = anon_vma_clone(importer, exporter);
831                         if (error)
832                                 return error;
833                 }
834         }
835 again:
836         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
837
838         if (file) {
839                 mapping = file->f_mapping;
840                 root = &mapping->i_mmap;
841                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
842
843                 if (adjust_next)
844                         uprobe_munmap(next, next->vm_start, next->vm_end);
845
846                 i_mmap_lock_write(mapping);
847                 if (insert) {
848                         /*
849                          * Put into interval tree now, so instantiated pages
850                          * are visible to arm/parisc __flush_dcache_page
851                          * throughout; but we cannot insert into address
852                          * space until vma start or end is updated.
853                          */
854                         __vma_link_file(insert);
855                 }
856         }
857
858         anon_vma = vma->anon_vma;
859         if (!anon_vma && adjust_next)
860                 anon_vma = next->anon_vma;
861         if (anon_vma) {
862                 VM_WARN_ON(adjust_next && next->anon_vma &&
863                            anon_vma != next->anon_vma);
864                 anon_vma_lock_write(anon_vma);
865                 anon_vma_interval_tree_pre_update_vma(vma);
866                 if (adjust_next)
867                         anon_vma_interval_tree_pre_update_vma(next);
868         }
869
870         if (file) {
871                 flush_dcache_mmap_lock(mapping);
872                 vma_interval_tree_remove(vma, root);
873                 if (adjust_next)
874                         vma_interval_tree_remove(next, root);
875         }
876
877         if (start != vma->vm_start) {
878                 vma->vm_start = start;
879                 start_changed = true;
880         }
881         if (end != vma->vm_end) {
882                 vma->vm_end = end;
883                 end_changed = true;
884         }
885         vma->vm_pgoff = pgoff;
886         if (adjust_next) {
887                 next->vm_start += adjust_next;
888                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
889         }
890
891         if (file) {
892                 if (adjust_next)
893                         vma_interval_tree_insert(next, root);
894                 vma_interval_tree_insert(vma, root);
895                 flush_dcache_mmap_unlock(mapping);
896         }
897
898         if (remove_next) {
899                 /*
900                  * vma_merge has merged next into vma, and needs
901                  * us to remove next before dropping the locks.
902                  */
903                 if (remove_next != 3)
904                         __vma_unlink(mm, next, next);
905                 else
906                         /*
907                          * vma is not before next if they've been
908                          * swapped.
909                          *
910                          * pre-swap() next->vm_start was reduced so
911                          * tell validate_mm_rb to ignore pre-swap()
912                          * "next" (which is stored in post-swap()
913                          * "vma").
914                          */
915                         __vma_unlink(mm, next, vma);
916                 if (file)
917                         __remove_shared_vm_struct(next, file, mapping);
918         } else if (insert) {
919                 /*
920                  * split_vma has split insert from vma, and needs
921                  * us to insert it before dropping the locks
922                  * (it may either follow vma or precede it).
923                  */
924                 __insert_vm_struct(mm, insert);
925         } else {
926                 if (start_changed)
927                         vma_gap_update(vma);
928                 if (end_changed) {
929                         if (!next)
930                                 mm->highest_vm_end = vm_end_gap(vma);
931                         else if (!adjust_next)
932                                 vma_gap_update(next);
933                 }
934         }
935
936         if (anon_vma) {
937                 anon_vma_interval_tree_post_update_vma(vma);
938                 if (adjust_next)
939                         anon_vma_interval_tree_post_update_vma(next);
940                 anon_vma_unlock_write(anon_vma);
941         }
942
943         if (file) {
944                 i_mmap_unlock_write(mapping);
945                 uprobe_mmap(vma);
946
947                 if (adjust_next)
948                         uprobe_mmap(next);
949         }
950
951         if (remove_next) {
952                 if (file) {
953                         uprobe_munmap(next, next->vm_start, next->vm_end);
954                         fput(file);
955                 }
956                 if (next->anon_vma)
957                         anon_vma_merge(vma, next);
958                 mm->map_count--;
959                 mpol_put(vma_policy(next));
960                 vm_area_free(next);
961                 /*
962                  * In mprotect's case 6 (see comments on vma_merge),
963                  * we must remove another next too. It would clutter
964                  * up the code too much to do both in one go.
965                  */
966                 if (remove_next != 3) {
967                         /*
968                          * If "next" was removed and vma->vm_end was
969                          * expanded (up) over it, in turn
970                          * "next->vm_prev->vm_end" changed and the
971                          * "vma->vm_next" gap must be updated.
972                          */
973                         next = vma->vm_next;
974                 } else {
975                         /*
976                          * For the scope of the comment "next" and
977                          * "vma" considered pre-swap(): if "vma" was
978                          * removed, next->vm_start was expanded (down)
979                          * over it and the "next" gap must be updated.
980                          * Because of the swap() the post-swap() "vma"
981                          * actually points to pre-swap() "next"
982                          * (post-swap() "next" as opposed is now a
983                          * dangling pointer).
984                          */
985                         next = vma;
986                 }
987                 if (remove_next == 2) {
988                         remove_next = 1;
989                         end = next->vm_end;
990                         goto again;
991                 }
992                 else if (next)
993                         vma_gap_update(next);
994                 else {
995                         /*
996                          * If remove_next == 2 we obviously can't
997                          * reach this path.
998                          *
999                          * If remove_next == 3 we can't reach this
1000                          * path because pre-swap() next is always not
1001                          * NULL. pre-swap() "next" is not being
1002                          * removed and its next->vm_end is not altered
1003                          * (and furthermore "end" already matches
1004                          * next->vm_end in remove_next == 3).
1005                          *
1006                          * We reach this only in the remove_next == 1
1007                          * case if the "next" vma that was removed was
1008                          * the highest vma of the mm. However in such
1009                          * case next->vm_end == "end" and the extended
1010                          * "vma" has vma->vm_end == next->vm_end so
1011                          * mm->highest_vm_end doesn't need any update
1012                          * in remove_next == 1 case.
1013                          */
1014                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1015                 }
1016         }
1017         if (insert && file)
1018                 uprobe_mmap(insert);
1019
1020         validate_mm(mm);
1021
1022         return 0;
1023 }
1024
1025 /*
1026  * If the vma has a ->close operation then the driver probably needs to release
1027  * per-vma resources, so we don't attempt to merge those.
1028  */
1029 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1030                                 struct file *file, unsigned long vm_flags,
1031                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1032 {
1033         /*
1034          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1035          * match the flags but dirty bit -- the caller should mark
1036          * merged VMA as dirty. If dirty bit won't be excluded from
1037          * comparison, we increase pressure on the memory system forcing
1038          * the kernel to generate new VMAs when old one could be
1039          * extended instead.
1040          */
1041         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1042                 return 0;
1043         if (vma->vm_file != file)
1044                 return 0;
1045         if (vma->vm_ops && vma->vm_ops->close)
1046                 return 0;
1047         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1048                 return 0;
1049         return 1;
1050 }
1051
1052 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1053                                         struct anon_vma *anon_vma2,
1054                                         struct vm_area_struct *vma)
1055 {
1056         /*
1057          * The list_is_singular() test is to avoid merging VMA cloned from
1058          * parents. This can improve scalability caused by anon_vma lock.
1059          */
1060         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1061                 list_is_singular(&vma->anon_vma_chain)))
1062                 return 1;
1063         return anon_vma1 == anon_vma2;
1064 }
1065
1066 /*
1067  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1068  * in front of (at a lower virtual address and file offset than) the vma.
1069  *
1070  * We cannot merge two vmas if they have differently assigned (non-NULL)
1071  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1072  *
1073  * We don't check here for the merged mmap wrapping around the end of pagecache
1074  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1075  * wrap, nor mmaps which cover the final page at index -1UL.
1076  */
1077 static int
1078 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1079                      struct anon_vma *anon_vma, struct file *file,
1080                      pgoff_t vm_pgoff,
1081                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1082 {
1083         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1084             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1085                 if (vma->vm_pgoff == vm_pgoff)
1086                         return 1;
1087         }
1088         return 0;
1089 }
1090
1091 /*
1092  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1093  * beyond (at a higher virtual address and file offset than) the vma.
1094  *
1095  * We cannot merge two vmas if they have differently assigned (non-NULL)
1096  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1097  */
1098 static int
1099 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1100                     struct anon_vma *anon_vma, struct file *file,
1101                     pgoff_t vm_pgoff,
1102                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1103 {
1104         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1105             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1106                 pgoff_t vm_pglen;
1107                 vm_pglen = vma_pages(vma);
1108                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1109                         return 1;
1110         }
1111         return 0;
1112 }
1113
1114 /*
1115  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1116  * whether that can be merged with its predecessor or its successor.
1117  * Or both (it neatly fills a hole).
1118  *
1119  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1120  * certain not to be mapped by the time vma_merge is called; but when
1121  * called for mprotect, it is certain to be already mapped (either at
1122  * an offset within prev, or at the start of next), and the flags of
1123  * this area are about to be changed to vm_flags - and the no-change
1124  * case has already been eliminated.
1125  *
1126  * The following mprotect cases have to be considered, where AAAA is
1127  * the area passed down from mprotect_fixup, never extending beyond one
1128  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1129  *
1130  *     AAAA             AAAA                   AAAA
1131  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1132  *    cannot merge    might become       might become
1133  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1134  *    mmap, brk or    case 4 below       case 5 below
1135  *    mremap move:
1136  *                        AAAA               AAAA
1137  *                    PPPP    NNNN       PPPPNNNNXXXX
1138  *                    might become       might become
1139  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1140  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1141  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1142  *
1143  * It is important for case 8 that the vma NNNN overlapping the
1144  * region AAAA is never going to extended over XXXX. Instead XXXX must
1145  * be extended in region AAAA and NNNN must be removed. This way in
1146  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1147  * rmap_locks, the properties of the merged vma will be already
1148  * correct for the whole merged range. Some of those properties like
1149  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1150  * be correct for the whole merged range immediately after the
1151  * rmap_locks are released. Otherwise if XXXX would be removed and
1152  * NNNN would be extended over the XXXX range, remove_migration_ptes
1153  * or other rmap walkers (if working on addresses beyond the "end"
1154  * parameter) may establish ptes with the wrong permissions of NNNN
1155  * instead of the right permissions of XXXX.
1156  */
1157 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1158                         struct vm_area_struct *prev, unsigned long addr,
1159                         unsigned long end, unsigned long vm_flags,
1160                         struct anon_vma *anon_vma, struct file *file,
1161                         pgoff_t pgoff, struct mempolicy *policy,
1162                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1163 {
1164         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1165         struct vm_area_struct *area, *next;
1166         int err;
1167
1168         /*
1169          * We later require that vma->vm_flags == vm_flags,
1170          * so this tests vma->vm_flags & VM_SPECIAL, too.
1171          */
1172         if (vm_flags & VM_SPECIAL)
1173                 return NULL;
1174
1175         next = vma_next(mm, prev);
1176         area = next;
1177         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1178                 next = next->vm_next;
1179
1180         /* verify some invariant that must be enforced by the caller */
1181         VM_WARN_ON(prev && addr <= prev->vm_start);
1182         VM_WARN_ON(area && end > area->vm_end);
1183         VM_WARN_ON(addr >= end);
1184
1185         /*
1186          * Can it merge with the predecessor?
1187          */
1188         if (prev && prev->vm_end == addr &&
1189                         mpol_equal(vma_policy(prev), policy) &&
1190                         can_vma_merge_after(prev, vm_flags,
1191                                             anon_vma, file, pgoff,
1192                                             vm_userfaultfd_ctx)) {
1193                 /*
1194                  * OK, it can.  Can we now merge in the successor as well?
1195                  */
1196                 if (next && end == next->vm_start &&
1197                                 mpol_equal(policy, vma_policy(next)) &&
1198                                 can_vma_merge_before(next, vm_flags,
1199                                                      anon_vma, file,
1200                                                      pgoff+pglen,
1201                                                      vm_userfaultfd_ctx) &&
1202                                 is_mergeable_anon_vma(prev->anon_vma,
1203                                                       next->anon_vma, NULL)) {
1204                                                         /* cases 1, 6 */
1205                         err = __vma_adjust(prev, prev->vm_start,
1206                                          next->vm_end, prev->vm_pgoff, NULL,
1207                                          prev);
1208                 } else                                  /* cases 2, 5, 7 */
1209                         err = __vma_adjust(prev, prev->vm_start,
1210                                          end, prev->vm_pgoff, NULL, prev);
1211                 if (err)
1212                         return NULL;
1213                 khugepaged_enter_vma_merge(prev, vm_flags);
1214                 return prev;
1215         }
1216
1217         /*
1218          * Can this new request be merged in front of next?
1219          */
1220         if (next && end == next->vm_start &&
1221                         mpol_equal(policy, vma_policy(next)) &&
1222                         can_vma_merge_before(next, vm_flags,
1223                                              anon_vma, file, pgoff+pglen,
1224                                              vm_userfaultfd_ctx)) {
1225                 if (prev && addr < prev->vm_end)        /* case 4 */
1226                         err = __vma_adjust(prev, prev->vm_start,
1227                                          addr, prev->vm_pgoff, NULL, next);
1228                 else {                                  /* cases 3, 8 */
1229                         err = __vma_adjust(area, addr, next->vm_end,
1230                                          next->vm_pgoff - pglen, NULL, next);
1231                         /*
1232                          * In case 3 area is already equal to next and
1233                          * this is a noop, but in case 8 "area" has
1234                          * been removed and next was expanded over it.
1235                          */
1236                         area = next;
1237                 }
1238                 if (err)
1239                         return NULL;
1240                 khugepaged_enter_vma_merge(area, vm_flags);
1241                 return area;
1242         }
1243
1244         return NULL;
1245 }
1246
1247 /*
1248  * Rough compatibility check to quickly see if it's even worth looking
1249  * at sharing an anon_vma.
1250  *
1251  * They need to have the same vm_file, and the flags can only differ
1252  * in things that mprotect may change.
1253  *
1254  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1255  * we can merge the two vma's. For example, we refuse to merge a vma if
1256  * there is a vm_ops->close() function, because that indicates that the
1257  * driver is doing some kind of reference counting. But that doesn't
1258  * really matter for the anon_vma sharing case.
1259  */
1260 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1261 {
1262         return a->vm_end == b->vm_start &&
1263                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1264                 a->vm_file == b->vm_file &&
1265                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1266                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1267 }
1268
1269 /*
1270  * Do some basic sanity checking to see if we can re-use the anon_vma
1271  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1272  * the same as 'old', the other will be the new one that is trying
1273  * to share the anon_vma.
1274  *
1275  * NOTE! This runs with mm_sem held for reading, so it is possible that
1276  * the anon_vma of 'old' is concurrently in the process of being set up
1277  * by another page fault trying to merge _that_. But that's ok: if it
1278  * is being set up, that automatically means that it will be a singleton
1279  * acceptable for merging, so we can do all of this optimistically. But
1280  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1281  *
1282  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1283  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1284  * is to return an anon_vma that is "complex" due to having gone through
1285  * a fork).
1286  *
1287  * We also make sure that the two vma's are compatible (adjacent,
1288  * and with the same memory policies). That's all stable, even with just
1289  * a read lock on the mm_sem.
1290  */
1291 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1292 {
1293         if (anon_vma_compatible(a, b)) {
1294                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1295
1296                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1297                         return anon_vma;
1298         }
1299         return NULL;
1300 }
1301
1302 /*
1303  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1304  * neighbouring vmas for a suitable anon_vma, before it goes off
1305  * to allocate a new anon_vma.  It checks because a repetitive
1306  * sequence of mprotects and faults may otherwise lead to distinct
1307  * anon_vmas being allocated, preventing vma merge in subsequent
1308  * mprotect.
1309  */
1310 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1311 {
1312         struct anon_vma *anon_vma = NULL;
1313
1314         /* Try next first. */
1315         if (vma->vm_next) {
1316                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1317                 if (anon_vma)
1318                         return anon_vma;
1319         }
1320
1321         /* Try prev next. */
1322         if (vma->vm_prev)
1323                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1324
1325         /*
1326          * We might reach here with anon_vma == NULL if we can't find
1327          * any reusable anon_vma.
1328          * There's no absolute need to look only at touching neighbours:
1329          * we could search further afield for "compatible" anon_vmas.
1330          * But it would probably just be a waste of time searching,
1331          * or lead to too many vmas hanging off the same anon_vma.
1332          * We're trying to allow mprotect remerging later on,
1333          * not trying to minimize memory used for anon_vmas.
1334          */
1335         return anon_vma;
1336 }
1337
1338 /*
1339  * If a hint addr is less than mmap_min_addr change hint to be as
1340  * low as possible but still greater than mmap_min_addr
1341  */
1342 static inline unsigned long round_hint_to_min(unsigned long hint)
1343 {
1344         hint &= PAGE_MASK;
1345         if (((void *)hint != NULL) &&
1346             (hint < mmap_min_addr))
1347                 return PAGE_ALIGN(mmap_min_addr);
1348         return hint;
1349 }
1350
1351 static inline int mlock_future_check(struct mm_struct *mm,
1352                                      unsigned long flags,
1353                                      unsigned long len)
1354 {
1355         unsigned long locked, lock_limit;
1356
1357         /*  mlock MCL_FUTURE? */
1358         if (flags & VM_LOCKED) {
1359                 locked = len >> PAGE_SHIFT;
1360                 locked += mm->locked_vm;
1361                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1362                 lock_limit >>= PAGE_SHIFT;
1363                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1364                         return -EAGAIN;
1365         }
1366         return 0;
1367 }
1368
1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1370 {
1371         if (S_ISREG(inode->i_mode))
1372                 return MAX_LFS_FILESIZE;
1373
1374         if (S_ISBLK(inode->i_mode))
1375                 return MAX_LFS_FILESIZE;
1376
1377         if (S_ISSOCK(inode->i_mode))
1378                 return MAX_LFS_FILESIZE;
1379
1380         /* Special "we do even unsigned file positions" case */
1381         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1382                 return 0;
1383
1384         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1385         return ULONG_MAX;
1386 }
1387
1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1389                                 unsigned long pgoff, unsigned long len)
1390 {
1391         u64 maxsize = file_mmap_size_max(file, inode);
1392
1393         if (maxsize && len > maxsize)
1394                 return false;
1395         maxsize -= len;
1396         if (pgoff > maxsize >> PAGE_SHIFT)
1397                 return false;
1398         return true;
1399 }
1400
1401 /*
1402  * The caller must write-lock current->mm->mmap_lock.
1403  */
1404 unsigned long do_mmap(struct file *file, unsigned long addr,
1405                         unsigned long len, unsigned long prot,
1406                         unsigned long flags, unsigned long pgoff,
1407                         unsigned long *populate, struct list_head *uf)
1408 {
1409         struct mm_struct *mm = current->mm;
1410         vm_flags_t vm_flags;
1411         int pkey = 0;
1412
1413         *populate = 0;
1414
1415         if (!len)
1416                 return -EINVAL;
1417
1418         /*
1419          * Does the application expect PROT_READ to imply PROT_EXEC?
1420          *
1421          * (the exception is when the underlying filesystem is noexec
1422          *  mounted, in which case we dont add PROT_EXEC.)
1423          */
1424         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1425                 if (!(file && path_noexec(&file->f_path)))
1426                         prot |= PROT_EXEC;
1427
1428         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1429         if (flags & MAP_FIXED_NOREPLACE)
1430                 flags |= MAP_FIXED;
1431
1432         if (!(flags & MAP_FIXED))
1433                 addr = round_hint_to_min(addr);
1434
1435         /* Careful about overflows.. */
1436         len = PAGE_ALIGN(len);
1437         if (!len)
1438                 return -ENOMEM;
1439
1440         /* offset overflow? */
1441         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1442                 return -EOVERFLOW;
1443
1444         /* Too many mappings? */
1445         if (mm->map_count > sysctl_max_map_count)
1446                 return -ENOMEM;
1447
1448         /* Obtain the address to map to. we verify (or select) it and ensure
1449          * that it represents a valid section of the address space.
1450          */
1451         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1452         if (IS_ERR_VALUE(addr))
1453                 return addr;
1454
1455         if (flags & MAP_FIXED_NOREPLACE) {
1456                 struct vm_area_struct *vma = find_vma(mm, addr);
1457
1458                 if (vma && vma->vm_start < addr + len)
1459                         return -EEXIST;
1460         }
1461
1462         if (prot == PROT_EXEC) {
1463                 pkey = execute_only_pkey(mm);
1464                 if (pkey < 0)
1465                         pkey = 0;
1466         }
1467
1468         /* Do simple checking here so the lower-level routines won't have
1469          * to. we assume access permissions have been handled by the open
1470          * of the memory object, so we don't do any here.
1471          */
1472         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1473                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1474
1475         if (flags & MAP_LOCKED)
1476                 if (!can_do_mlock())
1477                         return -EPERM;
1478
1479         if (mlock_future_check(mm, vm_flags, len))
1480                 return -EAGAIN;
1481
1482         if (file) {
1483                 struct inode *inode = file_inode(file);
1484                 unsigned long flags_mask;
1485
1486                 if (!file_mmap_ok(file, inode, pgoff, len))
1487                         return -EOVERFLOW;
1488
1489                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1490
1491                 switch (flags & MAP_TYPE) {
1492                 case MAP_SHARED:
1493                         /*
1494                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1495                          * flags. E.g. MAP_SYNC is dangerous to use with
1496                          * MAP_SHARED as you don't know which consistency model
1497                          * you will get. We silently ignore unsupported flags
1498                          * with MAP_SHARED to preserve backward compatibility.
1499                          */
1500                         flags &= LEGACY_MAP_MASK;
1501                         fallthrough;
1502                 case MAP_SHARED_VALIDATE:
1503                         if (flags & ~flags_mask)
1504                                 return -EOPNOTSUPP;
1505                         if (prot & PROT_WRITE) {
1506                                 if (!(file->f_mode & FMODE_WRITE))
1507                                         return -EACCES;
1508                                 if (IS_SWAPFILE(file->f_mapping->host))
1509                                         return -ETXTBSY;
1510                         }
1511
1512                         /*
1513                          * Make sure we don't allow writing to an append-only
1514                          * file..
1515                          */
1516                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1517                                 return -EACCES;
1518
1519                         /*
1520                          * Make sure there are no mandatory locks on the file.
1521                          */
1522                         if (locks_verify_locked(file))
1523                                 return -EAGAIN;
1524
1525                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1526                         if (!(file->f_mode & FMODE_WRITE))
1527                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1528                         fallthrough;
1529                 case MAP_PRIVATE:
1530                         if (!(file->f_mode & FMODE_READ))
1531                                 return -EACCES;
1532                         if (path_noexec(&file->f_path)) {
1533                                 if (vm_flags & VM_EXEC)
1534                                         return -EPERM;
1535                                 vm_flags &= ~VM_MAYEXEC;
1536                         }
1537
1538                         if (!file->f_op->mmap)
1539                                 return -ENODEV;
1540                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1541                                 return -EINVAL;
1542                         break;
1543
1544                 default:
1545                         return -EINVAL;
1546                 }
1547         } else {
1548                 switch (flags & MAP_TYPE) {
1549                 case MAP_SHARED:
1550                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1551                                 return -EINVAL;
1552                         /*
1553                          * Ignore pgoff.
1554                          */
1555                         pgoff = 0;
1556                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1557                         break;
1558                 case MAP_PRIVATE:
1559                         /*
1560                          * Set pgoff according to addr for anon_vma.
1561                          */
1562                         pgoff = addr >> PAGE_SHIFT;
1563                         break;
1564                 default:
1565                         return -EINVAL;
1566                 }
1567         }
1568
1569         /*
1570          * Set 'VM_NORESERVE' if we should not account for the
1571          * memory use of this mapping.
1572          */
1573         if (flags & MAP_NORESERVE) {
1574                 /* We honor MAP_NORESERVE if allowed to overcommit */
1575                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1576                         vm_flags |= VM_NORESERVE;
1577
1578                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1579                 if (file && is_file_hugepages(file))
1580                         vm_flags |= VM_NORESERVE;
1581         }
1582
1583         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1584         if (!IS_ERR_VALUE(addr) &&
1585             ((vm_flags & VM_LOCKED) ||
1586              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1587                 *populate = len;
1588         return addr;
1589 }
1590
1591 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1592                               unsigned long prot, unsigned long flags,
1593                               unsigned long fd, unsigned long pgoff)
1594 {
1595         struct file *file = NULL;
1596         unsigned long retval;
1597
1598         if (!(flags & MAP_ANONYMOUS)) {
1599                 audit_mmap_fd(fd, flags);
1600                 file = fget(fd);
1601                 if (!file)
1602                         return -EBADF;
1603                 if (is_file_hugepages(file)) {
1604                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1605                 } else if (unlikely(flags & MAP_HUGETLB)) {
1606                         retval = -EINVAL;
1607                         goto out_fput;
1608                 }
1609         } else if (flags & MAP_HUGETLB) {
1610                 struct user_struct *user = NULL;
1611                 struct hstate *hs;
1612
1613                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1614                 if (!hs)
1615                         return -EINVAL;
1616
1617                 len = ALIGN(len, huge_page_size(hs));
1618                 /*
1619                  * VM_NORESERVE is used because the reservations will be
1620                  * taken when vm_ops->mmap() is called
1621                  * A dummy user value is used because we are not locking
1622                  * memory so no accounting is necessary
1623                  */
1624                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1625                                 VM_NORESERVE,
1626                                 &user, HUGETLB_ANONHUGE_INODE,
1627                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1628                 if (IS_ERR(file))
1629                         return PTR_ERR(file);
1630         }
1631
1632         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1633
1634         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1635 out_fput:
1636         if (file)
1637                 fput(file);
1638         return retval;
1639 }
1640
1641 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1642                 unsigned long, prot, unsigned long, flags,
1643                 unsigned long, fd, unsigned long, pgoff)
1644 {
1645         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1646 }
1647
1648 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1649 struct mmap_arg_struct {
1650         unsigned long addr;
1651         unsigned long len;
1652         unsigned long prot;
1653         unsigned long flags;
1654         unsigned long fd;
1655         unsigned long offset;
1656 };
1657
1658 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1659 {
1660         struct mmap_arg_struct a;
1661
1662         if (copy_from_user(&a, arg, sizeof(a)))
1663                 return -EFAULT;
1664         if (offset_in_page(a.offset))
1665                 return -EINVAL;
1666
1667         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1668                                a.offset >> PAGE_SHIFT);
1669 }
1670 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1671
1672 /*
1673  * Some shared mappings will want the pages marked read-only
1674  * to track write events. If so, we'll downgrade vm_page_prot
1675  * to the private version (using protection_map[] without the
1676  * VM_SHARED bit).
1677  */
1678 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1679 {
1680         vm_flags_t vm_flags = vma->vm_flags;
1681         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1682
1683         /* If it was private or non-writable, the write bit is already clear */
1684         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1685                 return 0;
1686
1687         /* The backer wishes to know when pages are first written to? */
1688         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1689                 return 1;
1690
1691         /* The open routine did something to the protections that pgprot_modify
1692          * won't preserve? */
1693         if (pgprot_val(vm_page_prot) !=
1694             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1695                 return 0;
1696
1697         /*
1698          * Do we need to track softdirty? hugetlb does not support softdirty
1699          * tracking yet.
1700          */
1701         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1702             !is_vm_hugetlb_page(vma))
1703                 return 1;
1704
1705         /* Specialty mapping? */
1706         if (vm_flags & VM_PFNMAP)
1707                 return 0;
1708
1709         /* Can the mapping track the dirty pages? */
1710         return vma->vm_file && vma->vm_file->f_mapping &&
1711                 mapping_can_writeback(vma->vm_file->f_mapping);
1712 }
1713
1714 /*
1715  * We account for memory if it's a private writeable mapping,
1716  * not hugepages and VM_NORESERVE wasn't set.
1717  */
1718 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1719 {
1720         /*
1721          * hugetlb has its own accounting separate from the core VM
1722          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1723          */
1724         if (file && is_file_hugepages(file))
1725                 return 0;
1726
1727         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1728 }
1729
1730 unsigned long mmap_region(struct file *file, unsigned long addr,
1731                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1732                 struct list_head *uf)
1733 {
1734         struct mm_struct *mm = current->mm;
1735         struct vm_area_struct *vma, *prev, *merge;
1736         int error;
1737         struct rb_node **rb_link, *rb_parent;
1738         unsigned long charged = 0;
1739
1740         /* Check against address space limit. */
1741         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1742                 unsigned long nr_pages;
1743
1744                 /*
1745                  * MAP_FIXED may remove pages of mappings that intersects with
1746                  * requested mapping. Account for the pages it would unmap.
1747                  */
1748                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1749
1750                 if (!may_expand_vm(mm, vm_flags,
1751                                         (len >> PAGE_SHIFT) - nr_pages))
1752                         return -ENOMEM;
1753         }
1754
1755         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1756         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1757                 return -ENOMEM;
1758         /*
1759          * Private writable mapping: check memory availability
1760          */
1761         if (accountable_mapping(file, vm_flags)) {
1762                 charged = len >> PAGE_SHIFT;
1763                 if (security_vm_enough_memory_mm(mm, charged))
1764                         return -ENOMEM;
1765                 vm_flags |= VM_ACCOUNT;
1766         }
1767
1768         /*
1769          * Can we just expand an old mapping?
1770          */
1771         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1772                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1773         if (vma)
1774                 goto out;
1775
1776         /*
1777          * Determine the object being mapped and call the appropriate
1778          * specific mapper. the address has already been validated, but
1779          * not unmapped, but the maps are removed from the list.
1780          */
1781         vma = vm_area_alloc(mm);
1782         if (!vma) {
1783                 error = -ENOMEM;
1784                 goto unacct_error;
1785         }
1786
1787         vma->vm_start = addr;
1788         vma->vm_end = addr + len;
1789         vma->vm_flags = vm_flags;
1790         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1791         vma->vm_pgoff = pgoff;
1792
1793         if (file) {
1794                 if (vm_flags & VM_DENYWRITE) {
1795                         error = deny_write_access(file);
1796                         if (error)
1797                                 goto free_vma;
1798                 }
1799                 if (vm_flags & VM_SHARED) {
1800                         error = mapping_map_writable(file->f_mapping);
1801                         if (error)
1802                                 goto allow_write_and_free_vma;
1803                 }
1804
1805                 /* ->mmap() can change vma->vm_file, but must guarantee that
1806                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1807                  * and map writably if VM_SHARED is set. This usually means the
1808                  * new file must not have been exposed to user-space, yet.
1809                  */
1810                 vma->vm_file = get_file(file);
1811                 error = call_mmap(file, vma);
1812                 if (error)
1813                         goto unmap_and_free_vma;
1814
1815                 /* Can addr have changed??
1816                  *
1817                  * Answer: Yes, several device drivers can do it in their
1818                  *         f_op->mmap method. -DaveM
1819                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1820                  *      be updated for vma_link()
1821                  */
1822                 WARN_ON_ONCE(addr != vma->vm_start);
1823
1824                 addr = vma->vm_start;
1825
1826                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1827                  * as we may succeed this time.
1828                  */
1829                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1830                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1831                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1832                         if (merge) {
1833                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1834                                  * fput the vma->vm_file here or we would add an extra fput for file
1835                                  * and cause general protection fault ultimately.
1836                                  */
1837                                 fput(vma->vm_file);
1838                                 vm_area_free(vma);
1839                                 vma = merge;
1840                                 /* Update vm_flags to pick up the change. */
1841                                 vm_flags = vma->vm_flags;
1842                                 goto unmap_writable;
1843                         }
1844                 }
1845
1846                 vm_flags = vma->vm_flags;
1847         } else if (vm_flags & VM_SHARED) {
1848                 error = shmem_zero_setup(vma);
1849                 if (error)
1850                         goto free_vma;
1851         } else {
1852                 vma_set_anonymous(vma);
1853         }
1854
1855         /* Allow architectures to sanity-check the vm_flags */
1856         if (!arch_validate_flags(vma->vm_flags)) {
1857                 error = -EINVAL;
1858                 if (file)
1859                         goto close_and_free_vma;
1860                 else
1861                         goto free_vma;
1862         }
1863
1864         vma_link(mm, vma, prev, rb_link, rb_parent);
1865         /* Once vma denies write, undo our temporary denial count */
1866         if (file) {
1867 unmap_writable:
1868                 if (vm_flags & VM_SHARED)
1869                         mapping_unmap_writable(file->f_mapping);
1870                 if (vm_flags & VM_DENYWRITE)
1871                         allow_write_access(file);
1872         }
1873         file = vma->vm_file;
1874 out:
1875         perf_event_mmap(vma);
1876
1877         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1878         if (vm_flags & VM_LOCKED) {
1879                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1880                                         is_vm_hugetlb_page(vma) ||
1881                                         vma == get_gate_vma(current->mm))
1882                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1883                 else
1884                         mm->locked_vm += (len >> PAGE_SHIFT);
1885         }
1886
1887         if (file)
1888                 uprobe_mmap(vma);
1889
1890         /*
1891          * New (or expanded) vma always get soft dirty status.
1892          * Otherwise user-space soft-dirty page tracker won't
1893          * be able to distinguish situation when vma area unmapped,
1894          * then new mapped in-place (which must be aimed as
1895          * a completely new data area).
1896          */
1897         vma->vm_flags |= VM_SOFTDIRTY;
1898
1899         vma_set_page_prot(vma);
1900
1901         return addr;
1902
1903 close_and_free_vma:
1904         if (vma->vm_ops && vma->vm_ops->close)
1905                 vma->vm_ops->close(vma);
1906 unmap_and_free_vma:
1907         vma->vm_file = NULL;
1908         fput(file);
1909
1910         /* Undo any partial mapping done by a device driver. */
1911         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1912         if (vm_flags & VM_SHARED)
1913                 mapping_unmap_writable(file->f_mapping);
1914 allow_write_and_free_vma:
1915         if (vm_flags & VM_DENYWRITE)
1916                 allow_write_access(file);
1917 free_vma:
1918         vm_area_free(vma);
1919 unacct_error:
1920         if (charged)
1921                 vm_unacct_memory(charged);
1922         return error;
1923 }
1924
1925 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1926 {
1927         /*
1928          * We implement the search by looking for an rbtree node that
1929          * immediately follows a suitable gap. That is,
1930          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1931          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1932          * - gap_end - gap_start >= length
1933          */
1934
1935         struct mm_struct *mm = current->mm;
1936         struct vm_area_struct *vma;
1937         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1938
1939         /* Adjust search length to account for worst case alignment overhead */
1940         length = info->length + info->align_mask;
1941         if (length < info->length)
1942                 return -ENOMEM;
1943
1944         /* Adjust search limits by the desired length */
1945         if (info->high_limit < length)
1946                 return -ENOMEM;
1947         high_limit = info->high_limit - length;
1948
1949         if (info->low_limit > high_limit)
1950                 return -ENOMEM;
1951         low_limit = info->low_limit + length;
1952
1953         /* Check if rbtree root looks promising */
1954         if (RB_EMPTY_ROOT(&mm->mm_rb))
1955                 goto check_highest;
1956         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1957         if (vma->rb_subtree_gap < length)
1958                 goto check_highest;
1959
1960         while (true) {
1961                 /* Visit left subtree if it looks promising */
1962                 gap_end = vm_start_gap(vma);
1963                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1964                         struct vm_area_struct *left =
1965                                 rb_entry(vma->vm_rb.rb_left,
1966                                          struct vm_area_struct, vm_rb);
1967                         if (left->rb_subtree_gap >= length) {
1968                                 vma = left;
1969                                 continue;
1970                         }
1971                 }
1972
1973                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1974 check_current:
1975                 /* Check if current node has a suitable gap */
1976                 if (gap_start > high_limit)
1977                         return -ENOMEM;
1978                 if (gap_end >= low_limit &&
1979                     gap_end > gap_start && gap_end - gap_start >= length)
1980                         goto found;
1981
1982                 /* Visit right subtree if it looks promising */
1983                 if (vma->vm_rb.rb_right) {
1984                         struct vm_area_struct *right =
1985                                 rb_entry(vma->vm_rb.rb_right,
1986                                          struct vm_area_struct, vm_rb);
1987                         if (right->rb_subtree_gap >= length) {
1988                                 vma = right;
1989                                 continue;
1990                         }
1991                 }
1992
1993                 /* Go back up the rbtree to find next candidate node */
1994                 while (true) {
1995                         struct rb_node *prev = &vma->vm_rb;
1996                         if (!rb_parent(prev))
1997                                 goto check_highest;
1998                         vma = rb_entry(rb_parent(prev),
1999                                        struct vm_area_struct, vm_rb);
2000                         if (prev == vma->vm_rb.rb_left) {
2001                                 gap_start = vm_end_gap(vma->vm_prev);
2002                                 gap_end = vm_start_gap(vma);
2003                                 goto check_current;
2004                         }
2005                 }
2006         }
2007
2008 check_highest:
2009         /* Check highest gap, which does not precede any rbtree node */
2010         gap_start = mm->highest_vm_end;
2011         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2012         if (gap_start > high_limit)
2013                 return -ENOMEM;
2014
2015 found:
2016         /* We found a suitable gap. Clip it with the original low_limit. */
2017         if (gap_start < info->low_limit)
2018                 gap_start = info->low_limit;
2019
2020         /* Adjust gap address to the desired alignment */
2021         gap_start += (info->align_offset - gap_start) & info->align_mask;
2022
2023         VM_BUG_ON(gap_start + info->length > info->high_limit);
2024         VM_BUG_ON(gap_start + info->length > gap_end);
2025         return gap_start;
2026 }
2027
2028 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2029 {
2030         struct mm_struct *mm = current->mm;
2031         struct vm_area_struct *vma;
2032         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2033
2034         /* Adjust search length to account for worst case alignment overhead */
2035         length = info->length + info->align_mask;
2036         if (length < info->length)
2037                 return -ENOMEM;
2038
2039         /*
2040          * Adjust search limits by the desired length.
2041          * See implementation comment at top of unmapped_area().
2042          */
2043         gap_end = info->high_limit;
2044         if (gap_end < length)
2045                 return -ENOMEM;
2046         high_limit = gap_end - length;
2047
2048         if (info->low_limit > high_limit)
2049                 return -ENOMEM;
2050         low_limit = info->low_limit + length;
2051
2052         /* Check highest gap, which does not precede any rbtree node */
2053         gap_start = mm->highest_vm_end;
2054         if (gap_start <= high_limit)
2055                 goto found_highest;
2056
2057         /* Check if rbtree root looks promising */
2058         if (RB_EMPTY_ROOT(&mm->mm_rb))
2059                 return -ENOMEM;
2060         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2061         if (vma->rb_subtree_gap < length)
2062                 return -ENOMEM;
2063
2064         while (true) {
2065                 /* Visit right subtree if it looks promising */
2066                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2067                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2068                         struct vm_area_struct *right =
2069                                 rb_entry(vma->vm_rb.rb_right,
2070                                          struct vm_area_struct, vm_rb);
2071                         if (right->rb_subtree_gap >= length) {
2072                                 vma = right;
2073                                 continue;
2074                         }
2075                 }
2076
2077 check_current:
2078                 /* Check if current node has a suitable gap */
2079                 gap_end = vm_start_gap(vma);
2080                 if (gap_end < low_limit)
2081                         return -ENOMEM;
2082                 if (gap_start <= high_limit &&
2083                     gap_end > gap_start && gap_end - gap_start >= length)
2084                         goto found;
2085
2086                 /* Visit left subtree if it looks promising */
2087                 if (vma->vm_rb.rb_left) {
2088                         struct vm_area_struct *left =
2089                                 rb_entry(vma->vm_rb.rb_left,
2090                                          struct vm_area_struct, vm_rb);
2091                         if (left->rb_subtree_gap >= length) {
2092                                 vma = left;
2093                                 continue;
2094                         }
2095                 }
2096
2097                 /* Go back up the rbtree to find next candidate node */
2098                 while (true) {
2099                         struct rb_node *prev = &vma->vm_rb;
2100                         if (!rb_parent(prev))
2101                                 return -ENOMEM;
2102                         vma = rb_entry(rb_parent(prev),
2103                                        struct vm_area_struct, vm_rb);
2104                         if (prev == vma->vm_rb.rb_right) {
2105                                 gap_start = vma->vm_prev ?
2106                                         vm_end_gap(vma->vm_prev) : 0;
2107                                 goto check_current;
2108                         }
2109                 }
2110         }
2111
2112 found:
2113         /* We found a suitable gap. Clip it with the original high_limit. */
2114         if (gap_end > info->high_limit)
2115                 gap_end = info->high_limit;
2116
2117 found_highest:
2118         /* Compute highest gap address at the desired alignment */
2119         gap_end -= info->length;
2120         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2121
2122         VM_BUG_ON(gap_end < info->low_limit);
2123         VM_BUG_ON(gap_end < gap_start);
2124         return gap_end;
2125 }
2126
2127 /*
2128  * Search for an unmapped address range.
2129  *
2130  * We are looking for a range that:
2131  * - does not intersect with any VMA;
2132  * - is contained within the [low_limit, high_limit) interval;
2133  * - is at least the desired size.
2134  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2135  */
2136 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2137 {
2138         unsigned long addr;
2139
2140         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2141                 addr = unmapped_area_topdown(info);
2142         else
2143                 addr = unmapped_area(info);
2144
2145         trace_vm_unmapped_area(addr, info);
2146         return addr;
2147 }
2148
2149 /* Get an address range which is currently unmapped.
2150  * For shmat() with addr=0.
2151  *
2152  * Ugly calling convention alert:
2153  * Return value with the low bits set means error value,
2154  * ie
2155  *      if (ret & ~PAGE_MASK)
2156  *              error = ret;
2157  *
2158  * This function "knows" that -ENOMEM has the bits set.
2159  */
2160 #ifndef HAVE_ARCH_UNMAPPED_AREA
2161 unsigned long
2162 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2163                 unsigned long len, unsigned long pgoff, unsigned long flags)
2164 {
2165         struct mm_struct *mm = current->mm;
2166         struct vm_area_struct *vma, *prev;
2167         struct vm_unmapped_area_info info;
2168         const unsigned long mmap_end = arch_get_mmap_end(addr);
2169
2170         if (len > mmap_end - mmap_min_addr)
2171                 return -ENOMEM;
2172
2173         if (flags & MAP_FIXED)
2174                 return addr;
2175
2176         if (addr) {
2177                 addr = PAGE_ALIGN(addr);
2178                 vma = find_vma_prev(mm, addr, &prev);
2179                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2180                     (!vma || addr + len <= vm_start_gap(vma)) &&
2181                     (!prev || addr >= vm_end_gap(prev)))
2182                         return addr;
2183         }
2184
2185         info.flags = 0;
2186         info.length = len;
2187         info.low_limit = mm->mmap_base;
2188         info.high_limit = mmap_end;
2189         info.align_mask = 0;
2190         info.align_offset = 0;
2191         return vm_unmapped_area(&info);
2192 }
2193 #endif
2194
2195 /*
2196  * This mmap-allocator allocates new areas top-down from below the
2197  * stack's low limit (the base):
2198  */
2199 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2200 unsigned long
2201 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2202                           unsigned long len, unsigned long pgoff,
2203                           unsigned long flags)
2204 {
2205         struct vm_area_struct *vma, *prev;
2206         struct mm_struct *mm = current->mm;
2207         struct vm_unmapped_area_info info;
2208         const unsigned long mmap_end = arch_get_mmap_end(addr);
2209
2210         /* requested length too big for entire address space */
2211         if (len > mmap_end - mmap_min_addr)
2212                 return -ENOMEM;
2213
2214         if (flags & MAP_FIXED)
2215                 return addr;
2216
2217         /* requesting a specific address */
2218         if (addr) {
2219                 addr = PAGE_ALIGN(addr);
2220                 vma = find_vma_prev(mm, addr, &prev);
2221                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2222                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2223                                 (!prev || addr >= vm_end_gap(prev)))
2224                         return addr;
2225         }
2226
2227         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2228         info.length = len;
2229         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2230         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2231         info.align_mask = 0;
2232         info.align_offset = 0;
2233         addr = vm_unmapped_area(&info);
2234
2235         /*
2236          * A failed mmap() very likely causes application failure,
2237          * so fall back to the bottom-up function here. This scenario
2238          * can happen with large stack limits and large mmap()
2239          * allocations.
2240          */
2241         if (offset_in_page(addr)) {
2242                 VM_BUG_ON(addr != -ENOMEM);
2243                 info.flags = 0;
2244                 info.low_limit = TASK_UNMAPPED_BASE;
2245                 info.high_limit = mmap_end;
2246                 addr = vm_unmapped_area(&info);
2247         }
2248
2249         return addr;
2250 }
2251 #endif
2252
2253 unsigned long
2254 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2255                 unsigned long pgoff, unsigned long flags)
2256 {
2257         unsigned long (*get_area)(struct file *, unsigned long,
2258                                   unsigned long, unsigned long, unsigned long);
2259
2260         unsigned long error = arch_mmap_check(addr, len, flags);
2261         if (error)
2262                 return error;
2263
2264         /* Careful about overflows.. */
2265         if (len > TASK_SIZE)
2266                 return -ENOMEM;
2267
2268         get_area = current->mm->get_unmapped_area;
2269         if (file) {
2270                 if (file->f_op->get_unmapped_area)
2271                         get_area = file->f_op->get_unmapped_area;
2272         } else if (flags & MAP_SHARED) {
2273                 /*
2274                  * mmap_region() will call shmem_zero_setup() to create a file,
2275                  * so use shmem's get_unmapped_area in case it can be huge.
2276                  * do_mmap() will clear pgoff, so match alignment.
2277                  */
2278                 pgoff = 0;
2279                 get_area = shmem_get_unmapped_area;
2280         }
2281
2282         addr = get_area(file, addr, len, pgoff, flags);
2283         if (IS_ERR_VALUE(addr))
2284                 return addr;
2285
2286         if (addr > TASK_SIZE - len)
2287                 return -ENOMEM;
2288         if (offset_in_page(addr))
2289                 return -EINVAL;
2290
2291         error = security_mmap_addr(addr);
2292         return error ? error : addr;
2293 }
2294
2295 EXPORT_SYMBOL(get_unmapped_area);
2296
2297 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2298 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2299 {
2300         struct rb_node *rb_node;
2301         struct vm_area_struct *vma;
2302
2303         /* Check the cache first. */
2304         vma = vmacache_find(mm, addr);
2305         if (likely(vma))
2306                 return vma;
2307
2308         rb_node = mm->mm_rb.rb_node;
2309
2310         while (rb_node) {
2311                 struct vm_area_struct *tmp;
2312
2313                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2314
2315                 if (tmp->vm_end > addr) {
2316                         vma = tmp;
2317                         if (tmp->vm_start <= addr)
2318                                 break;
2319                         rb_node = rb_node->rb_left;
2320                 } else
2321                         rb_node = rb_node->rb_right;
2322         }
2323
2324         if (vma)
2325                 vmacache_update(addr, vma);
2326         return vma;
2327 }
2328
2329 EXPORT_SYMBOL(find_vma);
2330
2331 /*
2332  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2333  */
2334 struct vm_area_struct *
2335 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2336                         struct vm_area_struct **pprev)
2337 {
2338         struct vm_area_struct *vma;
2339
2340         vma = find_vma(mm, addr);
2341         if (vma) {
2342                 *pprev = vma->vm_prev;
2343         } else {
2344                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2345
2346                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2347         }
2348         return vma;
2349 }
2350
2351 /*
2352  * Verify that the stack growth is acceptable and
2353  * update accounting. This is shared with both the
2354  * grow-up and grow-down cases.
2355  */
2356 static int acct_stack_growth(struct vm_area_struct *vma,
2357                              unsigned long size, unsigned long grow)
2358 {
2359         struct mm_struct *mm = vma->vm_mm;
2360         unsigned long new_start;
2361
2362         /* address space limit tests */
2363         if (!may_expand_vm(mm, vma->vm_flags, grow))
2364                 return -ENOMEM;
2365
2366         /* Stack limit test */
2367         if (size > rlimit(RLIMIT_STACK))
2368                 return -ENOMEM;
2369
2370         /* mlock limit tests */
2371         if (vma->vm_flags & VM_LOCKED) {
2372                 unsigned long locked;
2373                 unsigned long limit;
2374                 locked = mm->locked_vm + grow;
2375                 limit = rlimit(RLIMIT_MEMLOCK);
2376                 limit >>= PAGE_SHIFT;
2377                 if (locked > limit && !capable(CAP_IPC_LOCK))
2378                         return -ENOMEM;
2379         }
2380
2381         /* Check to ensure the stack will not grow into a hugetlb-only region */
2382         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2383                         vma->vm_end - size;
2384         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2385                 return -EFAULT;
2386
2387         /*
2388          * Overcommit..  This must be the final test, as it will
2389          * update security statistics.
2390          */
2391         if (security_vm_enough_memory_mm(mm, grow))
2392                 return -ENOMEM;
2393
2394         return 0;
2395 }
2396
2397 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2398 /*
2399  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2400  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2401  */
2402 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2403 {
2404         struct mm_struct *mm = vma->vm_mm;
2405         struct vm_area_struct *next;
2406         unsigned long gap_addr;
2407         int error = 0;
2408
2409         if (!(vma->vm_flags & VM_GROWSUP))
2410                 return -EFAULT;
2411
2412         /* Guard against exceeding limits of the address space. */
2413         address &= PAGE_MASK;
2414         if (address >= (TASK_SIZE & PAGE_MASK))
2415                 return -ENOMEM;
2416         address += PAGE_SIZE;
2417
2418         /* Enforce stack_guard_gap */
2419         gap_addr = address + stack_guard_gap;
2420
2421         /* Guard against overflow */
2422         if (gap_addr < address || gap_addr > TASK_SIZE)
2423                 gap_addr = TASK_SIZE;
2424
2425         next = vma->vm_next;
2426         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2427                 if (!(next->vm_flags & VM_GROWSUP))
2428                         return -ENOMEM;
2429                 /* Check that both stack segments have the same anon_vma? */
2430         }
2431
2432         /* We must make sure the anon_vma is allocated. */
2433         if (unlikely(anon_vma_prepare(vma)))
2434                 return -ENOMEM;
2435
2436         /*
2437          * vma->vm_start/vm_end cannot change under us because the caller
2438          * is required to hold the mmap_lock in read mode.  We need the
2439          * anon_vma lock to serialize against concurrent expand_stacks.
2440          */
2441         anon_vma_lock_write(vma->anon_vma);
2442
2443         /* Somebody else might have raced and expanded it already */
2444         if (address > vma->vm_end) {
2445                 unsigned long size, grow;
2446
2447                 size = address - vma->vm_start;
2448                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2449
2450                 error = -ENOMEM;
2451                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2452                         error = acct_stack_growth(vma, size, grow);
2453                         if (!error) {
2454                                 /*
2455                                  * vma_gap_update() doesn't support concurrent
2456                                  * updates, but we only hold a shared mmap_lock
2457                                  * lock here, so we need to protect against
2458                                  * concurrent vma expansions.
2459                                  * anon_vma_lock_write() doesn't help here, as
2460                                  * we don't guarantee that all growable vmas
2461                                  * in a mm share the same root anon vma.
2462                                  * So, we reuse mm->page_table_lock to guard
2463                                  * against concurrent vma expansions.
2464                                  */
2465                                 spin_lock(&mm->page_table_lock);
2466                                 if (vma->vm_flags & VM_LOCKED)
2467                                         mm->locked_vm += grow;
2468                                 vm_stat_account(mm, vma->vm_flags, grow);
2469                                 anon_vma_interval_tree_pre_update_vma(vma);
2470                                 vma->vm_end = address;
2471                                 anon_vma_interval_tree_post_update_vma(vma);
2472                                 if (vma->vm_next)
2473                                         vma_gap_update(vma->vm_next);
2474                                 else
2475                                         mm->highest_vm_end = vm_end_gap(vma);
2476                                 spin_unlock(&mm->page_table_lock);
2477
2478                                 perf_event_mmap(vma);
2479                         }
2480                 }
2481         }
2482         anon_vma_unlock_write(vma->anon_vma);
2483         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2484         validate_mm(mm);
2485         return error;
2486 }
2487 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2488
2489 /*
2490  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2491  */
2492 int expand_downwards(struct vm_area_struct *vma,
2493                                    unsigned long address)
2494 {
2495         struct mm_struct *mm = vma->vm_mm;
2496         struct vm_area_struct *prev;
2497         int error = 0;
2498
2499         address &= PAGE_MASK;
2500         if (address < mmap_min_addr)
2501                 return -EPERM;
2502
2503         /* Enforce stack_guard_gap */
2504         prev = vma->vm_prev;
2505         /* Check that both stack segments have the same anon_vma? */
2506         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2507                         vma_is_accessible(prev)) {
2508                 if (address - prev->vm_end < stack_guard_gap)
2509                         return -ENOMEM;
2510         }
2511
2512         /* We must make sure the anon_vma is allocated. */
2513         if (unlikely(anon_vma_prepare(vma)))
2514                 return -ENOMEM;
2515
2516         /*
2517          * vma->vm_start/vm_end cannot change under us because the caller
2518          * is required to hold the mmap_lock in read mode.  We need the
2519          * anon_vma lock to serialize against concurrent expand_stacks.
2520          */
2521         anon_vma_lock_write(vma->anon_vma);
2522
2523         /* Somebody else might have raced and expanded it already */
2524         if (address < vma->vm_start) {
2525                 unsigned long size, grow;
2526
2527                 size = vma->vm_end - address;
2528                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2529
2530                 error = -ENOMEM;
2531                 if (grow <= vma->vm_pgoff) {
2532                         error = acct_stack_growth(vma, size, grow);
2533                         if (!error) {
2534                                 /*
2535                                  * vma_gap_update() doesn't support concurrent
2536                                  * updates, but we only hold a shared mmap_lock
2537                                  * lock here, so we need to protect against
2538                                  * concurrent vma expansions.
2539                                  * anon_vma_lock_write() doesn't help here, as
2540                                  * we don't guarantee that all growable vmas
2541                                  * in a mm share the same root anon vma.
2542                                  * So, we reuse mm->page_table_lock to guard
2543                                  * against concurrent vma expansions.
2544                                  */
2545                                 spin_lock(&mm->page_table_lock);
2546                                 if (vma->vm_flags & VM_LOCKED)
2547                                         mm->locked_vm += grow;
2548                                 vm_stat_account(mm, vma->vm_flags, grow);
2549                                 anon_vma_interval_tree_pre_update_vma(vma);
2550                                 vma->vm_start = address;
2551                                 vma->vm_pgoff -= grow;
2552                                 anon_vma_interval_tree_post_update_vma(vma);
2553                                 vma_gap_update(vma);
2554                                 spin_unlock(&mm->page_table_lock);
2555
2556                                 perf_event_mmap(vma);
2557                         }
2558                 }
2559         }
2560         anon_vma_unlock_write(vma->anon_vma);
2561         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2562         validate_mm(mm);
2563         return error;
2564 }
2565
2566 /* enforced gap between the expanding stack and other mappings. */
2567 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2568
2569 static int __init cmdline_parse_stack_guard_gap(char *p)
2570 {
2571         unsigned long val;
2572         char *endptr;
2573
2574         val = simple_strtoul(p, &endptr, 10);
2575         if (!*endptr)
2576                 stack_guard_gap = val << PAGE_SHIFT;
2577
2578         return 1;
2579 }
2580 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2581
2582 #ifdef CONFIG_STACK_GROWSUP
2583 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2584 {
2585         return expand_upwards(vma, address);
2586 }
2587
2588 struct vm_area_struct *
2589 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2590 {
2591         struct vm_area_struct *vma, *prev;
2592
2593         addr &= PAGE_MASK;
2594         vma = find_vma_prev(mm, addr, &prev);
2595         if (vma && (vma->vm_start <= addr))
2596                 return vma;
2597         /* don't alter vm_end if the coredump is running */
2598         if (!prev || expand_stack(prev, addr))
2599                 return NULL;
2600         if (prev->vm_flags & VM_LOCKED)
2601                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2602         return prev;
2603 }
2604 #else
2605 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2606 {
2607         return expand_downwards(vma, address);
2608 }
2609
2610 struct vm_area_struct *
2611 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2612 {
2613         struct vm_area_struct *vma;
2614         unsigned long start;
2615
2616         addr &= PAGE_MASK;
2617         vma = find_vma(mm, addr);
2618         if (!vma)
2619                 return NULL;
2620         if (vma->vm_start <= addr)
2621                 return vma;
2622         if (!(vma->vm_flags & VM_GROWSDOWN))
2623                 return NULL;
2624         start = vma->vm_start;
2625         if (expand_stack(vma, addr))
2626                 return NULL;
2627         if (vma->vm_flags & VM_LOCKED)
2628                 populate_vma_page_range(vma, addr, start, NULL);
2629         return vma;
2630 }
2631 #endif
2632
2633 EXPORT_SYMBOL_GPL(find_extend_vma);
2634
2635 /*
2636  * Ok - we have the memory areas we should free on the vma list,
2637  * so release them, and do the vma updates.
2638  *
2639  * Called with the mm semaphore held.
2640  */
2641 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2642 {
2643         unsigned long nr_accounted = 0;
2644
2645         /* Update high watermark before we lower total_vm */
2646         update_hiwater_vm(mm);
2647         do {
2648                 long nrpages = vma_pages(vma);
2649
2650                 if (vma->vm_flags & VM_ACCOUNT)
2651                         nr_accounted += nrpages;
2652                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2653                 vma = remove_vma(vma);
2654         } while (vma);
2655         vm_unacct_memory(nr_accounted);
2656         validate_mm(mm);
2657 }
2658
2659 /*
2660  * Get rid of page table information in the indicated region.
2661  *
2662  * Called with the mm semaphore held.
2663  */
2664 static void unmap_region(struct mm_struct *mm,
2665                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2666                 unsigned long start, unsigned long end)
2667 {
2668         struct vm_area_struct *next = vma_next(mm, prev);
2669         struct mmu_gather tlb;
2670         struct vm_area_struct *cur_vma;
2671
2672         lru_add_drain();
2673         tlb_gather_mmu(&tlb, mm, start, end);
2674         update_hiwater_rss(mm);
2675         unmap_vmas(&tlb, vma, start, end);
2676
2677         /*
2678          * Ensure we have no stale TLB entries by the time this mapping is
2679          * removed from the rmap.
2680          * Note that we don't have to worry about nested flushes here because
2681          * we're holding the mm semaphore for removing the mapping - so any
2682          * concurrent flush in this region has to be coming through the rmap,
2683          * and we synchronize against that using the rmap lock.
2684          */
2685         for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2686                 if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2687                         tlb_flush_mmu(&tlb);
2688                         break;
2689                 }
2690         }
2691
2692         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2693                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2694         tlb_finish_mmu(&tlb, start, end);
2695 }
2696
2697 /*
2698  * Create a list of vma's touched by the unmap, removing them from the mm's
2699  * vma list as we go..
2700  */
2701 static bool
2702 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2703         struct vm_area_struct *prev, unsigned long end)
2704 {
2705         struct vm_area_struct **insertion_point;
2706         struct vm_area_struct *tail_vma = NULL;
2707
2708         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2709         vma->vm_prev = NULL;
2710         do {
2711                 vma_rb_erase(vma, &mm->mm_rb);
2712                 mm->map_count--;
2713                 tail_vma = vma;
2714                 vma = vma->vm_next;
2715         } while (vma && vma->vm_start < end);
2716         *insertion_point = vma;
2717         if (vma) {
2718                 vma->vm_prev = prev;
2719                 vma_gap_update(vma);
2720         } else
2721                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2722         tail_vma->vm_next = NULL;
2723
2724         /* Kill the cache */
2725         vmacache_invalidate(mm);
2726
2727         /*
2728          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2729          * VM_GROWSUP VMA. Such VMAs can change their size under
2730          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2731          */
2732         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2733                 return false;
2734         if (prev && (prev->vm_flags & VM_GROWSUP))
2735                 return false;
2736         return true;
2737 }
2738
2739 /*
2740  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2741  * has already been checked or doesn't make sense to fail.
2742  */
2743 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2744                 unsigned long addr, int new_below)
2745 {
2746         struct vm_area_struct *new;
2747         int err;
2748
2749         if (vma->vm_ops && vma->vm_ops->split) {
2750                 err = vma->vm_ops->split(vma, addr);
2751                 if (err)
2752                         return err;
2753         }
2754
2755         new = vm_area_dup(vma);
2756         if (!new)
2757                 return -ENOMEM;
2758
2759         if (new_below)
2760                 new->vm_end = addr;
2761         else {
2762                 new->vm_start = addr;
2763                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2764         }
2765
2766         err = vma_dup_policy(vma, new);
2767         if (err)
2768                 goto out_free_vma;
2769
2770         err = anon_vma_clone(new, vma);
2771         if (err)
2772                 goto out_free_mpol;
2773
2774         if (new->vm_file)
2775                 get_file(new->vm_file);
2776
2777         if (new->vm_ops && new->vm_ops->open)
2778                 new->vm_ops->open(new);
2779
2780         if (new_below)
2781                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2782                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2783         else
2784                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2785
2786         /* Success. */
2787         if (!err)
2788                 return 0;
2789
2790         /* Clean everything up if vma_adjust failed. */
2791         if (new->vm_ops && new->vm_ops->close)
2792                 new->vm_ops->close(new);
2793         if (new->vm_file)
2794                 fput(new->vm_file);
2795         unlink_anon_vmas(new);
2796  out_free_mpol:
2797         mpol_put(vma_policy(new));
2798  out_free_vma:
2799         vm_area_free(new);
2800         return err;
2801 }
2802
2803 /*
2804  * Split a vma into two pieces at address 'addr', a new vma is allocated
2805  * either for the first part or the tail.
2806  */
2807 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2808               unsigned long addr, int new_below)
2809 {
2810         if (mm->map_count >= sysctl_max_map_count)
2811                 return -ENOMEM;
2812
2813         return __split_vma(mm, vma, addr, new_below);
2814 }
2815
2816 /* Munmap is split into 2 main parts -- this part which finds
2817  * what needs doing, and the areas themselves, which do the
2818  * work.  This now handles partial unmappings.
2819  * Jeremy Fitzhardinge <jeremy@goop.org>
2820  */
2821 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2822                 struct list_head *uf, bool downgrade)
2823 {
2824         unsigned long end;
2825         struct vm_area_struct *vma, *prev, *last;
2826
2827         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2828                 return -EINVAL;
2829
2830         len = PAGE_ALIGN(len);
2831         end = start + len;
2832         if (len == 0)
2833                 return -EINVAL;
2834
2835         /*
2836          * arch_unmap() might do unmaps itself.  It must be called
2837          * and finish any rbtree manipulation before this code
2838          * runs and also starts to manipulate the rbtree.
2839          */
2840         arch_unmap(mm, start, end);
2841
2842         /* Find the first overlapping VMA */
2843         vma = find_vma(mm, start);
2844         if (!vma)
2845                 return 0;
2846         prev = vma->vm_prev;
2847         /* we have  start < vma->vm_end  */
2848
2849         /* if it doesn't overlap, we have nothing.. */
2850         if (vma->vm_start >= end)
2851                 return 0;
2852
2853         /*
2854          * If we need to split any vma, do it now to save pain later.
2855          *
2856          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2857          * unmapped vm_area_struct will remain in use: so lower split_vma
2858          * places tmp vma above, and higher split_vma places tmp vma below.
2859          */
2860         if (start > vma->vm_start) {
2861                 int error;
2862
2863                 /*
2864                  * Make sure that map_count on return from munmap() will
2865                  * not exceed its limit; but let map_count go just above
2866                  * its limit temporarily, to help free resources as expected.
2867                  */
2868                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2869                         return -ENOMEM;
2870
2871                 error = __split_vma(mm, vma, start, 0);
2872                 if (error)
2873                         return error;
2874                 prev = vma;
2875         }
2876
2877         /* Does it split the last one? */
2878         last = find_vma(mm, end);
2879         if (last && end > last->vm_start) {
2880                 int error = __split_vma(mm, last, end, 1);
2881                 if (error)
2882                         return error;
2883         }
2884         vma = vma_next(mm, prev);
2885
2886         if (unlikely(uf)) {
2887                 /*
2888                  * If userfaultfd_unmap_prep returns an error the vmas
2889                  * will remain splitted, but userland will get a
2890                  * highly unexpected error anyway. This is no
2891                  * different than the case where the first of the two
2892                  * __split_vma fails, but we don't undo the first
2893                  * split, despite we could. This is unlikely enough
2894                  * failure that it's not worth optimizing it for.
2895                  */
2896                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2897                 if (error)
2898                         return error;
2899         }
2900
2901         /*
2902          * unlock any mlock()ed ranges before detaching vmas
2903          */
2904         if (mm->locked_vm) {
2905                 struct vm_area_struct *tmp = vma;
2906                 while (tmp && tmp->vm_start < end) {
2907                         if (tmp->vm_flags & VM_LOCKED) {
2908                                 mm->locked_vm -= vma_pages(tmp);
2909                                 munlock_vma_pages_all(tmp);
2910                         }
2911
2912                         tmp = tmp->vm_next;
2913                 }
2914         }
2915
2916         /* Detach vmas from rbtree */
2917         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2918                 downgrade = false;
2919
2920         if (downgrade)
2921                 mmap_write_downgrade(mm);
2922
2923         unmap_region(mm, vma, prev, start, end);
2924
2925         /* Fix up all other VM information */
2926         remove_vma_list(mm, vma);
2927
2928         return downgrade ? 1 : 0;
2929 }
2930
2931 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2932               struct list_head *uf)
2933 {
2934         return __do_munmap(mm, start, len, uf, false);
2935 }
2936
2937 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2938 {
2939         int ret;
2940         struct mm_struct *mm = current->mm;
2941         LIST_HEAD(uf);
2942
2943         if (mmap_write_lock_killable(mm))
2944                 return -EINTR;
2945
2946         ret = __do_munmap(mm, start, len, &uf, downgrade);
2947         /*
2948          * Returning 1 indicates mmap_lock is downgraded.
2949          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2950          * it to 0 before return.
2951          */
2952         if (ret == 1) {
2953                 mmap_read_unlock(mm);
2954                 ret = 0;
2955         } else
2956                 mmap_write_unlock(mm);
2957
2958         userfaultfd_unmap_complete(mm, &uf);
2959         return ret;
2960 }
2961
2962 int vm_munmap(unsigned long start, size_t len)
2963 {
2964         return __vm_munmap(start, len, false);
2965 }
2966 EXPORT_SYMBOL(vm_munmap);
2967
2968 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2969 {
2970         addr = untagged_addr(addr);
2971         profile_munmap(addr);
2972         return __vm_munmap(addr, len, true);
2973 }
2974
2975
2976 /*
2977  * Emulation of deprecated remap_file_pages() syscall.
2978  */
2979 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2980                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2981 {
2982
2983         struct mm_struct *mm = current->mm;
2984         struct vm_area_struct *vma;
2985         unsigned long populate = 0;
2986         unsigned long ret = -EINVAL;
2987         struct file *file;
2988
2989         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2990                      current->comm, current->pid);
2991
2992         if (prot)
2993                 return ret;
2994         start = start & PAGE_MASK;
2995         size = size & PAGE_MASK;
2996
2997         if (start + size <= start)
2998                 return ret;
2999
3000         /* Does pgoff wrap? */
3001         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3002                 return ret;
3003
3004         if (mmap_write_lock_killable(mm))
3005                 return -EINTR;
3006
3007         vma = find_vma(mm, start);
3008
3009         if (!vma || !(vma->vm_flags & VM_SHARED))
3010                 goto out;
3011
3012         if (start < vma->vm_start)
3013                 goto out;
3014
3015         if (start + size > vma->vm_end) {
3016                 struct vm_area_struct *next;
3017
3018                 for (next = vma->vm_next; next; next = next->vm_next) {
3019                         /* hole between vmas ? */
3020                         if (next->vm_start != next->vm_prev->vm_end)
3021                                 goto out;
3022
3023                         if (next->vm_file != vma->vm_file)
3024                                 goto out;
3025
3026                         if (next->vm_flags != vma->vm_flags)
3027                                 goto out;
3028
3029                         if (start + size <= next->vm_end)
3030                                 break;
3031                 }
3032
3033                 if (!next)
3034                         goto out;
3035         }
3036
3037         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3038         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3039         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3040
3041         flags &= MAP_NONBLOCK;
3042         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3043         if (vma->vm_flags & VM_LOCKED) {
3044                 struct vm_area_struct *tmp;
3045                 flags |= MAP_LOCKED;
3046
3047                 /* drop PG_Mlocked flag for over-mapped range */
3048                 for (tmp = vma; tmp->vm_start >= start + size;
3049                                 tmp = tmp->vm_next) {
3050                         /*
3051                          * Split pmd and munlock page on the border
3052                          * of the range.
3053                          */
3054                         vma_adjust_trans_huge(tmp, start, start + size, 0);
3055
3056                         munlock_vma_pages_range(tmp,
3057                                         max(tmp->vm_start, start),
3058                                         min(tmp->vm_end, start + size));
3059                 }
3060         }
3061
3062         file = get_file(vma->vm_file);
3063         ret = do_mmap(vma->vm_file, start, size,
3064                         prot, flags, pgoff, &populate, NULL);
3065         fput(file);
3066 out:
3067         mmap_write_unlock(mm);
3068         if (populate)
3069                 mm_populate(ret, populate);
3070         if (!IS_ERR_VALUE(ret))
3071                 ret = 0;
3072         return ret;
3073 }
3074
3075 /*
3076  *  this is really a simplified "do_mmap".  it only handles
3077  *  anonymous maps.  eventually we may be able to do some
3078  *  brk-specific accounting here.
3079  */
3080 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3081 {
3082         struct mm_struct *mm = current->mm;
3083         struct vm_area_struct *vma, *prev;
3084         struct rb_node **rb_link, *rb_parent;
3085         pgoff_t pgoff = addr >> PAGE_SHIFT;
3086         int error;
3087         unsigned long mapped_addr;
3088
3089         /* Until we need other flags, refuse anything except VM_EXEC. */
3090         if ((flags & (~VM_EXEC)) != 0)
3091                 return -EINVAL;
3092         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3093
3094         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3095         if (IS_ERR_VALUE(mapped_addr))
3096                 return mapped_addr;
3097
3098         error = mlock_future_check(mm, mm->def_flags, len);
3099         if (error)
3100                 return error;
3101
3102         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3103         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3104                 return -ENOMEM;
3105
3106         /* Check against address space limits *after* clearing old maps... */
3107         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3108                 return -ENOMEM;
3109
3110         if (mm->map_count > sysctl_max_map_count)
3111                 return -ENOMEM;
3112
3113         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3114                 return -ENOMEM;
3115
3116         /* Can we just expand an old private anonymous mapping? */
3117         vma = vma_merge(mm, prev, addr, addr + len, flags,
3118                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3119         if (vma)
3120                 goto out;
3121
3122         /*
3123          * create a vma struct for an anonymous mapping
3124          */
3125         vma = vm_area_alloc(mm);
3126         if (!vma) {
3127                 vm_unacct_memory(len >> PAGE_SHIFT);
3128                 return -ENOMEM;
3129         }
3130
3131         vma_set_anonymous(vma);
3132         vma->vm_start = addr;
3133         vma->vm_end = addr + len;
3134         vma->vm_pgoff = pgoff;
3135         vma->vm_flags = flags;
3136         vma->vm_page_prot = vm_get_page_prot(flags);
3137         vma_link(mm, vma, prev, rb_link, rb_parent);
3138 out:
3139         perf_event_mmap(vma);
3140         mm->total_vm += len >> PAGE_SHIFT;
3141         mm->data_vm += len >> PAGE_SHIFT;
3142         if (flags & VM_LOCKED)
3143                 mm->locked_vm += (len >> PAGE_SHIFT);
3144         vma->vm_flags |= VM_SOFTDIRTY;
3145         return 0;
3146 }
3147
3148 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3149 {
3150         struct mm_struct *mm = current->mm;
3151         unsigned long len;
3152         int ret;
3153         bool populate;
3154         LIST_HEAD(uf);
3155
3156         len = PAGE_ALIGN(request);
3157         if (len < request)
3158                 return -ENOMEM;
3159         if (!len)
3160                 return 0;
3161
3162         if (mmap_write_lock_killable(mm))
3163                 return -EINTR;
3164
3165         ret = do_brk_flags(addr, len, flags, &uf);
3166         populate = ((mm->def_flags & VM_LOCKED) != 0);
3167         mmap_write_unlock(mm);
3168         userfaultfd_unmap_complete(mm, &uf);
3169         if (populate && !ret)
3170                 mm_populate(addr, len);
3171         return ret;
3172 }
3173 EXPORT_SYMBOL(vm_brk_flags);
3174
3175 int vm_brk(unsigned long addr, unsigned long len)
3176 {
3177         return vm_brk_flags(addr, len, 0);
3178 }
3179 EXPORT_SYMBOL(vm_brk);
3180
3181 /* Release all mmaps. */
3182 void exit_mmap(struct mm_struct *mm)
3183 {
3184         struct mmu_gather tlb;
3185         struct vm_area_struct *vma;
3186         unsigned long nr_accounted = 0;
3187
3188         /* mm's last user has gone, and its about to be pulled down */
3189         mmu_notifier_release(mm);
3190
3191         if (unlikely(mm_is_oom_victim(mm))) {
3192                 /*
3193                  * Manually reap the mm to free as much memory as possible.
3194                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3195                  * this mm from further consideration.  Taking mm->mmap_lock for
3196                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3197                  * reaper will not run on this mm again after mmap_lock is
3198                  * dropped.
3199                  *
3200                  * Nothing can be holding mm->mmap_lock here and the above call
3201                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3202                  * __oom_reap_task_mm() will not block.
3203                  *
3204                  * This needs to be done before calling munlock_vma_pages_all(),
3205                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3206                  * reliably test it.
3207                  */
3208                 (void)__oom_reap_task_mm(mm);
3209
3210                 set_bit(MMF_OOM_SKIP, &mm->flags);
3211                 mmap_write_lock(mm);
3212                 mmap_write_unlock(mm);
3213         }
3214
3215         if (mm->locked_vm) {
3216                 vma = mm->mmap;
3217                 while (vma) {
3218                         if (vma->vm_flags & VM_LOCKED)
3219                                 munlock_vma_pages_all(vma);
3220                         vma = vma->vm_next;
3221                 }
3222         }
3223
3224         arch_exit_mmap(mm);
3225
3226         vma = mm->mmap;
3227         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3228                 return;
3229
3230         lru_add_drain();
3231         flush_cache_mm(mm);
3232         tlb_gather_mmu(&tlb, mm, 0, -1);
3233         /* update_hiwater_rss(mm) here? but nobody should be looking */
3234         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3235         unmap_vmas(&tlb, vma, 0, -1);
3236         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3237         tlb_finish_mmu(&tlb, 0, -1);
3238
3239         /*
3240          * Walk the list again, actually closing and freeing it,
3241          * with preemption enabled, without holding any MM locks.
3242          */
3243         while (vma) {
3244                 if (vma->vm_flags & VM_ACCOUNT)
3245                         nr_accounted += vma_pages(vma);
3246                 vma = remove_vma(vma);
3247                 cond_resched();
3248         }
3249         vm_unacct_memory(nr_accounted);
3250 }
3251
3252 /* Insert vm structure into process list sorted by address
3253  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3254  * then i_mmap_rwsem is taken here.
3255  */
3256 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3257 {
3258         struct vm_area_struct *prev;
3259         struct rb_node **rb_link, *rb_parent;
3260
3261         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3262                            &prev, &rb_link, &rb_parent))
3263                 return -ENOMEM;
3264         if ((vma->vm_flags & VM_ACCOUNT) &&
3265              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3266                 return -ENOMEM;
3267
3268         /*
3269          * The vm_pgoff of a purely anonymous vma should be irrelevant
3270          * until its first write fault, when page's anon_vma and index
3271          * are set.  But now set the vm_pgoff it will almost certainly
3272          * end up with (unless mremap moves it elsewhere before that
3273          * first wfault), so /proc/pid/maps tells a consistent story.
3274          *
3275          * By setting it to reflect the virtual start address of the
3276          * vma, merges and splits can happen in a seamless way, just
3277          * using the existing file pgoff checks and manipulations.
3278          * Similarly in do_mmap and in do_brk_flags.
3279          */
3280         if (vma_is_anonymous(vma)) {
3281                 BUG_ON(vma->anon_vma);
3282                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3283         }
3284
3285         vma_link(mm, vma, prev, rb_link, rb_parent);
3286         return 0;
3287 }
3288
3289 /*
3290  * Copy the vma structure to a new location in the same mm,
3291  * prior to moving page table entries, to effect an mremap move.
3292  */
3293 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3294         unsigned long addr, unsigned long len, pgoff_t pgoff,
3295         bool *need_rmap_locks)
3296 {
3297         struct vm_area_struct *vma = *vmap;
3298         unsigned long vma_start = vma->vm_start;
3299         struct mm_struct *mm = vma->vm_mm;
3300         struct vm_area_struct *new_vma, *prev;
3301         struct rb_node **rb_link, *rb_parent;
3302         bool faulted_in_anon_vma = true;
3303
3304         /*
3305          * If anonymous vma has not yet been faulted, update new pgoff
3306          * to match new location, to increase its chance of merging.
3307          */
3308         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3309                 pgoff = addr >> PAGE_SHIFT;
3310                 faulted_in_anon_vma = false;
3311         }
3312
3313         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3314                 return NULL;    /* should never get here */
3315         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3316                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3317                             vma->vm_userfaultfd_ctx);
3318         if (new_vma) {
3319                 /*
3320                  * Source vma may have been merged into new_vma
3321                  */
3322                 if (unlikely(vma_start >= new_vma->vm_start &&
3323                              vma_start < new_vma->vm_end)) {
3324                         /*
3325                          * The only way we can get a vma_merge with
3326                          * self during an mremap is if the vma hasn't
3327                          * been faulted in yet and we were allowed to
3328                          * reset the dst vma->vm_pgoff to the
3329                          * destination address of the mremap to allow
3330                          * the merge to happen. mremap must change the
3331                          * vm_pgoff linearity between src and dst vmas
3332                          * (in turn preventing a vma_merge) to be
3333                          * safe. It is only safe to keep the vm_pgoff
3334                          * linear if there are no pages mapped yet.
3335                          */
3336                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3337                         *vmap = vma = new_vma;
3338                 }
3339                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3340         } else {
3341                 new_vma = vm_area_dup(vma);
3342                 if (!new_vma)
3343                         goto out;
3344                 new_vma->vm_start = addr;
3345                 new_vma->vm_end = addr + len;
3346                 new_vma->vm_pgoff = pgoff;
3347                 if (vma_dup_policy(vma, new_vma))
3348                         goto out_free_vma;
3349                 if (anon_vma_clone(new_vma, vma))
3350                         goto out_free_mempol;
3351                 if (new_vma->vm_file)
3352                         get_file(new_vma->vm_file);
3353                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3354                         new_vma->vm_ops->open(new_vma);
3355                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3356                 *need_rmap_locks = false;
3357         }
3358         return new_vma;
3359
3360 out_free_mempol:
3361         mpol_put(vma_policy(new_vma));
3362 out_free_vma:
3363         vm_area_free(new_vma);
3364 out:
3365         return NULL;
3366 }
3367
3368 /*
3369  * Return true if the calling process may expand its vm space by the passed
3370  * number of pages
3371  */
3372 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3373 {
3374         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3375                 return false;
3376
3377         if (is_data_mapping(flags) &&
3378             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3379                 /* Workaround for Valgrind */
3380                 if (rlimit(RLIMIT_DATA) == 0 &&
3381                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3382                         return true;
3383
3384                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3385                              current->comm, current->pid,
3386                              (mm->data_vm + npages) << PAGE_SHIFT,
3387                              rlimit(RLIMIT_DATA),
3388                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3389
3390                 if (!ignore_rlimit_data)
3391                         return false;
3392         }
3393
3394         return true;
3395 }
3396
3397 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3398 {
3399         mm->total_vm += npages;
3400
3401         if (is_exec_mapping(flags))
3402                 mm->exec_vm += npages;
3403         else if (is_stack_mapping(flags))
3404                 mm->stack_vm += npages;
3405         else if (is_data_mapping(flags))
3406                 mm->data_vm += npages;
3407 }
3408
3409 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3410
3411 /*
3412  * Having a close hook prevents vma merging regardless of flags.
3413  */
3414 static void special_mapping_close(struct vm_area_struct *vma)
3415 {
3416 }
3417
3418 static const char *special_mapping_name(struct vm_area_struct *vma)
3419 {
3420         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3421 }
3422
3423 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3424 {
3425         struct vm_special_mapping *sm = new_vma->vm_private_data;
3426
3427         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3428                 return -EFAULT;
3429
3430         if (sm->mremap)
3431                 return sm->mremap(sm, new_vma);
3432
3433         return 0;
3434 }
3435
3436 static const struct vm_operations_struct special_mapping_vmops = {
3437         .close = special_mapping_close,
3438         .fault = special_mapping_fault,
3439         .mremap = special_mapping_mremap,
3440         .name = special_mapping_name,
3441         /* vDSO code relies that VVAR can't be accessed remotely */
3442         .access = NULL,
3443 };
3444
3445 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3446         .close = special_mapping_close,
3447         .fault = special_mapping_fault,
3448 };
3449
3450 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3451 {
3452         struct vm_area_struct *vma = vmf->vma;
3453         pgoff_t pgoff;
3454         struct page **pages;
3455
3456         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3457                 pages = vma->vm_private_data;
3458         } else {
3459                 struct vm_special_mapping *sm = vma->vm_private_data;
3460
3461                 if (sm->fault)
3462                         return sm->fault(sm, vmf->vma, vmf);
3463
3464                 pages = sm->pages;
3465         }
3466
3467         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3468                 pgoff--;
3469
3470         if (*pages) {
3471                 struct page *page = *pages;
3472                 get_page(page);
3473                 vmf->page = page;
3474                 return 0;
3475         }
3476
3477         return VM_FAULT_SIGBUS;
3478 }
3479
3480 static struct vm_area_struct *__install_special_mapping(
3481         struct mm_struct *mm,
3482         unsigned long addr, unsigned long len,
3483         unsigned long vm_flags, void *priv,
3484         const struct vm_operations_struct *ops)
3485 {
3486         int ret;
3487         struct vm_area_struct *vma;
3488
3489         vma = vm_area_alloc(mm);
3490         if (unlikely(vma == NULL))
3491                 return ERR_PTR(-ENOMEM);
3492
3493         vma->vm_start = addr;
3494         vma->vm_end = addr + len;
3495
3496         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3497         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3498
3499         vma->vm_ops = ops;
3500         vma->vm_private_data = priv;
3501
3502         ret = insert_vm_struct(mm, vma);
3503         if (ret)
3504                 goto out;
3505
3506         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3507
3508         perf_event_mmap(vma);
3509
3510         return vma;
3511
3512 out:
3513         vm_area_free(vma);
3514         return ERR_PTR(ret);
3515 }
3516
3517 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3518         const struct vm_special_mapping *sm)
3519 {
3520         return vma->vm_private_data == sm &&
3521                 (vma->vm_ops == &special_mapping_vmops ||
3522                  vma->vm_ops == &legacy_special_mapping_vmops);
3523 }
3524
3525 /*
3526  * Called with mm->mmap_lock held for writing.
3527  * Insert a new vma covering the given region, with the given flags.
3528  * Its pages are supplied by the given array of struct page *.
3529  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3530  * The region past the last page supplied will always produce SIGBUS.
3531  * The array pointer and the pages it points to are assumed to stay alive
3532  * for as long as this mapping might exist.
3533  */
3534 struct vm_area_struct *_install_special_mapping(
3535         struct mm_struct *mm,
3536         unsigned long addr, unsigned long len,
3537         unsigned long vm_flags, const struct vm_special_mapping *spec)
3538 {
3539         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3540                                         &special_mapping_vmops);
3541 }
3542
3543 int install_special_mapping(struct mm_struct *mm,
3544                             unsigned long addr, unsigned long len,
3545                             unsigned long vm_flags, struct page **pages)
3546 {
3547         struct vm_area_struct *vma = __install_special_mapping(
3548                 mm, addr, len, vm_flags, (void *)pages,
3549                 &legacy_special_mapping_vmops);
3550
3551         return PTR_ERR_OR_ZERO(vma);
3552 }
3553
3554 static DEFINE_MUTEX(mm_all_locks_mutex);
3555
3556 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3557 {
3558         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3559                 /*
3560                  * The LSB of head.next can't change from under us
3561                  * because we hold the mm_all_locks_mutex.
3562                  */
3563                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3564                 /*
3565                  * We can safely modify head.next after taking the
3566                  * anon_vma->root->rwsem. If some other vma in this mm shares
3567                  * the same anon_vma we won't take it again.
3568                  *
3569                  * No need of atomic instructions here, head.next
3570                  * can't change from under us thanks to the
3571                  * anon_vma->root->rwsem.
3572                  */
3573                 if (__test_and_set_bit(0, (unsigned long *)
3574                                        &anon_vma->root->rb_root.rb_root.rb_node))
3575                         BUG();
3576         }
3577 }
3578
3579 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3580 {
3581         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3582                 /*
3583                  * AS_MM_ALL_LOCKS can't change from under us because
3584                  * we hold the mm_all_locks_mutex.
3585                  *
3586                  * Operations on ->flags have to be atomic because
3587                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3588                  * mm_all_locks_mutex, there may be other cpus
3589                  * changing other bitflags in parallel to us.
3590                  */
3591                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3592                         BUG();
3593                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3594         }
3595 }
3596
3597 /*
3598  * This operation locks against the VM for all pte/vma/mm related
3599  * operations that could ever happen on a certain mm. This includes
3600  * vmtruncate, try_to_unmap, and all page faults.
3601  *
3602  * The caller must take the mmap_lock in write mode before calling
3603  * mm_take_all_locks(). The caller isn't allowed to release the
3604  * mmap_lock until mm_drop_all_locks() returns.
3605  *
3606  * mmap_lock in write mode is required in order to block all operations
3607  * that could modify pagetables and free pages without need of
3608  * altering the vma layout. It's also needed in write mode to avoid new
3609  * anon_vmas to be associated with existing vmas.
3610  *
3611  * A single task can't take more than one mm_take_all_locks() in a row
3612  * or it would deadlock.
3613  *
3614  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3615  * mapping->flags avoid to take the same lock twice, if more than one
3616  * vma in this mm is backed by the same anon_vma or address_space.
3617  *
3618  * We take locks in following order, accordingly to comment at beginning
3619  * of mm/rmap.c:
3620  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3621  *     hugetlb mapping);
3622  *   - all i_mmap_rwsem locks;
3623  *   - all anon_vma->rwseml
3624  *
3625  * We can take all locks within these types randomly because the VM code
3626  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3627  * mm_all_locks_mutex.
3628  *
3629  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3630  * that may have to take thousand of locks.
3631  *
3632  * mm_take_all_locks() can fail if it's interrupted by signals.
3633  */
3634 int mm_take_all_locks(struct mm_struct *mm)
3635 {
3636         struct vm_area_struct *vma;
3637         struct anon_vma_chain *avc;
3638
3639         BUG_ON(mmap_read_trylock(mm));
3640
3641         mutex_lock(&mm_all_locks_mutex);
3642
3643         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3644                 if (signal_pending(current))
3645                         goto out_unlock;
3646                 if (vma->vm_file && vma->vm_file->f_mapping &&
3647                                 is_vm_hugetlb_page(vma))
3648                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3649         }
3650
3651         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3652                 if (signal_pending(current))
3653                         goto out_unlock;
3654                 if (vma->vm_file && vma->vm_file->f_mapping &&
3655                                 !is_vm_hugetlb_page(vma))
3656                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3657         }
3658
3659         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3660                 if (signal_pending(current))
3661                         goto out_unlock;
3662                 if (vma->anon_vma)
3663                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3664                                 vm_lock_anon_vma(mm, avc->anon_vma);
3665         }
3666
3667         return 0;
3668
3669 out_unlock:
3670         mm_drop_all_locks(mm);
3671         return -EINTR;
3672 }
3673
3674 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3675 {
3676         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3677                 /*
3678                  * The LSB of head.next can't change to 0 from under
3679                  * us because we hold the mm_all_locks_mutex.
3680                  *
3681                  * We must however clear the bitflag before unlocking
3682                  * the vma so the users using the anon_vma->rb_root will
3683                  * never see our bitflag.
3684                  *
3685                  * No need of atomic instructions here, head.next
3686                  * can't change from under us until we release the
3687                  * anon_vma->root->rwsem.
3688                  */
3689                 if (!__test_and_clear_bit(0, (unsigned long *)
3690                                           &anon_vma->root->rb_root.rb_root.rb_node))
3691                         BUG();
3692                 anon_vma_unlock_write(anon_vma);
3693         }
3694 }
3695
3696 static void vm_unlock_mapping(struct address_space *mapping)
3697 {
3698         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3699                 /*
3700                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3701                  * because we hold the mm_all_locks_mutex.
3702                  */
3703                 i_mmap_unlock_write(mapping);
3704                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3705                                         &mapping->flags))
3706                         BUG();
3707         }
3708 }
3709
3710 /*
3711  * The mmap_lock cannot be released by the caller until
3712  * mm_drop_all_locks() returns.
3713  */
3714 void mm_drop_all_locks(struct mm_struct *mm)
3715 {
3716         struct vm_area_struct *vma;
3717         struct anon_vma_chain *avc;
3718
3719         BUG_ON(mmap_read_trylock(mm));
3720         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3721
3722         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3723                 if (vma->anon_vma)
3724                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3725                                 vm_unlock_anon_vma(avc->anon_vma);
3726                 if (vma->vm_file && vma->vm_file->f_mapping)
3727                         vm_unlock_mapping(vma->vm_file->f_mapping);
3728         }
3729
3730         mutex_unlock(&mm_all_locks_mutex);
3731 }
3732
3733 /*
3734  * initialise the percpu counter for VM
3735  */
3736 void __init mmap_init(void)
3737 {
3738         int ret;
3739
3740         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3741         VM_BUG_ON(ret);
3742 }
3743
3744 /*
3745  * Initialise sysctl_user_reserve_kbytes.
3746  *
3747  * This is intended to prevent a user from starting a single memory hogging
3748  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3749  * mode.
3750  *
3751  * The default value is min(3% of free memory, 128MB)
3752  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3753  */
3754 static int init_user_reserve(void)
3755 {
3756         unsigned long free_kbytes;
3757
3758         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3759
3760         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3761         return 0;
3762 }
3763 subsys_initcall(init_user_reserve);
3764
3765 /*
3766  * Initialise sysctl_admin_reserve_kbytes.
3767  *
3768  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3769  * to log in and kill a memory hogging process.
3770  *
3771  * Systems with more than 256MB will reserve 8MB, enough to recover
3772  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3773  * only reserve 3% of free pages by default.
3774  */
3775 static int init_admin_reserve(void)
3776 {
3777         unsigned long free_kbytes;
3778
3779         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3780
3781         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3782         return 0;
3783 }
3784 subsys_initcall(init_admin_reserve);
3785
3786 /*
3787  * Reinititalise user and admin reserves if memory is added or removed.
3788  *
3789  * The default user reserve max is 128MB, and the default max for the
3790  * admin reserve is 8MB. These are usually, but not always, enough to
3791  * enable recovery from a memory hogging process using login/sshd, a shell,
3792  * and tools like top. It may make sense to increase or even disable the
3793  * reserve depending on the existence of swap or variations in the recovery
3794  * tools. So, the admin may have changed them.
3795  *
3796  * If memory is added and the reserves have been eliminated or increased above
3797  * the default max, then we'll trust the admin.
3798  *
3799  * If memory is removed and there isn't enough free memory, then we
3800  * need to reset the reserves.
3801  *
3802  * Otherwise keep the reserve set by the admin.
3803  */
3804 static int reserve_mem_notifier(struct notifier_block *nb,
3805                              unsigned long action, void *data)
3806 {
3807         unsigned long tmp, free_kbytes;
3808
3809         switch (action) {
3810         case MEM_ONLINE:
3811                 /* Default max is 128MB. Leave alone if modified by operator. */
3812                 tmp = sysctl_user_reserve_kbytes;
3813                 if (0 < tmp && tmp < (1UL << 17))
3814                         init_user_reserve();
3815
3816                 /* Default max is 8MB.  Leave alone if modified by operator. */
3817                 tmp = sysctl_admin_reserve_kbytes;
3818                 if (0 < tmp && tmp < (1UL << 13))
3819                         init_admin_reserve();
3820
3821                 break;
3822         case MEM_OFFLINE:
3823                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3824
3825                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3826                         init_user_reserve();
3827                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3828                                 sysctl_user_reserve_kbytes);
3829                 }
3830
3831                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3832                         init_admin_reserve();
3833                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3834                                 sysctl_admin_reserve_kbytes);
3835                 }
3836                 break;
3837         default:
3838                 break;
3839         }
3840         return NOTIFY_OK;
3841 }
3842
3843 static struct notifier_block reserve_mem_nb = {
3844         .notifier_call = reserve_mem_notifier,
3845 };
3846
3847 static int __meminit init_reserve_notifier(void)
3848 {
3849         if (register_hotmemory_notifier(&reserve_mem_nb))
3850                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3851
3852         return 0;
3853 }
3854 subsys_initcall(init_reserve_notifier);