GNU Linux-libre 5.4.274-gnu1
[releases.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51
52 #include <asm/tlbflush.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/migrate.h>
56
57 #include "internal.h"
58
59 /*
60  * migrate_prep() needs to be called before we start compiling a list of pages
61  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
62  * undesirable, use migrate_prep_local()
63  */
64 int migrate_prep(void)
65 {
66         /*
67          * Clear the LRU lists so pages can be isolated.
68          * Note that pages may be moved off the LRU after we have
69          * drained them. Those pages will fail to migrate like other
70          * pages that may be busy.
71          */
72         lru_add_drain_all();
73
74         return 0;
75 }
76
77 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
78 int migrate_prep_local(void)
79 {
80         lru_add_drain();
81
82         return 0;
83 }
84
85 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 {
87         struct address_space *mapping;
88
89         /*
90          * Avoid burning cycles with pages that are yet under __free_pages(),
91          * or just got freed under us.
92          *
93          * In case we 'win' a race for a movable page being freed under us and
94          * raise its refcount preventing __free_pages() from doing its job
95          * the put_page() at the end of this block will take care of
96          * release this page, thus avoiding a nasty leakage.
97          */
98         if (unlikely(!get_page_unless_zero(page)))
99                 goto out;
100
101         /*
102          * Check PageMovable before holding a PG_lock because page's owner
103          * assumes anybody doesn't touch PG_lock of newly allocated page
104          * so unconditionally grabbing the lock ruins page's owner side.
105          */
106         if (unlikely(!__PageMovable(page)))
107                 goto out_putpage;
108         /*
109          * As movable pages are not isolated from LRU lists, concurrent
110          * compaction threads can race against page migration functions
111          * as well as race against the releasing a page.
112          *
113          * In order to avoid having an already isolated movable page
114          * being (wrongly) re-isolated while it is under migration,
115          * or to avoid attempting to isolate pages being released,
116          * lets be sure we have the page lock
117          * before proceeding with the movable page isolation steps.
118          */
119         if (unlikely(!trylock_page(page)))
120                 goto out_putpage;
121
122         if (!PageMovable(page) || PageIsolated(page))
123                 goto out_no_isolated;
124
125         mapping = page_mapping(page);
126         VM_BUG_ON_PAGE(!mapping, page);
127
128         if (!mapping->a_ops->isolate_page(page, mode))
129                 goto out_no_isolated;
130
131         /* Driver shouldn't use PG_isolated bit of page->flags */
132         WARN_ON_ONCE(PageIsolated(page));
133         __SetPageIsolated(page);
134         unlock_page(page);
135
136         return 0;
137
138 out_no_isolated:
139         unlock_page(page);
140 out_putpage:
141         put_page(page);
142 out:
143         return -EBUSY;
144 }
145
146 /* It should be called on page which is PG_movable */
147 void putback_movable_page(struct page *page)
148 {
149         struct address_space *mapping;
150
151         VM_BUG_ON_PAGE(!PageLocked(page), page);
152         VM_BUG_ON_PAGE(!PageMovable(page), page);
153         VM_BUG_ON_PAGE(!PageIsolated(page), page);
154
155         mapping = page_mapping(page);
156         mapping->a_ops->putback_page(page);
157         __ClearPageIsolated(page);
158 }
159
160 /*
161  * Put previously isolated pages back onto the appropriate lists
162  * from where they were once taken off for compaction/migration.
163  *
164  * This function shall be used whenever the isolated pageset has been
165  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
166  * and isolate_huge_page().
167  */
168 void putback_movable_pages(struct list_head *l)
169 {
170         struct page *page;
171         struct page *page2;
172
173         list_for_each_entry_safe(page, page2, l, lru) {
174                 if (unlikely(PageHuge(page))) {
175                         putback_active_hugepage(page);
176                         continue;
177                 }
178                 list_del(&page->lru);
179                 /*
180                  * We isolated non-lru movable page so here we can use
181                  * __PageMovable because LRU page's mapping cannot have
182                  * PAGE_MAPPING_MOVABLE.
183                  */
184                 if (unlikely(__PageMovable(page))) {
185                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
186                         lock_page(page);
187                         if (PageMovable(page))
188                                 putback_movable_page(page);
189                         else
190                                 __ClearPageIsolated(page);
191                         unlock_page(page);
192                         put_page(page);
193                 } else {
194                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
195                                         page_is_file_cache(page), -hpage_nr_pages(page));
196                         putback_lru_page(page);
197                 }
198         }
199 }
200
201 /*
202  * Restore a potential migration pte to a working pte entry
203  */
204 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
205                                  unsigned long addr, void *old)
206 {
207         struct page_vma_mapped_walk pvmw = {
208                 .page = old,
209                 .vma = vma,
210                 .address = addr,
211                 .flags = PVMW_SYNC | PVMW_MIGRATION,
212         };
213         struct page *new;
214         pte_t pte;
215         swp_entry_t entry;
216
217         VM_BUG_ON_PAGE(PageTail(page), page);
218         while (page_vma_mapped_walk(&pvmw)) {
219                 if (PageKsm(page))
220                         new = page;
221                 else
222                         new = page - pvmw.page->index +
223                                 linear_page_index(vma, pvmw.address);
224
225 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
226                 /* PMD-mapped THP migration entry */
227                 if (!pvmw.pte) {
228                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
229                         remove_migration_pmd(&pvmw, new);
230                         continue;
231                 }
232 #endif
233
234                 get_page(new);
235                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
236                 if (pte_swp_soft_dirty(*pvmw.pte))
237                         pte = pte_mksoft_dirty(pte);
238
239                 /*
240                  * Recheck VMA as permissions can change since migration started
241                  */
242                 entry = pte_to_swp_entry(*pvmw.pte);
243                 if (is_write_migration_entry(entry))
244                         pte = maybe_mkwrite(pte, vma);
245
246                 if (unlikely(is_zone_device_page(new))) {
247                         if (is_device_private_page(new)) {
248                                 entry = make_device_private_entry(new, pte_write(pte));
249                                 pte = swp_entry_to_pte(entry);
250                         }
251                 }
252
253 #ifdef CONFIG_HUGETLB_PAGE
254                 if (PageHuge(new)) {
255                         pte = pte_mkhuge(pte);
256                         pte = arch_make_huge_pte(pte, vma, new, 0);
257                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258                         if (PageAnon(new))
259                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
260                         else
261                                 page_dup_rmap(new, true);
262                 } else
263 #endif
264                 {
265                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266
267                         if (PageAnon(new))
268                                 page_add_anon_rmap(new, vma, pvmw.address, false);
269                         else
270                                 page_add_file_rmap(new, false);
271                 }
272                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273                         mlock_vma_page(new);
274
275                 if (PageTransHuge(page) && PageMlocked(page))
276                         clear_page_mlock(page);
277
278                 /* No need to invalidate - it was non-present before */
279                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280         }
281
282         return true;
283 }
284
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291         struct rmap_walk_control rwc = {
292                 .rmap_one = remove_migration_pte,
293                 .arg = old,
294         };
295
296         if (locked)
297                 rmap_walk_locked(new, &rwc);
298         else
299                 rmap_walk(new, &rwc);
300 }
301
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308                                 spinlock_t *ptl)
309 {
310         pte_t pte;
311         swp_entry_t entry;
312         struct page *page;
313
314         spin_lock(ptl);
315         pte = *ptep;
316         if (!is_swap_pte(pte))
317                 goto out;
318
319         entry = pte_to_swp_entry(pte);
320         if (!is_migration_entry(entry))
321                 goto out;
322
323         page = migration_entry_to_page(entry);
324         page = compound_head(page);
325
326         /*
327          * Once page cache replacement of page migration started, page_count
328          * is zero; but we must not call put_and_wait_on_page_locked() without
329          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330          */
331         if (!get_page_unless_zero(page))
332                 goto out;
333         pte_unmap_unlock(ptep, ptl);
334         put_and_wait_on_page_locked(page);
335         return;
336 out:
337         pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341                                 unsigned long address)
342 {
343         spinlock_t *ptl = pte_lockptr(mm, pmd);
344         pte_t *ptep = pte_offset_map(pmd, address);
345         __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349                 struct mm_struct *mm, pte_t *pte)
350 {
351         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352         __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358         spinlock_t *ptl;
359         struct page *page;
360
361         ptl = pmd_lock(mm, pmd);
362         if (!is_pmd_migration_entry(*pmd))
363                 goto unlock;
364         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365         if (!get_page_unless_zero(page))
366                 goto unlock;
367         spin_unlock(ptl);
368         put_and_wait_on_page_locked(page);
369         return;
370 unlock:
371         spin_unlock(ptl);
372 }
373 #endif
374
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377         int expected_count = 1;
378
379         /*
380          * Device public or private pages have an extra refcount as they are
381          * ZONE_DEVICE pages.
382          */
383         expected_count += is_device_private_page(page);
384         if (mapping)
385                 expected_count += hpage_nr_pages(page) + page_has_private(page);
386
387         return expected_count;
388 }
389
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
398 int migrate_page_move_mapping(struct address_space *mapping,
399                 struct page *newpage, struct page *page, int extra_count)
400 {
401         XA_STATE(xas, &mapping->i_pages, page_index(page));
402         struct zone *oldzone, *newzone;
403         int dirty;
404         int expected_count = expected_page_refs(mapping, page) + extra_count;
405
406         if (!mapping) {
407                 /* Anonymous page without mapping */
408                 if (page_count(page) != expected_count)
409                         return -EAGAIN;
410
411                 /* No turning back from here */
412                 newpage->index = page->index;
413                 newpage->mapping = page->mapping;
414                 if (PageSwapBacked(page))
415                         __SetPageSwapBacked(newpage);
416
417                 return MIGRATEPAGE_SUCCESS;
418         }
419
420         oldzone = page_zone(page);
421         newzone = page_zone(newpage);
422
423         xas_lock_irq(&xas);
424         if (page_count(page) != expected_count || xas_load(&xas) != page) {
425                 xas_unlock_irq(&xas);
426                 return -EAGAIN;
427         }
428
429         if (!page_ref_freeze(page, expected_count)) {
430                 xas_unlock_irq(&xas);
431                 return -EAGAIN;
432         }
433
434         /*
435          * Now we know that no one else is looking at the page:
436          * no turning back from here.
437          */
438         newpage->index = page->index;
439         newpage->mapping = page->mapping;
440         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
441         if (PageSwapBacked(page)) {
442                 __SetPageSwapBacked(newpage);
443                 if (PageSwapCache(page)) {
444                         int i;
445
446                         SetPageSwapCache(newpage);
447                         for (i = 0; i < (1 << compound_order(page)); i++)
448                                 set_page_private(newpage + i,
449                                                  page_private(page + i));
450                 }
451         } else {
452                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
453         }
454
455         /* Move dirty while page refs frozen and newpage not yet exposed */
456         dirty = PageDirty(page);
457         if (dirty) {
458                 ClearPageDirty(page);
459                 SetPageDirty(newpage);
460         }
461
462         xas_store(&xas, newpage);
463         if (PageTransHuge(page)) {
464                 int i;
465
466                 for (i = 1; i < HPAGE_PMD_NR; i++) {
467                         xas_next(&xas);
468                         xas_store(&xas, newpage);
469                 }
470         }
471
472         /*
473          * Drop cache reference from old page by unfreezing
474          * to one less reference.
475          * We know this isn't the last reference.
476          */
477         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478
479         xas_unlock(&xas);
480         /* Leave irq disabled to prevent preemption while updating stats */
481
482         /*
483          * If moved to a different zone then also account
484          * the page for that zone. Other VM counters will be
485          * taken care of when we establish references to the
486          * new page and drop references to the old page.
487          *
488          * Note that anonymous pages are accounted for
489          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490          * are mapped to swap space.
491          */
492         if (newzone != oldzone) {
493                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
496                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498                 }
499                 if (dirty && mapping_cap_account_dirty(mapping)) {
500                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504                 }
505         }
506         local_irq_enable();
507
508         return MIGRATEPAGE_SUCCESS;
509 }
510 EXPORT_SYMBOL(migrate_page_move_mapping);
511
512 /*
513  * The expected number of remaining references is the same as that
514  * of migrate_page_move_mapping().
515  */
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517                                    struct page *newpage, struct page *page)
518 {
519         XA_STATE(xas, &mapping->i_pages, page_index(page));
520         int expected_count;
521
522         xas_lock_irq(&xas);
523         expected_count = 2 + page_has_private(page);
524         if (page_count(page) != expected_count || xas_load(&xas) != page) {
525                 xas_unlock_irq(&xas);
526                 return -EAGAIN;
527         }
528
529         if (!page_ref_freeze(page, expected_count)) {
530                 xas_unlock_irq(&xas);
531                 return -EAGAIN;
532         }
533
534         newpage->index = page->index;
535         newpage->mapping = page->mapping;
536
537         get_page(newpage);
538
539         xas_store(&xas, newpage);
540
541         page_ref_unfreeze(page, expected_count - 1);
542
543         xas_unlock_irq(&xas);
544
545         return MIGRATEPAGE_SUCCESS;
546 }
547
548 /*
549  * Gigantic pages are so large that we do not guarantee that page++ pointer
550  * arithmetic will work across the entire page.  We need something more
551  * specialized.
552  */
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554                                 int nr_pages)
555 {
556         int i;
557         struct page *dst_base = dst;
558         struct page *src_base = src;
559
560         for (i = 0; i < nr_pages; ) {
561                 cond_resched();
562                 copy_highpage(dst, src);
563
564                 i++;
565                 dst = mem_map_next(dst, dst_base, i);
566                 src = mem_map_next(src, src_base, i);
567         }
568 }
569
570 static void copy_huge_page(struct page *dst, struct page *src)
571 {
572         int i;
573         int nr_pages;
574
575         if (PageHuge(src)) {
576                 /* hugetlbfs page */
577                 struct hstate *h = page_hstate(src);
578                 nr_pages = pages_per_huge_page(h);
579
580                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581                         __copy_gigantic_page(dst, src, nr_pages);
582                         return;
583                 }
584         } else {
585                 /* thp page */
586                 BUG_ON(!PageTransHuge(src));
587                 nr_pages = hpage_nr_pages(src);
588         }
589
590         for (i = 0; i < nr_pages; i++) {
591                 cond_resched();
592                 copy_highpage(dst + i, src + i);
593         }
594 }
595
596 /*
597  * Copy the page to its new location
598  */
599 void migrate_page_states(struct page *newpage, struct page *page)
600 {
601         int cpupid;
602
603         if (PageError(page))
604                 SetPageError(newpage);
605         if (PageReferenced(page))
606                 SetPageReferenced(newpage);
607         if (PageUptodate(page))
608                 SetPageUptodate(newpage);
609         if (TestClearPageActive(page)) {
610                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
611                 SetPageActive(newpage);
612         } else if (TestClearPageUnevictable(page))
613                 SetPageUnevictable(newpage);
614         if (PageWorkingset(page))
615                 SetPageWorkingset(newpage);
616         if (PageChecked(page))
617                 SetPageChecked(newpage);
618         if (PageMappedToDisk(page))
619                 SetPageMappedToDisk(newpage);
620
621         /* Move dirty on pages not done by migrate_page_move_mapping() */
622         if (PageDirty(page))
623                 SetPageDirty(newpage);
624
625         if (page_is_young(page))
626                 set_page_young(newpage);
627         if (page_is_idle(page))
628                 set_page_idle(newpage);
629
630         /*
631          * Copy NUMA information to the new page, to prevent over-eager
632          * future migrations of this same page.
633          */
634         cpupid = page_cpupid_xchg_last(page, -1);
635         page_cpupid_xchg_last(newpage, cpupid);
636
637         ksm_migrate_page(newpage, page);
638         /*
639          * Please do not reorder this without considering how mm/ksm.c's
640          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641          */
642         if (PageSwapCache(page))
643                 ClearPageSwapCache(page);
644         ClearPagePrivate(page);
645         set_page_private(page, 0);
646
647         /*
648          * If any waiters have accumulated on the new page then
649          * wake them up.
650          */
651         if (PageWriteback(newpage))
652                 end_page_writeback(newpage);
653
654         copy_page_owner(page, newpage);
655
656         mem_cgroup_migrate(page, newpage);
657 }
658 EXPORT_SYMBOL(migrate_page_states);
659
660 void migrate_page_copy(struct page *newpage, struct page *page)
661 {
662         if (PageHuge(page) || PageTransHuge(page))
663                 copy_huge_page(newpage, page);
664         else
665                 copy_highpage(newpage, page);
666
667         migrate_page_states(newpage, page);
668 }
669 EXPORT_SYMBOL(migrate_page_copy);
670
671 /************************************************************
672  *                    Migration functions
673  ***********************************************************/
674
675 /*
676  * Common logic to directly migrate a single LRU page suitable for
677  * pages that do not use PagePrivate/PagePrivate2.
678  *
679  * Pages are locked upon entry and exit.
680  */
681 int migrate_page(struct address_space *mapping,
682                 struct page *newpage, struct page *page,
683                 enum migrate_mode mode)
684 {
685         int rc;
686
687         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
688
689         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
690
691         if (rc != MIGRATEPAGE_SUCCESS)
692                 return rc;
693
694         if (mode != MIGRATE_SYNC_NO_COPY)
695                 migrate_page_copy(newpage, page);
696         else
697                 migrate_page_states(newpage, page);
698         return MIGRATEPAGE_SUCCESS;
699 }
700 EXPORT_SYMBOL(migrate_page);
701
702 #ifdef CONFIG_BLOCK
703 /* Returns true if all buffers are successfully locked */
704 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705                                                         enum migrate_mode mode)
706 {
707         struct buffer_head *bh = head;
708
709         /* Simple case, sync compaction */
710         if (mode != MIGRATE_ASYNC) {
711                 do {
712                         lock_buffer(bh);
713                         bh = bh->b_this_page;
714
715                 } while (bh != head);
716
717                 return true;
718         }
719
720         /* async case, we cannot block on lock_buffer so use trylock_buffer */
721         do {
722                 if (!trylock_buffer(bh)) {
723                         /*
724                          * We failed to lock the buffer and cannot stall in
725                          * async migration. Release the taken locks
726                          */
727                         struct buffer_head *failed_bh = bh;
728                         bh = head;
729                         while (bh != failed_bh) {
730                                 unlock_buffer(bh);
731                                 bh = bh->b_this_page;
732                         }
733                         return false;
734                 }
735
736                 bh = bh->b_this_page;
737         } while (bh != head);
738         return true;
739 }
740
741 static int __buffer_migrate_page(struct address_space *mapping,
742                 struct page *newpage, struct page *page, enum migrate_mode mode,
743                 bool check_refs)
744 {
745         struct buffer_head *bh, *head;
746         int rc;
747         int expected_count;
748
749         if (!page_has_buffers(page))
750                 return migrate_page(mapping, newpage, page, mode);
751
752         /* Check whether page does not have extra refs before we do more work */
753         expected_count = expected_page_refs(mapping, page);
754         if (page_count(page) != expected_count)
755                 return -EAGAIN;
756
757         head = page_buffers(page);
758         if (!buffer_migrate_lock_buffers(head, mode))
759                 return -EAGAIN;
760
761         if (check_refs) {
762                 bool busy;
763                 bool invalidated = false;
764
765 recheck_buffers:
766                 busy = false;
767                 spin_lock(&mapping->private_lock);
768                 bh = head;
769                 do {
770                         if (atomic_read(&bh->b_count)) {
771                                 busy = true;
772                                 break;
773                         }
774                         bh = bh->b_this_page;
775                 } while (bh != head);
776                 if (busy) {
777                         if (invalidated) {
778                                 rc = -EAGAIN;
779                                 goto unlock_buffers;
780                         }
781                         spin_unlock(&mapping->private_lock);
782                         invalidate_bh_lrus();
783                         invalidated = true;
784                         goto recheck_buffers;
785                 }
786         }
787
788         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
789         if (rc != MIGRATEPAGE_SUCCESS)
790                 goto unlock_buffers;
791
792         ClearPagePrivate(page);
793         set_page_private(newpage, page_private(page));
794         set_page_private(page, 0);
795         put_page(page);
796         get_page(newpage);
797
798         bh = head;
799         do {
800                 set_bh_page(bh, newpage, bh_offset(bh));
801                 bh = bh->b_this_page;
802
803         } while (bh != head);
804
805         SetPagePrivate(newpage);
806
807         if (mode != MIGRATE_SYNC_NO_COPY)
808                 migrate_page_copy(newpage, page);
809         else
810                 migrate_page_states(newpage, page);
811
812         rc = MIGRATEPAGE_SUCCESS;
813 unlock_buffers:
814         if (check_refs)
815                 spin_unlock(&mapping->private_lock);
816         bh = head;
817         do {
818                 unlock_buffer(bh);
819                 bh = bh->b_this_page;
820
821         } while (bh != head);
822
823         return rc;
824 }
825
826 /*
827  * Migration function for pages with buffers. This function can only be used
828  * if the underlying filesystem guarantees that no other references to "page"
829  * exist. For example attached buffer heads are accessed only under page lock.
830  */
831 int buffer_migrate_page(struct address_space *mapping,
832                 struct page *newpage, struct page *page, enum migrate_mode mode)
833 {
834         return __buffer_migrate_page(mapping, newpage, page, mode, false);
835 }
836 EXPORT_SYMBOL(buffer_migrate_page);
837
838 /*
839  * Same as above except that this variant is more careful and checks that there
840  * are also no buffer head references. This function is the right one for
841  * mappings where buffer heads are directly looked up and referenced (such as
842  * block device mappings).
843  */
844 int buffer_migrate_page_norefs(struct address_space *mapping,
845                 struct page *newpage, struct page *page, enum migrate_mode mode)
846 {
847         return __buffer_migrate_page(mapping, newpage, page, mode, true);
848 }
849 #endif
850
851 /*
852  * Writeback a page to clean the dirty state
853  */
854 static int writeout(struct address_space *mapping, struct page *page)
855 {
856         struct writeback_control wbc = {
857                 .sync_mode = WB_SYNC_NONE,
858                 .nr_to_write = 1,
859                 .range_start = 0,
860                 .range_end = LLONG_MAX,
861                 .for_reclaim = 1
862         };
863         int rc;
864
865         if (!mapping->a_ops->writepage)
866                 /* No write method for the address space */
867                 return -EINVAL;
868
869         if (!clear_page_dirty_for_io(page))
870                 /* Someone else already triggered a write */
871                 return -EAGAIN;
872
873         /*
874          * A dirty page may imply that the underlying filesystem has
875          * the page on some queue. So the page must be clean for
876          * migration. Writeout may mean we loose the lock and the
877          * page state is no longer what we checked for earlier.
878          * At this point we know that the migration attempt cannot
879          * be successful.
880          */
881         remove_migration_ptes(page, page, false);
882
883         rc = mapping->a_ops->writepage(page, &wbc);
884
885         if (rc != AOP_WRITEPAGE_ACTIVATE)
886                 /* unlocked. Relock */
887                 lock_page(page);
888
889         return (rc < 0) ? -EIO : -EAGAIN;
890 }
891
892 /*
893  * Default handling if a filesystem does not provide a migration function.
894  */
895 static int fallback_migrate_page(struct address_space *mapping,
896         struct page *newpage, struct page *page, enum migrate_mode mode)
897 {
898         if (PageDirty(page)) {
899                 /* Only writeback pages in full synchronous migration */
900                 switch (mode) {
901                 case MIGRATE_SYNC:
902                 case MIGRATE_SYNC_NO_COPY:
903                         break;
904                 default:
905                         return -EBUSY;
906                 }
907                 return writeout(mapping, page);
908         }
909
910         /*
911          * Buffers may be managed in a filesystem specific way.
912          * We must have no buffers or drop them.
913          */
914         if (page_has_private(page) &&
915             !try_to_release_page(page, GFP_KERNEL))
916                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
917
918         return migrate_page(mapping, newpage, page, mode);
919 }
920
921 /*
922  * Move a page to a newly allocated page
923  * The page is locked and all ptes have been successfully removed.
924  *
925  * The new page will have replaced the old page if this function
926  * is successful.
927  *
928  * Return value:
929  *   < 0 - error code
930  *  MIGRATEPAGE_SUCCESS - success
931  */
932 static int move_to_new_page(struct page *newpage, struct page *page,
933                                 enum migrate_mode mode)
934 {
935         struct address_space *mapping;
936         int rc = -EAGAIN;
937         bool is_lru = !__PageMovable(page);
938
939         VM_BUG_ON_PAGE(!PageLocked(page), page);
940         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
941
942         mapping = page_mapping(page);
943
944         if (likely(is_lru)) {
945                 if (!mapping)
946                         rc = migrate_page(mapping, newpage, page, mode);
947                 else if (mapping->a_ops->migratepage)
948                         /*
949                          * Most pages have a mapping and most filesystems
950                          * provide a migratepage callback. Anonymous pages
951                          * are part of swap space which also has its own
952                          * migratepage callback. This is the most common path
953                          * for page migration.
954                          */
955                         rc = mapping->a_ops->migratepage(mapping, newpage,
956                                                         page, mode);
957                 else
958                         rc = fallback_migrate_page(mapping, newpage,
959                                                         page, mode);
960         } else {
961                 /*
962                  * In case of non-lru page, it could be released after
963                  * isolation step. In that case, we shouldn't try migration.
964                  */
965                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
966                 if (!PageMovable(page)) {
967                         rc = MIGRATEPAGE_SUCCESS;
968                         __ClearPageIsolated(page);
969                         goto out;
970                 }
971
972                 rc = mapping->a_ops->migratepage(mapping, newpage,
973                                                 page, mode);
974                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
975                         !PageIsolated(page));
976         }
977
978         /*
979          * When successful, old pagecache page->mapping must be cleared before
980          * page is freed; but stats require that PageAnon be left as PageAnon.
981          */
982         if (rc == MIGRATEPAGE_SUCCESS) {
983                 if (__PageMovable(page)) {
984                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
985
986                         /*
987                          * We clear PG_movable under page_lock so any compactor
988                          * cannot try to migrate this page.
989                          */
990                         __ClearPageIsolated(page);
991                 }
992
993                 /*
994                  * Anonymous and movable page->mapping will be cleard by
995                  * free_pages_prepare so don't reset it here for keeping
996                  * the type to work PageAnon, for example.
997                  */
998                 if (!PageMappingFlags(page))
999                         page->mapping = NULL;
1000
1001                 if (likely(!is_zone_device_page(newpage))) {
1002                         int i, nr = compound_nr(newpage);
1003
1004                         for (i = 0; i < nr; i++)
1005                                 flush_dcache_page(newpage + i);
1006                 }
1007         }
1008 out:
1009         return rc;
1010 }
1011
1012 static int __unmap_and_move(struct page *page, struct page *newpage,
1013                                 int force, enum migrate_mode mode)
1014 {
1015         int rc = -EAGAIN;
1016         int page_was_mapped = 0;
1017         struct anon_vma *anon_vma = NULL;
1018         bool is_lru = !__PageMovable(page);
1019
1020         if (!trylock_page(page)) {
1021                 if (!force || mode == MIGRATE_ASYNC)
1022                         goto out;
1023
1024                 /*
1025                  * It's not safe for direct compaction to call lock_page.
1026                  * For example, during page readahead pages are added locked
1027                  * to the LRU. Later, when the IO completes the pages are
1028                  * marked uptodate and unlocked. However, the queueing
1029                  * could be merging multiple pages for one bio (e.g.
1030                  * mpage_readpages). If an allocation happens for the
1031                  * second or third page, the process can end up locking
1032                  * the same page twice and deadlocking. Rather than
1033                  * trying to be clever about what pages can be locked,
1034                  * avoid the use of lock_page for direct compaction
1035                  * altogether.
1036                  */
1037                 if (current->flags & PF_MEMALLOC)
1038                         goto out;
1039
1040                 lock_page(page);
1041         }
1042
1043         if (PageWriteback(page)) {
1044                 /*
1045                  * Only in the case of a full synchronous migration is it
1046                  * necessary to wait for PageWriteback. In the async case,
1047                  * the retry loop is too short and in the sync-light case,
1048                  * the overhead of stalling is too much
1049                  */
1050                 switch (mode) {
1051                 case MIGRATE_SYNC:
1052                 case MIGRATE_SYNC_NO_COPY:
1053                         break;
1054                 default:
1055                         rc = -EBUSY;
1056                         goto out_unlock;
1057                 }
1058                 if (!force)
1059                         goto out_unlock;
1060                 wait_on_page_writeback(page);
1061         }
1062
1063         /*
1064          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1065          * we cannot notice that anon_vma is freed while we migrates a page.
1066          * This get_anon_vma() delays freeing anon_vma pointer until the end
1067          * of migration. File cache pages are no problem because of page_lock()
1068          * File Caches may use write_page() or lock_page() in migration, then,
1069          * just care Anon page here.
1070          *
1071          * Only page_get_anon_vma() understands the subtleties of
1072          * getting a hold on an anon_vma from outside one of its mms.
1073          * But if we cannot get anon_vma, then we won't need it anyway,
1074          * because that implies that the anon page is no longer mapped
1075          * (and cannot be remapped so long as we hold the page lock).
1076          */
1077         if (PageAnon(page) && !PageKsm(page))
1078                 anon_vma = page_get_anon_vma(page);
1079
1080         /*
1081          * Block others from accessing the new page when we get around to
1082          * establishing additional references. We are usually the only one
1083          * holding a reference to newpage at this point. We used to have a BUG
1084          * here if trylock_page(newpage) fails, but would like to allow for
1085          * cases where there might be a race with the previous use of newpage.
1086          * This is much like races on refcount of oldpage: just don't BUG().
1087          */
1088         if (unlikely(!trylock_page(newpage)))
1089                 goto out_unlock;
1090
1091         if (unlikely(!is_lru)) {
1092                 rc = move_to_new_page(newpage, page, mode);
1093                 goto out_unlock_both;
1094         }
1095
1096         /*
1097          * Corner case handling:
1098          * 1. When a new swap-cache page is read into, it is added to the LRU
1099          * and treated as swapcache but it has no rmap yet.
1100          * Calling try_to_unmap() against a page->mapping==NULL page will
1101          * trigger a BUG.  So handle it here.
1102          * 2. An orphaned page (see truncate_complete_page) might have
1103          * fs-private metadata. The page can be picked up due to memory
1104          * offlining.  Everywhere else except page reclaim, the page is
1105          * invisible to the vm, so the page can not be migrated.  So try to
1106          * free the metadata, so the page can be freed.
1107          */
1108         if (!page->mapping) {
1109                 VM_BUG_ON_PAGE(PageAnon(page), page);
1110                 if (page_has_private(page)) {
1111                         try_to_free_buffers(page);
1112                         goto out_unlock_both;
1113                 }
1114         } else if (page_mapped(page)) {
1115                 /* Establish migration ptes */
1116                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1117                                 page);
1118                 try_to_unmap(page,
1119                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1120                 page_was_mapped = 1;
1121         }
1122
1123         if (!page_mapped(page))
1124                 rc = move_to_new_page(newpage, page, mode);
1125
1126         if (page_was_mapped)
1127                 remove_migration_ptes(page,
1128                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1129
1130 out_unlock_both:
1131         unlock_page(newpage);
1132 out_unlock:
1133         /* Drop an anon_vma reference if we took one */
1134         if (anon_vma)
1135                 put_anon_vma(anon_vma);
1136         unlock_page(page);
1137 out:
1138         /*
1139          * If migration is successful, decrease refcount of the newpage
1140          * which will not free the page because new page owner increased
1141          * refcounter. As well, if it is LRU page, add the page to LRU
1142          * list in here. Use the old state of the isolated source page to
1143          * determine if we migrated a LRU page. newpage was already unlocked
1144          * and possibly modified by its owner - don't rely on the page
1145          * state.
1146          */
1147         if (rc == MIGRATEPAGE_SUCCESS) {
1148                 if (unlikely(!is_lru))
1149                         put_page(newpage);
1150                 else
1151                         putback_lru_page(newpage);
1152         }
1153
1154         return rc;
1155 }
1156
1157 /*
1158  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1159  * around it.
1160  */
1161 #if defined(CONFIG_ARM) && \
1162         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1163 #define ICE_noinline noinline
1164 #else
1165 #define ICE_noinline
1166 #endif
1167
1168 /*
1169  * Obtain the lock on page, remove all ptes and migrate the page
1170  * to the newly allocated page in newpage.
1171  */
1172 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1173                                    free_page_t put_new_page,
1174                                    unsigned long private, struct page *page,
1175                                    int force, enum migrate_mode mode,
1176                                    enum migrate_reason reason)
1177 {
1178         int rc = MIGRATEPAGE_SUCCESS;
1179         struct page *newpage;
1180
1181         if (!thp_migration_supported() && PageTransHuge(page))
1182                 return -ENOMEM;
1183
1184         newpage = get_new_page(page, private);
1185         if (!newpage)
1186                 return -ENOMEM;
1187
1188         if (page_count(page) == 1) {
1189                 /* page was freed from under us. So we are done. */
1190                 ClearPageActive(page);
1191                 ClearPageUnevictable(page);
1192                 if (unlikely(__PageMovable(page))) {
1193                         lock_page(page);
1194                         if (!PageMovable(page))
1195                                 __ClearPageIsolated(page);
1196                         unlock_page(page);
1197                 }
1198                 if (put_new_page)
1199                         put_new_page(newpage, private);
1200                 else
1201                         put_page(newpage);
1202                 goto out;
1203         }
1204
1205         rc = __unmap_and_move(page, newpage, force, mode);
1206         if (rc == MIGRATEPAGE_SUCCESS)
1207                 set_page_owner_migrate_reason(newpage, reason);
1208
1209 out:
1210         if (rc != -EAGAIN) {
1211                 /*
1212                  * A page that has been migrated has all references
1213                  * removed and will be freed. A page that has not been
1214                  * migrated will have kepts its references and be
1215                  * restored.
1216                  */
1217                 list_del(&page->lru);
1218
1219                 /*
1220                  * Compaction can migrate also non-LRU pages which are
1221                  * not accounted to NR_ISOLATED_*. They can be recognized
1222                  * as __PageMovable
1223                  */
1224                 if (likely(!__PageMovable(page)))
1225                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1226                                         page_is_file_cache(page), -hpage_nr_pages(page));
1227         }
1228
1229         /*
1230          * If migration is successful, releases reference grabbed during
1231          * isolation. Otherwise, restore the page to right list unless
1232          * we want to retry.
1233          */
1234         if (rc == MIGRATEPAGE_SUCCESS) {
1235                 put_page(page);
1236                 if (reason == MR_MEMORY_FAILURE) {
1237                         /*
1238                          * Set PG_HWPoison on just freed page
1239                          * intentionally. Although it's rather weird,
1240                          * it's how HWPoison flag works at the moment.
1241                          */
1242                         if (set_hwpoison_free_buddy_page(page))
1243                                 num_poisoned_pages_inc();
1244                 }
1245         } else {
1246                 if (rc != -EAGAIN) {
1247                         if (likely(!__PageMovable(page))) {
1248                                 putback_lru_page(page);
1249                                 goto put_new;
1250                         }
1251
1252                         lock_page(page);
1253                         if (PageMovable(page))
1254                                 putback_movable_page(page);
1255                         else
1256                                 __ClearPageIsolated(page);
1257                         unlock_page(page);
1258                         put_page(page);
1259                 }
1260 put_new:
1261                 if (put_new_page)
1262                         put_new_page(newpage, private);
1263                 else
1264                         put_page(newpage);
1265         }
1266
1267         return rc;
1268 }
1269
1270 /*
1271  * Counterpart of unmap_and_move_page() for hugepage migration.
1272  *
1273  * This function doesn't wait the completion of hugepage I/O
1274  * because there is no race between I/O and migration for hugepage.
1275  * Note that currently hugepage I/O occurs only in direct I/O
1276  * where no lock is held and PG_writeback is irrelevant,
1277  * and writeback status of all subpages are counted in the reference
1278  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1279  * under direct I/O, the reference of the head page is 512 and a bit more.)
1280  * This means that when we try to migrate hugepage whose subpages are
1281  * doing direct I/O, some references remain after try_to_unmap() and
1282  * hugepage migration fails without data corruption.
1283  *
1284  * There is also no race when direct I/O is issued on the page under migration,
1285  * because then pte is replaced with migration swap entry and direct I/O code
1286  * will wait in the page fault for migration to complete.
1287  */
1288 static int unmap_and_move_huge_page(new_page_t get_new_page,
1289                                 free_page_t put_new_page, unsigned long private,
1290                                 struct page *hpage, int force,
1291                                 enum migrate_mode mode, int reason)
1292 {
1293         int rc = -EAGAIN;
1294         int page_was_mapped = 0;
1295         struct page *new_hpage;
1296         struct anon_vma *anon_vma = NULL;
1297
1298         /*
1299          * Migratability of hugepages depends on architectures and their size.
1300          * This check is necessary because some callers of hugepage migration
1301          * like soft offline and memory hotremove don't walk through page
1302          * tables or check whether the hugepage is pmd-based or not before
1303          * kicking migration.
1304          */
1305         if (!hugepage_migration_supported(page_hstate(hpage))) {
1306                 putback_active_hugepage(hpage);
1307                 return -ENOSYS;
1308         }
1309
1310         new_hpage = get_new_page(hpage, private);
1311         if (!new_hpage)
1312                 return -ENOMEM;
1313
1314         if (!trylock_page(hpage)) {
1315                 if (!force)
1316                         goto out;
1317                 switch (mode) {
1318                 case MIGRATE_SYNC:
1319                 case MIGRATE_SYNC_NO_COPY:
1320                         break;
1321                 default:
1322                         goto out;
1323                 }
1324                 lock_page(hpage);
1325         }
1326
1327         /*
1328          * Check for pages which are in the process of being freed.  Without
1329          * page_mapping() set, hugetlbfs specific move page routine will not
1330          * be called and we could leak usage counts for subpools.
1331          */
1332         if (page_private(hpage) && !page_mapping(hpage)) {
1333                 rc = -EBUSY;
1334                 goto out_unlock;
1335         }
1336
1337         if (PageAnon(hpage))
1338                 anon_vma = page_get_anon_vma(hpage);
1339
1340         if (unlikely(!trylock_page(new_hpage)))
1341                 goto put_anon;
1342
1343         if (page_mapped(hpage)) {
1344                 try_to_unmap(hpage,
1345                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1346                 page_was_mapped = 1;
1347         }
1348
1349         if (!page_mapped(hpage))
1350                 rc = move_to_new_page(new_hpage, hpage, mode);
1351
1352         if (page_was_mapped)
1353                 remove_migration_ptes(hpage,
1354                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1355
1356         unlock_page(new_hpage);
1357
1358 put_anon:
1359         if (anon_vma)
1360                 put_anon_vma(anon_vma);
1361
1362         if (rc == MIGRATEPAGE_SUCCESS) {
1363                 move_hugetlb_state(hpage, new_hpage, reason);
1364                 put_new_page = NULL;
1365         }
1366
1367 out_unlock:
1368         unlock_page(hpage);
1369 out:
1370         if (rc != -EAGAIN)
1371                 putback_active_hugepage(hpage);
1372
1373         /*
1374          * If migration was not successful and there's a freeing callback, use
1375          * it.  Otherwise, put_page() will drop the reference grabbed during
1376          * isolation.
1377          */
1378         if (put_new_page)
1379                 put_new_page(new_hpage, private);
1380         else
1381                 putback_active_hugepage(new_hpage);
1382
1383         return rc;
1384 }
1385
1386 /*
1387  * migrate_pages - migrate the pages specified in a list, to the free pages
1388  *                 supplied as the target for the page migration
1389  *
1390  * @from:               The list of pages to be migrated.
1391  * @get_new_page:       The function used to allocate free pages to be used
1392  *                      as the target of the page migration.
1393  * @put_new_page:       The function used to free target pages if migration
1394  *                      fails, or NULL if no special handling is necessary.
1395  * @private:            Private data to be passed on to get_new_page()
1396  * @mode:               The migration mode that specifies the constraints for
1397  *                      page migration, if any.
1398  * @reason:             The reason for page migration.
1399  *
1400  * The function returns after 10 attempts or if no pages are movable any more
1401  * because the list has become empty or no retryable pages exist any more.
1402  * The caller should call putback_movable_pages() to return pages to the LRU
1403  * or free list only if ret != 0.
1404  *
1405  * Returns the number of pages that were not migrated, or an error code.
1406  */
1407 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1408                 free_page_t put_new_page, unsigned long private,
1409                 enum migrate_mode mode, int reason)
1410 {
1411         int retry = 1;
1412         int nr_failed = 0;
1413         int nr_succeeded = 0;
1414         int pass = 0;
1415         struct page *page;
1416         struct page *page2;
1417         int swapwrite = current->flags & PF_SWAPWRITE;
1418         int rc;
1419
1420         if (!swapwrite)
1421                 current->flags |= PF_SWAPWRITE;
1422
1423         for(pass = 0; pass < 10 && retry; pass++) {
1424                 retry = 0;
1425
1426                 list_for_each_entry_safe(page, page2, from, lru) {
1427 retry:
1428                         cond_resched();
1429
1430                         if (PageHuge(page))
1431                                 rc = unmap_and_move_huge_page(get_new_page,
1432                                                 put_new_page, private, page,
1433                                                 pass > 2, mode, reason);
1434                         else
1435                                 rc = unmap_and_move(get_new_page, put_new_page,
1436                                                 private, page, pass > 2, mode,
1437                                                 reason);
1438
1439                         switch(rc) {
1440                         case -ENOMEM:
1441                                 /*
1442                                  * THP migration might be unsupported or the
1443                                  * allocation could've failed so we should
1444                                  * retry on the same page with the THP split
1445                                  * to base pages.
1446                                  *
1447                                  * Head page is retried immediately and tail
1448                                  * pages are added to the tail of the list so
1449                                  * we encounter them after the rest of the list
1450                                  * is processed.
1451                                  */
1452                                 if (PageTransHuge(page) && !PageHuge(page)) {
1453                                         lock_page(page);
1454                                         rc = split_huge_page_to_list(page, from);
1455                                         unlock_page(page);
1456                                         if (!rc) {
1457                                                 list_safe_reset_next(page, page2, lru);
1458                                                 goto retry;
1459                                         }
1460                                 }
1461                                 nr_failed++;
1462                                 goto out;
1463                         case -EAGAIN:
1464                                 retry++;
1465                                 break;
1466                         case MIGRATEPAGE_SUCCESS:
1467                                 nr_succeeded++;
1468                                 break;
1469                         default:
1470                                 /*
1471                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1472                                  * unlike -EAGAIN case, the failed page is
1473                                  * removed from migration page list and not
1474                                  * retried in the next outer loop.
1475                                  */
1476                                 nr_failed++;
1477                                 break;
1478                         }
1479                 }
1480         }
1481         nr_failed += retry;
1482         rc = nr_failed;
1483 out:
1484         if (nr_succeeded)
1485                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1486         if (nr_failed)
1487                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1488         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1489
1490         if (!swapwrite)
1491                 current->flags &= ~PF_SWAPWRITE;
1492
1493         return rc;
1494 }
1495
1496 #ifdef CONFIG_NUMA
1497
1498 static int store_status(int __user *status, int start, int value, int nr)
1499 {
1500         while (nr-- > 0) {
1501                 if (put_user(value, status + start))
1502                         return -EFAULT;
1503                 start++;
1504         }
1505
1506         return 0;
1507 }
1508
1509 static int do_move_pages_to_node(struct mm_struct *mm,
1510                 struct list_head *pagelist, int node)
1511 {
1512         int err;
1513
1514         if (list_empty(pagelist))
1515                 return 0;
1516
1517         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1518                         MIGRATE_SYNC, MR_SYSCALL);
1519         if (err)
1520                 putback_movable_pages(pagelist);
1521         return err;
1522 }
1523
1524 /*
1525  * Resolves the given address to a struct page, isolates it from the LRU and
1526  * puts it to the given pagelist.
1527  * Returns:
1528  *     errno - if the page cannot be found/isolated
1529  *     0 - when it doesn't have to be migrated because it is already on the
1530  *         target node
1531  *     1 - when it has been queued
1532  */
1533 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1534                 int node, struct list_head *pagelist, bool migrate_all)
1535 {
1536         struct vm_area_struct *vma;
1537         struct page *page;
1538         unsigned int follflags;
1539         int err;
1540
1541         down_read(&mm->mmap_sem);
1542         err = -EFAULT;
1543         vma = find_vma(mm, addr);
1544         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1545                 goto out;
1546
1547         /* FOLL_DUMP to ignore special (like zero) pages */
1548         follflags = FOLL_GET | FOLL_DUMP;
1549         page = follow_page(vma, addr, follflags);
1550
1551         err = PTR_ERR(page);
1552         if (IS_ERR(page))
1553                 goto out;
1554
1555         err = -ENOENT;
1556         if (!page)
1557                 goto out;
1558
1559         err = 0;
1560         if (page_to_nid(page) == node)
1561                 goto out_putpage;
1562
1563         err = -EACCES;
1564         if (page_mapcount(page) > 1 && !migrate_all)
1565                 goto out_putpage;
1566
1567         if (PageHuge(page)) {
1568                 if (PageHead(page)) {
1569                         isolate_huge_page(page, pagelist);
1570                         err = 1;
1571                 }
1572         } else {
1573                 struct page *head;
1574
1575                 head = compound_head(page);
1576                 err = isolate_lru_page(head);
1577                 if (err)
1578                         goto out_putpage;
1579
1580                 err = 1;
1581                 list_add_tail(&head->lru, pagelist);
1582                 mod_node_page_state(page_pgdat(head),
1583                         NR_ISOLATED_ANON + page_is_file_cache(head),
1584                         hpage_nr_pages(head));
1585         }
1586 out_putpage:
1587         /*
1588          * Either remove the duplicate refcount from
1589          * isolate_lru_page() or drop the page ref if it was
1590          * not isolated.
1591          */
1592         put_page(page);
1593 out:
1594         up_read(&mm->mmap_sem);
1595         return err;
1596 }
1597
1598 /*
1599  * Migrate an array of page address onto an array of nodes and fill
1600  * the corresponding array of status.
1601  */
1602 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1603                          unsigned long nr_pages,
1604                          const void __user * __user *pages,
1605                          const int __user *nodes,
1606                          int __user *status, int flags)
1607 {
1608         int current_node = NUMA_NO_NODE;
1609         LIST_HEAD(pagelist);
1610         int start, i;
1611         int err = 0, err1;
1612
1613         migrate_prep();
1614
1615         for (i = start = 0; i < nr_pages; i++) {
1616                 const void __user *p;
1617                 unsigned long addr;
1618                 int node;
1619
1620                 err = -EFAULT;
1621                 if (get_user(p, pages + i))
1622                         goto out_flush;
1623                 if (get_user(node, nodes + i))
1624                         goto out_flush;
1625                 addr = (unsigned long)untagged_addr(p);
1626
1627                 err = -ENODEV;
1628                 if (node < 0 || node >= MAX_NUMNODES)
1629                         goto out_flush;
1630                 if (!node_state(node, N_MEMORY))
1631                         goto out_flush;
1632
1633                 err = -EACCES;
1634                 if (!node_isset(node, task_nodes))
1635                         goto out_flush;
1636
1637                 if (current_node == NUMA_NO_NODE) {
1638                         current_node = node;
1639                         start = i;
1640                 } else if (node != current_node) {
1641                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1642                         if (err) {
1643                                 /*
1644                                  * Positive err means the number of failed
1645                                  * pages to migrate.  Since we are going to
1646                                  * abort and return the number of non-migrated
1647                                  * pages, so need to incude the rest of the
1648                                  * nr_pages that have not been attempted as
1649                                  * well.
1650                                  */
1651                                 if (err > 0)
1652                                         err += nr_pages - i - 1;
1653                                 goto out;
1654                         }
1655                         err = store_status(status, start, current_node, i - start);
1656                         if (err)
1657                                 goto out;
1658                         start = i;
1659                         current_node = node;
1660                 }
1661
1662                 /*
1663                  * Errors in the page lookup or isolation are not fatal and we simply
1664                  * report them via status
1665                  */
1666                 err = add_page_for_migration(mm, addr, current_node,
1667                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1668
1669                 if (!err) {
1670                         /* The page is already on the target node */
1671                         err = store_status(status, i, current_node, 1);
1672                         if (err)
1673                                 goto out_flush;
1674                         continue;
1675                 } else if (err > 0) {
1676                         /* The page is successfully queued for migration */
1677                         continue;
1678                 }
1679
1680                 err = store_status(status, i, err, 1);
1681                 if (err)
1682                         goto out_flush;
1683
1684                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1685                 if (err) {
1686                         if (err > 0)
1687                                 err += nr_pages - i - 1;
1688                         goto out;
1689                 }
1690                 if (i > start) {
1691                         err = store_status(status, start, current_node, i - start);
1692                         if (err)
1693                                 goto out;
1694                 }
1695                 current_node = NUMA_NO_NODE;
1696         }
1697 out_flush:
1698         if (list_empty(&pagelist))
1699                 return err;
1700
1701         /* Make sure we do not overwrite the existing error */
1702         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1703         /*
1704          * Don't have to report non-attempted pages here since:
1705          *     - If the above loop is done gracefully all pages have been
1706          *       attempted.
1707          *     - If the above loop is aborted it means a fatal error
1708          *       happened, should return ret.
1709          */
1710         if (!err1)
1711                 err1 = store_status(status, start, current_node, i - start);
1712         if (err >= 0)
1713                 err = err1;
1714 out:
1715         return err;
1716 }
1717
1718 /*
1719  * Determine the nodes of an array of pages and store it in an array of status.
1720  */
1721 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1722                                 const void __user **pages, int *status)
1723 {
1724         unsigned long i;
1725
1726         down_read(&mm->mmap_sem);
1727
1728         for (i = 0; i < nr_pages; i++) {
1729                 unsigned long addr = (unsigned long)(*pages);
1730                 struct vm_area_struct *vma;
1731                 struct page *page;
1732                 int err = -EFAULT;
1733
1734                 vma = find_vma(mm, addr);
1735                 if (!vma || addr < vma->vm_start)
1736                         goto set_status;
1737
1738                 /* FOLL_DUMP to ignore special (like zero) pages */
1739                 page = follow_page(vma, addr, FOLL_DUMP);
1740
1741                 err = PTR_ERR(page);
1742                 if (IS_ERR(page))
1743                         goto set_status;
1744
1745                 err = page ? page_to_nid(page) : -ENOENT;
1746 set_status:
1747                 *status = err;
1748
1749                 pages++;
1750                 status++;
1751         }
1752
1753         up_read(&mm->mmap_sem);
1754 }
1755
1756 /*
1757  * Determine the nodes of a user array of pages and store it in
1758  * a user array of status.
1759  */
1760 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1761                          const void __user * __user *pages,
1762                          int __user *status)
1763 {
1764 #define DO_PAGES_STAT_CHUNK_NR 16
1765         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1766         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1767
1768         while (nr_pages) {
1769                 unsigned long chunk_nr;
1770
1771                 chunk_nr = nr_pages;
1772                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1773                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1774
1775                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1776                         break;
1777
1778                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1779
1780                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1781                         break;
1782
1783                 pages += chunk_nr;
1784                 status += chunk_nr;
1785                 nr_pages -= chunk_nr;
1786         }
1787         return nr_pages ? -EFAULT : 0;
1788 }
1789
1790 /*
1791  * Move a list of pages in the address space of the currently executing
1792  * process.
1793  */
1794 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1795                              const void __user * __user *pages,
1796                              const int __user *nodes,
1797                              int __user *status, int flags)
1798 {
1799         struct task_struct *task;
1800         struct mm_struct *mm;
1801         int err;
1802         nodemask_t task_nodes;
1803
1804         /* Check flags */
1805         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1806                 return -EINVAL;
1807
1808         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1809                 return -EPERM;
1810
1811         /* Find the mm_struct */
1812         rcu_read_lock();
1813         task = pid ? find_task_by_vpid(pid) : current;
1814         if (!task) {
1815                 rcu_read_unlock();
1816                 return -ESRCH;
1817         }
1818         get_task_struct(task);
1819
1820         /*
1821          * Check if this process has the right to modify the specified
1822          * process. Use the regular "ptrace_may_access()" checks.
1823          */
1824         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1825                 rcu_read_unlock();
1826                 err = -EPERM;
1827                 goto out;
1828         }
1829         rcu_read_unlock();
1830
1831         err = security_task_movememory(task);
1832         if (err)
1833                 goto out;
1834
1835         task_nodes = cpuset_mems_allowed(task);
1836         mm = get_task_mm(task);
1837         put_task_struct(task);
1838
1839         if (!mm)
1840                 return -EINVAL;
1841
1842         if (nodes)
1843                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1844                                     nodes, status, flags);
1845         else
1846                 err = do_pages_stat(mm, nr_pages, pages, status);
1847
1848         mmput(mm);
1849         return err;
1850
1851 out:
1852         put_task_struct(task);
1853         return err;
1854 }
1855
1856 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1857                 const void __user * __user *, pages,
1858                 const int __user *, nodes,
1859                 int __user *, status, int, flags)
1860 {
1861         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1862 }
1863
1864 #ifdef CONFIG_COMPAT
1865 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1866                        compat_uptr_t __user *, pages32,
1867                        const int __user *, nodes,
1868                        int __user *, status,
1869                        int, flags)
1870 {
1871         const void __user * __user *pages;
1872         int i;
1873
1874         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1875         for (i = 0; i < nr_pages; i++) {
1876                 compat_uptr_t p;
1877
1878                 if (get_user(p, pages32 + i) ||
1879                         put_user(compat_ptr(p), pages + i))
1880                         return -EFAULT;
1881         }
1882         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1883 }
1884 #endif /* CONFIG_COMPAT */
1885
1886 #ifdef CONFIG_NUMA_BALANCING
1887 /*
1888  * Returns true if this is a safe migration target node for misplaced NUMA
1889  * pages. Currently it only checks the watermarks which crude
1890  */
1891 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1892                                    unsigned long nr_migrate_pages)
1893 {
1894         int z;
1895
1896         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1897                 struct zone *zone = pgdat->node_zones + z;
1898
1899                 if (!populated_zone(zone))
1900                         continue;
1901
1902                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1903                 if (!zone_watermark_ok(zone, 0,
1904                                        high_wmark_pages(zone) +
1905                                        nr_migrate_pages,
1906                                        0, 0))
1907                         continue;
1908                 return true;
1909         }
1910         return false;
1911 }
1912
1913 static struct page *alloc_misplaced_dst_page(struct page *page,
1914                                            unsigned long data)
1915 {
1916         int nid = (int) data;
1917         struct page *newpage;
1918
1919         newpage = __alloc_pages_node(nid,
1920                                          (GFP_HIGHUSER_MOVABLE |
1921                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1922                                           __GFP_NORETRY | __GFP_NOWARN) &
1923                                          ~__GFP_RECLAIM, 0);
1924
1925         return newpage;
1926 }
1927
1928 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1929 {
1930         int page_lru;
1931
1932         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1933
1934         /* Avoid migrating to a node that is nearly full */
1935         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1936                 return 0;
1937
1938         if (isolate_lru_page(page))
1939                 return 0;
1940
1941         /*
1942          * migrate_misplaced_transhuge_page() skips page migration's usual
1943          * check on page_count(), so we must do it here, now that the page
1944          * has been isolated: a GUP pin, or any other pin, prevents migration.
1945          * The expected page count is 3: 1 for page's mapcount and 1 for the
1946          * caller's pin and 1 for the reference taken by isolate_lru_page().
1947          */
1948         if (PageTransHuge(page) && page_count(page) != 3) {
1949                 putback_lru_page(page);
1950                 return 0;
1951         }
1952
1953         page_lru = page_is_file_cache(page);
1954         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1955                                 hpage_nr_pages(page));
1956
1957         /*
1958          * Isolating the page has taken another reference, so the
1959          * caller's reference can be safely dropped without the page
1960          * disappearing underneath us during migration.
1961          */
1962         put_page(page);
1963         return 1;
1964 }
1965
1966 bool pmd_trans_migrating(pmd_t pmd)
1967 {
1968         struct page *page = pmd_page(pmd);
1969         return PageLocked(page);
1970 }
1971
1972 /*
1973  * Attempt to migrate a misplaced page to the specified destination
1974  * node. Caller is expected to have an elevated reference count on
1975  * the page that will be dropped by this function before returning.
1976  */
1977 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1978                            int node)
1979 {
1980         pg_data_t *pgdat = NODE_DATA(node);
1981         int isolated;
1982         int nr_remaining;
1983         LIST_HEAD(migratepages);
1984
1985         /*
1986          * Don't migrate file pages that are mapped in multiple processes
1987          * with execute permissions as they are probably shared libraries.
1988          */
1989         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1990             (vma->vm_flags & VM_EXEC))
1991                 goto out;
1992
1993         /*
1994          * Also do not migrate dirty pages as not all filesystems can move
1995          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1996          */
1997         if (page_is_file_cache(page) && PageDirty(page))
1998                 goto out;
1999
2000         isolated = numamigrate_isolate_page(pgdat, page);
2001         if (!isolated)
2002                 goto out;
2003
2004         list_add(&page->lru, &migratepages);
2005         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2006                                      NULL, node, MIGRATE_ASYNC,
2007                                      MR_NUMA_MISPLACED);
2008         if (nr_remaining) {
2009                 if (!list_empty(&migratepages)) {
2010                         list_del(&page->lru);
2011                         dec_node_page_state(page, NR_ISOLATED_ANON +
2012                                         page_is_file_cache(page));
2013                         putback_lru_page(page);
2014                 }
2015                 isolated = 0;
2016         } else
2017                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2018         BUG_ON(!list_empty(&migratepages));
2019         return isolated;
2020
2021 out:
2022         put_page(page);
2023         return 0;
2024 }
2025 #endif /* CONFIG_NUMA_BALANCING */
2026
2027 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2028 /*
2029  * Migrates a THP to a given target node. page must be locked and is unlocked
2030  * before returning.
2031  */
2032 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2033                                 struct vm_area_struct *vma,
2034                                 pmd_t *pmd, pmd_t entry,
2035                                 unsigned long address,
2036                                 struct page *page, int node)
2037 {
2038         spinlock_t *ptl;
2039         pg_data_t *pgdat = NODE_DATA(node);
2040         int isolated = 0;
2041         struct page *new_page = NULL;
2042         int page_lru = page_is_file_cache(page);
2043         unsigned long start = address & HPAGE_PMD_MASK;
2044
2045         new_page = alloc_pages_node(node,
2046                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2047                 HPAGE_PMD_ORDER);
2048         if (!new_page)
2049                 goto out_fail;
2050         prep_transhuge_page(new_page);
2051
2052         isolated = numamigrate_isolate_page(pgdat, page);
2053         if (!isolated) {
2054                 put_page(new_page);
2055                 goto out_fail;
2056         }
2057
2058         /* Prepare a page as a migration target */
2059         __SetPageLocked(new_page);
2060         if (PageSwapBacked(page))
2061                 __SetPageSwapBacked(new_page);
2062
2063         /* anon mapping, we can simply copy page->mapping to the new page: */
2064         new_page->mapping = page->mapping;
2065         new_page->index = page->index;
2066         /* flush the cache before copying using the kernel virtual address */
2067         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2068         migrate_page_copy(new_page, page);
2069         WARN_ON(PageLRU(new_page));
2070
2071         /* Recheck the target PMD */
2072         ptl = pmd_lock(mm, pmd);
2073         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2074                 spin_unlock(ptl);
2075
2076                 /* Reverse changes made by migrate_page_copy() */
2077                 if (TestClearPageActive(new_page))
2078                         SetPageActive(page);
2079                 if (TestClearPageUnevictable(new_page))
2080                         SetPageUnevictable(page);
2081
2082                 unlock_page(new_page);
2083                 put_page(new_page);             /* Free it */
2084
2085                 /* Retake the callers reference and putback on LRU */
2086                 get_page(page);
2087                 putback_lru_page(page);
2088                 mod_node_page_state(page_pgdat(page),
2089                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2090
2091                 goto out_unlock;
2092         }
2093
2094         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2095         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2096
2097         /*
2098          * Overwrite the old entry under pagetable lock and establish
2099          * the new PTE. Any parallel GUP will either observe the old
2100          * page blocking on the page lock, block on the page table
2101          * lock or observe the new page. The SetPageUptodate on the
2102          * new page and page_add_new_anon_rmap guarantee the copy is
2103          * visible before the pagetable update.
2104          */
2105         page_add_anon_rmap(new_page, vma, start, true);
2106         /*
2107          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2108          * has already been flushed globally.  So no TLB can be currently
2109          * caching this non present pmd mapping.  There's no need to clear the
2110          * pmd before doing set_pmd_at(), nor to flush the TLB after
2111          * set_pmd_at().  Clearing the pmd here would introduce a race
2112          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2113          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2114          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2115          * pmd.
2116          */
2117         set_pmd_at(mm, start, pmd, entry);
2118         update_mmu_cache_pmd(vma, address, &entry);
2119
2120         page_ref_unfreeze(page, 2);
2121         mlock_migrate_page(new_page, page);
2122         page_remove_rmap(page, true);
2123         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2124
2125         spin_unlock(ptl);
2126
2127         /* Take an "isolate" reference and put new page on the LRU. */
2128         get_page(new_page);
2129         putback_lru_page(new_page);
2130
2131         unlock_page(new_page);
2132         unlock_page(page);
2133         put_page(page);                 /* Drop the rmap reference */
2134         put_page(page);                 /* Drop the LRU isolation reference */
2135
2136         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2137         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2138
2139         mod_node_page_state(page_pgdat(page),
2140                         NR_ISOLATED_ANON + page_lru,
2141                         -HPAGE_PMD_NR);
2142         return isolated;
2143
2144 out_fail:
2145         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2146         ptl = pmd_lock(mm, pmd);
2147         if (pmd_same(*pmd, entry)) {
2148                 entry = pmd_modify(entry, vma->vm_page_prot);
2149                 set_pmd_at(mm, start, pmd, entry);
2150                 update_mmu_cache_pmd(vma, address, &entry);
2151         }
2152         spin_unlock(ptl);
2153
2154 out_unlock:
2155         unlock_page(page);
2156         put_page(page);
2157         return 0;
2158 }
2159 #endif /* CONFIG_NUMA_BALANCING */
2160
2161 #endif /* CONFIG_NUMA */
2162
2163 #ifdef CONFIG_DEVICE_PRIVATE
2164 static int migrate_vma_collect_hole(unsigned long start,
2165                                     unsigned long end,
2166                                     struct mm_walk *walk)
2167 {
2168         struct migrate_vma *migrate = walk->private;
2169         unsigned long addr;
2170
2171         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2172                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2173                 migrate->dst[migrate->npages] = 0;
2174                 migrate->npages++;
2175                 migrate->cpages++;
2176         }
2177
2178         return 0;
2179 }
2180
2181 static int migrate_vma_collect_skip(unsigned long start,
2182                                     unsigned long end,
2183                                     struct mm_walk *walk)
2184 {
2185         struct migrate_vma *migrate = walk->private;
2186         unsigned long addr;
2187
2188         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2189                 migrate->dst[migrate->npages] = 0;
2190                 migrate->src[migrate->npages++] = 0;
2191         }
2192
2193         return 0;
2194 }
2195
2196 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2197                                    unsigned long start,
2198                                    unsigned long end,
2199                                    struct mm_walk *walk)
2200 {
2201         struct migrate_vma *migrate = walk->private;
2202         struct vm_area_struct *vma = walk->vma;
2203         struct mm_struct *mm = vma->vm_mm;
2204         unsigned long addr = start, unmapped = 0;
2205         spinlock_t *ptl;
2206         pte_t *ptep;
2207
2208 again:
2209         if (pmd_none(*pmdp))
2210                 return migrate_vma_collect_hole(start, end, walk);
2211
2212         if (pmd_trans_huge(*pmdp)) {
2213                 struct page *page;
2214
2215                 ptl = pmd_lock(mm, pmdp);
2216                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2217                         spin_unlock(ptl);
2218                         goto again;
2219                 }
2220
2221                 page = pmd_page(*pmdp);
2222                 if (is_huge_zero_page(page)) {
2223                         spin_unlock(ptl);
2224                         split_huge_pmd(vma, pmdp, addr);
2225                         if (pmd_trans_unstable(pmdp))
2226                                 return migrate_vma_collect_skip(start, end,
2227                                                                 walk);
2228                 } else {
2229                         int ret;
2230
2231                         get_page(page);
2232                         spin_unlock(ptl);
2233                         if (unlikely(!trylock_page(page)))
2234                                 return migrate_vma_collect_skip(start, end,
2235                                                                 walk);
2236                         ret = split_huge_page(page);
2237                         unlock_page(page);
2238                         put_page(page);
2239                         if (ret)
2240                                 return migrate_vma_collect_skip(start, end,
2241                                                                 walk);
2242                         if (pmd_none(*pmdp))
2243                                 return migrate_vma_collect_hole(start, end,
2244                                                                 walk);
2245                 }
2246         }
2247
2248         if (unlikely(pmd_bad(*pmdp)))
2249                 return migrate_vma_collect_skip(start, end, walk);
2250
2251         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2252         arch_enter_lazy_mmu_mode();
2253
2254         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2255                 unsigned long mpfn, pfn;
2256                 struct page *page;
2257                 swp_entry_t entry;
2258                 pte_t pte;
2259
2260                 pte = *ptep;
2261
2262                 if (pte_none(pte)) {
2263                         mpfn = MIGRATE_PFN_MIGRATE;
2264                         migrate->cpages++;
2265                         goto next;
2266                 }
2267
2268                 if (!pte_present(pte)) {
2269                         mpfn = 0;
2270
2271                         /*
2272                          * Only care about unaddressable device page special
2273                          * page table entry. Other special swap entries are not
2274                          * migratable, and we ignore regular swapped page.
2275                          */
2276                         entry = pte_to_swp_entry(pte);
2277                         if (!is_device_private_entry(entry))
2278                                 goto next;
2279
2280                         page = device_private_entry_to_page(entry);
2281                         mpfn = migrate_pfn(page_to_pfn(page)) |
2282                                         MIGRATE_PFN_MIGRATE;
2283                         if (is_write_device_private_entry(entry))
2284                                 mpfn |= MIGRATE_PFN_WRITE;
2285                 } else {
2286                         pfn = pte_pfn(pte);
2287                         if (is_zero_pfn(pfn)) {
2288                                 mpfn = MIGRATE_PFN_MIGRATE;
2289                                 migrate->cpages++;
2290                                 goto next;
2291                         }
2292                         page = vm_normal_page(migrate->vma, addr, pte);
2293                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2294                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2295                 }
2296
2297                 /* FIXME support THP */
2298                 if (!page || !page->mapping || PageTransCompound(page)) {
2299                         mpfn = 0;
2300                         goto next;
2301                 }
2302
2303                 /*
2304                  * By getting a reference on the page we pin it and that blocks
2305                  * any kind of migration. Side effect is that it "freezes" the
2306                  * pte.
2307                  *
2308                  * We drop this reference after isolating the page from the lru
2309                  * for non device page (device page are not on the lru and thus
2310                  * can't be dropped from it).
2311                  */
2312                 get_page(page);
2313                 migrate->cpages++;
2314
2315                 /*
2316                  * Optimize for the common case where page is only mapped once
2317                  * in one process. If we can lock the page, then we can safely
2318                  * set up a special migration page table entry now.
2319                  */
2320                 if (trylock_page(page)) {
2321                         pte_t swp_pte;
2322
2323                         mpfn |= MIGRATE_PFN_LOCKED;
2324                         ptep_get_and_clear(mm, addr, ptep);
2325
2326                         /* Setup special migration page table entry */
2327                         entry = make_migration_entry(page, mpfn &
2328                                                      MIGRATE_PFN_WRITE);
2329                         swp_pte = swp_entry_to_pte(entry);
2330                         if (pte_soft_dirty(pte))
2331                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2332                         set_pte_at(mm, addr, ptep, swp_pte);
2333
2334                         /*
2335                          * This is like regular unmap: we remove the rmap and
2336                          * drop page refcount. Page won't be freed, as we took
2337                          * a reference just above.
2338                          */
2339                         page_remove_rmap(page, false);
2340                         put_page(page);
2341
2342                         if (pte_present(pte))
2343                                 unmapped++;
2344                 }
2345
2346 next:
2347                 migrate->dst[migrate->npages] = 0;
2348                 migrate->src[migrate->npages++] = mpfn;
2349         }
2350
2351         /* Only flush the TLB if we actually modified any entries */
2352         if (unmapped)
2353                 flush_tlb_range(walk->vma, start, end);
2354
2355         arch_leave_lazy_mmu_mode();
2356         pte_unmap_unlock(ptep - 1, ptl);
2357
2358         return 0;
2359 }
2360
2361 static const struct mm_walk_ops migrate_vma_walk_ops = {
2362         .pmd_entry              = migrate_vma_collect_pmd,
2363         .pte_hole               = migrate_vma_collect_hole,
2364 };
2365
2366 /*
2367  * migrate_vma_collect() - collect pages over a range of virtual addresses
2368  * @migrate: migrate struct containing all migration information
2369  *
2370  * This will walk the CPU page table. For each virtual address backed by a
2371  * valid page, it updates the src array and takes a reference on the page, in
2372  * order to pin the page until we lock it and unmap it.
2373  */
2374 static void migrate_vma_collect(struct migrate_vma *migrate)
2375 {
2376         struct mmu_notifier_range range;
2377
2378         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2379                         migrate->vma->vm_mm, migrate->start, migrate->end);
2380         mmu_notifier_invalidate_range_start(&range);
2381
2382         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2383                         &migrate_vma_walk_ops, migrate);
2384
2385         mmu_notifier_invalidate_range_end(&range);
2386         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2387 }
2388
2389 /*
2390  * migrate_vma_check_page() - check if page is pinned or not
2391  * @page: struct page to check
2392  *
2393  * Pinned pages cannot be migrated. This is the same test as in
2394  * migrate_page_move_mapping(), except that here we allow migration of a
2395  * ZONE_DEVICE page.
2396  */
2397 static bool migrate_vma_check_page(struct page *page)
2398 {
2399         /*
2400          * One extra ref because caller holds an extra reference, either from
2401          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2402          * a device page.
2403          */
2404         int extra = 1;
2405
2406         /*
2407          * FIXME support THP (transparent huge page), it is bit more complex to
2408          * check them than regular pages, because they can be mapped with a pmd
2409          * or with a pte (split pte mapping).
2410          */
2411         if (PageCompound(page))
2412                 return false;
2413
2414         /* Page from ZONE_DEVICE have one extra reference */
2415         if (is_zone_device_page(page)) {
2416                 /*
2417                  * Private page can never be pin as they have no valid pte and
2418                  * GUP will fail for those. Yet if there is a pending migration
2419                  * a thread might try to wait on the pte migration entry and
2420                  * will bump the page reference count. Sadly there is no way to
2421                  * differentiate a regular pin from migration wait. Hence to
2422                  * avoid 2 racing thread trying to migrate back to CPU to enter
2423                  * infinite loop (one stoping migration because the other is
2424                  * waiting on pte migration entry). We always return true here.
2425                  *
2426                  * FIXME proper solution is to rework migration_entry_wait() so
2427                  * it does not need to take a reference on page.
2428                  */
2429                 return is_device_private_page(page);
2430         }
2431
2432         /* For file back page */
2433         if (page_mapping(page))
2434                 extra += 1 + page_has_private(page);
2435
2436         if ((page_count(page) - extra) > page_mapcount(page))
2437                 return false;
2438
2439         return true;
2440 }
2441
2442 /*
2443  * migrate_vma_prepare() - lock pages and isolate them from the lru
2444  * @migrate: migrate struct containing all migration information
2445  *
2446  * This locks pages that have been collected by migrate_vma_collect(). Once each
2447  * page is locked it is isolated from the lru (for non-device pages). Finally,
2448  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2449  * migrated by concurrent kernel threads.
2450  */
2451 static void migrate_vma_prepare(struct migrate_vma *migrate)
2452 {
2453         const unsigned long npages = migrate->npages;
2454         const unsigned long start = migrate->start;
2455         unsigned long addr, i, restore = 0;
2456         bool allow_drain = true;
2457
2458         lru_add_drain();
2459
2460         for (i = 0; (i < npages) && migrate->cpages; i++) {
2461                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2462                 bool remap = true;
2463
2464                 if (!page)
2465                         continue;
2466
2467                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2468                         /*
2469                          * Because we are migrating several pages there can be
2470                          * a deadlock between 2 concurrent migration where each
2471                          * are waiting on each other page lock.
2472                          *
2473                          * Make migrate_vma() a best effort thing and backoff
2474                          * for any page we can not lock right away.
2475                          */
2476                         if (!trylock_page(page)) {
2477                                 migrate->src[i] = 0;
2478                                 migrate->cpages--;
2479                                 put_page(page);
2480                                 continue;
2481                         }
2482                         remap = false;
2483                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2484                 }
2485
2486                 /* ZONE_DEVICE pages are not on LRU */
2487                 if (!is_zone_device_page(page)) {
2488                         if (!PageLRU(page) && allow_drain) {
2489                                 /* Drain CPU's pagevec */
2490                                 lru_add_drain_all();
2491                                 allow_drain = false;
2492                         }
2493
2494                         if (isolate_lru_page(page)) {
2495                                 if (remap) {
2496                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2497                                         migrate->cpages--;
2498                                         restore++;
2499                                 } else {
2500                                         migrate->src[i] = 0;
2501                                         unlock_page(page);
2502                                         migrate->cpages--;
2503                                         put_page(page);
2504                                 }
2505                                 continue;
2506                         }
2507
2508                         /* Drop the reference we took in collect */
2509                         put_page(page);
2510                 }
2511
2512                 if (!migrate_vma_check_page(page)) {
2513                         if (remap) {
2514                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2515                                 migrate->cpages--;
2516                                 restore++;
2517
2518                                 if (!is_zone_device_page(page)) {
2519                                         get_page(page);
2520                                         putback_lru_page(page);
2521                                 }
2522                         } else {
2523                                 migrate->src[i] = 0;
2524                                 unlock_page(page);
2525                                 migrate->cpages--;
2526
2527                                 if (!is_zone_device_page(page))
2528                                         putback_lru_page(page);
2529                                 else
2530                                         put_page(page);
2531                         }
2532                 }
2533         }
2534
2535         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2536                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2537
2538                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2539                         continue;
2540
2541                 remove_migration_pte(page, migrate->vma, addr, page);
2542
2543                 migrate->src[i] = 0;
2544                 unlock_page(page);
2545                 put_page(page);
2546                 restore--;
2547         }
2548 }
2549
2550 /*
2551  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2552  * @migrate: migrate struct containing all migration information
2553  *
2554  * Replace page mapping (CPU page table pte) with a special migration pte entry
2555  * and check again if it has been pinned. Pinned pages are restored because we
2556  * cannot migrate them.
2557  *
2558  * This is the last step before we call the device driver callback to allocate
2559  * destination memory and copy contents of original page over to new page.
2560  */
2561 static void migrate_vma_unmap(struct migrate_vma *migrate)
2562 {
2563         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2564         const unsigned long npages = migrate->npages;
2565         const unsigned long start = migrate->start;
2566         unsigned long addr, i, restore = 0;
2567
2568         for (i = 0; i < npages; i++) {
2569                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2570
2571                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2572                         continue;
2573
2574                 if (page_mapped(page)) {
2575                         try_to_unmap(page, flags);
2576                         if (page_mapped(page))
2577                                 goto restore;
2578                 }
2579
2580                 if (migrate_vma_check_page(page))
2581                         continue;
2582
2583 restore:
2584                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2585                 migrate->cpages--;
2586                 restore++;
2587         }
2588
2589         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2590                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2591
2592                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2593                         continue;
2594
2595                 remove_migration_ptes(page, page, false);
2596
2597                 migrate->src[i] = 0;
2598                 unlock_page(page);
2599                 restore--;
2600
2601                 if (is_zone_device_page(page))
2602                         put_page(page);
2603                 else
2604                         putback_lru_page(page);
2605         }
2606 }
2607
2608 /**
2609  * migrate_vma_setup() - prepare to migrate a range of memory
2610  * @args: contains the vma, start, and and pfns arrays for the migration
2611  *
2612  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2613  * without an error.
2614  *
2615  * Prepare to migrate a range of memory virtual address range by collecting all
2616  * the pages backing each virtual address in the range, saving them inside the
2617  * src array.  Then lock those pages and unmap them. Once the pages are locked
2618  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2619  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2620  * corresponding src array entry.  Then restores any pages that are pinned, by
2621  * remapping and unlocking those pages.
2622  *
2623  * The caller should then allocate destination memory and copy source memory to
2624  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2625  * flag set).  Once these are allocated and copied, the caller must update each
2626  * corresponding entry in the dst array with the pfn value of the destination
2627  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2628  * (destination pages must have their struct pages locked, via lock_page()).
2629  *
2630  * Note that the caller does not have to migrate all the pages that are marked
2631  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2632  * device memory to system memory.  If the caller cannot migrate a device page
2633  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2634  * consequences for the userspace process, so it must be avoided if at all
2635  * possible.
2636  *
2637  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2638  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2639  * allowing the caller to allocate device memory for those unback virtual
2640  * address.  For this the caller simply has to allocate device memory and
2641  * properly set the destination entry like for regular migration.  Note that
2642  * this can still fails and thus inside the device driver must check if the
2643  * migration was successful for those entries after calling migrate_vma_pages()
2644  * just like for regular migration.
2645  *
2646  * After that, the callers must call migrate_vma_pages() to go over each entry
2647  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2648  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2649  * then migrate_vma_pages() to migrate struct page information from the source
2650  * struct page to the destination struct page.  If it fails to migrate the
2651  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2652  * src array.
2653  *
2654  * At this point all successfully migrated pages have an entry in the src
2655  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2656  * array entry with MIGRATE_PFN_VALID flag set.
2657  *
2658  * Once migrate_vma_pages() returns the caller may inspect which pages were
2659  * successfully migrated, and which were not.  Successfully migrated pages will
2660  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2661  *
2662  * It is safe to update device page table after migrate_vma_pages() because
2663  * both destination and source page are still locked, and the mmap_sem is held
2664  * in read mode (hence no one can unmap the range being migrated).
2665  *
2666  * Once the caller is done cleaning up things and updating its page table (if it
2667  * chose to do so, this is not an obligation) it finally calls
2668  * migrate_vma_finalize() to update the CPU page table to point to new pages
2669  * for successfully migrated pages or otherwise restore the CPU page table to
2670  * point to the original source pages.
2671  */
2672 int migrate_vma_setup(struct migrate_vma *args)
2673 {
2674         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2675
2676         args->start &= PAGE_MASK;
2677         args->end &= PAGE_MASK;
2678         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2679             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2680                 return -EINVAL;
2681         if (nr_pages <= 0)
2682                 return -EINVAL;
2683         if (args->start < args->vma->vm_start ||
2684             args->start >= args->vma->vm_end)
2685                 return -EINVAL;
2686         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2687                 return -EINVAL;
2688         if (!args->src || !args->dst)
2689                 return -EINVAL;
2690
2691         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2692         args->cpages = 0;
2693         args->npages = 0;
2694
2695         migrate_vma_collect(args);
2696
2697         if (args->cpages)
2698                 migrate_vma_prepare(args);
2699         if (args->cpages)
2700                 migrate_vma_unmap(args);
2701
2702         /*
2703          * At this point pages are locked and unmapped, and thus they have
2704          * stable content and can safely be copied to destination memory that
2705          * is allocated by the drivers.
2706          */
2707         return 0;
2708
2709 }
2710 EXPORT_SYMBOL(migrate_vma_setup);
2711
2712 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2713                                     unsigned long addr,
2714                                     struct page *page,
2715                                     unsigned long *src,
2716                                     unsigned long *dst)
2717 {
2718         struct vm_area_struct *vma = migrate->vma;
2719         struct mm_struct *mm = vma->vm_mm;
2720         struct mem_cgroup *memcg;
2721         bool flush = false;
2722         spinlock_t *ptl;
2723         pte_t entry;
2724         pgd_t *pgdp;
2725         p4d_t *p4dp;
2726         pud_t *pudp;
2727         pmd_t *pmdp;
2728         pte_t *ptep;
2729
2730         /* Only allow populating anonymous memory */
2731         if (!vma_is_anonymous(vma))
2732                 goto abort;
2733
2734         pgdp = pgd_offset(mm, addr);
2735         p4dp = p4d_alloc(mm, pgdp, addr);
2736         if (!p4dp)
2737                 goto abort;
2738         pudp = pud_alloc(mm, p4dp, addr);
2739         if (!pudp)
2740                 goto abort;
2741         pmdp = pmd_alloc(mm, pudp, addr);
2742         if (!pmdp)
2743                 goto abort;
2744
2745         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2746                 goto abort;
2747
2748         /*
2749          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2750          * pte_offset_map() on pmds where a huge pmd might be created
2751          * from a different thread.
2752          *
2753          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2754          * parallel threads are excluded by other means.
2755          *
2756          * Here we only have down_read(mmap_sem).
2757          */
2758         if (pte_alloc(mm, pmdp))
2759                 goto abort;
2760
2761         /* See the comment in pte_alloc_one_map() */
2762         if (unlikely(pmd_trans_unstable(pmdp)))
2763                 goto abort;
2764
2765         if (unlikely(anon_vma_prepare(vma)))
2766                 goto abort;
2767         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2768                 goto abort;
2769
2770         /*
2771          * The memory barrier inside __SetPageUptodate makes sure that
2772          * preceding stores to the page contents become visible before
2773          * the set_pte_at() write.
2774          */
2775         __SetPageUptodate(page);
2776
2777         if (is_zone_device_page(page)) {
2778                 if (is_device_private_page(page)) {
2779                         swp_entry_t swp_entry;
2780
2781                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2782                         entry = swp_entry_to_pte(swp_entry);
2783                 } else {
2784                         /*
2785                          * For now we only support migrating to un-addressable
2786                          * device memory.
2787                          */
2788                         pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2789                         goto abort;
2790                 }
2791         } else {
2792                 entry = mk_pte(page, vma->vm_page_prot);
2793                 if (vma->vm_flags & VM_WRITE)
2794                         entry = pte_mkwrite(pte_mkdirty(entry));
2795         }
2796
2797         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2798
2799         if (pte_present(*ptep)) {
2800                 unsigned long pfn = pte_pfn(*ptep);
2801
2802                 if (!is_zero_pfn(pfn)) {
2803                         pte_unmap_unlock(ptep, ptl);
2804                         mem_cgroup_cancel_charge(page, memcg, false);
2805                         goto abort;
2806                 }
2807                 flush = true;
2808         } else if (!pte_none(*ptep)) {
2809                 pte_unmap_unlock(ptep, ptl);
2810                 mem_cgroup_cancel_charge(page, memcg, false);
2811                 goto abort;
2812         }
2813
2814         /*
2815          * Check for usefaultfd but do not deliver the fault. Instead,
2816          * just back off.
2817          */
2818         if (userfaultfd_missing(vma)) {
2819                 pte_unmap_unlock(ptep, ptl);
2820                 mem_cgroup_cancel_charge(page, memcg, false);
2821                 goto abort;
2822         }
2823
2824         inc_mm_counter(mm, MM_ANONPAGES);
2825         page_add_new_anon_rmap(page, vma, addr, false);
2826         mem_cgroup_commit_charge(page, memcg, false, false);
2827         if (!is_zone_device_page(page))
2828                 lru_cache_add_active_or_unevictable(page, vma);
2829         get_page(page);
2830
2831         if (flush) {
2832                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2833                 ptep_clear_flush_notify(vma, addr, ptep);
2834                 set_pte_at_notify(mm, addr, ptep, entry);
2835                 update_mmu_cache(vma, addr, ptep);
2836         } else {
2837                 /* No need to invalidate - it was non-present before */
2838                 set_pte_at(mm, addr, ptep, entry);
2839                 update_mmu_cache(vma, addr, ptep);
2840         }
2841
2842         pte_unmap_unlock(ptep, ptl);
2843         *src = MIGRATE_PFN_MIGRATE;
2844         return;
2845
2846 abort:
2847         *src &= ~MIGRATE_PFN_MIGRATE;
2848 }
2849
2850 /**
2851  * migrate_vma_pages() - migrate meta-data from src page to dst page
2852  * @migrate: migrate struct containing all migration information
2853  *
2854  * This migrates struct page meta-data from source struct page to destination
2855  * struct page. This effectively finishes the migration from source page to the
2856  * destination page.
2857  */
2858 void migrate_vma_pages(struct migrate_vma *migrate)
2859 {
2860         const unsigned long npages = migrate->npages;
2861         const unsigned long start = migrate->start;
2862         struct mmu_notifier_range range;
2863         unsigned long addr, i;
2864         bool notified = false;
2865
2866         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2867                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2868                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2869                 struct address_space *mapping;
2870                 int r;
2871
2872                 if (!newpage) {
2873                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2874                         continue;
2875                 }
2876
2877                 if (!page) {
2878                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2879                                 continue;
2880                         }
2881                         if (!notified) {
2882                                 notified = true;
2883
2884                                 mmu_notifier_range_init(&range,
2885                                                         MMU_NOTIFY_CLEAR, 0,
2886                                                         NULL,
2887                                                         migrate->vma->vm_mm,
2888                                                         addr, migrate->end);
2889                                 mmu_notifier_invalidate_range_start(&range);
2890                         }
2891                         migrate_vma_insert_page(migrate, addr, newpage,
2892                                                 &migrate->src[i],
2893                                                 &migrate->dst[i]);
2894                         continue;
2895                 }
2896
2897                 mapping = page_mapping(page);
2898
2899                 if (is_zone_device_page(newpage)) {
2900                         if (is_device_private_page(newpage)) {
2901                                 /*
2902                                  * For now only support private anonymous when
2903                                  * migrating to un-addressable device memory.
2904                                  */
2905                                 if (mapping) {
2906                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2907                                         continue;
2908                                 }
2909                         } else {
2910                                 /*
2911                                  * Other types of ZONE_DEVICE page are not
2912                                  * supported.
2913                                  */
2914                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2915                                 continue;
2916                         }
2917                 }
2918
2919                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2920                 if (r != MIGRATEPAGE_SUCCESS)
2921                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2922         }
2923
2924         /*
2925          * No need to double call mmu_notifier->invalidate_range() callback as
2926          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2927          * did already call it.
2928          */
2929         if (notified)
2930                 mmu_notifier_invalidate_range_only_end(&range);
2931 }
2932 EXPORT_SYMBOL(migrate_vma_pages);
2933
2934 /**
2935  * migrate_vma_finalize() - restore CPU page table entry
2936  * @migrate: migrate struct containing all migration information
2937  *
2938  * This replaces the special migration pte entry with either a mapping to the
2939  * new page if migration was successful for that page, or to the original page
2940  * otherwise.
2941  *
2942  * This also unlocks the pages and puts them back on the lru, or drops the extra
2943  * refcount, for device pages.
2944  */
2945 void migrate_vma_finalize(struct migrate_vma *migrate)
2946 {
2947         const unsigned long npages = migrate->npages;
2948         unsigned long i;
2949
2950         for (i = 0; i < npages; i++) {
2951                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2952                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2953
2954                 if (!page) {
2955                         if (newpage) {
2956                                 unlock_page(newpage);
2957                                 put_page(newpage);
2958                         }
2959                         continue;
2960                 }
2961
2962                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2963                         if (newpage) {
2964                                 unlock_page(newpage);
2965                                 put_page(newpage);
2966                         }
2967                         newpage = page;
2968                 }
2969
2970                 remove_migration_ptes(page, newpage, false);
2971                 unlock_page(page);
2972                 migrate->cpages--;
2973
2974                 if (is_zone_device_page(page))
2975                         put_page(page);
2976                 else
2977                         putback_lru_page(page);
2978
2979                 if (newpage != page) {
2980                         unlock_page(newpage);
2981                         if (is_zone_device_page(newpage))
2982                                 put_page(newpage);
2983                         else
2984                                 putback_lru_page(newpage);
2985                 }
2986         }
2987 }
2988 EXPORT_SYMBOL(migrate_vma_finalize);
2989 #endif /* CONFIG_DEVICE_PRIVATE */