GNU Linux-libre 4.19.314-gnu1
[releases.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                         }
252                 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255                 if (PageHuge(new)) {
256                         pte = pte_mkhuge(pte);
257                         pte = arch_make_huge_pte(pte, vma, new, 0);
258                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259                         if (PageAnon(new))
260                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
261                         else
262                                 page_dup_rmap(new, true);
263                 } else
264 #endif
265                 {
266                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268                         if (PageAnon(new))
269                                 page_add_anon_rmap(new, vma, pvmw.address, false);
270                         else
271                                 page_add_file_rmap(new, false);
272                 }
273                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274                         mlock_vma_page(new);
275
276                 if (PageTransHuge(page) && PageMlocked(page))
277                         clear_page_mlock(page);
278
279                 /* No need to invalidate - it was non-present before */
280                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281         }
282
283         return true;
284 }
285
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292         struct rmap_walk_control rwc = {
293                 .rmap_one = remove_migration_pte,
294                 .arg = old,
295         };
296
297         if (locked)
298                 rmap_walk_locked(new, &rwc);
299         else
300                 rmap_walk(new, &rwc);
301 }
302
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309                                 spinlock_t *ptl)
310 {
311         pte_t pte;
312         swp_entry_t entry;
313         struct page *page;
314
315         spin_lock(ptl);
316         pte = *ptep;
317         if (!is_swap_pte(pte))
318                 goto out;
319
320         entry = pte_to_swp_entry(pte);
321         if (!is_migration_entry(entry))
322                 goto out;
323
324         page = migration_entry_to_page(entry);
325
326         /*
327          * Once radix-tree replacement of page migration started, page_count
328          * *must* be zero. And, we don't want to call wait_on_page_locked()
329          * against a page without get_page().
330          * So, we use get_page_unless_zero(), here. Even failed, page fault
331          * will occur again.
332          */
333         if (!get_page_unless_zero(page))
334                 goto out;
335         pte_unmap_unlock(ptep, ptl);
336         wait_on_page_locked(page);
337         put_page(page);
338         return;
339 out:
340         pte_unmap_unlock(ptep, ptl);
341 }
342
343 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
344                                 unsigned long address)
345 {
346         spinlock_t *ptl = pte_lockptr(mm, pmd);
347         pte_t *ptep = pte_offset_map(pmd, address);
348         __migration_entry_wait(mm, ptep, ptl);
349 }
350
351 void migration_entry_wait_huge(struct vm_area_struct *vma,
352                 struct mm_struct *mm, pte_t *pte)
353 {
354         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
355         __migration_entry_wait(mm, pte, ptl);
356 }
357
358 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
359 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
360 {
361         spinlock_t *ptl;
362         struct page *page;
363
364         ptl = pmd_lock(mm, pmd);
365         if (!is_pmd_migration_entry(*pmd))
366                 goto unlock;
367         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
368         if (!get_page_unless_zero(page))
369                 goto unlock;
370         spin_unlock(ptl);
371         wait_on_page_locked(page);
372         put_page(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 #ifdef CONFIG_BLOCK
380 /* Returns true if all buffers are successfully locked */
381 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
382                                                         enum migrate_mode mode)
383 {
384         struct buffer_head *bh = head;
385
386         /* Simple case, sync compaction */
387         if (mode != MIGRATE_ASYNC) {
388                 do {
389                         get_bh(bh);
390                         lock_buffer(bh);
391                         bh = bh->b_this_page;
392
393                 } while (bh != head);
394
395                 return true;
396         }
397
398         /* async case, we cannot block on lock_buffer so use trylock_buffer */
399         do {
400                 get_bh(bh);
401                 if (!trylock_buffer(bh)) {
402                         /*
403                          * We failed to lock the buffer and cannot stall in
404                          * async migration. Release the taken locks
405                          */
406                         struct buffer_head *failed_bh = bh;
407                         put_bh(failed_bh);
408                         bh = head;
409                         while (bh != failed_bh) {
410                                 unlock_buffer(bh);
411                                 put_bh(bh);
412                                 bh = bh->b_this_page;
413                         }
414                         return false;
415                 }
416
417                 bh = bh->b_this_page;
418         } while (bh != head);
419         return true;
420 }
421 #else
422 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
423                                                         enum migrate_mode mode)
424 {
425         return true;
426 }
427 #endif /* CONFIG_BLOCK */
428
429 /*
430  * Replace the page in the mapping.
431  *
432  * The number of remaining references must be:
433  * 1 for anonymous pages without a mapping
434  * 2 for pages with a mapping
435  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
436  */
437 int migrate_page_move_mapping(struct address_space *mapping,
438                 struct page *newpage, struct page *page,
439                 struct buffer_head *head, enum migrate_mode mode,
440                 int extra_count)
441 {
442         struct zone *oldzone, *newzone;
443         int dirty;
444         int expected_count = 1 + extra_count;
445         void **pslot;
446
447         /*
448          * Device public or private pages have an extra refcount as they are
449          * ZONE_DEVICE pages.
450          */
451         expected_count += is_device_private_page(page);
452         expected_count += is_device_public_page(page);
453
454         if (!mapping) {
455                 /* Anonymous page without mapping */
456                 if (page_count(page) != expected_count)
457                         return -EAGAIN;
458
459                 /* No turning back from here */
460                 newpage->index = page->index;
461                 newpage->mapping = page->mapping;
462                 if (PageSwapBacked(page))
463                         __SetPageSwapBacked(newpage);
464
465                 return MIGRATEPAGE_SUCCESS;
466         }
467
468         oldzone = page_zone(page);
469         newzone = page_zone(newpage);
470
471         xa_lock_irq(&mapping->i_pages);
472
473         pslot = radix_tree_lookup_slot(&mapping->i_pages,
474                                         page_index(page));
475         if (pslot == NULL) {
476                 xa_unlock_irq(&mapping->i_pages);
477                 return -EAGAIN;
478         }
479
480         expected_count += hpage_nr_pages(page) + page_has_private(page);
481         if (page_count(page) != expected_count ||
482                 radix_tree_deref_slot_protected(pslot,
483                                         &mapping->i_pages.xa_lock) != page) {
484                 xa_unlock_irq(&mapping->i_pages);
485                 return -EAGAIN;
486         }
487
488         if (!page_ref_freeze(page, expected_count)) {
489                 xa_unlock_irq(&mapping->i_pages);
490                 return -EAGAIN;
491         }
492
493         /*
494          * In the async migration case of moving a page with buffers, lock the
495          * buffers using trylock before the mapping is moved. If the mapping
496          * was moved, we later failed to lock the buffers and could not move
497          * the mapping back due to an elevated page count, we would have to
498          * block waiting on other references to be dropped.
499          */
500         if (mode == MIGRATE_ASYNC && head &&
501                         !buffer_migrate_lock_buffers(head, mode)) {
502                 page_ref_unfreeze(page, expected_count);
503                 xa_unlock_irq(&mapping->i_pages);
504                 return -EAGAIN;
505         }
506
507         /*
508          * Now we know that no one else is looking at the page:
509          * no turning back from here.
510          */
511         newpage->index = page->index;
512         newpage->mapping = page->mapping;
513         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
514         if (PageSwapBacked(page)) {
515                 __SetPageSwapBacked(newpage);
516                 if (PageSwapCache(page)) {
517                         int i;
518
519                         SetPageSwapCache(newpage);
520                         for (i = 0; i < (1 << compound_order(page)); i++)
521                                 set_page_private(newpage + i,
522                                                  page_private(page + i));
523                 }
524         } else {
525                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
526         }
527
528         /* Move dirty while page refs frozen and newpage not yet exposed */
529         dirty = PageDirty(page);
530         if (dirty) {
531                 ClearPageDirty(page);
532                 SetPageDirty(newpage);
533         }
534
535         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
536         if (PageTransHuge(page)) {
537                 int i;
538                 int index = page_index(page);
539
540                 for (i = 1; i < HPAGE_PMD_NR; i++) {
541                         pslot = radix_tree_lookup_slot(&mapping->i_pages,
542                                                        index + i);
543                         radix_tree_replace_slot(&mapping->i_pages, pslot,
544                                                 newpage + i);
545                 }
546         }
547
548         /*
549          * Drop cache reference from old page by unfreezing
550          * to one less reference.
551          * We know this isn't the last reference.
552          */
553         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
554
555         xa_unlock(&mapping->i_pages);
556         /* Leave irq disabled to prevent preemption while updating stats */
557
558         /*
559          * If moved to a different zone then also account
560          * the page for that zone. Other VM counters will be
561          * taken care of when we establish references to the
562          * new page and drop references to the old page.
563          *
564          * Note that anonymous pages are accounted for
565          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
566          * are mapped to swap space.
567          */
568         if (newzone != oldzone) {
569                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
570                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
571                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
572                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
573                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
574                 }
575                 if (dirty && mapping_cap_account_dirty(mapping)) {
576                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
577                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
578                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
579                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
580                 }
581         }
582         local_irq_enable();
583
584         return MIGRATEPAGE_SUCCESS;
585 }
586 EXPORT_SYMBOL(migrate_page_move_mapping);
587
588 /*
589  * The expected number of remaining references is the same as that
590  * of migrate_page_move_mapping().
591  */
592 int migrate_huge_page_move_mapping(struct address_space *mapping,
593                                    struct page *newpage, struct page *page)
594 {
595         int expected_count;
596         void **pslot;
597
598         xa_lock_irq(&mapping->i_pages);
599
600         pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
601         if (pslot == NULL) {
602                 xa_unlock_irq(&mapping->i_pages);
603                 return -EAGAIN;
604         }
605
606         expected_count = 2 + page_has_private(page);
607         if (page_count(page) != expected_count ||
608                 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
609                 xa_unlock_irq(&mapping->i_pages);
610                 return -EAGAIN;
611         }
612
613         if (!page_ref_freeze(page, expected_count)) {
614                 xa_unlock_irq(&mapping->i_pages);
615                 return -EAGAIN;
616         }
617
618         newpage->index = page->index;
619         newpage->mapping = page->mapping;
620
621         get_page(newpage);
622
623         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
624
625         page_ref_unfreeze(page, expected_count - 1);
626
627         xa_unlock_irq(&mapping->i_pages);
628
629         return MIGRATEPAGE_SUCCESS;
630 }
631
632 /*
633  * Gigantic pages are so large that we do not guarantee that page++ pointer
634  * arithmetic will work across the entire page.  We need something more
635  * specialized.
636  */
637 static void __copy_gigantic_page(struct page *dst, struct page *src,
638                                 int nr_pages)
639 {
640         int i;
641         struct page *dst_base = dst;
642         struct page *src_base = src;
643
644         for (i = 0; i < nr_pages; ) {
645                 cond_resched();
646                 copy_highpage(dst, src);
647
648                 i++;
649                 dst = mem_map_next(dst, dst_base, i);
650                 src = mem_map_next(src, src_base, i);
651         }
652 }
653
654 static void copy_huge_page(struct page *dst, struct page *src)
655 {
656         int i;
657         int nr_pages;
658
659         if (PageHuge(src)) {
660                 /* hugetlbfs page */
661                 struct hstate *h = page_hstate(src);
662                 nr_pages = pages_per_huge_page(h);
663
664                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
665                         __copy_gigantic_page(dst, src, nr_pages);
666                         return;
667                 }
668         } else {
669                 /* thp page */
670                 BUG_ON(!PageTransHuge(src));
671                 nr_pages = hpage_nr_pages(src);
672         }
673
674         for (i = 0; i < nr_pages; i++) {
675                 cond_resched();
676                 copy_highpage(dst + i, src + i);
677         }
678 }
679
680 /*
681  * Copy the page to its new location
682  */
683 void migrate_page_states(struct page *newpage, struct page *page)
684 {
685         int cpupid;
686
687         if (PageError(page))
688                 SetPageError(newpage);
689         if (PageReferenced(page))
690                 SetPageReferenced(newpage);
691         if (PageUptodate(page))
692                 SetPageUptodate(newpage);
693         if (TestClearPageActive(page)) {
694                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
695                 SetPageActive(newpage);
696         } else if (TestClearPageUnevictable(page))
697                 SetPageUnevictable(newpage);
698         if (PageChecked(page))
699                 SetPageChecked(newpage);
700         if (PageMappedToDisk(page))
701                 SetPageMappedToDisk(newpage);
702
703         /* Move dirty on pages not done by migrate_page_move_mapping() */
704         if (PageDirty(page))
705                 SetPageDirty(newpage);
706
707         if (page_is_young(page))
708                 set_page_young(newpage);
709         if (page_is_idle(page))
710                 set_page_idle(newpage);
711
712         /*
713          * Copy NUMA information to the new page, to prevent over-eager
714          * future migrations of this same page.
715          */
716         cpupid = page_cpupid_xchg_last(page, -1);
717         page_cpupid_xchg_last(newpage, cpupid);
718
719         ksm_migrate_page(newpage, page);
720         /*
721          * Please do not reorder this without considering how mm/ksm.c's
722          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
723          */
724         if (PageSwapCache(page))
725                 ClearPageSwapCache(page);
726         ClearPagePrivate(page);
727         set_page_private(page, 0);
728
729         /*
730          * If any waiters have accumulated on the new page then
731          * wake them up.
732          */
733         if (PageWriteback(newpage))
734                 end_page_writeback(newpage);
735
736         copy_page_owner(page, newpage);
737
738         mem_cgroup_migrate(page, newpage);
739 }
740 EXPORT_SYMBOL(migrate_page_states);
741
742 void migrate_page_copy(struct page *newpage, struct page *page)
743 {
744         if (PageHuge(page) || PageTransHuge(page))
745                 copy_huge_page(newpage, page);
746         else
747                 copy_highpage(newpage, page);
748
749         migrate_page_states(newpage, page);
750 }
751 EXPORT_SYMBOL(migrate_page_copy);
752
753 /************************************************************
754  *                    Migration functions
755  ***********************************************************/
756
757 /*
758  * Common logic to directly migrate a single LRU page suitable for
759  * pages that do not use PagePrivate/PagePrivate2.
760  *
761  * Pages are locked upon entry and exit.
762  */
763 int migrate_page(struct address_space *mapping,
764                 struct page *newpage, struct page *page,
765                 enum migrate_mode mode)
766 {
767         int rc;
768
769         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
770
771         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
772
773         if (rc != MIGRATEPAGE_SUCCESS)
774                 return rc;
775
776         if (mode != MIGRATE_SYNC_NO_COPY)
777                 migrate_page_copy(newpage, page);
778         else
779                 migrate_page_states(newpage, page);
780         return MIGRATEPAGE_SUCCESS;
781 }
782 EXPORT_SYMBOL(migrate_page);
783
784 #ifdef CONFIG_BLOCK
785 /*
786  * Migration function for pages with buffers. This function can only be used
787  * if the underlying filesystem guarantees that no other references to "page"
788  * exist.
789  */
790 int buffer_migrate_page(struct address_space *mapping,
791                 struct page *newpage, struct page *page, enum migrate_mode mode)
792 {
793         struct buffer_head *bh, *head;
794         int rc;
795
796         if (!page_has_buffers(page))
797                 return migrate_page(mapping, newpage, page, mode);
798
799         head = page_buffers(page);
800
801         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
802
803         if (rc != MIGRATEPAGE_SUCCESS)
804                 return rc;
805
806         /*
807          * In the async case, migrate_page_move_mapping locked the buffers
808          * with an IRQ-safe spinlock held. In the sync case, the buffers
809          * need to be locked now
810          */
811         if (mode != MIGRATE_ASYNC)
812                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
813
814         ClearPagePrivate(page);
815         set_page_private(newpage, page_private(page));
816         set_page_private(page, 0);
817         put_page(page);
818         get_page(newpage);
819
820         bh = head;
821         do {
822                 set_bh_page(bh, newpage, bh_offset(bh));
823                 bh = bh->b_this_page;
824
825         } while (bh != head);
826
827         SetPagePrivate(newpage);
828
829         if (mode != MIGRATE_SYNC_NO_COPY)
830                 migrate_page_copy(newpage, page);
831         else
832                 migrate_page_states(newpage, page);
833
834         bh = head;
835         do {
836                 unlock_buffer(bh);
837                 put_bh(bh);
838                 bh = bh->b_this_page;
839
840         } while (bh != head);
841
842         return MIGRATEPAGE_SUCCESS;
843 }
844 EXPORT_SYMBOL(buffer_migrate_page);
845 #endif
846
847 /*
848  * Writeback a page to clean the dirty state
849  */
850 static int writeout(struct address_space *mapping, struct page *page)
851 {
852         struct writeback_control wbc = {
853                 .sync_mode = WB_SYNC_NONE,
854                 .nr_to_write = 1,
855                 .range_start = 0,
856                 .range_end = LLONG_MAX,
857                 .for_reclaim = 1
858         };
859         int rc;
860
861         if (!mapping->a_ops->writepage)
862                 /* No write method for the address space */
863                 return -EINVAL;
864
865         if (!clear_page_dirty_for_io(page))
866                 /* Someone else already triggered a write */
867                 return -EAGAIN;
868
869         /*
870          * A dirty page may imply that the underlying filesystem has
871          * the page on some queue. So the page must be clean for
872          * migration. Writeout may mean we loose the lock and the
873          * page state is no longer what we checked for earlier.
874          * At this point we know that the migration attempt cannot
875          * be successful.
876          */
877         remove_migration_ptes(page, page, false);
878
879         rc = mapping->a_ops->writepage(page, &wbc);
880
881         if (rc != AOP_WRITEPAGE_ACTIVATE)
882                 /* unlocked. Relock */
883                 lock_page(page);
884
885         return (rc < 0) ? -EIO : -EAGAIN;
886 }
887
888 /*
889  * Default handling if a filesystem does not provide a migration function.
890  */
891 static int fallback_migrate_page(struct address_space *mapping,
892         struct page *newpage, struct page *page, enum migrate_mode mode)
893 {
894         if (PageDirty(page)) {
895                 /* Only writeback pages in full synchronous migration */
896                 switch (mode) {
897                 case MIGRATE_SYNC:
898                 case MIGRATE_SYNC_NO_COPY:
899                         break;
900                 default:
901                         return -EBUSY;
902                 }
903                 return writeout(mapping, page);
904         }
905
906         /*
907          * Buffers may be managed in a filesystem specific way.
908          * We must have no buffers or drop them.
909          */
910         if (page_has_private(page) &&
911             !try_to_release_page(page, GFP_KERNEL))
912                 return -EAGAIN;
913
914         return migrate_page(mapping, newpage, page, mode);
915 }
916
917 /*
918  * Move a page to a newly allocated page
919  * The page is locked and all ptes have been successfully removed.
920  *
921  * The new page will have replaced the old page if this function
922  * is successful.
923  *
924  * Return value:
925  *   < 0 - error code
926  *  MIGRATEPAGE_SUCCESS - success
927  */
928 static int move_to_new_page(struct page *newpage, struct page *page,
929                                 enum migrate_mode mode)
930 {
931         struct address_space *mapping;
932         int rc = -EAGAIN;
933         bool is_lru = !__PageMovable(page);
934
935         VM_BUG_ON_PAGE(!PageLocked(page), page);
936         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
937
938         mapping = page_mapping(page);
939
940         if (likely(is_lru)) {
941                 if (!mapping)
942                         rc = migrate_page(mapping, newpage, page, mode);
943                 else if (mapping->a_ops->migratepage)
944                         /*
945                          * Most pages have a mapping and most filesystems
946                          * provide a migratepage callback. Anonymous pages
947                          * are part of swap space which also has its own
948                          * migratepage callback. This is the most common path
949                          * for page migration.
950                          */
951                         rc = mapping->a_ops->migratepage(mapping, newpage,
952                                                         page, mode);
953                 else
954                         rc = fallback_migrate_page(mapping, newpage,
955                                                         page, mode);
956         } else {
957                 /*
958                  * In case of non-lru page, it could be released after
959                  * isolation step. In that case, we shouldn't try migration.
960                  */
961                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
962                 if (!PageMovable(page)) {
963                         rc = MIGRATEPAGE_SUCCESS;
964                         __ClearPageIsolated(page);
965                         goto out;
966                 }
967
968                 rc = mapping->a_ops->migratepage(mapping, newpage,
969                                                 page, mode);
970                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971                         !PageIsolated(page));
972         }
973
974         /*
975          * When successful, old pagecache page->mapping must be cleared before
976          * page is freed; but stats require that PageAnon be left as PageAnon.
977          */
978         if (rc == MIGRATEPAGE_SUCCESS) {
979                 if (__PageMovable(page)) {
980                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
981
982                         /*
983                          * We clear PG_movable under page_lock so any compactor
984                          * cannot try to migrate this page.
985                          */
986                         __ClearPageIsolated(page);
987                 }
988
989                 /*
990                  * Anonymous and movable page->mapping will be cleard by
991                  * free_pages_prepare so don't reset it here for keeping
992                  * the type to work PageAnon, for example.
993                  */
994                 if (!PageMappingFlags(page))
995                         page->mapping = NULL;
996
997                 if (unlikely(is_zone_device_page(newpage))) {
998                         if (is_device_public_page(newpage))
999                                 flush_dcache_page(newpage);
1000                 } else
1001                         flush_dcache_page(newpage);
1002
1003         }
1004 out:
1005         return rc;
1006 }
1007
1008 static int __unmap_and_move(struct page *page, struct page *newpage,
1009                                 int force, enum migrate_mode mode)
1010 {
1011         int rc = -EAGAIN;
1012         int page_was_mapped = 0;
1013         struct anon_vma *anon_vma = NULL;
1014         bool is_lru = !__PageMovable(page);
1015
1016         if (!trylock_page(page)) {
1017                 if (!force || mode == MIGRATE_ASYNC)
1018                         goto out;
1019
1020                 /*
1021                  * It's not safe for direct compaction to call lock_page.
1022                  * For example, during page readahead pages are added locked
1023                  * to the LRU. Later, when the IO completes the pages are
1024                  * marked uptodate and unlocked. However, the queueing
1025                  * could be merging multiple pages for one bio (e.g.
1026                  * mpage_readpages). If an allocation happens for the
1027                  * second or third page, the process can end up locking
1028                  * the same page twice and deadlocking. Rather than
1029                  * trying to be clever about what pages can be locked,
1030                  * avoid the use of lock_page for direct compaction
1031                  * altogether.
1032                  */
1033                 if (current->flags & PF_MEMALLOC)
1034                         goto out;
1035
1036                 lock_page(page);
1037         }
1038
1039         if (PageWriteback(page)) {
1040                 /*
1041                  * Only in the case of a full synchronous migration is it
1042                  * necessary to wait for PageWriteback. In the async case,
1043                  * the retry loop is too short and in the sync-light case,
1044                  * the overhead of stalling is too much
1045                  */
1046                 switch (mode) {
1047                 case MIGRATE_SYNC:
1048                 case MIGRATE_SYNC_NO_COPY:
1049                         break;
1050                 default:
1051                         rc = -EBUSY;
1052                         goto out_unlock;
1053                 }
1054                 if (!force)
1055                         goto out_unlock;
1056                 wait_on_page_writeback(page);
1057         }
1058
1059         /*
1060          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1061          * we cannot notice that anon_vma is freed while we migrates a page.
1062          * This get_anon_vma() delays freeing anon_vma pointer until the end
1063          * of migration. File cache pages are no problem because of page_lock()
1064          * File Caches may use write_page() or lock_page() in migration, then,
1065          * just care Anon page here.
1066          *
1067          * Only page_get_anon_vma() understands the subtleties of
1068          * getting a hold on an anon_vma from outside one of its mms.
1069          * But if we cannot get anon_vma, then we won't need it anyway,
1070          * because that implies that the anon page is no longer mapped
1071          * (and cannot be remapped so long as we hold the page lock).
1072          */
1073         if (PageAnon(page) && !PageKsm(page))
1074                 anon_vma = page_get_anon_vma(page);
1075
1076         /*
1077          * Block others from accessing the new page when we get around to
1078          * establishing additional references. We are usually the only one
1079          * holding a reference to newpage at this point. We used to have a BUG
1080          * here if trylock_page(newpage) fails, but would like to allow for
1081          * cases where there might be a race with the previous use of newpage.
1082          * This is much like races on refcount of oldpage: just don't BUG().
1083          */
1084         if (unlikely(!trylock_page(newpage)))
1085                 goto out_unlock;
1086
1087         if (unlikely(!is_lru)) {
1088                 rc = move_to_new_page(newpage, page, mode);
1089                 goto out_unlock_both;
1090         }
1091
1092         /*
1093          * Corner case handling:
1094          * 1. When a new swap-cache page is read into, it is added to the LRU
1095          * and treated as swapcache but it has no rmap yet.
1096          * Calling try_to_unmap() against a page->mapping==NULL page will
1097          * trigger a BUG.  So handle it here.
1098          * 2. An orphaned page (see truncate_complete_page) might have
1099          * fs-private metadata. The page can be picked up due to memory
1100          * offlining.  Everywhere else except page reclaim, the page is
1101          * invisible to the vm, so the page can not be migrated.  So try to
1102          * free the metadata, so the page can be freed.
1103          */
1104         if (!page->mapping) {
1105                 VM_BUG_ON_PAGE(PageAnon(page), page);
1106                 if (page_has_private(page)) {
1107                         try_to_free_buffers(page);
1108                         goto out_unlock_both;
1109                 }
1110         } else if (page_mapped(page)) {
1111                 /* Establish migration ptes */
1112                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1113                                 page);
1114                 try_to_unmap(page,
1115                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1116                 page_was_mapped = 1;
1117         }
1118
1119         if (!page_mapped(page))
1120                 rc = move_to_new_page(newpage, page, mode);
1121
1122         if (page_was_mapped)
1123                 remove_migration_ptes(page,
1124                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1125
1126 out_unlock_both:
1127         unlock_page(newpage);
1128 out_unlock:
1129         /* Drop an anon_vma reference if we took one */
1130         if (anon_vma)
1131                 put_anon_vma(anon_vma);
1132         unlock_page(page);
1133 out:
1134         /*
1135          * If migration is successful, decrease refcount of the newpage
1136          * which will not free the page because new page owner increased
1137          * refcounter. As well, if it is LRU page, add the page to LRU
1138          * list in here. Use the old state of the isolated source page to
1139          * determine if we migrated a LRU page. newpage was already unlocked
1140          * and possibly modified by its owner - don't rely on the page
1141          * state.
1142          */
1143         if (rc == MIGRATEPAGE_SUCCESS) {
1144                 if (unlikely(!is_lru))
1145                         put_page(newpage);
1146                 else
1147                         putback_lru_page(newpage);
1148         }
1149
1150         return rc;
1151 }
1152
1153 /*
1154  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1155  * around it.
1156  */
1157 #if defined(CONFIG_ARM) && \
1158         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1159 #define ICE_noinline noinline
1160 #else
1161 #define ICE_noinline
1162 #endif
1163
1164 /*
1165  * Obtain the lock on page, remove all ptes and migrate the page
1166  * to the newly allocated page in newpage.
1167  */
1168 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1169                                    free_page_t put_new_page,
1170                                    unsigned long private, struct page *page,
1171                                    int force, enum migrate_mode mode,
1172                                    enum migrate_reason reason)
1173 {
1174         int rc = MIGRATEPAGE_SUCCESS;
1175         struct page *newpage;
1176
1177         if (!thp_migration_supported() && PageTransHuge(page))
1178                 return -ENOMEM;
1179
1180         newpage = get_new_page(page, private);
1181         if (!newpage)
1182                 return -ENOMEM;
1183
1184         if (page_count(page) == 1) {
1185                 /* page was freed from under us. So we are done. */
1186                 ClearPageActive(page);
1187                 ClearPageUnevictable(page);
1188                 if (unlikely(__PageMovable(page))) {
1189                         lock_page(page);
1190                         if (!PageMovable(page))
1191                                 __ClearPageIsolated(page);
1192                         unlock_page(page);
1193                 }
1194                 if (put_new_page)
1195                         put_new_page(newpage, private);
1196                 else
1197                         put_page(newpage);
1198                 goto out;
1199         }
1200
1201         rc = __unmap_and_move(page, newpage, force, mode);
1202         if (rc == MIGRATEPAGE_SUCCESS)
1203                 set_page_owner_migrate_reason(newpage, reason);
1204
1205 out:
1206         if (rc != -EAGAIN) {
1207                 /*
1208                  * A page that has been migrated has all references
1209                  * removed and will be freed. A page that has not been
1210                  * migrated will have kepts its references and be
1211                  * restored.
1212                  */
1213                 list_del(&page->lru);
1214
1215                 /*
1216                  * Compaction can migrate also non-LRU pages which are
1217                  * not accounted to NR_ISOLATED_*. They can be recognized
1218                  * as __PageMovable
1219                  */
1220                 if (likely(!__PageMovable(page)))
1221                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1222                                         page_is_file_cache(page), -hpage_nr_pages(page));
1223         }
1224
1225         /*
1226          * If migration is successful, releases reference grabbed during
1227          * isolation. Otherwise, restore the page to right list unless
1228          * we want to retry.
1229          */
1230         if (rc == MIGRATEPAGE_SUCCESS) {
1231                 put_page(page);
1232                 if (reason == MR_MEMORY_FAILURE) {
1233                         /*
1234                          * Set PG_HWPoison on just freed page
1235                          * intentionally. Although it's rather weird,
1236                          * it's how HWPoison flag works at the moment.
1237                          */
1238                         if (set_hwpoison_free_buddy_page(page))
1239                                 num_poisoned_pages_inc();
1240                 }
1241         } else {
1242                 if (rc != -EAGAIN) {
1243                         if (likely(!__PageMovable(page))) {
1244                                 putback_lru_page(page);
1245                                 goto put_new;
1246                         }
1247
1248                         lock_page(page);
1249                         if (PageMovable(page))
1250                                 putback_movable_page(page);
1251                         else
1252                                 __ClearPageIsolated(page);
1253                         unlock_page(page);
1254                         put_page(page);
1255                 }
1256 put_new:
1257                 if (put_new_page)
1258                         put_new_page(newpage, private);
1259                 else
1260                         put_page(newpage);
1261         }
1262
1263         return rc;
1264 }
1265
1266 /*
1267  * Counterpart of unmap_and_move_page() for hugepage migration.
1268  *
1269  * This function doesn't wait the completion of hugepage I/O
1270  * because there is no race between I/O and migration for hugepage.
1271  * Note that currently hugepage I/O occurs only in direct I/O
1272  * where no lock is held and PG_writeback is irrelevant,
1273  * and writeback status of all subpages are counted in the reference
1274  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1275  * under direct I/O, the reference of the head page is 512 and a bit more.)
1276  * This means that when we try to migrate hugepage whose subpages are
1277  * doing direct I/O, some references remain after try_to_unmap() and
1278  * hugepage migration fails without data corruption.
1279  *
1280  * There is also no race when direct I/O is issued on the page under migration,
1281  * because then pte is replaced with migration swap entry and direct I/O code
1282  * will wait in the page fault for migration to complete.
1283  */
1284 static int unmap_and_move_huge_page(new_page_t get_new_page,
1285                                 free_page_t put_new_page, unsigned long private,
1286                                 struct page *hpage, int force,
1287                                 enum migrate_mode mode, int reason)
1288 {
1289         int rc = -EAGAIN;
1290         int page_was_mapped = 0;
1291         struct page *new_hpage;
1292         struct anon_vma *anon_vma = NULL;
1293
1294         /*
1295          * Movability of hugepages depends on architectures and hugepage size.
1296          * This check is necessary because some callers of hugepage migration
1297          * like soft offline and memory hotremove don't walk through page
1298          * tables or check whether the hugepage is pmd-based or not before
1299          * kicking migration.
1300          */
1301         if (!hugepage_migration_supported(page_hstate(hpage))) {
1302                 putback_active_hugepage(hpage);
1303                 return -ENOSYS;
1304         }
1305
1306         new_hpage = get_new_page(hpage, private);
1307         if (!new_hpage)
1308                 return -ENOMEM;
1309
1310         if (!trylock_page(hpage)) {
1311                 if (!force)
1312                         goto out;
1313                 switch (mode) {
1314                 case MIGRATE_SYNC:
1315                 case MIGRATE_SYNC_NO_COPY:
1316                         break;
1317                 default:
1318                         goto out;
1319                 }
1320                 lock_page(hpage);
1321         }
1322
1323         /*
1324          * Check for pages which are in the process of being freed.  Without
1325          * page_mapping() set, hugetlbfs specific move page routine will not
1326          * be called and we could leak usage counts for subpools.
1327          */
1328         if (page_private(hpage) && !page_mapping(hpage)) {
1329                 rc = -EBUSY;
1330                 goto out_unlock;
1331         }
1332
1333         if (PageAnon(hpage))
1334                 anon_vma = page_get_anon_vma(hpage);
1335
1336         if (unlikely(!trylock_page(new_hpage)))
1337                 goto put_anon;
1338
1339         if (page_mapped(hpage)) {
1340                 try_to_unmap(hpage,
1341                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1342                 page_was_mapped = 1;
1343         }
1344
1345         if (!page_mapped(hpage))
1346                 rc = move_to_new_page(new_hpage, hpage, mode);
1347
1348         if (page_was_mapped)
1349                 remove_migration_ptes(hpage,
1350                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1351
1352         unlock_page(new_hpage);
1353
1354 put_anon:
1355         if (anon_vma)
1356                 put_anon_vma(anon_vma);
1357
1358         if (rc == MIGRATEPAGE_SUCCESS) {
1359                 move_hugetlb_state(hpage, new_hpage, reason);
1360                 put_new_page = NULL;
1361         }
1362
1363 out_unlock:
1364         unlock_page(hpage);
1365 out:
1366         if (rc != -EAGAIN)
1367                 putback_active_hugepage(hpage);
1368
1369         /*
1370          * If migration was not successful and there's a freeing callback, use
1371          * it.  Otherwise, put_page() will drop the reference grabbed during
1372          * isolation.
1373          */
1374         if (put_new_page)
1375                 put_new_page(new_hpage, private);
1376         else
1377                 putback_active_hugepage(new_hpage);
1378
1379         return rc;
1380 }
1381
1382 /*
1383  * migrate_pages - migrate the pages specified in a list, to the free pages
1384  *                 supplied as the target for the page migration
1385  *
1386  * @from:               The list of pages to be migrated.
1387  * @get_new_page:       The function used to allocate free pages to be used
1388  *                      as the target of the page migration.
1389  * @put_new_page:       The function used to free target pages if migration
1390  *                      fails, or NULL if no special handling is necessary.
1391  * @private:            Private data to be passed on to get_new_page()
1392  * @mode:               The migration mode that specifies the constraints for
1393  *                      page migration, if any.
1394  * @reason:             The reason for page migration.
1395  *
1396  * The function returns after 10 attempts or if no pages are movable any more
1397  * because the list has become empty or no retryable pages exist any more.
1398  * The caller should call putback_movable_pages() to return pages to the LRU
1399  * or free list only if ret != 0.
1400  *
1401  * Returns the number of pages that were not migrated, or an error code.
1402  */
1403 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1404                 free_page_t put_new_page, unsigned long private,
1405                 enum migrate_mode mode, int reason)
1406 {
1407         int retry = 1;
1408         int nr_failed = 0;
1409         int nr_succeeded = 0;
1410         int pass = 0;
1411         struct page *page;
1412         struct page *page2;
1413         int swapwrite = current->flags & PF_SWAPWRITE;
1414         int rc;
1415
1416         if (!swapwrite)
1417                 current->flags |= PF_SWAPWRITE;
1418
1419         for(pass = 0; pass < 10 && retry; pass++) {
1420                 retry = 0;
1421
1422                 list_for_each_entry_safe(page, page2, from, lru) {
1423 retry:
1424                         cond_resched();
1425
1426                         if (PageHuge(page))
1427                                 rc = unmap_and_move_huge_page(get_new_page,
1428                                                 put_new_page, private, page,
1429                                                 pass > 2, mode, reason);
1430                         else
1431                                 rc = unmap_and_move(get_new_page, put_new_page,
1432                                                 private, page, pass > 2, mode,
1433                                                 reason);
1434
1435                         switch(rc) {
1436                         case -ENOMEM:
1437                                 /*
1438                                  * THP migration might be unsupported or the
1439                                  * allocation could've failed so we should
1440                                  * retry on the same page with the THP split
1441                                  * to base pages.
1442                                  *
1443                                  * Head page is retried immediately and tail
1444                                  * pages are added to the tail of the list so
1445                                  * we encounter them after the rest of the list
1446                                  * is processed.
1447                                  */
1448                                 if (PageTransHuge(page) && !PageHuge(page)) {
1449                                         lock_page(page);
1450                                         rc = split_huge_page_to_list(page, from);
1451                                         unlock_page(page);
1452                                         if (!rc) {
1453                                                 list_safe_reset_next(page, page2, lru);
1454                                                 goto retry;
1455                                         }
1456                                 }
1457                                 nr_failed++;
1458                                 goto out;
1459                         case -EAGAIN:
1460                                 retry++;
1461                                 break;
1462                         case MIGRATEPAGE_SUCCESS:
1463                                 nr_succeeded++;
1464                                 break;
1465                         default:
1466                                 /*
1467                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1468                                  * unlike -EAGAIN case, the failed page is
1469                                  * removed from migration page list and not
1470                                  * retried in the next outer loop.
1471                                  */
1472                                 nr_failed++;
1473                                 break;
1474                         }
1475                 }
1476         }
1477         nr_failed += retry;
1478         rc = nr_failed;
1479 out:
1480         if (nr_succeeded)
1481                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1482         if (nr_failed)
1483                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1484         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1485
1486         if (!swapwrite)
1487                 current->flags &= ~PF_SWAPWRITE;
1488
1489         return rc;
1490 }
1491
1492 #ifdef CONFIG_NUMA
1493
1494 static int store_status(int __user *status, int start, int value, int nr)
1495 {
1496         while (nr-- > 0) {
1497                 if (put_user(value, status + start))
1498                         return -EFAULT;
1499                 start++;
1500         }
1501
1502         return 0;
1503 }
1504
1505 static int do_move_pages_to_node(struct mm_struct *mm,
1506                 struct list_head *pagelist, int node)
1507 {
1508         int err;
1509
1510         if (list_empty(pagelist))
1511                 return 0;
1512
1513         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1514                         MIGRATE_SYNC, MR_SYSCALL);
1515         if (err)
1516                 putback_movable_pages(pagelist);
1517         return err;
1518 }
1519
1520 /*
1521  * Resolves the given address to a struct page, isolates it from the LRU and
1522  * puts it to the given pagelist.
1523  * Returns:
1524  *     errno - if the page cannot be found/isolated
1525  *     0 - when it doesn't have to be migrated because it is already on the
1526  *         target node
1527  *     1 - when it has been queued
1528  */
1529 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1530                 int node, struct list_head *pagelist, bool migrate_all)
1531 {
1532         struct vm_area_struct *vma;
1533         struct page *page;
1534         unsigned int follflags;
1535         int err;
1536
1537         down_read(&mm->mmap_sem);
1538         err = -EFAULT;
1539         vma = find_vma(mm, addr);
1540         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1541                 goto out;
1542
1543         /* FOLL_DUMP to ignore special (like zero) pages */
1544         follflags = FOLL_GET | FOLL_DUMP;
1545         page = follow_page(vma, addr, follflags);
1546
1547         err = PTR_ERR(page);
1548         if (IS_ERR(page))
1549                 goto out;
1550
1551         err = -ENOENT;
1552         if (!page)
1553                 goto out;
1554
1555         err = 0;
1556         if (page_to_nid(page) == node)
1557                 goto out_putpage;
1558
1559         err = -EACCES;
1560         if (page_mapcount(page) > 1 && !migrate_all)
1561                 goto out_putpage;
1562
1563         if (PageHuge(page)) {
1564                 if (PageHead(page)) {
1565                         isolate_huge_page(page, pagelist);
1566                         err = 1;
1567                 }
1568         } else {
1569                 struct page *head;
1570
1571                 head = compound_head(page);
1572                 err = isolate_lru_page(head);
1573                 if (err)
1574                         goto out_putpage;
1575
1576                 err = 1;
1577                 list_add_tail(&head->lru, pagelist);
1578                 mod_node_page_state(page_pgdat(head),
1579                         NR_ISOLATED_ANON + page_is_file_cache(head),
1580                         hpage_nr_pages(head));
1581         }
1582 out_putpage:
1583         /*
1584          * Either remove the duplicate refcount from
1585          * isolate_lru_page() or drop the page ref if it was
1586          * not isolated.
1587          */
1588         put_page(page);
1589 out:
1590         up_read(&mm->mmap_sem);
1591         return err;
1592 }
1593
1594 /*
1595  * Migrate an array of page address onto an array of nodes and fill
1596  * the corresponding array of status.
1597  */
1598 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1599                          unsigned long nr_pages,
1600                          const void __user * __user *pages,
1601                          const int __user *nodes,
1602                          int __user *status, int flags)
1603 {
1604         int current_node = NUMA_NO_NODE;
1605         LIST_HEAD(pagelist);
1606         int start, i;
1607         int err = 0, err1;
1608
1609         migrate_prep();
1610
1611         for (i = start = 0; i < nr_pages; i++) {
1612                 const void __user *p;
1613                 unsigned long addr;
1614                 int node;
1615
1616                 err = -EFAULT;
1617                 if (get_user(p, pages + i))
1618                         goto out_flush;
1619                 if (get_user(node, nodes + i))
1620                         goto out_flush;
1621                 addr = (unsigned long)p;
1622
1623                 err = -ENODEV;
1624                 if (node < 0 || node >= MAX_NUMNODES)
1625                         goto out_flush;
1626                 if (!node_state(node, N_MEMORY))
1627                         goto out_flush;
1628
1629                 err = -EACCES;
1630                 if (!node_isset(node, task_nodes))
1631                         goto out_flush;
1632
1633                 if (current_node == NUMA_NO_NODE) {
1634                         current_node = node;
1635                         start = i;
1636                 } else if (node != current_node) {
1637                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1638                         if (err) {
1639                                 /*
1640                                  * Positive err means the number of failed
1641                                  * pages to migrate.  Since we are going to
1642                                  * abort and return the number of non-migrated
1643                                  * pages, so need to incude the rest of the
1644                                  * nr_pages that have not been attempted as
1645                                  * well.
1646                                  */
1647                                 if (err > 0)
1648                                         err += nr_pages - i - 1;
1649                                 goto out;
1650                         }
1651                         err = store_status(status, start, current_node, i - start);
1652                         if (err)
1653                                 goto out;
1654                         start = i;
1655                         current_node = node;
1656                 }
1657
1658                 /*
1659                  * Errors in the page lookup or isolation are not fatal and we simply
1660                  * report them via status
1661                  */
1662                 err = add_page_for_migration(mm, addr, current_node,
1663                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1664
1665                 if (!err) {
1666                         /* The page is already on the target node */
1667                         err = store_status(status, i, current_node, 1);
1668                         if (err)
1669                                 goto out_flush;
1670                         continue;
1671                 } else if (err > 0) {
1672                         /* The page is successfully queued for migration */
1673                         continue;
1674                 }
1675
1676                 err = store_status(status, i, err, 1);
1677                 if (err)
1678                         goto out_flush;
1679
1680                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1681                 if (err) {
1682                         if (err > 0)
1683                                 err += nr_pages - i - 1;
1684                         goto out;
1685                 }
1686                 if (i > start) {
1687                         err = store_status(status, start, current_node, i - start);
1688                         if (err)
1689                                 goto out;
1690                 }
1691                 current_node = NUMA_NO_NODE;
1692         }
1693 out_flush:
1694         if (list_empty(&pagelist))
1695                 return err;
1696
1697         /* Make sure we do not overwrite the existing error */
1698         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1699         /*
1700          * Don't have to report non-attempted pages here since:
1701          *     - If the above loop is done gracefully all pages have been
1702          *       attempted.
1703          *     - If the above loop is aborted it means a fatal error
1704          *       happened, should return ret.
1705          */
1706         if (!err1)
1707                 err1 = store_status(status, start, current_node, i - start);
1708         if (err >= 0)
1709                 err = err1;
1710 out:
1711         return err;
1712 }
1713
1714 /*
1715  * Determine the nodes of an array of pages and store it in an array of status.
1716  */
1717 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1718                                 const void __user **pages, int *status)
1719 {
1720         unsigned long i;
1721
1722         down_read(&mm->mmap_sem);
1723
1724         for (i = 0; i < nr_pages; i++) {
1725                 unsigned long addr = (unsigned long)(*pages);
1726                 struct vm_area_struct *vma;
1727                 struct page *page;
1728                 int err = -EFAULT;
1729
1730                 vma = find_vma(mm, addr);
1731                 if (!vma || addr < vma->vm_start)
1732                         goto set_status;
1733
1734                 /* FOLL_DUMP to ignore special (like zero) pages */
1735                 page = follow_page(vma, addr, FOLL_DUMP);
1736
1737                 err = PTR_ERR(page);
1738                 if (IS_ERR(page))
1739                         goto set_status;
1740
1741                 err = page ? page_to_nid(page) : -ENOENT;
1742 set_status:
1743                 *status = err;
1744
1745                 pages++;
1746                 status++;
1747         }
1748
1749         up_read(&mm->mmap_sem);
1750 }
1751
1752 /*
1753  * Determine the nodes of a user array of pages and store it in
1754  * a user array of status.
1755  */
1756 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1757                          const void __user * __user *pages,
1758                          int __user *status)
1759 {
1760 #define DO_PAGES_STAT_CHUNK_NR 16
1761         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1762         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1763
1764         while (nr_pages) {
1765                 unsigned long chunk_nr;
1766
1767                 chunk_nr = nr_pages;
1768                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1769                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1770
1771                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1772                         break;
1773
1774                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1775
1776                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1777                         break;
1778
1779                 pages += chunk_nr;
1780                 status += chunk_nr;
1781                 nr_pages -= chunk_nr;
1782         }
1783         return nr_pages ? -EFAULT : 0;
1784 }
1785
1786 /*
1787  * Move a list of pages in the address space of the currently executing
1788  * process.
1789  */
1790 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1791                              const void __user * __user *pages,
1792                              const int __user *nodes,
1793                              int __user *status, int flags)
1794 {
1795         struct task_struct *task;
1796         struct mm_struct *mm;
1797         int err;
1798         nodemask_t task_nodes;
1799
1800         /* Check flags */
1801         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1802                 return -EINVAL;
1803
1804         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1805                 return -EPERM;
1806
1807         /* Find the mm_struct */
1808         rcu_read_lock();
1809         task = pid ? find_task_by_vpid(pid) : current;
1810         if (!task) {
1811                 rcu_read_unlock();
1812                 return -ESRCH;
1813         }
1814         get_task_struct(task);
1815
1816         /*
1817          * Check if this process has the right to modify the specified
1818          * process. Use the regular "ptrace_may_access()" checks.
1819          */
1820         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1821                 rcu_read_unlock();
1822                 err = -EPERM;
1823                 goto out;
1824         }
1825         rcu_read_unlock();
1826
1827         err = security_task_movememory(task);
1828         if (err)
1829                 goto out;
1830
1831         task_nodes = cpuset_mems_allowed(task);
1832         mm = get_task_mm(task);
1833         put_task_struct(task);
1834
1835         if (!mm)
1836                 return -EINVAL;
1837
1838         if (nodes)
1839                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1840                                     nodes, status, flags);
1841         else
1842                 err = do_pages_stat(mm, nr_pages, pages, status);
1843
1844         mmput(mm);
1845         return err;
1846
1847 out:
1848         put_task_struct(task);
1849         return err;
1850 }
1851
1852 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1853                 const void __user * __user *, pages,
1854                 const int __user *, nodes,
1855                 int __user *, status, int, flags)
1856 {
1857         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1858 }
1859
1860 #ifdef CONFIG_COMPAT
1861 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1862                        compat_uptr_t __user *, pages32,
1863                        const int __user *, nodes,
1864                        int __user *, status,
1865                        int, flags)
1866 {
1867         const void __user * __user *pages;
1868         int i;
1869
1870         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1871         for (i = 0; i < nr_pages; i++) {
1872                 compat_uptr_t p;
1873
1874                 if (get_user(p, pages32 + i) ||
1875                         put_user(compat_ptr(p), pages + i))
1876                         return -EFAULT;
1877         }
1878         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1879 }
1880 #endif /* CONFIG_COMPAT */
1881
1882 #ifdef CONFIG_NUMA_BALANCING
1883 /*
1884  * Returns true if this is a safe migration target node for misplaced NUMA
1885  * pages. Currently it only checks the watermarks which crude
1886  */
1887 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1888                                    unsigned long nr_migrate_pages)
1889 {
1890         int z;
1891
1892         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1893                 struct zone *zone = pgdat->node_zones + z;
1894
1895                 if (!populated_zone(zone))
1896                         continue;
1897
1898                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1899                 if (!zone_watermark_ok(zone, 0,
1900                                        high_wmark_pages(zone) +
1901                                        nr_migrate_pages,
1902                                        0, 0))
1903                         continue;
1904                 return true;
1905         }
1906         return false;
1907 }
1908
1909 static struct page *alloc_misplaced_dst_page(struct page *page,
1910                                            unsigned long data)
1911 {
1912         int nid = (int) data;
1913         struct page *newpage;
1914
1915         newpage = __alloc_pages_node(nid,
1916                                          (GFP_HIGHUSER_MOVABLE |
1917                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1918                                           __GFP_NORETRY | __GFP_NOWARN) &
1919                                          ~__GFP_RECLAIM, 0);
1920
1921         return newpage;
1922 }
1923
1924 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1925 {
1926         int page_lru;
1927
1928         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1929
1930         /* Avoid migrating to a node that is nearly full */
1931         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1932                 return 0;
1933
1934         if (isolate_lru_page(page))
1935                 return 0;
1936
1937         /*
1938          * migrate_misplaced_transhuge_page() skips page migration's usual
1939          * check on page_count(), so we must do it here, now that the page
1940          * has been isolated: a GUP pin, or any other pin, prevents migration.
1941          * The expected page count is 3: 1 for page's mapcount and 1 for the
1942          * caller's pin and 1 for the reference taken by isolate_lru_page().
1943          */
1944         if (PageTransHuge(page) && page_count(page) != 3) {
1945                 putback_lru_page(page);
1946                 return 0;
1947         }
1948
1949         page_lru = page_is_file_cache(page);
1950         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1951                                 hpage_nr_pages(page));
1952
1953         /*
1954          * Isolating the page has taken another reference, so the
1955          * caller's reference can be safely dropped without the page
1956          * disappearing underneath us during migration.
1957          */
1958         put_page(page);
1959         return 1;
1960 }
1961
1962 bool pmd_trans_migrating(pmd_t pmd)
1963 {
1964         struct page *page = pmd_page(pmd);
1965         return PageLocked(page);
1966 }
1967
1968 /*
1969  * Attempt to migrate a misplaced page to the specified destination
1970  * node. Caller is expected to have an elevated reference count on
1971  * the page that will be dropped by this function before returning.
1972  */
1973 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1974                            int node)
1975 {
1976         pg_data_t *pgdat = NODE_DATA(node);
1977         int isolated;
1978         int nr_remaining;
1979         LIST_HEAD(migratepages);
1980
1981         /*
1982          * Don't migrate file pages that are mapped in multiple processes
1983          * with execute permissions as they are probably shared libraries.
1984          */
1985         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1986             (vma->vm_flags & VM_EXEC))
1987                 goto out;
1988
1989         /*
1990          * Also do not migrate dirty pages as not all filesystems can move
1991          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1992          */
1993         if (page_is_file_cache(page) && PageDirty(page))
1994                 goto out;
1995
1996         isolated = numamigrate_isolate_page(pgdat, page);
1997         if (!isolated)
1998                 goto out;
1999
2000         list_add(&page->lru, &migratepages);
2001         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2002                                      NULL, node, MIGRATE_ASYNC,
2003                                      MR_NUMA_MISPLACED);
2004         if (nr_remaining) {
2005                 if (!list_empty(&migratepages)) {
2006                         list_del(&page->lru);
2007                         dec_node_page_state(page, NR_ISOLATED_ANON +
2008                                         page_is_file_cache(page));
2009                         putback_lru_page(page);
2010                 }
2011                 isolated = 0;
2012         } else
2013                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2014         BUG_ON(!list_empty(&migratepages));
2015         return isolated;
2016
2017 out:
2018         put_page(page);
2019         return 0;
2020 }
2021 #endif /* CONFIG_NUMA_BALANCING */
2022
2023 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2024 /*
2025  * Migrates a THP to a given target node. page must be locked and is unlocked
2026  * before returning.
2027  */
2028 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2029                                 struct vm_area_struct *vma,
2030                                 pmd_t *pmd, pmd_t entry,
2031                                 unsigned long address,
2032                                 struct page *page, int node)
2033 {
2034         spinlock_t *ptl;
2035         pg_data_t *pgdat = NODE_DATA(node);
2036         int isolated = 0;
2037         struct page *new_page = NULL;
2038         int page_lru = page_is_file_cache(page);
2039         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2040         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2041
2042         new_page = alloc_pages_node(node,
2043                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2044                 HPAGE_PMD_ORDER);
2045         if (!new_page)
2046                 goto out_fail;
2047         prep_transhuge_page(new_page);
2048
2049         isolated = numamigrate_isolate_page(pgdat, page);
2050         if (!isolated) {
2051                 put_page(new_page);
2052                 goto out_fail;
2053         }
2054
2055         /* Prepare a page as a migration target */
2056         __SetPageLocked(new_page);
2057         if (PageSwapBacked(page))
2058                 __SetPageSwapBacked(new_page);
2059
2060         /* anon mapping, we can simply copy page->mapping to the new page: */
2061         new_page->mapping = page->mapping;
2062         new_page->index = page->index;
2063         migrate_page_copy(new_page, page);
2064         WARN_ON(PageLRU(new_page));
2065
2066         /* Recheck the target PMD */
2067         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2068         ptl = pmd_lock(mm, pmd);
2069         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2070                 spin_unlock(ptl);
2071                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2072
2073                 /* Reverse changes made by migrate_page_copy() */
2074                 if (TestClearPageActive(new_page))
2075                         SetPageActive(page);
2076                 if (TestClearPageUnevictable(new_page))
2077                         SetPageUnevictable(page);
2078
2079                 unlock_page(new_page);
2080                 put_page(new_page);             /* Free it */
2081
2082                 /* Retake the callers reference and putback on LRU */
2083                 get_page(page);
2084                 putback_lru_page(page);
2085                 mod_node_page_state(page_pgdat(page),
2086                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2087
2088                 goto out_unlock;
2089         }
2090
2091         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2092         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2093
2094         /*
2095          * Overwrite the old entry under pagetable lock and establish
2096          * the new PTE. Any parallel GUP will either observe the old
2097          * page blocking on the page lock, block on the page table
2098          * lock or observe the new page. The SetPageUptodate on the
2099          * new page and page_add_new_anon_rmap guarantee the copy is
2100          * visible before the pagetable update.
2101          */
2102         flush_cache_range(vma, mmun_start, mmun_end);
2103         page_add_anon_rmap(new_page, vma, mmun_start, true);
2104         /*
2105          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2106          * has already been flushed globally.  So no TLB can be currently
2107          * caching this non present pmd mapping.  There's no need to clear the
2108          * pmd before doing set_pmd_at(), nor to flush the TLB after
2109          * set_pmd_at().  Clearing the pmd here would introduce a race
2110          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2111          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2112          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2113          * pmd.
2114          */
2115         set_pmd_at(mm, mmun_start, pmd, entry);
2116         update_mmu_cache_pmd(vma, address, &entry);
2117
2118         page_ref_unfreeze(page, 2);
2119         mlock_migrate_page(new_page, page);
2120         page_remove_rmap(page, true);
2121         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2122
2123         spin_unlock(ptl);
2124         /*
2125          * No need to double call mmu_notifier->invalidate_range() callback as
2126          * the above pmdp_huge_clear_flush_notify() did already call it.
2127          */
2128         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2129
2130         /* Take an "isolate" reference and put new page on the LRU. */
2131         get_page(new_page);
2132         putback_lru_page(new_page);
2133
2134         unlock_page(new_page);
2135         unlock_page(page);
2136         put_page(page);                 /* Drop the rmap reference */
2137         put_page(page);                 /* Drop the LRU isolation reference */
2138
2139         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2140         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2141
2142         mod_node_page_state(page_pgdat(page),
2143                         NR_ISOLATED_ANON + page_lru,
2144                         -HPAGE_PMD_NR);
2145         return isolated;
2146
2147 out_fail:
2148         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2149         ptl = pmd_lock(mm, pmd);
2150         if (pmd_same(*pmd, entry)) {
2151                 entry = pmd_modify(entry, vma->vm_page_prot);
2152                 set_pmd_at(mm, mmun_start, pmd, entry);
2153                 update_mmu_cache_pmd(vma, address, &entry);
2154         }
2155         spin_unlock(ptl);
2156
2157 out_unlock:
2158         unlock_page(page);
2159         put_page(page);
2160         return 0;
2161 }
2162 #endif /* CONFIG_NUMA_BALANCING */
2163
2164 #endif /* CONFIG_NUMA */
2165
2166 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2167 struct migrate_vma {
2168         struct vm_area_struct   *vma;
2169         unsigned long           *dst;
2170         unsigned long           *src;
2171         unsigned long           cpages;
2172         unsigned long           npages;
2173         unsigned long           start;
2174         unsigned long           end;
2175 };
2176
2177 static int migrate_vma_collect_hole(unsigned long start,
2178                                     unsigned long end,
2179                                     struct mm_walk *walk)
2180 {
2181         struct migrate_vma *migrate = walk->private;
2182         unsigned long addr;
2183
2184         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2185                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2186                 migrate->dst[migrate->npages] = 0;
2187                 migrate->npages++;
2188                 migrate->cpages++;
2189         }
2190
2191         return 0;
2192 }
2193
2194 static int migrate_vma_collect_skip(unsigned long start,
2195                                     unsigned long end,
2196                                     struct mm_walk *walk)
2197 {
2198         struct migrate_vma *migrate = walk->private;
2199         unsigned long addr;
2200
2201         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2202                 migrate->dst[migrate->npages] = 0;
2203                 migrate->src[migrate->npages++] = 0;
2204         }
2205
2206         return 0;
2207 }
2208
2209 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2210                                    unsigned long start,
2211                                    unsigned long end,
2212                                    struct mm_walk *walk)
2213 {
2214         struct migrate_vma *migrate = walk->private;
2215         struct vm_area_struct *vma = walk->vma;
2216         struct mm_struct *mm = vma->vm_mm;
2217         unsigned long addr = start, unmapped = 0;
2218         spinlock_t *ptl;
2219         pte_t *ptep;
2220
2221 again:
2222         if (pmd_none(*pmdp))
2223                 return migrate_vma_collect_hole(start, end, walk);
2224
2225         if (pmd_trans_huge(*pmdp)) {
2226                 struct page *page;
2227
2228                 ptl = pmd_lock(mm, pmdp);
2229                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2230                         spin_unlock(ptl);
2231                         goto again;
2232                 }
2233
2234                 page = pmd_page(*pmdp);
2235                 if (is_huge_zero_page(page)) {
2236                         spin_unlock(ptl);
2237                         split_huge_pmd(vma, pmdp, addr);
2238                         if (pmd_trans_unstable(pmdp))
2239                                 return migrate_vma_collect_skip(start, end,
2240                                                                 walk);
2241                 } else {
2242                         int ret;
2243
2244                         get_page(page);
2245                         spin_unlock(ptl);
2246                         if (unlikely(!trylock_page(page)))
2247                                 return migrate_vma_collect_skip(start, end,
2248                                                                 walk);
2249                         ret = split_huge_page(page);
2250                         unlock_page(page);
2251                         put_page(page);
2252                         if (ret)
2253                                 return migrate_vma_collect_skip(start, end,
2254                                                                 walk);
2255                         if (pmd_none(*pmdp))
2256                                 return migrate_vma_collect_hole(start, end,
2257                                                                 walk);
2258                 }
2259         }
2260
2261         if (unlikely(pmd_bad(*pmdp)))
2262                 return migrate_vma_collect_skip(start, end, walk);
2263
2264         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2265         arch_enter_lazy_mmu_mode();
2266
2267         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2268                 unsigned long mpfn, pfn;
2269                 struct page *page;
2270                 swp_entry_t entry;
2271                 pte_t pte;
2272
2273                 pte = *ptep;
2274                 pfn = pte_pfn(pte);
2275
2276                 if (pte_none(pte)) {
2277                         mpfn = MIGRATE_PFN_MIGRATE;
2278                         migrate->cpages++;
2279                         pfn = 0;
2280                         goto next;
2281                 }
2282
2283                 if (!pte_present(pte)) {
2284                         mpfn = pfn = 0;
2285
2286                         /*
2287                          * Only care about unaddressable device page special
2288                          * page table entry. Other special swap entries are not
2289                          * migratable, and we ignore regular swapped page.
2290                          */
2291                         entry = pte_to_swp_entry(pte);
2292                         if (!is_device_private_entry(entry))
2293                                 goto next;
2294
2295                         page = device_private_entry_to_page(entry);
2296                         mpfn = migrate_pfn(page_to_pfn(page))|
2297                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2298                         if (is_write_device_private_entry(entry))
2299                                 mpfn |= MIGRATE_PFN_WRITE;
2300                 } else {
2301                         if (is_zero_pfn(pfn)) {
2302                                 mpfn = MIGRATE_PFN_MIGRATE;
2303                                 migrate->cpages++;
2304                                 pfn = 0;
2305                                 goto next;
2306                         }
2307                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2308                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2309                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2310                 }
2311
2312                 /* FIXME support THP */
2313                 if (!page || !page->mapping || PageTransCompound(page)) {
2314                         mpfn = pfn = 0;
2315                         goto next;
2316                 }
2317                 pfn = page_to_pfn(page);
2318
2319                 /*
2320                  * By getting a reference on the page we pin it and that blocks
2321                  * any kind of migration. Side effect is that it "freezes" the
2322                  * pte.
2323                  *
2324                  * We drop this reference after isolating the page from the lru
2325                  * for non device page (device page are not on the lru and thus
2326                  * can't be dropped from it).
2327                  */
2328                 get_page(page);
2329                 migrate->cpages++;
2330
2331                 /*
2332                  * Optimize for the common case where page is only mapped once
2333                  * in one process. If we can lock the page, then we can safely
2334                  * set up a special migration page table entry now.
2335                  */
2336                 if (trylock_page(page)) {
2337                         pte_t swp_pte;
2338
2339                         mpfn |= MIGRATE_PFN_LOCKED;
2340                         ptep_get_and_clear(mm, addr, ptep);
2341
2342                         /* Setup special migration page table entry */
2343                         entry = make_migration_entry(page, mpfn &
2344                                                      MIGRATE_PFN_WRITE);
2345                         swp_pte = swp_entry_to_pte(entry);
2346                         if (pte_soft_dirty(pte))
2347                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2348                         set_pte_at(mm, addr, ptep, swp_pte);
2349
2350                         /*
2351                          * This is like regular unmap: we remove the rmap and
2352                          * drop page refcount. Page won't be freed, as we took
2353                          * a reference just above.
2354                          */
2355                         page_remove_rmap(page, false);
2356                         put_page(page);
2357
2358                         if (pte_present(pte))
2359                                 unmapped++;
2360                 }
2361
2362 next:
2363                 migrate->dst[migrate->npages] = 0;
2364                 migrate->src[migrate->npages++] = mpfn;
2365         }
2366
2367         /* Only flush the TLB if we actually modified any entries */
2368         if (unmapped)
2369                 flush_tlb_range(walk->vma, start, end);
2370
2371         arch_leave_lazy_mmu_mode();
2372         pte_unmap_unlock(ptep - 1, ptl);
2373
2374         return 0;
2375 }
2376
2377 /*
2378  * migrate_vma_collect() - collect pages over a range of virtual addresses
2379  * @migrate: migrate struct containing all migration information
2380  *
2381  * This will walk the CPU page table. For each virtual address backed by a
2382  * valid page, it updates the src array and takes a reference on the page, in
2383  * order to pin the page until we lock it and unmap it.
2384  */
2385 static void migrate_vma_collect(struct migrate_vma *migrate)
2386 {
2387         struct mm_walk mm_walk = {
2388                 .pmd_entry = migrate_vma_collect_pmd,
2389                 .pte_hole = migrate_vma_collect_hole,
2390                 .vma = migrate->vma,
2391                 .mm = migrate->vma->vm_mm,
2392                 .private = migrate,
2393         };
2394
2395         mmu_notifier_invalidate_range_start(mm_walk.mm,
2396                                             migrate->start,
2397                                             migrate->end);
2398         walk_page_range(migrate->start, migrate->end, &mm_walk);
2399         mmu_notifier_invalidate_range_end(mm_walk.mm,
2400                                           migrate->start,
2401                                           migrate->end);
2402
2403         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2404 }
2405
2406 /*
2407  * migrate_vma_check_page() - check if page is pinned or not
2408  * @page: struct page to check
2409  *
2410  * Pinned pages cannot be migrated. This is the same test as in
2411  * migrate_page_move_mapping(), except that here we allow migration of a
2412  * ZONE_DEVICE page.
2413  */
2414 static bool migrate_vma_check_page(struct page *page)
2415 {
2416         /*
2417          * One extra ref because caller holds an extra reference, either from
2418          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2419          * a device page.
2420          */
2421         int extra = 1;
2422
2423         /*
2424          * FIXME support THP (transparent huge page), it is bit more complex to
2425          * check them than regular pages, because they can be mapped with a pmd
2426          * or with a pte (split pte mapping).
2427          */
2428         if (PageCompound(page))
2429                 return false;
2430
2431         /* Page from ZONE_DEVICE have one extra reference */
2432         if (is_zone_device_page(page)) {
2433                 /*
2434                  * Private page can never be pin as they have no valid pte and
2435                  * GUP will fail for those. Yet if there is a pending migration
2436                  * a thread might try to wait on the pte migration entry and
2437                  * will bump the page reference count. Sadly there is no way to
2438                  * differentiate a regular pin from migration wait. Hence to
2439                  * avoid 2 racing thread trying to migrate back to CPU to enter
2440                  * infinite loop (one stoping migration because the other is
2441                  * waiting on pte migration entry). We always return true here.
2442                  *
2443                  * FIXME proper solution is to rework migration_entry_wait() so
2444                  * it does not need to take a reference on page.
2445                  */
2446                 if (is_device_private_page(page))
2447                         return true;
2448
2449                 /*
2450                  * Only allow device public page to be migrated and account for
2451                  * the extra reference count imply by ZONE_DEVICE pages.
2452                  */
2453                 if (!is_device_public_page(page))
2454                         return false;
2455                 extra++;
2456         }
2457
2458         /* For file back page */
2459         if (page_mapping(page))
2460                 extra += 1 + page_has_private(page);
2461
2462         if ((page_count(page) - extra) > page_mapcount(page))
2463                 return false;
2464
2465         return true;
2466 }
2467
2468 /*
2469  * migrate_vma_prepare() - lock pages and isolate them from the lru
2470  * @migrate: migrate struct containing all migration information
2471  *
2472  * This locks pages that have been collected by migrate_vma_collect(). Once each
2473  * page is locked it is isolated from the lru (for non-device pages). Finally,
2474  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2475  * migrated by concurrent kernel threads.
2476  */
2477 static void migrate_vma_prepare(struct migrate_vma *migrate)
2478 {
2479         const unsigned long npages = migrate->npages;
2480         const unsigned long start = migrate->start;
2481         unsigned long addr, i, restore = 0;
2482         bool allow_drain = true;
2483
2484         lru_add_drain();
2485
2486         for (i = 0; (i < npages) && migrate->cpages; i++) {
2487                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2488                 bool remap = true;
2489
2490                 if (!page)
2491                         continue;
2492
2493                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2494                         /*
2495                          * Because we are migrating several pages there can be
2496                          * a deadlock between 2 concurrent migration where each
2497                          * are waiting on each other page lock.
2498                          *
2499                          * Make migrate_vma() a best effort thing and backoff
2500                          * for any page we can not lock right away.
2501                          */
2502                         if (!trylock_page(page)) {
2503                                 migrate->src[i] = 0;
2504                                 migrate->cpages--;
2505                                 put_page(page);
2506                                 continue;
2507                         }
2508                         remap = false;
2509                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2510                 }
2511
2512                 /* ZONE_DEVICE pages are not on LRU */
2513                 if (!is_zone_device_page(page)) {
2514                         if (!PageLRU(page) && allow_drain) {
2515                                 /* Drain CPU's pagevec */
2516                                 lru_add_drain_all();
2517                                 allow_drain = false;
2518                         }
2519
2520                         if (isolate_lru_page(page)) {
2521                                 if (remap) {
2522                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2523                                         migrate->cpages--;
2524                                         restore++;
2525                                 } else {
2526                                         migrate->src[i] = 0;
2527                                         unlock_page(page);
2528                                         migrate->cpages--;
2529                                         put_page(page);
2530                                 }
2531                                 continue;
2532                         }
2533
2534                         /* Drop the reference we took in collect */
2535                         put_page(page);
2536                 }
2537
2538                 if (!migrate_vma_check_page(page)) {
2539                         if (remap) {
2540                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2541                                 migrate->cpages--;
2542                                 restore++;
2543
2544                                 if (!is_zone_device_page(page)) {
2545                                         get_page(page);
2546                                         putback_lru_page(page);
2547                                 }
2548                         } else {
2549                                 migrate->src[i] = 0;
2550                                 unlock_page(page);
2551                                 migrate->cpages--;
2552
2553                                 if (!is_zone_device_page(page))
2554                                         putback_lru_page(page);
2555                                 else
2556                                         put_page(page);
2557                         }
2558                 }
2559         }
2560
2561         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2562                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563
2564                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565                         continue;
2566
2567                 remove_migration_pte(page, migrate->vma, addr, page);
2568
2569                 migrate->src[i] = 0;
2570                 unlock_page(page);
2571                 put_page(page);
2572                 restore--;
2573         }
2574 }
2575
2576 /*
2577  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2578  * @migrate: migrate struct containing all migration information
2579  *
2580  * Replace page mapping (CPU page table pte) with a special migration pte entry
2581  * and check again if it has been pinned. Pinned pages are restored because we
2582  * cannot migrate them.
2583  *
2584  * This is the last step before we call the device driver callback to allocate
2585  * destination memory and copy contents of original page over to new page.
2586  */
2587 static void migrate_vma_unmap(struct migrate_vma *migrate)
2588 {
2589         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2590         const unsigned long npages = migrate->npages;
2591         const unsigned long start = migrate->start;
2592         unsigned long addr, i, restore = 0;
2593
2594         for (i = 0; i < npages; i++) {
2595                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2596
2597                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2598                         continue;
2599
2600                 if (page_mapped(page)) {
2601                         try_to_unmap(page, flags);
2602                         if (page_mapped(page))
2603                                 goto restore;
2604                 }
2605
2606                 if (migrate_vma_check_page(page))
2607                         continue;
2608
2609 restore:
2610                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2611                 migrate->cpages--;
2612                 restore++;
2613         }
2614
2615         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2616                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2617
2618                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2619                         continue;
2620
2621                 remove_migration_ptes(page, page, false);
2622
2623                 migrate->src[i] = 0;
2624                 unlock_page(page);
2625                 restore--;
2626
2627                 if (is_zone_device_page(page))
2628                         put_page(page);
2629                 else
2630                         putback_lru_page(page);
2631         }
2632 }
2633
2634 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2635                                     unsigned long addr,
2636                                     struct page *page,
2637                                     unsigned long *src,
2638                                     unsigned long *dst)
2639 {
2640         struct vm_area_struct *vma = migrate->vma;
2641         struct mm_struct *mm = vma->vm_mm;
2642         struct mem_cgroup *memcg;
2643         bool flush = false;
2644         spinlock_t *ptl;
2645         pte_t entry;
2646         pgd_t *pgdp;
2647         p4d_t *p4dp;
2648         pud_t *pudp;
2649         pmd_t *pmdp;
2650         pte_t *ptep;
2651
2652         /* Only allow populating anonymous memory */
2653         if (!vma_is_anonymous(vma))
2654                 goto abort;
2655
2656         pgdp = pgd_offset(mm, addr);
2657         p4dp = p4d_alloc(mm, pgdp, addr);
2658         if (!p4dp)
2659                 goto abort;
2660         pudp = pud_alloc(mm, p4dp, addr);
2661         if (!pudp)
2662                 goto abort;
2663         pmdp = pmd_alloc(mm, pudp, addr);
2664         if (!pmdp)
2665                 goto abort;
2666
2667         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2668                 goto abort;
2669
2670         /*
2671          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2672          * pte_offset_map() on pmds where a huge pmd might be created
2673          * from a different thread.
2674          *
2675          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2676          * parallel threads are excluded by other means.
2677          *
2678          * Here we only have down_read(mmap_sem).
2679          */
2680         if (pte_alloc(mm, pmdp, addr))
2681                 goto abort;
2682
2683         /* See the comment in pte_alloc_one_map() */
2684         if (unlikely(pmd_trans_unstable(pmdp)))
2685                 goto abort;
2686
2687         if (unlikely(anon_vma_prepare(vma)))
2688                 goto abort;
2689         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2690                 goto abort;
2691
2692         /*
2693          * The memory barrier inside __SetPageUptodate makes sure that
2694          * preceding stores to the page contents become visible before
2695          * the set_pte_at() write.
2696          */
2697         __SetPageUptodate(page);
2698
2699         if (is_zone_device_page(page)) {
2700                 if (is_device_private_page(page)) {
2701                         swp_entry_t swp_entry;
2702
2703                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2704                         entry = swp_entry_to_pte(swp_entry);
2705                 } else if (is_device_public_page(page)) {
2706                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2707                         if (vma->vm_flags & VM_WRITE)
2708                                 entry = pte_mkwrite(pte_mkdirty(entry));
2709                         entry = pte_mkdevmap(entry);
2710                 }
2711         } else {
2712                 entry = mk_pte(page, vma->vm_page_prot);
2713                 if (vma->vm_flags & VM_WRITE)
2714                         entry = pte_mkwrite(pte_mkdirty(entry));
2715         }
2716
2717         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2718
2719         if (pte_present(*ptep)) {
2720                 unsigned long pfn = pte_pfn(*ptep);
2721
2722                 if (!is_zero_pfn(pfn)) {
2723                         pte_unmap_unlock(ptep, ptl);
2724                         mem_cgroup_cancel_charge(page, memcg, false);
2725                         goto abort;
2726                 }
2727                 flush = true;
2728         } else if (!pte_none(*ptep)) {
2729                 pte_unmap_unlock(ptep, ptl);
2730                 mem_cgroup_cancel_charge(page, memcg, false);
2731                 goto abort;
2732         }
2733
2734         /*
2735          * Check for usefaultfd but do not deliver the fault. Instead,
2736          * just back off.
2737          */
2738         if (userfaultfd_missing(vma)) {
2739                 pte_unmap_unlock(ptep, ptl);
2740                 mem_cgroup_cancel_charge(page, memcg, false);
2741                 goto abort;
2742         }
2743
2744         inc_mm_counter(mm, MM_ANONPAGES);
2745         page_add_new_anon_rmap(page, vma, addr, false);
2746         mem_cgroup_commit_charge(page, memcg, false, false);
2747         if (!is_zone_device_page(page))
2748                 lru_cache_add_active_or_unevictable(page, vma);
2749         get_page(page);
2750
2751         if (flush) {
2752                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2753                 ptep_clear_flush_notify(vma, addr, ptep);
2754                 set_pte_at_notify(mm, addr, ptep, entry);
2755                 update_mmu_cache(vma, addr, ptep);
2756         } else {
2757                 /* No need to invalidate - it was non-present before */
2758                 set_pte_at(mm, addr, ptep, entry);
2759                 update_mmu_cache(vma, addr, ptep);
2760         }
2761
2762         pte_unmap_unlock(ptep, ptl);
2763         *src = MIGRATE_PFN_MIGRATE;
2764         return;
2765
2766 abort:
2767         *src &= ~MIGRATE_PFN_MIGRATE;
2768 }
2769
2770 /*
2771  * migrate_vma_pages() - migrate meta-data from src page to dst page
2772  * @migrate: migrate struct containing all migration information
2773  *
2774  * This migrates struct page meta-data from source struct page to destination
2775  * struct page. This effectively finishes the migration from source page to the
2776  * destination page.
2777  */
2778 static void migrate_vma_pages(struct migrate_vma *migrate)
2779 {
2780         const unsigned long npages = migrate->npages;
2781         const unsigned long start = migrate->start;
2782         struct vm_area_struct *vma = migrate->vma;
2783         struct mm_struct *mm = vma->vm_mm;
2784         unsigned long addr, i, mmu_start;
2785         bool notified = false;
2786
2787         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2788                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2789                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2790                 struct address_space *mapping;
2791                 int r;
2792
2793                 if (!newpage) {
2794                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2795                         continue;
2796                 }
2797
2798                 if (!page) {
2799                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2800                                 continue;
2801                         }
2802                         if (!notified) {
2803                                 mmu_start = addr;
2804                                 notified = true;
2805                                 mmu_notifier_invalidate_range_start(mm,
2806                                                                 mmu_start,
2807                                                                 migrate->end);
2808                         }
2809                         migrate_vma_insert_page(migrate, addr, newpage,
2810                                                 &migrate->src[i],
2811                                                 &migrate->dst[i]);
2812                         continue;
2813                 }
2814
2815                 mapping = page_mapping(page);
2816
2817                 if (is_zone_device_page(newpage)) {
2818                         if (is_device_private_page(newpage)) {
2819                                 /*
2820                                  * For now only support private anonymous when
2821                                  * migrating to un-addressable device memory.
2822                                  */
2823                                 if (mapping) {
2824                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825                                         continue;
2826                                 }
2827                         } else if (!is_device_public_page(newpage)) {
2828                                 /*
2829                                  * Other types of ZONE_DEVICE page are not
2830                                  * supported.
2831                                  */
2832                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2833                                 continue;
2834                         }
2835                 }
2836
2837                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2838                 if (r != MIGRATEPAGE_SUCCESS)
2839                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2840         }
2841
2842         /*
2843          * No need to double call mmu_notifier->invalidate_range() callback as
2844          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2845          * did already call it.
2846          */
2847         if (notified)
2848                 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2849                                                        migrate->end);
2850 }
2851
2852 /*
2853  * migrate_vma_finalize() - restore CPU page table entry
2854  * @migrate: migrate struct containing all migration information
2855  *
2856  * This replaces the special migration pte entry with either a mapping to the
2857  * new page if migration was successful for that page, or to the original page
2858  * otherwise.
2859  *
2860  * This also unlocks the pages and puts them back on the lru, or drops the extra
2861  * refcount, for device pages.
2862  */
2863 static void migrate_vma_finalize(struct migrate_vma *migrate)
2864 {
2865         const unsigned long npages = migrate->npages;
2866         unsigned long i;
2867
2868         for (i = 0; i < npages; i++) {
2869                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2870                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2871
2872                 if (!page) {
2873                         if (newpage) {
2874                                 unlock_page(newpage);
2875                                 put_page(newpage);
2876                         }
2877                         continue;
2878                 }
2879
2880                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2881                         if (newpage) {
2882                                 unlock_page(newpage);
2883                                 put_page(newpage);
2884                         }
2885                         newpage = page;
2886                 }
2887
2888                 remove_migration_ptes(page, newpage, false);
2889                 unlock_page(page);
2890                 migrate->cpages--;
2891
2892                 if (is_zone_device_page(page))
2893                         put_page(page);
2894                 else
2895                         putback_lru_page(page);
2896
2897                 if (newpage != page) {
2898                         unlock_page(newpage);
2899                         if (is_zone_device_page(newpage))
2900                                 put_page(newpage);
2901                         else
2902                                 putback_lru_page(newpage);
2903                 }
2904         }
2905 }
2906
2907 /*
2908  * migrate_vma() - migrate a range of memory inside vma
2909  *
2910  * @ops: migration callback for allocating destination memory and copying
2911  * @vma: virtual memory area containing the range to be migrated
2912  * @start: start address of the range to migrate (inclusive)
2913  * @end: end address of the range to migrate (exclusive)
2914  * @src: array of hmm_pfn_t containing source pfns
2915  * @dst: array of hmm_pfn_t containing destination pfns
2916  * @private: pointer passed back to each of the callback
2917  * Returns: 0 on success, error code otherwise
2918  *
2919  * This function tries to migrate a range of memory virtual address range, using
2920  * callbacks to allocate and copy memory from source to destination. First it
2921  * collects all the pages backing each virtual address in the range, saving this
2922  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2923  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2924  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2925  * in the corresponding src array entry. It then restores any pages that are
2926  * pinned, by remapping and unlocking those pages.
2927  *
2928  * At this point it calls the alloc_and_copy() callback. For documentation on
2929  * what is expected from that callback, see struct migrate_vma_ops comments in
2930  * include/linux/migrate.h
2931  *
2932  * After the alloc_and_copy() callback, this function goes over each entry in
2933  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2934  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2935  * then the function tries to migrate struct page information from the source
2936  * struct page to the destination struct page. If it fails to migrate the struct
2937  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2938  * array.
2939  *
2940  * At this point all successfully migrated pages have an entry in the src
2941  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2942  * array entry with MIGRATE_PFN_VALID flag set.
2943  *
2944  * It then calls the finalize_and_map() callback. See comments for "struct
2945  * migrate_vma_ops", in include/linux/migrate.h for details about
2946  * finalize_and_map() behavior.
2947  *
2948  * After the finalize_and_map() callback, for successfully migrated pages, this
2949  * function updates the CPU page table to point to new pages, otherwise it
2950  * restores the CPU page table to point to the original source pages.
2951  *
2952  * Function returns 0 after the above steps, even if no pages were migrated
2953  * (The function only returns an error if any of the arguments are invalid.)
2954  *
2955  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2956  * unsigned long entries.
2957  */
2958 int migrate_vma(const struct migrate_vma_ops *ops,
2959                 struct vm_area_struct *vma,
2960                 unsigned long start,
2961                 unsigned long end,
2962                 unsigned long *src,
2963                 unsigned long *dst,
2964                 void *private)
2965 {
2966         struct migrate_vma migrate;
2967
2968         /* Sanity check the arguments */
2969         start &= PAGE_MASK;
2970         end &= PAGE_MASK;
2971         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2972                         vma_is_dax(vma))
2973                 return -EINVAL;
2974         if (start < vma->vm_start || start >= vma->vm_end)
2975                 return -EINVAL;
2976         if (end <= vma->vm_start || end > vma->vm_end)
2977                 return -EINVAL;
2978         if (!ops || !src || !dst || start >= end)
2979                 return -EINVAL;
2980
2981         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2982         migrate.src = src;
2983         migrate.dst = dst;
2984         migrate.start = start;
2985         migrate.npages = 0;
2986         migrate.cpages = 0;
2987         migrate.end = end;
2988         migrate.vma = vma;
2989
2990         /* Collect, and try to unmap source pages */
2991         migrate_vma_collect(&migrate);
2992         if (!migrate.cpages)
2993                 return 0;
2994
2995         /* Lock and isolate page */
2996         migrate_vma_prepare(&migrate);
2997         if (!migrate.cpages)
2998                 return 0;
2999
3000         /* Unmap pages */
3001         migrate_vma_unmap(&migrate);
3002         if (!migrate.cpages)
3003                 return 0;
3004
3005         /*
3006          * At this point pages are locked and unmapped, and thus they have
3007          * stable content and can safely be copied to destination memory that
3008          * is allocated by the callback.
3009          *
3010          * Note that migration can fail in migrate_vma_struct_page() for each
3011          * individual page.
3012          */
3013         ops->alloc_and_copy(vma, src, dst, start, end, private);
3014
3015         /* This does the real migration of struct page */
3016         migrate_vma_pages(&migrate);
3017
3018         ops->finalize_and_map(vma, src, dst, start, end, private);
3019
3020         /* Unlock and remap pages */
3021         migrate_vma_finalize(&migrate);
3022
3023         return 0;
3024 }
3025 EXPORT_SYMBOL(migrate_vma);
3026 #endif /* defined(MIGRATE_VMA_HELPER) */