GNU Linux-libre 5.4.200-gnu1
[releases.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51
52 #include <asm/tlbflush.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/migrate.h>
56
57 #include "internal.h"
58
59 /*
60  * migrate_prep() needs to be called before we start compiling a list of pages
61  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
62  * undesirable, use migrate_prep_local()
63  */
64 int migrate_prep(void)
65 {
66         /*
67          * Clear the LRU lists so pages can be isolated.
68          * Note that pages may be moved off the LRU after we have
69          * drained them. Those pages will fail to migrate like other
70          * pages that may be busy.
71          */
72         lru_add_drain_all();
73
74         return 0;
75 }
76
77 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
78 int migrate_prep_local(void)
79 {
80         lru_add_drain();
81
82         return 0;
83 }
84
85 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 {
87         struct address_space *mapping;
88
89         /*
90          * Avoid burning cycles with pages that are yet under __free_pages(),
91          * or just got freed under us.
92          *
93          * In case we 'win' a race for a movable page being freed under us and
94          * raise its refcount preventing __free_pages() from doing its job
95          * the put_page() at the end of this block will take care of
96          * release this page, thus avoiding a nasty leakage.
97          */
98         if (unlikely(!get_page_unless_zero(page)))
99                 goto out;
100
101         /*
102          * Check PageMovable before holding a PG_lock because page's owner
103          * assumes anybody doesn't touch PG_lock of newly allocated page
104          * so unconditionally grabbing the lock ruins page's owner side.
105          */
106         if (unlikely(!__PageMovable(page)))
107                 goto out_putpage;
108         /*
109          * As movable pages are not isolated from LRU lists, concurrent
110          * compaction threads can race against page migration functions
111          * as well as race against the releasing a page.
112          *
113          * In order to avoid having an already isolated movable page
114          * being (wrongly) re-isolated while it is under migration,
115          * or to avoid attempting to isolate pages being released,
116          * lets be sure we have the page lock
117          * before proceeding with the movable page isolation steps.
118          */
119         if (unlikely(!trylock_page(page)))
120                 goto out_putpage;
121
122         if (!PageMovable(page) || PageIsolated(page))
123                 goto out_no_isolated;
124
125         mapping = page_mapping(page);
126         VM_BUG_ON_PAGE(!mapping, page);
127
128         if (!mapping->a_ops->isolate_page(page, mode))
129                 goto out_no_isolated;
130
131         /* Driver shouldn't use PG_isolated bit of page->flags */
132         WARN_ON_ONCE(PageIsolated(page));
133         __SetPageIsolated(page);
134         unlock_page(page);
135
136         return 0;
137
138 out_no_isolated:
139         unlock_page(page);
140 out_putpage:
141         put_page(page);
142 out:
143         return -EBUSY;
144 }
145
146 /* It should be called on page which is PG_movable */
147 void putback_movable_page(struct page *page)
148 {
149         struct address_space *mapping;
150
151         VM_BUG_ON_PAGE(!PageLocked(page), page);
152         VM_BUG_ON_PAGE(!PageMovable(page), page);
153         VM_BUG_ON_PAGE(!PageIsolated(page), page);
154
155         mapping = page_mapping(page);
156         mapping->a_ops->putback_page(page);
157         __ClearPageIsolated(page);
158 }
159
160 /*
161  * Put previously isolated pages back onto the appropriate lists
162  * from where they were once taken off for compaction/migration.
163  *
164  * This function shall be used whenever the isolated pageset has been
165  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
166  * and isolate_huge_page().
167  */
168 void putback_movable_pages(struct list_head *l)
169 {
170         struct page *page;
171         struct page *page2;
172
173         list_for_each_entry_safe(page, page2, l, lru) {
174                 if (unlikely(PageHuge(page))) {
175                         putback_active_hugepage(page);
176                         continue;
177                 }
178                 list_del(&page->lru);
179                 /*
180                  * We isolated non-lru movable page so here we can use
181                  * __PageMovable because LRU page's mapping cannot have
182                  * PAGE_MAPPING_MOVABLE.
183                  */
184                 if (unlikely(__PageMovable(page))) {
185                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
186                         lock_page(page);
187                         if (PageMovable(page))
188                                 putback_movable_page(page);
189                         else
190                                 __ClearPageIsolated(page);
191                         unlock_page(page);
192                         put_page(page);
193                 } else {
194                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
195                                         page_is_file_cache(page), -hpage_nr_pages(page));
196                         putback_lru_page(page);
197                 }
198         }
199 }
200
201 /*
202  * Restore a potential migration pte to a working pte entry
203  */
204 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
205                                  unsigned long addr, void *old)
206 {
207         struct page_vma_mapped_walk pvmw = {
208                 .page = old,
209                 .vma = vma,
210                 .address = addr,
211                 .flags = PVMW_SYNC | PVMW_MIGRATION,
212         };
213         struct page *new;
214         pte_t pte;
215         swp_entry_t entry;
216
217         VM_BUG_ON_PAGE(PageTail(page), page);
218         while (page_vma_mapped_walk(&pvmw)) {
219                 if (PageKsm(page))
220                         new = page;
221                 else
222                         new = page - pvmw.page->index +
223                                 linear_page_index(vma, pvmw.address);
224
225 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
226                 /* PMD-mapped THP migration entry */
227                 if (!pvmw.pte) {
228                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
229                         remove_migration_pmd(&pvmw, new);
230                         continue;
231                 }
232 #endif
233
234                 get_page(new);
235                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
236                 if (pte_swp_soft_dirty(*pvmw.pte))
237                         pte = pte_mksoft_dirty(pte);
238
239                 /*
240                  * Recheck VMA as permissions can change since migration started
241                  */
242                 entry = pte_to_swp_entry(*pvmw.pte);
243                 if (is_write_migration_entry(entry))
244                         pte = maybe_mkwrite(pte, vma);
245
246                 if (unlikely(is_zone_device_page(new))) {
247                         if (is_device_private_page(new)) {
248                                 entry = make_device_private_entry(new, pte_write(pte));
249                                 pte = swp_entry_to_pte(entry);
250                         }
251                 }
252
253 #ifdef CONFIG_HUGETLB_PAGE
254                 if (PageHuge(new)) {
255                         pte = pte_mkhuge(pte);
256                         pte = arch_make_huge_pte(pte, vma, new, 0);
257                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258                         if (PageAnon(new))
259                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
260                         else
261                                 page_dup_rmap(new, true);
262                 } else
263 #endif
264                 {
265                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266
267                         if (PageAnon(new))
268                                 page_add_anon_rmap(new, vma, pvmw.address, false);
269                         else
270                                 page_add_file_rmap(new, false);
271                 }
272                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273                         mlock_vma_page(new);
274
275                 if (PageTransHuge(page) && PageMlocked(page))
276                         clear_page_mlock(page);
277
278                 /* No need to invalidate - it was non-present before */
279                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280         }
281
282         return true;
283 }
284
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291         struct rmap_walk_control rwc = {
292                 .rmap_one = remove_migration_pte,
293                 .arg = old,
294         };
295
296         if (locked)
297                 rmap_walk_locked(new, &rwc);
298         else
299                 rmap_walk(new, &rwc);
300 }
301
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308                                 spinlock_t *ptl)
309 {
310         pte_t pte;
311         swp_entry_t entry;
312         struct page *page;
313
314         spin_lock(ptl);
315         pte = *ptep;
316         if (!is_swap_pte(pte))
317                 goto out;
318
319         entry = pte_to_swp_entry(pte);
320         if (!is_migration_entry(entry))
321                 goto out;
322
323         page = migration_entry_to_page(entry);
324         page = compound_head(page);
325
326         /*
327          * Once page cache replacement of page migration started, page_count
328          * is zero; but we must not call put_and_wait_on_page_locked() without
329          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330          */
331         if (!get_page_unless_zero(page))
332                 goto out;
333         pte_unmap_unlock(ptep, ptl);
334         put_and_wait_on_page_locked(page);
335         return;
336 out:
337         pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341                                 unsigned long address)
342 {
343         spinlock_t *ptl = pte_lockptr(mm, pmd);
344         pte_t *ptep = pte_offset_map(pmd, address);
345         __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349                 struct mm_struct *mm, pte_t *pte)
350 {
351         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352         __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358         spinlock_t *ptl;
359         struct page *page;
360
361         ptl = pmd_lock(mm, pmd);
362         if (!is_pmd_migration_entry(*pmd))
363                 goto unlock;
364         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365         if (!get_page_unless_zero(page))
366                 goto unlock;
367         spin_unlock(ptl);
368         put_and_wait_on_page_locked(page);
369         return;
370 unlock:
371         spin_unlock(ptl);
372 }
373 #endif
374
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377         int expected_count = 1;
378
379         /*
380          * Device public or private pages have an extra refcount as they are
381          * ZONE_DEVICE pages.
382          */
383         expected_count += is_device_private_page(page);
384         if (mapping)
385                 expected_count += hpage_nr_pages(page) + page_has_private(page);
386
387         return expected_count;
388 }
389
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
398 int migrate_page_move_mapping(struct address_space *mapping,
399                 struct page *newpage, struct page *page, int extra_count)
400 {
401         XA_STATE(xas, &mapping->i_pages, page_index(page));
402         struct zone *oldzone, *newzone;
403         int dirty;
404         int expected_count = expected_page_refs(mapping, page) + extra_count;
405
406         if (!mapping) {
407                 /* Anonymous page without mapping */
408                 if (page_count(page) != expected_count)
409                         return -EAGAIN;
410
411                 /* No turning back from here */
412                 newpage->index = page->index;
413                 newpage->mapping = page->mapping;
414                 if (PageSwapBacked(page))
415                         __SetPageSwapBacked(newpage);
416
417                 return MIGRATEPAGE_SUCCESS;
418         }
419
420         oldzone = page_zone(page);
421         newzone = page_zone(newpage);
422
423         xas_lock_irq(&xas);
424         if (page_count(page) != expected_count || xas_load(&xas) != page) {
425                 xas_unlock_irq(&xas);
426                 return -EAGAIN;
427         }
428
429         if (!page_ref_freeze(page, expected_count)) {
430                 xas_unlock_irq(&xas);
431                 return -EAGAIN;
432         }
433
434         /*
435          * Now we know that no one else is looking at the page:
436          * no turning back from here.
437          */
438         newpage->index = page->index;
439         newpage->mapping = page->mapping;
440         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
441         if (PageSwapBacked(page)) {
442                 __SetPageSwapBacked(newpage);
443                 if (PageSwapCache(page)) {
444                         SetPageSwapCache(newpage);
445                         set_page_private(newpage, page_private(page));
446                 }
447         } else {
448                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
449         }
450
451         /* Move dirty while page refs frozen and newpage not yet exposed */
452         dirty = PageDirty(page);
453         if (dirty) {
454                 ClearPageDirty(page);
455                 SetPageDirty(newpage);
456         }
457
458         xas_store(&xas, newpage);
459         if (PageTransHuge(page)) {
460                 int i;
461
462                 for (i = 1; i < HPAGE_PMD_NR; i++) {
463                         xas_next(&xas);
464                         xas_store(&xas, newpage);
465                 }
466         }
467
468         /*
469          * Drop cache reference from old page by unfreezing
470          * to one less reference.
471          * We know this isn't the last reference.
472          */
473         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
474
475         xas_unlock(&xas);
476         /* Leave irq disabled to prevent preemption while updating stats */
477
478         /*
479          * If moved to a different zone then also account
480          * the page for that zone. Other VM counters will be
481          * taken care of when we establish references to the
482          * new page and drop references to the old page.
483          *
484          * Note that anonymous pages are accounted for
485          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486          * are mapped to swap space.
487          */
488         if (newzone != oldzone) {
489                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
490                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
491                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
492                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
493                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
494                 }
495                 if (dirty && mapping_cap_account_dirty(mapping)) {
496                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
497                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
498                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
499                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
500                 }
501         }
502         local_irq_enable();
503
504         return MIGRATEPAGE_SUCCESS;
505 }
506 EXPORT_SYMBOL(migrate_page_move_mapping);
507
508 /*
509  * The expected number of remaining references is the same as that
510  * of migrate_page_move_mapping().
511  */
512 int migrate_huge_page_move_mapping(struct address_space *mapping,
513                                    struct page *newpage, struct page *page)
514 {
515         XA_STATE(xas, &mapping->i_pages, page_index(page));
516         int expected_count;
517
518         xas_lock_irq(&xas);
519         expected_count = 2 + page_has_private(page);
520         if (page_count(page) != expected_count || xas_load(&xas) != page) {
521                 xas_unlock_irq(&xas);
522                 return -EAGAIN;
523         }
524
525         if (!page_ref_freeze(page, expected_count)) {
526                 xas_unlock_irq(&xas);
527                 return -EAGAIN;
528         }
529
530         newpage->index = page->index;
531         newpage->mapping = page->mapping;
532
533         get_page(newpage);
534
535         xas_store(&xas, newpage);
536
537         page_ref_unfreeze(page, expected_count - 1);
538
539         xas_unlock_irq(&xas);
540
541         return MIGRATEPAGE_SUCCESS;
542 }
543
544 /*
545  * Gigantic pages are so large that we do not guarantee that page++ pointer
546  * arithmetic will work across the entire page.  We need something more
547  * specialized.
548  */
549 static void __copy_gigantic_page(struct page *dst, struct page *src,
550                                 int nr_pages)
551 {
552         int i;
553         struct page *dst_base = dst;
554         struct page *src_base = src;
555
556         for (i = 0; i < nr_pages; ) {
557                 cond_resched();
558                 copy_highpage(dst, src);
559
560                 i++;
561                 dst = mem_map_next(dst, dst_base, i);
562                 src = mem_map_next(src, src_base, i);
563         }
564 }
565
566 static void copy_huge_page(struct page *dst, struct page *src)
567 {
568         int i;
569         int nr_pages;
570
571         if (PageHuge(src)) {
572                 /* hugetlbfs page */
573                 struct hstate *h = page_hstate(src);
574                 nr_pages = pages_per_huge_page(h);
575
576                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
577                         __copy_gigantic_page(dst, src, nr_pages);
578                         return;
579                 }
580         } else {
581                 /* thp page */
582                 BUG_ON(!PageTransHuge(src));
583                 nr_pages = hpage_nr_pages(src);
584         }
585
586         for (i = 0; i < nr_pages; i++) {
587                 cond_resched();
588                 copy_highpage(dst + i, src + i);
589         }
590 }
591
592 /*
593  * Copy the page to its new location
594  */
595 void migrate_page_states(struct page *newpage, struct page *page)
596 {
597         int cpupid;
598
599         if (PageError(page))
600                 SetPageError(newpage);
601         if (PageReferenced(page))
602                 SetPageReferenced(newpage);
603         if (PageUptodate(page))
604                 SetPageUptodate(newpage);
605         if (TestClearPageActive(page)) {
606                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
607                 SetPageActive(newpage);
608         } else if (TestClearPageUnevictable(page))
609                 SetPageUnevictable(newpage);
610         if (PageWorkingset(page))
611                 SetPageWorkingset(newpage);
612         if (PageChecked(page))
613                 SetPageChecked(newpage);
614         if (PageMappedToDisk(page))
615                 SetPageMappedToDisk(newpage);
616
617         /* Move dirty on pages not done by migrate_page_move_mapping() */
618         if (PageDirty(page))
619                 SetPageDirty(newpage);
620
621         if (page_is_young(page))
622                 set_page_young(newpage);
623         if (page_is_idle(page))
624                 set_page_idle(newpage);
625
626         /*
627          * Copy NUMA information to the new page, to prevent over-eager
628          * future migrations of this same page.
629          */
630         cpupid = page_cpupid_xchg_last(page, -1);
631         page_cpupid_xchg_last(newpage, cpupid);
632
633         ksm_migrate_page(newpage, page);
634         /*
635          * Please do not reorder this without considering how mm/ksm.c's
636          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
637          */
638         if (PageSwapCache(page))
639                 ClearPageSwapCache(page);
640         ClearPagePrivate(page);
641         set_page_private(page, 0);
642
643         /*
644          * If any waiters have accumulated on the new page then
645          * wake them up.
646          */
647         if (PageWriteback(newpage))
648                 end_page_writeback(newpage);
649
650         copy_page_owner(page, newpage);
651
652         mem_cgroup_migrate(page, newpage);
653 }
654 EXPORT_SYMBOL(migrate_page_states);
655
656 void migrate_page_copy(struct page *newpage, struct page *page)
657 {
658         if (PageHuge(page) || PageTransHuge(page))
659                 copy_huge_page(newpage, page);
660         else
661                 copy_highpage(newpage, page);
662
663         migrate_page_states(newpage, page);
664 }
665 EXPORT_SYMBOL(migrate_page_copy);
666
667 /************************************************************
668  *                    Migration functions
669  ***********************************************************/
670
671 /*
672  * Common logic to directly migrate a single LRU page suitable for
673  * pages that do not use PagePrivate/PagePrivate2.
674  *
675  * Pages are locked upon entry and exit.
676  */
677 int migrate_page(struct address_space *mapping,
678                 struct page *newpage, struct page *page,
679                 enum migrate_mode mode)
680 {
681         int rc;
682
683         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
684
685         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
686
687         if (rc != MIGRATEPAGE_SUCCESS)
688                 return rc;
689
690         if (mode != MIGRATE_SYNC_NO_COPY)
691                 migrate_page_copy(newpage, page);
692         else
693                 migrate_page_states(newpage, page);
694         return MIGRATEPAGE_SUCCESS;
695 }
696 EXPORT_SYMBOL(migrate_page);
697
698 #ifdef CONFIG_BLOCK
699 /* Returns true if all buffers are successfully locked */
700 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
701                                                         enum migrate_mode mode)
702 {
703         struct buffer_head *bh = head;
704
705         /* Simple case, sync compaction */
706         if (mode != MIGRATE_ASYNC) {
707                 do {
708                         lock_buffer(bh);
709                         bh = bh->b_this_page;
710
711                 } while (bh != head);
712
713                 return true;
714         }
715
716         /* async case, we cannot block on lock_buffer so use trylock_buffer */
717         do {
718                 if (!trylock_buffer(bh)) {
719                         /*
720                          * We failed to lock the buffer and cannot stall in
721                          * async migration. Release the taken locks
722                          */
723                         struct buffer_head *failed_bh = bh;
724                         bh = head;
725                         while (bh != failed_bh) {
726                                 unlock_buffer(bh);
727                                 bh = bh->b_this_page;
728                         }
729                         return false;
730                 }
731
732                 bh = bh->b_this_page;
733         } while (bh != head);
734         return true;
735 }
736
737 static int __buffer_migrate_page(struct address_space *mapping,
738                 struct page *newpage, struct page *page, enum migrate_mode mode,
739                 bool check_refs)
740 {
741         struct buffer_head *bh, *head;
742         int rc;
743         int expected_count;
744
745         if (!page_has_buffers(page))
746                 return migrate_page(mapping, newpage, page, mode);
747
748         /* Check whether page does not have extra refs before we do more work */
749         expected_count = expected_page_refs(mapping, page);
750         if (page_count(page) != expected_count)
751                 return -EAGAIN;
752
753         head = page_buffers(page);
754         if (!buffer_migrate_lock_buffers(head, mode))
755                 return -EAGAIN;
756
757         if (check_refs) {
758                 bool busy;
759                 bool invalidated = false;
760
761 recheck_buffers:
762                 busy = false;
763                 spin_lock(&mapping->private_lock);
764                 bh = head;
765                 do {
766                         if (atomic_read(&bh->b_count)) {
767                                 busy = true;
768                                 break;
769                         }
770                         bh = bh->b_this_page;
771                 } while (bh != head);
772                 if (busy) {
773                         if (invalidated) {
774                                 rc = -EAGAIN;
775                                 goto unlock_buffers;
776                         }
777                         spin_unlock(&mapping->private_lock);
778                         invalidate_bh_lrus();
779                         invalidated = true;
780                         goto recheck_buffers;
781                 }
782         }
783
784         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
785         if (rc != MIGRATEPAGE_SUCCESS)
786                 goto unlock_buffers;
787
788         ClearPagePrivate(page);
789         set_page_private(newpage, page_private(page));
790         set_page_private(page, 0);
791         put_page(page);
792         get_page(newpage);
793
794         bh = head;
795         do {
796                 set_bh_page(bh, newpage, bh_offset(bh));
797                 bh = bh->b_this_page;
798
799         } while (bh != head);
800
801         SetPagePrivate(newpage);
802
803         if (mode != MIGRATE_SYNC_NO_COPY)
804                 migrate_page_copy(newpage, page);
805         else
806                 migrate_page_states(newpage, page);
807
808         rc = MIGRATEPAGE_SUCCESS;
809 unlock_buffers:
810         if (check_refs)
811                 spin_unlock(&mapping->private_lock);
812         bh = head;
813         do {
814                 unlock_buffer(bh);
815                 bh = bh->b_this_page;
816
817         } while (bh != head);
818
819         return rc;
820 }
821
822 /*
823  * Migration function for pages with buffers. This function can only be used
824  * if the underlying filesystem guarantees that no other references to "page"
825  * exist. For example attached buffer heads are accessed only under page lock.
826  */
827 int buffer_migrate_page(struct address_space *mapping,
828                 struct page *newpage, struct page *page, enum migrate_mode mode)
829 {
830         return __buffer_migrate_page(mapping, newpage, page, mode, false);
831 }
832 EXPORT_SYMBOL(buffer_migrate_page);
833
834 /*
835  * Same as above except that this variant is more careful and checks that there
836  * are also no buffer head references. This function is the right one for
837  * mappings where buffer heads are directly looked up and referenced (such as
838  * block device mappings).
839  */
840 int buffer_migrate_page_norefs(struct address_space *mapping,
841                 struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843         return __buffer_migrate_page(mapping, newpage, page, mode, true);
844 }
845 #endif
846
847 /*
848  * Writeback a page to clean the dirty state
849  */
850 static int writeout(struct address_space *mapping, struct page *page)
851 {
852         struct writeback_control wbc = {
853                 .sync_mode = WB_SYNC_NONE,
854                 .nr_to_write = 1,
855                 .range_start = 0,
856                 .range_end = LLONG_MAX,
857                 .for_reclaim = 1
858         };
859         int rc;
860
861         if (!mapping->a_ops->writepage)
862                 /* No write method for the address space */
863                 return -EINVAL;
864
865         if (!clear_page_dirty_for_io(page))
866                 /* Someone else already triggered a write */
867                 return -EAGAIN;
868
869         /*
870          * A dirty page may imply that the underlying filesystem has
871          * the page on some queue. So the page must be clean for
872          * migration. Writeout may mean we loose the lock and the
873          * page state is no longer what we checked for earlier.
874          * At this point we know that the migration attempt cannot
875          * be successful.
876          */
877         remove_migration_ptes(page, page, false);
878
879         rc = mapping->a_ops->writepage(page, &wbc);
880
881         if (rc != AOP_WRITEPAGE_ACTIVATE)
882                 /* unlocked. Relock */
883                 lock_page(page);
884
885         return (rc < 0) ? -EIO : -EAGAIN;
886 }
887
888 /*
889  * Default handling if a filesystem does not provide a migration function.
890  */
891 static int fallback_migrate_page(struct address_space *mapping,
892         struct page *newpage, struct page *page, enum migrate_mode mode)
893 {
894         if (PageDirty(page)) {
895                 /* Only writeback pages in full synchronous migration */
896                 switch (mode) {
897                 case MIGRATE_SYNC:
898                 case MIGRATE_SYNC_NO_COPY:
899                         break;
900                 default:
901                         return -EBUSY;
902                 }
903                 return writeout(mapping, page);
904         }
905
906         /*
907          * Buffers may be managed in a filesystem specific way.
908          * We must have no buffers or drop them.
909          */
910         if (page_has_private(page) &&
911             !try_to_release_page(page, GFP_KERNEL))
912                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
913
914         return migrate_page(mapping, newpage, page, mode);
915 }
916
917 /*
918  * Move a page to a newly allocated page
919  * The page is locked and all ptes have been successfully removed.
920  *
921  * The new page will have replaced the old page if this function
922  * is successful.
923  *
924  * Return value:
925  *   < 0 - error code
926  *  MIGRATEPAGE_SUCCESS - success
927  */
928 static int move_to_new_page(struct page *newpage, struct page *page,
929                                 enum migrate_mode mode)
930 {
931         struct address_space *mapping;
932         int rc = -EAGAIN;
933         bool is_lru = !__PageMovable(page);
934
935         VM_BUG_ON_PAGE(!PageLocked(page), page);
936         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
937
938         mapping = page_mapping(page);
939
940         if (likely(is_lru)) {
941                 if (!mapping)
942                         rc = migrate_page(mapping, newpage, page, mode);
943                 else if (mapping->a_ops->migratepage)
944                         /*
945                          * Most pages have a mapping and most filesystems
946                          * provide a migratepage callback. Anonymous pages
947                          * are part of swap space which also has its own
948                          * migratepage callback. This is the most common path
949                          * for page migration.
950                          */
951                         rc = mapping->a_ops->migratepage(mapping, newpage,
952                                                         page, mode);
953                 else
954                         rc = fallback_migrate_page(mapping, newpage,
955                                                         page, mode);
956         } else {
957                 /*
958                  * In case of non-lru page, it could be released after
959                  * isolation step. In that case, we shouldn't try migration.
960                  */
961                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
962                 if (!PageMovable(page)) {
963                         rc = MIGRATEPAGE_SUCCESS;
964                         __ClearPageIsolated(page);
965                         goto out;
966                 }
967
968                 rc = mapping->a_ops->migratepage(mapping, newpage,
969                                                 page, mode);
970                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971                         !PageIsolated(page));
972         }
973
974         /*
975          * When successful, old pagecache page->mapping must be cleared before
976          * page is freed; but stats require that PageAnon be left as PageAnon.
977          */
978         if (rc == MIGRATEPAGE_SUCCESS) {
979                 if (__PageMovable(page)) {
980                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
981
982                         /*
983                          * We clear PG_movable under page_lock so any compactor
984                          * cannot try to migrate this page.
985                          */
986                         __ClearPageIsolated(page);
987                 }
988
989                 /*
990                  * Anonymous and movable page->mapping will be cleard by
991                  * free_pages_prepare so don't reset it here for keeping
992                  * the type to work PageAnon, for example.
993                  */
994                 if (!PageMappingFlags(page))
995                         page->mapping = NULL;
996
997                 if (likely(!is_zone_device_page(newpage))) {
998                         int i, nr = compound_nr(newpage);
999
1000                         for (i = 0; i < nr; i++)
1001                                 flush_dcache_page(newpage + i);
1002                 }
1003         }
1004 out:
1005         return rc;
1006 }
1007
1008 static int __unmap_and_move(struct page *page, struct page *newpage,
1009                                 int force, enum migrate_mode mode)
1010 {
1011         int rc = -EAGAIN;
1012         int page_was_mapped = 0;
1013         struct anon_vma *anon_vma = NULL;
1014         bool is_lru = !__PageMovable(page);
1015
1016         if (!trylock_page(page)) {
1017                 if (!force || mode == MIGRATE_ASYNC)
1018                         goto out;
1019
1020                 /*
1021                  * It's not safe for direct compaction to call lock_page.
1022                  * For example, during page readahead pages are added locked
1023                  * to the LRU. Later, when the IO completes the pages are
1024                  * marked uptodate and unlocked. However, the queueing
1025                  * could be merging multiple pages for one bio (e.g.
1026                  * mpage_readpages). If an allocation happens for the
1027                  * second or third page, the process can end up locking
1028                  * the same page twice and deadlocking. Rather than
1029                  * trying to be clever about what pages can be locked,
1030                  * avoid the use of lock_page for direct compaction
1031                  * altogether.
1032                  */
1033                 if (current->flags & PF_MEMALLOC)
1034                         goto out;
1035
1036                 lock_page(page);
1037         }
1038
1039         if (PageWriteback(page)) {
1040                 /*
1041                  * Only in the case of a full synchronous migration is it
1042                  * necessary to wait for PageWriteback. In the async case,
1043                  * the retry loop is too short and in the sync-light case,
1044                  * the overhead of stalling is too much
1045                  */
1046                 switch (mode) {
1047                 case MIGRATE_SYNC:
1048                 case MIGRATE_SYNC_NO_COPY:
1049                         break;
1050                 default:
1051                         rc = -EBUSY;
1052                         goto out_unlock;
1053                 }
1054                 if (!force)
1055                         goto out_unlock;
1056                 wait_on_page_writeback(page);
1057         }
1058
1059         /*
1060          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1061          * we cannot notice that anon_vma is freed while we migrates a page.
1062          * This get_anon_vma() delays freeing anon_vma pointer until the end
1063          * of migration. File cache pages are no problem because of page_lock()
1064          * File Caches may use write_page() or lock_page() in migration, then,
1065          * just care Anon page here.
1066          *
1067          * Only page_get_anon_vma() understands the subtleties of
1068          * getting a hold on an anon_vma from outside one of its mms.
1069          * But if we cannot get anon_vma, then we won't need it anyway,
1070          * because that implies that the anon page is no longer mapped
1071          * (and cannot be remapped so long as we hold the page lock).
1072          */
1073         if (PageAnon(page) && !PageKsm(page))
1074                 anon_vma = page_get_anon_vma(page);
1075
1076         /*
1077          * Block others from accessing the new page when we get around to
1078          * establishing additional references. We are usually the only one
1079          * holding a reference to newpage at this point. We used to have a BUG
1080          * here if trylock_page(newpage) fails, but would like to allow for
1081          * cases where there might be a race with the previous use of newpage.
1082          * This is much like races on refcount of oldpage: just don't BUG().
1083          */
1084         if (unlikely(!trylock_page(newpage)))
1085                 goto out_unlock;
1086
1087         if (unlikely(!is_lru)) {
1088                 rc = move_to_new_page(newpage, page, mode);
1089                 goto out_unlock_both;
1090         }
1091
1092         /*
1093          * Corner case handling:
1094          * 1. When a new swap-cache page is read into, it is added to the LRU
1095          * and treated as swapcache but it has no rmap yet.
1096          * Calling try_to_unmap() against a page->mapping==NULL page will
1097          * trigger a BUG.  So handle it here.
1098          * 2. An orphaned page (see truncate_complete_page) might have
1099          * fs-private metadata. The page can be picked up due to memory
1100          * offlining.  Everywhere else except page reclaim, the page is
1101          * invisible to the vm, so the page can not be migrated.  So try to
1102          * free the metadata, so the page can be freed.
1103          */
1104         if (!page->mapping) {
1105                 VM_BUG_ON_PAGE(PageAnon(page), page);
1106                 if (page_has_private(page)) {
1107                         try_to_free_buffers(page);
1108                         goto out_unlock_both;
1109                 }
1110         } else if (page_mapped(page)) {
1111                 /* Establish migration ptes */
1112                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1113                                 page);
1114                 try_to_unmap(page,
1115                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1116                 page_was_mapped = 1;
1117         }
1118
1119         if (!page_mapped(page))
1120                 rc = move_to_new_page(newpage, page, mode);
1121
1122         if (page_was_mapped)
1123                 remove_migration_ptes(page,
1124                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1125
1126 out_unlock_both:
1127         unlock_page(newpage);
1128 out_unlock:
1129         /* Drop an anon_vma reference if we took one */
1130         if (anon_vma)
1131                 put_anon_vma(anon_vma);
1132         unlock_page(page);
1133 out:
1134         /*
1135          * If migration is successful, decrease refcount of the newpage
1136          * which will not free the page because new page owner increased
1137          * refcounter. As well, if it is LRU page, add the page to LRU
1138          * list in here. Use the old state of the isolated source page to
1139          * determine if we migrated a LRU page. newpage was already unlocked
1140          * and possibly modified by its owner - don't rely on the page
1141          * state.
1142          */
1143         if (rc == MIGRATEPAGE_SUCCESS) {
1144                 if (unlikely(!is_lru))
1145                         put_page(newpage);
1146                 else
1147                         putback_lru_page(newpage);
1148         }
1149
1150         return rc;
1151 }
1152
1153 /*
1154  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1155  * around it.
1156  */
1157 #if defined(CONFIG_ARM) && \
1158         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1159 #define ICE_noinline noinline
1160 #else
1161 #define ICE_noinline
1162 #endif
1163
1164 /*
1165  * Obtain the lock on page, remove all ptes and migrate the page
1166  * to the newly allocated page in newpage.
1167  */
1168 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1169                                    free_page_t put_new_page,
1170                                    unsigned long private, struct page *page,
1171                                    int force, enum migrate_mode mode,
1172                                    enum migrate_reason reason)
1173 {
1174         int rc = MIGRATEPAGE_SUCCESS;
1175         struct page *newpage;
1176
1177         if (!thp_migration_supported() && PageTransHuge(page))
1178                 return -ENOMEM;
1179
1180         newpage = get_new_page(page, private);
1181         if (!newpage)
1182                 return -ENOMEM;
1183
1184         if (page_count(page) == 1) {
1185                 /* page was freed from under us. So we are done. */
1186                 ClearPageActive(page);
1187                 ClearPageUnevictable(page);
1188                 if (unlikely(__PageMovable(page))) {
1189                         lock_page(page);
1190                         if (!PageMovable(page))
1191                                 __ClearPageIsolated(page);
1192                         unlock_page(page);
1193                 }
1194                 if (put_new_page)
1195                         put_new_page(newpage, private);
1196                 else
1197                         put_page(newpage);
1198                 goto out;
1199         }
1200
1201         rc = __unmap_and_move(page, newpage, force, mode);
1202         if (rc == MIGRATEPAGE_SUCCESS)
1203                 set_page_owner_migrate_reason(newpage, reason);
1204
1205 out:
1206         if (rc != -EAGAIN) {
1207                 /*
1208                  * A page that has been migrated has all references
1209                  * removed and will be freed. A page that has not been
1210                  * migrated will have kepts its references and be
1211                  * restored.
1212                  */
1213                 list_del(&page->lru);
1214
1215                 /*
1216                  * Compaction can migrate also non-LRU pages which are
1217                  * not accounted to NR_ISOLATED_*. They can be recognized
1218                  * as __PageMovable
1219                  */
1220                 if (likely(!__PageMovable(page)))
1221                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1222                                         page_is_file_cache(page), -hpage_nr_pages(page));
1223         }
1224
1225         /*
1226          * If migration is successful, releases reference grabbed during
1227          * isolation. Otherwise, restore the page to right list unless
1228          * we want to retry.
1229          */
1230         if (rc == MIGRATEPAGE_SUCCESS) {
1231                 put_page(page);
1232                 if (reason == MR_MEMORY_FAILURE) {
1233                         /*
1234                          * Set PG_HWPoison on just freed page
1235                          * intentionally. Although it's rather weird,
1236                          * it's how HWPoison flag works at the moment.
1237                          */
1238                         if (set_hwpoison_free_buddy_page(page))
1239                                 num_poisoned_pages_inc();
1240                 }
1241         } else {
1242                 if (rc != -EAGAIN) {
1243                         if (likely(!__PageMovable(page))) {
1244                                 putback_lru_page(page);
1245                                 goto put_new;
1246                         }
1247
1248                         lock_page(page);
1249                         if (PageMovable(page))
1250                                 putback_movable_page(page);
1251                         else
1252                                 __ClearPageIsolated(page);
1253                         unlock_page(page);
1254                         put_page(page);
1255                 }
1256 put_new:
1257                 if (put_new_page)
1258                         put_new_page(newpage, private);
1259                 else
1260                         put_page(newpage);
1261         }
1262
1263         return rc;
1264 }
1265
1266 /*
1267  * Counterpart of unmap_and_move_page() for hugepage migration.
1268  *
1269  * This function doesn't wait the completion of hugepage I/O
1270  * because there is no race between I/O and migration for hugepage.
1271  * Note that currently hugepage I/O occurs only in direct I/O
1272  * where no lock is held and PG_writeback is irrelevant,
1273  * and writeback status of all subpages are counted in the reference
1274  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1275  * under direct I/O, the reference of the head page is 512 and a bit more.)
1276  * This means that when we try to migrate hugepage whose subpages are
1277  * doing direct I/O, some references remain after try_to_unmap() and
1278  * hugepage migration fails without data corruption.
1279  *
1280  * There is also no race when direct I/O is issued on the page under migration,
1281  * because then pte is replaced with migration swap entry and direct I/O code
1282  * will wait in the page fault for migration to complete.
1283  */
1284 static int unmap_and_move_huge_page(new_page_t get_new_page,
1285                                 free_page_t put_new_page, unsigned long private,
1286                                 struct page *hpage, int force,
1287                                 enum migrate_mode mode, int reason)
1288 {
1289         int rc = -EAGAIN;
1290         int page_was_mapped = 0;
1291         struct page *new_hpage;
1292         struct anon_vma *anon_vma = NULL;
1293
1294         /*
1295          * Migratability of hugepages depends on architectures and their size.
1296          * This check is necessary because some callers of hugepage migration
1297          * like soft offline and memory hotremove don't walk through page
1298          * tables or check whether the hugepage is pmd-based or not before
1299          * kicking migration.
1300          */
1301         if (!hugepage_migration_supported(page_hstate(hpage))) {
1302                 putback_active_hugepage(hpage);
1303                 return -ENOSYS;
1304         }
1305
1306         new_hpage = get_new_page(hpage, private);
1307         if (!new_hpage)
1308                 return -ENOMEM;
1309
1310         if (!trylock_page(hpage)) {
1311                 if (!force)
1312                         goto out;
1313                 switch (mode) {
1314                 case MIGRATE_SYNC:
1315                 case MIGRATE_SYNC_NO_COPY:
1316                         break;
1317                 default:
1318                         goto out;
1319                 }
1320                 lock_page(hpage);
1321         }
1322
1323         /*
1324          * Check for pages which are in the process of being freed.  Without
1325          * page_mapping() set, hugetlbfs specific move page routine will not
1326          * be called and we could leak usage counts for subpools.
1327          */
1328         if (page_private(hpage) && !page_mapping(hpage)) {
1329                 rc = -EBUSY;
1330                 goto out_unlock;
1331         }
1332
1333         if (PageAnon(hpage))
1334                 anon_vma = page_get_anon_vma(hpage);
1335
1336         if (unlikely(!trylock_page(new_hpage)))
1337                 goto put_anon;
1338
1339         if (page_mapped(hpage)) {
1340                 try_to_unmap(hpage,
1341                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1342                 page_was_mapped = 1;
1343         }
1344
1345         if (!page_mapped(hpage))
1346                 rc = move_to_new_page(new_hpage, hpage, mode);
1347
1348         if (page_was_mapped)
1349                 remove_migration_ptes(hpage,
1350                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1351
1352         unlock_page(new_hpage);
1353
1354 put_anon:
1355         if (anon_vma)
1356                 put_anon_vma(anon_vma);
1357
1358         if (rc == MIGRATEPAGE_SUCCESS) {
1359                 move_hugetlb_state(hpage, new_hpage, reason);
1360                 put_new_page = NULL;
1361         }
1362
1363 out_unlock:
1364         unlock_page(hpage);
1365 out:
1366         if (rc != -EAGAIN)
1367                 putback_active_hugepage(hpage);
1368
1369         /*
1370          * If migration was not successful and there's a freeing callback, use
1371          * it.  Otherwise, put_page() will drop the reference grabbed during
1372          * isolation.
1373          */
1374         if (put_new_page)
1375                 put_new_page(new_hpage, private);
1376         else
1377                 putback_active_hugepage(new_hpage);
1378
1379         return rc;
1380 }
1381
1382 /*
1383  * migrate_pages - migrate the pages specified in a list, to the free pages
1384  *                 supplied as the target for the page migration
1385  *
1386  * @from:               The list of pages to be migrated.
1387  * @get_new_page:       The function used to allocate free pages to be used
1388  *                      as the target of the page migration.
1389  * @put_new_page:       The function used to free target pages if migration
1390  *                      fails, or NULL if no special handling is necessary.
1391  * @private:            Private data to be passed on to get_new_page()
1392  * @mode:               The migration mode that specifies the constraints for
1393  *                      page migration, if any.
1394  * @reason:             The reason for page migration.
1395  *
1396  * The function returns after 10 attempts or if no pages are movable any more
1397  * because the list has become empty or no retryable pages exist any more.
1398  * The caller should call putback_movable_pages() to return pages to the LRU
1399  * or free list only if ret != 0.
1400  *
1401  * Returns the number of pages that were not migrated, or an error code.
1402  */
1403 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1404                 free_page_t put_new_page, unsigned long private,
1405                 enum migrate_mode mode, int reason)
1406 {
1407         int retry = 1;
1408         int nr_failed = 0;
1409         int nr_succeeded = 0;
1410         int pass = 0;
1411         struct page *page;
1412         struct page *page2;
1413         int swapwrite = current->flags & PF_SWAPWRITE;
1414         int rc;
1415
1416         if (!swapwrite)
1417                 current->flags |= PF_SWAPWRITE;
1418
1419         for(pass = 0; pass < 10 && retry; pass++) {
1420                 retry = 0;
1421
1422                 list_for_each_entry_safe(page, page2, from, lru) {
1423 retry:
1424                         cond_resched();
1425
1426                         if (PageHuge(page))
1427                                 rc = unmap_and_move_huge_page(get_new_page,
1428                                                 put_new_page, private, page,
1429                                                 pass > 2, mode, reason);
1430                         else
1431                                 rc = unmap_and_move(get_new_page, put_new_page,
1432                                                 private, page, pass > 2, mode,
1433                                                 reason);
1434
1435                         switch(rc) {
1436                         case -ENOMEM:
1437                                 /*
1438                                  * THP migration might be unsupported or the
1439                                  * allocation could've failed so we should
1440                                  * retry on the same page with the THP split
1441                                  * to base pages.
1442                                  *
1443                                  * Head page is retried immediately and tail
1444                                  * pages are added to the tail of the list so
1445                                  * we encounter them after the rest of the list
1446                                  * is processed.
1447                                  */
1448                                 if (PageTransHuge(page) && !PageHuge(page)) {
1449                                         lock_page(page);
1450                                         rc = split_huge_page_to_list(page, from);
1451                                         unlock_page(page);
1452                                         if (!rc) {
1453                                                 list_safe_reset_next(page, page2, lru);
1454                                                 goto retry;
1455                                         }
1456                                 }
1457                                 nr_failed++;
1458                                 goto out;
1459                         case -EAGAIN:
1460                                 retry++;
1461                                 break;
1462                         case MIGRATEPAGE_SUCCESS:
1463                                 nr_succeeded++;
1464                                 break;
1465                         default:
1466                                 /*
1467                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1468                                  * unlike -EAGAIN case, the failed page is
1469                                  * removed from migration page list and not
1470                                  * retried in the next outer loop.
1471                                  */
1472                                 nr_failed++;
1473                                 break;
1474                         }
1475                 }
1476         }
1477         nr_failed += retry;
1478         rc = nr_failed;
1479 out:
1480         if (nr_succeeded)
1481                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1482         if (nr_failed)
1483                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1484         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1485
1486         if (!swapwrite)
1487                 current->flags &= ~PF_SWAPWRITE;
1488
1489         return rc;
1490 }
1491
1492 #ifdef CONFIG_NUMA
1493
1494 static int store_status(int __user *status, int start, int value, int nr)
1495 {
1496         while (nr-- > 0) {
1497                 if (put_user(value, status + start))
1498                         return -EFAULT;
1499                 start++;
1500         }
1501
1502         return 0;
1503 }
1504
1505 static int do_move_pages_to_node(struct mm_struct *mm,
1506                 struct list_head *pagelist, int node)
1507 {
1508         int err;
1509
1510         if (list_empty(pagelist))
1511                 return 0;
1512
1513         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1514                         MIGRATE_SYNC, MR_SYSCALL);
1515         if (err)
1516                 putback_movable_pages(pagelist);
1517         return err;
1518 }
1519
1520 /*
1521  * Resolves the given address to a struct page, isolates it from the LRU and
1522  * puts it to the given pagelist.
1523  * Returns:
1524  *     errno - if the page cannot be found/isolated
1525  *     0 - when it doesn't have to be migrated because it is already on the
1526  *         target node
1527  *     1 - when it has been queued
1528  */
1529 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1530                 int node, struct list_head *pagelist, bool migrate_all)
1531 {
1532         struct vm_area_struct *vma;
1533         struct page *page;
1534         unsigned int follflags;
1535         int err;
1536
1537         down_read(&mm->mmap_sem);
1538         err = -EFAULT;
1539         vma = find_vma(mm, addr);
1540         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1541                 goto out;
1542
1543         /* FOLL_DUMP to ignore special (like zero) pages */
1544         follflags = FOLL_GET | FOLL_DUMP;
1545         page = follow_page(vma, addr, follflags);
1546
1547         err = PTR_ERR(page);
1548         if (IS_ERR(page))
1549                 goto out;
1550
1551         err = -ENOENT;
1552         if (!page)
1553                 goto out;
1554
1555         err = 0;
1556         if (page_to_nid(page) == node)
1557                 goto out_putpage;
1558
1559         err = -EACCES;
1560         if (page_mapcount(page) > 1 && !migrate_all)
1561                 goto out_putpage;
1562
1563         if (PageHuge(page)) {
1564                 if (PageHead(page)) {
1565                         isolate_huge_page(page, pagelist);
1566                         err = 1;
1567                 }
1568         } else {
1569                 struct page *head;
1570
1571                 head = compound_head(page);
1572                 err = isolate_lru_page(head);
1573                 if (err)
1574                         goto out_putpage;
1575
1576                 err = 1;
1577                 list_add_tail(&head->lru, pagelist);
1578                 mod_node_page_state(page_pgdat(head),
1579                         NR_ISOLATED_ANON + page_is_file_cache(head),
1580                         hpage_nr_pages(head));
1581         }
1582 out_putpage:
1583         /*
1584          * Either remove the duplicate refcount from
1585          * isolate_lru_page() or drop the page ref if it was
1586          * not isolated.
1587          */
1588         put_page(page);
1589 out:
1590         up_read(&mm->mmap_sem);
1591         return err;
1592 }
1593
1594 /*
1595  * Migrate an array of page address onto an array of nodes and fill
1596  * the corresponding array of status.
1597  */
1598 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1599                          unsigned long nr_pages,
1600                          const void __user * __user *pages,
1601                          const int __user *nodes,
1602                          int __user *status, int flags)
1603 {
1604         int current_node = NUMA_NO_NODE;
1605         LIST_HEAD(pagelist);
1606         int start, i;
1607         int err = 0, err1;
1608
1609         migrate_prep();
1610
1611         for (i = start = 0; i < nr_pages; i++) {
1612                 const void __user *p;
1613                 unsigned long addr;
1614                 int node;
1615
1616                 err = -EFAULT;
1617                 if (get_user(p, pages + i))
1618                         goto out_flush;
1619                 if (get_user(node, nodes + i))
1620                         goto out_flush;
1621                 addr = (unsigned long)untagged_addr(p);
1622
1623                 err = -ENODEV;
1624                 if (node < 0 || node >= MAX_NUMNODES)
1625                         goto out_flush;
1626                 if (!node_state(node, N_MEMORY))
1627                         goto out_flush;
1628
1629                 err = -EACCES;
1630                 if (!node_isset(node, task_nodes))
1631                         goto out_flush;
1632
1633                 if (current_node == NUMA_NO_NODE) {
1634                         current_node = node;
1635                         start = i;
1636                 } else if (node != current_node) {
1637                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1638                         if (err) {
1639                                 /*
1640                                  * Positive err means the number of failed
1641                                  * pages to migrate.  Since we are going to
1642                                  * abort and return the number of non-migrated
1643                                  * pages, so need to incude the rest of the
1644                                  * nr_pages that have not been attempted as
1645                                  * well.
1646                                  */
1647                                 if (err > 0)
1648                                         err += nr_pages - i - 1;
1649                                 goto out;
1650                         }
1651                         err = store_status(status, start, current_node, i - start);
1652                         if (err)
1653                                 goto out;
1654                         start = i;
1655                         current_node = node;
1656                 }
1657
1658                 /*
1659                  * Errors in the page lookup or isolation are not fatal and we simply
1660                  * report them via status
1661                  */
1662                 err = add_page_for_migration(mm, addr, current_node,
1663                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1664
1665                 if (!err) {
1666                         /* The page is already on the target node */
1667                         err = store_status(status, i, current_node, 1);
1668                         if (err)
1669                                 goto out_flush;
1670                         continue;
1671                 } else if (err > 0) {
1672                         /* The page is successfully queued for migration */
1673                         continue;
1674                 }
1675
1676                 err = store_status(status, i, err, 1);
1677                 if (err)
1678                         goto out_flush;
1679
1680                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1681                 if (err) {
1682                         if (err > 0)
1683                                 err += nr_pages - i - 1;
1684                         goto out;
1685                 }
1686                 if (i > start) {
1687                         err = store_status(status, start, current_node, i - start);
1688                         if (err)
1689                                 goto out;
1690                 }
1691                 current_node = NUMA_NO_NODE;
1692         }
1693 out_flush:
1694         if (list_empty(&pagelist))
1695                 return err;
1696
1697         /* Make sure we do not overwrite the existing error */
1698         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1699         /*
1700          * Don't have to report non-attempted pages here since:
1701          *     - If the above loop is done gracefully all pages have been
1702          *       attempted.
1703          *     - If the above loop is aborted it means a fatal error
1704          *       happened, should return ret.
1705          */
1706         if (!err1)
1707                 err1 = store_status(status, start, current_node, i - start);
1708         if (err >= 0)
1709                 err = err1;
1710 out:
1711         return err;
1712 }
1713
1714 /*
1715  * Determine the nodes of an array of pages and store it in an array of status.
1716  */
1717 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1718                                 const void __user **pages, int *status)
1719 {
1720         unsigned long i;
1721
1722         down_read(&mm->mmap_sem);
1723
1724         for (i = 0; i < nr_pages; i++) {
1725                 unsigned long addr = (unsigned long)(*pages);
1726                 struct vm_area_struct *vma;
1727                 struct page *page;
1728                 int err = -EFAULT;
1729
1730                 vma = find_vma(mm, addr);
1731                 if (!vma || addr < vma->vm_start)
1732                         goto set_status;
1733
1734                 /* FOLL_DUMP to ignore special (like zero) pages */
1735                 page = follow_page(vma, addr, FOLL_DUMP);
1736
1737                 err = PTR_ERR(page);
1738                 if (IS_ERR(page))
1739                         goto set_status;
1740
1741                 err = page ? page_to_nid(page) : -ENOENT;
1742 set_status:
1743                 *status = err;
1744
1745                 pages++;
1746                 status++;
1747         }
1748
1749         up_read(&mm->mmap_sem);
1750 }
1751
1752 /*
1753  * Determine the nodes of a user array of pages and store it in
1754  * a user array of status.
1755  */
1756 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1757                          const void __user * __user *pages,
1758                          int __user *status)
1759 {
1760 #define DO_PAGES_STAT_CHUNK_NR 16
1761         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1762         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1763
1764         while (nr_pages) {
1765                 unsigned long chunk_nr;
1766
1767                 chunk_nr = nr_pages;
1768                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1769                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1770
1771                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1772                         break;
1773
1774                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1775
1776                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1777                         break;
1778
1779                 pages += chunk_nr;
1780                 status += chunk_nr;
1781                 nr_pages -= chunk_nr;
1782         }
1783         return nr_pages ? -EFAULT : 0;
1784 }
1785
1786 /*
1787  * Move a list of pages in the address space of the currently executing
1788  * process.
1789  */
1790 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1791                              const void __user * __user *pages,
1792                              const int __user *nodes,
1793                              int __user *status, int flags)
1794 {
1795         struct task_struct *task;
1796         struct mm_struct *mm;
1797         int err;
1798         nodemask_t task_nodes;
1799
1800         /* Check flags */
1801         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1802                 return -EINVAL;
1803
1804         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1805                 return -EPERM;
1806
1807         /* Find the mm_struct */
1808         rcu_read_lock();
1809         task = pid ? find_task_by_vpid(pid) : current;
1810         if (!task) {
1811                 rcu_read_unlock();
1812                 return -ESRCH;
1813         }
1814         get_task_struct(task);
1815
1816         /*
1817          * Check if this process has the right to modify the specified
1818          * process. Use the regular "ptrace_may_access()" checks.
1819          */
1820         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1821                 rcu_read_unlock();
1822                 err = -EPERM;
1823                 goto out;
1824         }
1825         rcu_read_unlock();
1826
1827         err = security_task_movememory(task);
1828         if (err)
1829                 goto out;
1830
1831         task_nodes = cpuset_mems_allowed(task);
1832         mm = get_task_mm(task);
1833         put_task_struct(task);
1834
1835         if (!mm)
1836                 return -EINVAL;
1837
1838         if (nodes)
1839                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1840                                     nodes, status, flags);
1841         else
1842                 err = do_pages_stat(mm, nr_pages, pages, status);
1843
1844         mmput(mm);
1845         return err;
1846
1847 out:
1848         put_task_struct(task);
1849         return err;
1850 }
1851
1852 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1853                 const void __user * __user *, pages,
1854                 const int __user *, nodes,
1855                 int __user *, status, int, flags)
1856 {
1857         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1858 }
1859
1860 #ifdef CONFIG_COMPAT
1861 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1862                        compat_uptr_t __user *, pages32,
1863                        const int __user *, nodes,
1864                        int __user *, status,
1865                        int, flags)
1866 {
1867         const void __user * __user *pages;
1868         int i;
1869
1870         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1871         for (i = 0; i < nr_pages; i++) {
1872                 compat_uptr_t p;
1873
1874                 if (get_user(p, pages32 + i) ||
1875                         put_user(compat_ptr(p), pages + i))
1876                         return -EFAULT;
1877         }
1878         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1879 }
1880 #endif /* CONFIG_COMPAT */
1881
1882 #ifdef CONFIG_NUMA_BALANCING
1883 /*
1884  * Returns true if this is a safe migration target node for misplaced NUMA
1885  * pages. Currently it only checks the watermarks which crude
1886  */
1887 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1888                                    unsigned long nr_migrate_pages)
1889 {
1890         int z;
1891
1892         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1893                 struct zone *zone = pgdat->node_zones + z;
1894
1895                 if (!populated_zone(zone))
1896                         continue;
1897
1898                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1899                 if (!zone_watermark_ok(zone, 0,
1900                                        high_wmark_pages(zone) +
1901                                        nr_migrate_pages,
1902                                        0, 0))
1903                         continue;
1904                 return true;
1905         }
1906         return false;
1907 }
1908
1909 static struct page *alloc_misplaced_dst_page(struct page *page,
1910                                            unsigned long data)
1911 {
1912         int nid = (int) data;
1913         struct page *newpage;
1914
1915         newpage = __alloc_pages_node(nid,
1916                                          (GFP_HIGHUSER_MOVABLE |
1917                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1918                                           __GFP_NORETRY | __GFP_NOWARN) &
1919                                          ~__GFP_RECLAIM, 0);
1920
1921         return newpage;
1922 }
1923
1924 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1925 {
1926         int page_lru;
1927
1928         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1929
1930         /* Avoid migrating to a node that is nearly full */
1931         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1932                 return 0;
1933
1934         if (isolate_lru_page(page))
1935                 return 0;
1936
1937         /*
1938          * migrate_misplaced_transhuge_page() skips page migration's usual
1939          * check on page_count(), so we must do it here, now that the page
1940          * has been isolated: a GUP pin, or any other pin, prevents migration.
1941          * The expected page count is 3: 1 for page's mapcount and 1 for the
1942          * caller's pin and 1 for the reference taken by isolate_lru_page().
1943          */
1944         if (PageTransHuge(page) && page_count(page) != 3) {
1945                 putback_lru_page(page);
1946                 return 0;
1947         }
1948
1949         page_lru = page_is_file_cache(page);
1950         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1951                                 hpage_nr_pages(page));
1952
1953         /*
1954          * Isolating the page has taken another reference, so the
1955          * caller's reference can be safely dropped without the page
1956          * disappearing underneath us during migration.
1957          */
1958         put_page(page);
1959         return 1;
1960 }
1961
1962 bool pmd_trans_migrating(pmd_t pmd)
1963 {
1964         struct page *page = pmd_page(pmd);
1965         return PageLocked(page);
1966 }
1967
1968 /*
1969  * Attempt to migrate a misplaced page to the specified destination
1970  * node. Caller is expected to have an elevated reference count on
1971  * the page that will be dropped by this function before returning.
1972  */
1973 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1974                            int node)
1975 {
1976         pg_data_t *pgdat = NODE_DATA(node);
1977         int isolated;
1978         int nr_remaining;
1979         LIST_HEAD(migratepages);
1980
1981         /*
1982          * Don't migrate file pages that are mapped in multiple processes
1983          * with execute permissions as they are probably shared libraries.
1984          */
1985         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1986             (vma->vm_flags & VM_EXEC))
1987                 goto out;
1988
1989         /*
1990          * Also do not migrate dirty pages as not all filesystems can move
1991          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1992          */
1993         if (page_is_file_cache(page) && PageDirty(page))
1994                 goto out;
1995
1996         isolated = numamigrate_isolate_page(pgdat, page);
1997         if (!isolated)
1998                 goto out;
1999
2000         list_add(&page->lru, &migratepages);
2001         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2002                                      NULL, node, MIGRATE_ASYNC,
2003                                      MR_NUMA_MISPLACED);
2004         if (nr_remaining) {
2005                 if (!list_empty(&migratepages)) {
2006                         list_del(&page->lru);
2007                         dec_node_page_state(page, NR_ISOLATED_ANON +
2008                                         page_is_file_cache(page));
2009                         putback_lru_page(page);
2010                 }
2011                 isolated = 0;
2012         } else
2013                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2014         BUG_ON(!list_empty(&migratepages));
2015         return isolated;
2016
2017 out:
2018         put_page(page);
2019         return 0;
2020 }
2021 #endif /* CONFIG_NUMA_BALANCING */
2022
2023 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2024 /*
2025  * Migrates a THP to a given target node. page must be locked and is unlocked
2026  * before returning.
2027  */
2028 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2029                                 struct vm_area_struct *vma,
2030                                 pmd_t *pmd, pmd_t entry,
2031                                 unsigned long address,
2032                                 struct page *page, int node)
2033 {
2034         spinlock_t *ptl;
2035         pg_data_t *pgdat = NODE_DATA(node);
2036         int isolated = 0;
2037         struct page *new_page = NULL;
2038         int page_lru = page_is_file_cache(page);
2039         unsigned long start = address & HPAGE_PMD_MASK;
2040
2041         new_page = alloc_pages_node(node,
2042                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2043                 HPAGE_PMD_ORDER);
2044         if (!new_page)
2045                 goto out_fail;
2046         prep_transhuge_page(new_page);
2047
2048         isolated = numamigrate_isolate_page(pgdat, page);
2049         if (!isolated) {
2050                 put_page(new_page);
2051                 goto out_fail;
2052         }
2053
2054         /* Prepare a page as a migration target */
2055         __SetPageLocked(new_page);
2056         if (PageSwapBacked(page))
2057                 __SetPageSwapBacked(new_page);
2058
2059         /* anon mapping, we can simply copy page->mapping to the new page: */
2060         new_page->mapping = page->mapping;
2061         new_page->index = page->index;
2062         /* flush the cache before copying using the kernel virtual address */
2063         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2064         migrate_page_copy(new_page, page);
2065         WARN_ON(PageLRU(new_page));
2066
2067         /* Recheck the target PMD */
2068         ptl = pmd_lock(mm, pmd);
2069         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2070                 spin_unlock(ptl);
2071
2072                 /* Reverse changes made by migrate_page_copy() */
2073                 if (TestClearPageActive(new_page))
2074                         SetPageActive(page);
2075                 if (TestClearPageUnevictable(new_page))
2076                         SetPageUnevictable(page);
2077
2078                 unlock_page(new_page);
2079                 put_page(new_page);             /* Free it */
2080
2081                 /* Retake the callers reference and putback on LRU */
2082                 get_page(page);
2083                 putback_lru_page(page);
2084                 mod_node_page_state(page_pgdat(page),
2085                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2086
2087                 goto out_unlock;
2088         }
2089
2090         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2091         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2092
2093         /*
2094          * Overwrite the old entry under pagetable lock and establish
2095          * the new PTE. Any parallel GUP will either observe the old
2096          * page blocking on the page lock, block on the page table
2097          * lock or observe the new page. The SetPageUptodate on the
2098          * new page and page_add_new_anon_rmap guarantee the copy is
2099          * visible before the pagetable update.
2100          */
2101         page_add_anon_rmap(new_page, vma, start, true);
2102         /*
2103          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2104          * has already been flushed globally.  So no TLB can be currently
2105          * caching this non present pmd mapping.  There's no need to clear the
2106          * pmd before doing set_pmd_at(), nor to flush the TLB after
2107          * set_pmd_at().  Clearing the pmd here would introduce a race
2108          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2109          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2110          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2111          * pmd.
2112          */
2113         set_pmd_at(mm, start, pmd, entry);
2114         update_mmu_cache_pmd(vma, address, &entry);
2115
2116         page_ref_unfreeze(page, 2);
2117         mlock_migrate_page(new_page, page);
2118         page_remove_rmap(page, true);
2119         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2120
2121         spin_unlock(ptl);
2122
2123         /* Take an "isolate" reference and put new page on the LRU. */
2124         get_page(new_page);
2125         putback_lru_page(new_page);
2126
2127         unlock_page(new_page);
2128         unlock_page(page);
2129         put_page(page);                 /* Drop the rmap reference */
2130         put_page(page);                 /* Drop the LRU isolation reference */
2131
2132         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2133         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2134
2135         mod_node_page_state(page_pgdat(page),
2136                         NR_ISOLATED_ANON + page_lru,
2137                         -HPAGE_PMD_NR);
2138         return isolated;
2139
2140 out_fail:
2141         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2142         ptl = pmd_lock(mm, pmd);
2143         if (pmd_same(*pmd, entry)) {
2144                 entry = pmd_modify(entry, vma->vm_page_prot);
2145                 set_pmd_at(mm, start, pmd, entry);
2146                 update_mmu_cache_pmd(vma, address, &entry);
2147         }
2148         spin_unlock(ptl);
2149
2150 out_unlock:
2151         unlock_page(page);
2152         put_page(page);
2153         return 0;
2154 }
2155 #endif /* CONFIG_NUMA_BALANCING */
2156
2157 #endif /* CONFIG_NUMA */
2158
2159 #ifdef CONFIG_DEVICE_PRIVATE
2160 static int migrate_vma_collect_hole(unsigned long start,
2161                                     unsigned long end,
2162                                     struct mm_walk *walk)
2163 {
2164         struct migrate_vma *migrate = walk->private;
2165         unsigned long addr;
2166
2167         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2168                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2169                 migrate->dst[migrate->npages] = 0;
2170                 migrate->npages++;
2171                 migrate->cpages++;
2172         }
2173
2174         return 0;
2175 }
2176
2177 static int migrate_vma_collect_skip(unsigned long start,
2178                                     unsigned long end,
2179                                     struct mm_walk *walk)
2180 {
2181         struct migrate_vma *migrate = walk->private;
2182         unsigned long addr;
2183
2184         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2185                 migrate->dst[migrate->npages] = 0;
2186                 migrate->src[migrate->npages++] = 0;
2187         }
2188
2189         return 0;
2190 }
2191
2192 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2193                                    unsigned long start,
2194                                    unsigned long end,
2195                                    struct mm_walk *walk)
2196 {
2197         struct migrate_vma *migrate = walk->private;
2198         struct vm_area_struct *vma = walk->vma;
2199         struct mm_struct *mm = vma->vm_mm;
2200         unsigned long addr = start, unmapped = 0;
2201         spinlock_t *ptl;
2202         pte_t *ptep;
2203
2204 again:
2205         if (pmd_none(*pmdp))
2206                 return migrate_vma_collect_hole(start, end, walk);
2207
2208         if (pmd_trans_huge(*pmdp)) {
2209                 struct page *page;
2210
2211                 ptl = pmd_lock(mm, pmdp);
2212                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2213                         spin_unlock(ptl);
2214                         goto again;
2215                 }
2216
2217                 page = pmd_page(*pmdp);
2218                 if (is_huge_zero_page(page)) {
2219                         spin_unlock(ptl);
2220                         split_huge_pmd(vma, pmdp, addr);
2221                         if (pmd_trans_unstable(pmdp))
2222                                 return migrate_vma_collect_skip(start, end,
2223                                                                 walk);
2224                 } else {
2225                         int ret;
2226
2227                         get_page(page);
2228                         spin_unlock(ptl);
2229                         if (unlikely(!trylock_page(page)))
2230                                 return migrate_vma_collect_skip(start, end,
2231                                                                 walk);
2232                         ret = split_huge_page(page);
2233                         unlock_page(page);
2234                         put_page(page);
2235                         if (ret)
2236                                 return migrate_vma_collect_skip(start, end,
2237                                                                 walk);
2238                         if (pmd_none(*pmdp))
2239                                 return migrate_vma_collect_hole(start, end,
2240                                                                 walk);
2241                 }
2242         }
2243
2244         if (unlikely(pmd_bad(*pmdp)))
2245                 return migrate_vma_collect_skip(start, end, walk);
2246
2247         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2248         arch_enter_lazy_mmu_mode();
2249
2250         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2251                 unsigned long mpfn, pfn;
2252                 struct page *page;
2253                 swp_entry_t entry;
2254                 pte_t pte;
2255
2256                 pte = *ptep;
2257
2258                 if (pte_none(pte)) {
2259                         mpfn = MIGRATE_PFN_MIGRATE;
2260                         migrate->cpages++;
2261                         goto next;
2262                 }
2263
2264                 if (!pte_present(pte)) {
2265                         mpfn = 0;
2266
2267                         /*
2268                          * Only care about unaddressable device page special
2269                          * page table entry. Other special swap entries are not
2270                          * migratable, and we ignore regular swapped page.
2271                          */
2272                         entry = pte_to_swp_entry(pte);
2273                         if (!is_device_private_entry(entry))
2274                                 goto next;
2275
2276                         page = device_private_entry_to_page(entry);
2277                         mpfn = migrate_pfn(page_to_pfn(page)) |
2278                                         MIGRATE_PFN_MIGRATE;
2279                         if (is_write_device_private_entry(entry))
2280                                 mpfn |= MIGRATE_PFN_WRITE;
2281                 } else {
2282                         pfn = pte_pfn(pte);
2283                         if (is_zero_pfn(pfn)) {
2284                                 mpfn = MIGRATE_PFN_MIGRATE;
2285                                 migrate->cpages++;
2286                                 goto next;
2287                         }
2288                         page = vm_normal_page(migrate->vma, addr, pte);
2289                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2290                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2291                 }
2292
2293                 /* FIXME support THP */
2294                 if (!page || !page->mapping || PageTransCompound(page)) {
2295                         mpfn = 0;
2296                         goto next;
2297                 }
2298
2299                 /*
2300                  * By getting a reference on the page we pin it and that blocks
2301                  * any kind of migration. Side effect is that it "freezes" the
2302                  * pte.
2303                  *
2304                  * We drop this reference after isolating the page from the lru
2305                  * for non device page (device page are not on the lru and thus
2306                  * can't be dropped from it).
2307                  */
2308                 get_page(page);
2309                 migrate->cpages++;
2310
2311                 /*
2312                  * Optimize for the common case where page is only mapped once
2313                  * in one process. If we can lock the page, then we can safely
2314                  * set up a special migration page table entry now.
2315                  */
2316                 if (trylock_page(page)) {
2317                         pte_t swp_pte;
2318
2319                         mpfn |= MIGRATE_PFN_LOCKED;
2320                         ptep_get_and_clear(mm, addr, ptep);
2321
2322                         /* Setup special migration page table entry */
2323                         entry = make_migration_entry(page, mpfn &
2324                                                      MIGRATE_PFN_WRITE);
2325                         swp_pte = swp_entry_to_pte(entry);
2326                         if (pte_soft_dirty(pte))
2327                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2328                         set_pte_at(mm, addr, ptep, swp_pte);
2329
2330                         /*
2331                          * This is like regular unmap: we remove the rmap and
2332                          * drop page refcount. Page won't be freed, as we took
2333                          * a reference just above.
2334                          */
2335                         page_remove_rmap(page, false);
2336                         put_page(page);
2337
2338                         if (pte_present(pte))
2339                                 unmapped++;
2340                 }
2341
2342 next:
2343                 migrate->dst[migrate->npages] = 0;
2344                 migrate->src[migrate->npages++] = mpfn;
2345         }
2346         arch_leave_lazy_mmu_mode();
2347         pte_unmap_unlock(ptep - 1, ptl);
2348
2349         /* Only flush the TLB if we actually modified any entries */
2350         if (unmapped)
2351                 flush_tlb_range(walk->vma, start, end);
2352
2353         return 0;
2354 }
2355
2356 static const struct mm_walk_ops migrate_vma_walk_ops = {
2357         .pmd_entry              = migrate_vma_collect_pmd,
2358         .pte_hole               = migrate_vma_collect_hole,
2359 };
2360
2361 /*
2362  * migrate_vma_collect() - collect pages over a range of virtual addresses
2363  * @migrate: migrate struct containing all migration information
2364  *
2365  * This will walk the CPU page table. For each virtual address backed by a
2366  * valid page, it updates the src array and takes a reference on the page, in
2367  * order to pin the page until we lock it and unmap it.
2368  */
2369 static void migrate_vma_collect(struct migrate_vma *migrate)
2370 {
2371         struct mmu_notifier_range range;
2372
2373         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2374                         migrate->vma->vm_mm, migrate->start, migrate->end);
2375         mmu_notifier_invalidate_range_start(&range);
2376
2377         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2378                         &migrate_vma_walk_ops, migrate);
2379
2380         mmu_notifier_invalidate_range_end(&range);
2381         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2382 }
2383
2384 /*
2385  * migrate_vma_check_page() - check if page is pinned or not
2386  * @page: struct page to check
2387  *
2388  * Pinned pages cannot be migrated. This is the same test as in
2389  * migrate_page_move_mapping(), except that here we allow migration of a
2390  * ZONE_DEVICE page.
2391  */
2392 static bool migrate_vma_check_page(struct page *page)
2393 {
2394         /*
2395          * One extra ref because caller holds an extra reference, either from
2396          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2397          * a device page.
2398          */
2399         int extra = 1;
2400
2401         /*
2402          * FIXME support THP (transparent huge page), it is bit more complex to
2403          * check them than regular pages, because they can be mapped with a pmd
2404          * or with a pte (split pte mapping).
2405          */
2406         if (PageCompound(page))
2407                 return false;
2408
2409         /* Page from ZONE_DEVICE have one extra reference */
2410         if (is_zone_device_page(page)) {
2411                 /*
2412                  * Private page can never be pin as they have no valid pte and
2413                  * GUP will fail for those. Yet if there is a pending migration
2414                  * a thread might try to wait on the pte migration entry and
2415                  * will bump the page reference count. Sadly there is no way to
2416                  * differentiate a regular pin from migration wait. Hence to
2417                  * avoid 2 racing thread trying to migrate back to CPU to enter
2418                  * infinite loop (one stoping migration because the other is
2419                  * waiting on pte migration entry). We always return true here.
2420                  *
2421                  * FIXME proper solution is to rework migration_entry_wait() so
2422                  * it does not need to take a reference on page.
2423                  */
2424                 return is_device_private_page(page);
2425         }
2426
2427         /* For file back page */
2428         if (page_mapping(page))
2429                 extra += 1 + page_has_private(page);
2430
2431         if ((page_count(page) - extra) > page_mapcount(page))
2432                 return false;
2433
2434         return true;
2435 }
2436
2437 /*
2438  * migrate_vma_prepare() - lock pages and isolate them from the lru
2439  * @migrate: migrate struct containing all migration information
2440  *
2441  * This locks pages that have been collected by migrate_vma_collect(). Once each
2442  * page is locked it is isolated from the lru (for non-device pages). Finally,
2443  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2444  * migrated by concurrent kernel threads.
2445  */
2446 static void migrate_vma_prepare(struct migrate_vma *migrate)
2447 {
2448         const unsigned long npages = migrate->npages;
2449         const unsigned long start = migrate->start;
2450         unsigned long addr, i, restore = 0;
2451         bool allow_drain = true;
2452
2453         lru_add_drain();
2454
2455         for (i = 0; (i < npages) && migrate->cpages; i++) {
2456                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2457                 bool remap = true;
2458
2459                 if (!page)
2460                         continue;
2461
2462                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2463                         /*
2464                          * Because we are migrating several pages there can be
2465                          * a deadlock between 2 concurrent migration where each
2466                          * are waiting on each other page lock.
2467                          *
2468                          * Make migrate_vma() a best effort thing and backoff
2469                          * for any page we can not lock right away.
2470                          */
2471                         if (!trylock_page(page)) {
2472                                 migrate->src[i] = 0;
2473                                 migrate->cpages--;
2474                                 put_page(page);
2475                                 continue;
2476                         }
2477                         remap = false;
2478                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2479                 }
2480
2481                 /* ZONE_DEVICE pages are not on LRU */
2482                 if (!is_zone_device_page(page)) {
2483                         if (!PageLRU(page) && allow_drain) {
2484                                 /* Drain CPU's pagevec */
2485                                 lru_add_drain_all();
2486                                 allow_drain = false;
2487                         }
2488
2489                         if (isolate_lru_page(page)) {
2490                                 if (remap) {
2491                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2492                                         migrate->cpages--;
2493                                         restore++;
2494                                 } else {
2495                                         migrate->src[i] = 0;
2496                                         unlock_page(page);
2497                                         migrate->cpages--;
2498                                         put_page(page);
2499                                 }
2500                                 continue;
2501                         }
2502
2503                         /* Drop the reference we took in collect */
2504                         put_page(page);
2505                 }
2506
2507                 if (!migrate_vma_check_page(page)) {
2508                         if (remap) {
2509                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2510                                 migrate->cpages--;
2511                                 restore++;
2512
2513                                 if (!is_zone_device_page(page)) {
2514                                         get_page(page);
2515                                         putback_lru_page(page);
2516                                 }
2517                         } else {
2518                                 migrate->src[i] = 0;
2519                                 unlock_page(page);
2520                                 migrate->cpages--;
2521
2522                                 if (!is_zone_device_page(page))
2523                                         putback_lru_page(page);
2524                                 else
2525                                         put_page(page);
2526                         }
2527                 }
2528         }
2529
2530         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2531                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2532
2533                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2534                         continue;
2535
2536                 remove_migration_pte(page, migrate->vma, addr, page);
2537
2538                 migrate->src[i] = 0;
2539                 unlock_page(page);
2540                 put_page(page);
2541                 restore--;
2542         }
2543 }
2544
2545 /*
2546  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2547  * @migrate: migrate struct containing all migration information
2548  *
2549  * Replace page mapping (CPU page table pte) with a special migration pte entry
2550  * and check again if it has been pinned. Pinned pages are restored because we
2551  * cannot migrate them.
2552  *
2553  * This is the last step before we call the device driver callback to allocate
2554  * destination memory and copy contents of original page over to new page.
2555  */
2556 static void migrate_vma_unmap(struct migrate_vma *migrate)
2557 {
2558         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2559         const unsigned long npages = migrate->npages;
2560         const unsigned long start = migrate->start;
2561         unsigned long addr, i, restore = 0;
2562
2563         for (i = 0; i < npages; i++) {
2564                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2565
2566                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2567                         continue;
2568
2569                 if (page_mapped(page)) {
2570                         try_to_unmap(page, flags);
2571                         if (page_mapped(page))
2572                                 goto restore;
2573                 }
2574
2575                 if (migrate_vma_check_page(page))
2576                         continue;
2577
2578 restore:
2579                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2580                 migrate->cpages--;
2581                 restore++;
2582         }
2583
2584         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2585                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2586
2587                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2588                         continue;
2589
2590                 remove_migration_ptes(page, page, false);
2591
2592                 migrate->src[i] = 0;
2593                 unlock_page(page);
2594                 restore--;
2595
2596                 if (is_zone_device_page(page))
2597                         put_page(page);
2598                 else
2599                         putback_lru_page(page);
2600         }
2601 }
2602
2603 /**
2604  * migrate_vma_setup() - prepare to migrate a range of memory
2605  * @args: contains the vma, start, and and pfns arrays for the migration
2606  *
2607  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2608  * without an error.
2609  *
2610  * Prepare to migrate a range of memory virtual address range by collecting all
2611  * the pages backing each virtual address in the range, saving them inside the
2612  * src array.  Then lock those pages and unmap them. Once the pages are locked
2613  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2614  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2615  * corresponding src array entry.  Then restores any pages that are pinned, by
2616  * remapping and unlocking those pages.
2617  *
2618  * The caller should then allocate destination memory and copy source memory to
2619  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2620  * flag set).  Once these are allocated and copied, the caller must update each
2621  * corresponding entry in the dst array with the pfn value of the destination
2622  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2623  * (destination pages must have their struct pages locked, via lock_page()).
2624  *
2625  * Note that the caller does not have to migrate all the pages that are marked
2626  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2627  * device memory to system memory.  If the caller cannot migrate a device page
2628  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2629  * consequences for the userspace process, so it must be avoided if at all
2630  * possible.
2631  *
2632  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2633  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2634  * allowing the caller to allocate device memory for those unback virtual
2635  * address.  For this the caller simply has to allocate device memory and
2636  * properly set the destination entry like for regular migration.  Note that
2637  * this can still fails and thus inside the device driver must check if the
2638  * migration was successful for those entries after calling migrate_vma_pages()
2639  * just like for regular migration.
2640  *
2641  * After that, the callers must call migrate_vma_pages() to go over each entry
2642  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2643  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2644  * then migrate_vma_pages() to migrate struct page information from the source
2645  * struct page to the destination struct page.  If it fails to migrate the
2646  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2647  * src array.
2648  *
2649  * At this point all successfully migrated pages have an entry in the src
2650  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2651  * array entry with MIGRATE_PFN_VALID flag set.
2652  *
2653  * Once migrate_vma_pages() returns the caller may inspect which pages were
2654  * successfully migrated, and which were not.  Successfully migrated pages will
2655  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2656  *
2657  * It is safe to update device page table after migrate_vma_pages() because
2658  * both destination and source page are still locked, and the mmap_sem is held
2659  * in read mode (hence no one can unmap the range being migrated).
2660  *
2661  * Once the caller is done cleaning up things and updating its page table (if it
2662  * chose to do so, this is not an obligation) it finally calls
2663  * migrate_vma_finalize() to update the CPU page table to point to new pages
2664  * for successfully migrated pages or otherwise restore the CPU page table to
2665  * point to the original source pages.
2666  */
2667 int migrate_vma_setup(struct migrate_vma *args)
2668 {
2669         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2670
2671         args->start &= PAGE_MASK;
2672         args->end &= PAGE_MASK;
2673         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2674             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2675                 return -EINVAL;
2676         if (nr_pages <= 0)
2677                 return -EINVAL;
2678         if (args->start < args->vma->vm_start ||
2679             args->start >= args->vma->vm_end)
2680                 return -EINVAL;
2681         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2682                 return -EINVAL;
2683         if (!args->src || !args->dst)
2684                 return -EINVAL;
2685
2686         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2687         args->cpages = 0;
2688         args->npages = 0;
2689
2690         migrate_vma_collect(args);
2691
2692         if (args->cpages)
2693                 migrate_vma_prepare(args);
2694         if (args->cpages)
2695                 migrate_vma_unmap(args);
2696
2697         /*
2698          * At this point pages are locked and unmapped, and thus they have
2699          * stable content and can safely be copied to destination memory that
2700          * is allocated by the drivers.
2701          */
2702         return 0;
2703
2704 }
2705 EXPORT_SYMBOL(migrate_vma_setup);
2706
2707 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2708                                     unsigned long addr,
2709                                     struct page *page,
2710                                     unsigned long *src,
2711                                     unsigned long *dst)
2712 {
2713         struct vm_area_struct *vma = migrate->vma;
2714         struct mm_struct *mm = vma->vm_mm;
2715         struct mem_cgroup *memcg;
2716         bool flush = false;
2717         spinlock_t *ptl;
2718         pte_t entry;
2719         pgd_t *pgdp;
2720         p4d_t *p4dp;
2721         pud_t *pudp;
2722         pmd_t *pmdp;
2723         pte_t *ptep;
2724
2725         /* Only allow populating anonymous memory */
2726         if (!vma_is_anonymous(vma))
2727                 goto abort;
2728
2729         pgdp = pgd_offset(mm, addr);
2730         p4dp = p4d_alloc(mm, pgdp, addr);
2731         if (!p4dp)
2732                 goto abort;
2733         pudp = pud_alloc(mm, p4dp, addr);
2734         if (!pudp)
2735                 goto abort;
2736         pmdp = pmd_alloc(mm, pudp, addr);
2737         if (!pmdp)
2738                 goto abort;
2739
2740         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2741                 goto abort;
2742
2743         /*
2744          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2745          * pte_offset_map() on pmds where a huge pmd might be created
2746          * from a different thread.
2747          *
2748          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2749          * parallel threads are excluded by other means.
2750          *
2751          * Here we only have down_read(mmap_sem).
2752          */
2753         if (pte_alloc(mm, pmdp))
2754                 goto abort;
2755
2756         /* See the comment in pte_alloc_one_map() */
2757         if (unlikely(pmd_trans_unstable(pmdp)))
2758                 goto abort;
2759
2760         if (unlikely(anon_vma_prepare(vma)))
2761                 goto abort;
2762         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2763                 goto abort;
2764
2765         /*
2766          * The memory barrier inside __SetPageUptodate makes sure that
2767          * preceding stores to the page contents become visible before
2768          * the set_pte_at() write.
2769          */
2770         __SetPageUptodate(page);
2771
2772         if (is_zone_device_page(page)) {
2773                 if (is_device_private_page(page)) {
2774                         swp_entry_t swp_entry;
2775
2776                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2777                         entry = swp_entry_to_pte(swp_entry);
2778                 } else {
2779                         /*
2780                          * For now we only support migrating to un-addressable
2781                          * device memory.
2782                          */
2783                         pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2784                         goto abort;
2785                 }
2786         } else {
2787                 entry = mk_pte(page, vma->vm_page_prot);
2788                 if (vma->vm_flags & VM_WRITE)
2789                         entry = pte_mkwrite(pte_mkdirty(entry));
2790         }
2791
2792         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2793
2794         if (pte_present(*ptep)) {
2795                 unsigned long pfn = pte_pfn(*ptep);
2796
2797                 if (!is_zero_pfn(pfn)) {
2798                         pte_unmap_unlock(ptep, ptl);
2799                         mem_cgroup_cancel_charge(page, memcg, false);
2800                         goto abort;
2801                 }
2802                 flush = true;
2803         } else if (!pte_none(*ptep)) {
2804                 pte_unmap_unlock(ptep, ptl);
2805                 mem_cgroup_cancel_charge(page, memcg, false);
2806                 goto abort;
2807         }
2808
2809         /*
2810          * Check for usefaultfd but do not deliver the fault. Instead,
2811          * just back off.
2812          */
2813         if (userfaultfd_missing(vma)) {
2814                 pte_unmap_unlock(ptep, ptl);
2815                 mem_cgroup_cancel_charge(page, memcg, false);
2816                 goto abort;
2817         }
2818
2819         inc_mm_counter(mm, MM_ANONPAGES);
2820         page_add_new_anon_rmap(page, vma, addr, false);
2821         mem_cgroup_commit_charge(page, memcg, false, false);
2822         if (!is_zone_device_page(page))
2823                 lru_cache_add_active_or_unevictable(page, vma);
2824         get_page(page);
2825
2826         if (flush) {
2827                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2828                 ptep_clear_flush_notify(vma, addr, ptep);
2829                 set_pte_at_notify(mm, addr, ptep, entry);
2830                 update_mmu_cache(vma, addr, ptep);
2831         } else {
2832                 /* No need to invalidate - it was non-present before */
2833                 set_pte_at(mm, addr, ptep, entry);
2834                 update_mmu_cache(vma, addr, ptep);
2835         }
2836
2837         pte_unmap_unlock(ptep, ptl);
2838         *src = MIGRATE_PFN_MIGRATE;
2839         return;
2840
2841 abort:
2842         *src &= ~MIGRATE_PFN_MIGRATE;
2843 }
2844
2845 /**
2846  * migrate_vma_pages() - migrate meta-data from src page to dst page
2847  * @migrate: migrate struct containing all migration information
2848  *
2849  * This migrates struct page meta-data from source struct page to destination
2850  * struct page. This effectively finishes the migration from source page to the
2851  * destination page.
2852  */
2853 void migrate_vma_pages(struct migrate_vma *migrate)
2854 {
2855         const unsigned long npages = migrate->npages;
2856         const unsigned long start = migrate->start;
2857         struct mmu_notifier_range range;
2858         unsigned long addr, i;
2859         bool notified = false;
2860
2861         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2862                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2863                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2864                 struct address_space *mapping;
2865                 int r;
2866
2867                 if (!newpage) {
2868                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2869                         continue;
2870                 }
2871
2872                 if (!page) {
2873                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2874                                 continue;
2875                         }
2876                         if (!notified) {
2877                                 notified = true;
2878
2879                                 mmu_notifier_range_init(&range,
2880                                                         MMU_NOTIFY_CLEAR, 0,
2881                                                         NULL,
2882                                                         migrate->vma->vm_mm,
2883                                                         addr, migrate->end);
2884                                 mmu_notifier_invalidate_range_start(&range);
2885                         }
2886                         migrate_vma_insert_page(migrate, addr, newpage,
2887                                                 &migrate->src[i],
2888                                                 &migrate->dst[i]);
2889                         continue;
2890                 }
2891
2892                 mapping = page_mapping(page);
2893
2894                 if (is_zone_device_page(newpage)) {
2895                         if (is_device_private_page(newpage)) {
2896                                 /*
2897                                  * For now only support private anonymous when
2898                                  * migrating to un-addressable device memory.
2899                                  */
2900                                 if (mapping) {
2901                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2902                                         continue;
2903                                 }
2904                         } else {
2905                                 /*
2906                                  * Other types of ZONE_DEVICE page are not
2907                                  * supported.
2908                                  */
2909                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2910                                 continue;
2911                         }
2912                 }
2913
2914                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2915                 if (r != MIGRATEPAGE_SUCCESS)
2916                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2917         }
2918
2919         /*
2920          * No need to double call mmu_notifier->invalidate_range() callback as
2921          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2922          * did already call it.
2923          */
2924         if (notified)
2925                 mmu_notifier_invalidate_range_only_end(&range);
2926 }
2927 EXPORT_SYMBOL(migrate_vma_pages);
2928
2929 /**
2930  * migrate_vma_finalize() - restore CPU page table entry
2931  * @migrate: migrate struct containing all migration information
2932  *
2933  * This replaces the special migration pte entry with either a mapping to the
2934  * new page if migration was successful for that page, or to the original page
2935  * otherwise.
2936  *
2937  * This also unlocks the pages and puts them back on the lru, or drops the extra
2938  * refcount, for device pages.
2939  */
2940 void migrate_vma_finalize(struct migrate_vma *migrate)
2941 {
2942         const unsigned long npages = migrate->npages;
2943         unsigned long i;
2944
2945         for (i = 0; i < npages; i++) {
2946                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2947                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2948
2949                 if (!page) {
2950                         if (newpage) {
2951                                 unlock_page(newpage);
2952                                 put_page(newpage);
2953                         }
2954                         continue;
2955                 }
2956
2957                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2958                         if (newpage) {
2959                                 unlock_page(newpage);
2960                                 put_page(newpage);
2961                         }
2962                         newpage = page;
2963                 }
2964
2965                 remove_migration_ptes(page, newpage, false);
2966                 unlock_page(page);
2967                 migrate->cpages--;
2968
2969                 if (is_zone_device_page(page))
2970                         put_page(page);
2971                 else
2972                         putback_lru_page(page);
2973
2974                 if (newpage != page) {
2975                         unlock_page(newpage);
2976                         if (is_zone_device_page(newpage))
2977                                 put_page(newpage);
2978                         else
2979                                 putback_lru_page(newpage);
2980                 }
2981         }
2982 }
2983 EXPORT_SYMBOL(migrate_vma_finalize);
2984 #endif /* CONFIG_DEVICE_PRIVATE */