GNU Linux-libre 5.4.257-gnu1
[releases.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116                                         1;
117 #else
118                                         2;
119 #endif
120
121 #ifndef arch_faults_on_old_pte
122 static inline bool arch_faults_on_old_pte(void)
123 {
124         /*
125          * Those arches which don't have hw access flag feature need to
126          * implement their own helper. By default, "true" means pagefault
127          * will be hit on old pte.
128          */
129         return true;
130 }
131 #endif
132
133 static int __init disable_randmaps(char *s)
134 {
135         randomize_va_space = 0;
136         return 1;
137 }
138 __setup("norandmaps", disable_randmaps);
139
140 unsigned long zero_pfn __read_mostly;
141 EXPORT_SYMBOL(zero_pfn);
142
143 unsigned long highest_memmap_pfn __read_mostly;
144
145 /*
146  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
147  */
148 static int __init init_zero_pfn(void)
149 {
150         zero_pfn = page_to_pfn(ZERO_PAGE(0));
151         return 0;
152 }
153 early_initcall(init_zero_pfn);
154
155
156 #if defined(SPLIT_RSS_COUNTING)
157
158 void sync_mm_rss(struct mm_struct *mm)
159 {
160         int i;
161
162         for (i = 0; i < NR_MM_COUNTERS; i++) {
163                 if (current->rss_stat.count[i]) {
164                         add_mm_counter(mm, i, current->rss_stat.count[i]);
165                         current->rss_stat.count[i] = 0;
166                 }
167         }
168         current->rss_stat.events = 0;
169 }
170
171 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
172 {
173         struct task_struct *task = current;
174
175         if (likely(task->mm == mm))
176                 task->rss_stat.count[member] += val;
177         else
178                 add_mm_counter(mm, member, val);
179 }
180 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
181 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
182
183 /* sync counter once per 64 page faults */
184 #define TASK_RSS_EVENTS_THRESH  (64)
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187         if (unlikely(task != current))
188                 return;
189         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
190                 sync_mm_rss(task->mm);
191 }
192 #else /* SPLIT_RSS_COUNTING */
193
194 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
195 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
196
197 static void check_sync_rss_stat(struct task_struct *task)
198 {
199 }
200
201 #endif /* SPLIT_RSS_COUNTING */
202
203 /*
204  * Note: this doesn't free the actual pages themselves. That
205  * has been handled earlier when unmapping all the memory regions.
206  */
207 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
208                            unsigned long addr)
209 {
210         pgtable_t token = pmd_pgtable(*pmd);
211         pmd_clear(pmd);
212         pte_free_tlb(tlb, token, addr);
213         mm_dec_nr_ptes(tlb->mm);
214 }
215
216 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
217                                 unsigned long addr, unsigned long end,
218                                 unsigned long floor, unsigned long ceiling)
219 {
220         pmd_t *pmd;
221         unsigned long next;
222         unsigned long start;
223
224         start = addr;
225         pmd = pmd_offset(pud, addr);
226         do {
227                 next = pmd_addr_end(addr, end);
228                 if (pmd_none_or_clear_bad(pmd))
229                         continue;
230                 free_pte_range(tlb, pmd, addr);
231         } while (pmd++, addr = next, addr != end);
232
233         start &= PUD_MASK;
234         if (start < floor)
235                 return;
236         if (ceiling) {
237                 ceiling &= PUD_MASK;
238                 if (!ceiling)
239                         return;
240         }
241         if (end - 1 > ceiling - 1)
242                 return;
243
244         pmd = pmd_offset(pud, start);
245         pud_clear(pud);
246         pmd_free_tlb(tlb, pmd, start);
247         mm_dec_nr_pmds(tlb->mm);
248 }
249
250 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
251                                 unsigned long addr, unsigned long end,
252                                 unsigned long floor, unsigned long ceiling)
253 {
254         pud_t *pud;
255         unsigned long next;
256         unsigned long start;
257
258         start = addr;
259         pud = pud_offset(p4d, addr);
260         do {
261                 next = pud_addr_end(addr, end);
262                 if (pud_none_or_clear_bad(pud))
263                         continue;
264                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
265         } while (pud++, addr = next, addr != end);
266
267         start &= P4D_MASK;
268         if (start < floor)
269                 return;
270         if (ceiling) {
271                 ceiling &= P4D_MASK;
272                 if (!ceiling)
273                         return;
274         }
275         if (end - 1 > ceiling - 1)
276                 return;
277
278         pud = pud_offset(p4d, start);
279         p4d_clear(p4d);
280         pud_free_tlb(tlb, pud, start);
281         mm_dec_nr_puds(tlb->mm);
282 }
283
284 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
285                                 unsigned long addr, unsigned long end,
286                                 unsigned long floor, unsigned long ceiling)
287 {
288         p4d_t *p4d;
289         unsigned long next;
290         unsigned long start;
291
292         start = addr;
293         p4d = p4d_offset(pgd, addr);
294         do {
295                 next = p4d_addr_end(addr, end);
296                 if (p4d_none_or_clear_bad(p4d))
297                         continue;
298                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
299         } while (p4d++, addr = next, addr != end);
300
301         start &= PGDIR_MASK;
302         if (start < floor)
303                 return;
304         if (ceiling) {
305                 ceiling &= PGDIR_MASK;
306                 if (!ceiling)
307                         return;
308         }
309         if (end - 1 > ceiling - 1)
310                 return;
311
312         p4d = p4d_offset(pgd, start);
313         pgd_clear(pgd);
314         p4d_free_tlb(tlb, p4d, start);
315 }
316
317 /*
318  * This function frees user-level page tables of a process.
319  */
320 void free_pgd_range(struct mmu_gather *tlb,
321                         unsigned long addr, unsigned long end,
322                         unsigned long floor, unsigned long ceiling)
323 {
324         pgd_t *pgd;
325         unsigned long next;
326
327         /*
328          * The next few lines have given us lots of grief...
329          *
330          * Why are we testing PMD* at this top level?  Because often
331          * there will be no work to do at all, and we'd prefer not to
332          * go all the way down to the bottom just to discover that.
333          *
334          * Why all these "- 1"s?  Because 0 represents both the bottom
335          * of the address space and the top of it (using -1 for the
336          * top wouldn't help much: the masks would do the wrong thing).
337          * The rule is that addr 0 and floor 0 refer to the bottom of
338          * the address space, but end 0 and ceiling 0 refer to the top
339          * Comparisons need to use "end - 1" and "ceiling - 1" (though
340          * that end 0 case should be mythical).
341          *
342          * Wherever addr is brought up or ceiling brought down, we must
343          * be careful to reject "the opposite 0" before it confuses the
344          * subsequent tests.  But what about where end is brought down
345          * by PMD_SIZE below? no, end can't go down to 0 there.
346          *
347          * Whereas we round start (addr) and ceiling down, by different
348          * masks at different levels, in order to test whether a table
349          * now has no other vmas using it, so can be freed, we don't
350          * bother to round floor or end up - the tests don't need that.
351          */
352
353         addr &= PMD_MASK;
354         if (addr < floor) {
355                 addr += PMD_SIZE;
356                 if (!addr)
357                         return;
358         }
359         if (ceiling) {
360                 ceiling &= PMD_MASK;
361                 if (!ceiling)
362                         return;
363         }
364         if (end - 1 > ceiling - 1)
365                 end -= PMD_SIZE;
366         if (addr > end - 1)
367                 return;
368         /*
369          * We add page table cache pages with PAGE_SIZE,
370          * (see pte_free_tlb()), flush the tlb if we need
371          */
372         tlb_change_page_size(tlb, PAGE_SIZE);
373         pgd = pgd_offset(tlb->mm, addr);
374         do {
375                 next = pgd_addr_end(addr, end);
376                 if (pgd_none_or_clear_bad(pgd))
377                         continue;
378                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
379         } while (pgd++, addr = next, addr != end);
380 }
381
382 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
383                 unsigned long floor, unsigned long ceiling)
384 {
385         while (vma) {
386                 struct vm_area_struct *next = vma->vm_next;
387                 unsigned long addr = vma->vm_start;
388
389                 /*
390                  * Hide vma from rmap and truncate_pagecache before freeing
391                  * pgtables
392                  */
393                 unlink_anon_vmas(vma);
394                 unlink_file_vma(vma);
395
396                 if (is_vm_hugetlb_page(vma)) {
397                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
398                                 floor, next ? next->vm_start : ceiling);
399                 } else {
400                         /*
401                          * Optimization: gather nearby vmas into one call down
402                          */
403                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
404                                && !is_vm_hugetlb_page(next)) {
405                                 vma = next;
406                                 next = vma->vm_next;
407                                 unlink_anon_vmas(vma);
408                                 unlink_file_vma(vma);
409                         }
410                         free_pgd_range(tlb, addr, vma->vm_end,
411                                 floor, next ? next->vm_start : ceiling);
412                 }
413                 vma = next;
414         }
415 }
416
417 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
418 {
419         spinlock_t *ptl;
420         pgtable_t new = pte_alloc_one(mm);
421         if (!new)
422                 return -ENOMEM;
423
424         /*
425          * Ensure all pte setup (eg. pte page lock and page clearing) are
426          * visible before the pte is made visible to other CPUs by being
427          * put into page tables.
428          *
429          * The other side of the story is the pointer chasing in the page
430          * table walking code (when walking the page table without locking;
431          * ie. most of the time). Fortunately, these data accesses consist
432          * of a chain of data-dependent loads, meaning most CPUs (alpha
433          * being the notable exception) will already guarantee loads are
434          * seen in-order. See the alpha page table accessors for the
435          * smp_read_barrier_depends() barriers in page table walking code.
436          */
437         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438
439         ptl = pmd_lock(mm, pmd);
440         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
441                 mm_inc_nr_ptes(mm);
442                 pmd_populate(mm, pmd, new);
443                 new = NULL;
444         }
445         spin_unlock(ptl);
446         if (new)
447                 pte_free(mm, new);
448         return 0;
449 }
450
451 int __pte_alloc_kernel(pmd_t *pmd)
452 {
453         pte_t *new = pte_alloc_one_kernel(&init_mm);
454         if (!new)
455                 return -ENOMEM;
456
457         smp_wmb(); /* See comment in __pte_alloc */
458
459         spin_lock(&init_mm.page_table_lock);
460         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
461                 pmd_populate_kernel(&init_mm, pmd, new);
462                 new = NULL;
463         }
464         spin_unlock(&init_mm.page_table_lock);
465         if (new)
466                 pte_free_kernel(&init_mm, new);
467         return 0;
468 }
469
470 static inline void init_rss_vec(int *rss)
471 {
472         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473 }
474
475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
476 {
477         int i;
478
479         if (current->mm == mm)
480                 sync_mm_rss(mm);
481         for (i = 0; i < NR_MM_COUNTERS; i++)
482                 if (rss[i])
483                         add_mm_counter(mm, i, rss[i]);
484 }
485
486 /*
487  * This function is called to print an error when a bad pte
488  * is found. For example, we might have a PFN-mapped pte in
489  * a region that doesn't allow it.
490  *
491  * The calling function must still handle the error.
492  */
493 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
494                           pte_t pte, struct page *page)
495 {
496         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
497         p4d_t *p4d = p4d_offset(pgd, addr);
498         pud_t *pud = pud_offset(p4d, addr);
499         pmd_t *pmd = pmd_offset(pud, addr);
500         struct address_space *mapping;
501         pgoff_t index;
502         static unsigned long resume;
503         static unsigned long nr_shown;
504         static unsigned long nr_unshown;
505
506         /*
507          * Allow a burst of 60 reports, then keep quiet for that minute;
508          * or allow a steady drip of one report per second.
509          */
510         if (nr_shown == 60) {
511                 if (time_before(jiffies, resume)) {
512                         nr_unshown++;
513                         return;
514                 }
515                 if (nr_unshown) {
516                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
517                                  nr_unshown);
518                         nr_unshown = 0;
519                 }
520                 nr_shown = 0;
521         }
522         if (nr_shown++ == 0)
523                 resume = jiffies + 60 * HZ;
524
525         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
526         index = linear_page_index(vma, addr);
527
528         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
529                  current->comm,
530                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
531         if (page)
532                 dump_page(page, "bad pte");
533         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
534                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
535         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
536                  vma->vm_file,
537                  vma->vm_ops ? vma->vm_ops->fault : NULL,
538                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
539                  mapping ? mapping->a_ops->readpage : NULL);
540         dump_stack();
541         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
542 }
543
544 /*
545  * vm_normal_page -- This function gets the "struct page" associated with a pte.
546  *
547  * "Special" mappings do not wish to be associated with a "struct page" (either
548  * it doesn't exist, or it exists but they don't want to touch it). In this
549  * case, NULL is returned here. "Normal" mappings do have a struct page.
550  *
551  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
552  * pte bit, in which case this function is trivial. Secondly, an architecture
553  * may not have a spare pte bit, which requires a more complicated scheme,
554  * described below.
555  *
556  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
557  * special mapping (even if there are underlying and valid "struct pages").
558  * COWed pages of a VM_PFNMAP are always normal.
559  *
560  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
561  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
562  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
563  * mapping will always honor the rule
564  *
565  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
566  *
567  * And for normal mappings this is false.
568  *
569  * This restricts such mappings to be a linear translation from virtual address
570  * to pfn. To get around this restriction, we allow arbitrary mappings so long
571  * as the vma is not a COW mapping; in that case, we know that all ptes are
572  * special (because none can have been COWed).
573  *
574  *
575  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
576  *
577  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
578  * page" backing, however the difference is that _all_ pages with a struct
579  * page (that is, those where pfn_valid is true) are refcounted and considered
580  * normal pages by the VM. The disadvantage is that pages are refcounted
581  * (which can be slower and simply not an option for some PFNMAP users). The
582  * advantage is that we don't have to follow the strict linearity rule of
583  * PFNMAP mappings in order to support COWable mappings.
584  *
585  */
586 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587                             pte_t pte)
588 {
589         unsigned long pfn = pte_pfn(pte);
590
591         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
592                 if (likely(!pte_special(pte)))
593                         goto check_pfn;
594                 if (vma->vm_ops && vma->vm_ops->find_special_page)
595                         return vma->vm_ops->find_special_page(vma, addr);
596                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
597                         return NULL;
598                 if (is_zero_pfn(pfn))
599                         return NULL;
600                 if (pte_devmap(pte))
601                         return NULL;
602
603                 print_bad_pte(vma, addr, pte, NULL);
604                 return NULL;
605         }
606
607         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
608
609         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
610                 if (vma->vm_flags & VM_MIXEDMAP) {
611                         if (!pfn_valid(pfn))
612                                 return NULL;
613                         goto out;
614                 } else {
615                         unsigned long off;
616                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
617                         if (pfn == vma->vm_pgoff + off)
618                                 return NULL;
619                         if (!is_cow_mapping(vma->vm_flags))
620                                 return NULL;
621                 }
622         }
623
624         if (is_zero_pfn(pfn))
625                 return NULL;
626
627 check_pfn:
628         if (unlikely(pfn > highest_memmap_pfn)) {
629                 print_bad_pte(vma, addr, pte, NULL);
630                 return NULL;
631         }
632
633         /*
634          * NOTE! We still have PageReserved() pages in the page tables.
635          * eg. VDSO mappings can cause them to exist.
636          */
637 out:
638         return pfn_to_page(pfn);
639 }
640
641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
642 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
643                                 pmd_t pmd)
644 {
645         unsigned long pfn = pmd_pfn(pmd);
646
647         /*
648          * There is no pmd_special() but there may be special pmds, e.g.
649          * in a direct-access (dax) mapping, so let's just replicate the
650          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
651          */
652         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
653                 if (vma->vm_flags & VM_MIXEDMAP) {
654                         if (!pfn_valid(pfn))
655                                 return NULL;
656                         goto out;
657                 } else {
658                         unsigned long off;
659                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
660                         if (pfn == vma->vm_pgoff + off)
661                                 return NULL;
662                         if (!is_cow_mapping(vma->vm_flags))
663                                 return NULL;
664                 }
665         }
666
667         if (pmd_devmap(pmd))
668                 return NULL;
669         if (is_zero_pfn(pfn))
670                 return NULL;
671         if (unlikely(pfn > highest_memmap_pfn))
672                 return NULL;
673
674         /*
675          * NOTE! We still have PageReserved() pages in the page tables.
676          * eg. VDSO mappings can cause them to exist.
677          */
678 out:
679         return pfn_to_page(pfn);
680 }
681 #endif
682
683 /*
684  * copy one vm_area from one task to the other. Assumes the page tables
685  * already present in the new task to be cleared in the whole range
686  * covered by this vma.
687  */
688
689 static inline unsigned long
690 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
691                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
692                 unsigned long addr, int *rss)
693 {
694         unsigned long vm_flags = vma->vm_flags;
695         pte_t pte = *src_pte;
696         struct page *page;
697
698         /* pte contains position in swap or file, so copy. */
699         if (unlikely(!pte_present(pte))) {
700                 swp_entry_t entry = pte_to_swp_entry(pte);
701
702                 if (likely(!non_swap_entry(entry))) {
703                         if (swap_duplicate(entry) < 0)
704                                 return entry.val;
705
706                         /* make sure dst_mm is on swapoff's mmlist. */
707                         if (unlikely(list_empty(&dst_mm->mmlist))) {
708                                 spin_lock(&mmlist_lock);
709                                 if (list_empty(&dst_mm->mmlist))
710                                         list_add(&dst_mm->mmlist,
711                                                         &src_mm->mmlist);
712                                 spin_unlock(&mmlist_lock);
713                         }
714                         rss[MM_SWAPENTS]++;
715                 } else if (is_migration_entry(entry)) {
716                         page = migration_entry_to_page(entry);
717
718                         rss[mm_counter(page)]++;
719
720                         if (is_write_migration_entry(entry) &&
721                                         is_cow_mapping(vm_flags)) {
722                                 /*
723                                  * COW mappings require pages in both
724                                  * parent and child to be set to read.
725                                  */
726                                 make_migration_entry_read(&entry);
727                                 pte = swp_entry_to_pte(entry);
728                                 if (pte_swp_soft_dirty(*src_pte))
729                                         pte = pte_swp_mksoft_dirty(pte);
730                                 set_pte_at(src_mm, addr, src_pte, pte);
731                         }
732                 } else if (is_device_private_entry(entry)) {
733                         page = device_private_entry_to_page(entry);
734
735                         /*
736                          * Update rss count even for unaddressable pages, as
737                          * they should treated just like normal pages in this
738                          * respect.
739                          *
740                          * We will likely want to have some new rss counters
741                          * for unaddressable pages, at some point. But for now
742                          * keep things as they are.
743                          */
744                         get_page(page);
745                         rss[mm_counter(page)]++;
746                         page_dup_rmap(page, false);
747
748                         /*
749                          * We do not preserve soft-dirty information, because so
750                          * far, checkpoint/restore is the only feature that
751                          * requires that. And checkpoint/restore does not work
752                          * when a device driver is involved (you cannot easily
753                          * save and restore device driver state).
754                          */
755                         if (is_write_device_private_entry(entry) &&
756                             is_cow_mapping(vm_flags)) {
757                                 make_device_private_entry_read(&entry);
758                                 pte = swp_entry_to_pte(entry);
759                                 set_pte_at(src_mm, addr, src_pte, pte);
760                         }
761                 }
762                 goto out_set_pte;
763         }
764
765         /*
766          * If it's a COW mapping, write protect it both
767          * in the parent and the child
768          */
769         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
770                 ptep_set_wrprotect(src_mm, addr, src_pte);
771                 pte = pte_wrprotect(pte);
772         }
773
774         /*
775          * If it's a shared mapping, mark it clean in
776          * the child
777          */
778         if (vm_flags & VM_SHARED)
779                 pte = pte_mkclean(pte);
780         pte = pte_mkold(pte);
781
782         page = vm_normal_page(vma, addr, pte);
783         if (page) {
784                 get_page(page);
785                 page_dup_rmap(page, false);
786                 rss[mm_counter(page)]++;
787         } else if (pte_devmap(pte)) {
788                 page = pte_page(pte);
789         }
790
791 out_set_pte:
792         set_pte_at(dst_mm, addr, dst_pte, pte);
793         return 0;
794 }
795
796 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
797                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
798                    unsigned long addr, unsigned long end)
799 {
800         pte_t *orig_src_pte, *orig_dst_pte;
801         pte_t *src_pte, *dst_pte;
802         spinlock_t *src_ptl, *dst_ptl;
803         int progress = 0;
804         int rss[NR_MM_COUNTERS];
805         swp_entry_t entry = (swp_entry_t){0};
806
807 again:
808         init_rss_vec(rss);
809
810         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
811         if (!dst_pte)
812                 return -ENOMEM;
813         src_pte = pte_offset_map(src_pmd, addr);
814         src_ptl = pte_lockptr(src_mm, src_pmd);
815         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
816         orig_src_pte = src_pte;
817         orig_dst_pte = dst_pte;
818         arch_enter_lazy_mmu_mode();
819
820         do {
821                 /*
822                  * We are holding two locks at this point - either of them
823                  * could generate latencies in another task on another CPU.
824                  */
825                 if (progress >= 32) {
826                         progress = 0;
827                         if (need_resched() ||
828                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
829                                 break;
830                 }
831                 if (pte_none(*src_pte)) {
832                         progress++;
833                         continue;
834                 }
835                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
836                                                         vma, addr, rss);
837                 if (entry.val)
838                         break;
839                 progress += 8;
840         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
841
842         arch_leave_lazy_mmu_mode();
843         spin_unlock(src_ptl);
844         pte_unmap(orig_src_pte);
845         add_mm_rss_vec(dst_mm, rss);
846         pte_unmap_unlock(orig_dst_pte, dst_ptl);
847         cond_resched();
848
849         if (entry.val) {
850                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
851                         return -ENOMEM;
852                 progress = 0;
853         }
854         if (addr != end)
855                 goto again;
856         return 0;
857 }
858
859 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
861                 unsigned long addr, unsigned long end)
862 {
863         pmd_t *src_pmd, *dst_pmd;
864         unsigned long next;
865
866         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
867         if (!dst_pmd)
868                 return -ENOMEM;
869         src_pmd = pmd_offset(src_pud, addr);
870         do {
871                 next = pmd_addr_end(addr, end);
872                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
873                         || pmd_devmap(*src_pmd)) {
874                         int err;
875                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
876                         err = copy_huge_pmd(dst_mm, src_mm,
877                                             dst_pmd, src_pmd, addr, vma);
878                         if (err == -ENOMEM)
879                                 return -ENOMEM;
880                         if (!err)
881                                 continue;
882                         /* fall through */
883                 }
884                 if (pmd_none_or_clear_bad(src_pmd))
885                         continue;
886                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
887                                                 vma, addr, next))
888                         return -ENOMEM;
889         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
890         return 0;
891 }
892
893 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
894                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
895                 unsigned long addr, unsigned long end)
896 {
897         pud_t *src_pud, *dst_pud;
898         unsigned long next;
899
900         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
901         if (!dst_pud)
902                 return -ENOMEM;
903         src_pud = pud_offset(src_p4d, addr);
904         do {
905                 next = pud_addr_end(addr, end);
906                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
907                         int err;
908
909                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
910                         err = copy_huge_pud(dst_mm, src_mm,
911                                             dst_pud, src_pud, addr, vma);
912                         if (err == -ENOMEM)
913                                 return -ENOMEM;
914                         if (!err)
915                                 continue;
916                         /* fall through */
917                 }
918                 if (pud_none_or_clear_bad(src_pud))
919                         continue;
920                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
921                                                 vma, addr, next))
922                         return -ENOMEM;
923         } while (dst_pud++, src_pud++, addr = next, addr != end);
924         return 0;
925 }
926
927 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
929                 unsigned long addr, unsigned long end)
930 {
931         p4d_t *src_p4d, *dst_p4d;
932         unsigned long next;
933
934         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
935         if (!dst_p4d)
936                 return -ENOMEM;
937         src_p4d = p4d_offset(src_pgd, addr);
938         do {
939                 next = p4d_addr_end(addr, end);
940                 if (p4d_none_or_clear_bad(src_p4d))
941                         continue;
942                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
943                                                 vma, addr, next))
944                         return -ENOMEM;
945         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
946         return 0;
947 }
948
949 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950                 struct vm_area_struct *vma)
951 {
952         pgd_t *src_pgd, *dst_pgd;
953         unsigned long next;
954         unsigned long addr = vma->vm_start;
955         unsigned long end = vma->vm_end;
956         struct mmu_notifier_range range;
957         bool is_cow;
958         int ret;
959
960         /*
961          * Don't copy ptes where a page fault will fill them correctly.
962          * Fork becomes much lighter when there are big shared or private
963          * readonly mappings. The tradeoff is that copy_page_range is more
964          * efficient than faulting.
965          */
966         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
967                         !vma->anon_vma)
968                 return 0;
969
970         if (is_vm_hugetlb_page(vma))
971                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
972
973         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
974                 /*
975                  * We do not free on error cases below as remove_vma
976                  * gets called on error from higher level routine
977                  */
978                 ret = track_pfn_copy(vma);
979                 if (ret)
980                         return ret;
981         }
982
983         /*
984          * We need to invalidate the secondary MMU mappings only when
985          * there could be a permission downgrade on the ptes of the
986          * parent mm. And a permission downgrade will only happen if
987          * is_cow_mapping() returns true.
988          */
989         is_cow = is_cow_mapping(vma->vm_flags);
990
991         if (is_cow) {
992                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
993                                         0, vma, src_mm, addr, end);
994                 mmu_notifier_invalidate_range_start(&range);
995         }
996
997         ret = 0;
998         dst_pgd = pgd_offset(dst_mm, addr);
999         src_pgd = pgd_offset(src_mm, addr);
1000         do {
1001                 next = pgd_addr_end(addr, end);
1002                 if (pgd_none_or_clear_bad(src_pgd))
1003                         continue;
1004                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1005                                             vma, addr, next))) {
1006                         ret = -ENOMEM;
1007                         break;
1008                 }
1009         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1010
1011         if (is_cow)
1012                 mmu_notifier_invalidate_range_end(&range);
1013         return ret;
1014 }
1015
1016 /* Whether we should zap all COWed (private) pages too */
1017 static inline bool should_zap_cows(struct zap_details *details)
1018 {
1019         /* By default, zap all pages */
1020         if (!details)
1021                 return true;
1022
1023         /* Or, we zap COWed pages only if the caller wants to */
1024         return !details->check_mapping;
1025 }
1026
1027 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1028                                 struct vm_area_struct *vma, pmd_t *pmd,
1029                                 unsigned long addr, unsigned long end,
1030                                 struct zap_details *details)
1031 {
1032         struct mm_struct *mm = tlb->mm;
1033         int force_flush = 0;
1034         int rss[NR_MM_COUNTERS];
1035         spinlock_t *ptl;
1036         pte_t *start_pte;
1037         pte_t *pte;
1038         swp_entry_t entry;
1039
1040         tlb_change_page_size(tlb, PAGE_SIZE);
1041 again:
1042         init_rss_vec(rss);
1043         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1044         pte = start_pte;
1045         flush_tlb_batched_pending(mm);
1046         arch_enter_lazy_mmu_mode();
1047         do {
1048                 pte_t ptent = *pte;
1049                 if (pte_none(ptent))
1050                         continue;
1051
1052                 if (need_resched())
1053                         break;
1054
1055                 if (pte_present(ptent)) {
1056                         struct page *page;
1057
1058                         page = vm_normal_page(vma, addr, ptent);
1059                         if (unlikely(details) && page) {
1060                                 /*
1061                                  * unmap_shared_mapping_pages() wants to
1062                                  * invalidate cache without truncating:
1063                                  * unmap shared but keep private pages.
1064                                  */
1065                                 if (details->check_mapping &&
1066                                     details->check_mapping != page_rmapping(page))
1067                                         continue;
1068                         }
1069                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1070                                                         tlb->fullmm);
1071                         tlb_remove_tlb_entry(tlb, pte, addr);
1072                         if (unlikely(!page))
1073                                 continue;
1074
1075                         if (!PageAnon(page)) {
1076                                 if (pte_dirty(ptent)) {
1077                                         force_flush = 1;
1078                                         set_page_dirty(page);
1079                                 }
1080                                 if (pte_young(ptent) &&
1081                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1082                                         mark_page_accessed(page);
1083                         }
1084                         rss[mm_counter(page)]--;
1085                         page_remove_rmap(page, false);
1086                         if (unlikely(page_mapcount(page) < 0))
1087                                 print_bad_pte(vma, addr, ptent, page);
1088                         if (unlikely(__tlb_remove_page(tlb, page))) {
1089                                 force_flush = 1;
1090                                 addr += PAGE_SIZE;
1091                                 break;
1092                         }
1093                         continue;
1094                 }
1095
1096                 entry = pte_to_swp_entry(ptent);
1097                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1098                         struct page *page = device_private_entry_to_page(entry);
1099
1100                         if (unlikely(details && details->check_mapping)) {
1101                                 /*
1102                                  * unmap_shared_mapping_pages() wants to
1103                                  * invalidate cache without truncating:
1104                                  * unmap shared but keep private pages.
1105                                  */
1106                                 if (details->check_mapping !=
1107                                     page_rmapping(page))
1108                                         continue;
1109                         }
1110
1111                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1112                         rss[mm_counter(page)]--;
1113                         page_remove_rmap(page, false);
1114                         put_page(page);
1115                         continue;
1116                 }
1117
1118                 if (!non_swap_entry(entry)) {
1119                         /* Genuine swap entry, hence a private anon page */
1120                         if (!should_zap_cows(details))
1121                                 continue;
1122                         rss[MM_SWAPENTS]--;
1123                 } else if (is_migration_entry(entry)) {
1124                         struct page *page;
1125
1126                         page = migration_entry_to_page(entry);
1127                         if (details && details->check_mapping &&
1128                             details->check_mapping != page_rmapping(page))
1129                                 continue;
1130                         rss[mm_counter(page)]--;
1131                 }
1132                 if (unlikely(!free_swap_and_cache(entry)))
1133                         print_bad_pte(vma, addr, ptent, NULL);
1134                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1135         } while (pte++, addr += PAGE_SIZE, addr != end);
1136
1137         add_mm_rss_vec(mm, rss);
1138         arch_leave_lazy_mmu_mode();
1139
1140         /* Do the actual TLB flush before dropping ptl */
1141         if (force_flush)
1142                 tlb_flush_mmu_tlbonly(tlb);
1143         pte_unmap_unlock(start_pte, ptl);
1144
1145         /*
1146          * If we forced a TLB flush (either due to running out of
1147          * batch buffers or because we needed to flush dirty TLB
1148          * entries before releasing the ptl), free the batched
1149          * memory too. Restart if we didn't do everything.
1150          */
1151         if (force_flush) {
1152                 force_flush = 0;
1153                 tlb_flush_mmu(tlb);
1154         }
1155
1156         if (addr != end) {
1157                 cond_resched();
1158                 goto again;
1159         }
1160
1161         return addr;
1162 }
1163
1164 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1165                                 struct vm_area_struct *vma, pud_t *pud,
1166                                 unsigned long addr, unsigned long end,
1167                                 struct zap_details *details)
1168 {
1169         pmd_t *pmd;
1170         unsigned long next;
1171
1172         pmd = pmd_offset(pud, addr);
1173         do {
1174                 next = pmd_addr_end(addr, end);
1175                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1176                         if (next - addr != HPAGE_PMD_SIZE)
1177                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1178                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1179                                 goto next;
1180                         /* fall through */
1181                 } else if (details && details->single_page &&
1182                            PageTransCompound(details->single_page) &&
1183                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1184                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1185                         /*
1186                          * Take and drop THP pmd lock so that we cannot return
1187                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1188                          * but not yet decremented compound_mapcount().
1189                          */
1190                         spin_unlock(ptl);
1191                 }
1192
1193                 /*
1194                  * Here there can be other concurrent MADV_DONTNEED or
1195                  * trans huge page faults running, and if the pmd is
1196                  * none or trans huge it can change under us. This is
1197                  * because MADV_DONTNEED holds the mmap_sem in read
1198                  * mode.
1199                  */
1200                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1201                         goto next;
1202                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1203 next:
1204                 cond_resched();
1205         } while (pmd++, addr = next, addr != end);
1206
1207         return addr;
1208 }
1209
1210 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1211                                 struct vm_area_struct *vma, p4d_t *p4d,
1212                                 unsigned long addr, unsigned long end,
1213                                 struct zap_details *details)
1214 {
1215         pud_t *pud;
1216         unsigned long next;
1217
1218         pud = pud_offset(p4d, addr);
1219         do {
1220                 next = pud_addr_end(addr, end);
1221                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1222                         if (next - addr != HPAGE_PUD_SIZE) {
1223                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1224                                 split_huge_pud(vma, pud, addr);
1225                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1226                                 goto next;
1227                         /* fall through */
1228                 }
1229                 if (pud_none_or_clear_bad(pud))
1230                         continue;
1231                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1232 next:
1233                 cond_resched();
1234         } while (pud++, addr = next, addr != end);
1235
1236         return addr;
1237 }
1238
1239 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1240                                 struct vm_area_struct *vma, pgd_t *pgd,
1241                                 unsigned long addr, unsigned long end,
1242                                 struct zap_details *details)
1243 {
1244         p4d_t *p4d;
1245         unsigned long next;
1246
1247         p4d = p4d_offset(pgd, addr);
1248         do {
1249                 next = p4d_addr_end(addr, end);
1250                 if (p4d_none_or_clear_bad(p4d))
1251                         continue;
1252                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1253         } while (p4d++, addr = next, addr != end);
1254
1255         return addr;
1256 }
1257
1258 void unmap_page_range(struct mmu_gather *tlb,
1259                              struct vm_area_struct *vma,
1260                              unsigned long addr, unsigned long end,
1261                              struct zap_details *details)
1262 {
1263         pgd_t *pgd;
1264         unsigned long next;
1265
1266         BUG_ON(addr >= end);
1267         tlb_start_vma(tlb, vma);
1268         pgd = pgd_offset(vma->vm_mm, addr);
1269         do {
1270                 next = pgd_addr_end(addr, end);
1271                 if (pgd_none_or_clear_bad(pgd))
1272                         continue;
1273                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1274         } while (pgd++, addr = next, addr != end);
1275         tlb_end_vma(tlb, vma);
1276 }
1277
1278
1279 static void unmap_single_vma(struct mmu_gather *tlb,
1280                 struct vm_area_struct *vma, unsigned long start_addr,
1281                 unsigned long end_addr,
1282                 struct zap_details *details)
1283 {
1284         unsigned long start = max(vma->vm_start, start_addr);
1285         unsigned long end;
1286
1287         if (start >= vma->vm_end)
1288                 return;
1289         end = min(vma->vm_end, end_addr);
1290         if (end <= vma->vm_start)
1291                 return;
1292
1293         if (vma->vm_file)
1294                 uprobe_munmap(vma, start, end);
1295
1296         if (unlikely(vma->vm_flags & VM_PFNMAP))
1297                 untrack_pfn(vma, 0, 0);
1298
1299         if (start != end) {
1300                 if (unlikely(is_vm_hugetlb_page(vma))) {
1301                         /*
1302                          * It is undesirable to test vma->vm_file as it
1303                          * should be non-null for valid hugetlb area.
1304                          * However, vm_file will be NULL in the error
1305                          * cleanup path of mmap_region. When
1306                          * hugetlbfs ->mmap method fails,
1307                          * mmap_region() nullifies vma->vm_file
1308                          * before calling this function to clean up.
1309                          * Since no pte has actually been setup, it is
1310                          * safe to do nothing in this case.
1311                          */
1312                         if (vma->vm_file) {
1313                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1314                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1315                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1316                         }
1317                 } else
1318                         unmap_page_range(tlb, vma, start, end, details);
1319         }
1320 }
1321
1322 /**
1323  * unmap_vmas - unmap a range of memory covered by a list of vma's
1324  * @tlb: address of the caller's struct mmu_gather
1325  * @vma: the starting vma
1326  * @start_addr: virtual address at which to start unmapping
1327  * @end_addr: virtual address at which to end unmapping
1328  *
1329  * Unmap all pages in the vma list.
1330  *
1331  * Only addresses between `start' and `end' will be unmapped.
1332  *
1333  * The VMA list must be sorted in ascending virtual address order.
1334  *
1335  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1336  * range after unmap_vmas() returns.  So the only responsibility here is to
1337  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1338  * drops the lock and schedules.
1339  */
1340 void unmap_vmas(struct mmu_gather *tlb,
1341                 struct vm_area_struct *vma, unsigned long start_addr,
1342                 unsigned long end_addr)
1343 {
1344         struct mmu_notifier_range range;
1345
1346         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1347                                 start_addr, end_addr);
1348         mmu_notifier_invalidate_range_start(&range);
1349         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1350                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1351         mmu_notifier_invalidate_range_end(&range);
1352 }
1353
1354 /**
1355  * zap_page_range - remove user pages in a given range
1356  * @vma: vm_area_struct holding the applicable pages
1357  * @start: starting address of pages to zap
1358  * @size: number of bytes to zap
1359  *
1360  * Caller must protect the VMA list
1361  */
1362 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1363                 unsigned long size)
1364 {
1365         struct mmu_notifier_range range;
1366         struct mmu_gather tlb;
1367
1368         lru_add_drain();
1369         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1370                                 start, start + size);
1371         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1372         update_hiwater_rss(vma->vm_mm);
1373         mmu_notifier_invalidate_range_start(&range);
1374         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1375                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1376         mmu_notifier_invalidate_range_end(&range);
1377         tlb_finish_mmu(&tlb, start, range.end);
1378 }
1379
1380 /**
1381  * zap_page_range_single - remove user pages in a given range
1382  * @vma: vm_area_struct holding the applicable pages
1383  * @address: starting address of pages to zap
1384  * @size: number of bytes to zap
1385  * @details: details of shared cache invalidation
1386  *
1387  * The range must fit into one VMA.
1388  */
1389 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1390                 unsigned long size, struct zap_details *details)
1391 {
1392         struct mmu_notifier_range range;
1393         struct mmu_gather tlb;
1394
1395         lru_add_drain();
1396         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1397                                 address, address + size);
1398         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1399         update_hiwater_rss(vma->vm_mm);
1400         mmu_notifier_invalidate_range_start(&range);
1401         unmap_single_vma(&tlb, vma, address, range.end, details);
1402         mmu_notifier_invalidate_range_end(&range);
1403         tlb_finish_mmu(&tlb, address, range.end);
1404 }
1405
1406 /**
1407  * zap_vma_ptes - remove ptes mapping the vma
1408  * @vma: vm_area_struct holding ptes to be zapped
1409  * @address: starting address of pages to zap
1410  * @size: number of bytes to zap
1411  *
1412  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1413  *
1414  * The entire address range must be fully contained within the vma.
1415  *
1416  */
1417 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1418                 unsigned long size)
1419 {
1420         if (address < vma->vm_start || address + size > vma->vm_end ||
1421                         !(vma->vm_flags & VM_PFNMAP))
1422                 return;
1423
1424         zap_page_range_single(vma, address, size, NULL);
1425 }
1426 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1427
1428 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1429                         spinlock_t **ptl)
1430 {
1431         pgd_t *pgd;
1432         p4d_t *p4d;
1433         pud_t *pud;
1434         pmd_t *pmd;
1435
1436         pgd = pgd_offset(mm, addr);
1437         p4d = p4d_alloc(mm, pgd, addr);
1438         if (!p4d)
1439                 return NULL;
1440         pud = pud_alloc(mm, p4d, addr);
1441         if (!pud)
1442                 return NULL;
1443         pmd = pmd_alloc(mm, pud, addr);
1444         if (!pmd)
1445                 return NULL;
1446
1447         VM_BUG_ON(pmd_trans_huge(*pmd));
1448         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1449 }
1450
1451 /*
1452  * This is the old fallback for page remapping.
1453  *
1454  * For historical reasons, it only allows reserved pages. Only
1455  * old drivers should use this, and they needed to mark their
1456  * pages reserved for the old functions anyway.
1457  */
1458 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1459                         struct page *page, pgprot_t prot)
1460 {
1461         struct mm_struct *mm = vma->vm_mm;
1462         int retval;
1463         pte_t *pte;
1464         spinlock_t *ptl;
1465
1466         retval = -EINVAL;
1467         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1468                 goto out;
1469         retval = -ENOMEM;
1470         flush_dcache_page(page);
1471         pte = get_locked_pte(mm, addr, &ptl);
1472         if (!pte)
1473                 goto out;
1474         retval = -EBUSY;
1475         if (!pte_none(*pte))
1476                 goto out_unlock;
1477
1478         /* Ok, finally just insert the thing.. */
1479         get_page(page);
1480         inc_mm_counter_fast(mm, mm_counter_file(page));
1481         page_add_file_rmap(page, false);
1482         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1483
1484         retval = 0;
1485 out_unlock:
1486         pte_unmap_unlock(pte, ptl);
1487 out:
1488         return retval;
1489 }
1490
1491 /**
1492  * vm_insert_page - insert single page into user vma
1493  * @vma: user vma to map to
1494  * @addr: target user address of this page
1495  * @page: source kernel page
1496  *
1497  * This allows drivers to insert individual pages they've allocated
1498  * into a user vma.
1499  *
1500  * The page has to be a nice clean _individual_ kernel allocation.
1501  * If you allocate a compound page, you need to have marked it as
1502  * such (__GFP_COMP), or manually just split the page up yourself
1503  * (see split_page()).
1504  *
1505  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1506  * took an arbitrary page protection parameter. This doesn't allow
1507  * that. Your vma protection will have to be set up correctly, which
1508  * means that if you want a shared writable mapping, you'd better
1509  * ask for a shared writable mapping!
1510  *
1511  * The page does not need to be reserved.
1512  *
1513  * Usually this function is called from f_op->mmap() handler
1514  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1515  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1516  * function from other places, for example from page-fault handler.
1517  *
1518  * Return: %0 on success, negative error code otherwise.
1519  */
1520 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1521                         struct page *page)
1522 {
1523         if (addr < vma->vm_start || addr >= vma->vm_end)
1524                 return -EFAULT;
1525         if (!page_count(page))
1526                 return -EINVAL;
1527         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1528                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1529                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1530                 vma->vm_flags |= VM_MIXEDMAP;
1531         }
1532         return insert_page(vma, addr, page, vma->vm_page_prot);
1533 }
1534 EXPORT_SYMBOL(vm_insert_page);
1535
1536 /*
1537  * __vm_map_pages - maps range of kernel pages into user vma
1538  * @vma: user vma to map to
1539  * @pages: pointer to array of source kernel pages
1540  * @num: number of pages in page array
1541  * @offset: user's requested vm_pgoff
1542  *
1543  * This allows drivers to map range of kernel pages into a user vma.
1544  *
1545  * Return: 0 on success and error code otherwise.
1546  */
1547 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1548                                 unsigned long num, unsigned long offset)
1549 {
1550         unsigned long count = vma_pages(vma);
1551         unsigned long uaddr = vma->vm_start;
1552         int ret, i;
1553
1554         /* Fail if the user requested offset is beyond the end of the object */
1555         if (offset >= num)
1556                 return -ENXIO;
1557
1558         /* Fail if the user requested size exceeds available object size */
1559         if (count > num - offset)
1560                 return -ENXIO;
1561
1562         for (i = 0; i < count; i++) {
1563                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1564                 if (ret < 0)
1565                         return ret;
1566                 uaddr += PAGE_SIZE;
1567         }
1568
1569         return 0;
1570 }
1571
1572 /**
1573  * vm_map_pages - maps range of kernel pages starts with non zero offset
1574  * @vma: user vma to map to
1575  * @pages: pointer to array of source kernel pages
1576  * @num: number of pages in page array
1577  *
1578  * Maps an object consisting of @num pages, catering for the user's
1579  * requested vm_pgoff
1580  *
1581  * If we fail to insert any page into the vma, the function will return
1582  * immediately leaving any previously inserted pages present.  Callers
1583  * from the mmap handler may immediately return the error as their caller
1584  * will destroy the vma, removing any successfully inserted pages. Other
1585  * callers should make their own arrangements for calling unmap_region().
1586  *
1587  * Context: Process context. Called by mmap handlers.
1588  * Return: 0 on success and error code otherwise.
1589  */
1590 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1591                                 unsigned long num)
1592 {
1593         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1594 }
1595 EXPORT_SYMBOL(vm_map_pages);
1596
1597 /**
1598  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1599  * @vma: user vma to map to
1600  * @pages: pointer to array of source kernel pages
1601  * @num: number of pages in page array
1602  *
1603  * Similar to vm_map_pages(), except that it explicitly sets the offset
1604  * to 0. This function is intended for the drivers that did not consider
1605  * vm_pgoff.
1606  *
1607  * Context: Process context. Called by mmap handlers.
1608  * Return: 0 on success and error code otherwise.
1609  */
1610 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1611                                 unsigned long num)
1612 {
1613         return __vm_map_pages(vma, pages, num, 0);
1614 }
1615 EXPORT_SYMBOL(vm_map_pages_zero);
1616
1617 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1618                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1619 {
1620         struct mm_struct *mm = vma->vm_mm;
1621         pte_t *pte, entry;
1622         spinlock_t *ptl;
1623
1624         pte = get_locked_pte(mm, addr, &ptl);
1625         if (!pte)
1626                 return VM_FAULT_OOM;
1627         if (!pte_none(*pte)) {
1628                 if (mkwrite) {
1629                         /*
1630                          * For read faults on private mappings the PFN passed
1631                          * in may not match the PFN we have mapped if the
1632                          * mapped PFN is a writeable COW page.  In the mkwrite
1633                          * case we are creating a writable PTE for a shared
1634                          * mapping and we expect the PFNs to match. If they
1635                          * don't match, we are likely racing with block
1636                          * allocation and mapping invalidation so just skip the
1637                          * update.
1638                          */
1639                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1640                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1641                                 goto out_unlock;
1642                         }
1643                         entry = pte_mkyoung(*pte);
1644                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1645                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1646                                 update_mmu_cache(vma, addr, pte);
1647                 }
1648                 goto out_unlock;
1649         }
1650
1651         /* Ok, finally just insert the thing.. */
1652         if (pfn_t_devmap(pfn))
1653                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1654         else
1655                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1656
1657         if (mkwrite) {
1658                 entry = pte_mkyoung(entry);
1659                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1660         }
1661
1662         set_pte_at(mm, addr, pte, entry);
1663         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1664
1665 out_unlock:
1666         pte_unmap_unlock(pte, ptl);
1667         return VM_FAULT_NOPAGE;
1668 }
1669
1670 /**
1671  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1672  * @vma: user vma to map to
1673  * @addr: target user address of this page
1674  * @pfn: source kernel pfn
1675  * @pgprot: pgprot flags for the inserted page
1676  *
1677  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1678  * to override pgprot on a per-page basis.
1679  *
1680  * This only makes sense for IO mappings, and it makes no sense for
1681  * COW mappings.  In general, using multiple vmas is preferable;
1682  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1683  * impractical.
1684  *
1685  * Context: Process context.  May allocate using %GFP_KERNEL.
1686  * Return: vm_fault_t value.
1687  */
1688 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1689                         unsigned long pfn, pgprot_t pgprot)
1690 {
1691         /*
1692          * Technically, architectures with pte_special can avoid all these
1693          * restrictions (same for remap_pfn_range).  However we would like
1694          * consistency in testing and feature parity among all, so we should
1695          * try to keep these invariants in place for everybody.
1696          */
1697         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1698         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1699                                                 (VM_PFNMAP|VM_MIXEDMAP));
1700         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1701         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1702
1703         if (addr < vma->vm_start || addr >= vma->vm_end)
1704                 return VM_FAULT_SIGBUS;
1705
1706         if (!pfn_modify_allowed(pfn, pgprot))
1707                 return VM_FAULT_SIGBUS;
1708
1709         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1710
1711         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1712                         false);
1713 }
1714 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1715
1716 /**
1717  * vmf_insert_pfn - insert single pfn into user vma
1718  * @vma: user vma to map to
1719  * @addr: target user address of this page
1720  * @pfn: source kernel pfn
1721  *
1722  * Similar to vm_insert_page, this allows drivers to insert individual pages
1723  * they've allocated into a user vma. Same comments apply.
1724  *
1725  * This function should only be called from a vm_ops->fault handler, and
1726  * in that case the handler should return the result of this function.
1727  *
1728  * vma cannot be a COW mapping.
1729  *
1730  * As this is called only for pages that do not currently exist, we
1731  * do not need to flush old virtual caches or the TLB.
1732  *
1733  * Context: Process context.  May allocate using %GFP_KERNEL.
1734  * Return: vm_fault_t value.
1735  */
1736 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1737                         unsigned long pfn)
1738 {
1739         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1740 }
1741 EXPORT_SYMBOL(vmf_insert_pfn);
1742
1743 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1744 {
1745         /* these checks mirror the abort conditions in vm_normal_page */
1746         if (vma->vm_flags & VM_MIXEDMAP)
1747                 return true;
1748         if (pfn_t_devmap(pfn))
1749                 return true;
1750         if (pfn_t_special(pfn))
1751                 return true;
1752         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1753                 return true;
1754         return false;
1755 }
1756
1757 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1758                 unsigned long addr, pfn_t pfn, bool mkwrite)
1759 {
1760         pgprot_t pgprot = vma->vm_page_prot;
1761         int err;
1762
1763         BUG_ON(!vm_mixed_ok(vma, pfn));
1764
1765         if (addr < vma->vm_start || addr >= vma->vm_end)
1766                 return VM_FAULT_SIGBUS;
1767
1768         track_pfn_insert(vma, &pgprot, pfn);
1769
1770         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1771                 return VM_FAULT_SIGBUS;
1772
1773         /*
1774          * If we don't have pte special, then we have to use the pfn_valid()
1775          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1776          * refcount the page if pfn_valid is true (hence insert_page rather
1777          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1778          * without pte special, it would there be refcounted as a normal page.
1779          */
1780         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1781             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1782                 struct page *page;
1783
1784                 /*
1785                  * At this point we are committed to insert_page()
1786                  * regardless of whether the caller specified flags that
1787                  * result in pfn_t_has_page() == false.
1788                  */
1789                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1790                 err = insert_page(vma, addr, page, pgprot);
1791         } else {
1792                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1793         }
1794
1795         if (err == -ENOMEM)
1796                 return VM_FAULT_OOM;
1797         if (err < 0 && err != -EBUSY)
1798                 return VM_FAULT_SIGBUS;
1799
1800         return VM_FAULT_NOPAGE;
1801 }
1802
1803 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1804                 pfn_t pfn)
1805 {
1806         return __vm_insert_mixed(vma, addr, pfn, false);
1807 }
1808 EXPORT_SYMBOL(vmf_insert_mixed);
1809
1810 /*
1811  *  If the insertion of PTE failed because someone else already added a
1812  *  different entry in the mean time, we treat that as success as we assume
1813  *  the same entry was actually inserted.
1814  */
1815 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1816                 unsigned long addr, pfn_t pfn)
1817 {
1818         return __vm_insert_mixed(vma, addr, pfn, true);
1819 }
1820 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1821
1822 /*
1823  * maps a range of physical memory into the requested pages. the old
1824  * mappings are removed. any references to nonexistent pages results
1825  * in null mappings (currently treated as "copy-on-access")
1826  */
1827 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1828                         unsigned long addr, unsigned long end,
1829                         unsigned long pfn, pgprot_t prot)
1830 {
1831         pte_t *pte, *mapped_pte;
1832         spinlock_t *ptl;
1833         int err = 0;
1834
1835         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1836         if (!pte)
1837                 return -ENOMEM;
1838         arch_enter_lazy_mmu_mode();
1839         do {
1840                 BUG_ON(!pte_none(*pte));
1841                 if (!pfn_modify_allowed(pfn, prot)) {
1842                         err = -EACCES;
1843                         break;
1844                 }
1845                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1846                 pfn++;
1847         } while (pte++, addr += PAGE_SIZE, addr != end);
1848         arch_leave_lazy_mmu_mode();
1849         pte_unmap_unlock(mapped_pte, ptl);
1850         return err;
1851 }
1852
1853 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1854                         unsigned long addr, unsigned long end,
1855                         unsigned long pfn, pgprot_t prot)
1856 {
1857         pmd_t *pmd;
1858         unsigned long next;
1859         int err;
1860
1861         pfn -= addr >> PAGE_SHIFT;
1862         pmd = pmd_alloc(mm, pud, addr);
1863         if (!pmd)
1864                 return -ENOMEM;
1865         VM_BUG_ON(pmd_trans_huge(*pmd));
1866         do {
1867                 next = pmd_addr_end(addr, end);
1868                 err = remap_pte_range(mm, pmd, addr, next,
1869                                 pfn + (addr >> PAGE_SHIFT), prot);
1870                 if (err)
1871                         return err;
1872         } while (pmd++, addr = next, addr != end);
1873         return 0;
1874 }
1875
1876 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1877                         unsigned long addr, unsigned long end,
1878                         unsigned long pfn, pgprot_t prot)
1879 {
1880         pud_t *pud;
1881         unsigned long next;
1882         int err;
1883
1884         pfn -= addr >> PAGE_SHIFT;
1885         pud = pud_alloc(mm, p4d, addr);
1886         if (!pud)
1887                 return -ENOMEM;
1888         do {
1889                 next = pud_addr_end(addr, end);
1890                 err = remap_pmd_range(mm, pud, addr, next,
1891                                 pfn + (addr >> PAGE_SHIFT), prot);
1892                 if (err)
1893                         return err;
1894         } while (pud++, addr = next, addr != end);
1895         return 0;
1896 }
1897
1898 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1899                         unsigned long addr, unsigned long end,
1900                         unsigned long pfn, pgprot_t prot)
1901 {
1902         p4d_t *p4d;
1903         unsigned long next;
1904         int err;
1905
1906         pfn -= addr >> PAGE_SHIFT;
1907         p4d = p4d_alloc(mm, pgd, addr);
1908         if (!p4d)
1909                 return -ENOMEM;
1910         do {
1911                 next = p4d_addr_end(addr, end);
1912                 err = remap_pud_range(mm, p4d, addr, next,
1913                                 pfn + (addr >> PAGE_SHIFT), prot);
1914                 if (err)
1915                         return err;
1916         } while (p4d++, addr = next, addr != end);
1917         return 0;
1918 }
1919
1920 /**
1921  * remap_pfn_range - remap kernel memory to userspace
1922  * @vma: user vma to map to
1923  * @addr: target user address to start at
1924  * @pfn: physical address of kernel memory
1925  * @size: size of map area
1926  * @prot: page protection flags for this mapping
1927  *
1928  * Note: this is only safe if the mm semaphore is held when called.
1929  *
1930  * Return: %0 on success, negative error code otherwise.
1931  */
1932 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1933                     unsigned long pfn, unsigned long size, pgprot_t prot)
1934 {
1935         pgd_t *pgd;
1936         unsigned long next;
1937         unsigned long end = addr + PAGE_ALIGN(size);
1938         struct mm_struct *mm = vma->vm_mm;
1939         unsigned long remap_pfn = pfn;
1940         int err;
1941
1942         /*
1943          * Physically remapped pages are special. Tell the
1944          * rest of the world about it:
1945          *   VM_IO tells people not to look at these pages
1946          *      (accesses can have side effects).
1947          *   VM_PFNMAP tells the core MM that the base pages are just
1948          *      raw PFN mappings, and do not have a "struct page" associated
1949          *      with them.
1950          *   VM_DONTEXPAND
1951          *      Disable vma merging and expanding with mremap().
1952          *   VM_DONTDUMP
1953          *      Omit vma from core dump, even when VM_IO turned off.
1954          *
1955          * There's a horrible special case to handle copy-on-write
1956          * behaviour that some programs depend on. We mark the "original"
1957          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1958          * See vm_normal_page() for details.
1959          */
1960         if (is_cow_mapping(vma->vm_flags)) {
1961                 if (addr != vma->vm_start || end != vma->vm_end)
1962                         return -EINVAL;
1963                 vma->vm_pgoff = pfn;
1964         }
1965
1966         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1967         if (err)
1968                 return -EINVAL;
1969
1970         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1971
1972         BUG_ON(addr >= end);
1973         pfn -= addr >> PAGE_SHIFT;
1974         pgd = pgd_offset(mm, addr);
1975         flush_cache_range(vma, addr, end);
1976         do {
1977                 next = pgd_addr_end(addr, end);
1978                 err = remap_p4d_range(mm, pgd, addr, next,
1979                                 pfn + (addr >> PAGE_SHIFT), prot);
1980                 if (err)
1981                         break;
1982         } while (pgd++, addr = next, addr != end);
1983
1984         if (err)
1985                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1986
1987         return err;
1988 }
1989 EXPORT_SYMBOL(remap_pfn_range);
1990
1991 /**
1992  * vm_iomap_memory - remap memory to userspace
1993  * @vma: user vma to map to
1994  * @start: start of area
1995  * @len: size of area
1996  *
1997  * This is a simplified io_remap_pfn_range() for common driver use. The
1998  * driver just needs to give us the physical memory range to be mapped,
1999  * we'll figure out the rest from the vma information.
2000  *
2001  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2002  * whatever write-combining details or similar.
2003  *
2004  * Return: %0 on success, negative error code otherwise.
2005  */
2006 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2007 {
2008         unsigned long vm_len, pfn, pages;
2009
2010         /* Check that the physical memory area passed in looks valid */
2011         if (start + len < start)
2012                 return -EINVAL;
2013         /*
2014          * You *really* shouldn't map things that aren't page-aligned,
2015          * but we've historically allowed it because IO memory might
2016          * just have smaller alignment.
2017          */
2018         len += start & ~PAGE_MASK;
2019         pfn = start >> PAGE_SHIFT;
2020         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2021         if (pfn + pages < pfn)
2022                 return -EINVAL;
2023
2024         /* We start the mapping 'vm_pgoff' pages into the area */
2025         if (vma->vm_pgoff > pages)
2026                 return -EINVAL;
2027         pfn += vma->vm_pgoff;
2028         pages -= vma->vm_pgoff;
2029
2030         /* Can we fit all of the mapping? */
2031         vm_len = vma->vm_end - vma->vm_start;
2032         if (vm_len >> PAGE_SHIFT > pages)
2033                 return -EINVAL;
2034
2035         /* Ok, let it rip */
2036         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2037 }
2038 EXPORT_SYMBOL(vm_iomap_memory);
2039
2040 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2041                                      unsigned long addr, unsigned long end,
2042                                      pte_fn_t fn, void *data)
2043 {
2044         pte_t *pte;
2045         int err;
2046         spinlock_t *uninitialized_var(ptl);
2047
2048         pte = (mm == &init_mm) ?
2049                 pte_alloc_kernel(pmd, addr) :
2050                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2051         if (!pte)
2052                 return -ENOMEM;
2053
2054         BUG_ON(pmd_huge(*pmd));
2055
2056         arch_enter_lazy_mmu_mode();
2057
2058         do {
2059                 err = fn(pte++, addr, data);
2060                 if (err)
2061                         break;
2062         } while (addr += PAGE_SIZE, addr != end);
2063
2064         arch_leave_lazy_mmu_mode();
2065
2066         if (mm != &init_mm)
2067                 pte_unmap_unlock(pte-1, ptl);
2068         return err;
2069 }
2070
2071 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2072                                      unsigned long addr, unsigned long end,
2073                                      pte_fn_t fn, void *data)
2074 {
2075         pmd_t *pmd;
2076         unsigned long next;
2077         int err;
2078
2079         BUG_ON(pud_huge(*pud));
2080
2081         pmd = pmd_alloc(mm, pud, addr);
2082         if (!pmd)
2083                 return -ENOMEM;
2084         do {
2085                 next = pmd_addr_end(addr, end);
2086                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2087                 if (err)
2088                         break;
2089         } while (pmd++, addr = next, addr != end);
2090         return err;
2091 }
2092
2093 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2094                                      unsigned long addr, unsigned long end,
2095                                      pte_fn_t fn, void *data)
2096 {
2097         pud_t *pud;
2098         unsigned long next;
2099         int err;
2100
2101         pud = pud_alloc(mm, p4d, addr);
2102         if (!pud)
2103                 return -ENOMEM;
2104         do {
2105                 next = pud_addr_end(addr, end);
2106                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2107                 if (err)
2108                         break;
2109         } while (pud++, addr = next, addr != end);
2110         return err;
2111 }
2112
2113 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2114                                      unsigned long addr, unsigned long end,
2115                                      pte_fn_t fn, void *data)
2116 {
2117         p4d_t *p4d;
2118         unsigned long next;
2119         int err;
2120
2121         p4d = p4d_alloc(mm, pgd, addr);
2122         if (!p4d)
2123                 return -ENOMEM;
2124         do {
2125                 next = p4d_addr_end(addr, end);
2126                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2127                 if (err)
2128                         break;
2129         } while (p4d++, addr = next, addr != end);
2130         return err;
2131 }
2132
2133 /*
2134  * Scan a region of virtual memory, filling in page tables as necessary
2135  * and calling a provided function on each leaf page table.
2136  */
2137 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2138                         unsigned long size, pte_fn_t fn, void *data)
2139 {
2140         pgd_t *pgd;
2141         unsigned long next;
2142         unsigned long end = addr + size;
2143         int err;
2144
2145         if (WARN_ON(addr >= end))
2146                 return -EINVAL;
2147
2148         pgd = pgd_offset(mm, addr);
2149         do {
2150                 next = pgd_addr_end(addr, end);
2151                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2152                 if (err)
2153                         break;
2154         } while (pgd++, addr = next, addr != end);
2155
2156         return err;
2157 }
2158 EXPORT_SYMBOL_GPL(apply_to_page_range);
2159
2160 /*
2161  * handle_pte_fault chooses page fault handler according to an entry which was
2162  * read non-atomically.  Before making any commitment, on those architectures
2163  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2164  * parts, do_swap_page must check under lock before unmapping the pte and
2165  * proceeding (but do_wp_page is only called after already making such a check;
2166  * and do_anonymous_page can safely check later on).
2167  */
2168 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2169                                 pte_t *page_table, pte_t orig_pte)
2170 {
2171         int same = 1;
2172 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2173         if (sizeof(pte_t) > sizeof(unsigned long)) {
2174                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2175                 spin_lock(ptl);
2176                 same = pte_same(*page_table, orig_pte);
2177                 spin_unlock(ptl);
2178         }
2179 #endif
2180         pte_unmap(page_table);
2181         return same;
2182 }
2183
2184 static inline bool cow_user_page(struct page *dst, struct page *src,
2185                                  struct vm_fault *vmf)
2186 {
2187         bool ret;
2188         void *kaddr;
2189         void __user *uaddr;
2190         bool locked = false;
2191         struct vm_area_struct *vma = vmf->vma;
2192         struct mm_struct *mm = vma->vm_mm;
2193         unsigned long addr = vmf->address;
2194
2195         debug_dma_assert_idle(src);
2196
2197         if (likely(src)) {
2198                 copy_user_highpage(dst, src, addr, vma);
2199                 return true;
2200         }
2201
2202         /*
2203          * If the source page was a PFN mapping, we don't have
2204          * a "struct page" for it. We do a best-effort copy by
2205          * just copying from the original user address. If that
2206          * fails, we just zero-fill it. Live with it.
2207          */
2208         kaddr = kmap_atomic(dst);
2209         uaddr = (void __user *)(addr & PAGE_MASK);
2210
2211         /*
2212          * On architectures with software "accessed" bits, we would
2213          * take a double page fault, so mark it accessed here.
2214          */
2215         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2216                 pte_t entry;
2217
2218                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2219                 locked = true;
2220                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2221                         /*
2222                          * Other thread has already handled the fault
2223                          * and we don't need to do anything. If it's
2224                          * not the case, the fault will be triggered
2225                          * again on the same address.
2226                          */
2227                         ret = false;
2228                         goto pte_unlock;
2229                 }
2230
2231                 entry = pte_mkyoung(vmf->orig_pte);
2232                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2233                         update_mmu_cache(vma, addr, vmf->pte);
2234         }
2235
2236         /*
2237          * This really shouldn't fail, because the page is there
2238          * in the page tables. But it might just be unreadable,
2239          * in which case we just give up and fill the result with
2240          * zeroes.
2241          */
2242         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2243                 if (locked)
2244                         goto warn;
2245
2246                 /* Re-validate under PTL if the page is still mapped */
2247                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2248                 locked = true;
2249                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2250                         /* The PTE changed under us. Retry page fault. */
2251                         ret = false;
2252                         goto pte_unlock;
2253                 }
2254
2255                 /*
2256                  * The same page can be mapped back since last copy attampt.
2257                  * Try to copy again under PTL.
2258                  */
2259                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2260                         /*
2261                          * Give a warn in case there can be some obscure
2262                          * use-case
2263                          */
2264 warn:
2265                         WARN_ON_ONCE(1);
2266                         clear_page(kaddr);
2267                 }
2268         }
2269
2270         ret = true;
2271
2272 pte_unlock:
2273         if (locked)
2274                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2275         kunmap_atomic(kaddr);
2276         flush_dcache_page(dst);
2277
2278         return ret;
2279 }
2280
2281 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2282 {
2283         struct file *vm_file = vma->vm_file;
2284
2285         if (vm_file)
2286                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2287
2288         /*
2289          * Special mappings (e.g. VDSO) do not have any file so fake
2290          * a default GFP_KERNEL for them.
2291          */
2292         return GFP_KERNEL;
2293 }
2294
2295 /*
2296  * Notify the address space that the page is about to become writable so that
2297  * it can prohibit this or wait for the page to get into an appropriate state.
2298  *
2299  * We do this without the lock held, so that it can sleep if it needs to.
2300  */
2301 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2302 {
2303         vm_fault_t ret;
2304         struct page *page = vmf->page;
2305         unsigned int old_flags = vmf->flags;
2306
2307         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2308
2309         if (vmf->vma->vm_file &&
2310             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2311                 return VM_FAULT_SIGBUS;
2312
2313         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2314         /* Restore original flags so that caller is not surprised */
2315         vmf->flags = old_flags;
2316         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2317                 return ret;
2318         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2319                 lock_page(page);
2320                 if (!page->mapping) {
2321                         unlock_page(page);
2322                         return 0; /* retry */
2323                 }
2324                 ret |= VM_FAULT_LOCKED;
2325         } else
2326                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2327         return ret;
2328 }
2329
2330 /*
2331  * Handle dirtying of a page in shared file mapping on a write fault.
2332  *
2333  * The function expects the page to be locked and unlocks it.
2334  */
2335 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2336 {
2337         struct vm_area_struct *vma = vmf->vma;
2338         struct address_space *mapping;
2339         struct page *page = vmf->page;
2340         bool dirtied;
2341         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2342
2343         dirtied = set_page_dirty(page);
2344         VM_BUG_ON_PAGE(PageAnon(page), page);
2345         /*
2346          * Take a local copy of the address_space - page.mapping may be zeroed
2347          * by truncate after unlock_page().   The address_space itself remains
2348          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2349          * release semantics to prevent the compiler from undoing this copying.
2350          */
2351         mapping = page_rmapping(page);
2352         unlock_page(page);
2353
2354         if (!page_mkwrite)
2355                 file_update_time(vma->vm_file);
2356
2357         /*
2358          * Throttle page dirtying rate down to writeback speed.
2359          *
2360          * mapping may be NULL here because some device drivers do not
2361          * set page.mapping but still dirty their pages
2362          *
2363          * Drop the mmap_sem before waiting on IO, if we can. The file
2364          * is pinning the mapping, as per above.
2365          */
2366         if ((dirtied || page_mkwrite) && mapping) {
2367                 struct file *fpin;
2368
2369                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2370                 balance_dirty_pages_ratelimited(mapping);
2371                 if (fpin) {
2372                         fput(fpin);
2373                         return VM_FAULT_RETRY;
2374                 }
2375         }
2376
2377         return 0;
2378 }
2379
2380 /*
2381  * Handle write page faults for pages that can be reused in the current vma
2382  *
2383  * This can happen either due to the mapping being with the VM_SHARED flag,
2384  * or due to us being the last reference standing to the page. In either
2385  * case, all we need to do here is to mark the page as writable and update
2386  * any related book-keeping.
2387  */
2388 static inline void wp_page_reuse(struct vm_fault *vmf)
2389         __releases(vmf->ptl)
2390 {
2391         struct vm_area_struct *vma = vmf->vma;
2392         struct page *page = vmf->page;
2393         pte_t entry;
2394         /*
2395          * Clear the pages cpupid information as the existing
2396          * information potentially belongs to a now completely
2397          * unrelated process.
2398          */
2399         if (page)
2400                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2401
2402         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2403         entry = pte_mkyoung(vmf->orig_pte);
2404         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2405         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2406                 update_mmu_cache(vma, vmf->address, vmf->pte);
2407         pte_unmap_unlock(vmf->pte, vmf->ptl);
2408 }
2409
2410 /*
2411  * Handle the case of a page which we actually need to copy to a new page.
2412  *
2413  * Called with mmap_sem locked and the old page referenced, but
2414  * without the ptl held.
2415  *
2416  * High level logic flow:
2417  *
2418  * - Allocate a page, copy the content of the old page to the new one.
2419  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2420  * - Take the PTL. If the pte changed, bail out and release the allocated page
2421  * - If the pte is still the way we remember it, update the page table and all
2422  *   relevant references. This includes dropping the reference the page-table
2423  *   held to the old page, as well as updating the rmap.
2424  * - In any case, unlock the PTL and drop the reference we took to the old page.
2425  */
2426 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2427 {
2428         struct vm_area_struct *vma = vmf->vma;
2429         struct mm_struct *mm = vma->vm_mm;
2430         struct page *old_page = vmf->page;
2431         struct page *new_page = NULL;
2432         pte_t entry;
2433         int page_copied = 0;
2434         struct mem_cgroup *memcg;
2435         struct mmu_notifier_range range;
2436
2437         if (unlikely(anon_vma_prepare(vma)))
2438                 goto oom;
2439
2440         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2441                 new_page = alloc_zeroed_user_highpage_movable(vma,
2442                                                               vmf->address);
2443                 if (!new_page)
2444                         goto oom;
2445         } else {
2446                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2447                                 vmf->address);
2448                 if (!new_page)
2449                         goto oom;
2450
2451                 if (!cow_user_page(new_page, old_page, vmf)) {
2452                         /*
2453                          * COW failed, if the fault was solved by other,
2454                          * it's fine. If not, userspace would re-fault on
2455                          * the same address and we will handle the fault
2456                          * from the second attempt.
2457                          */
2458                         put_page(new_page);
2459                         if (old_page)
2460                                 put_page(old_page);
2461                         return 0;
2462                 }
2463         }
2464
2465         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2466                 goto oom_free_new;
2467
2468         __SetPageUptodate(new_page);
2469
2470         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2471                                 vmf->address & PAGE_MASK,
2472                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2473         mmu_notifier_invalidate_range_start(&range);
2474
2475         /*
2476          * Re-check the pte - we dropped the lock
2477          */
2478         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2479         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2480                 if (old_page) {
2481                         if (!PageAnon(old_page)) {
2482                                 dec_mm_counter_fast(mm,
2483                                                 mm_counter_file(old_page));
2484                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2485                         }
2486                 } else {
2487                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2488                 }
2489                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2490                 entry = mk_pte(new_page, vma->vm_page_prot);
2491                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2492                 /*
2493                  * Clear the pte entry and flush it first, before updating the
2494                  * pte with the new entry. This will avoid a race condition
2495                  * seen in the presence of one thread doing SMC and another
2496                  * thread doing COW.
2497                  */
2498                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2499                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2500                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2501                 lru_cache_add_active_or_unevictable(new_page, vma);
2502                 /*
2503                  * We call the notify macro here because, when using secondary
2504                  * mmu page tables (such as kvm shadow page tables), we want the
2505                  * new page to be mapped directly into the secondary page table.
2506                  */
2507                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2508                 update_mmu_cache(vma, vmf->address, vmf->pte);
2509                 if (old_page) {
2510                         /*
2511                          * Only after switching the pte to the new page may
2512                          * we remove the mapcount here. Otherwise another
2513                          * process may come and find the rmap count decremented
2514                          * before the pte is switched to the new page, and
2515                          * "reuse" the old page writing into it while our pte
2516                          * here still points into it and can be read by other
2517                          * threads.
2518                          *
2519                          * The critical issue is to order this
2520                          * page_remove_rmap with the ptp_clear_flush above.
2521                          * Those stores are ordered by (if nothing else,)
2522                          * the barrier present in the atomic_add_negative
2523                          * in page_remove_rmap.
2524                          *
2525                          * Then the TLB flush in ptep_clear_flush ensures that
2526                          * no process can access the old page before the
2527                          * decremented mapcount is visible. And the old page
2528                          * cannot be reused until after the decremented
2529                          * mapcount is visible. So transitively, TLBs to
2530                          * old page will be flushed before it can be reused.
2531                          */
2532                         page_remove_rmap(old_page, false);
2533                 }
2534
2535                 /* Free the old page.. */
2536                 new_page = old_page;
2537                 page_copied = 1;
2538         } else {
2539                 mem_cgroup_cancel_charge(new_page, memcg, false);
2540         }
2541
2542         if (new_page)
2543                 put_page(new_page);
2544
2545         pte_unmap_unlock(vmf->pte, vmf->ptl);
2546         /*
2547          * No need to double call mmu_notifier->invalidate_range() callback as
2548          * the above ptep_clear_flush_notify() did already call it.
2549          */
2550         mmu_notifier_invalidate_range_only_end(&range);
2551         if (old_page) {
2552                 /*
2553                  * Don't let another task, with possibly unlocked vma,
2554                  * keep the mlocked page.
2555                  */
2556                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2557                         lock_page(old_page);    /* LRU manipulation */
2558                         if (PageMlocked(old_page))
2559                                 munlock_vma_page(old_page);
2560                         unlock_page(old_page);
2561                 }
2562                 put_page(old_page);
2563         }
2564         return page_copied ? VM_FAULT_WRITE : 0;
2565 oom_free_new:
2566         put_page(new_page);
2567 oom:
2568         if (old_page)
2569                 put_page(old_page);
2570         return VM_FAULT_OOM;
2571 }
2572
2573 /**
2574  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2575  *                        writeable once the page is prepared
2576  *
2577  * @vmf: structure describing the fault
2578  *
2579  * This function handles all that is needed to finish a write page fault in a
2580  * shared mapping due to PTE being read-only once the mapped page is prepared.
2581  * It handles locking of PTE and modifying it.
2582  *
2583  * The function expects the page to be locked or other protection against
2584  * concurrent faults / writeback (such as DAX radix tree locks).
2585  *
2586  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2587  * we acquired PTE lock.
2588  */
2589 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2590 {
2591         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2592         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2593                                        &vmf->ptl);
2594         /*
2595          * We might have raced with another page fault while we released the
2596          * pte_offset_map_lock.
2597          */
2598         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2599                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2600                 return VM_FAULT_NOPAGE;
2601         }
2602         wp_page_reuse(vmf);
2603         return 0;
2604 }
2605
2606 /*
2607  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2608  * mapping
2609  */
2610 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2611 {
2612         struct vm_area_struct *vma = vmf->vma;
2613
2614         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2615                 vm_fault_t ret;
2616
2617                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2618                 vmf->flags |= FAULT_FLAG_MKWRITE;
2619                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2620                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2621                         return ret;
2622                 return finish_mkwrite_fault(vmf);
2623         }
2624         wp_page_reuse(vmf);
2625         return VM_FAULT_WRITE;
2626 }
2627
2628 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2629         __releases(vmf->ptl)
2630 {
2631         struct vm_area_struct *vma = vmf->vma;
2632         vm_fault_t ret = VM_FAULT_WRITE;
2633
2634         get_page(vmf->page);
2635
2636         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2637                 vm_fault_t tmp;
2638
2639                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2640                 tmp = do_page_mkwrite(vmf);
2641                 if (unlikely(!tmp || (tmp &
2642                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2643                         put_page(vmf->page);
2644                         return tmp;
2645                 }
2646                 tmp = finish_mkwrite_fault(vmf);
2647                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2648                         unlock_page(vmf->page);
2649                         put_page(vmf->page);
2650                         return tmp;
2651                 }
2652         } else {
2653                 wp_page_reuse(vmf);
2654                 lock_page(vmf->page);
2655         }
2656         ret |= fault_dirty_shared_page(vmf);
2657         put_page(vmf->page);
2658
2659         return ret;
2660 }
2661
2662 /*
2663  * This routine handles present pages, when users try to write
2664  * to a shared page. It is done by copying the page to a new address
2665  * and decrementing the shared-page counter for the old page.
2666  *
2667  * Note that this routine assumes that the protection checks have been
2668  * done by the caller (the low-level page fault routine in most cases).
2669  * Thus we can safely just mark it writable once we've done any necessary
2670  * COW.
2671  *
2672  * We also mark the page dirty at this point even though the page will
2673  * change only once the write actually happens. This avoids a few races,
2674  * and potentially makes it more efficient.
2675  *
2676  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2677  * but allow concurrent faults), with pte both mapped and locked.
2678  * We return with mmap_sem still held, but pte unmapped and unlocked.
2679  */
2680 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2681         __releases(vmf->ptl)
2682 {
2683         struct vm_area_struct *vma = vmf->vma;
2684
2685         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2686         if (!vmf->page) {
2687                 /*
2688                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2689                  * VM_PFNMAP VMA.
2690                  *
2691                  * We should not cow pages in a shared writeable mapping.
2692                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2693                  */
2694                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2695                                      (VM_WRITE|VM_SHARED))
2696                         return wp_pfn_shared(vmf);
2697
2698                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2699                 return wp_page_copy(vmf);
2700         }
2701
2702         /*
2703          * Take out anonymous pages first, anonymous shared vmas are
2704          * not dirty accountable.
2705          */
2706         if (PageAnon(vmf->page)) {
2707                 int total_map_swapcount;
2708                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2709                                            page_count(vmf->page) != 1))
2710                         goto copy;
2711                 if (!trylock_page(vmf->page)) {
2712                         get_page(vmf->page);
2713                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2714                         lock_page(vmf->page);
2715                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2716                                         vmf->address, &vmf->ptl);
2717                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2718                                 unlock_page(vmf->page);
2719                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2720                                 put_page(vmf->page);
2721                                 return 0;
2722                         }
2723                         put_page(vmf->page);
2724                 }
2725                 if (PageKsm(vmf->page)) {
2726                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2727                                                      vmf->address);
2728                         unlock_page(vmf->page);
2729                         if (!reused)
2730                                 goto copy;
2731                         wp_page_reuse(vmf);
2732                         return VM_FAULT_WRITE;
2733                 }
2734                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2735                         if (total_map_swapcount == 1) {
2736                                 /*
2737                                  * The page is all ours. Move it to
2738                                  * our anon_vma so the rmap code will
2739                                  * not search our parent or siblings.
2740                                  * Protected against the rmap code by
2741                                  * the page lock.
2742                                  */
2743                                 page_move_anon_rmap(vmf->page, vma);
2744                         }
2745                         unlock_page(vmf->page);
2746                         wp_page_reuse(vmf);
2747                         return VM_FAULT_WRITE;
2748                 }
2749                 unlock_page(vmf->page);
2750         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2751                                         (VM_WRITE|VM_SHARED))) {
2752                 return wp_page_shared(vmf);
2753         }
2754 copy:
2755         /*
2756          * Ok, we need to copy. Oh, well..
2757          */
2758         get_page(vmf->page);
2759
2760         pte_unmap_unlock(vmf->pte, vmf->ptl);
2761         return wp_page_copy(vmf);
2762 }
2763
2764 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2765                 unsigned long start_addr, unsigned long end_addr,
2766                 struct zap_details *details)
2767 {
2768         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2769 }
2770
2771 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2772                                             struct zap_details *details)
2773 {
2774         struct vm_area_struct *vma;
2775         pgoff_t vba, vea, zba, zea;
2776
2777         vma_interval_tree_foreach(vma, root,
2778                         details->first_index, details->last_index) {
2779
2780                 vba = vma->vm_pgoff;
2781                 vea = vba + vma_pages(vma) - 1;
2782                 zba = details->first_index;
2783                 if (zba < vba)
2784                         zba = vba;
2785                 zea = details->last_index;
2786                 if (zea > vea)
2787                         zea = vea;
2788
2789                 unmap_mapping_range_vma(vma,
2790                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2791                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2792                                 details);
2793         }
2794 }
2795
2796 /**
2797  * unmap_mapping_page() - Unmap single page from processes.
2798  * @page: The locked page to be unmapped.
2799  *
2800  * Unmap this page from any userspace process which still has it mmaped.
2801  * Typically, for efficiency, the range of nearby pages has already been
2802  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
2803  * truncation or invalidation holds the lock on a page, it may find that
2804  * the page has been remapped again: and then uses unmap_mapping_page()
2805  * to unmap it finally.
2806  */
2807 void unmap_mapping_page(struct page *page)
2808 {
2809         struct address_space *mapping = page->mapping;
2810         struct zap_details details = { };
2811
2812         VM_BUG_ON(!PageLocked(page));
2813         VM_BUG_ON(PageTail(page));
2814
2815         details.check_mapping = mapping;
2816         details.first_index = page->index;
2817         details.last_index = page->index + hpage_nr_pages(page) - 1;
2818         details.single_page = page;
2819
2820         i_mmap_lock_write(mapping);
2821         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2822                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2823         i_mmap_unlock_write(mapping);
2824 }
2825
2826 /**
2827  * unmap_mapping_pages() - Unmap pages from processes.
2828  * @mapping: The address space containing pages to be unmapped.
2829  * @start: Index of first page to be unmapped.
2830  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2831  * @even_cows: Whether to unmap even private COWed pages.
2832  *
2833  * Unmap the pages in this address space from any userspace process which
2834  * has them mmaped.  Generally, you want to remove COWed pages as well when
2835  * a file is being truncated, but not when invalidating pages from the page
2836  * cache.
2837  */
2838 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2839                 pgoff_t nr, bool even_cows)
2840 {
2841         struct zap_details details = { };
2842
2843         details.check_mapping = even_cows ? NULL : mapping;
2844         details.first_index = start;
2845         details.last_index = start + nr - 1;
2846         if (details.last_index < details.first_index)
2847                 details.last_index = ULONG_MAX;
2848
2849         i_mmap_lock_write(mapping);
2850         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2851                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2852         i_mmap_unlock_write(mapping);
2853 }
2854
2855 /**
2856  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2857  * address_space corresponding to the specified byte range in the underlying
2858  * file.
2859  *
2860  * @mapping: the address space containing mmaps to be unmapped.
2861  * @holebegin: byte in first page to unmap, relative to the start of
2862  * the underlying file.  This will be rounded down to a PAGE_SIZE
2863  * boundary.  Note that this is different from truncate_pagecache(), which
2864  * must keep the partial page.  In contrast, we must get rid of
2865  * partial pages.
2866  * @holelen: size of prospective hole in bytes.  This will be rounded
2867  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2868  * end of the file.
2869  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2870  * but 0 when invalidating pagecache, don't throw away private data.
2871  */
2872 void unmap_mapping_range(struct address_space *mapping,
2873                 loff_t const holebegin, loff_t const holelen, int even_cows)
2874 {
2875         pgoff_t hba = holebegin >> PAGE_SHIFT;
2876         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2877
2878         /* Check for overflow. */
2879         if (sizeof(holelen) > sizeof(hlen)) {
2880                 long long holeend =
2881                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2882                 if (holeend & ~(long long)ULONG_MAX)
2883                         hlen = ULONG_MAX - hba + 1;
2884         }
2885
2886         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2887 }
2888 EXPORT_SYMBOL(unmap_mapping_range);
2889
2890 /*
2891  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2892  * but allow concurrent faults), and pte mapped but not yet locked.
2893  * We return with pte unmapped and unlocked.
2894  *
2895  * We return with the mmap_sem locked or unlocked in the same cases
2896  * as does filemap_fault().
2897  */
2898 vm_fault_t do_swap_page(struct vm_fault *vmf)
2899 {
2900         struct vm_area_struct *vma = vmf->vma;
2901         struct page *page = NULL, *swapcache;
2902         struct mem_cgroup *memcg;
2903         swp_entry_t entry;
2904         pte_t pte;
2905         int locked;
2906         int exclusive = 0;
2907         vm_fault_t ret = 0;
2908
2909         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2910                 goto out;
2911
2912         entry = pte_to_swp_entry(vmf->orig_pte);
2913         if (unlikely(non_swap_entry(entry))) {
2914                 if (is_migration_entry(entry)) {
2915                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2916                                              vmf->address);
2917                 } else if (is_device_private_entry(entry)) {
2918                         vmf->page = device_private_entry_to_page(entry);
2919                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2920                 } else if (is_hwpoison_entry(entry)) {
2921                         ret = VM_FAULT_HWPOISON;
2922                 } else {
2923                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2924                         ret = VM_FAULT_SIGBUS;
2925                 }
2926                 goto out;
2927         }
2928
2929
2930         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2931         page = lookup_swap_cache(entry, vma, vmf->address);
2932         swapcache = page;
2933
2934         if (!page) {
2935                 struct swap_info_struct *si = swp_swap_info(entry);
2936
2937                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2938                                 __swap_count(entry) == 1) {
2939                         /* skip swapcache */
2940                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2941                                                         vmf->address);
2942                         if (page) {
2943                                 __SetPageLocked(page);
2944                                 __SetPageSwapBacked(page);
2945                                 set_page_private(page, entry.val);
2946                                 lru_cache_add_anon(page);
2947                                 swap_readpage(page, true);
2948                         }
2949                 } else {
2950                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2951                                                 vmf);
2952                         swapcache = page;
2953                 }
2954
2955                 if (!page) {
2956                         /*
2957                          * Back out if somebody else faulted in this pte
2958                          * while we released the pte lock.
2959                          */
2960                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2961                                         vmf->address, &vmf->ptl);
2962                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2963                                 ret = VM_FAULT_OOM;
2964                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2965                         goto unlock;
2966                 }
2967
2968                 /* Had to read the page from swap area: Major fault */
2969                 ret = VM_FAULT_MAJOR;
2970                 count_vm_event(PGMAJFAULT);
2971                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2972         } else if (PageHWPoison(page)) {
2973                 /*
2974                  * hwpoisoned dirty swapcache pages are kept for killing
2975                  * owner processes (which may be unknown at hwpoison time)
2976                  */
2977                 ret = VM_FAULT_HWPOISON;
2978                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2979                 goto out_release;
2980         }
2981
2982         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2983
2984         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2985         if (!locked) {
2986                 ret |= VM_FAULT_RETRY;
2987                 goto out_release;
2988         }
2989
2990         /*
2991          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2992          * release the swapcache from under us.  The page pin, and pte_same
2993          * test below, are not enough to exclude that.  Even if it is still
2994          * swapcache, we need to check that the page's swap has not changed.
2995          */
2996         if (unlikely((!PageSwapCache(page) ||
2997                         page_private(page) != entry.val)) && swapcache)
2998                 goto out_page;
2999
3000         page = ksm_might_need_to_copy(page, vma, vmf->address);
3001         if (unlikely(!page)) {
3002                 ret = VM_FAULT_OOM;
3003                 page = swapcache;
3004                 goto out_page;
3005         }
3006
3007         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3008                                         &memcg, false)) {
3009                 ret = VM_FAULT_OOM;
3010                 goto out_page;
3011         }
3012
3013         /*
3014          * Back out if somebody else already faulted in this pte.
3015          */
3016         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3017                         &vmf->ptl);
3018         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3019                 goto out_nomap;
3020
3021         if (unlikely(!PageUptodate(page))) {
3022                 ret = VM_FAULT_SIGBUS;
3023                 goto out_nomap;
3024         }
3025
3026         /*
3027          * The page isn't present yet, go ahead with the fault.
3028          *
3029          * Be careful about the sequence of operations here.
3030          * To get its accounting right, reuse_swap_page() must be called
3031          * while the page is counted on swap but not yet in mapcount i.e.
3032          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3033          * must be called after the swap_free(), or it will never succeed.
3034          */
3035
3036         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3037         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3038         pte = mk_pte(page, vma->vm_page_prot);
3039         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3040                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3041                 vmf->flags &= ~FAULT_FLAG_WRITE;
3042                 ret |= VM_FAULT_WRITE;
3043                 exclusive = RMAP_EXCLUSIVE;
3044         }
3045         flush_icache_page(vma, page);
3046         if (pte_swp_soft_dirty(vmf->orig_pte))
3047                 pte = pte_mksoft_dirty(pte);
3048         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3049         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3050         vmf->orig_pte = pte;
3051
3052         /* ksm created a completely new copy */
3053         if (unlikely(page != swapcache && swapcache)) {
3054                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3055                 mem_cgroup_commit_charge(page, memcg, false, false);
3056                 lru_cache_add_active_or_unevictable(page, vma);
3057         } else {
3058                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3059                 mem_cgroup_commit_charge(page, memcg, true, false);
3060                 activate_page(page);
3061         }
3062
3063         swap_free(entry);
3064         if (mem_cgroup_swap_full(page) ||
3065             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3066                 try_to_free_swap(page);
3067         unlock_page(page);
3068         if (page != swapcache && swapcache) {
3069                 /*
3070                  * Hold the lock to avoid the swap entry to be reused
3071                  * until we take the PT lock for the pte_same() check
3072                  * (to avoid false positives from pte_same). For
3073                  * further safety release the lock after the swap_free
3074                  * so that the swap count won't change under a
3075                  * parallel locked swapcache.
3076                  */
3077                 unlock_page(swapcache);
3078                 put_page(swapcache);
3079         }
3080
3081         if (vmf->flags & FAULT_FLAG_WRITE) {
3082                 ret |= do_wp_page(vmf);
3083                 if (ret & VM_FAULT_ERROR)
3084                         ret &= VM_FAULT_ERROR;
3085                 goto out;
3086         }
3087
3088         /* No need to invalidate - it was non-present before */
3089         update_mmu_cache(vma, vmf->address, vmf->pte);
3090 unlock:
3091         pte_unmap_unlock(vmf->pte, vmf->ptl);
3092 out:
3093         return ret;
3094 out_nomap:
3095         mem_cgroup_cancel_charge(page, memcg, false);
3096         pte_unmap_unlock(vmf->pte, vmf->ptl);
3097 out_page:
3098         unlock_page(page);
3099 out_release:
3100         put_page(page);
3101         if (page != swapcache && swapcache) {
3102                 unlock_page(swapcache);
3103                 put_page(swapcache);
3104         }
3105         return ret;
3106 }
3107
3108 /*
3109  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3110  * but allow concurrent faults), and pte mapped but not yet locked.
3111  * We return with mmap_sem still held, but pte unmapped and unlocked.
3112  */
3113 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3114 {
3115         struct vm_area_struct *vma = vmf->vma;
3116         struct mem_cgroup *memcg;
3117         struct page *page;
3118         vm_fault_t ret = 0;
3119         pte_t entry;
3120
3121         /* File mapping without ->vm_ops ? */
3122         if (vma->vm_flags & VM_SHARED)
3123                 return VM_FAULT_SIGBUS;
3124
3125         /*
3126          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3127          * pte_offset_map() on pmds where a huge pmd might be created
3128          * from a different thread.
3129          *
3130          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3131          * parallel threads are excluded by other means.
3132          *
3133          * Here we only have down_read(mmap_sem).
3134          */
3135         if (pte_alloc(vma->vm_mm, vmf->pmd))
3136                 return VM_FAULT_OOM;
3137
3138         /* See the comment in pte_alloc_one_map() */
3139         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3140                 return 0;
3141
3142         /* Use the zero-page for reads */
3143         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3144                         !mm_forbids_zeropage(vma->vm_mm)) {
3145                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3146                                                 vma->vm_page_prot));
3147                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3148                                 vmf->address, &vmf->ptl);
3149                 if (!pte_none(*vmf->pte))
3150                         goto unlock;
3151                 ret = check_stable_address_space(vma->vm_mm);
3152                 if (ret)
3153                         goto unlock;
3154                 /* Deliver the page fault to userland, check inside PT lock */
3155                 if (userfaultfd_missing(vma)) {
3156                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3157                         return handle_userfault(vmf, VM_UFFD_MISSING);
3158                 }
3159                 goto setpte;
3160         }
3161
3162         /* Allocate our own private page. */
3163         if (unlikely(anon_vma_prepare(vma)))
3164                 goto oom;
3165         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3166         if (!page)
3167                 goto oom;
3168
3169         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3170                                         false))
3171                 goto oom_free_page;
3172
3173         /*
3174          * The memory barrier inside __SetPageUptodate makes sure that
3175          * preceeding stores to the page contents become visible before
3176          * the set_pte_at() write.
3177          */
3178         __SetPageUptodate(page);
3179
3180         entry = mk_pte(page, vma->vm_page_prot);
3181         if (vma->vm_flags & VM_WRITE)
3182                 entry = pte_mkwrite(pte_mkdirty(entry));
3183
3184         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3185                         &vmf->ptl);
3186         if (!pte_none(*vmf->pte))
3187                 goto release;
3188
3189         ret = check_stable_address_space(vma->vm_mm);
3190         if (ret)
3191                 goto release;
3192
3193         /* Deliver the page fault to userland, check inside PT lock */
3194         if (userfaultfd_missing(vma)) {
3195                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3196                 mem_cgroup_cancel_charge(page, memcg, false);
3197                 put_page(page);
3198                 return handle_userfault(vmf, VM_UFFD_MISSING);
3199         }
3200
3201         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3202         page_add_new_anon_rmap(page, vma, vmf->address, false);
3203         mem_cgroup_commit_charge(page, memcg, false, false);
3204         lru_cache_add_active_or_unevictable(page, vma);
3205 setpte:
3206         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3207
3208         /* No need to invalidate - it was non-present before */
3209         update_mmu_cache(vma, vmf->address, vmf->pte);
3210 unlock:
3211         pte_unmap_unlock(vmf->pte, vmf->ptl);
3212         return ret;
3213 release:
3214         mem_cgroup_cancel_charge(page, memcg, false);
3215         put_page(page);
3216         goto unlock;
3217 oom_free_page:
3218         put_page(page);
3219 oom:
3220         return VM_FAULT_OOM;
3221 }
3222
3223 /*
3224  * The mmap_sem must have been held on entry, and may have been
3225  * released depending on flags and vma->vm_ops->fault() return value.
3226  * See filemap_fault() and __lock_page_retry().
3227  */
3228 static vm_fault_t __do_fault(struct vm_fault *vmf)
3229 {
3230         struct vm_area_struct *vma = vmf->vma;
3231         vm_fault_t ret;
3232
3233         /*
3234          * Preallocate pte before we take page_lock because this might lead to
3235          * deadlocks for memcg reclaim which waits for pages under writeback:
3236          *                              lock_page(A)
3237          *                              SetPageWriteback(A)
3238          *                              unlock_page(A)
3239          * lock_page(B)
3240          *                              lock_page(B)
3241          * pte_alloc_pne
3242          *   shrink_page_list
3243          *     wait_on_page_writeback(A)
3244          *                              SetPageWriteback(B)
3245          *                              unlock_page(B)
3246          *                              # flush A, B to clear the writeback
3247          */
3248         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3249                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3250                 if (!vmf->prealloc_pte)
3251                         return VM_FAULT_OOM;
3252                 smp_wmb(); /* See comment in __pte_alloc() */
3253         }
3254
3255         ret = vma->vm_ops->fault(vmf);
3256         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3257                             VM_FAULT_DONE_COW)))
3258                 return ret;
3259
3260         if (unlikely(PageHWPoison(vmf->page))) {
3261                 struct page *page = vmf->page;
3262                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3263                 if (ret & VM_FAULT_LOCKED) {
3264                         if (page_mapped(page))
3265                                 unmap_mapping_pages(page_mapping(page),
3266                                                     page->index, 1, false);
3267                         /* Retry if a clean page was removed from the cache. */
3268                         if (invalidate_inode_page(page))
3269                                 poisonret = VM_FAULT_NOPAGE;
3270                         unlock_page(page);
3271                 }
3272                 put_page(page);
3273                 vmf->page = NULL;
3274                 return poisonret;
3275         }
3276
3277         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3278                 lock_page(vmf->page);
3279         else
3280                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3281
3282         return ret;
3283 }
3284
3285 /*
3286  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3287  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3288  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3289  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3290  */
3291 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3292 {
3293         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3294 }
3295
3296 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3297 {
3298         struct vm_area_struct *vma = vmf->vma;
3299
3300         if (!pmd_none(*vmf->pmd))
3301                 goto map_pte;
3302         if (vmf->prealloc_pte) {
3303                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3304                 if (unlikely(!pmd_none(*vmf->pmd))) {
3305                         spin_unlock(vmf->ptl);
3306                         goto map_pte;
3307                 }
3308
3309                 mm_inc_nr_ptes(vma->vm_mm);
3310                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3311                 spin_unlock(vmf->ptl);
3312                 vmf->prealloc_pte = NULL;
3313         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3314                 return VM_FAULT_OOM;
3315         }
3316 map_pte:
3317         /*
3318          * If a huge pmd materialized under us just retry later.  Use
3319          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3320          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3321          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3322          * running immediately after a huge pmd fault in a different thread of
3323          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3324          * All we have to ensure is that it is a regular pmd that we can walk
3325          * with pte_offset_map() and we can do that through an atomic read in
3326          * C, which is what pmd_trans_unstable() provides.
3327          */
3328         if (pmd_devmap_trans_unstable(vmf->pmd))
3329                 return VM_FAULT_NOPAGE;
3330
3331         /*
3332          * At this point we know that our vmf->pmd points to a page of ptes
3333          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3334          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3335          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3336          * be valid and we will re-check to make sure the vmf->pte isn't
3337          * pte_none() under vmf->ptl protection when we return to
3338          * alloc_set_pte().
3339          */
3340         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3341                         &vmf->ptl);
3342         return 0;
3343 }
3344
3345 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3346 static void deposit_prealloc_pte(struct vm_fault *vmf)
3347 {
3348         struct vm_area_struct *vma = vmf->vma;
3349
3350         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3351         /*
3352          * We are going to consume the prealloc table,
3353          * count that as nr_ptes.
3354          */
3355         mm_inc_nr_ptes(vma->vm_mm);
3356         vmf->prealloc_pte = NULL;
3357 }
3358
3359 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3360 {
3361         struct vm_area_struct *vma = vmf->vma;
3362         bool write = vmf->flags & FAULT_FLAG_WRITE;
3363         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3364         pmd_t entry;
3365         int i;
3366         vm_fault_t ret;
3367
3368         if (!transhuge_vma_suitable(vma, haddr))
3369                 return VM_FAULT_FALLBACK;
3370
3371         ret = VM_FAULT_FALLBACK;
3372         page = compound_head(page);
3373
3374         /*
3375          * Archs like ppc64 need additonal space to store information
3376          * related to pte entry. Use the preallocated table for that.
3377          */
3378         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3379                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3380                 if (!vmf->prealloc_pte)
3381                         return VM_FAULT_OOM;
3382                 smp_wmb(); /* See comment in __pte_alloc() */
3383         }
3384
3385         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3386         if (unlikely(!pmd_none(*vmf->pmd)))
3387                 goto out;
3388
3389         for (i = 0; i < HPAGE_PMD_NR; i++)
3390                 flush_icache_page(vma, page + i);
3391
3392         entry = mk_huge_pmd(page, vma->vm_page_prot);
3393         if (write)
3394                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3395
3396         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3397         page_add_file_rmap(page, true);
3398         /*
3399          * deposit and withdraw with pmd lock held
3400          */
3401         if (arch_needs_pgtable_deposit())
3402                 deposit_prealloc_pte(vmf);
3403
3404         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3405
3406         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3407
3408         /* fault is handled */
3409         ret = 0;
3410         count_vm_event(THP_FILE_MAPPED);
3411 out:
3412         spin_unlock(vmf->ptl);
3413         return ret;
3414 }
3415 #else
3416 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3417 {
3418         BUILD_BUG();
3419         return 0;
3420 }
3421 #endif
3422
3423 /**
3424  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3425  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3426  *
3427  * @vmf: fault environment
3428  * @memcg: memcg to charge page (only for private mappings)
3429  * @page: page to map
3430  *
3431  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3432  * return.
3433  *
3434  * Target users are page handler itself and implementations of
3435  * vm_ops->map_pages.
3436  *
3437  * Return: %0 on success, %VM_FAULT_ code in case of error.
3438  */
3439 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3440                 struct page *page)
3441 {
3442         struct vm_area_struct *vma = vmf->vma;
3443         bool write = vmf->flags & FAULT_FLAG_WRITE;
3444         pte_t entry;
3445         vm_fault_t ret;
3446
3447         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3448                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3449                 /* THP on COW? */
3450                 VM_BUG_ON_PAGE(memcg, page);
3451
3452                 ret = do_set_pmd(vmf, page);
3453                 if (ret != VM_FAULT_FALLBACK)
3454                         return ret;
3455         }
3456
3457         if (!vmf->pte) {
3458                 ret = pte_alloc_one_map(vmf);
3459                 if (ret)
3460                         return ret;
3461         }
3462
3463         /* Re-check under ptl */
3464         if (unlikely(!pte_none(*vmf->pte)))
3465                 return VM_FAULT_NOPAGE;
3466
3467         flush_icache_page(vma, page);
3468         entry = mk_pte(page, vma->vm_page_prot);
3469         if (write)
3470                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3471         /* copy-on-write page */
3472         if (write && !(vma->vm_flags & VM_SHARED)) {
3473                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3474                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3475                 mem_cgroup_commit_charge(page, memcg, false, false);
3476                 lru_cache_add_active_or_unevictable(page, vma);
3477         } else {
3478                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3479                 page_add_file_rmap(page, false);
3480         }
3481         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3482
3483         /* no need to invalidate: a not-present page won't be cached */
3484         update_mmu_cache(vma, vmf->address, vmf->pte);
3485
3486         return 0;
3487 }
3488
3489
3490 /**
3491  * finish_fault - finish page fault once we have prepared the page to fault
3492  *
3493  * @vmf: structure describing the fault
3494  *
3495  * This function handles all that is needed to finish a page fault once the
3496  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3497  * given page, adds reverse page mapping, handles memcg charges and LRU
3498  * addition.
3499  *
3500  * The function expects the page to be locked and on success it consumes a
3501  * reference of a page being mapped (for the PTE which maps it).
3502  *
3503  * Return: %0 on success, %VM_FAULT_ code in case of error.
3504  */
3505 vm_fault_t finish_fault(struct vm_fault *vmf)
3506 {
3507         struct page *page;
3508         vm_fault_t ret = 0;
3509
3510         /* Did we COW the page? */
3511         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3512             !(vmf->vma->vm_flags & VM_SHARED))
3513                 page = vmf->cow_page;
3514         else
3515                 page = vmf->page;
3516
3517         /*
3518          * check even for read faults because we might have lost our CoWed
3519          * page
3520          */
3521         if (!(vmf->vma->vm_flags & VM_SHARED))
3522                 ret = check_stable_address_space(vmf->vma->vm_mm);
3523         if (!ret)
3524                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3525         if (vmf->pte)
3526                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3527         return ret;
3528 }
3529
3530 static unsigned long fault_around_bytes __read_mostly =
3531         rounddown_pow_of_two(65536);
3532
3533 #ifdef CONFIG_DEBUG_FS
3534 static int fault_around_bytes_get(void *data, u64 *val)
3535 {
3536         *val = fault_around_bytes;
3537         return 0;
3538 }
3539
3540 /*
3541  * fault_around_bytes must be rounded down to the nearest page order as it's
3542  * what do_fault_around() expects to see.
3543  */
3544 static int fault_around_bytes_set(void *data, u64 val)
3545 {
3546         if (val / PAGE_SIZE > PTRS_PER_PTE)
3547                 return -EINVAL;
3548         if (val > PAGE_SIZE)
3549                 fault_around_bytes = rounddown_pow_of_two(val);
3550         else
3551                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3552         return 0;
3553 }
3554 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3555                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3556
3557 static int __init fault_around_debugfs(void)
3558 {
3559         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3560                                    &fault_around_bytes_fops);
3561         return 0;
3562 }
3563 late_initcall(fault_around_debugfs);
3564 #endif
3565
3566 /*
3567  * do_fault_around() tries to map few pages around the fault address. The hope
3568  * is that the pages will be needed soon and this will lower the number of
3569  * faults to handle.
3570  *
3571  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3572  * not ready to be mapped: not up-to-date, locked, etc.
3573  *
3574  * This function is called with the page table lock taken. In the split ptlock
3575  * case the page table lock only protects only those entries which belong to
3576  * the page table corresponding to the fault address.
3577  *
3578  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3579  * only once.
3580  *
3581  * fault_around_bytes defines how many bytes we'll try to map.
3582  * do_fault_around() expects it to be set to a power of two less than or equal
3583  * to PTRS_PER_PTE.
3584  *
3585  * The virtual address of the area that we map is naturally aligned to
3586  * fault_around_bytes rounded down to the machine page size
3587  * (and therefore to page order).  This way it's easier to guarantee
3588  * that we don't cross page table boundaries.
3589  */
3590 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3591 {
3592         unsigned long address = vmf->address, nr_pages, mask;
3593         pgoff_t start_pgoff = vmf->pgoff;
3594         pgoff_t end_pgoff;
3595         int off;
3596         vm_fault_t ret = 0;
3597
3598         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3599         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3600
3601         vmf->address = max(address & mask, vmf->vma->vm_start);
3602         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3603         start_pgoff -= off;
3604
3605         /*
3606          *  end_pgoff is either the end of the page table, the end of
3607          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3608          */
3609         end_pgoff = start_pgoff -
3610                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3611                 PTRS_PER_PTE - 1;
3612         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3613                         start_pgoff + nr_pages - 1);
3614
3615         if (pmd_none(*vmf->pmd)) {
3616                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3617                 if (!vmf->prealloc_pte)
3618                         goto out;
3619                 smp_wmb(); /* See comment in __pte_alloc() */
3620         }
3621
3622         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3623
3624         /* Huge page is mapped? Page fault is solved */
3625         if (pmd_trans_huge(*vmf->pmd)) {
3626                 ret = VM_FAULT_NOPAGE;
3627                 goto out;
3628         }
3629
3630         /* ->map_pages() haven't done anything useful. Cold page cache? */
3631         if (!vmf->pte)
3632                 goto out;
3633
3634         /* check if the page fault is solved */
3635         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3636         if (!pte_none(*vmf->pte))
3637                 ret = VM_FAULT_NOPAGE;
3638         pte_unmap_unlock(vmf->pte, vmf->ptl);
3639 out:
3640         vmf->address = address;
3641         vmf->pte = NULL;
3642         return ret;
3643 }
3644
3645 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3646 {
3647         struct vm_area_struct *vma = vmf->vma;
3648         vm_fault_t ret = 0;
3649
3650         /*
3651          * Let's call ->map_pages() first and use ->fault() as fallback
3652          * if page by the offset is not ready to be mapped (cold cache or
3653          * something).
3654          */
3655         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3656                 ret = do_fault_around(vmf);
3657                 if (ret)
3658                         return ret;
3659         }
3660
3661         ret = __do_fault(vmf);
3662         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663                 return ret;
3664
3665         ret |= finish_fault(vmf);
3666         unlock_page(vmf->page);
3667         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3668                 put_page(vmf->page);
3669         return ret;
3670 }
3671
3672 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3673 {
3674         struct vm_area_struct *vma = vmf->vma;
3675         vm_fault_t ret;
3676
3677         if (unlikely(anon_vma_prepare(vma)))
3678                 return VM_FAULT_OOM;
3679
3680         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3681         if (!vmf->cow_page)
3682                 return VM_FAULT_OOM;
3683
3684         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3685                                 &vmf->memcg, false)) {
3686                 put_page(vmf->cow_page);
3687                 return VM_FAULT_OOM;
3688         }
3689
3690         ret = __do_fault(vmf);
3691         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3692                 goto uncharge_out;
3693         if (ret & VM_FAULT_DONE_COW)
3694                 return ret;
3695
3696         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3697         __SetPageUptodate(vmf->cow_page);
3698
3699         ret |= finish_fault(vmf);
3700         unlock_page(vmf->page);
3701         put_page(vmf->page);
3702         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3703                 goto uncharge_out;
3704         return ret;
3705 uncharge_out:
3706         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3707         put_page(vmf->cow_page);
3708         return ret;
3709 }
3710
3711 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3712 {
3713         struct vm_area_struct *vma = vmf->vma;
3714         vm_fault_t ret, tmp;
3715
3716         ret = __do_fault(vmf);
3717         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3718                 return ret;
3719
3720         /*
3721          * Check if the backing address space wants to know that the page is
3722          * about to become writable
3723          */
3724         if (vma->vm_ops->page_mkwrite) {
3725                 unlock_page(vmf->page);
3726                 tmp = do_page_mkwrite(vmf);
3727                 if (unlikely(!tmp ||
3728                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3729                         put_page(vmf->page);
3730                         return tmp;
3731                 }
3732         }
3733
3734         ret |= finish_fault(vmf);
3735         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3736                                         VM_FAULT_RETRY))) {
3737                 unlock_page(vmf->page);
3738                 put_page(vmf->page);
3739                 return ret;
3740         }
3741
3742         ret |= fault_dirty_shared_page(vmf);
3743         return ret;
3744 }
3745
3746 /*
3747  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3748  * but allow concurrent faults).
3749  * The mmap_sem may have been released depending on flags and our
3750  * return value.  See filemap_fault() and __lock_page_or_retry().
3751  * If mmap_sem is released, vma may become invalid (for example
3752  * by other thread calling munmap()).
3753  */
3754 static vm_fault_t do_fault(struct vm_fault *vmf)
3755 {
3756         struct vm_area_struct *vma = vmf->vma;
3757         struct mm_struct *vm_mm = vma->vm_mm;
3758         vm_fault_t ret;
3759
3760         /*
3761          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3762          */
3763         if (!vma->vm_ops->fault) {
3764                 /*
3765                  * If we find a migration pmd entry or a none pmd entry, which
3766                  * should never happen, return SIGBUS
3767                  */
3768                 if (unlikely(!pmd_present(*vmf->pmd)))
3769                         ret = VM_FAULT_SIGBUS;
3770                 else {
3771                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3772                                                        vmf->pmd,
3773                                                        vmf->address,
3774                                                        &vmf->ptl);
3775                         /*
3776                          * Make sure this is not a temporary clearing of pte
3777                          * by holding ptl and checking again. A R/M/W update
3778                          * of pte involves: take ptl, clearing the pte so that
3779                          * we don't have concurrent modification by hardware
3780                          * followed by an update.
3781                          */
3782                         if (unlikely(pte_none(*vmf->pte)))
3783                                 ret = VM_FAULT_SIGBUS;
3784                         else
3785                                 ret = VM_FAULT_NOPAGE;
3786
3787                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3788                 }
3789         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3790                 ret = do_read_fault(vmf);
3791         else if (!(vma->vm_flags & VM_SHARED))
3792                 ret = do_cow_fault(vmf);
3793         else
3794                 ret = do_shared_fault(vmf);
3795
3796         /* preallocated pagetable is unused: free it */
3797         if (vmf->prealloc_pte) {
3798                 pte_free(vm_mm, vmf->prealloc_pte);
3799                 vmf->prealloc_pte = NULL;
3800         }
3801         return ret;
3802 }
3803
3804 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3805                                 unsigned long addr, int page_nid,
3806                                 int *flags)
3807 {
3808         get_page(page);
3809
3810         count_vm_numa_event(NUMA_HINT_FAULTS);
3811         if (page_nid == numa_node_id()) {
3812                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3813                 *flags |= TNF_FAULT_LOCAL;
3814         }
3815
3816         return mpol_misplaced(page, vma, addr);
3817 }
3818
3819 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3820 {
3821         struct vm_area_struct *vma = vmf->vma;
3822         struct page *page = NULL;
3823         int page_nid = NUMA_NO_NODE;
3824         int last_cpupid;
3825         int target_nid;
3826         bool migrated = false;
3827         pte_t pte, old_pte;
3828         bool was_writable = pte_savedwrite(vmf->orig_pte);
3829         int flags = 0;
3830
3831         /*
3832          * The "pte" at this point cannot be used safely without
3833          * validation through pte_unmap_same(). It's of NUMA type but
3834          * the pfn may be screwed if the read is non atomic.
3835          */
3836         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3837         spin_lock(vmf->ptl);
3838         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3839                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3840                 goto out;
3841         }
3842
3843         /*
3844          * Make it present again, Depending on how arch implementes non
3845          * accessible ptes, some can allow access by kernel mode.
3846          */
3847         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3848         pte = pte_modify(old_pte, vma->vm_page_prot);
3849         pte = pte_mkyoung(pte);
3850         if (was_writable)
3851                 pte = pte_mkwrite(pte);
3852         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3853         update_mmu_cache(vma, vmf->address, vmf->pte);
3854
3855         page = vm_normal_page(vma, vmf->address, pte);
3856         if (!page) {
3857                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3858                 return 0;
3859         }
3860
3861         /* TODO: handle PTE-mapped THP */
3862         if (PageCompound(page)) {
3863                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3864                 return 0;
3865         }
3866
3867         /*
3868          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3869          * much anyway since they can be in shared cache state. This misses
3870          * the case where a mapping is writable but the process never writes
3871          * to it but pte_write gets cleared during protection updates and
3872          * pte_dirty has unpredictable behaviour between PTE scan updates,
3873          * background writeback, dirty balancing and application behaviour.
3874          */
3875         if (!pte_write(pte))
3876                 flags |= TNF_NO_GROUP;
3877
3878         /*
3879          * Flag if the page is shared between multiple address spaces. This
3880          * is later used when determining whether to group tasks together
3881          */
3882         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3883                 flags |= TNF_SHARED;
3884
3885         last_cpupid = page_cpupid_last(page);
3886         page_nid = page_to_nid(page);
3887         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3888                         &flags);
3889         pte_unmap_unlock(vmf->pte, vmf->ptl);
3890         if (target_nid == NUMA_NO_NODE) {
3891                 put_page(page);
3892                 goto out;
3893         }
3894
3895         /* Migrate to the requested node */
3896         migrated = migrate_misplaced_page(page, vma, target_nid);
3897         if (migrated) {
3898                 page_nid = target_nid;
3899                 flags |= TNF_MIGRATED;
3900         } else
3901                 flags |= TNF_MIGRATE_FAIL;
3902
3903 out:
3904         if (page_nid != NUMA_NO_NODE)
3905                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3906         return 0;
3907 }
3908
3909 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3910 {
3911         if (vma_is_anonymous(vmf->vma))
3912                 return do_huge_pmd_anonymous_page(vmf);
3913         if (vmf->vma->vm_ops->huge_fault)
3914                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3915         return VM_FAULT_FALLBACK;
3916 }
3917
3918 /* `inline' is required to avoid gcc 4.1.2 build error */
3919 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3920 {
3921         if (vma_is_anonymous(vmf->vma))
3922                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3923         if (vmf->vma->vm_ops->huge_fault)
3924                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3925
3926         /* COW handled on pte level: split pmd */
3927         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3928         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3929
3930         return VM_FAULT_FALLBACK;
3931 }
3932
3933 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3934 {
3935         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3936 }
3937
3938 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3939 {
3940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3941         /* No support for anonymous transparent PUD pages yet */
3942         if (vma_is_anonymous(vmf->vma))
3943                 return VM_FAULT_FALLBACK;
3944         if (vmf->vma->vm_ops->huge_fault)
3945                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3946 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3947         return VM_FAULT_FALLBACK;
3948 }
3949
3950 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3951 {
3952 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3953         /* No support for anonymous transparent PUD pages yet */
3954         if (vma_is_anonymous(vmf->vma))
3955                 return VM_FAULT_FALLBACK;
3956         if (vmf->vma->vm_ops->huge_fault)
3957                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3958 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3959         return VM_FAULT_FALLBACK;
3960 }
3961
3962 /*
3963  * These routines also need to handle stuff like marking pages dirty
3964  * and/or accessed for architectures that don't do it in hardware (most
3965  * RISC architectures).  The early dirtying is also good on the i386.
3966  *
3967  * There is also a hook called "update_mmu_cache()" that architectures
3968  * with external mmu caches can use to update those (ie the Sparc or
3969  * PowerPC hashed page tables that act as extended TLBs).
3970  *
3971  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3972  * concurrent faults).
3973  *
3974  * The mmap_sem may have been released depending on flags and our return value.
3975  * See filemap_fault() and __lock_page_or_retry().
3976  */
3977 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3978 {
3979         pte_t entry;
3980
3981         if (unlikely(pmd_none(*vmf->pmd))) {
3982                 /*
3983                  * Leave __pte_alloc() until later: because vm_ops->fault may
3984                  * want to allocate huge page, and if we expose page table
3985                  * for an instant, it will be difficult to retract from
3986                  * concurrent faults and from rmap lookups.
3987                  */
3988                 vmf->pte = NULL;
3989         } else {
3990                 /* See comment in pte_alloc_one_map() */
3991                 if (pmd_devmap_trans_unstable(vmf->pmd))
3992                         return 0;
3993                 /*
3994                  * A regular pmd is established and it can't morph into a huge
3995                  * pmd from under us anymore at this point because we hold the
3996                  * mmap_sem read mode and khugepaged takes it in write mode.
3997                  * So now it's safe to run pte_offset_map().
3998                  */
3999                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4000                 vmf->orig_pte = *vmf->pte;
4001
4002                 /*
4003                  * some architectures can have larger ptes than wordsize,
4004                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4005                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4006                  * accesses.  The code below just needs a consistent view
4007                  * for the ifs and we later double check anyway with the
4008                  * ptl lock held. So here a barrier will do.
4009                  */
4010                 barrier();
4011                 if (pte_none(vmf->orig_pte)) {
4012                         pte_unmap(vmf->pte);
4013                         vmf->pte = NULL;
4014                 }
4015         }
4016
4017         if (!vmf->pte) {
4018                 if (vma_is_anonymous(vmf->vma))
4019                         return do_anonymous_page(vmf);
4020                 else
4021                         return do_fault(vmf);
4022         }
4023
4024         if (!pte_present(vmf->orig_pte))
4025                 return do_swap_page(vmf);
4026
4027         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4028                 return do_numa_page(vmf);
4029
4030         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4031         spin_lock(vmf->ptl);
4032         entry = vmf->orig_pte;
4033         if (unlikely(!pte_same(*vmf->pte, entry)))
4034                 goto unlock;
4035         if (vmf->flags & FAULT_FLAG_WRITE) {
4036                 if (!pte_write(entry))
4037                         return do_wp_page(vmf);
4038                 entry = pte_mkdirty(entry);
4039         }
4040         entry = pte_mkyoung(entry);
4041         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4042                                 vmf->flags & FAULT_FLAG_WRITE)) {
4043                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4044         } else {
4045                 /*
4046                  * This is needed only for protection faults but the arch code
4047                  * is not yet telling us if this is a protection fault or not.
4048                  * This still avoids useless tlb flushes for .text page faults
4049                  * with threads.
4050                  */
4051                 if (vmf->flags & FAULT_FLAG_WRITE)
4052                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4053         }
4054 unlock:
4055         pte_unmap_unlock(vmf->pte, vmf->ptl);
4056         return 0;
4057 }
4058
4059 /*
4060  * By the time we get here, we already hold the mm semaphore
4061  *
4062  * The mmap_sem may have been released depending on flags and our
4063  * return value.  See filemap_fault() and __lock_page_or_retry().
4064  */
4065 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4066                 unsigned long address, unsigned int flags)
4067 {
4068         struct vm_fault vmf = {
4069                 .vma = vma,
4070                 .address = address & PAGE_MASK,
4071                 .flags = flags,
4072                 .pgoff = linear_page_index(vma, address),
4073                 .gfp_mask = __get_fault_gfp_mask(vma),
4074         };
4075         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4076         struct mm_struct *mm = vma->vm_mm;
4077         pgd_t *pgd;
4078         p4d_t *p4d;
4079         vm_fault_t ret;
4080
4081         pgd = pgd_offset(mm, address);
4082         p4d = p4d_alloc(mm, pgd, address);
4083         if (!p4d)
4084                 return VM_FAULT_OOM;
4085
4086         vmf.pud = pud_alloc(mm, p4d, address);
4087         if (!vmf.pud)
4088                 return VM_FAULT_OOM;
4089         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4090                 ret = create_huge_pud(&vmf);
4091                 if (!(ret & VM_FAULT_FALLBACK))
4092                         return ret;
4093         } else {
4094                 pud_t orig_pud = *vmf.pud;
4095
4096                 barrier();
4097                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4098
4099                         /* NUMA case for anonymous PUDs would go here */
4100
4101                         if (dirty && !pud_write(orig_pud)) {
4102                                 ret = wp_huge_pud(&vmf, orig_pud);
4103                                 if (!(ret & VM_FAULT_FALLBACK))
4104                                         return ret;
4105                         } else {
4106                                 huge_pud_set_accessed(&vmf, orig_pud);
4107                                 return 0;
4108                         }
4109                 }
4110         }
4111
4112         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4113         if (!vmf.pmd)
4114                 return VM_FAULT_OOM;
4115         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4116                 ret = create_huge_pmd(&vmf);
4117                 if (!(ret & VM_FAULT_FALLBACK))
4118                         return ret;
4119         } else {
4120                 pmd_t orig_pmd = *vmf.pmd;
4121
4122                 barrier();
4123                 if (unlikely(is_swap_pmd(orig_pmd))) {
4124                         VM_BUG_ON(thp_migration_supported() &&
4125                                           !is_pmd_migration_entry(orig_pmd));
4126                         if (is_pmd_migration_entry(orig_pmd))
4127                                 pmd_migration_entry_wait(mm, vmf.pmd);
4128                         return 0;
4129                 }
4130                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4131                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4132                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4133
4134                         if (dirty && !pmd_write(orig_pmd)) {
4135                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4136                                 if (!(ret & VM_FAULT_FALLBACK))
4137                                         return ret;
4138                         } else {
4139                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4140                                 return 0;
4141                         }
4142                 }
4143         }
4144
4145         return handle_pte_fault(&vmf);
4146 }
4147
4148 /*
4149  * By the time we get here, we already hold the mm semaphore
4150  *
4151  * The mmap_sem may have been released depending on flags and our
4152  * return value.  See filemap_fault() and __lock_page_or_retry().
4153  */
4154 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4155                 unsigned int flags)
4156 {
4157         vm_fault_t ret;
4158
4159         __set_current_state(TASK_RUNNING);
4160
4161         count_vm_event(PGFAULT);
4162         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4163
4164         /* do counter updates before entering really critical section. */
4165         check_sync_rss_stat(current);
4166
4167         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4168                                             flags & FAULT_FLAG_INSTRUCTION,
4169                                             flags & FAULT_FLAG_REMOTE))
4170                 return VM_FAULT_SIGSEGV;
4171
4172         /*
4173          * Enable the memcg OOM handling for faults triggered in user
4174          * space.  Kernel faults are handled more gracefully.
4175          */
4176         if (flags & FAULT_FLAG_USER)
4177                 mem_cgroup_enter_user_fault();
4178
4179         if (unlikely(is_vm_hugetlb_page(vma)))
4180                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4181         else
4182                 ret = __handle_mm_fault(vma, address, flags);
4183
4184         if (flags & FAULT_FLAG_USER) {
4185                 mem_cgroup_exit_user_fault();
4186                 /*
4187                  * The task may have entered a memcg OOM situation but
4188                  * if the allocation error was handled gracefully (no
4189                  * VM_FAULT_OOM), there is no need to kill anything.
4190                  * Just clean up the OOM state peacefully.
4191                  */
4192                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4193                         mem_cgroup_oom_synchronize(false);
4194         }
4195
4196         return ret;
4197 }
4198 EXPORT_SYMBOL_GPL(handle_mm_fault);
4199
4200 #ifndef __PAGETABLE_P4D_FOLDED
4201 /*
4202  * Allocate p4d page table.
4203  * We've already handled the fast-path in-line.
4204  */
4205 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4206 {
4207         p4d_t *new = p4d_alloc_one(mm, address);
4208         if (!new)
4209                 return -ENOMEM;
4210
4211         smp_wmb(); /* See comment in __pte_alloc */
4212
4213         spin_lock(&mm->page_table_lock);
4214         if (pgd_present(*pgd))          /* Another has populated it */
4215                 p4d_free(mm, new);
4216         else
4217                 pgd_populate(mm, pgd, new);
4218         spin_unlock(&mm->page_table_lock);
4219         return 0;
4220 }
4221 #endif /* __PAGETABLE_P4D_FOLDED */
4222
4223 #ifndef __PAGETABLE_PUD_FOLDED
4224 /*
4225  * Allocate page upper directory.
4226  * We've already handled the fast-path in-line.
4227  */
4228 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4229 {
4230         pud_t *new = pud_alloc_one(mm, address);
4231         if (!new)
4232                 return -ENOMEM;
4233
4234         smp_wmb(); /* See comment in __pte_alloc */
4235
4236         spin_lock(&mm->page_table_lock);
4237 #ifndef __ARCH_HAS_5LEVEL_HACK
4238         if (!p4d_present(*p4d)) {
4239                 mm_inc_nr_puds(mm);
4240                 p4d_populate(mm, p4d, new);
4241         } else  /* Another has populated it */
4242                 pud_free(mm, new);
4243 #else
4244         if (!pgd_present(*p4d)) {
4245                 mm_inc_nr_puds(mm);
4246                 pgd_populate(mm, p4d, new);
4247         } else  /* Another has populated it */
4248                 pud_free(mm, new);
4249 #endif /* __ARCH_HAS_5LEVEL_HACK */
4250         spin_unlock(&mm->page_table_lock);
4251         return 0;
4252 }
4253 #endif /* __PAGETABLE_PUD_FOLDED */
4254
4255 #ifndef __PAGETABLE_PMD_FOLDED
4256 /*
4257  * Allocate page middle directory.
4258  * We've already handled the fast-path in-line.
4259  */
4260 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4261 {
4262         spinlock_t *ptl;
4263         pmd_t *new = pmd_alloc_one(mm, address);
4264         if (!new)
4265                 return -ENOMEM;
4266
4267         smp_wmb(); /* See comment in __pte_alloc */
4268
4269         ptl = pud_lock(mm, pud);
4270 #ifndef __ARCH_HAS_4LEVEL_HACK
4271         if (!pud_present(*pud)) {
4272                 mm_inc_nr_pmds(mm);
4273                 pud_populate(mm, pud, new);
4274         } else  /* Another has populated it */
4275                 pmd_free(mm, new);
4276 #else
4277         if (!pgd_present(*pud)) {
4278                 mm_inc_nr_pmds(mm);
4279                 pgd_populate(mm, pud, new);
4280         } else /* Another has populated it */
4281                 pmd_free(mm, new);
4282 #endif /* __ARCH_HAS_4LEVEL_HACK */
4283         spin_unlock(ptl);
4284         return 0;
4285 }
4286 #endif /* __PAGETABLE_PMD_FOLDED */
4287
4288 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4289                           struct mmu_notifier_range *range, pte_t **ptepp,
4290                           pmd_t **pmdpp, spinlock_t **ptlp)
4291 {
4292         pgd_t *pgd;
4293         p4d_t *p4d;
4294         pud_t *pud;
4295         pmd_t *pmd;
4296         pte_t *ptep;
4297
4298         pgd = pgd_offset(mm, address);
4299         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4300                 goto out;
4301
4302         p4d = p4d_offset(pgd, address);
4303         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4304                 goto out;
4305
4306         pud = pud_offset(p4d, address);
4307         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4308                 goto out;
4309
4310         pmd = pmd_offset(pud, address);
4311         VM_BUG_ON(pmd_trans_huge(*pmd));
4312
4313         if (pmd_huge(*pmd)) {
4314                 if (!pmdpp)
4315                         goto out;
4316
4317                 if (range) {
4318                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4319                                                 NULL, mm, address & PMD_MASK,
4320                                                 (address & PMD_MASK) + PMD_SIZE);
4321                         mmu_notifier_invalidate_range_start(range);
4322                 }
4323                 *ptlp = pmd_lock(mm, pmd);
4324                 if (pmd_huge(*pmd)) {
4325                         *pmdpp = pmd;
4326                         return 0;
4327                 }
4328                 spin_unlock(*ptlp);
4329                 if (range)
4330                         mmu_notifier_invalidate_range_end(range);
4331         }
4332
4333         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4334                 goto out;
4335
4336         if (range) {
4337                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4338                                         address & PAGE_MASK,
4339                                         (address & PAGE_MASK) + PAGE_SIZE);
4340                 mmu_notifier_invalidate_range_start(range);
4341         }
4342         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4343         if (!pte_present(*ptep))
4344                 goto unlock;
4345         *ptepp = ptep;
4346         return 0;
4347 unlock:
4348         pte_unmap_unlock(ptep, *ptlp);
4349         if (range)
4350                 mmu_notifier_invalidate_range_end(range);
4351 out:
4352         return -EINVAL;
4353 }
4354
4355 /**
4356  * follow_pte - look up PTE at a user virtual address
4357  * @mm: the mm_struct of the target address space
4358  * @address: user virtual address
4359  * @ptepp: location to store found PTE
4360  * @ptlp: location to store the lock for the PTE
4361  *
4362  * On a successful return, the pointer to the PTE is stored in @ptepp;
4363  * the corresponding lock is taken and its location is stored in @ptlp.
4364  * The contents of the PTE are only stable until @ptlp is released;
4365  * any further use, if any, must be protected against invalidation
4366  * with MMU notifiers.
4367  *
4368  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4369  * should be taken for read.
4370  *
4371  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4372  * it is not a good general-purpose API.
4373  *
4374  * Return: zero on success, -ve otherwise.
4375  */
4376 int follow_pte(struct mm_struct *mm, unsigned long address,
4377                pte_t **ptepp, spinlock_t **ptlp)
4378 {
4379         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4380 }
4381 EXPORT_SYMBOL_GPL(follow_pte);
4382
4383 /**
4384  * follow_pfn - look up PFN at a user virtual address
4385  * @vma: memory mapping
4386  * @address: user virtual address
4387  * @pfn: location to store found PFN
4388  *
4389  * Only IO mappings and raw PFN mappings are allowed.
4390  *
4391  * This function does not allow the caller to read the permissions
4392  * of the PTE.  Do not use it.
4393  *
4394  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4395  */
4396 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4397         unsigned long *pfn)
4398 {
4399         int ret = -EINVAL;
4400         spinlock_t *ptl;
4401         pte_t *ptep;
4402
4403         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4404                 return ret;
4405
4406         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4407         if (ret)
4408                 return ret;
4409         *pfn = pte_pfn(*ptep);
4410         pte_unmap_unlock(ptep, ptl);
4411         return 0;
4412 }
4413 EXPORT_SYMBOL(follow_pfn);
4414
4415 #ifdef CONFIG_HAVE_IOREMAP_PROT
4416 int follow_phys(struct vm_area_struct *vma,
4417                 unsigned long address, unsigned int flags,
4418                 unsigned long *prot, resource_size_t *phys)
4419 {
4420         int ret = -EINVAL;
4421         pte_t *ptep, pte;
4422         spinlock_t *ptl;
4423
4424         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4425                 goto out;
4426
4427         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4428                 goto out;
4429         pte = *ptep;
4430
4431         if ((flags & FOLL_WRITE) && !pte_write(pte))
4432                 goto unlock;
4433
4434         *prot = pgprot_val(pte_pgprot(pte));
4435         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4436
4437         ret = 0;
4438 unlock:
4439         pte_unmap_unlock(ptep, ptl);
4440 out:
4441         return ret;
4442 }
4443
4444 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4445                         void *buf, int len, int write)
4446 {
4447         resource_size_t phys_addr;
4448         unsigned long prot = 0;
4449         void __iomem *maddr;
4450         int offset = addr & (PAGE_SIZE-1);
4451
4452         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4453                 return -EINVAL;
4454
4455         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4456         if (!maddr)
4457                 return -ENOMEM;
4458
4459         if (write)
4460                 memcpy_toio(maddr + offset, buf, len);
4461         else
4462                 memcpy_fromio(buf, maddr + offset, len);
4463         iounmap(maddr);
4464
4465         return len;
4466 }
4467 EXPORT_SYMBOL_GPL(generic_access_phys);
4468 #endif
4469
4470 /*
4471  * Access another process' address space as given in mm.  If non-NULL, use the
4472  * given task for page fault accounting.
4473  */
4474 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4475                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4476 {
4477         struct vm_area_struct *vma;
4478         void *old_buf = buf;
4479         int write = gup_flags & FOLL_WRITE;
4480
4481         if (down_read_killable(&mm->mmap_sem))
4482                 return 0;
4483
4484         /* ignore errors, just check how much was successfully transferred */
4485         while (len) {
4486                 int bytes, ret, offset;
4487                 void *maddr;
4488                 struct page *page = NULL;
4489
4490                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4491                                 gup_flags, &page, &vma, NULL);
4492                 if (ret <= 0) {
4493 #ifndef CONFIG_HAVE_IOREMAP_PROT
4494                         break;
4495 #else
4496                         /*
4497                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4498                          * we can access using slightly different code.
4499                          */
4500                         vma = find_vma(mm, addr);
4501                         if (!vma || vma->vm_start > addr)
4502                                 break;
4503                         if (vma->vm_ops && vma->vm_ops->access)
4504                                 ret = vma->vm_ops->access(vma, addr, buf,
4505                                                           len, write);
4506                         if (ret <= 0)
4507                                 break;
4508                         bytes = ret;
4509 #endif
4510                 } else {
4511                         bytes = len;
4512                         offset = addr & (PAGE_SIZE-1);
4513                         if (bytes > PAGE_SIZE-offset)
4514                                 bytes = PAGE_SIZE-offset;
4515
4516                         maddr = kmap(page);
4517                         if (write) {
4518                                 copy_to_user_page(vma, page, addr,
4519                                                   maddr + offset, buf, bytes);
4520                                 set_page_dirty_lock(page);
4521                         } else {
4522                                 copy_from_user_page(vma, page, addr,
4523                                                     buf, maddr + offset, bytes);
4524                         }
4525                         kunmap(page);
4526                         put_page(page);
4527                 }
4528                 len -= bytes;
4529                 buf += bytes;
4530                 addr += bytes;
4531         }
4532         up_read(&mm->mmap_sem);
4533
4534         return buf - old_buf;
4535 }
4536
4537 /**
4538  * access_remote_vm - access another process' address space
4539  * @mm:         the mm_struct of the target address space
4540  * @addr:       start address to access
4541  * @buf:        source or destination buffer
4542  * @len:        number of bytes to transfer
4543  * @gup_flags:  flags modifying lookup behaviour
4544  *
4545  * The caller must hold a reference on @mm.
4546  *
4547  * Return: number of bytes copied from source to destination.
4548  */
4549 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4550                 void *buf, int len, unsigned int gup_flags)
4551 {
4552         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4553 }
4554
4555 /*
4556  * Access another process' address space.
4557  * Source/target buffer must be kernel space,
4558  * Do not walk the page table directly, use get_user_pages
4559  */
4560 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4561                 void *buf, int len, unsigned int gup_flags)
4562 {
4563         struct mm_struct *mm;
4564         int ret;
4565
4566         mm = get_task_mm(tsk);
4567         if (!mm)
4568                 return 0;
4569
4570         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4571
4572         mmput(mm);
4573
4574         return ret;
4575 }
4576 EXPORT_SYMBOL_GPL(access_process_vm);
4577
4578 /*
4579  * Print the name of a VMA.
4580  */
4581 void print_vma_addr(char *prefix, unsigned long ip)
4582 {
4583         struct mm_struct *mm = current->mm;
4584         struct vm_area_struct *vma;
4585
4586         /*
4587          * we might be running from an atomic context so we cannot sleep
4588          */
4589         if (!down_read_trylock(&mm->mmap_sem))
4590                 return;
4591
4592         vma = find_vma(mm, ip);
4593         if (vma && vma->vm_file) {
4594                 struct file *f = vma->vm_file;
4595                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4596                 if (buf) {
4597                         char *p;
4598
4599                         p = file_path(f, buf, PAGE_SIZE);
4600                         if (IS_ERR(p))
4601                                 p = "?";
4602                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4603                                         vma->vm_start,
4604                                         vma->vm_end - vma->vm_start);
4605                         free_page((unsigned long)buf);
4606                 }
4607         }
4608         up_read(&mm->mmap_sem);
4609 }
4610
4611 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4612 void __might_fault(const char *file, int line)
4613 {
4614         /*
4615          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4616          * holding the mmap_sem, this is safe because kernel memory doesn't
4617          * get paged out, therefore we'll never actually fault, and the
4618          * below annotations will generate false positives.
4619          */
4620         if (uaccess_kernel())
4621                 return;
4622         if (pagefault_disabled())
4623                 return;
4624         __might_sleep(file, line, 0);
4625 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4626         if (current->mm)
4627                 might_lock_read(&current->mm->mmap_sem);
4628 #endif
4629 }
4630 EXPORT_SYMBOL(__might_fault);
4631 #endif
4632
4633 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4634 /*
4635  * Process all subpages of the specified huge page with the specified
4636  * operation.  The target subpage will be processed last to keep its
4637  * cache lines hot.
4638  */
4639 static inline void process_huge_page(
4640         unsigned long addr_hint, unsigned int pages_per_huge_page,
4641         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4642         void *arg)
4643 {
4644         int i, n, base, l;
4645         unsigned long addr = addr_hint &
4646                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4647
4648         /* Process target subpage last to keep its cache lines hot */
4649         might_sleep();
4650         n = (addr_hint - addr) / PAGE_SIZE;
4651         if (2 * n <= pages_per_huge_page) {
4652                 /* If target subpage in first half of huge page */
4653                 base = 0;
4654                 l = n;
4655                 /* Process subpages at the end of huge page */
4656                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4657                         cond_resched();
4658                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4659                 }
4660         } else {
4661                 /* If target subpage in second half of huge page */
4662                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4663                 l = pages_per_huge_page - n;
4664                 /* Process subpages at the begin of huge page */
4665                 for (i = 0; i < base; i++) {
4666                         cond_resched();
4667                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4668                 }
4669         }
4670         /*
4671          * Process remaining subpages in left-right-left-right pattern
4672          * towards the target subpage
4673          */
4674         for (i = 0; i < l; i++) {
4675                 int left_idx = base + i;
4676                 int right_idx = base + 2 * l - 1 - i;
4677
4678                 cond_resched();
4679                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4680                 cond_resched();
4681                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4682         }
4683 }
4684
4685 static void clear_gigantic_page(struct page *page,
4686                                 unsigned long addr,
4687                                 unsigned int pages_per_huge_page)
4688 {
4689         int i;
4690         struct page *p = page;
4691
4692         might_sleep();
4693         for (i = 0; i < pages_per_huge_page;
4694              i++, p = mem_map_next(p, page, i)) {
4695                 cond_resched();
4696                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4697         }
4698 }
4699
4700 static void clear_subpage(unsigned long addr, int idx, void *arg)
4701 {
4702         struct page *page = arg;
4703
4704         clear_user_highpage(page + idx, addr);
4705 }
4706
4707 void clear_huge_page(struct page *page,
4708                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4709 {
4710         unsigned long addr = addr_hint &
4711                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4712
4713         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4714                 clear_gigantic_page(page, addr, pages_per_huge_page);
4715                 return;
4716         }
4717
4718         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4719 }
4720
4721 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4722                                     unsigned long addr,
4723                                     struct vm_area_struct *vma,
4724                                     unsigned int pages_per_huge_page)
4725 {
4726         int i;
4727         struct page *dst_base = dst;
4728         struct page *src_base = src;
4729
4730         for (i = 0; i < pages_per_huge_page; ) {
4731                 cond_resched();
4732                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4733
4734                 i++;
4735                 dst = mem_map_next(dst, dst_base, i);
4736                 src = mem_map_next(src, src_base, i);
4737         }
4738 }
4739
4740 struct copy_subpage_arg {
4741         struct page *dst;
4742         struct page *src;
4743         struct vm_area_struct *vma;
4744 };
4745
4746 static void copy_subpage(unsigned long addr, int idx, void *arg)
4747 {
4748         struct copy_subpage_arg *copy_arg = arg;
4749
4750         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4751                            addr, copy_arg->vma);
4752 }
4753
4754 void copy_user_huge_page(struct page *dst, struct page *src,
4755                          unsigned long addr_hint, struct vm_area_struct *vma,
4756                          unsigned int pages_per_huge_page)
4757 {
4758         unsigned long addr = addr_hint &
4759                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4760         struct copy_subpage_arg arg = {
4761                 .dst = dst,
4762                 .src = src,
4763                 .vma = vma,
4764         };
4765
4766         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4767                 copy_user_gigantic_page(dst, src, addr, vma,
4768                                         pages_per_huge_page);
4769                 return;
4770         }
4771
4772         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4773 }
4774
4775 long copy_huge_page_from_user(struct page *dst_page,
4776                                 const void __user *usr_src,
4777                                 unsigned int pages_per_huge_page,
4778                                 bool allow_pagefault)
4779 {
4780         void *src = (void *)usr_src;
4781         void *page_kaddr;
4782         unsigned long i, rc = 0;
4783         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4784         struct page *subpage = dst_page;
4785
4786         for (i = 0; i < pages_per_huge_page;
4787              i++, subpage = mem_map_next(subpage, dst_page, i)) {
4788                 if (allow_pagefault)
4789                         page_kaddr = kmap(subpage);
4790                 else
4791                         page_kaddr = kmap_atomic(subpage);
4792                 rc = copy_from_user(page_kaddr,
4793                                 (const void __user *)(src + i * PAGE_SIZE),
4794                                 PAGE_SIZE);
4795                 if (allow_pagefault)
4796                         kunmap(subpage);
4797                 else
4798                         kunmap_atomic(page_kaddr);
4799
4800                 ret_val -= (PAGE_SIZE - rc);
4801                 if (rc)
4802                         break;
4803
4804                 flush_dcache_page(subpage);
4805
4806                 cond_resched();
4807         }
4808         return ret_val;
4809 }
4810 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4811
4812 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4813
4814 static struct kmem_cache *page_ptl_cachep;
4815
4816 void __init ptlock_cache_init(void)
4817 {
4818         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4819                         SLAB_PANIC, NULL);
4820 }
4821
4822 bool ptlock_alloc(struct page *page)
4823 {
4824         spinlock_t *ptl;
4825
4826         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4827         if (!ptl)
4828                 return false;
4829         page->ptl = ptl;
4830         return true;
4831 }
4832
4833 void ptlock_free(struct page *page)
4834 {
4835         kmem_cache_free(page_ptl_cachep, page->ptl);
4836 }
4837 #endif