GNU Linux-libre 4.14.251-gnu1
[releases.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115                                         1;
116 #else
117                                         2;
118 #endif
119
120 #ifndef arch_faults_on_old_pte
121 static inline bool arch_faults_on_old_pte(void)
122 {
123         /*
124          * Those arches which don't have hw access flag feature need to
125          * implement their own helper. By default, "true" means pagefault
126          * will be hit on old pte.
127          */
128         return true;
129 }
130 #endif
131
132 static int __init disable_randmaps(char *s)
133 {
134         randomize_va_space = 0;
135         return 1;
136 }
137 __setup("norandmaps", disable_randmaps);
138
139 unsigned long zero_pfn __read_mostly;
140 EXPORT_SYMBOL(zero_pfn);
141
142 unsigned long highest_memmap_pfn __read_mostly;
143
144 /*
145  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
146  */
147 static int __init init_zero_pfn(void)
148 {
149         zero_pfn = page_to_pfn(ZERO_PAGE(0));
150         return 0;
151 }
152 early_initcall(init_zero_pfn);
153
154
155 #if defined(SPLIT_RSS_COUNTING)
156
157 void sync_mm_rss(struct mm_struct *mm)
158 {
159         int i;
160
161         for (i = 0; i < NR_MM_COUNTERS; i++) {
162                 if (current->rss_stat.count[i]) {
163                         add_mm_counter(mm, i, current->rss_stat.count[i]);
164                         current->rss_stat.count[i] = 0;
165                 }
166         }
167         current->rss_stat.events = 0;
168 }
169
170 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
171 {
172         struct task_struct *task = current;
173
174         if (likely(task->mm == mm))
175                 task->rss_stat.count[member] += val;
176         else
177                 add_mm_counter(mm, member, val);
178 }
179 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
180 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
181
182 /* sync counter once per 64 page faults */
183 #define TASK_RSS_EVENTS_THRESH  (64)
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186         if (unlikely(task != current))
187                 return;
188         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
189                 sync_mm_rss(task->mm);
190 }
191 #else /* SPLIT_RSS_COUNTING */
192
193 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
194 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
195
196 static void check_sync_rss_stat(struct task_struct *task)
197 {
198 }
199
200 #endif /* SPLIT_RSS_COUNTING */
201
202 #ifdef HAVE_GENERIC_MMU_GATHER
203
204 static bool tlb_next_batch(struct mmu_gather *tlb)
205 {
206         struct mmu_gather_batch *batch;
207
208         batch = tlb->active;
209         if (batch->next) {
210                 tlb->active = batch->next;
211                 return true;
212         }
213
214         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
215                 return false;
216
217         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
218         if (!batch)
219                 return false;
220
221         tlb->batch_count++;
222         batch->next = NULL;
223         batch->nr   = 0;
224         batch->max  = MAX_GATHER_BATCH;
225
226         tlb->active->next = batch;
227         tlb->active = batch;
228
229         return true;
230 }
231
232 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
233                                 unsigned long start, unsigned long end)
234 {
235         tlb->mm = mm;
236
237         /* Is it from 0 to ~0? */
238         tlb->fullmm     = !(start | (end+1));
239         tlb->need_flush_all = 0;
240         tlb->local.next = NULL;
241         tlb->local.nr   = 0;
242         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
243         tlb->active     = &tlb->local;
244         tlb->batch_count = 0;
245
246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
247         tlb->batch = NULL;
248 #endif
249         tlb->page_size = 0;
250
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
255 {
256         if (!tlb->end)
257                 return;
258
259         tlb_flush(tlb);
260         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
261         __tlb_reset_range(tlb);
262 }
263
264 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
265 {
266         struct mmu_gather_batch *batch;
267
268 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
269         tlb_table_flush(tlb);
270 #endif
271         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
272                 free_pages_and_swap_cache(batch->pages, batch->nr);
273                 batch->nr = 0;
274         }
275         tlb->active = &tlb->local;
276 }
277
278 void tlb_flush_mmu(struct mmu_gather *tlb)
279 {
280         tlb_flush_mmu_tlbonly(tlb);
281         tlb_flush_mmu_free(tlb);
282 }
283
284 /* tlb_finish_mmu
285  *      Called at the end of the shootdown operation to free up any resources
286  *      that were required.
287  */
288 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
289                 unsigned long start, unsigned long end, bool force)
290 {
291         struct mmu_gather_batch *batch, *next;
292
293         if (force)
294                 __tlb_adjust_range(tlb, start, end - start);
295
296         tlb_flush_mmu(tlb);
297
298         /* keep the page table cache within bounds */
299         check_pgt_cache();
300
301         for (batch = tlb->local.next; batch; batch = next) {
302                 next = batch->next;
303                 free_pages((unsigned long)batch, 0);
304         }
305         tlb->local.next = NULL;
306 }
307
308 /* __tlb_remove_page
309  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
310  *      handling the additional races in SMP caused by other CPUs caching valid
311  *      mappings in their TLBs. Returns the number of free page slots left.
312  *      When out of page slots we must call tlb_flush_mmu().
313  *returns true if the caller should flush.
314  */
315 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
316 {
317         struct mmu_gather_batch *batch;
318
319         VM_BUG_ON(!tlb->end);
320         VM_WARN_ON(tlb->page_size != page_size);
321
322         batch = tlb->active;
323         /*
324          * Add the page and check if we are full. If so
325          * force a flush.
326          */
327         batch->pages[batch->nr++] = page;
328         if (batch->nr == batch->max) {
329                 if (!tlb_next_batch(tlb))
330                         return true;
331                 batch = tlb->active;
332         }
333         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
334
335         return false;
336 }
337
338 #endif /* HAVE_GENERIC_MMU_GATHER */
339
340 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
341
342 /*
343  * See the comment near struct mmu_table_batch.
344  */
345
346 /*
347  * If we want tlb_remove_table() to imply TLB invalidates.
348  */
349 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
350 {
351 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
352         /*
353          * Invalidate page-table caches used by hardware walkers. Then we still
354          * need to RCU-sched wait while freeing the pages because software
355          * walkers can still be in-flight.
356          */
357         tlb_flush_mmu_tlbonly(tlb);
358 #endif
359 }
360
361 static void tlb_remove_table_smp_sync(void *arg)
362 {
363         /* Simply deliver the interrupt */
364 }
365
366 static void tlb_remove_table_one(void *table)
367 {
368         /*
369          * This isn't an RCU grace period and hence the page-tables cannot be
370          * assumed to be actually RCU-freed.
371          *
372          * It is however sufficient for software page-table walkers that rely on
373          * IRQ disabling. See the comment near struct mmu_table_batch.
374          */
375         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
376         __tlb_remove_table(table);
377 }
378
379 static void tlb_remove_table_rcu(struct rcu_head *head)
380 {
381         struct mmu_table_batch *batch;
382         int i;
383
384         batch = container_of(head, struct mmu_table_batch, rcu);
385
386         for (i = 0; i < batch->nr; i++)
387                 __tlb_remove_table(batch->tables[i]);
388
389         free_page((unsigned long)batch);
390 }
391
392 void tlb_table_flush(struct mmu_gather *tlb)
393 {
394         struct mmu_table_batch **batch = &tlb->batch;
395
396         if (*batch) {
397                 tlb_table_invalidate(tlb);
398                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
399                 *batch = NULL;
400         }
401 }
402
403 void tlb_remove_table(struct mmu_gather *tlb, void *table)
404 {
405         struct mmu_table_batch **batch = &tlb->batch;
406
407         if (*batch == NULL) {
408                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
409                 if (*batch == NULL) {
410                         tlb_table_invalidate(tlb);
411                         tlb_remove_table_one(table);
412                         return;
413                 }
414                 (*batch)->nr = 0;
415         }
416
417         (*batch)->tables[(*batch)->nr++] = table;
418         if ((*batch)->nr == MAX_TABLE_BATCH)
419                 tlb_table_flush(tlb);
420 }
421
422 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
423
424 /* tlb_gather_mmu
425  *      Called to initialize an (on-stack) mmu_gather structure for page-table
426  *      tear-down from @mm. The @fullmm argument is used when @mm is without
427  *      users and we're going to destroy the full address space (exit/execve).
428  */
429 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
430                         unsigned long start, unsigned long end)
431 {
432         arch_tlb_gather_mmu(tlb, mm, start, end);
433         inc_tlb_flush_pending(tlb->mm);
434 }
435
436 void tlb_finish_mmu(struct mmu_gather *tlb,
437                 unsigned long start, unsigned long end)
438 {
439         /*
440          * If there are parallel threads are doing PTE changes on same range
441          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
442          * flush by batching, a thread has stable TLB entry can fail to flush
443          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
444          * forcefully if we detect parallel PTE batching threads.
445          */
446         bool force = mm_tlb_flush_nested(tlb->mm);
447
448         arch_tlb_finish_mmu(tlb, start, end, force);
449         dec_tlb_flush_pending(tlb->mm);
450 }
451
452 /*
453  * Note: this doesn't free the actual pages themselves. That
454  * has been handled earlier when unmapping all the memory regions.
455  */
456 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
457                            unsigned long addr)
458 {
459         pgtable_t token = pmd_pgtable(*pmd);
460         pmd_clear(pmd);
461         pte_free_tlb(tlb, token, addr);
462         atomic_long_dec(&tlb->mm->nr_ptes);
463 }
464
465 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
466                                 unsigned long addr, unsigned long end,
467                                 unsigned long floor, unsigned long ceiling)
468 {
469         pmd_t *pmd;
470         unsigned long next;
471         unsigned long start;
472
473         start = addr;
474         pmd = pmd_offset(pud, addr);
475         do {
476                 next = pmd_addr_end(addr, end);
477                 if (pmd_none_or_clear_bad(pmd))
478                         continue;
479                 free_pte_range(tlb, pmd, addr);
480         } while (pmd++, addr = next, addr != end);
481
482         start &= PUD_MASK;
483         if (start < floor)
484                 return;
485         if (ceiling) {
486                 ceiling &= PUD_MASK;
487                 if (!ceiling)
488                         return;
489         }
490         if (end - 1 > ceiling - 1)
491                 return;
492
493         pmd = pmd_offset(pud, start);
494         pud_clear(pud);
495         pmd_free_tlb(tlb, pmd, start);
496         mm_dec_nr_pmds(tlb->mm);
497 }
498
499 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
500                                 unsigned long addr, unsigned long end,
501                                 unsigned long floor, unsigned long ceiling)
502 {
503         pud_t *pud;
504         unsigned long next;
505         unsigned long start;
506
507         start = addr;
508         pud = pud_offset(p4d, addr);
509         do {
510                 next = pud_addr_end(addr, end);
511                 if (pud_none_or_clear_bad(pud))
512                         continue;
513                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
514         } while (pud++, addr = next, addr != end);
515
516         start &= P4D_MASK;
517         if (start < floor)
518                 return;
519         if (ceiling) {
520                 ceiling &= P4D_MASK;
521                 if (!ceiling)
522                         return;
523         }
524         if (end - 1 > ceiling - 1)
525                 return;
526
527         pud = pud_offset(p4d, start);
528         p4d_clear(p4d);
529         pud_free_tlb(tlb, pud, start);
530 }
531
532 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
533                                 unsigned long addr, unsigned long end,
534                                 unsigned long floor, unsigned long ceiling)
535 {
536         p4d_t *p4d;
537         unsigned long next;
538         unsigned long start;
539
540         start = addr;
541         p4d = p4d_offset(pgd, addr);
542         do {
543                 next = p4d_addr_end(addr, end);
544                 if (p4d_none_or_clear_bad(p4d))
545                         continue;
546                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
547         } while (p4d++, addr = next, addr != end);
548
549         start &= PGDIR_MASK;
550         if (start < floor)
551                 return;
552         if (ceiling) {
553                 ceiling &= PGDIR_MASK;
554                 if (!ceiling)
555                         return;
556         }
557         if (end - 1 > ceiling - 1)
558                 return;
559
560         p4d = p4d_offset(pgd, start);
561         pgd_clear(pgd);
562         p4d_free_tlb(tlb, p4d, start);
563 }
564
565 /*
566  * This function frees user-level page tables of a process.
567  */
568 void free_pgd_range(struct mmu_gather *tlb,
569                         unsigned long addr, unsigned long end,
570                         unsigned long floor, unsigned long ceiling)
571 {
572         pgd_t *pgd;
573         unsigned long next;
574
575         /*
576          * The next few lines have given us lots of grief...
577          *
578          * Why are we testing PMD* at this top level?  Because often
579          * there will be no work to do at all, and we'd prefer not to
580          * go all the way down to the bottom just to discover that.
581          *
582          * Why all these "- 1"s?  Because 0 represents both the bottom
583          * of the address space and the top of it (using -1 for the
584          * top wouldn't help much: the masks would do the wrong thing).
585          * The rule is that addr 0 and floor 0 refer to the bottom of
586          * the address space, but end 0 and ceiling 0 refer to the top
587          * Comparisons need to use "end - 1" and "ceiling - 1" (though
588          * that end 0 case should be mythical).
589          *
590          * Wherever addr is brought up or ceiling brought down, we must
591          * be careful to reject "the opposite 0" before it confuses the
592          * subsequent tests.  But what about where end is brought down
593          * by PMD_SIZE below? no, end can't go down to 0 there.
594          *
595          * Whereas we round start (addr) and ceiling down, by different
596          * masks at different levels, in order to test whether a table
597          * now has no other vmas using it, so can be freed, we don't
598          * bother to round floor or end up - the tests don't need that.
599          */
600
601         addr &= PMD_MASK;
602         if (addr < floor) {
603                 addr += PMD_SIZE;
604                 if (!addr)
605                         return;
606         }
607         if (ceiling) {
608                 ceiling &= PMD_MASK;
609                 if (!ceiling)
610                         return;
611         }
612         if (end - 1 > ceiling - 1)
613                 end -= PMD_SIZE;
614         if (addr > end - 1)
615                 return;
616         /*
617          * We add page table cache pages with PAGE_SIZE,
618          * (see pte_free_tlb()), flush the tlb if we need
619          */
620         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
621         pgd = pgd_offset(tlb->mm, addr);
622         do {
623                 next = pgd_addr_end(addr, end);
624                 if (pgd_none_or_clear_bad(pgd))
625                         continue;
626                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
627         } while (pgd++, addr = next, addr != end);
628 }
629
630 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
631                 unsigned long floor, unsigned long ceiling)
632 {
633         while (vma) {
634                 struct vm_area_struct *next = vma->vm_next;
635                 unsigned long addr = vma->vm_start;
636
637                 /*
638                  * Hide vma from rmap and truncate_pagecache before freeing
639                  * pgtables
640                  */
641                 unlink_anon_vmas(vma);
642                 unlink_file_vma(vma);
643
644                 if (is_vm_hugetlb_page(vma)) {
645                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
646                                 floor, next ? next->vm_start : ceiling);
647                 } else {
648                         /*
649                          * Optimization: gather nearby vmas into one call down
650                          */
651                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
652                                && !is_vm_hugetlb_page(next)) {
653                                 vma = next;
654                                 next = vma->vm_next;
655                                 unlink_anon_vmas(vma);
656                                 unlink_file_vma(vma);
657                         }
658                         free_pgd_range(tlb, addr, vma->vm_end,
659                                 floor, next ? next->vm_start : ceiling);
660                 }
661                 vma = next;
662         }
663 }
664
665 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
666 {
667         spinlock_t *ptl;
668         pgtable_t new = pte_alloc_one(mm, address);
669         if (!new)
670                 return -ENOMEM;
671
672         /*
673          * Ensure all pte setup (eg. pte page lock and page clearing) are
674          * visible before the pte is made visible to other CPUs by being
675          * put into page tables.
676          *
677          * The other side of the story is the pointer chasing in the page
678          * table walking code (when walking the page table without locking;
679          * ie. most of the time). Fortunately, these data accesses consist
680          * of a chain of data-dependent loads, meaning most CPUs (alpha
681          * being the notable exception) will already guarantee loads are
682          * seen in-order. See the alpha page table accessors for the
683          * smp_read_barrier_depends() barriers in page table walking code.
684          */
685         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
686
687         ptl = pmd_lock(mm, pmd);
688         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
689                 atomic_long_inc(&mm->nr_ptes);
690                 pmd_populate(mm, pmd, new);
691                 new = NULL;
692         }
693         spin_unlock(ptl);
694         if (new)
695                 pte_free(mm, new);
696         return 0;
697 }
698
699 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
700 {
701         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
702         if (!new)
703                 return -ENOMEM;
704
705         smp_wmb(); /* See comment in __pte_alloc */
706
707         spin_lock(&init_mm.page_table_lock);
708         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
709                 pmd_populate_kernel(&init_mm, pmd, new);
710                 new = NULL;
711         }
712         spin_unlock(&init_mm.page_table_lock);
713         if (new)
714                 pte_free_kernel(&init_mm, new);
715         return 0;
716 }
717
718 static inline void init_rss_vec(int *rss)
719 {
720         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
721 }
722
723 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
724 {
725         int i;
726
727         if (current->mm == mm)
728                 sync_mm_rss(mm);
729         for (i = 0; i < NR_MM_COUNTERS; i++)
730                 if (rss[i])
731                         add_mm_counter(mm, i, rss[i]);
732 }
733
734 /*
735  * This function is called to print an error when a bad pte
736  * is found. For example, we might have a PFN-mapped pte in
737  * a region that doesn't allow it.
738  *
739  * The calling function must still handle the error.
740  */
741 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
742                           pte_t pte, struct page *page)
743 {
744         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
745         p4d_t *p4d = p4d_offset(pgd, addr);
746         pud_t *pud = pud_offset(p4d, addr);
747         pmd_t *pmd = pmd_offset(pud, addr);
748         struct address_space *mapping;
749         pgoff_t index;
750         static unsigned long resume;
751         static unsigned long nr_shown;
752         static unsigned long nr_unshown;
753
754         /*
755          * Allow a burst of 60 reports, then keep quiet for that minute;
756          * or allow a steady drip of one report per second.
757          */
758         if (nr_shown == 60) {
759                 if (time_before(jiffies, resume)) {
760                         nr_unshown++;
761                         return;
762                 }
763                 if (nr_unshown) {
764                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
765                                  nr_unshown);
766                         nr_unshown = 0;
767                 }
768                 nr_shown = 0;
769         }
770         if (nr_shown++ == 0)
771                 resume = jiffies + 60 * HZ;
772
773         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
774         index = linear_page_index(vma, addr);
775
776         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
777                  current->comm,
778                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
779         if (page)
780                 dump_page(page, "bad pte");
781         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
782                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
783         /*
784          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
785          */
786         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
787                  vma->vm_file,
788                  vma->vm_ops ? vma->vm_ops->fault : NULL,
789                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
790                  mapping ? mapping->a_ops->readpage : NULL);
791         dump_stack();
792         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
793 }
794
795 /*
796  * vm_normal_page -- This function gets the "struct page" associated with a pte.
797  *
798  * "Special" mappings do not wish to be associated with a "struct page" (either
799  * it doesn't exist, or it exists but they don't want to touch it). In this
800  * case, NULL is returned here. "Normal" mappings do have a struct page.
801  *
802  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
803  * pte bit, in which case this function is trivial. Secondly, an architecture
804  * may not have a spare pte bit, which requires a more complicated scheme,
805  * described below.
806  *
807  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
808  * special mapping (even if there are underlying and valid "struct pages").
809  * COWed pages of a VM_PFNMAP are always normal.
810  *
811  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
812  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
813  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
814  * mapping will always honor the rule
815  *
816  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
817  *
818  * And for normal mappings this is false.
819  *
820  * This restricts such mappings to be a linear translation from virtual address
821  * to pfn. To get around this restriction, we allow arbitrary mappings so long
822  * as the vma is not a COW mapping; in that case, we know that all ptes are
823  * special (because none can have been COWed).
824  *
825  *
826  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
827  *
828  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
829  * page" backing, however the difference is that _all_ pages with a struct
830  * page (that is, those where pfn_valid is true) are refcounted and considered
831  * normal pages by the VM. The disadvantage is that pages are refcounted
832  * (which can be slower and simply not an option for some PFNMAP users). The
833  * advantage is that we don't have to follow the strict linearity rule of
834  * PFNMAP mappings in order to support COWable mappings.
835  *
836  */
837 #ifdef __HAVE_ARCH_PTE_SPECIAL
838 # define HAVE_PTE_SPECIAL 1
839 #else
840 # define HAVE_PTE_SPECIAL 0
841 #endif
842 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
843                              pte_t pte, bool with_public_device)
844 {
845         unsigned long pfn = pte_pfn(pte);
846
847         if (HAVE_PTE_SPECIAL) {
848                 if (likely(!pte_special(pte)))
849                         goto check_pfn;
850                 if (vma->vm_ops && vma->vm_ops->find_special_page)
851                         return vma->vm_ops->find_special_page(vma, addr);
852                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
853                         return NULL;
854                 if (is_zero_pfn(pfn))
855                         return NULL;
856
857                 /*
858                  * Device public pages are special pages (they are ZONE_DEVICE
859                  * pages but different from persistent memory). They behave
860                  * allmost like normal pages. The difference is that they are
861                  * not on the lru and thus should never be involve with any-
862                  * thing that involve lru manipulation (mlock, numa balancing,
863                  * ...).
864                  *
865                  * This is why we still want to return NULL for such page from
866                  * vm_normal_page() so that we do not have to special case all
867                  * call site of vm_normal_page().
868                  */
869                 if (likely(pfn <= highest_memmap_pfn)) {
870                         struct page *page = pfn_to_page(pfn);
871
872                         if (is_device_public_page(page)) {
873                                 if (with_public_device)
874                                         return page;
875                                 return NULL;
876                         }
877                 }
878                 print_bad_pte(vma, addr, pte, NULL);
879                 return NULL;
880         }
881
882         /* !HAVE_PTE_SPECIAL case follows: */
883
884         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
885                 if (vma->vm_flags & VM_MIXEDMAP) {
886                         if (!pfn_valid(pfn))
887                                 return NULL;
888                         goto out;
889                 } else {
890                         unsigned long off;
891                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
892                         if (pfn == vma->vm_pgoff + off)
893                                 return NULL;
894                         if (!is_cow_mapping(vma->vm_flags))
895                                 return NULL;
896                 }
897         }
898
899         if (is_zero_pfn(pfn))
900                 return NULL;
901 check_pfn:
902         if (unlikely(pfn > highest_memmap_pfn)) {
903                 print_bad_pte(vma, addr, pte, NULL);
904                 return NULL;
905         }
906
907         /*
908          * NOTE! We still have PageReserved() pages in the page tables.
909          * eg. VDSO mappings can cause them to exist.
910          */
911 out:
912         return pfn_to_page(pfn);
913 }
914
915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
916 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
917                                 pmd_t pmd)
918 {
919         unsigned long pfn = pmd_pfn(pmd);
920
921         /*
922          * There is no pmd_special() but there may be special pmds, e.g.
923          * in a direct-access (dax) mapping, so let's just replicate the
924          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
925          */
926         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
927                 if (vma->vm_flags & VM_MIXEDMAP) {
928                         if (!pfn_valid(pfn))
929                                 return NULL;
930                         goto out;
931                 } else {
932                         unsigned long off;
933                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
934                         if (pfn == vma->vm_pgoff + off)
935                                 return NULL;
936                         if (!is_cow_mapping(vma->vm_flags))
937                                 return NULL;
938                 }
939         }
940
941         if (is_zero_pfn(pfn))
942                 return NULL;
943         if (unlikely(pfn > highest_memmap_pfn))
944                 return NULL;
945
946         /*
947          * NOTE! We still have PageReserved() pages in the page tables.
948          * eg. VDSO mappings can cause them to exist.
949          */
950 out:
951         return pfn_to_page(pfn);
952 }
953 #endif
954
955 /*
956  * copy one vm_area from one task to the other. Assumes the page tables
957  * already present in the new task to be cleared in the whole range
958  * covered by this vma.
959  */
960
961 static inline unsigned long
962 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
963                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
964                 unsigned long addr, int *rss)
965 {
966         unsigned long vm_flags = vma->vm_flags;
967         pte_t pte = *src_pte;
968         struct page *page;
969
970         /* pte contains position in swap or file, so copy. */
971         if (unlikely(!pte_present(pte))) {
972                 swp_entry_t entry = pte_to_swp_entry(pte);
973
974                 if (likely(!non_swap_entry(entry))) {
975                         if (swap_duplicate(entry) < 0)
976                                 return entry.val;
977
978                         /* make sure dst_mm is on swapoff's mmlist. */
979                         if (unlikely(list_empty(&dst_mm->mmlist))) {
980                                 spin_lock(&mmlist_lock);
981                                 if (list_empty(&dst_mm->mmlist))
982                                         list_add(&dst_mm->mmlist,
983                                                         &src_mm->mmlist);
984                                 spin_unlock(&mmlist_lock);
985                         }
986                         rss[MM_SWAPENTS]++;
987                 } else if (is_migration_entry(entry)) {
988                         page = migration_entry_to_page(entry);
989
990                         rss[mm_counter(page)]++;
991
992                         if (is_write_migration_entry(entry) &&
993                                         is_cow_mapping(vm_flags)) {
994                                 /*
995                                  * COW mappings require pages in both
996                                  * parent and child to be set to read.
997                                  */
998                                 make_migration_entry_read(&entry);
999                                 pte = swp_entry_to_pte(entry);
1000                                 if (pte_swp_soft_dirty(*src_pte))
1001                                         pte = pte_swp_mksoft_dirty(pte);
1002                                 set_pte_at(src_mm, addr, src_pte, pte);
1003                         }
1004                 } else if (is_device_private_entry(entry)) {
1005                         page = device_private_entry_to_page(entry);
1006
1007                         /*
1008                          * Update rss count even for unaddressable pages, as
1009                          * they should treated just like normal pages in this
1010                          * respect.
1011                          *
1012                          * We will likely want to have some new rss counters
1013                          * for unaddressable pages, at some point. But for now
1014                          * keep things as they are.
1015                          */
1016                         get_page(page);
1017                         rss[mm_counter(page)]++;
1018                         page_dup_rmap(page, false);
1019
1020                         /*
1021                          * We do not preserve soft-dirty information, because so
1022                          * far, checkpoint/restore is the only feature that
1023                          * requires that. And checkpoint/restore does not work
1024                          * when a device driver is involved (you cannot easily
1025                          * save and restore device driver state).
1026                          */
1027                         if (is_write_device_private_entry(entry) &&
1028                             is_cow_mapping(vm_flags)) {
1029                                 make_device_private_entry_read(&entry);
1030                                 pte = swp_entry_to_pte(entry);
1031                                 set_pte_at(src_mm, addr, src_pte, pte);
1032                         }
1033                 }
1034                 goto out_set_pte;
1035         }
1036
1037         /*
1038          * If it's a COW mapping, write protect it both
1039          * in the parent and the child
1040          */
1041         if (is_cow_mapping(vm_flags)) {
1042                 ptep_set_wrprotect(src_mm, addr, src_pte);
1043                 pte = pte_wrprotect(pte);
1044         }
1045
1046         /*
1047          * If it's a shared mapping, mark it clean in
1048          * the child
1049          */
1050         if (vm_flags & VM_SHARED)
1051                 pte = pte_mkclean(pte);
1052         pte = pte_mkold(pte);
1053
1054         page = vm_normal_page(vma, addr, pte);
1055         if (page) {
1056                 get_page(page);
1057                 page_dup_rmap(page, false);
1058                 rss[mm_counter(page)]++;
1059         } else if (pte_devmap(pte)) {
1060                 page = pte_page(pte);
1061
1062                 /*
1063                  * Cache coherent device memory behave like regular page and
1064                  * not like persistent memory page. For more informations see
1065                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1066                  */
1067                 if (is_device_public_page(page)) {
1068                         get_page(page);
1069                         page_dup_rmap(page, false);
1070                         rss[mm_counter(page)]++;
1071                 }
1072         }
1073
1074 out_set_pte:
1075         set_pte_at(dst_mm, addr, dst_pte, pte);
1076         return 0;
1077 }
1078
1079 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1080                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1081                    unsigned long addr, unsigned long end)
1082 {
1083         pte_t *orig_src_pte, *orig_dst_pte;
1084         pte_t *src_pte, *dst_pte;
1085         spinlock_t *src_ptl, *dst_ptl;
1086         int progress = 0;
1087         int rss[NR_MM_COUNTERS];
1088         swp_entry_t entry = (swp_entry_t){0};
1089
1090 again:
1091         init_rss_vec(rss);
1092
1093         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1094         if (!dst_pte)
1095                 return -ENOMEM;
1096         src_pte = pte_offset_map(src_pmd, addr);
1097         src_ptl = pte_lockptr(src_mm, src_pmd);
1098         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1099         orig_src_pte = src_pte;
1100         orig_dst_pte = dst_pte;
1101         arch_enter_lazy_mmu_mode();
1102
1103         do {
1104                 /*
1105                  * We are holding two locks at this point - either of them
1106                  * could generate latencies in another task on another CPU.
1107                  */
1108                 if (progress >= 32) {
1109                         progress = 0;
1110                         if (need_resched() ||
1111                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1112                                 break;
1113                 }
1114                 if (pte_none(*src_pte)) {
1115                         progress++;
1116                         continue;
1117                 }
1118                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1119                                                         vma, addr, rss);
1120                 if (entry.val)
1121                         break;
1122                 progress += 8;
1123         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1124
1125         arch_leave_lazy_mmu_mode();
1126         spin_unlock(src_ptl);
1127         pte_unmap(orig_src_pte);
1128         add_mm_rss_vec(dst_mm, rss);
1129         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1130         cond_resched();
1131
1132         if (entry.val) {
1133                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1134                         return -ENOMEM;
1135                 progress = 0;
1136         }
1137         if (addr != end)
1138                 goto again;
1139         return 0;
1140 }
1141
1142 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1143                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1144                 unsigned long addr, unsigned long end)
1145 {
1146         pmd_t *src_pmd, *dst_pmd;
1147         unsigned long next;
1148
1149         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1150         if (!dst_pmd)
1151                 return -ENOMEM;
1152         src_pmd = pmd_offset(src_pud, addr);
1153         do {
1154                 next = pmd_addr_end(addr, end);
1155                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1156                         || pmd_devmap(*src_pmd)) {
1157                         int err;
1158                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1159                         err = copy_huge_pmd(dst_mm, src_mm,
1160                                             dst_pmd, src_pmd, addr, vma);
1161                         if (err == -ENOMEM)
1162                                 return -ENOMEM;
1163                         if (!err)
1164                                 continue;
1165                         /* fall through */
1166                 }
1167                 if (pmd_none_or_clear_bad(src_pmd))
1168                         continue;
1169                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1170                                                 vma, addr, next))
1171                         return -ENOMEM;
1172         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1173         return 0;
1174 }
1175
1176 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1177                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1178                 unsigned long addr, unsigned long end)
1179 {
1180         pud_t *src_pud, *dst_pud;
1181         unsigned long next;
1182
1183         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1184         if (!dst_pud)
1185                 return -ENOMEM;
1186         src_pud = pud_offset(src_p4d, addr);
1187         do {
1188                 next = pud_addr_end(addr, end);
1189                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1190                         int err;
1191
1192                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1193                         err = copy_huge_pud(dst_mm, src_mm,
1194                                             dst_pud, src_pud, addr, vma);
1195                         if (err == -ENOMEM)
1196                                 return -ENOMEM;
1197                         if (!err)
1198                                 continue;
1199                         /* fall through */
1200                 }
1201                 if (pud_none_or_clear_bad(src_pud))
1202                         continue;
1203                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1204                                                 vma, addr, next))
1205                         return -ENOMEM;
1206         } while (dst_pud++, src_pud++, addr = next, addr != end);
1207         return 0;
1208 }
1209
1210 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1211                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1212                 unsigned long addr, unsigned long end)
1213 {
1214         p4d_t *src_p4d, *dst_p4d;
1215         unsigned long next;
1216
1217         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1218         if (!dst_p4d)
1219                 return -ENOMEM;
1220         src_p4d = p4d_offset(src_pgd, addr);
1221         do {
1222                 next = p4d_addr_end(addr, end);
1223                 if (p4d_none_or_clear_bad(src_p4d))
1224                         continue;
1225                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1226                                                 vma, addr, next))
1227                         return -ENOMEM;
1228         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1229         return 0;
1230 }
1231
1232 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1233                 struct vm_area_struct *vma)
1234 {
1235         pgd_t *src_pgd, *dst_pgd;
1236         unsigned long next;
1237         unsigned long addr = vma->vm_start;
1238         unsigned long end = vma->vm_end;
1239         unsigned long mmun_start;       /* For mmu_notifiers */
1240         unsigned long mmun_end;         /* For mmu_notifiers */
1241         bool is_cow;
1242         int ret;
1243
1244         /*
1245          * Don't copy ptes where a page fault will fill them correctly.
1246          * Fork becomes much lighter when there are big shared or private
1247          * readonly mappings. The tradeoff is that copy_page_range is more
1248          * efficient than faulting.
1249          */
1250         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1251                         !vma->anon_vma)
1252                 return 0;
1253
1254         if (is_vm_hugetlb_page(vma))
1255                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1256
1257         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1258                 /*
1259                  * We do not free on error cases below as remove_vma
1260                  * gets called on error from higher level routine
1261                  */
1262                 ret = track_pfn_copy(vma);
1263                 if (ret)
1264                         return ret;
1265         }
1266
1267         /*
1268          * We need to invalidate the secondary MMU mappings only when
1269          * there could be a permission downgrade on the ptes of the
1270          * parent mm. And a permission downgrade will only happen if
1271          * is_cow_mapping() returns true.
1272          */
1273         is_cow = is_cow_mapping(vma->vm_flags);
1274         mmun_start = addr;
1275         mmun_end   = end;
1276         if (is_cow)
1277                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1278                                                     mmun_end);
1279
1280         ret = 0;
1281         dst_pgd = pgd_offset(dst_mm, addr);
1282         src_pgd = pgd_offset(src_mm, addr);
1283         do {
1284                 next = pgd_addr_end(addr, end);
1285                 if (pgd_none_or_clear_bad(src_pgd))
1286                         continue;
1287                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1288                                             vma, addr, next))) {
1289                         ret = -ENOMEM;
1290                         break;
1291                 }
1292         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1293
1294         if (is_cow)
1295                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1296         return ret;
1297 }
1298
1299 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1300                                 struct vm_area_struct *vma, pmd_t *pmd,
1301                                 unsigned long addr, unsigned long end,
1302                                 struct zap_details *details)
1303 {
1304         struct mm_struct *mm = tlb->mm;
1305         int force_flush = 0;
1306         int rss[NR_MM_COUNTERS];
1307         spinlock_t *ptl;
1308         pte_t *start_pte;
1309         pte_t *pte;
1310         swp_entry_t entry;
1311
1312         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1313 again:
1314         init_rss_vec(rss);
1315         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1316         pte = start_pte;
1317         flush_tlb_batched_pending(mm);
1318         arch_enter_lazy_mmu_mode();
1319         do {
1320                 pte_t ptent = *pte;
1321                 if (pte_none(ptent))
1322                         continue;
1323
1324                 if (pte_present(ptent)) {
1325                         struct page *page;
1326
1327                         page = _vm_normal_page(vma, addr, ptent, true);
1328                         if (unlikely(details) && page) {
1329                                 /*
1330                                  * unmap_shared_mapping_pages() wants to
1331                                  * invalidate cache without truncating:
1332                                  * unmap shared but keep private pages.
1333                                  */
1334                                 if (details->check_mapping &&
1335                                     details->check_mapping != page_rmapping(page))
1336                                         continue;
1337                         }
1338                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1339                                                         tlb->fullmm);
1340                         tlb_remove_tlb_entry(tlb, pte, addr);
1341                         if (unlikely(!page))
1342                                 continue;
1343
1344                         if (!PageAnon(page)) {
1345                                 if (pte_dirty(ptent)) {
1346                                         force_flush = 1;
1347                                         set_page_dirty(page);
1348                                 }
1349                                 if (pte_young(ptent) &&
1350                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1351                                         mark_page_accessed(page);
1352                         }
1353                         rss[mm_counter(page)]--;
1354                         page_remove_rmap(page, false);
1355                         if (unlikely(page_mapcount(page) < 0))
1356                                 print_bad_pte(vma, addr, ptent, page);
1357                         if (unlikely(__tlb_remove_page(tlb, page))) {
1358                                 force_flush = 1;
1359                                 addr += PAGE_SIZE;
1360                                 break;
1361                         }
1362                         continue;
1363                 }
1364
1365                 entry = pte_to_swp_entry(ptent);
1366                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1367                         struct page *page = device_private_entry_to_page(entry);
1368
1369                         if (unlikely(details && details->check_mapping)) {
1370                                 /*
1371                                  * unmap_shared_mapping_pages() wants to
1372                                  * invalidate cache without truncating:
1373                                  * unmap shared but keep private pages.
1374                                  */
1375                                 if (details->check_mapping !=
1376                                     page_rmapping(page))
1377                                         continue;
1378                         }
1379
1380                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1381                         rss[mm_counter(page)]--;
1382                         page_remove_rmap(page, false);
1383                         put_page(page);
1384                         continue;
1385                 }
1386
1387                 /* If details->check_mapping, we leave swap entries. */
1388                 if (unlikely(details))
1389                         continue;
1390
1391                 entry = pte_to_swp_entry(ptent);
1392                 if (!non_swap_entry(entry))
1393                         rss[MM_SWAPENTS]--;
1394                 else if (is_migration_entry(entry)) {
1395                         struct page *page;
1396
1397                         page = migration_entry_to_page(entry);
1398                         rss[mm_counter(page)]--;
1399                 }
1400                 if (unlikely(!free_swap_and_cache(entry)))
1401                         print_bad_pte(vma, addr, ptent, NULL);
1402                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1403         } while (pte++, addr += PAGE_SIZE, addr != end);
1404
1405         add_mm_rss_vec(mm, rss);
1406         arch_leave_lazy_mmu_mode();
1407
1408         /* Do the actual TLB flush before dropping ptl */
1409         if (force_flush)
1410                 tlb_flush_mmu_tlbonly(tlb);
1411         pte_unmap_unlock(start_pte, ptl);
1412
1413         /*
1414          * If we forced a TLB flush (either due to running out of
1415          * batch buffers or because we needed to flush dirty TLB
1416          * entries before releasing the ptl), free the batched
1417          * memory too. Restart if we didn't do everything.
1418          */
1419         if (force_flush) {
1420                 force_flush = 0;
1421                 tlb_flush_mmu_free(tlb);
1422                 if (addr != end)
1423                         goto again;
1424         }
1425
1426         return addr;
1427 }
1428
1429 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1430                                 struct vm_area_struct *vma, pud_t *pud,
1431                                 unsigned long addr, unsigned long end,
1432                                 struct zap_details *details)
1433 {
1434         pmd_t *pmd;
1435         unsigned long next;
1436
1437         pmd = pmd_offset(pud, addr);
1438         do {
1439                 next = pmd_addr_end(addr, end);
1440                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1441                         if (next - addr != HPAGE_PMD_SIZE)
1442                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1443                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1444                                 goto next;
1445                         /* fall through */
1446                 }
1447                 /*
1448                  * Here there can be other concurrent MADV_DONTNEED or
1449                  * trans huge page faults running, and if the pmd is
1450                  * none or trans huge it can change under us. This is
1451                  * because MADV_DONTNEED holds the mmap_sem in read
1452                  * mode.
1453                  */
1454                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1455                         goto next;
1456                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1457 next:
1458                 cond_resched();
1459         } while (pmd++, addr = next, addr != end);
1460
1461         return addr;
1462 }
1463
1464 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1465                                 struct vm_area_struct *vma, p4d_t *p4d,
1466                                 unsigned long addr, unsigned long end,
1467                                 struct zap_details *details)
1468 {
1469         pud_t *pud;
1470         unsigned long next;
1471
1472         pud = pud_offset(p4d, addr);
1473         do {
1474                 next = pud_addr_end(addr, end);
1475                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1476                         if (next - addr != HPAGE_PUD_SIZE) {
1477                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1478                                 split_huge_pud(vma, pud, addr);
1479                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1480                                 goto next;
1481                         /* fall through */
1482                 }
1483                 if (pud_none_or_clear_bad(pud))
1484                         continue;
1485                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1486 next:
1487                 cond_resched();
1488         } while (pud++, addr = next, addr != end);
1489
1490         return addr;
1491 }
1492
1493 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1494                                 struct vm_area_struct *vma, pgd_t *pgd,
1495                                 unsigned long addr, unsigned long end,
1496                                 struct zap_details *details)
1497 {
1498         p4d_t *p4d;
1499         unsigned long next;
1500
1501         p4d = p4d_offset(pgd, addr);
1502         do {
1503                 next = p4d_addr_end(addr, end);
1504                 if (p4d_none_or_clear_bad(p4d))
1505                         continue;
1506                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1507         } while (p4d++, addr = next, addr != end);
1508
1509         return addr;
1510 }
1511
1512 void unmap_page_range(struct mmu_gather *tlb,
1513                              struct vm_area_struct *vma,
1514                              unsigned long addr, unsigned long end,
1515                              struct zap_details *details)
1516 {
1517         pgd_t *pgd;
1518         unsigned long next;
1519
1520         BUG_ON(addr >= end);
1521         tlb_start_vma(tlb, vma);
1522         pgd = pgd_offset(vma->vm_mm, addr);
1523         do {
1524                 next = pgd_addr_end(addr, end);
1525                 if (pgd_none_or_clear_bad(pgd))
1526                         continue;
1527                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1528         } while (pgd++, addr = next, addr != end);
1529         tlb_end_vma(tlb, vma);
1530 }
1531
1532
1533 static void unmap_single_vma(struct mmu_gather *tlb,
1534                 struct vm_area_struct *vma, unsigned long start_addr,
1535                 unsigned long end_addr,
1536                 struct zap_details *details)
1537 {
1538         unsigned long start = max(vma->vm_start, start_addr);
1539         unsigned long end;
1540
1541         if (start >= vma->vm_end)
1542                 return;
1543         end = min(vma->vm_end, end_addr);
1544         if (end <= vma->vm_start)
1545                 return;
1546
1547         if (vma->vm_file)
1548                 uprobe_munmap(vma, start, end);
1549
1550         if (unlikely(vma->vm_flags & VM_PFNMAP))
1551                 untrack_pfn(vma, 0, 0);
1552
1553         if (start != end) {
1554                 if (unlikely(is_vm_hugetlb_page(vma))) {
1555                         /*
1556                          * It is undesirable to test vma->vm_file as it
1557                          * should be non-null for valid hugetlb area.
1558                          * However, vm_file will be NULL in the error
1559                          * cleanup path of mmap_region. When
1560                          * hugetlbfs ->mmap method fails,
1561                          * mmap_region() nullifies vma->vm_file
1562                          * before calling this function to clean up.
1563                          * Since no pte has actually been setup, it is
1564                          * safe to do nothing in this case.
1565                          */
1566                         if (vma->vm_file) {
1567                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1568                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1569                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1570                         }
1571                 } else
1572                         unmap_page_range(tlb, vma, start, end, details);
1573         }
1574 }
1575
1576 /**
1577  * unmap_vmas - unmap a range of memory covered by a list of vma's
1578  * @tlb: address of the caller's struct mmu_gather
1579  * @vma: the starting vma
1580  * @start_addr: virtual address at which to start unmapping
1581  * @end_addr: virtual address at which to end unmapping
1582  *
1583  * Unmap all pages in the vma list.
1584  *
1585  * Only addresses between `start' and `end' will be unmapped.
1586  *
1587  * The VMA list must be sorted in ascending virtual address order.
1588  *
1589  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1590  * range after unmap_vmas() returns.  So the only responsibility here is to
1591  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1592  * drops the lock and schedules.
1593  */
1594 void unmap_vmas(struct mmu_gather *tlb,
1595                 struct vm_area_struct *vma, unsigned long start_addr,
1596                 unsigned long end_addr)
1597 {
1598         struct mm_struct *mm = vma->vm_mm;
1599
1600         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1601         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1602                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1603         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1604 }
1605
1606 /**
1607  * zap_page_range - remove user pages in a given range
1608  * @vma: vm_area_struct holding the applicable pages
1609  * @start: starting address of pages to zap
1610  * @size: number of bytes to zap
1611  *
1612  * Caller must protect the VMA list
1613  */
1614 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1615                 unsigned long size)
1616 {
1617         struct mm_struct *mm = vma->vm_mm;
1618         struct mmu_gather tlb;
1619         unsigned long end = start + size;
1620
1621         lru_add_drain();
1622         tlb_gather_mmu(&tlb, mm, start, end);
1623         update_hiwater_rss(mm);
1624         mmu_notifier_invalidate_range_start(mm, start, end);
1625         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1626                 unmap_single_vma(&tlb, vma, start, end, NULL);
1627
1628                 /*
1629                  * zap_page_range does not specify whether mmap_sem should be
1630                  * held for read or write. That allows parallel zap_page_range
1631                  * operations to unmap a PTE and defer a flush meaning that
1632                  * this call observes pte_none and fails to flush the TLB.
1633                  * Rather than adding a complex API, ensure that no stale
1634                  * TLB entries exist when this call returns.
1635                  */
1636                 flush_tlb_range(vma, start, end);
1637         }
1638
1639         mmu_notifier_invalidate_range_end(mm, start, end);
1640         tlb_finish_mmu(&tlb, start, end);
1641 }
1642
1643 /**
1644  * zap_page_range_single - remove user pages in a given range
1645  * @vma: vm_area_struct holding the applicable pages
1646  * @address: starting address of pages to zap
1647  * @size: number of bytes to zap
1648  * @details: details of shared cache invalidation
1649  *
1650  * The range must fit into one VMA.
1651  */
1652 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1653                 unsigned long size, struct zap_details *details)
1654 {
1655         struct mm_struct *mm = vma->vm_mm;
1656         struct mmu_gather tlb;
1657         unsigned long end = address + size;
1658
1659         lru_add_drain();
1660         tlb_gather_mmu(&tlb, mm, address, end);
1661         update_hiwater_rss(mm);
1662         mmu_notifier_invalidate_range_start(mm, address, end);
1663         unmap_single_vma(&tlb, vma, address, end, details);
1664         mmu_notifier_invalidate_range_end(mm, address, end);
1665         tlb_finish_mmu(&tlb, address, end);
1666 }
1667
1668 /**
1669  * zap_vma_ptes - remove ptes mapping the vma
1670  * @vma: vm_area_struct holding ptes to be zapped
1671  * @address: starting address of pages to zap
1672  * @size: number of bytes to zap
1673  *
1674  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1675  *
1676  * The entire address range must be fully contained within the vma.
1677  *
1678  * Returns 0 if successful.
1679  */
1680 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1681                 unsigned long size)
1682 {
1683         if (address < vma->vm_start || address + size > vma->vm_end ||
1684                         !(vma->vm_flags & VM_PFNMAP))
1685                 return -1;
1686         zap_page_range_single(vma, address, size, NULL);
1687         return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1690
1691 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1692                         spinlock_t **ptl)
1693 {
1694         pgd_t *pgd;
1695         p4d_t *p4d;
1696         pud_t *pud;
1697         pmd_t *pmd;
1698
1699         pgd = pgd_offset(mm, addr);
1700         p4d = p4d_alloc(mm, pgd, addr);
1701         if (!p4d)
1702                 return NULL;
1703         pud = pud_alloc(mm, p4d, addr);
1704         if (!pud)
1705                 return NULL;
1706         pmd = pmd_alloc(mm, pud, addr);
1707         if (!pmd)
1708                 return NULL;
1709
1710         VM_BUG_ON(pmd_trans_huge(*pmd));
1711         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1712 }
1713
1714 /*
1715  * This is the old fallback for page remapping.
1716  *
1717  * For historical reasons, it only allows reserved pages. Only
1718  * old drivers should use this, and they needed to mark their
1719  * pages reserved for the old functions anyway.
1720  */
1721 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1722                         struct page *page, pgprot_t prot)
1723 {
1724         struct mm_struct *mm = vma->vm_mm;
1725         int retval;
1726         pte_t *pte;
1727         spinlock_t *ptl;
1728
1729         retval = -EINVAL;
1730         if (PageAnon(page))
1731                 goto out;
1732         retval = -ENOMEM;
1733         flush_dcache_page(page);
1734         pte = get_locked_pte(mm, addr, &ptl);
1735         if (!pte)
1736                 goto out;
1737         retval = -EBUSY;
1738         if (!pte_none(*pte))
1739                 goto out_unlock;
1740
1741         /* Ok, finally just insert the thing.. */
1742         get_page(page);
1743         inc_mm_counter_fast(mm, mm_counter_file(page));
1744         page_add_file_rmap(page, false);
1745         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1746
1747         retval = 0;
1748         pte_unmap_unlock(pte, ptl);
1749         return retval;
1750 out_unlock:
1751         pte_unmap_unlock(pte, ptl);
1752 out:
1753         return retval;
1754 }
1755
1756 /**
1757  * vm_insert_page - insert single page into user vma
1758  * @vma: user vma to map to
1759  * @addr: target user address of this page
1760  * @page: source kernel page
1761  *
1762  * This allows drivers to insert individual pages they've allocated
1763  * into a user vma.
1764  *
1765  * The page has to be a nice clean _individual_ kernel allocation.
1766  * If you allocate a compound page, you need to have marked it as
1767  * such (__GFP_COMP), or manually just split the page up yourself
1768  * (see split_page()).
1769  *
1770  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1771  * took an arbitrary page protection parameter. This doesn't allow
1772  * that. Your vma protection will have to be set up correctly, which
1773  * means that if you want a shared writable mapping, you'd better
1774  * ask for a shared writable mapping!
1775  *
1776  * The page does not need to be reserved.
1777  *
1778  * Usually this function is called from f_op->mmap() handler
1779  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1780  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1781  * function from other places, for example from page-fault handler.
1782  */
1783 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1784                         struct page *page)
1785 {
1786         if (addr < vma->vm_start || addr >= vma->vm_end)
1787                 return -EFAULT;
1788         if (!page_count(page))
1789                 return -EINVAL;
1790         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1791                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1792                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1793                 vma->vm_flags |= VM_MIXEDMAP;
1794         }
1795         return insert_page(vma, addr, page, vma->vm_page_prot);
1796 }
1797 EXPORT_SYMBOL(vm_insert_page);
1798
1799 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1800                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1801 {
1802         struct mm_struct *mm = vma->vm_mm;
1803         int retval;
1804         pte_t *pte, entry;
1805         spinlock_t *ptl;
1806
1807         retval = -ENOMEM;
1808         pte = get_locked_pte(mm, addr, &ptl);
1809         if (!pte)
1810                 goto out;
1811         retval = -EBUSY;
1812         if (!pte_none(*pte)) {
1813                 if (mkwrite) {
1814                         /*
1815                          * For read faults on private mappings the PFN passed
1816                          * in may not match the PFN we have mapped if the
1817                          * mapped PFN is a writeable COW page.  In the mkwrite
1818                          * case we are creating a writable PTE for a shared
1819                          * mapping and we expect the PFNs to match. If they
1820                          * don't match, we are likely racing with block
1821                          * allocation and mapping invalidation so just skip the
1822                          * update.
1823                          */
1824                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1825                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1826                                 goto out_unlock;
1827                         }
1828                         entry = pte_mkyoung(*pte);
1829                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1830                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1831                                 update_mmu_cache(vma, addr, pte);
1832                 }
1833                 goto out_unlock;
1834         }
1835
1836         /* Ok, finally just insert the thing.. */
1837         if (pfn_t_devmap(pfn))
1838                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1839         else
1840                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1841
1842         if (mkwrite) {
1843                 entry = pte_mkyoung(entry);
1844                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1845         }
1846
1847         set_pte_at(mm, addr, pte, entry);
1848         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1849
1850         retval = 0;
1851 out_unlock:
1852         pte_unmap_unlock(pte, ptl);
1853 out:
1854         return retval;
1855 }
1856
1857 /**
1858  * vm_insert_pfn - insert single pfn into user vma
1859  * @vma: user vma to map to
1860  * @addr: target user address of this page
1861  * @pfn: source kernel pfn
1862  *
1863  * Similar to vm_insert_page, this allows drivers to insert individual pages
1864  * they've allocated into a user vma. Same comments apply.
1865  *
1866  * This function should only be called from a vm_ops->fault handler, and
1867  * in that case the handler should return NULL.
1868  *
1869  * vma cannot be a COW mapping.
1870  *
1871  * As this is called only for pages that do not currently exist, we
1872  * do not need to flush old virtual caches or the TLB.
1873  */
1874 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1875                         unsigned long pfn)
1876 {
1877         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1878 }
1879 EXPORT_SYMBOL(vm_insert_pfn);
1880
1881 /**
1882  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1883  * @vma: user vma to map to
1884  * @addr: target user address of this page
1885  * @pfn: source kernel pfn
1886  * @pgprot: pgprot flags for the inserted page
1887  *
1888  * This is exactly like vm_insert_pfn, except that it allows drivers to
1889  * to override pgprot on a per-page basis.
1890  *
1891  * This only makes sense for IO mappings, and it makes no sense for
1892  * cow mappings.  In general, using multiple vmas is preferable;
1893  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1894  * impractical.
1895  */
1896 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1897                         unsigned long pfn, pgprot_t pgprot)
1898 {
1899         int ret;
1900         /*
1901          * Technically, architectures with pte_special can avoid all these
1902          * restrictions (same for remap_pfn_range).  However we would like
1903          * consistency in testing and feature parity among all, so we should
1904          * try to keep these invariants in place for everybody.
1905          */
1906         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1907         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1908                                                 (VM_PFNMAP|VM_MIXEDMAP));
1909         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1910         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1911
1912         if (addr < vma->vm_start || addr >= vma->vm_end)
1913                 return -EFAULT;
1914
1915         if (!pfn_modify_allowed(pfn, pgprot))
1916                 return -EACCES;
1917
1918         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1919
1920         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1921                         false);
1922
1923         return ret;
1924 }
1925 EXPORT_SYMBOL(vm_insert_pfn_prot);
1926
1927 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1928                         pfn_t pfn, bool mkwrite)
1929 {
1930         pgprot_t pgprot = vma->vm_page_prot;
1931
1932         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1933
1934         if (addr < vma->vm_start || addr >= vma->vm_end)
1935                 return -EFAULT;
1936
1937         track_pfn_insert(vma, &pgprot, pfn);
1938
1939         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1940                 return -EACCES;
1941
1942         /*
1943          * If we don't have pte special, then we have to use the pfn_valid()
1944          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1945          * refcount the page if pfn_valid is true (hence insert_page rather
1946          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1947          * without pte special, it would there be refcounted as a normal page.
1948          */
1949         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1950                 struct page *page;
1951
1952                 /*
1953                  * At this point we are committed to insert_page()
1954                  * regardless of whether the caller specified flags that
1955                  * result in pfn_t_has_page() == false.
1956                  */
1957                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1958                 return insert_page(vma, addr, page, pgprot);
1959         }
1960         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1961 }
1962
1963 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1964                         pfn_t pfn)
1965 {
1966         return __vm_insert_mixed(vma, addr, pfn, false);
1967
1968 }
1969 EXPORT_SYMBOL(vm_insert_mixed);
1970
1971 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1972                         pfn_t pfn)
1973 {
1974         return __vm_insert_mixed(vma, addr, pfn, true);
1975 }
1976 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1977
1978 /*
1979  * maps a range of physical memory into the requested pages. the old
1980  * mappings are removed. any references to nonexistent pages results
1981  * in null mappings (currently treated as "copy-on-access")
1982  */
1983 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1984                         unsigned long addr, unsigned long end,
1985                         unsigned long pfn, pgprot_t prot)
1986 {
1987         pte_t *pte, *mapped_pte;
1988         spinlock_t *ptl;
1989         int err = 0;
1990
1991         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1992         if (!pte)
1993                 return -ENOMEM;
1994         arch_enter_lazy_mmu_mode();
1995         do {
1996                 BUG_ON(!pte_none(*pte));
1997                 if (!pfn_modify_allowed(pfn, prot)) {
1998                         err = -EACCES;
1999                         break;
2000                 }
2001                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2002                 pfn++;
2003         } while (pte++, addr += PAGE_SIZE, addr != end);
2004         arch_leave_lazy_mmu_mode();
2005         pte_unmap_unlock(mapped_pte, ptl);
2006         return err;
2007 }
2008
2009 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2010                         unsigned long addr, unsigned long end,
2011                         unsigned long pfn, pgprot_t prot)
2012 {
2013         pmd_t *pmd;
2014         unsigned long next;
2015         int err;
2016
2017         pfn -= addr >> PAGE_SHIFT;
2018         pmd = pmd_alloc(mm, pud, addr);
2019         if (!pmd)
2020                 return -ENOMEM;
2021         VM_BUG_ON(pmd_trans_huge(*pmd));
2022         do {
2023                 next = pmd_addr_end(addr, end);
2024                 err = remap_pte_range(mm, pmd, addr, next,
2025                                 pfn + (addr >> PAGE_SHIFT), prot);
2026                 if (err)
2027                         return err;
2028         } while (pmd++, addr = next, addr != end);
2029         return 0;
2030 }
2031
2032 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2033                         unsigned long addr, unsigned long end,
2034                         unsigned long pfn, pgprot_t prot)
2035 {
2036         pud_t *pud;
2037         unsigned long next;
2038         int err;
2039
2040         pfn -= addr >> PAGE_SHIFT;
2041         pud = pud_alloc(mm, p4d, addr);
2042         if (!pud)
2043                 return -ENOMEM;
2044         do {
2045                 next = pud_addr_end(addr, end);
2046                 err = remap_pmd_range(mm, pud, addr, next,
2047                                 pfn + (addr >> PAGE_SHIFT), prot);
2048                 if (err)
2049                         return err;
2050         } while (pud++, addr = next, addr != end);
2051         return 0;
2052 }
2053
2054 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2055                         unsigned long addr, unsigned long end,
2056                         unsigned long pfn, pgprot_t prot)
2057 {
2058         p4d_t *p4d;
2059         unsigned long next;
2060         int err;
2061
2062         pfn -= addr >> PAGE_SHIFT;
2063         p4d = p4d_alloc(mm, pgd, addr);
2064         if (!p4d)
2065                 return -ENOMEM;
2066         do {
2067                 next = p4d_addr_end(addr, end);
2068                 err = remap_pud_range(mm, p4d, addr, next,
2069                                 pfn + (addr >> PAGE_SHIFT), prot);
2070                 if (err)
2071                         return err;
2072         } while (p4d++, addr = next, addr != end);
2073         return 0;
2074 }
2075
2076 /**
2077  * remap_pfn_range - remap kernel memory to userspace
2078  * @vma: user vma to map to
2079  * @addr: target user address to start at
2080  * @pfn: physical address of kernel memory
2081  * @size: size of map area
2082  * @prot: page protection flags for this mapping
2083  *
2084  *  Note: this is only safe if the mm semaphore is held when called.
2085  */
2086 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2087                     unsigned long pfn, unsigned long size, pgprot_t prot)
2088 {
2089         pgd_t *pgd;
2090         unsigned long next;
2091         unsigned long end = addr + PAGE_ALIGN(size);
2092         struct mm_struct *mm = vma->vm_mm;
2093         unsigned long remap_pfn = pfn;
2094         int err;
2095
2096         /*
2097          * Physically remapped pages are special. Tell the
2098          * rest of the world about it:
2099          *   VM_IO tells people not to look at these pages
2100          *      (accesses can have side effects).
2101          *   VM_PFNMAP tells the core MM that the base pages are just
2102          *      raw PFN mappings, and do not have a "struct page" associated
2103          *      with them.
2104          *   VM_DONTEXPAND
2105          *      Disable vma merging and expanding with mremap().
2106          *   VM_DONTDUMP
2107          *      Omit vma from core dump, even when VM_IO turned off.
2108          *
2109          * There's a horrible special case to handle copy-on-write
2110          * behaviour that some programs depend on. We mark the "original"
2111          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2112          * See vm_normal_page() for details.
2113          */
2114         if (is_cow_mapping(vma->vm_flags)) {
2115                 if (addr != vma->vm_start || end != vma->vm_end)
2116                         return -EINVAL;
2117                 vma->vm_pgoff = pfn;
2118         }
2119
2120         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2121         if (err)
2122                 return -EINVAL;
2123
2124         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2125
2126         BUG_ON(addr >= end);
2127         pfn -= addr >> PAGE_SHIFT;
2128         pgd = pgd_offset(mm, addr);
2129         flush_cache_range(vma, addr, end);
2130         do {
2131                 next = pgd_addr_end(addr, end);
2132                 err = remap_p4d_range(mm, pgd, addr, next,
2133                                 pfn + (addr >> PAGE_SHIFT), prot);
2134                 if (err)
2135                         break;
2136         } while (pgd++, addr = next, addr != end);
2137
2138         if (err)
2139                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2140
2141         return err;
2142 }
2143 EXPORT_SYMBOL(remap_pfn_range);
2144
2145 /**
2146  * vm_iomap_memory - remap memory to userspace
2147  * @vma: user vma to map to
2148  * @start: start of area
2149  * @len: size of area
2150  *
2151  * This is a simplified io_remap_pfn_range() for common driver use. The
2152  * driver just needs to give us the physical memory range to be mapped,
2153  * we'll figure out the rest from the vma information.
2154  *
2155  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2156  * whatever write-combining details or similar.
2157  */
2158 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2159 {
2160         unsigned long vm_len, pfn, pages;
2161
2162         /* Check that the physical memory area passed in looks valid */
2163         if (start + len < start)
2164                 return -EINVAL;
2165         /*
2166          * You *really* shouldn't map things that aren't page-aligned,
2167          * but we've historically allowed it because IO memory might
2168          * just have smaller alignment.
2169          */
2170         len += start & ~PAGE_MASK;
2171         pfn = start >> PAGE_SHIFT;
2172         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2173         if (pfn + pages < pfn)
2174                 return -EINVAL;
2175
2176         /* We start the mapping 'vm_pgoff' pages into the area */
2177         if (vma->vm_pgoff > pages)
2178                 return -EINVAL;
2179         pfn += vma->vm_pgoff;
2180         pages -= vma->vm_pgoff;
2181
2182         /* Can we fit all of the mapping? */
2183         vm_len = vma->vm_end - vma->vm_start;
2184         if (vm_len >> PAGE_SHIFT > pages)
2185                 return -EINVAL;
2186
2187         /* Ok, let it rip */
2188         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2189 }
2190 EXPORT_SYMBOL(vm_iomap_memory);
2191
2192 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2193                                      unsigned long addr, unsigned long end,
2194                                      pte_fn_t fn, void *data)
2195 {
2196         pte_t *pte;
2197         int err;
2198         pgtable_t token;
2199         spinlock_t *uninitialized_var(ptl);
2200
2201         pte = (mm == &init_mm) ?
2202                 pte_alloc_kernel(pmd, addr) :
2203                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2204         if (!pte)
2205                 return -ENOMEM;
2206
2207         BUG_ON(pmd_huge(*pmd));
2208
2209         arch_enter_lazy_mmu_mode();
2210
2211         token = pmd_pgtable(*pmd);
2212
2213         do {
2214                 err = fn(pte++, token, addr, data);
2215                 if (err)
2216                         break;
2217         } while (addr += PAGE_SIZE, addr != end);
2218
2219         arch_leave_lazy_mmu_mode();
2220
2221         if (mm != &init_mm)
2222                 pte_unmap_unlock(pte-1, ptl);
2223         return err;
2224 }
2225
2226 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2227                                      unsigned long addr, unsigned long end,
2228                                      pte_fn_t fn, void *data)
2229 {
2230         pmd_t *pmd;
2231         unsigned long next;
2232         int err;
2233
2234         BUG_ON(pud_huge(*pud));
2235
2236         pmd = pmd_alloc(mm, pud, addr);
2237         if (!pmd)
2238                 return -ENOMEM;
2239         do {
2240                 next = pmd_addr_end(addr, end);
2241                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2242                 if (err)
2243                         break;
2244         } while (pmd++, addr = next, addr != end);
2245         return err;
2246 }
2247
2248 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2249                                      unsigned long addr, unsigned long end,
2250                                      pte_fn_t fn, void *data)
2251 {
2252         pud_t *pud;
2253         unsigned long next;
2254         int err;
2255
2256         pud = pud_alloc(mm, p4d, addr);
2257         if (!pud)
2258                 return -ENOMEM;
2259         do {
2260                 next = pud_addr_end(addr, end);
2261                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2262                 if (err)
2263                         break;
2264         } while (pud++, addr = next, addr != end);
2265         return err;
2266 }
2267
2268 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2269                                      unsigned long addr, unsigned long end,
2270                                      pte_fn_t fn, void *data)
2271 {
2272         p4d_t *p4d;
2273         unsigned long next;
2274         int err;
2275
2276         p4d = p4d_alloc(mm, pgd, addr);
2277         if (!p4d)
2278                 return -ENOMEM;
2279         do {
2280                 next = p4d_addr_end(addr, end);
2281                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2282                 if (err)
2283                         break;
2284         } while (p4d++, addr = next, addr != end);
2285         return err;
2286 }
2287
2288 /*
2289  * Scan a region of virtual memory, filling in page tables as necessary
2290  * and calling a provided function on each leaf page table.
2291  */
2292 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2293                         unsigned long size, pte_fn_t fn, void *data)
2294 {
2295         pgd_t *pgd;
2296         unsigned long next;
2297         unsigned long end = addr + size;
2298         int err;
2299
2300         if (WARN_ON(addr >= end))
2301                 return -EINVAL;
2302
2303         pgd = pgd_offset(mm, addr);
2304         do {
2305                 next = pgd_addr_end(addr, end);
2306                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2307                 if (err)
2308                         break;
2309         } while (pgd++, addr = next, addr != end);
2310
2311         return err;
2312 }
2313 EXPORT_SYMBOL_GPL(apply_to_page_range);
2314
2315 /*
2316  * handle_pte_fault chooses page fault handler according to an entry which was
2317  * read non-atomically.  Before making any commitment, on those architectures
2318  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2319  * parts, do_swap_page must check under lock before unmapping the pte and
2320  * proceeding (but do_wp_page is only called after already making such a check;
2321  * and do_anonymous_page can safely check later on).
2322  */
2323 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2324                                 pte_t *page_table, pte_t orig_pte)
2325 {
2326         int same = 1;
2327 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2328         if (sizeof(pte_t) > sizeof(unsigned long)) {
2329                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2330                 spin_lock(ptl);
2331                 same = pte_same(*page_table, orig_pte);
2332                 spin_unlock(ptl);
2333         }
2334 #endif
2335         pte_unmap(page_table);
2336         return same;
2337 }
2338
2339 static inline bool cow_user_page(struct page *dst, struct page *src,
2340                                  struct vm_fault *vmf)
2341 {
2342         bool ret;
2343         void *kaddr;
2344         void __user *uaddr;
2345         bool locked = false;
2346         struct vm_area_struct *vma = vmf->vma;
2347         struct mm_struct *mm = vma->vm_mm;
2348         unsigned long addr = vmf->address;
2349
2350         debug_dma_assert_idle(src);
2351
2352         if (likely(src)) {
2353                 copy_user_highpage(dst, src, addr, vma);
2354                 return true;
2355         }
2356
2357         /*
2358          * If the source page was a PFN mapping, we don't have
2359          * a "struct page" for it. We do a best-effort copy by
2360          * just copying from the original user address. If that
2361          * fails, we just zero-fill it. Live with it.
2362          */
2363         kaddr = kmap_atomic(dst);
2364         uaddr = (void __user *)(addr & PAGE_MASK);
2365
2366         /*
2367          * On architectures with software "accessed" bits, we would
2368          * take a double page fault, so mark it accessed here.
2369          */
2370         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2371                 pte_t entry;
2372
2373                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2374                 locked = true;
2375                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2376                         /*
2377                          * Other thread has already handled the fault
2378                          * and we don't need to do anything. If it's
2379                          * not the case, the fault will be triggered
2380                          * again on the same address.
2381                          */
2382                         ret = false;
2383                         goto pte_unlock;
2384                 }
2385
2386                 entry = pte_mkyoung(vmf->orig_pte);
2387                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2388                         update_mmu_cache(vma, addr, vmf->pte);
2389         }
2390
2391         /*
2392          * This really shouldn't fail, because the page is there
2393          * in the page tables. But it might just be unreadable,
2394          * in which case we just give up and fill the result with
2395          * zeroes.
2396          */
2397         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2398                 if (locked)
2399                         goto warn;
2400
2401                 /* Re-validate under PTL if the page is still mapped */
2402                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2403                 locked = true;
2404                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2405                         /* The PTE changed under us. Retry page fault. */
2406                         ret = false;
2407                         goto pte_unlock;
2408                 }
2409
2410                 /*
2411                  * The same page can be mapped back since last copy attampt.
2412                  * Try to copy again under PTL.
2413                  */
2414                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2415                         /*
2416                          * Give a warn in case there can be some obscure
2417                          * use-case
2418                          */
2419 warn:
2420                         WARN_ON_ONCE(1);
2421                         clear_page(kaddr);
2422                 }
2423         }
2424
2425         ret = true;
2426
2427 pte_unlock:
2428         if (locked)
2429                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2430         kunmap_atomic(kaddr);
2431         flush_dcache_page(dst);
2432
2433         return ret;
2434 }
2435
2436 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2437 {
2438         struct file *vm_file = vma->vm_file;
2439
2440         if (vm_file)
2441                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2442
2443         /*
2444          * Special mappings (e.g. VDSO) do not have any file so fake
2445          * a default GFP_KERNEL for them.
2446          */
2447         return GFP_KERNEL;
2448 }
2449
2450 /*
2451  * Notify the address space that the page is about to become writable so that
2452  * it can prohibit this or wait for the page to get into an appropriate state.
2453  *
2454  * We do this without the lock held, so that it can sleep if it needs to.
2455  */
2456 static int do_page_mkwrite(struct vm_fault *vmf)
2457 {
2458         int ret;
2459         struct page *page = vmf->page;
2460         unsigned int old_flags = vmf->flags;
2461
2462         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2463
2464         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2465         /* Restore original flags so that caller is not surprised */
2466         vmf->flags = old_flags;
2467         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2468                 return ret;
2469         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2470                 lock_page(page);
2471                 if (!page->mapping) {
2472                         unlock_page(page);
2473                         return 0; /* retry */
2474                 }
2475                 ret |= VM_FAULT_LOCKED;
2476         } else
2477                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2478         return ret;
2479 }
2480
2481 /*
2482  * Handle dirtying of a page in shared file mapping on a write fault.
2483  *
2484  * The function expects the page to be locked and unlocks it.
2485  */
2486 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2487                                     struct page *page)
2488 {
2489         struct address_space *mapping;
2490         bool dirtied;
2491         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2492
2493         dirtied = set_page_dirty(page);
2494         VM_BUG_ON_PAGE(PageAnon(page), page);
2495         /*
2496          * Take a local copy of the address_space - page.mapping may be zeroed
2497          * by truncate after unlock_page().   The address_space itself remains
2498          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2499          * release semantics to prevent the compiler from undoing this copying.
2500          */
2501         mapping = page_rmapping(page);
2502         unlock_page(page);
2503
2504         if ((dirtied || page_mkwrite) && mapping) {
2505                 /*
2506                  * Some device drivers do not set page.mapping
2507                  * but still dirty their pages
2508                  */
2509                 balance_dirty_pages_ratelimited(mapping);
2510         }
2511
2512         if (!page_mkwrite)
2513                 file_update_time(vma->vm_file);
2514 }
2515
2516 /*
2517  * Handle write page faults for pages that can be reused in the current vma
2518  *
2519  * This can happen either due to the mapping being with the VM_SHARED flag,
2520  * or due to us being the last reference standing to the page. In either
2521  * case, all we need to do here is to mark the page as writable and update
2522  * any related book-keeping.
2523  */
2524 static inline void wp_page_reuse(struct vm_fault *vmf)
2525         __releases(vmf->ptl)
2526 {
2527         struct vm_area_struct *vma = vmf->vma;
2528         struct page *page = vmf->page;
2529         pte_t entry;
2530         /*
2531          * Clear the pages cpupid information as the existing
2532          * information potentially belongs to a now completely
2533          * unrelated process.
2534          */
2535         if (page)
2536                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2537
2538         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2539         entry = pte_mkyoung(vmf->orig_pte);
2540         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2541         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2542                 update_mmu_cache(vma, vmf->address, vmf->pte);
2543         pte_unmap_unlock(vmf->pte, vmf->ptl);
2544 }
2545
2546 /*
2547  * Handle the case of a page which we actually need to copy to a new page.
2548  *
2549  * Called with mmap_sem locked and the old page referenced, but
2550  * without the ptl held.
2551  *
2552  * High level logic flow:
2553  *
2554  * - Allocate a page, copy the content of the old page to the new one.
2555  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2556  * - Take the PTL. If the pte changed, bail out and release the allocated page
2557  * - If the pte is still the way we remember it, update the page table and all
2558  *   relevant references. This includes dropping the reference the page-table
2559  *   held to the old page, as well as updating the rmap.
2560  * - In any case, unlock the PTL and drop the reference we took to the old page.
2561  */
2562 static int wp_page_copy(struct vm_fault *vmf)
2563 {
2564         struct vm_area_struct *vma = vmf->vma;
2565         struct mm_struct *mm = vma->vm_mm;
2566         struct page *old_page = vmf->page;
2567         struct page *new_page = NULL;
2568         pte_t entry;
2569         int page_copied = 0;
2570         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2571         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2572         struct mem_cgroup *memcg;
2573
2574         if (unlikely(anon_vma_prepare(vma)))
2575                 goto oom;
2576
2577         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2578                 new_page = alloc_zeroed_user_highpage_movable(vma,
2579                                                               vmf->address);
2580                 if (!new_page)
2581                         goto oom;
2582         } else {
2583                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2584                                 vmf->address);
2585                 if (!new_page)
2586                         goto oom;
2587
2588                 if (!cow_user_page(new_page, old_page, vmf)) {
2589                         /*
2590                          * COW failed, if the fault was solved by other,
2591                          * it's fine. If not, userspace would re-fault on
2592                          * the same address and we will handle the fault
2593                          * from the second attempt.
2594                          */
2595                         put_page(new_page);
2596                         if (old_page)
2597                                 put_page(old_page);
2598                         return 0;
2599                 }
2600         }
2601
2602         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2603                 goto oom_free_new;
2604
2605         __SetPageUptodate(new_page);
2606
2607         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2608
2609         /*
2610          * Re-check the pte - we dropped the lock
2611          */
2612         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2613         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2614                 if (old_page) {
2615                         if (!PageAnon(old_page)) {
2616                                 dec_mm_counter_fast(mm,
2617                                                 mm_counter_file(old_page));
2618                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2619                         }
2620                 } else {
2621                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2622                 }
2623                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2624                 entry = mk_pte(new_page, vma->vm_page_prot);
2625                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2626                 /*
2627                  * Clear the pte entry and flush it first, before updating the
2628                  * pte with the new entry. This will avoid a race condition
2629                  * seen in the presence of one thread doing SMC and another
2630                  * thread doing COW.
2631                  */
2632                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2633                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2634                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2635                 lru_cache_add_active_or_unevictable(new_page, vma);
2636                 /*
2637                  * We call the notify macro here because, when using secondary
2638                  * mmu page tables (such as kvm shadow page tables), we want the
2639                  * new page to be mapped directly into the secondary page table.
2640                  */
2641                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2642                 update_mmu_cache(vma, vmf->address, vmf->pte);
2643                 if (old_page) {
2644                         /*
2645                          * Only after switching the pte to the new page may
2646                          * we remove the mapcount here. Otherwise another
2647                          * process may come and find the rmap count decremented
2648                          * before the pte is switched to the new page, and
2649                          * "reuse" the old page writing into it while our pte
2650                          * here still points into it and can be read by other
2651                          * threads.
2652                          *
2653                          * The critical issue is to order this
2654                          * page_remove_rmap with the ptp_clear_flush above.
2655                          * Those stores are ordered by (if nothing else,)
2656                          * the barrier present in the atomic_add_negative
2657                          * in page_remove_rmap.
2658                          *
2659                          * Then the TLB flush in ptep_clear_flush ensures that
2660                          * no process can access the old page before the
2661                          * decremented mapcount is visible. And the old page
2662                          * cannot be reused until after the decremented
2663                          * mapcount is visible. So transitively, TLBs to
2664                          * old page will be flushed before it can be reused.
2665                          */
2666                         page_remove_rmap(old_page, false);
2667                 }
2668
2669                 /* Free the old page.. */
2670                 new_page = old_page;
2671                 page_copied = 1;
2672         } else {
2673                 mem_cgroup_cancel_charge(new_page, memcg, false);
2674         }
2675
2676         if (new_page)
2677                 put_page(new_page);
2678
2679         pte_unmap_unlock(vmf->pte, vmf->ptl);
2680         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2681         if (old_page) {
2682                 /*
2683                  * Don't let another task, with possibly unlocked vma,
2684                  * keep the mlocked page.
2685                  */
2686                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2687                         lock_page(old_page);    /* LRU manipulation */
2688                         if (PageMlocked(old_page))
2689                                 munlock_vma_page(old_page);
2690                         unlock_page(old_page);
2691                 }
2692                 put_page(old_page);
2693         }
2694         return page_copied ? VM_FAULT_WRITE : 0;
2695 oom_free_new:
2696         put_page(new_page);
2697 oom:
2698         if (old_page)
2699                 put_page(old_page);
2700         return VM_FAULT_OOM;
2701 }
2702
2703 /**
2704  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2705  *                        writeable once the page is prepared
2706  *
2707  * @vmf: structure describing the fault
2708  *
2709  * This function handles all that is needed to finish a write page fault in a
2710  * shared mapping due to PTE being read-only once the mapped page is prepared.
2711  * It handles locking of PTE and modifying it. The function returns
2712  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2713  * lock.
2714  *
2715  * The function expects the page to be locked or other protection against
2716  * concurrent faults / writeback (such as DAX radix tree locks).
2717  */
2718 int finish_mkwrite_fault(struct vm_fault *vmf)
2719 {
2720         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2721         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2722                                        &vmf->ptl);
2723         /*
2724          * We might have raced with another page fault while we released the
2725          * pte_offset_map_lock.
2726          */
2727         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2728                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2729                 return VM_FAULT_NOPAGE;
2730         }
2731         wp_page_reuse(vmf);
2732         return 0;
2733 }
2734
2735 /*
2736  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2737  * mapping
2738  */
2739 static int wp_pfn_shared(struct vm_fault *vmf)
2740 {
2741         struct vm_area_struct *vma = vmf->vma;
2742
2743         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2744                 int ret;
2745
2746                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2747                 vmf->flags |= FAULT_FLAG_MKWRITE;
2748                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2749                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2750                         return ret;
2751                 return finish_mkwrite_fault(vmf);
2752         }
2753         wp_page_reuse(vmf);
2754         return VM_FAULT_WRITE;
2755 }
2756
2757 static int wp_page_shared(struct vm_fault *vmf)
2758         __releases(vmf->ptl)
2759 {
2760         struct vm_area_struct *vma = vmf->vma;
2761
2762         get_page(vmf->page);
2763
2764         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2765                 int tmp;
2766
2767                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2768                 tmp = do_page_mkwrite(vmf);
2769                 if (unlikely(!tmp || (tmp &
2770                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2771                         put_page(vmf->page);
2772                         return tmp;
2773                 }
2774                 tmp = finish_mkwrite_fault(vmf);
2775                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2776                         unlock_page(vmf->page);
2777                         put_page(vmf->page);
2778                         return tmp;
2779                 }
2780         } else {
2781                 wp_page_reuse(vmf);
2782                 lock_page(vmf->page);
2783         }
2784         fault_dirty_shared_page(vma, vmf->page);
2785         put_page(vmf->page);
2786
2787         return VM_FAULT_WRITE;
2788 }
2789
2790 /*
2791  * This routine handles present pages, when users try to write
2792  * to a shared page. It is done by copying the page to a new address
2793  * and decrementing the shared-page counter for the old page.
2794  *
2795  * Note that this routine assumes that the protection checks have been
2796  * done by the caller (the low-level page fault routine in most cases).
2797  * Thus we can safely just mark it writable once we've done any necessary
2798  * COW.
2799  *
2800  * We also mark the page dirty at this point even though the page will
2801  * change only once the write actually happens. This avoids a few races,
2802  * and potentially makes it more efficient.
2803  *
2804  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2805  * but allow concurrent faults), with pte both mapped and locked.
2806  * We return with mmap_sem still held, but pte unmapped and unlocked.
2807  */
2808 static int do_wp_page(struct vm_fault *vmf)
2809         __releases(vmf->ptl)
2810 {
2811         struct vm_area_struct *vma = vmf->vma;
2812
2813         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2814         if (!vmf->page) {
2815                 /*
2816                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2817                  * VM_PFNMAP VMA.
2818                  *
2819                  * We should not cow pages in a shared writeable mapping.
2820                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2821                  */
2822                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2823                                      (VM_WRITE|VM_SHARED))
2824                         return wp_pfn_shared(vmf);
2825
2826                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2827                 return wp_page_copy(vmf);
2828         }
2829
2830         /*
2831          * Take out anonymous pages first, anonymous shared vmas are
2832          * not dirty accountable.
2833          */
2834         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2835                 int total_map_swapcount;
2836                 if (!trylock_page(vmf->page)) {
2837                         get_page(vmf->page);
2838                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2839                         lock_page(vmf->page);
2840                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2841                                         vmf->address, &vmf->ptl);
2842                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2843                                 unlock_page(vmf->page);
2844                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2845                                 put_page(vmf->page);
2846                                 return 0;
2847                         }
2848                         put_page(vmf->page);
2849                 }
2850                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2851                         if (total_map_swapcount == 1) {
2852                                 /*
2853                                  * The page is all ours. Move it to
2854                                  * our anon_vma so the rmap code will
2855                                  * not search our parent or siblings.
2856                                  * Protected against the rmap code by
2857                                  * the page lock.
2858                                  */
2859                                 page_move_anon_rmap(vmf->page, vma);
2860                         }
2861                         unlock_page(vmf->page);
2862                         wp_page_reuse(vmf);
2863                         return VM_FAULT_WRITE;
2864                 }
2865                 unlock_page(vmf->page);
2866         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2867                                         (VM_WRITE|VM_SHARED))) {
2868                 return wp_page_shared(vmf);
2869         }
2870
2871         /*
2872          * Ok, we need to copy. Oh, well..
2873          */
2874         get_page(vmf->page);
2875
2876         pte_unmap_unlock(vmf->pte, vmf->ptl);
2877         return wp_page_copy(vmf);
2878 }
2879
2880 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2881                 unsigned long start_addr, unsigned long end_addr,
2882                 struct zap_details *details)
2883 {
2884         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2885 }
2886
2887 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2888                                             struct zap_details *details)
2889 {
2890         struct vm_area_struct *vma;
2891         pgoff_t vba, vea, zba, zea;
2892
2893         vma_interval_tree_foreach(vma, root,
2894                         details->first_index, details->last_index) {
2895
2896                 vba = vma->vm_pgoff;
2897                 vea = vba + vma_pages(vma) - 1;
2898                 zba = details->first_index;
2899                 if (zba < vba)
2900                         zba = vba;
2901                 zea = details->last_index;
2902                 if (zea > vea)
2903                         zea = vea;
2904
2905                 unmap_mapping_range_vma(vma,
2906                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2907                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2908                                 details);
2909         }
2910 }
2911
2912 /**
2913  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2914  * address_space corresponding to the specified page range in the underlying
2915  * file.
2916  *
2917  * @mapping: the address space containing mmaps to be unmapped.
2918  * @holebegin: byte in first page to unmap, relative to the start of
2919  * the underlying file.  This will be rounded down to a PAGE_SIZE
2920  * boundary.  Note that this is different from truncate_pagecache(), which
2921  * must keep the partial page.  In contrast, we must get rid of
2922  * partial pages.
2923  * @holelen: size of prospective hole in bytes.  This will be rounded
2924  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2925  * end of the file.
2926  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2927  * but 0 when invalidating pagecache, don't throw away private data.
2928  */
2929 void unmap_mapping_range(struct address_space *mapping,
2930                 loff_t const holebegin, loff_t const holelen, int even_cows)
2931 {
2932         struct zap_details details = { };
2933         pgoff_t hba = holebegin >> PAGE_SHIFT;
2934         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2935
2936         /* Check for overflow. */
2937         if (sizeof(holelen) > sizeof(hlen)) {
2938                 long long holeend =
2939                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2940                 if (holeend & ~(long long)ULONG_MAX)
2941                         hlen = ULONG_MAX - hba + 1;
2942         }
2943
2944         details.check_mapping = even_cows ? NULL : mapping;
2945         details.first_index = hba;
2946         details.last_index = hba + hlen - 1;
2947         if (details.last_index < details.first_index)
2948                 details.last_index = ULONG_MAX;
2949
2950         i_mmap_lock_write(mapping);
2951         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2952                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2953         i_mmap_unlock_write(mapping);
2954 }
2955 EXPORT_SYMBOL(unmap_mapping_range);
2956
2957 /*
2958  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2959  * but allow concurrent faults), and pte mapped but not yet locked.
2960  * We return with pte unmapped and unlocked.
2961  *
2962  * We return with the mmap_sem locked or unlocked in the same cases
2963  * as does filemap_fault().
2964  */
2965 int do_swap_page(struct vm_fault *vmf)
2966 {
2967         struct vm_area_struct *vma = vmf->vma;
2968         struct page *page = NULL, *swapcache;
2969         struct mem_cgroup *memcg;
2970         struct vma_swap_readahead swap_ra;
2971         swp_entry_t entry;
2972         pte_t pte;
2973         int locked;
2974         int exclusive = 0;
2975         int ret = 0;
2976         bool vma_readahead = swap_use_vma_readahead();
2977
2978         if (vma_readahead)
2979                 page = swap_readahead_detect(vmf, &swap_ra);
2980         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2981                 if (page)
2982                         put_page(page);
2983                 goto out;
2984         }
2985
2986         entry = pte_to_swp_entry(vmf->orig_pte);
2987         if (unlikely(non_swap_entry(entry))) {
2988                 if (is_migration_entry(entry)) {
2989                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2990                                              vmf->address);
2991                 } else if (is_device_private_entry(entry)) {
2992                         /*
2993                          * For un-addressable device memory we call the pgmap
2994                          * fault handler callback. The callback must migrate
2995                          * the page back to some CPU accessible page.
2996                          */
2997                         ret = device_private_entry_fault(vma, vmf->address, entry,
2998                                                  vmf->flags, vmf->pmd);
2999                 } else if (is_hwpoison_entry(entry)) {
3000                         ret = VM_FAULT_HWPOISON;
3001                 } else {
3002                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3003                         ret = VM_FAULT_SIGBUS;
3004                 }
3005                 goto out;
3006         }
3007         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3008         if (!page)
3009                 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
3010                                          vmf->address);
3011         if (!page) {
3012                 if (vma_readahead)
3013                         page = do_swap_page_readahead(entry,
3014                                 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
3015                 else
3016                         page = swapin_readahead(entry,
3017                                 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3018                 if (!page) {
3019                         /*
3020                          * Back out if somebody else faulted in this pte
3021                          * while we released the pte lock.
3022                          */
3023                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3024                                         vmf->address, &vmf->ptl);
3025                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3026                                 ret = VM_FAULT_OOM;
3027                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3028                         goto unlock;
3029                 }
3030
3031                 /* Had to read the page from swap area: Major fault */
3032                 ret = VM_FAULT_MAJOR;
3033                 count_vm_event(PGMAJFAULT);
3034                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3035         } else if (PageHWPoison(page)) {
3036                 /*
3037                  * hwpoisoned dirty swapcache pages are kept for killing
3038                  * owner processes (which may be unknown at hwpoison time)
3039                  */
3040                 ret = VM_FAULT_HWPOISON;
3041                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3042                 swapcache = page;
3043                 goto out_release;
3044         }
3045
3046         swapcache = page;
3047         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3048
3049         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3050         if (!locked) {
3051                 ret |= VM_FAULT_RETRY;
3052                 goto out_release;
3053         }
3054
3055         /*
3056          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3057          * release the swapcache from under us.  The page pin, and pte_same
3058          * test below, are not enough to exclude that.  Even if it is still
3059          * swapcache, we need to check that the page's swap has not changed.
3060          */
3061         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3062                 goto out_page;
3063
3064         page = ksm_might_need_to_copy(page, vma, vmf->address);
3065         if (unlikely(!page)) {
3066                 ret = VM_FAULT_OOM;
3067                 page = swapcache;
3068                 goto out_page;
3069         }
3070
3071         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3072                                 &memcg, false)) {
3073                 ret = VM_FAULT_OOM;
3074                 goto out_page;
3075         }
3076
3077         /*
3078          * Back out if somebody else already faulted in this pte.
3079          */
3080         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3081                         &vmf->ptl);
3082         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3083                 goto out_nomap;
3084
3085         if (unlikely(!PageUptodate(page))) {
3086                 ret = VM_FAULT_SIGBUS;
3087                 goto out_nomap;
3088         }
3089
3090         /*
3091          * The page isn't present yet, go ahead with the fault.
3092          *
3093          * Be careful about the sequence of operations here.
3094          * To get its accounting right, reuse_swap_page() must be called
3095          * while the page is counted on swap but not yet in mapcount i.e.
3096          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3097          * must be called after the swap_free(), or it will never succeed.
3098          */
3099
3100         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3101         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3102         pte = mk_pte(page, vma->vm_page_prot);
3103         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3104                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3105                 vmf->flags &= ~FAULT_FLAG_WRITE;
3106                 ret |= VM_FAULT_WRITE;
3107                 exclusive = RMAP_EXCLUSIVE;
3108         }
3109         flush_icache_page(vma, page);
3110         if (pte_swp_soft_dirty(vmf->orig_pte))
3111                 pte = pte_mksoft_dirty(pte);
3112         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3113         vmf->orig_pte = pte;
3114         if (page == swapcache) {
3115                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3116                 mem_cgroup_commit_charge(page, memcg, true, false);
3117                 activate_page(page);
3118         } else { /* ksm created a completely new copy */
3119                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3120                 mem_cgroup_commit_charge(page, memcg, false, false);
3121                 lru_cache_add_active_or_unevictable(page, vma);
3122         }
3123
3124         swap_free(entry);
3125         if (mem_cgroup_swap_full(page) ||
3126             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3127                 try_to_free_swap(page);
3128         unlock_page(page);
3129         if (page != swapcache) {
3130                 /*
3131                  * Hold the lock to avoid the swap entry to be reused
3132                  * until we take the PT lock for the pte_same() check
3133                  * (to avoid false positives from pte_same). For
3134                  * further safety release the lock after the swap_free
3135                  * so that the swap count won't change under a
3136                  * parallel locked swapcache.
3137                  */
3138                 unlock_page(swapcache);
3139                 put_page(swapcache);
3140         }
3141
3142         if (vmf->flags & FAULT_FLAG_WRITE) {
3143                 ret |= do_wp_page(vmf);
3144                 if (ret & VM_FAULT_ERROR)
3145                         ret &= VM_FAULT_ERROR;
3146                 goto out;
3147         }
3148
3149         /* No need to invalidate - it was non-present before */
3150         update_mmu_cache(vma, vmf->address, vmf->pte);
3151 unlock:
3152         pte_unmap_unlock(vmf->pte, vmf->ptl);
3153 out:
3154         return ret;
3155 out_nomap:
3156         mem_cgroup_cancel_charge(page, memcg, false);
3157         pte_unmap_unlock(vmf->pte, vmf->ptl);
3158 out_page:
3159         unlock_page(page);
3160 out_release:
3161         put_page(page);
3162         if (page != swapcache) {
3163                 unlock_page(swapcache);
3164                 put_page(swapcache);
3165         }
3166         return ret;
3167 }
3168
3169 /*
3170  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3171  * but allow concurrent faults), and pte mapped but not yet locked.
3172  * We return with mmap_sem still held, but pte unmapped and unlocked.
3173  */
3174 static int do_anonymous_page(struct vm_fault *vmf)
3175 {
3176         struct vm_area_struct *vma = vmf->vma;
3177         struct mem_cgroup *memcg;
3178         struct page *page;
3179         int ret = 0;
3180         pte_t entry;
3181
3182         /* File mapping without ->vm_ops ? */
3183         if (vma->vm_flags & VM_SHARED)
3184                 return VM_FAULT_SIGBUS;
3185
3186         /*
3187          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3188          * pte_offset_map() on pmds where a huge pmd might be created
3189          * from a different thread.
3190          *
3191          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3192          * parallel threads are excluded by other means.
3193          *
3194          * Here we only have down_read(mmap_sem).
3195          */
3196         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3197                 return VM_FAULT_OOM;
3198
3199         /* See the comment in pte_alloc_one_map() */
3200         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3201                 return 0;
3202
3203         /* Use the zero-page for reads */
3204         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3205                         !mm_forbids_zeropage(vma->vm_mm)) {
3206                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3207                                                 vma->vm_page_prot));
3208                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3209                                 vmf->address, &vmf->ptl);
3210                 if (!pte_none(*vmf->pte))
3211                         goto unlock;
3212                 ret = check_stable_address_space(vma->vm_mm);
3213                 if (ret)
3214                         goto unlock;
3215                 /* Deliver the page fault to userland, check inside PT lock */
3216                 if (userfaultfd_missing(vma)) {
3217                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3218                         return handle_userfault(vmf, VM_UFFD_MISSING);
3219                 }
3220                 goto setpte;
3221         }
3222
3223         /* Allocate our own private page. */
3224         if (unlikely(anon_vma_prepare(vma)))
3225                 goto oom;
3226         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3227         if (!page)
3228                 goto oom;
3229
3230         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3231                 goto oom_free_page;
3232
3233         /*
3234          * The memory barrier inside __SetPageUptodate makes sure that
3235          * preceeding stores to the page contents become visible before
3236          * the set_pte_at() write.
3237          */
3238         __SetPageUptodate(page);
3239
3240         entry = mk_pte(page, vma->vm_page_prot);
3241         if (vma->vm_flags & VM_WRITE)
3242                 entry = pte_mkwrite(pte_mkdirty(entry));
3243
3244         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3245                         &vmf->ptl);
3246         if (!pte_none(*vmf->pte))
3247                 goto release;
3248
3249         ret = check_stable_address_space(vma->vm_mm);
3250         if (ret)
3251                 goto release;
3252
3253         /* Deliver the page fault to userland, check inside PT lock */
3254         if (userfaultfd_missing(vma)) {
3255                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3256                 mem_cgroup_cancel_charge(page, memcg, false);
3257                 put_page(page);
3258                 return handle_userfault(vmf, VM_UFFD_MISSING);
3259         }
3260
3261         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3262         page_add_new_anon_rmap(page, vma, vmf->address, false);
3263         mem_cgroup_commit_charge(page, memcg, false, false);
3264         lru_cache_add_active_or_unevictable(page, vma);
3265 setpte:
3266         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3267
3268         /* No need to invalidate - it was non-present before */
3269         update_mmu_cache(vma, vmf->address, vmf->pte);
3270 unlock:
3271         pte_unmap_unlock(vmf->pte, vmf->ptl);
3272         return ret;
3273 release:
3274         mem_cgroup_cancel_charge(page, memcg, false);
3275         put_page(page);
3276         goto unlock;
3277 oom_free_page:
3278         put_page(page);
3279 oom:
3280         return VM_FAULT_OOM;
3281 }
3282
3283 /*
3284  * The mmap_sem must have been held on entry, and may have been
3285  * released depending on flags and vma->vm_ops->fault() return value.
3286  * See filemap_fault() and __lock_page_retry().
3287  */
3288 static int __do_fault(struct vm_fault *vmf)
3289 {
3290         struct vm_area_struct *vma = vmf->vma;
3291         int ret;
3292
3293         /*
3294          * Preallocate pte before we take page_lock because this might lead to
3295          * deadlocks for memcg reclaim which waits for pages under writeback:
3296          *                              lock_page(A)
3297          *                              SetPageWriteback(A)
3298          *                              unlock_page(A)
3299          * lock_page(B)
3300          *                              lock_page(B)
3301          * pte_alloc_pne
3302          *   shrink_page_list
3303          *     wait_on_page_writeback(A)
3304          *                              SetPageWriteback(B)
3305          *                              unlock_page(B)
3306          *                              # flush A, B to clear the writeback
3307          */
3308         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3309                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3310                                                   vmf->address);
3311                 if (!vmf->prealloc_pte)
3312                         return VM_FAULT_OOM;
3313                 smp_wmb(); /* See comment in __pte_alloc() */
3314         }
3315
3316         ret = vma->vm_ops->fault(vmf);
3317         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3318                             VM_FAULT_DONE_COW)))
3319                 return ret;
3320
3321         if (unlikely(PageHWPoison(vmf->page))) {
3322                 if (ret & VM_FAULT_LOCKED)
3323                         unlock_page(vmf->page);
3324                 put_page(vmf->page);
3325                 vmf->page = NULL;
3326                 return VM_FAULT_HWPOISON;
3327         }
3328
3329         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3330                 lock_page(vmf->page);
3331         else
3332                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3333
3334         return ret;
3335 }
3336
3337 /*
3338  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3339  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3340  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3341  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3342  */
3343 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3344 {
3345         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3346 }
3347
3348 static int pte_alloc_one_map(struct vm_fault *vmf)
3349 {
3350         struct vm_area_struct *vma = vmf->vma;
3351
3352         if (!pmd_none(*vmf->pmd))
3353                 goto map_pte;
3354         if (vmf->prealloc_pte) {
3355                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356                 if (unlikely(!pmd_none(*vmf->pmd))) {
3357                         spin_unlock(vmf->ptl);
3358                         goto map_pte;
3359                 }
3360
3361                 atomic_long_inc(&vma->vm_mm->nr_ptes);
3362                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3363                 spin_unlock(vmf->ptl);
3364                 vmf->prealloc_pte = NULL;
3365         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3366                 return VM_FAULT_OOM;
3367         }
3368 map_pte:
3369         /*
3370          * If a huge pmd materialized under us just retry later.  Use
3371          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3372          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3373          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3374          * running immediately after a huge pmd fault in a different thread of
3375          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3376          * All we have to ensure is that it is a regular pmd that we can walk
3377          * with pte_offset_map() and we can do that through an atomic read in
3378          * C, which is what pmd_trans_unstable() provides.
3379          */
3380         if (pmd_devmap_trans_unstable(vmf->pmd))
3381                 return VM_FAULT_NOPAGE;
3382
3383         /*
3384          * At this point we know that our vmf->pmd points to a page of ptes
3385          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3386          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3387          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3388          * be valid and we will re-check to make sure the vmf->pte isn't
3389          * pte_none() under vmf->ptl protection when we return to
3390          * alloc_set_pte().
3391          */
3392         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3393                         &vmf->ptl);
3394         return 0;
3395 }
3396
3397 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3398
3399 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3400 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3401                 unsigned long haddr)
3402 {
3403         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3404                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3405                 return false;
3406         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3407                 return false;
3408         return true;
3409 }
3410
3411 static void deposit_prealloc_pte(struct vm_fault *vmf)
3412 {
3413         struct vm_area_struct *vma = vmf->vma;
3414
3415         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3416         /*
3417          * We are going to consume the prealloc table,
3418          * count that as nr_ptes.
3419          */
3420         atomic_long_inc(&vma->vm_mm->nr_ptes);
3421         vmf->prealloc_pte = NULL;
3422 }
3423
3424 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3425 {
3426         struct vm_area_struct *vma = vmf->vma;
3427         bool write = vmf->flags & FAULT_FLAG_WRITE;
3428         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3429         pmd_t entry;
3430         int i, ret;
3431
3432         if (!transhuge_vma_suitable(vma, haddr))
3433                 return VM_FAULT_FALLBACK;
3434
3435         ret = VM_FAULT_FALLBACK;
3436         page = compound_head(page);
3437
3438         /*
3439          * Archs like ppc64 need additonal space to store information
3440          * related to pte entry. Use the preallocated table for that.
3441          */
3442         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3443                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3444                 if (!vmf->prealloc_pte)
3445                         return VM_FAULT_OOM;
3446                 smp_wmb(); /* See comment in __pte_alloc() */
3447         }
3448
3449         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3450         if (unlikely(!pmd_none(*vmf->pmd)))
3451                 goto out;
3452
3453         for (i = 0; i < HPAGE_PMD_NR; i++)
3454                 flush_icache_page(vma, page + i);
3455
3456         entry = mk_huge_pmd(page, vma->vm_page_prot);
3457         if (write)
3458                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3459
3460         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3461         page_add_file_rmap(page, true);
3462         /*
3463          * deposit and withdraw with pmd lock held
3464          */
3465         if (arch_needs_pgtable_deposit())
3466                 deposit_prealloc_pte(vmf);
3467
3468         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3469
3470         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3471
3472         /* fault is handled */
3473         ret = 0;
3474         count_vm_event(THP_FILE_MAPPED);
3475 out:
3476         spin_unlock(vmf->ptl);
3477         return ret;
3478 }
3479 #else
3480 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3481 {
3482         BUILD_BUG();
3483         return 0;
3484 }
3485 #endif
3486
3487 /**
3488  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3489  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3490  *
3491  * @vmf: fault environment
3492  * @memcg: memcg to charge page (only for private mappings)
3493  * @page: page to map
3494  *
3495  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3496  * return.
3497  *
3498  * Target users are page handler itself and implementations of
3499  * vm_ops->map_pages.
3500  */
3501 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3502                 struct page *page)
3503 {
3504         struct vm_area_struct *vma = vmf->vma;
3505         bool write = vmf->flags & FAULT_FLAG_WRITE;
3506         pte_t entry;
3507         int ret;
3508
3509         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3510                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3511                 /* THP on COW? */
3512                 VM_BUG_ON_PAGE(memcg, page);
3513
3514                 ret = do_set_pmd(vmf, page);
3515                 if (ret != VM_FAULT_FALLBACK)
3516                         return ret;
3517         }
3518
3519         if (!vmf->pte) {
3520                 ret = pte_alloc_one_map(vmf);
3521                 if (ret)
3522                         return ret;
3523         }
3524
3525         /* Re-check under ptl */
3526         if (unlikely(!pte_none(*vmf->pte)))
3527                 return VM_FAULT_NOPAGE;
3528
3529         flush_icache_page(vma, page);
3530         entry = mk_pte(page, vma->vm_page_prot);
3531         if (write)
3532                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3533         /* copy-on-write page */
3534         if (write && !(vma->vm_flags & VM_SHARED)) {
3535                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3536                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3537                 mem_cgroup_commit_charge(page, memcg, false, false);
3538                 lru_cache_add_active_or_unevictable(page, vma);
3539         } else {
3540                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3541                 page_add_file_rmap(page, false);
3542         }
3543         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3544
3545         /* no need to invalidate: a not-present page won't be cached */
3546         update_mmu_cache(vma, vmf->address, vmf->pte);
3547
3548         return 0;
3549 }
3550
3551
3552 /**
3553  * finish_fault - finish page fault once we have prepared the page to fault
3554  *
3555  * @vmf: structure describing the fault
3556  *
3557  * This function handles all that is needed to finish a page fault once the
3558  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3559  * given page, adds reverse page mapping, handles memcg charges and LRU
3560  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3561  * error.
3562  *
3563  * The function expects the page to be locked and on success it consumes a
3564  * reference of a page being mapped (for the PTE which maps it).
3565  */
3566 int finish_fault(struct vm_fault *vmf)
3567 {
3568         struct page *page;
3569         int ret = 0;
3570
3571         /* Did we COW the page? */
3572         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3573             !(vmf->vma->vm_flags & VM_SHARED))
3574                 page = vmf->cow_page;
3575         else
3576                 page = vmf->page;
3577
3578         /*
3579          * check even for read faults because we might have lost our CoWed
3580          * page
3581          */
3582         if (!(vmf->vma->vm_flags & VM_SHARED))
3583                 ret = check_stable_address_space(vmf->vma->vm_mm);
3584         if (!ret)
3585                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3586         if (vmf->pte)
3587                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3588         return ret;
3589 }
3590
3591 static unsigned long fault_around_bytes __read_mostly =
3592         rounddown_pow_of_two(65536);
3593
3594 #ifdef CONFIG_DEBUG_FS
3595 static int fault_around_bytes_get(void *data, u64 *val)
3596 {
3597         *val = fault_around_bytes;
3598         return 0;
3599 }
3600
3601 /*
3602  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3603  * rounded down to nearest page order. It's what do_fault_around() expects to
3604  * see.
3605  */
3606 static int fault_around_bytes_set(void *data, u64 val)
3607 {
3608         if (val / PAGE_SIZE > PTRS_PER_PTE)
3609                 return -EINVAL;
3610         if (val > PAGE_SIZE)
3611                 fault_around_bytes = rounddown_pow_of_two(val);
3612         else
3613                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3614         return 0;
3615 }
3616 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3617                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3618
3619 static int __init fault_around_debugfs(void)
3620 {
3621         void *ret;
3622
3623         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3624                         &fault_around_bytes_fops);
3625         if (!ret)
3626                 pr_warn("Failed to create fault_around_bytes in debugfs");
3627         return 0;
3628 }
3629 late_initcall(fault_around_debugfs);
3630 #endif
3631
3632 /*
3633  * do_fault_around() tries to map few pages around the fault address. The hope
3634  * is that the pages will be needed soon and this will lower the number of
3635  * faults to handle.
3636  *
3637  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3638  * not ready to be mapped: not up-to-date, locked, etc.
3639  *
3640  * This function is called with the page table lock taken. In the split ptlock
3641  * case the page table lock only protects only those entries which belong to
3642  * the page table corresponding to the fault address.
3643  *
3644  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3645  * only once.
3646  *
3647  * fault_around_pages() defines how many pages we'll try to map.
3648  * do_fault_around() expects it to return a power of two less than or equal to
3649  * PTRS_PER_PTE.
3650  *
3651  * The virtual address of the area that we map is naturally aligned to the
3652  * fault_around_pages() value (and therefore to page order).  This way it's
3653  * easier to guarantee that we don't cross page table boundaries.
3654  */
3655 static int do_fault_around(struct vm_fault *vmf)
3656 {
3657         unsigned long address = vmf->address, nr_pages, mask;
3658         pgoff_t start_pgoff = vmf->pgoff;
3659         pgoff_t end_pgoff;
3660         int off, ret = 0;
3661
3662         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3663         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3664
3665         vmf->address = max(address & mask, vmf->vma->vm_start);
3666         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3667         start_pgoff -= off;
3668
3669         /*
3670          *  end_pgoff is either end of page table or end of vma
3671          *  or fault_around_pages() from start_pgoff, depending what is nearest.
3672          */
3673         end_pgoff = start_pgoff -
3674                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3675                 PTRS_PER_PTE - 1;
3676         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3677                         start_pgoff + nr_pages - 1);
3678
3679         if (pmd_none(*vmf->pmd)) {
3680                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3681                                                   vmf->address);
3682                 if (!vmf->prealloc_pte)
3683                         goto out;
3684                 smp_wmb(); /* See comment in __pte_alloc() */
3685         }
3686
3687         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3688
3689         /* Huge page is mapped? Page fault is solved */
3690         if (pmd_trans_huge(*vmf->pmd)) {
3691                 ret = VM_FAULT_NOPAGE;
3692                 goto out;
3693         }
3694
3695         /* ->map_pages() haven't done anything useful. Cold page cache? */
3696         if (!vmf->pte)
3697                 goto out;
3698
3699         /* check if the page fault is solved */
3700         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3701         if (!pte_none(*vmf->pte))
3702                 ret = VM_FAULT_NOPAGE;
3703         pte_unmap_unlock(vmf->pte, vmf->ptl);
3704 out:
3705         vmf->address = address;
3706         vmf->pte = NULL;
3707         return ret;
3708 }
3709
3710 static int do_read_fault(struct vm_fault *vmf)
3711 {
3712         struct vm_area_struct *vma = vmf->vma;
3713         int ret = 0;
3714
3715         /*
3716          * Let's call ->map_pages() first and use ->fault() as fallback
3717          * if page by the offset is not ready to be mapped (cold cache or
3718          * something).
3719          */
3720         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3721                 ret = do_fault_around(vmf);
3722                 if (ret)
3723                         return ret;
3724         }
3725
3726         ret = __do_fault(vmf);
3727         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3728                 return ret;
3729
3730         ret |= finish_fault(vmf);
3731         unlock_page(vmf->page);
3732         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3733                 put_page(vmf->page);
3734         return ret;
3735 }
3736
3737 static int do_cow_fault(struct vm_fault *vmf)
3738 {
3739         struct vm_area_struct *vma = vmf->vma;
3740         int ret;
3741
3742         if (unlikely(anon_vma_prepare(vma)))
3743                 return VM_FAULT_OOM;
3744
3745         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3746         if (!vmf->cow_page)
3747                 return VM_FAULT_OOM;
3748
3749         if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3750                                 &vmf->memcg, false)) {
3751                 put_page(vmf->cow_page);
3752                 return VM_FAULT_OOM;
3753         }
3754
3755         ret = __do_fault(vmf);
3756         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3757                 goto uncharge_out;
3758         if (ret & VM_FAULT_DONE_COW)
3759                 return ret;
3760
3761         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3762         __SetPageUptodate(vmf->cow_page);
3763
3764         ret |= finish_fault(vmf);
3765         unlock_page(vmf->page);
3766         put_page(vmf->page);
3767         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3768                 goto uncharge_out;
3769         return ret;
3770 uncharge_out:
3771         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3772         put_page(vmf->cow_page);
3773         return ret;
3774 }
3775
3776 static int do_shared_fault(struct vm_fault *vmf)
3777 {
3778         struct vm_area_struct *vma = vmf->vma;
3779         int ret, tmp;
3780
3781         ret = __do_fault(vmf);
3782         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3783                 return ret;
3784
3785         /*
3786          * Check if the backing address space wants to know that the page is
3787          * about to become writable
3788          */
3789         if (vma->vm_ops->page_mkwrite) {
3790                 unlock_page(vmf->page);
3791                 tmp = do_page_mkwrite(vmf);
3792                 if (unlikely(!tmp ||
3793                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3794                         put_page(vmf->page);
3795                         return tmp;
3796                 }
3797         }
3798
3799         ret |= finish_fault(vmf);
3800         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3801                                         VM_FAULT_RETRY))) {
3802                 unlock_page(vmf->page);
3803                 put_page(vmf->page);
3804                 return ret;
3805         }
3806
3807         fault_dirty_shared_page(vma, vmf->page);
3808         return ret;
3809 }
3810
3811 /*
3812  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3813  * but allow concurrent faults).
3814  * The mmap_sem may have been released depending on flags and our
3815  * return value.  See filemap_fault() and __lock_page_or_retry().
3816  */
3817 static int do_fault(struct vm_fault *vmf)
3818 {
3819         struct vm_area_struct *vma = vmf->vma;
3820         int ret;
3821
3822         /*
3823          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3824          */
3825         if (!vma->vm_ops->fault) {
3826                 /*
3827                  * If we find a migration pmd entry or a none pmd entry, which
3828                  * should never happen, return SIGBUS
3829                  */
3830                 if (unlikely(!pmd_present(*vmf->pmd)))
3831                         ret = VM_FAULT_SIGBUS;
3832                 else {
3833                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3834                                                        vmf->pmd,
3835                                                        vmf->address,
3836                                                        &vmf->ptl);
3837                         /*
3838                          * Make sure this is not a temporary clearing of pte
3839                          * by holding ptl and checking again. A R/M/W update
3840                          * of pte involves: take ptl, clearing the pte so that
3841                          * we don't have concurrent modification by hardware
3842                          * followed by an update.
3843                          */
3844                         if (unlikely(pte_none(*vmf->pte)))
3845                                 ret = VM_FAULT_SIGBUS;
3846                         else
3847                                 ret = VM_FAULT_NOPAGE;
3848
3849                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3850                 }
3851         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3852                 ret = do_read_fault(vmf);
3853         else if (!(vma->vm_flags & VM_SHARED))
3854                 ret = do_cow_fault(vmf);
3855         else
3856                 ret = do_shared_fault(vmf);
3857
3858         /* preallocated pagetable is unused: free it */
3859         if (vmf->prealloc_pte) {
3860                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3861                 vmf->prealloc_pte = NULL;
3862         }
3863         return ret;
3864 }
3865
3866 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3867                                 unsigned long addr, int page_nid,
3868                                 int *flags)
3869 {
3870         get_page(page);
3871
3872         count_vm_numa_event(NUMA_HINT_FAULTS);
3873         if (page_nid == numa_node_id()) {
3874                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3875                 *flags |= TNF_FAULT_LOCAL;
3876         }
3877
3878         return mpol_misplaced(page, vma, addr);
3879 }
3880
3881 static int do_numa_page(struct vm_fault *vmf)
3882 {
3883         struct vm_area_struct *vma = vmf->vma;
3884         struct page *page = NULL;
3885         int page_nid = -1;
3886         int last_cpupid;
3887         int target_nid;
3888         bool migrated = false;
3889         pte_t pte;
3890         bool was_writable = pte_savedwrite(vmf->orig_pte);
3891         int flags = 0;
3892
3893         /*
3894          * The "pte" at this point cannot be used safely without
3895          * validation through pte_unmap_same(). It's of NUMA type but
3896          * the pfn may be screwed if the read is non atomic.
3897          */
3898         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3899         spin_lock(vmf->ptl);
3900         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3901                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3902                 goto out;
3903         }
3904
3905         /*
3906          * Make it present again, Depending on how arch implementes non
3907          * accessible ptes, some can allow access by kernel mode.
3908          */
3909         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3910         pte = pte_modify(pte, vma->vm_page_prot);
3911         pte = pte_mkyoung(pte);
3912         if (was_writable)
3913                 pte = pte_mkwrite(pte);
3914         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3915         update_mmu_cache(vma, vmf->address, vmf->pte);
3916
3917         page = vm_normal_page(vma, vmf->address, pte);
3918         if (!page) {
3919                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3920                 return 0;
3921         }
3922
3923         /* TODO: handle PTE-mapped THP */
3924         if (PageCompound(page)) {
3925                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3926                 return 0;
3927         }
3928
3929         /*
3930          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3931          * much anyway since they can be in shared cache state. This misses
3932          * the case where a mapping is writable but the process never writes
3933          * to it but pte_write gets cleared during protection updates and
3934          * pte_dirty has unpredictable behaviour between PTE scan updates,
3935          * background writeback, dirty balancing and application behaviour.
3936          */
3937         if (!pte_write(pte))
3938                 flags |= TNF_NO_GROUP;
3939
3940         /*
3941          * Flag if the page is shared between multiple address spaces. This
3942          * is later used when determining whether to group tasks together
3943          */
3944         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3945                 flags |= TNF_SHARED;
3946
3947         last_cpupid = page_cpupid_last(page);
3948         page_nid = page_to_nid(page);
3949         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3950                         &flags);
3951         pte_unmap_unlock(vmf->pte, vmf->ptl);
3952         if (target_nid == -1) {
3953                 put_page(page);
3954                 goto out;
3955         }
3956
3957         /* Migrate to the requested node */
3958         migrated = migrate_misplaced_page(page, vma, target_nid);
3959         if (migrated) {
3960                 page_nid = target_nid;
3961                 flags |= TNF_MIGRATED;
3962         } else
3963                 flags |= TNF_MIGRATE_FAIL;
3964
3965 out:
3966         if (page_nid != -1)
3967                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3968         return 0;
3969 }
3970
3971 static inline int create_huge_pmd(struct vm_fault *vmf)
3972 {
3973         if (vma_is_anonymous(vmf->vma))
3974                 return do_huge_pmd_anonymous_page(vmf);
3975         if (vmf->vma->vm_ops->huge_fault)
3976                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3977         return VM_FAULT_FALLBACK;
3978 }
3979
3980 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3981 {
3982         if (vma_is_anonymous(vmf->vma))
3983                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3984         if (vmf->vma->vm_ops->huge_fault)
3985                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3986
3987         /* COW handled on pte level: split pmd */
3988         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3989         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3990
3991         return VM_FAULT_FALLBACK;
3992 }
3993
3994 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3995 {
3996         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3997 }
3998
3999 static int create_huge_pud(struct vm_fault *vmf)
4000 {
4001 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4002         /* No support for anonymous transparent PUD pages yet */
4003         if (vma_is_anonymous(vmf->vma))
4004                 return VM_FAULT_FALLBACK;
4005         if (vmf->vma->vm_ops->huge_fault)
4006                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4007 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4008         return VM_FAULT_FALLBACK;
4009 }
4010
4011 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4012 {
4013 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4014         /* No support for anonymous transparent PUD pages yet */
4015         if (vma_is_anonymous(vmf->vma))
4016                 return VM_FAULT_FALLBACK;
4017         if (vmf->vma->vm_ops->huge_fault)
4018                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4019 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4020         return VM_FAULT_FALLBACK;
4021 }
4022
4023 /*
4024  * These routines also need to handle stuff like marking pages dirty
4025  * and/or accessed for architectures that don't do it in hardware (most
4026  * RISC architectures).  The early dirtying is also good on the i386.
4027  *
4028  * There is also a hook called "update_mmu_cache()" that architectures
4029  * with external mmu caches can use to update those (ie the Sparc or
4030  * PowerPC hashed page tables that act as extended TLBs).
4031  *
4032  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4033  * concurrent faults).
4034  *
4035  * The mmap_sem may have been released depending on flags and our return value.
4036  * See filemap_fault() and __lock_page_or_retry().
4037  */
4038 static int handle_pte_fault(struct vm_fault *vmf)
4039 {
4040         pte_t entry;
4041
4042         if (unlikely(pmd_none(*vmf->pmd))) {
4043                 /*
4044                  * Leave __pte_alloc() until later: because vm_ops->fault may
4045                  * want to allocate huge page, and if we expose page table
4046                  * for an instant, it will be difficult to retract from
4047                  * concurrent faults and from rmap lookups.
4048                  */
4049                 vmf->pte = NULL;
4050         } else {
4051                 /* See comment in pte_alloc_one_map() */
4052                 if (pmd_devmap_trans_unstable(vmf->pmd))
4053                         return 0;
4054                 /*
4055                  * A regular pmd is established and it can't morph into a huge
4056                  * pmd from under us anymore at this point because we hold the
4057                  * mmap_sem read mode and khugepaged takes it in write mode.
4058                  * So now it's safe to run pte_offset_map().
4059                  */
4060                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4061                 vmf->orig_pte = *vmf->pte;
4062
4063                 /*
4064                  * some architectures can have larger ptes than wordsize,
4065                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4066                  * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
4067                  * atomic accesses.  The code below just needs a consistent
4068                  * view for the ifs and we later double check anyway with the
4069                  * ptl lock held. So here a barrier will do.
4070                  */
4071                 barrier();
4072                 if (pte_none(vmf->orig_pte)) {
4073                         pte_unmap(vmf->pte);
4074                         vmf->pte = NULL;
4075                 }
4076         }
4077
4078         if (!vmf->pte) {
4079                 if (vma_is_anonymous(vmf->vma))
4080                         return do_anonymous_page(vmf);
4081                 else
4082                         return do_fault(vmf);
4083         }
4084
4085         if (!pte_present(vmf->orig_pte))
4086                 return do_swap_page(vmf);
4087
4088         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4089                 return do_numa_page(vmf);
4090
4091         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4092         spin_lock(vmf->ptl);
4093         entry = vmf->orig_pte;
4094         if (unlikely(!pte_same(*vmf->pte, entry)))
4095                 goto unlock;
4096         if (vmf->flags & FAULT_FLAG_WRITE) {
4097                 if (!pte_write(entry))
4098                         return do_wp_page(vmf);
4099                 entry = pte_mkdirty(entry);
4100         }
4101         entry = pte_mkyoung(entry);
4102         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4103                                 vmf->flags & FAULT_FLAG_WRITE)) {
4104                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4105         } else {
4106                 /*
4107                  * This is needed only for protection faults but the arch code
4108                  * is not yet telling us if this is a protection fault or not.
4109                  * This still avoids useless tlb flushes for .text page faults
4110                  * with threads.
4111                  */
4112                 if (vmf->flags & FAULT_FLAG_WRITE)
4113                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4114         }
4115 unlock:
4116         pte_unmap_unlock(vmf->pte, vmf->ptl);
4117         return 0;
4118 }
4119
4120 /*
4121  * By the time we get here, we already hold the mm semaphore
4122  *
4123  * The mmap_sem may have been released depending on flags and our
4124  * return value.  See filemap_fault() and __lock_page_or_retry().
4125  */
4126 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4127                 unsigned int flags)
4128 {
4129         struct vm_fault vmf = {
4130                 .vma = vma,
4131                 .address = address & PAGE_MASK,
4132                 .flags = flags,
4133                 .pgoff = linear_page_index(vma, address),
4134                 .gfp_mask = __get_fault_gfp_mask(vma),
4135         };
4136         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4137         struct mm_struct *mm = vma->vm_mm;
4138         pgd_t *pgd;
4139         p4d_t *p4d;
4140         int ret;
4141
4142         pgd = pgd_offset(mm, address);
4143         p4d = p4d_alloc(mm, pgd, address);
4144         if (!p4d)
4145                 return VM_FAULT_OOM;
4146
4147         vmf.pud = pud_alloc(mm, p4d, address);
4148         if (!vmf.pud)
4149                 return VM_FAULT_OOM;
4150         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4151                 ret = create_huge_pud(&vmf);
4152                 if (!(ret & VM_FAULT_FALLBACK))
4153                         return ret;
4154         } else {
4155                 pud_t orig_pud = *vmf.pud;
4156
4157                 barrier();
4158                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4159
4160                         /* NUMA case for anonymous PUDs would go here */
4161
4162                         if (dirty && !pud_write(orig_pud)) {
4163                                 ret = wp_huge_pud(&vmf, orig_pud);
4164                                 if (!(ret & VM_FAULT_FALLBACK))
4165                                         return ret;
4166                         } else {
4167                                 huge_pud_set_accessed(&vmf, orig_pud);
4168                                 return 0;
4169                         }
4170                 }
4171         }
4172
4173         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4174         if (!vmf.pmd)
4175                 return VM_FAULT_OOM;
4176         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4177                 ret = create_huge_pmd(&vmf);
4178                 if (!(ret & VM_FAULT_FALLBACK))
4179                         return ret;
4180         } else {
4181                 pmd_t orig_pmd = *vmf.pmd;
4182
4183                 barrier();
4184                 if (unlikely(is_swap_pmd(orig_pmd))) {
4185                         VM_BUG_ON(thp_migration_supported() &&
4186                                           !is_pmd_migration_entry(orig_pmd));
4187                         if (is_pmd_migration_entry(orig_pmd))
4188                                 pmd_migration_entry_wait(mm, vmf.pmd);
4189                         return 0;
4190                 }
4191                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4192                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4193                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4194
4195                         if (dirty && !pmd_write(orig_pmd)) {
4196                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4197                                 if (!(ret & VM_FAULT_FALLBACK))
4198                                         return ret;
4199                         } else {
4200                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4201                                 return 0;
4202                         }
4203                 }
4204         }
4205
4206         return handle_pte_fault(&vmf);
4207 }
4208
4209 /*
4210  * By the time we get here, we already hold the mm semaphore
4211  *
4212  * The mmap_sem may have been released depending on flags and our
4213  * return value.  See filemap_fault() and __lock_page_or_retry().
4214  */
4215 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4216                 unsigned int flags)
4217 {
4218         int ret;
4219
4220         __set_current_state(TASK_RUNNING);
4221
4222         count_vm_event(PGFAULT);
4223         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4224
4225         /* do counter updates before entering really critical section. */
4226         check_sync_rss_stat(current);
4227
4228         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4229                                             flags & FAULT_FLAG_INSTRUCTION,
4230                                             flags & FAULT_FLAG_REMOTE))
4231                 return VM_FAULT_SIGSEGV;
4232
4233         /*
4234          * Enable the memcg OOM handling for faults triggered in user
4235          * space.  Kernel faults are handled more gracefully.
4236          */
4237         if (flags & FAULT_FLAG_USER)
4238                 mem_cgroup_oom_enable();
4239
4240         if (unlikely(is_vm_hugetlb_page(vma)))
4241                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4242         else
4243                 ret = __handle_mm_fault(vma, address, flags);
4244
4245         if (flags & FAULT_FLAG_USER) {
4246                 mem_cgroup_oom_disable();
4247                 /*
4248                  * The task may have entered a memcg OOM situation but
4249                  * if the allocation error was handled gracefully (no
4250                  * VM_FAULT_OOM), there is no need to kill anything.
4251                  * Just clean up the OOM state peacefully.
4252                  */
4253                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4254                         mem_cgroup_oom_synchronize(false);
4255         }
4256
4257         return ret;
4258 }
4259 EXPORT_SYMBOL_GPL(handle_mm_fault);
4260
4261 #ifndef __PAGETABLE_P4D_FOLDED
4262 /*
4263  * Allocate p4d page table.
4264  * We've already handled the fast-path in-line.
4265  */
4266 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4267 {
4268         p4d_t *new = p4d_alloc_one(mm, address);
4269         if (!new)
4270                 return -ENOMEM;
4271
4272         smp_wmb(); /* See comment in __pte_alloc */
4273
4274         spin_lock(&mm->page_table_lock);
4275         if (pgd_present(*pgd))          /* Another has populated it */
4276                 p4d_free(mm, new);
4277         else
4278                 pgd_populate(mm, pgd, new);
4279         spin_unlock(&mm->page_table_lock);
4280         return 0;
4281 }
4282 #endif /* __PAGETABLE_P4D_FOLDED */
4283
4284 #ifndef __PAGETABLE_PUD_FOLDED
4285 /*
4286  * Allocate page upper directory.
4287  * We've already handled the fast-path in-line.
4288  */
4289 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4290 {
4291         pud_t *new = pud_alloc_one(mm, address);
4292         if (!new)
4293                 return -ENOMEM;
4294
4295         smp_wmb(); /* See comment in __pte_alloc */
4296
4297         spin_lock(&mm->page_table_lock);
4298 #ifndef __ARCH_HAS_5LEVEL_HACK
4299         if (p4d_present(*p4d))          /* Another has populated it */
4300                 pud_free(mm, new);
4301         else
4302                 p4d_populate(mm, p4d, new);
4303 #else
4304         if (pgd_present(*p4d))          /* Another has populated it */
4305                 pud_free(mm, new);
4306         else
4307                 pgd_populate(mm, p4d, new);
4308 #endif /* __ARCH_HAS_5LEVEL_HACK */
4309         spin_unlock(&mm->page_table_lock);
4310         return 0;
4311 }
4312 #endif /* __PAGETABLE_PUD_FOLDED */
4313
4314 #ifndef __PAGETABLE_PMD_FOLDED
4315 /*
4316  * Allocate page middle directory.
4317  * We've already handled the fast-path in-line.
4318  */
4319 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4320 {
4321         spinlock_t *ptl;
4322         pmd_t *new = pmd_alloc_one(mm, address);
4323         if (!new)
4324                 return -ENOMEM;
4325
4326         smp_wmb(); /* See comment in __pte_alloc */
4327
4328         ptl = pud_lock(mm, pud);
4329 #ifndef __ARCH_HAS_4LEVEL_HACK
4330         if (!pud_present(*pud)) {
4331                 mm_inc_nr_pmds(mm);
4332                 pud_populate(mm, pud, new);
4333         } else  /* Another has populated it */
4334                 pmd_free(mm, new);
4335 #else
4336         if (!pgd_present(*pud)) {
4337                 mm_inc_nr_pmds(mm);
4338                 pgd_populate(mm, pud, new);
4339         } else /* Another has populated it */
4340                 pmd_free(mm, new);
4341 #endif /* __ARCH_HAS_4LEVEL_HACK */
4342         spin_unlock(ptl);
4343         return 0;
4344 }
4345 #endif /* __PAGETABLE_PMD_FOLDED */
4346
4347 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4348                             unsigned long *start, unsigned long *end,
4349                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4350 {
4351         pgd_t *pgd;
4352         p4d_t *p4d;
4353         pud_t *pud;
4354         pmd_t *pmd;
4355         pte_t *ptep;
4356
4357         pgd = pgd_offset(mm, address);
4358         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4359                 goto out;
4360
4361         p4d = p4d_offset(pgd, address);
4362         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4363                 goto out;
4364
4365         pud = pud_offset(p4d, address);
4366         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4367                 goto out;
4368
4369         pmd = pmd_offset(pud, address);
4370         VM_BUG_ON(pmd_trans_huge(*pmd));
4371
4372         if (pmd_huge(*pmd)) {
4373                 if (!pmdpp)
4374                         goto out;
4375
4376                 if (start && end) {
4377                         *start = address & PMD_MASK;
4378                         *end = *start + PMD_SIZE;
4379                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4380                 }
4381                 *ptlp = pmd_lock(mm, pmd);
4382                 if (pmd_huge(*pmd)) {
4383                         *pmdpp = pmd;
4384                         return 0;
4385                 }
4386                 spin_unlock(*ptlp);
4387                 if (start && end)
4388                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4389         }
4390
4391         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4392                 goto out;
4393
4394         if (start && end) {
4395                 *start = address & PAGE_MASK;
4396                 *end = *start + PAGE_SIZE;
4397                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4398         }
4399         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4400         if (!pte_present(*ptep))
4401                 goto unlock;
4402         *ptepp = ptep;
4403         return 0;
4404 unlock:
4405         pte_unmap_unlock(ptep, *ptlp);
4406         if (start && end)
4407                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4408 out:
4409         return -EINVAL;
4410 }
4411
4412 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4413                              pte_t **ptepp, spinlock_t **ptlp)
4414 {
4415         int res;
4416
4417         /* (void) is needed to make gcc happy */
4418         (void) __cond_lock(*ptlp,
4419                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4420                                                     ptepp, NULL, ptlp)));
4421         return res;
4422 }
4423
4424 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4425                              unsigned long *start, unsigned long *end,
4426                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4427 {
4428         int res;
4429
4430         /* (void) is needed to make gcc happy */
4431         (void) __cond_lock(*ptlp,
4432                            !(res = __follow_pte_pmd(mm, address, start, end,
4433                                                     ptepp, pmdpp, ptlp)));
4434         return res;
4435 }
4436 EXPORT_SYMBOL(follow_pte_pmd);
4437
4438 /**
4439  * follow_pfn - look up PFN at a user virtual address
4440  * @vma: memory mapping
4441  * @address: user virtual address
4442  * @pfn: location to store found PFN
4443  *
4444  * Only IO mappings and raw PFN mappings are allowed.
4445  *
4446  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4447  */
4448 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4449         unsigned long *pfn)
4450 {
4451         int ret = -EINVAL;
4452         spinlock_t *ptl;
4453         pte_t *ptep;
4454
4455         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4456                 return ret;
4457
4458         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4459         if (ret)
4460                 return ret;
4461         *pfn = pte_pfn(*ptep);
4462         pte_unmap_unlock(ptep, ptl);
4463         return 0;
4464 }
4465 EXPORT_SYMBOL(follow_pfn);
4466
4467 #ifdef CONFIG_HAVE_IOREMAP_PROT
4468 int follow_phys(struct vm_area_struct *vma,
4469                 unsigned long address, unsigned int flags,
4470                 unsigned long *prot, resource_size_t *phys)
4471 {
4472         int ret = -EINVAL;
4473         pte_t *ptep, pte;
4474         spinlock_t *ptl;
4475
4476         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4477                 goto out;
4478
4479         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4480                 goto out;
4481         pte = *ptep;
4482
4483         if ((flags & FOLL_WRITE) && !pte_write(pte))
4484                 goto unlock;
4485
4486         *prot = pgprot_val(pte_pgprot(pte));
4487         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4488
4489         ret = 0;
4490 unlock:
4491         pte_unmap_unlock(ptep, ptl);
4492 out:
4493         return ret;
4494 }
4495
4496 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4497                         void *buf, int len, int write)
4498 {
4499         resource_size_t phys_addr;
4500         unsigned long prot = 0;
4501         void __iomem *maddr;
4502         int offset = addr & (PAGE_SIZE-1);
4503
4504         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4505                 return -EINVAL;
4506
4507         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4508         if (!maddr)
4509                 return -ENOMEM;
4510
4511         if (write)
4512                 memcpy_toio(maddr + offset, buf, len);
4513         else
4514                 memcpy_fromio(buf, maddr + offset, len);
4515         iounmap(maddr);
4516
4517         return len;
4518 }
4519 EXPORT_SYMBOL_GPL(generic_access_phys);
4520 #endif
4521
4522 /*
4523  * Access another process' address space as given in mm.  If non-NULL, use the
4524  * given task for page fault accounting.
4525  */
4526 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4527                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4528 {
4529         struct vm_area_struct *vma;
4530         void *old_buf = buf;
4531         int write = gup_flags & FOLL_WRITE;
4532
4533         down_read(&mm->mmap_sem);
4534         /* ignore errors, just check how much was successfully transferred */
4535         while (len) {
4536                 int bytes, ret, offset;
4537                 void *maddr;
4538                 struct page *page = NULL;
4539
4540                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4541                                 gup_flags, &page, &vma, NULL);
4542                 if (ret <= 0) {
4543 #ifndef CONFIG_HAVE_IOREMAP_PROT
4544                         break;
4545 #else
4546                         /*
4547                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4548                          * we can access using slightly different code.
4549                          */
4550                         vma = find_vma(mm, addr);
4551                         if (!vma || vma->vm_start > addr)
4552                                 break;
4553                         if (vma->vm_ops && vma->vm_ops->access)
4554                                 ret = vma->vm_ops->access(vma, addr, buf,
4555                                                           len, write);
4556                         if (ret <= 0)
4557                                 break;
4558                         bytes = ret;
4559 #endif
4560                 } else {
4561                         bytes = len;
4562                         offset = addr & (PAGE_SIZE-1);
4563                         if (bytes > PAGE_SIZE-offset)
4564                                 bytes = PAGE_SIZE-offset;
4565
4566                         maddr = kmap(page);
4567                         if (write) {
4568                                 copy_to_user_page(vma, page, addr,
4569                                                   maddr + offset, buf, bytes);
4570                                 set_page_dirty_lock(page);
4571                         } else {
4572                                 copy_from_user_page(vma, page, addr,
4573                                                     buf, maddr + offset, bytes);
4574                         }
4575                         kunmap(page);
4576                         put_page(page);
4577                 }
4578                 len -= bytes;
4579                 buf += bytes;
4580                 addr += bytes;
4581         }
4582         up_read(&mm->mmap_sem);
4583
4584         return buf - old_buf;
4585 }
4586
4587 /**
4588  * access_remote_vm - access another process' address space
4589  * @mm:         the mm_struct of the target address space
4590  * @addr:       start address to access
4591  * @buf:        source or destination buffer
4592  * @len:        number of bytes to transfer
4593  * @gup_flags:  flags modifying lookup behaviour
4594  *
4595  * The caller must hold a reference on @mm.
4596  */
4597 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4598                 void *buf, int len, unsigned int gup_flags)
4599 {
4600         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4601 }
4602
4603 /*
4604  * Access another process' address space.
4605  * Source/target buffer must be kernel space,
4606  * Do not walk the page table directly, use get_user_pages
4607  */
4608 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4609                 void *buf, int len, unsigned int gup_flags)
4610 {
4611         struct mm_struct *mm;
4612         int ret;
4613
4614         mm = get_task_mm(tsk);
4615         if (!mm)
4616                 return 0;
4617
4618         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4619
4620         mmput(mm);
4621
4622         return ret;
4623 }
4624 EXPORT_SYMBOL_GPL(access_process_vm);
4625
4626 /*
4627  * Print the name of a VMA.
4628  */
4629 void print_vma_addr(char *prefix, unsigned long ip)
4630 {
4631         struct mm_struct *mm = current->mm;
4632         struct vm_area_struct *vma;
4633
4634         /*
4635          * Do not print if we are in atomic
4636          * contexts (in exception stacks, etc.):
4637          */
4638         if (preempt_count())
4639                 return;
4640
4641         down_read(&mm->mmap_sem);
4642         vma = find_vma(mm, ip);
4643         if (vma && vma->vm_file) {
4644                 struct file *f = vma->vm_file;
4645                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4646                 if (buf) {
4647                         char *p;
4648
4649                         p = file_path(f, buf, PAGE_SIZE);
4650                         if (IS_ERR(p))
4651                                 p = "?";
4652                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4653                                         vma->vm_start,
4654                                         vma->vm_end - vma->vm_start);
4655                         free_page((unsigned long)buf);
4656                 }
4657         }
4658         up_read(&mm->mmap_sem);
4659 }
4660
4661 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4662 void __might_fault(const char *file, int line)
4663 {
4664         /*
4665          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4666          * holding the mmap_sem, this is safe because kernel memory doesn't
4667          * get paged out, therefore we'll never actually fault, and the
4668          * below annotations will generate false positives.
4669          */
4670         if (uaccess_kernel())
4671                 return;
4672         if (pagefault_disabled())
4673                 return;
4674         __might_sleep(file, line, 0);
4675 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4676         if (current->mm)
4677                 might_lock_read(&current->mm->mmap_sem);
4678 #endif
4679 }
4680 EXPORT_SYMBOL(__might_fault);
4681 #endif
4682
4683 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4684 static void clear_gigantic_page(struct page *page,
4685                                 unsigned long addr,
4686                                 unsigned int pages_per_huge_page)
4687 {
4688         int i;
4689         struct page *p = page;
4690
4691         might_sleep();
4692         for (i = 0; i < pages_per_huge_page;
4693              i++, p = mem_map_next(p, page, i)) {
4694                 cond_resched();
4695                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4696         }
4697 }
4698 void clear_huge_page(struct page *page,
4699                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4700 {
4701         int i, n, base, l;
4702         unsigned long addr = addr_hint &
4703                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4704
4705         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4706                 clear_gigantic_page(page, addr, pages_per_huge_page);
4707                 return;
4708         }
4709
4710         /* Clear sub-page to access last to keep its cache lines hot */
4711         might_sleep();
4712         n = (addr_hint - addr) / PAGE_SIZE;
4713         if (2 * n <= pages_per_huge_page) {
4714                 /* If sub-page to access in first half of huge page */
4715                 base = 0;
4716                 l = n;
4717                 /* Clear sub-pages at the end of huge page */
4718                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4719                         cond_resched();
4720                         clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4721                 }
4722         } else {
4723                 /* If sub-page to access in second half of huge page */
4724                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4725                 l = pages_per_huge_page - n;
4726                 /* Clear sub-pages at the begin of huge page */
4727                 for (i = 0; i < base; i++) {
4728                         cond_resched();
4729                         clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4730                 }
4731         }
4732         /*
4733          * Clear remaining sub-pages in left-right-left-right pattern
4734          * towards the sub-page to access
4735          */
4736         for (i = 0; i < l; i++) {
4737                 int left_idx = base + i;
4738                 int right_idx = base + 2 * l - 1 - i;
4739
4740                 cond_resched();
4741                 clear_user_highpage(page + left_idx,
4742                                     addr + left_idx * PAGE_SIZE);
4743                 cond_resched();
4744                 clear_user_highpage(page + right_idx,
4745                                     addr + right_idx * PAGE_SIZE);
4746         }
4747 }
4748
4749 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4750                                     unsigned long addr,
4751                                     struct vm_area_struct *vma,
4752                                     unsigned int pages_per_huge_page)
4753 {
4754         int i;
4755         struct page *dst_base = dst;
4756         struct page *src_base = src;
4757
4758         for (i = 0; i < pages_per_huge_page; ) {
4759                 cond_resched();
4760                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4761
4762                 i++;
4763                 dst = mem_map_next(dst, dst_base, i);
4764                 src = mem_map_next(src, src_base, i);
4765         }
4766 }
4767
4768 void copy_user_huge_page(struct page *dst, struct page *src,
4769                          unsigned long addr, struct vm_area_struct *vma,
4770                          unsigned int pages_per_huge_page)
4771 {
4772         int i;
4773
4774         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4775                 copy_user_gigantic_page(dst, src, addr, vma,
4776                                         pages_per_huge_page);
4777                 return;
4778         }
4779
4780         might_sleep();
4781         for (i = 0; i < pages_per_huge_page; i++) {
4782                 cond_resched();
4783                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4784         }
4785 }
4786
4787 long copy_huge_page_from_user(struct page *dst_page,
4788                                 const void __user *usr_src,
4789                                 unsigned int pages_per_huge_page,
4790                                 bool allow_pagefault)
4791 {
4792         void *src = (void *)usr_src;
4793         void *page_kaddr;
4794         unsigned long i, rc = 0;
4795         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4796         struct page *subpage = dst_page;
4797
4798         for (i = 0; i < pages_per_huge_page;
4799              i++, subpage = mem_map_next(subpage, dst_page, i)) {
4800                 if (allow_pagefault)
4801                         page_kaddr = kmap(subpage);
4802                 else
4803                         page_kaddr = kmap_atomic(subpage);
4804                 rc = copy_from_user(page_kaddr,
4805                                 (const void __user *)(src + i * PAGE_SIZE),
4806                                 PAGE_SIZE);
4807                 if (allow_pagefault)
4808                         kunmap(subpage);
4809                 else
4810                         kunmap_atomic(page_kaddr);
4811
4812                 ret_val -= (PAGE_SIZE - rc);
4813                 if (rc)
4814                         break;
4815
4816                 cond_resched();
4817         }
4818         return ret_val;
4819 }
4820 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4821
4822 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4823
4824 static struct kmem_cache *page_ptl_cachep;
4825
4826 void __init ptlock_cache_init(void)
4827 {
4828         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4829                         SLAB_PANIC, NULL);
4830 }
4831
4832 bool ptlock_alloc(struct page *page)
4833 {
4834         spinlock_t *ptl;
4835
4836         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4837         if (!ptl)
4838                 return false;
4839         page->ptl = ptl;
4840         return true;
4841 }
4842
4843 void ptlock_free(struct page *page)
4844 {
4845         kmem_cache_free(page_ptl_cachep, page->ptl);
4846 }
4847 #endif