GNU Linux-libre 4.19.242-gnu1
[releases.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 #ifndef arch_faults_on_old_pte
120 static inline bool arch_faults_on_old_pte(void)
121 {
122         /*
123          * Those arches which don't have hw access flag feature need to
124          * implement their own helper. By default, "true" means pagefault
125          * will be hit on old pte.
126          */
127         return true;
128 }
129 #endif
130
131 static int __init disable_randmaps(char *s)
132 {
133         randomize_va_space = 0;
134         return 1;
135 }
136 __setup("norandmaps", disable_randmaps);
137
138 unsigned long zero_pfn __read_mostly;
139 EXPORT_SYMBOL(zero_pfn);
140
141 unsigned long highest_memmap_pfn __read_mostly;
142
143 /*
144  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
145  */
146 static int __init init_zero_pfn(void)
147 {
148         zero_pfn = page_to_pfn(ZERO_PAGE(0));
149         return 0;
150 }
151 early_initcall(init_zero_pfn);
152
153
154 #if defined(SPLIT_RSS_COUNTING)
155
156 void sync_mm_rss(struct mm_struct *mm)
157 {
158         int i;
159
160         for (i = 0; i < NR_MM_COUNTERS; i++) {
161                 if (current->rss_stat.count[i]) {
162                         add_mm_counter(mm, i, current->rss_stat.count[i]);
163                         current->rss_stat.count[i] = 0;
164                 }
165         }
166         current->rss_stat.events = 0;
167 }
168
169 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
170 {
171         struct task_struct *task = current;
172
173         if (likely(task->mm == mm))
174                 task->rss_stat.count[member] += val;
175         else
176                 add_mm_counter(mm, member, val);
177 }
178 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
179 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
180
181 /* sync counter once per 64 page faults */
182 #define TASK_RSS_EVENTS_THRESH  (64)
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185         if (unlikely(task != current))
186                 return;
187         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
188                 sync_mm_rss(task->mm);
189 }
190 #else /* SPLIT_RSS_COUNTING */
191
192 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
193 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
194
195 static void check_sync_rss_stat(struct task_struct *task)
196 {
197 }
198
199 #endif /* SPLIT_RSS_COUNTING */
200
201 #ifdef HAVE_GENERIC_MMU_GATHER
202
203 static bool tlb_next_batch(struct mmu_gather *tlb)
204 {
205         struct mmu_gather_batch *batch;
206
207         batch = tlb->active;
208         if (batch->next) {
209                 tlb->active = batch->next;
210                 return true;
211         }
212
213         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
214                 return false;
215
216         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
217         if (!batch)
218                 return false;
219
220         tlb->batch_count++;
221         batch->next = NULL;
222         batch->nr   = 0;
223         batch->max  = MAX_GATHER_BATCH;
224
225         tlb->active->next = batch;
226         tlb->active = batch;
227
228         return true;
229 }
230
231 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
232                                 unsigned long start, unsigned long end)
233 {
234         tlb->mm = mm;
235
236         /* Is it from 0 to ~0? */
237         tlb->fullmm     = !(start | (end+1));
238         tlb->need_flush_all = 0;
239         tlb->local.next = NULL;
240         tlb->local.nr   = 0;
241         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
242         tlb->active     = &tlb->local;
243         tlb->batch_count = 0;
244
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246         tlb->batch = NULL;
247 #endif
248         tlb->page_size = 0;
249
250         __tlb_reset_range(tlb);
251 }
252
253 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 {
255         struct mmu_gather_batch *batch;
256
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258         tlb_table_flush(tlb);
259 #endif
260         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
261                 free_pages_and_swap_cache(batch->pages, batch->nr);
262                 batch->nr = 0;
263         }
264         tlb->active = &tlb->local;
265 }
266
267 void tlb_flush_mmu(struct mmu_gather *tlb)
268 {
269         tlb_flush_mmu_tlbonly(tlb);
270         tlb_flush_mmu_free(tlb);
271 }
272
273 /* tlb_finish_mmu
274  *      Called at the end of the shootdown operation to free up any resources
275  *      that were required.
276  */
277 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
278                 unsigned long start, unsigned long end, bool force)
279 {
280         struct mmu_gather_batch *batch, *next;
281
282         if (force)
283                 __tlb_adjust_range(tlb, start, end - start);
284
285         tlb_flush_mmu(tlb);
286
287         /* keep the page table cache within bounds */
288         check_pgt_cache();
289
290         for (batch = tlb->local.next; batch; batch = next) {
291                 next = batch->next;
292                 free_pages((unsigned long)batch, 0);
293         }
294         tlb->local.next = NULL;
295 }
296
297 /* __tlb_remove_page
298  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
299  *      handling the additional races in SMP caused by other CPUs caching valid
300  *      mappings in their TLBs. Returns the number of free page slots left.
301  *      When out of page slots we must call tlb_flush_mmu().
302  *returns true if the caller should flush.
303  */
304 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
305 {
306         struct mmu_gather_batch *batch;
307
308         VM_BUG_ON(!tlb->end);
309         VM_WARN_ON(tlb->page_size != page_size);
310
311         batch = tlb->active;
312         /*
313          * Add the page and check if we are full. If so
314          * force a flush.
315          */
316         batch->pages[batch->nr++] = page;
317         if (batch->nr == batch->max) {
318                 if (!tlb_next_batch(tlb))
319                         return true;
320                 batch = tlb->active;
321         }
322         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
323
324         return false;
325 }
326
327 void tlb_flush_pmd_range(struct mmu_gather *tlb, unsigned long address,
328                          unsigned long size)
329 {
330         if (tlb->page_size != 0 && tlb->page_size != PMD_SIZE)
331                 tlb_flush_mmu(tlb);
332
333         tlb->page_size = PMD_SIZE;
334         tlb->start = min(tlb->start, address);
335         tlb->end = max(tlb->end, address + size);
336 }
337 #endif /* HAVE_GENERIC_MMU_GATHER */
338
339 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
340
341 /*
342  * See the comment near struct mmu_table_batch.
343  */
344
345 /*
346  * If we want tlb_remove_table() to imply TLB invalidates.
347  */
348 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
349 {
350 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
351         /*
352          * Invalidate page-table caches used by hardware walkers. Then we still
353          * need to RCU-sched wait while freeing the pages because software
354          * walkers can still be in-flight.
355          */
356         tlb_flush_mmu_tlbonly(tlb);
357 #endif
358 }
359
360 static void tlb_remove_table_smp_sync(void *arg)
361 {
362         /* Simply deliver the interrupt */
363 }
364
365 static void tlb_remove_table_one(void *table)
366 {
367         /*
368          * This isn't an RCU grace period and hence the page-tables cannot be
369          * assumed to be actually RCU-freed.
370          *
371          * It is however sufficient for software page-table walkers that rely on
372          * IRQ disabling. See the comment near struct mmu_table_batch.
373          */
374         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
375         __tlb_remove_table(table);
376 }
377
378 static void tlb_remove_table_rcu(struct rcu_head *head)
379 {
380         struct mmu_table_batch *batch;
381         int i;
382
383         batch = container_of(head, struct mmu_table_batch, rcu);
384
385         for (i = 0; i < batch->nr; i++)
386                 __tlb_remove_table(batch->tables[i]);
387
388         free_page((unsigned long)batch);
389 }
390
391 void tlb_table_flush(struct mmu_gather *tlb)
392 {
393         struct mmu_table_batch **batch = &tlb->batch;
394
395         if (*batch) {
396                 tlb_table_invalidate(tlb);
397                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
398                 *batch = NULL;
399         }
400 }
401
402 void tlb_remove_table(struct mmu_gather *tlb, void *table)
403 {
404         struct mmu_table_batch **batch = &tlb->batch;
405
406         if (*batch == NULL) {
407                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
408                 if (*batch == NULL) {
409                         tlb_table_invalidate(tlb);
410                         tlb_remove_table_one(table);
411                         return;
412                 }
413                 (*batch)->nr = 0;
414         }
415
416         (*batch)->tables[(*batch)->nr++] = table;
417         if ((*batch)->nr == MAX_TABLE_BATCH)
418                 tlb_table_flush(tlb);
419 }
420
421 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
422
423 /**
424  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
425  * @tlb: the mmu_gather structure to initialize
426  * @mm: the mm_struct of the target address space
427  * @start: start of the region that will be removed from the page-table
428  * @end: end of the region that will be removed from the page-table
429  *
430  * Called to initialize an (on-stack) mmu_gather structure for page-table
431  * tear-down from @mm. The @start and @end are set to 0 and -1
432  * respectively when @mm is without users and we're going to destroy
433  * the full address space (exit/execve).
434  */
435 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
436                         unsigned long start, unsigned long end)
437 {
438         arch_tlb_gather_mmu(tlb, mm, start, end);
439         inc_tlb_flush_pending(tlb->mm);
440 }
441
442 void tlb_finish_mmu(struct mmu_gather *tlb,
443                 unsigned long start, unsigned long end)
444 {
445         /*
446          * If there are parallel threads are doing PTE changes on same range
447          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
448          * flush by batching, a thread has stable TLB entry can fail to flush
449          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
450          * forcefully if we detect parallel PTE batching threads.
451          */
452         bool force = mm_tlb_flush_nested(tlb->mm);
453
454         arch_tlb_finish_mmu(tlb, start, end, force);
455         dec_tlb_flush_pending(tlb->mm);
456 }
457
458 /*
459  * Note: this doesn't free the actual pages themselves. That
460  * has been handled earlier when unmapping all the memory regions.
461  */
462 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
463                            unsigned long addr)
464 {
465         pgtable_t token = pmd_pgtable(*pmd);
466         pmd_clear(pmd);
467         pte_free_tlb(tlb, token, addr);
468         mm_dec_nr_ptes(tlb->mm);
469 }
470
471 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
472                                 unsigned long addr, unsigned long end,
473                                 unsigned long floor, unsigned long ceiling)
474 {
475         pmd_t *pmd;
476         unsigned long next;
477         unsigned long start;
478
479         start = addr;
480         pmd = pmd_offset(pud, addr);
481         do {
482                 next = pmd_addr_end(addr, end);
483                 if (pmd_none_or_clear_bad(pmd))
484                         continue;
485                 free_pte_range(tlb, pmd, addr);
486         } while (pmd++, addr = next, addr != end);
487
488         start &= PUD_MASK;
489         if (start < floor)
490                 return;
491         if (ceiling) {
492                 ceiling &= PUD_MASK;
493                 if (!ceiling)
494                         return;
495         }
496         if (end - 1 > ceiling - 1)
497                 return;
498
499         pmd = pmd_offset(pud, start);
500         pud_clear(pud);
501         pmd_free_tlb(tlb, pmd, start);
502         mm_dec_nr_pmds(tlb->mm);
503 }
504
505 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
506                                 unsigned long addr, unsigned long end,
507                                 unsigned long floor, unsigned long ceiling)
508 {
509         pud_t *pud;
510         unsigned long next;
511         unsigned long start;
512
513         start = addr;
514         pud = pud_offset(p4d, addr);
515         do {
516                 next = pud_addr_end(addr, end);
517                 if (pud_none_or_clear_bad(pud))
518                         continue;
519                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
520         } while (pud++, addr = next, addr != end);
521
522         start &= P4D_MASK;
523         if (start < floor)
524                 return;
525         if (ceiling) {
526                 ceiling &= P4D_MASK;
527                 if (!ceiling)
528                         return;
529         }
530         if (end - 1 > ceiling - 1)
531                 return;
532
533         pud = pud_offset(p4d, start);
534         p4d_clear(p4d);
535         pud_free_tlb(tlb, pud, start);
536         mm_dec_nr_puds(tlb->mm);
537 }
538
539 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
540                                 unsigned long addr, unsigned long end,
541                                 unsigned long floor, unsigned long ceiling)
542 {
543         p4d_t *p4d;
544         unsigned long next;
545         unsigned long start;
546
547         start = addr;
548         p4d = p4d_offset(pgd, addr);
549         do {
550                 next = p4d_addr_end(addr, end);
551                 if (p4d_none_or_clear_bad(p4d))
552                         continue;
553                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
554         } while (p4d++, addr = next, addr != end);
555
556         start &= PGDIR_MASK;
557         if (start < floor)
558                 return;
559         if (ceiling) {
560                 ceiling &= PGDIR_MASK;
561                 if (!ceiling)
562                         return;
563         }
564         if (end - 1 > ceiling - 1)
565                 return;
566
567         p4d = p4d_offset(pgd, start);
568         pgd_clear(pgd);
569         p4d_free_tlb(tlb, p4d, start);
570 }
571
572 /*
573  * This function frees user-level page tables of a process.
574  */
575 void free_pgd_range(struct mmu_gather *tlb,
576                         unsigned long addr, unsigned long end,
577                         unsigned long floor, unsigned long ceiling)
578 {
579         pgd_t *pgd;
580         unsigned long next;
581
582         /*
583          * The next few lines have given us lots of grief...
584          *
585          * Why are we testing PMD* at this top level?  Because often
586          * there will be no work to do at all, and we'd prefer not to
587          * go all the way down to the bottom just to discover that.
588          *
589          * Why all these "- 1"s?  Because 0 represents both the bottom
590          * of the address space and the top of it (using -1 for the
591          * top wouldn't help much: the masks would do the wrong thing).
592          * The rule is that addr 0 and floor 0 refer to the bottom of
593          * the address space, but end 0 and ceiling 0 refer to the top
594          * Comparisons need to use "end - 1" and "ceiling - 1" (though
595          * that end 0 case should be mythical).
596          *
597          * Wherever addr is brought up or ceiling brought down, we must
598          * be careful to reject "the opposite 0" before it confuses the
599          * subsequent tests.  But what about where end is brought down
600          * by PMD_SIZE below? no, end can't go down to 0 there.
601          *
602          * Whereas we round start (addr) and ceiling down, by different
603          * masks at different levels, in order to test whether a table
604          * now has no other vmas using it, so can be freed, we don't
605          * bother to round floor or end up - the tests don't need that.
606          */
607
608         addr &= PMD_MASK;
609         if (addr < floor) {
610                 addr += PMD_SIZE;
611                 if (!addr)
612                         return;
613         }
614         if (ceiling) {
615                 ceiling &= PMD_MASK;
616                 if (!ceiling)
617                         return;
618         }
619         if (end - 1 > ceiling - 1)
620                 end -= PMD_SIZE;
621         if (addr > end - 1)
622                 return;
623         /*
624          * We add page table cache pages with PAGE_SIZE,
625          * (see pte_free_tlb()), flush the tlb if we need
626          */
627         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
628         pgd = pgd_offset(tlb->mm, addr);
629         do {
630                 next = pgd_addr_end(addr, end);
631                 if (pgd_none_or_clear_bad(pgd))
632                         continue;
633                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
634         } while (pgd++, addr = next, addr != end);
635 }
636
637 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
638                 unsigned long floor, unsigned long ceiling)
639 {
640         while (vma) {
641                 struct vm_area_struct *next = vma->vm_next;
642                 unsigned long addr = vma->vm_start;
643
644                 /*
645                  * Hide vma from rmap and truncate_pagecache before freeing
646                  * pgtables
647                  */
648                 unlink_anon_vmas(vma);
649                 unlink_file_vma(vma);
650
651                 if (is_vm_hugetlb_page(vma)) {
652                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
653                                 floor, next ? next->vm_start : ceiling);
654                 } else {
655                         /*
656                          * Optimization: gather nearby vmas into one call down
657                          */
658                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
659                                && !is_vm_hugetlb_page(next)) {
660                                 vma = next;
661                                 next = vma->vm_next;
662                                 unlink_anon_vmas(vma);
663                                 unlink_file_vma(vma);
664                         }
665                         free_pgd_range(tlb, addr, vma->vm_end,
666                                 floor, next ? next->vm_start : ceiling);
667                 }
668                 vma = next;
669         }
670 }
671
672 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
673 {
674         spinlock_t *ptl;
675         pgtable_t new = pte_alloc_one(mm, address);
676         if (!new)
677                 return -ENOMEM;
678
679         /*
680          * Ensure all pte setup (eg. pte page lock and page clearing) are
681          * visible before the pte is made visible to other CPUs by being
682          * put into page tables.
683          *
684          * The other side of the story is the pointer chasing in the page
685          * table walking code (when walking the page table without locking;
686          * ie. most of the time). Fortunately, these data accesses consist
687          * of a chain of data-dependent loads, meaning most CPUs (alpha
688          * being the notable exception) will already guarantee loads are
689          * seen in-order. See the alpha page table accessors for the
690          * smp_read_barrier_depends() barriers in page table walking code.
691          */
692         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
693
694         ptl = pmd_lock(mm, pmd);
695         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
696                 mm_inc_nr_ptes(mm);
697                 pmd_populate(mm, pmd, new);
698                 new = NULL;
699         }
700         spin_unlock(ptl);
701         if (new)
702                 pte_free(mm, new);
703         return 0;
704 }
705
706 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
707 {
708         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
709         if (!new)
710                 return -ENOMEM;
711
712         smp_wmb(); /* See comment in __pte_alloc */
713
714         spin_lock(&init_mm.page_table_lock);
715         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
716                 pmd_populate_kernel(&init_mm, pmd, new);
717                 new = NULL;
718         }
719         spin_unlock(&init_mm.page_table_lock);
720         if (new)
721                 pte_free_kernel(&init_mm, new);
722         return 0;
723 }
724
725 static inline void init_rss_vec(int *rss)
726 {
727         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
728 }
729
730 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
731 {
732         int i;
733
734         if (current->mm == mm)
735                 sync_mm_rss(mm);
736         for (i = 0; i < NR_MM_COUNTERS; i++)
737                 if (rss[i])
738                         add_mm_counter(mm, i, rss[i]);
739 }
740
741 /*
742  * This function is called to print an error when a bad pte
743  * is found. For example, we might have a PFN-mapped pte in
744  * a region that doesn't allow it.
745  *
746  * The calling function must still handle the error.
747  */
748 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
749                           pte_t pte, struct page *page)
750 {
751         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
752         p4d_t *p4d = p4d_offset(pgd, addr);
753         pud_t *pud = pud_offset(p4d, addr);
754         pmd_t *pmd = pmd_offset(pud, addr);
755         struct address_space *mapping;
756         pgoff_t index;
757         static unsigned long resume;
758         static unsigned long nr_shown;
759         static unsigned long nr_unshown;
760
761         /*
762          * Allow a burst of 60 reports, then keep quiet for that minute;
763          * or allow a steady drip of one report per second.
764          */
765         if (nr_shown == 60) {
766                 if (time_before(jiffies, resume)) {
767                         nr_unshown++;
768                         return;
769                 }
770                 if (nr_unshown) {
771                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
772                                  nr_unshown);
773                         nr_unshown = 0;
774                 }
775                 nr_shown = 0;
776         }
777         if (nr_shown++ == 0)
778                 resume = jiffies + 60 * HZ;
779
780         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
781         index = linear_page_index(vma, addr);
782
783         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
784                  current->comm,
785                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
786         if (page)
787                 dump_page(page, "bad pte");
788         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
789                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
790         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
791                  vma->vm_file,
792                  vma->vm_ops ? vma->vm_ops->fault : NULL,
793                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
794                  mapping ? mapping->a_ops->readpage : NULL);
795         dump_stack();
796         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
797 }
798
799 /*
800  * vm_normal_page -- This function gets the "struct page" associated with a pte.
801  *
802  * "Special" mappings do not wish to be associated with a "struct page" (either
803  * it doesn't exist, or it exists but they don't want to touch it). In this
804  * case, NULL is returned here. "Normal" mappings do have a struct page.
805  *
806  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
807  * pte bit, in which case this function is trivial. Secondly, an architecture
808  * may not have a spare pte bit, which requires a more complicated scheme,
809  * described below.
810  *
811  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
812  * special mapping (even if there are underlying and valid "struct pages").
813  * COWed pages of a VM_PFNMAP are always normal.
814  *
815  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
816  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
817  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
818  * mapping will always honor the rule
819  *
820  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
821  *
822  * And for normal mappings this is false.
823  *
824  * This restricts such mappings to be a linear translation from virtual address
825  * to pfn. To get around this restriction, we allow arbitrary mappings so long
826  * as the vma is not a COW mapping; in that case, we know that all ptes are
827  * special (because none can have been COWed).
828  *
829  *
830  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
831  *
832  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
833  * page" backing, however the difference is that _all_ pages with a struct
834  * page (that is, those where pfn_valid is true) are refcounted and considered
835  * normal pages by the VM. The disadvantage is that pages are refcounted
836  * (which can be slower and simply not an option for some PFNMAP users). The
837  * advantage is that we don't have to follow the strict linearity rule of
838  * PFNMAP mappings in order to support COWable mappings.
839  *
840  */
841 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
842                              pte_t pte, bool with_public_device)
843 {
844         unsigned long pfn = pte_pfn(pte);
845
846         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
847                 if (likely(!pte_special(pte)))
848                         goto check_pfn;
849                 if (vma->vm_ops && vma->vm_ops->find_special_page)
850                         return vma->vm_ops->find_special_page(vma, addr);
851                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
852                         return NULL;
853                 if (is_zero_pfn(pfn))
854                         return NULL;
855
856                 /*
857                  * Device public pages are special pages (they are ZONE_DEVICE
858                  * pages but different from persistent memory). They behave
859                  * allmost like normal pages. The difference is that they are
860                  * not on the lru and thus should never be involve with any-
861                  * thing that involve lru manipulation (mlock, numa balancing,
862                  * ...).
863                  *
864                  * This is why we still want to return NULL for such page from
865                  * vm_normal_page() so that we do not have to special case all
866                  * call site of vm_normal_page().
867                  */
868                 if (likely(pfn <= highest_memmap_pfn)) {
869                         struct page *page = pfn_to_page(pfn);
870
871                         if (is_device_public_page(page)) {
872                                 if (with_public_device)
873                                         return page;
874                                 return NULL;
875                         }
876                 }
877
878                 if (pte_devmap(pte))
879                         return NULL;
880
881                 print_bad_pte(vma, addr, pte, NULL);
882                 return NULL;
883         }
884
885         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
886
887         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
888                 if (vma->vm_flags & VM_MIXEDMAP) {
889                         if (!pfn_valid(pfn))
890                                 return NULL;
891                         goto out;
892                 } else {
893                         unsigned long off;
894                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
895                         if (pfn == vma->vm_pgoff + off)
896                                 return NULL;
897                         if (!is_cow_mapping(vma->vm_flags))
898                                 return NULL;
899                 }
900         }
901
902         if (is_zero_pfn(pfn))
903                 return NULL;
904
905 check_pfn:
906         if (unlikely(pfn > highest_memmap_pfn)) {
907                 print_bad_pte(vma, addr, pte, NULL);
908                 return NULL;
909         }
910
911         /*
912          * NOTE! We still have PageReserved() pages in the page tables.
913          * eg. VDSO mappings can cause them to exist.
914          */
915 out:
916         return pfn_to_page(pfn);
917 }
918
919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
920 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
921                                 pmd_t pmd)
922 {
923         unsigned long pfn = pmd_pfn(pmd);
924
925         /*
926          * There is no pmd_special() but there may be special pmds, e.g.
927          * in a direct-access (dax) mapping, so let's just replicate the
928          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
929          */
930         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
931                 if (vma->vm_flags & VM_MIXEDMAP) {
932                         if (!pfn_valid(pfn))
933                                 return NULL;
934                         goto out;
935                 } else {
936                         unsigned long off;
937                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
938                         if (pfn == vma->vm_pgoff + off)
939                                 return NULL;
940                         if (!is_cow_mapping(vma->vm_flags))
941                                 return NULL;
942                 }
943         }
944
945         if (pmd_devmap(pmd))
946                 return NULL;
947         if (is_zero_pfn(pfn))
948                 return NULL;
949         if (unlikely(pfn > highest_memmap_pfn))
950                 return NULL;
951
952         /*
953          * NOTE! We still have PageReserved() pages in the page tables.
954          * eg. VDSO mappings can cause them to exist.
955          */
956 out:
957         return pfn_to_page(pfn);
958 }
959 #endif
960
961 /*
962  * copy one vm_area from one task to the other. Assumes the page tables
963  * already present in the new task to be cleared in the whole range
964  * covered by this vma.
965  */
966
967 static inline unsigned long
968 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
970                 unsigned long addr, int *rss)
971 {
972         unsigned long vm_flags = vma->vm_flags;
973         pte_t pte = *src_pte;
974         struct page *page;
975
976         /* pte contains position in swap or file, so copy. */
977         if (unlikely(!pte_present(pte))) {
978                 swp_entry_t entry = pte_to_swp_entry(pte);
979
980                 if (likely(!non_swap_entry(entry))) {
981                         if (swap_duplicate(entry) < 0)
982                                 return entry.val;
983
984                         /* make sure dst_mm is on swapoff's mmlist. */
985                         if (unlikely(list_empty(&dst_mm->mmlist))) {
986                                 spin_lock(&mmlist_lock);
987                                 if (list_empty(&dst_mm->mmlist))
988                                         list_add(&dst_mm->mmlist,
989                                                         &src_mm->mmlist);
990                                 spin_unlock(&mmlist_lock);
991                         }
992                         rss[MM_SWAPENTS]++;
993                 } else if (is_migration_entry(entry)) {
994                         page = migration_entry_to_page(entry);
995
996                         rss[mm_counter(page)]++;
997
998                         if (is_write_migration_entry(entry) &&
999                                         is_cow_mapping(vm_flags)) {
1000                                 /*
1001                                  * COW mappings require pages in both
1002                                  * parent and child to be set to read.
1003                                  */
1004                                 make_migration_entry_read(&entry);
1005                                 pte = swp_entry_to_pte(entry);
1006                                 if (pte_swp_soft_dirty(*src_pte))
1007                                         pte = pte_swp_mksoft_dirty(pte);
1008                                 set_pte_at(src_mm, addr, src_pte, pte);
1009                         }
1010                 } else if (is_device_private_entry(entry)) {
1011                         page = device_private_entry_to_page(entry);
1012
1013                         /*
1014                          * Update rss count even for unaddressable pages, as
1015                          * they should treated just like normal pages in this
1016                          * respect.
1017                          *
1018                          * We will likely want to have some new rss counters
1019                          * for unaddressable pages, at some point. But for now
1020                          * keep things as they are.
1021                          */
1022                         get_page(page);
1023                         rss[mm_counter(page)]++;
1024                         page_dup_rmap(page, false);
1025
1026                         /*
1027                          * We do not preserve soft-dirty information, because so
1028                          * far, checkpoint/restore is the only feature that
1029                          * requires that. And checkpoint/restore does not work
1030                          * when a device driver is involved (you cannot easily
1031                          * save and restore device driver state).
1032                          */
1033                         if (is_write_device_private_entry(entry) &&
1034                             is_cow_mapping(vm_flags)) {
1035                                 make_device_private_entry_read(&entry);
1036                                 pte = swp_entry_to_pte(entry);
1037                                 set_pte_at(src_mm, addr, src_pte, pte);
1038                         }
1039                 }
1040                 goto out_set_pte;
1041         }
1042
1043         /*
1044          * If it's a COW mapping, write protect it both
1045          * in the parent and the child
1046          */
1047         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1048                 ptep_set_wrprotect(src_mm, addr, src_pte);
1049                 pte = pte_wrprotect(pte);
1050         }
1051
1052         /*
1053          * If it's a shared mapping, mark it clean in
1054          * the child
1055          */
1056         if (vm_flags & VM_SHARED)
1057                 pte = pte_mkclean(pte);
1058         pte = pte_mkold(pte);
1059
1060         page = vm_normal_page(vma, addr, pte);
1061         if (page) {
1062                 get_page(page);
1063                 page_dup_rmap(page, false);
1064                 rss[mm_counter(page)]++;
1065         } else if (pte_devmap(pte)) {
1066                 page = pte_page(pte);
1067
1068                 /*
1069                  * Cache coherent device memory behave like regular page and
1070                  * not like persistent memory page. For more informations see
1071                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1072                  */
1073                 if (is_device_public_page(page)) {
1074                         get_page(page);
1075                         page_dup_rmap(page, false);
1076                         rss[mm_counter(page)]++;
1077                 }
1078         }
1079
1080 out_set_pte:
1081         set_pte_at(dst_mm, addr, dst_pte, pte);
1082         return 0;
1083 }
1084
1085 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1086                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1087                    unsigned long addr, unsigned long end)
1088 {
1089         pte_t *orig_src_pte, *orig_dst_pte;
1090         pte_t *src_pte, *dst_pte;
1091         spinlock_t *src_ptl, *dst_ptl;
1092         int progress = 0;
1093         int rss[NR_MM_COUNTERS];
1094         swp_entry_t entry = (swp_entry_t){0};
1095
1096 again:
1097         init_rss_vec(rss);
1098
1099         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1100         if (!dst_pte)
1101                 return -ENOMEM;
1102         src_pte = pte_offset_map(src_pmd, addr);
1103         src_ptl = pte_lockptr(src_mm, src_pmd);
1104         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1105         orig_src_pte = src_pte;
1106         orig_dst_pte = dst_pte;
1107         arch_enter_lazy_mmu_mode();
1108
1109         do {
1110                 /*
1111                  * We are holding two locks at this point - either of them
1112                  * could generate latencies in another task on another CPU.
1113                  */
1114                 if (progress >= 32) {
1115                         progress = 0;
1116                         if (need_resched() ||
1117                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1118                                 break;
1119                 }
1120                 if (pte_none(*src_pte)) {
1121                         progress++;
1122                         continue;
1123                 }
1124                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1125                                                         vma, addr, rss);
1126                 if (entry.val)
1127                         break;
1128                 progress += 8;
1129         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1130
1131         arch_leave_lazy_mmu_mode();
1132         spin_unlock(src_ptl);
1133         pte_unmap(orig_src_pte);
1134         add_mm_rss_vec(dst_mm, rss);
1135         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1136         cond_resched();
1137
1138         if (entry.val) {
1139                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1140                         return -ENOMEM;
1141                 progress = 0;
1142         }
1143         if (addr != end)
1144                 goto again;
1145         return 0;
1146 }
1147
1148 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1149                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1150                 unsigned long addr, unsigned long end)
1151 {
1152         pmd_t *src_pmd, *dst_pmd;
1153         unsigned long next;
1154
1155         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1156         if (!dst_pmd)
1157                 return -ENOMEM;
1158         src_pmd = pmd_offset(src_pud, addr);
1159         do {
1160                 next = pmd_addr_end(addr, end);
1161                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1162                         || pmd_devmap(*src_pmd)) {
1163                         int err;
1164                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1165                         err = copy_huge_pmd(dst_mm, src_mm,
1166                                             dst_pmd, src_pmd, addr, vma);
1167                         if (err == -ENOMEM)
1168                                 return -ENOMEM;
1169                         if (!err)
1170                                 continue;
1171                         /* fall through */
1172                 }
1173                 if (pmd_none_or_clear_bad(src_pmd))
1174                         continue;
1175                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1176                                                 vma, addr, next))
1177                         return -ENOMEM;
1178         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1179         return 0;
1180 }
1181
1182 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1183                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1184                 unsigned long addr, unsigned long end)
1185 {
1186         pud_t *src_pud, *dst_pud;
1187         unsigned long next;
1188
1189         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1190         if (!dst_pud)
1191                 return -ENOMEM;
1192         src_pud = pud_offset(src_p4d, addr);
1193         do {
1194                 next = pud_addr_end(addr, end);
1195                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1196                         int err;
1197
1198                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1199                         err = copy_huge_pud(dst_mm, src_mm,
1200                                             dst_pud, src_pud, addr, vma);
1201                         if (err == -ENOMEM)
1202                                 return -ENOMEM;
1203                         if (!err)
1204                                 continue;
1205                         /* fall through */
1206                 }
1207                 if (pud_none_or_clear_bad(src_pud))
1208                         continue;
1209                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1210                                                 vma, addr, next))
1211                         return -ENOMEM;
1212         } while (dst_pud++, src_pud++, addr = next, addr != end);
1213         return 0;
1214 }
1215
1216 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1217                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1218                 unsigned long addr, unsigned long end)
1219 {
1220         p4d_t *src_p4d, *dst_p4d;
1221         unsigned long next;
1222
1223         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1224         if (!dst_p4d)
1225                 return -ENOMEM;
1226         src_p4d = p4d_offset(src_pgd, addr);
1227         do {
1228                 next = p4d_addr_end(addr, end);
1229                 if (p4d_none_or_clear_bad(src_p4d))
1230                         continue;
1231                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1232                                                 vma, addr, next))
1233                         return -ENOMEM;
1234         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1235         return 0;
1236 }
1237
1238 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1239                 struct vm_area_struct *vma)
1240 {
1241         pgd_t *src_pgd, *dst_pgd;
1242         unsigned long next;
1243         unsigned long addr = vma->vm_start;
1244         unsigned long end = vma->vm_end;
1245         unsigned long mmun_start;       /* For mmu_notifiers */
1246         unsigned long mmun_end;         /* For mmu_notifiers */
1247         bool is_cow;
1248         int ret;
1249
1250         /*
1251          * Don't copy ptes where a page fault will fill them correctly.
1252          * Fork becomes much lighter when there are big shared or private
1253          * readonly mappings. The tradeoff is that copy_page_range is more
1254          * efficient than faulting.
1255          */
1256         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1257                         !vma->anon_vma)
1258                 return 0;
1259
1260         if (is_vm_hugetlb_page(vma))
1261                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1262
1263         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1264                 /*
1265                  * We do not free on error cases below as remove_vma
1266                  * gets called on error from higher level routine
1267                  */
1268                 ret = track_pfn_copy(vma);
1269                 if (ret)
1270                         return ret;
1271         }
1272
1273         /*
1274          * We need to invalidate the secondary MMU mappings only when
1275          * there could be a permission downgrade on the ptes of the
1276          * parent mm. And a permission downgrade will only happen if
1277          * is_cow_mapping() returns true.
1278          */
1279         is_cow = is_cow_mapping(vma->vm_flags);
1280         mmun_start = addr;
1281         mmun_end   = end;
1282         if (is_cow)
1283                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1284                                                     mmun_end);
1285
1286         ret = 0;
1287         dst_pgd = pgd_offset(dst_mm, addr);
1288         src_pgd = pgd_offset(src_mm, addr);
1289         do {
1290                 next = pgd_addr_end(addr, end);
1291                 if (pgd_none_or_clear_bad(src_pgd))
1292                         continue;
1293                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1294                                             vma, addr, next))) {
1295                         ret = -ENOMEM;
1296                         break;
1297                 }
1298         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1299
1300         if (is_cow)
1301                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1302         return ret;
1303 }
1304
1305 /* Whether we should zap all COWed (private) pages too */
1306 static inline bool should_zap_cows(struct zap_details *details)
1307 {
1308         /* By default, zap all pages */
1309         if (!details)
1310                 return true;
1311
1312         /* Or, we zap COWed pages only if the caller wants to */
1313         return !details->check_mapping;
1314 }
1315
1316 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1317                                 struct vm_area_struct *vma, pmd_t *pmd,
1318                                 unsigned long addr, unsigned long end,
1319                                 struct zap_details *details)
1320 {
1321         struct mm_struct *mm = tlb->mm;
1322         int force_flush = 0;
1323         int rss[NR_MM_COUNTERS];
1324         spinlock_t *ptl;
1325         pte_t *start_pte;
1326         pte_t *pte;
1327         swp_entry_t entry;
1328
1329         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1330 again:
1331         init_rss_vec(rss);
1332         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1333         pte = start_pte;
1334         flush_tlb_batched_pending(mm);
1335         arch_enter_lazy_mmu_mode();
1336         do {
1337                 pte_t ptent = *pte;
1338                 if (pte_none(ptent))
1339                         continue;
1340
1341                 if (pte_present(ptent)) {
1342                         struct page *page;
1343
1344                         page = _vm_normal_page(vma, addr, ptent, true);
1345                         if (unlikely(details) && page) {
1346                                 /*
1347                                  * unmap_shared_mapping_pages() wants to
1348                                  * invalidate cache without truncating:
1349                                  * unmap shared but keep private pages.
1350                                  */
1351                                 if (details->check_mapping &&
1352                                     details->check_mapping != page_rmapping(page))
1353                                         continue;
1354                         }
1355                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1356                                                         tlb->fullmm);
1357                         tlb_remove_tlb_entry(tlb, pte, addr);
1358                         if (unlikely(!page))
1359                                 continue;
1360
1361                         if (!PageAnon(page)) {
1362                                 if (pte_dirty(ptent)) {
1363                                         force_flush = 1;
1364                                         set_page_dirty(page);
1365                                 }
1366                                 if (pte_young(ptent) &&
1367                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1368                                         mark_page_accessed(page);
1369                         }
1370                         rss[mm_counter(page)]--;
1371                         page_remove_rmap(page, false);
1372                         if (unlikely(page_mapcount(page) < 0))
1373                                 print_bad_pte(vma, addr, ptent, page);
1374                         if (unlikely(__tlb_remove_page(tlb, page))) {
1375                                 force_flush = 1;
1376                                 addr += PAGE_SIZE;
1377                                 break;
1378                         }
1379                         continue;
1380                 }
1381
1382                 entry = pte_to_swp_entry(ptent);
1383                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1384                         struct page *page = device_private_entry_to_page(entry);
1385
1386                         if (unlikely(details && details->check_mapping)) {
1387                                 /*
1388                                  * unmap_shared_mapping_pages() wants to
1389                                  * invalidate cache without truncating:
1390                                  * unmap shared but keep private pages.
1391                                  */
1392                                 if (details->check_mapping !=
1393                                     page_rmapping(page))
1394                                         continue;
1395                         }
1396
1397                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1398                         rss[mm_counter(page)]--;
1399                         page_remove_rmap(page, false);
1400                         put_page(page);
1401                         continue;
1402                 }
1403
1404                 entry = pte_to_swp_entry(ptent);
1405                 if (!non_swap_entry(entry)) {
1406                         /* Genuine swap entry, hence a private anon page */
1407                         if (!should_zap_cows(details))
1408                                 continue;
1409                         rss[MM_SWAPENTS]--;
1410                 } else if (is_migration_entry(entry)) {
1411                         struct page *page;
1412
1413                         page = migration_entry_to_page(entry);
1414                         if (details && details->check_mapping &&
1415                             details->check_mapping != page_rmapping(page))
1416                                 continue;
1417                         rss[mm_counter(page)]--;
1418                 }
1419                 if (unlikely(!free_swap_and_cache(entry)))
1420                         print_bad_pte(vma, addr, ptent, NULL);
1421                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1422         } while (pte++, addr += PAGE_SIZE, addr != end);
1423
1424         add_mm_rss_vec(mm, rss);
1425         arch_leave_lazy_mmu_mode();
1426
1427         /* Do the actual TLB flush before dropping ptl */
1428         if (force_flush)
1429                 tlb_flush_mmu_tlbonly(tlb);
1430         pte_unmap_unlock(start_pte, ptl);
1431
1432         /*
1433          * If we forced a TLB flush (either due to running out of
1434          * batch buffers or because we needed to flush dirty TLB
1435          * entries before releasing the ptl), free the batched
1436          * memory too. Restart if we didn't do everything.
1437          */
1438         if (force_flush) {
1439                 force_flush = 0;
1440                 tlb_flush_mmu_free(tlb);
1441                 if (addr != end)
1442                         goto again;
1443         }
1444
1445         return addr;
1446 }
1447
1448 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1449                                 struct vm_area_struct *vma, pud_t *pud,
1450                                 unsigned long addr, unsigned long end,
1451                                 struct zap_details *details)
1452 {
1453         pmd_t *pmd;
1454         unsigned long next;
1455
1456         pmd = pmd_offset(pud, addr);
1457         do {
1458                 next = pmd_addr_end(addr, end);
1459                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1460                         if (next - addr != HPAGE_PMD_SIZE)
1461                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1462                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1463                                 goto next;
1464                         /* fall through */
1465                 } else if (details && details->single_page &&
1466                            PageTransCompound(details->single_page) &&
1467                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1468                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1469                         /*
1470                          * Take and drop THP pmd lock so that we cannot return
1471                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1472                          * but not yet decremented compound_mapcount().
1473                          */
1474                         spin_unlock(ptl);
1475                 }
1476
1477                 /*
1478                  * Here there can be other concurrent MADV_DONTNEED or
1479                  * trans huge page faults running, and if the pmd is
1480                  * none or trans huge it can change under us. This is
1481                  * because MADV_DONTNEED holds the mmap_sem in read
1482                  * mode.
1483                  */
1484                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1485                         goto next;
1486                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1487 next:
1488                 cond_resched();
1489         } while (pmd++, addr = next, addr != end);
1490
1491         return addr;
1492 }
1493
1494 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1495                                 struct vm_area_struct *vma, p4d_t *p4d,
1496                                 unsigned long addr, unsigned long end,
1497                                 struct zap_details *details)
1498 {
1499         pud_t *pud;
1500         unsigned long next;
1501
1502         pud = pud_offset(p4d, addr);
1503         do {
1504                 next = pud_addr_end(addr, end);
1505                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1506                         if (next - addr != HPAGE_PUD_SIZE) {
1507                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1508                                 split_huge_pud(vma, pud, addr);
1509                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1510                                 goto next;
1511                         /* fall through */
1512                 }
1513                 if (pud_none_or_clear_bad(pud))
1514                         continue;
1515                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1516 next:
1517                 cond_resched();
1518         } while (pud++, addr = next, addr != end);
1519
1520         return addr;
1521 }
1522
1523 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1524                                 struct vm_area_struct *vma, pgd_t *pgd,
1525                                 unsigned long addr, unsigned long end,
1526                                 struct zap_details *details)
1527 {
1528         p4d_t *p4d;
1529         unsigned long next;
1530
1531         p4d = p4d_offset(pgd, addr);
1532         do {
1533                 next = p4d_addr_end(addr, end);
1534                 if (p4d_none_or_clear_bad(p4d))
1535                         continue;
1536                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1537         } while (p4d++, addr = next, addr != end);
1538
1539         return addr;
1540 }
1541
1542 void unmap_page_range(struct mmu_gather *tlb,
1543                              struct vm_area_struct *vma,
1544                              unsigned long addr, unsigned long end,
1545                              struct zap_details *details)
1546 {
1547         pgd_t *pgd;
1548         unsigned long next;
1549
1550         BUG_ON(addr >= end);
1551         tlb_start_vma(tlb, vma);
1552         pgd = pgd_offset(vma->vm_mm, addr);
1553         do {
1554                 next = pgd_addr_end(addr, end);
1555                 if (pgd_none_or_clear_bad(pgd))
1556                         continue;
1557                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1558         } while (pgd++, addr = next, addr != end);
1559         tlb_end_vma(tlb, vma);
1560 }
1561
1562
1563 static void unmap_single_vma(struct mmu_gather *tlb,
1564                 struct vm_area_struct *vma, unsigned long start_addr,
1565                 unsigned long end_addr,
1566                 struct zap_details *details)
1567 {
1568         unsigned long start = max(vma->vm_start, start_addr);
1569         unsigned long end;
1570
1571         if (start >= vma->vm_end)
1572                 return;
1573         end = min(vma->vm_end, end_addr);
1574         if (end <= vma->vm_start)
1575                 return;
1576
1577         if (vma->vm_file)
1578                 uprobe_munmap(vma, start, end);
1579
1580         if (unlikely(vma->vm_flags & VM_PFNMAP))
1581                 untrack_pfn(vma, 0, 0);
1582
1583         if (start != end) {
1584                 if (unlikely(is_vm_hugetlb_page(vma))) {
1585                         /*
1586                          * It is undesirable to test vma->vm_file as it
1587                          * should be non-null for valid hugetlb area.
1588                          * However, vm_file will be NULL in the error
1589                          * cleanup path of mmap_region. When
1590                          * hugetlbfs ->mmap method fails,
1591                          * mmap_region() nullifies vma->vm_file
1592                          * before calling this function to clean up.
1593                          * Since no pte has actually been setup, it is
1594                          * safe to do nothing in this case.
1595                          */
1596                         if (vma->vm_file) {
1597                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1598                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1599                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1600                         }
1601                 } else
1602                         unmap_page_range(tlb, vma, start, end, details);
1603         }
1604 }
1605
1606 /**
1607  * unmap_vmas - unmap a range of memory covered by a list of vma's
1608  * @tlb: address of the caller's struct mmu_gather
1609  * @vma: the starting vma
1610  * @start_addr: virtual address at which to start unmapping
1611  * @end_addr: virtual address at which to end unmapping
1612  *
1613  * Unmap all pages in the vma list.
1614  *
1615  * Only addresses between `start' and `end' will be unmapped.
1616  *
1617  * The VMA list must be sorted in ascending virtual address order.
1618  *
1619  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1620  * range after unmap_vmas() returns.  So the only responsibility here is to
1621  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1622  * drops the lock and schedules.
1623  */
1624 void unmap_vmas(struct mmu_gather *tlb,
1625                 struct vm_area_struct *vma, unsigned long start_addr,
1626                 unsigned long end_addr)
1627 {
1628         struct mm_struct *mm = vma->vm_mm;
1629
1630         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1631         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1632                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1633         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1634 }
1635
1636 /**
1637  * zap_page_range - remove user pages in a given range
1638  * @vma: vm_area_struct holding the applicable pages
1639  * @start: starting address of pages to zap
1640  * @size: number of bytes to zap
1641  *
1642  * Caller must protect the VMA list
1643  */
1644 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1645                 unsigned long size)
1646 {
1647         struct mm_struct *mm = vma->vm_mm;
1648         struct mmu_gather tlb;
1649         unsigned long end = start + size;
1650
1651         lru_add_drain();
1652         tlb_gather_mmu(&tlb, mm, start, end);
1653         update_hiwater_rss(mm);
1654         mmu_notifier_invalidate_range_start(mm, start, end);
1655         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1656                 unmap_single_vma(&tlb, vma, start, end, NULL);
1657         mmu_notifier_invalidate_range_end(mm, start, end);
1658         tlb_finish_mmu(&tlb, start, end);
1659 }
1660
1661 /**
1662  * zap_page_range_single - remove user pages in a given range
1663  * @vma: vm_area_struct holding the applicable pages
1664  * @address: starting address of pages to zap
1665  * @size: number of bytes to zap
1666  * @details: details of shared cache invalidation
1667  *
1668  * The range must fit into one VMA.
1669  */
1670 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1671                 unsigned long size, struct zap_details *details)
1672 {
1673         struct mm_struct *mm = vma->vm_mm;
1674         struct mmu_gather tlb;
1675         unsigned long end = address + size;
1676
1677         lru_add_drain();
1678         tlb_gather_mmu(&tlb, mm, address, end);
1679         update_hiwater_rss(mm);
1680         mmu_notifier_invalidate_range_start(mm, address, end);
1681         unmap_single_vma(&tlb, vma, address, end, details);
1682         mmu_notifier_invalidate_range_end(mm, address, end);
1683         tlb_finish_mmu(&tlb, address, end);
1684 }
1685
1686 /**
1687  * zap_vma_ptes - remove ptes mapping the vma
1688  * @vma: vm_area_struct holding ptes to be zapped
1689  * @address: starting address of pages to zap
1690  * @size: number of bytes to zap
1691  *
1692  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1693  *
1694  * The entire address range must be fully contained within the vma.
1695  *
1696  */
1697 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1698                 unsigned long size)
1699 {
1700         if (address < vma->vm_start || address + size > vma->vm_end ||
1701                         !(vma->vm_flags & VM_PFNMAP))
1702                 return;
1703
1704         zap_page_range_single(vma, address, size, NULL);
1705 }
1706 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1707
1708 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1709                         spinlock_t **ptl)
1710 {
1711         pgd_t *pgd;
1712         p4d_t *p4d;
1713         pud_t *pud;
1714         pmd_t *pmd;
1715
1716         pgd = pgd_offset(mm, addr);
1717         p4d = p4d_alloc(mm, pgd, addr);
1718         if (!p4d)
1719                 return NULL;
1720         pud = pud_alloc(mm, p4d, addr);
1721         if (!pud)
1722                 return NULL;
1723         pmd = pmd_alloc(mm, pud, addr);
1724         if (!pmd)
1725                 return NULL;
1726
1727         VM_BUG_ON(pmd_trans_huge(*pmd));
1728         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1729 }
1730
1731 /*
1732  * This is the old fallback for page remapping.
1733  *
1734  * For historical reasons, it only allows reserved pages. Only
1735  * old drivers should use this, and they needed to mark their
1736  * pages reserved for the old functions anyway.
1737  */
1738 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1739                         struct page *page, pgprot_t prot)
1740 {
1741         struct mm_struct *mm = vma->vm_mm;
1742         int retval;
1743         pte_t *pte;
1744         spinlock_t *ptl;
1745
1746         retval = -EINVAL;
1747         if (PageAnon(page))
1748                 goto out;
1749         retval = -ENOMEM;
1750         flush_dcache_page(page);
1751         pte = get_locked_pte(mm, addr, &ptl);
1752         if (!pte)
1753                 goto out;
1754         retval = -EBUSY;
1755         if (!pte_none(*pte))
1756                 goto out_unlock;
1757
1758         /* Ok, finally just insert the thing.. */
1759         get_page(page);
1760         inc_mm_counter_fast(mm, mm_counter_file(page));
1761         page_add_file_rmap(page, false);
1762         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1763
1764         retval = 0;
1765         pte_unmap_unlock(pte, ptl);
1766         return retval;
1767 out_unlock:
1768         pte_unmap_unlock(pte, ptl);
1769 out:
1770         return retval;
1771 }
1772
1773 /**
1774  * vm_insert_page - insert single page into user vma
1775  * @vma: user vma to map to
1776  * @addr: target user address of this page
1777  * @page: source kernel page
1778  *
1779  * This allows drivers to insert individual pages they've allocated
1780  * into a user vma.
1781  *
1782  * The page has to be a nice clean _individual_ kernel allocation.
1783  * If you allocate a compound page, you need to have marked it as
1784  * such (__GFP_COMP), or manually just split the page up yourself
1785  * (see split_page()).
1786  *
1787  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1788  * took an arbitrary page protection parameter. This doesn't allow
1789  * that. Your vma protection will have to be set up correctly, which
1790  * means that if you want a shared writable mapping, you'd better
1791  * ask for a shared writable mapping!
1792  *
1793  * The page does not need to be reserved.
1794  *
1795  * Usually this function is called from f_op->mmap() handler
1796  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1797  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1798  * function from other places, for example from page-fault handler.
1799  */
1800 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1801                         struct page *page)
1802 {
1803         if (addr < vma->vm_start || addr >= vma->vm_end)
1804                 return -EFAULT;
1805         if (!page_count(page))
1806                 return -EINVAL;
1807         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1808                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1809                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1810                 vma->vm_flags |= VM_MIXEDMAP;
1811         }
1812         return insert_page(vma, addr, page, vma->vm_page_prot);
1813 }
1814 EXPORT_SYMBOL(vm_insert_page);
1815
1816 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1817                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1818 {
1819         struct mm_struct *mm = vma->vm_mm;
1820         int retval;
1821         pte_t *pte, entry;
1822         spinlock_t *ptl;
1823
1824         retval = -ENOMEM;
1825         pte = get_locked_pte(mm, addr, &ptl);
1826         if (!pte)
1827                 goto out;
1828         retval = -EBUSY;
1829         if (!pte_none(*pte)) {
1830                 if (mkwrite) {
1831                         /*
1832                          * For read faults on private mappings the PFN passed
1833                          * in may not match the PFN we have mapped if the
1834                          * mapped PFN is a writeable COW page.  In the mkwrite
1835                          * case we are creating a writable PTE for a shared
1836                          * mapping and we expect the PFNs to match. If they
1837                          * don't match, we are likely racing with block
1838                          * allocation and mapping invalidation so just skip the
1839                          * update.
1840                          */
1841                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1842                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1843                                 goto out_unlock;
1844                         }
1845                         entry = pte_mkyoung(*pte);
1846                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1847                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1848                                 update_mmu_cache(vma, addr, pte);
1849                 }
1850                 goto out_unlock;
1851         }
1852
1853         /* Ok, finally just insert the thing.. */
1854         if (pfn_t_devmap(pfn))
1855                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1856         else
1857                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1858
1859         if (mkwrite) {
1860                 entry = pte_mkyoung(entry);
1861                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1862         }
1863
1864         set_pte_at(mm, addr, pte, entry);
1865         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1866
1867         retval = 0;
1868 out_unlock:
1869         pte_unmap_unlock(pte, ptl);
1870 out:
1871         return retval;
1872 }
1873
1874 /**
1875  * vm_insert_pfn - insert single pfn into user vma
1876  * @vma: user vma to map to
1877  * @addr: target user address of this page
1878  * @pfn: source kernel pfn
1879  *
1880  * Similar to vm_insert_page, this allows drivers to insert individual pages
1881  * they've allocated into a user vma. Same comments apply.
1882  *
1883  * This function should only be called from a vm_ops->fault handler, and
1884  * in that case the handler should return NULL.
1885  *
1886  * vma cannot be a COW mapping.
1887  *
1888  * As this is called only for pages that do not currently exist, we
1889  * do not need to flush old virtual caches or the TLB.
1890  */
1891 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1892                         unsigned long pfn)
1893 {
1894         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1895 }
1896 EXPORT_SYMBOL(vm_insert_pfn);
1897
1898 /**
1899  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1900  * @vma: user vma to map to
1901  * @addr: target user address of this page
1902  * @pfn: source kernel pfn
1903  * @pgprot: pgprot flags for the inserted page
1904  *
1905  * This is exactly like vm_insert_pfn, except that it allows drivers to
1906  * to override pgprot on a per-page basis.
1907  *
1908  * This only makes sense for IO mappings, and it makes no sense for
1909  * cow mappings.  In general, using multiple vmas is preferable;
1910  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1911  * impractical.
1912  */
1913 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1914                         unsigned long pfn, pgprot_t pgprot)
1915 {
1916         int ret;
1917         /*
1918          * Technically, architectures with pte_special can avoid all these
1919          * restrictions (same for remap_pfn_range).  However we would like
1920          * consistency in testing and feature parity among all, so we should
1921          * try to keep these invariants in place for everybody.
1922          */
1923         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1924         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1925                                                 (VM_PFNMAP|VM_MIXEDMAP));
1926         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1927         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1928
1929         if (addr < vma->vm_start || addr >= vma->vm_end)
1930                 return -EFAULT;
1931
1932         if (!pfn_modify_allowed(pfn, pgprot))
1933                 return -EACCES;
1934
1935         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1936
1937         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1938                         false);
1939
1940         return ret;
1941 }
1942 EXPORT_SYMBOL(vm_insert_pfn_prot);
1943
1944 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1945 {
1946         /* these checks mirror the abort conditions in vm_normal_page */
1947         if (vma->vm_flags & VM_MIXEDMAP)
1948                 return true;
1949         if (pfn_t_devmap(pfn))
1950                 return true;
1951         if (pfn_t_special(pfn))
1952                 return true;
1953         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1954                 return true;
1955         return false;
1956 }
1957
1958 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1959                         pfn_t pfn, bool mkwrite)
1960 {
1961         pgprot_t pgprot = vma->vm_page_prot;
1962
1963         BUG_ON(!vm_mixed_ok(vma, pfn));
1964
1965         if (addr < vma->vm_start || addr >= vma->vm_end)
1966                 return -EFAULT;
1967
1968         track_pfn_insert(vma, &pgprot, pfn);
1969
1970         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1971                 return -EACCES;
1972
1973         /*
1974          * If we don't have pte special, then we have to use the pfn_valid()
1975          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1976          * refcount the page if pfn_valid is true (hence insert_page rather
1977          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1978          * without pte special, it would there be refcounted as a normal page.
1979          */
1980         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1981             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1982                 struct page *page;
1983
1984                 /*
1985                  * At this point we are committed to insert_page()
1986                  * regardless of whether the caller specified flags that
1987                  * result in pfn_t_has_page() == false.
1988                  */
1989                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1990                 return insert_page(vma, addr, page, pgprot);
1991         }
1992         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1993 }
1994
1995 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1996                         pfn_t pfn)
1997 {
1998         return __vm_insert_mixed(vma, addr, pfn, false);
1999
2000 }
2001 EXPORT_SYMBOL(vm_insert_mixed);
2002
2003 /*
2004  *  If the insertion of PTE failed because someone else already added a
2005  *  different entry in the mean time, we treat that as success as we assume
2006  *  the same entry was actually inserted.
2007  */
2008
2009 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2010                 unsigned long addr, pfn_t pfn)
2011 {
2012         int err;
2013
2014         err =  __vm_insert_mixed(vma, addr, pfn, true);
2015         if (err == -ENOMEM)
2016                 return VM_FAULT_OOM;
2017         if (err < 0 && err != -EBUSY)
2018                 return VM_FAULT_SIGBUS;
2019         return VM_FAULT_NOPAGE;
2020 }
2021 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2022
2023 /*
2024  * maps a range of physical memory into the requested pages. the old
2025  * mappings are removed. any references to nonexistent pages results
2026  * in null mappings (currently treated as "copy-on-access")
2027  */
2028 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2029                         unsigned long addr, unsigned long end,
2030                         unsigned long pfn, pgprot_t prot)
2031 {
2032         pte_t *pte, *mapped_pte;
2033         spinlock_t *ptl;
2034         int err = 0;
2035
2036         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2037         if (!pte)
2038                 return -ENOMEM;
2039         arch_enter_lazy_mmu_mode();
2040         do {
2041                 BUG_ON(!pte_none(*pte));
2042                 if (!pfn_modify_allowed(pfn, prot)) {
2043                         err = -EACCES;
2044                         break;
2045                 }
2046                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2047                 pfn++;
2048         } while (pte++, addr += PAGE_SIZE, addr != end);
2049         arch_leave_lazy_mmu_mode();
2050         pte_unmap_unlock(mapped_pte, ptl);
2051         return err;
2052 }
2053
2054 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2055                         unsigned long addr, unsigned long end,
2056                         unsigned long pfn, pgprot_t prot)
2057 {
2058         pmd_t *pmd;
2059         unsigned long next;
2060         int err;
2061
2062         pfn -= addr >> PAGE_SHIFT;
2063         pmd = pmd_alloc(mm, pud, addr);
2064         if (!pmd)
2065                 return -ENOMEM;
2066         VM_BUG_ON(pmd_trans_huge(*pmd));
2067         do {
2068                 next = pmd_addr_end(addr, end);
2069                 err = remap_pte_range(mm, pmd, addr, next,
2070                                 pfn + (addr >> PAGE_SHIFT), prot);
2071                 if (err)
2072                         return err;
2073         } while (pmd++, addr = next, addr != end);
2074         return 0;
2075 }
2076
2077 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2078                         unsigned long addr, unsigned long end,
2079                         unsigned long pfn, pgprot_t prot)
2080 {
2081         pud_t *pud;
2082         unsigned long next;
2083         int err;
2084
2085         pfn -= addr >> PAGE_SHIFT;
2086         pud = pud_alloc(mm, p4d, addr);
2087         if (!pud)
2088                 return -ENOMEM;
2089         do {
2090                 next = pud_addr_end(addr, end);
2091                 err = remap_pmd_range(mm, pud, addr, next,
2092                                 pfn + (addr >> PAGE_SHIFT), prot);
2093                 if (err)
2094                         return err;
2095         } while (pud++, addr = next, addr != end);
2096         return 0;
2097 }
2098
2099 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2100                         unsigned long addr, unsigned long end,
2101                         unsigned long pfn, pgprot_t prot)
2102 {
2103         p4d_t *p4d;
2104         unsigned long next;
2105         int err;
2106
2107         pfn -= addr >> PAGE_SHIFT;
2108         p4d = p4d_alloc(mm, pgd, addr);
2109         if (!p4d)
2110                 return -ENOMEM;
2111         do {
2112                 next = p4d_addr_end(addr, end);
2113                 err = remap_pud_range(mm, p4d, addr, next,
2114                                 pfn + (addr >> PAGE_SHIFT), prot);
2115                 if (err)
2116                         return err;
2117         } while (p4d++, addr = next, addr != end);
2118         return 0;
2119 }
2120
2121 /**
2122  * remap_pfn_range - remap kernel memory to userspace
2123  * @vma: user vma to map to
2124  * @addr: target user address to start at
2125  * @pfn: physical address of kernel memory
2126  * @size: size of map area
2127  * @prot: page protection flags for this mapping
2128  *
2129  *  Note: this is only safe if the mm semaphore is held when called.
2130  */
2131 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2132                     unsigned long pfn, unsigned long size, pgprot_t prot)
2133 {
2134         pgd_t *pgd;
2135         unsigned long next;
2136         unsigned long end = addr + PAGE_ALIGN(size);
2137         struct mm_struct *mm = vma->vm_mm;
2138         unsigned long remap_pfn = pfn;
2139         int err;
2140
2141         /*
2142          * Physically remapped pages are special. Tell the
2143          * rest of the world about it:
2144          *   VM_IO tells people not to look at these pages
2145          *      (accesses can have side effects).
2146          *   VM_PFNMAP tells the core MM that the base pages are just
2147          *      raw PFN mappings, and do not have a "struct page" associated
2148          *      with them.
2149          *   VM_DONTEXPAND
2150          *      Disable vma merging and expanding with mremap().
2151          *   VM_DONTDUMP
2152          *      Omit vma from core dump, even when VM_IO turned off.
2153          *
2154          * There's a horrible special case to handle copy-on-write
2155          * behaviour that some programs depend on. We mark the "original"
2156          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2157          * See vm_normal_page() for details.
2158          */
2159         if (is_cow_mapping(vma->vm_flags)) {
2160                 if (addr != vma->vm_start || end != vma->vm_end)
2161                         return -EINVAL;
2162                 vma->vm_pgoff = pfn;
2163         }
2164
2165         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2166         if (err)
2167                 return -EINVAL;
2168
2169         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2170
2171         BUG_ON(addr >= end);
2172         pfn -= addr >> PAGE_SHIFT;
2173         pgd = pgd_offset(mm, addr);
2174         flush_cache_range(vma, addr, end);
2175         do {
2176                 next = pgd_addr_end(addr, end);
2177                 err = remap_p4d_range(mm, pgd, addr, next,
2178                                 pfn + (addr >> PAGE_SHIFT), prot);
2179                 if (err)
2180                         break;
2181         } while (pgd++, addr = next, addr != end);
2182
2183         if (err)
2184                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2185
2186         return err;
2187 }
2188 EXPORT_SYMBOL(remap_pfn_range);
2189
2190 /**
2191  * vm_iomap_memory - remap memory to userspace
2192  * @vma: user vma to map to
2193  * @start: start of area
2194  * @len: size of area
2195  *
2196  * This is a simplified io_remap_pfn_range() for common driver use. The
2197  * driver just needs to give us the physical memory range to be mapped,
2198  * we'll figure out the rest from the vma information.
2199  *
2200  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2201  * whatever write-combining details or similar.
2202  */
2203 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2204 {
2205         unsigned long vm_len, pfn, pages;
2206
2207         /* Check that the physical memory area passed in looks valid */
2208         if (start + len < start)
2209                 return -EINVAL;
2210         /*
2211          * You *really* shouldn't map things that aren't page-aligned,
2212          * but we've historically allowed it because IO memory might
2213          * just have smaller alignment.
2214          */
2215         len += start & ~PAGE_MASK;
2216         pfn = start >> PAGE_SHIFT;
2217         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2218         if (pfn + pages < pfn)
2219                 return -EINVAL;
2220
2221         /* We start the mapping 'vm_pgoff' pages into the area */
2222         if (vma->vm_pgoff > pages)
2223                 return -EINVAL;
2224         pfn += vma->vm_pgoff;
2225         pages -= vma->vm_pgoff;
2226
2227         /* Can we fit all of the mapping? */
2228         vm_len = vma->vm_end - vma->vm_start;
2229         if (vm_len >> PAGE_SHIFT > pages)
2230                 return -EINVAL;
2231
2232         /* Ok, let it rip */
2233         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2234 }
2235 EXPORT_SYMBOL(vm_iomap_memory);
2236
2237 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2238                                      unsigned long addr, unsigned long end,
2239                                      pte_fn_t fn, void *data)
2240 {
2241         pte_t *pte;
2242         int err;
2243         pgtable_t token;
2244         spinlock_t *uninitialized_var(ptl);
2245
2246         pte = (mm == &init_mm) ?
2247                 pte_alloc_kernel(pmd, addr) :
2248                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2249         if (!pte)
2250                 return -ENOMEM;
2251
2252         BUG_ON(pmd_huge(*pmd));
2253
2254         arch_enter_lazy_mmu_mode();
2255
2256         token = pmd_pgtable(*pmd);
2257
2258         do {
2259                 err = fn(pte++, token, addr, data);
2260                 if (err)
2261                         break;
2262         } while (addr += PAGE_SIZE, addr != end);
2263
2264         arch_leave_lazy_mmu_mode();
2265
2266         if (mm != &init_mm)
2267                 pte_unmap_unlock(pte-1, ptl);
2268         return err;
2269 }
2270
2271 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2272                                      unsigned long addr, unsigned long end,
2273                                      pte_fn_t fn, void *data)
2274 {
2275         pmd_t *pmd;
2276         unsigned long next;
2277         int err;
2278
2279         BUG_ON(pud_huge(*pud));
2280
2281         pmd = pmd_alloc(mm, pud, addr);
2282         if (!pmd)
2283                 return -ENOMEM;
2284         do {
2285                 next = pmd_addr_end(addr, end);
2286                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2287                 if (err)
2288                         break;
2289         } while (pmd++, addr = next, addr != end);
2290         return err;
2291 }
2292
2293 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2294                                      unsigned long addr, unsigned long end,
2295                                      pte_fn_t fn, void *data)
2296 {
2297         pud_t *pud;
2298         unsigned long next;
2299         int err;
2300
2301         pud = pud_alloc(mm, p4d, addr);
2302         if (!pud)
2303                 return -ENOMEM;
2304         do {
2305                 next = pud_addr_end(addr, end);
2306                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2307                 if (err)
2308                         break;
2309         } while (pud++, addr = next, addr != end);
2310         return err;
2311 }
2312
2313 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2314                                      unsigned long addr, unsigned long end,
2315                                      pte_fn_t fn, void *data)
2316 {
2317         p4d_t *p4d;
2318         unsigned long next;
2319         int err;
2320
2321         p4d = p4d_alloc(mm, pgd, addr);
2322         if (!p4d)
2323                 return -ENOMEM;
2324         do {
2325                 next = p4d_addr_end(addr, end);
2326                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2327                 if (err)
2328                         break;
2329         } while (p4d++, addr = next, addr != end);
2330         return err;
2331 }
2332
2333 /*
2334  * Scan a region of virtual memory, filling in page tables as necessary
2335  * and calling a provided function on each leaf page table.
2336  */
2337 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2338                         unsigned long size, pte_fn_t fn, void *data)
2339 {
2340         pgd_t *pgd;
2341         unsigned long next;
2342         unsigned long end = addr + size;
2343         int err;
2344
2345         if (WARN_ON(addr >= end))
2346                 return -EINVAL;
2347
2348         pgd = pgd_offset(mm, addr);
2349         do {
2350                 next = pgd_addr_end(addr, end);
2351                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2352                 if (err)
2353                         break;
2354         } while (pgd++, addr = next, addr != end);
2355
2356         return err;
2357 }
2358 EXPORT_SYMBOL_GPL(apply_to_page_range);
2359
2360 /*
2361  * handle_pte_fault chooses page fault handler according to an entry which was
2362  * read non-atomically.  Before making any commitment, on those architectures
2363  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2364  * parts, do_swap_page must check under lock before unmapping the pte and
2365  * proceeding (but do_wp_page is only called after already making such a check;
2366  * and do_anonymous_page can safely check later on).
2367  */
2368 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2369                                 pte_t *page_table, pte_t orig_pte)
2370 {
2371         int same = 1;
2372 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2373         if (sizeof(pte_t) > sizeof(unsigned long)) {
2374                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2375                 spin_lock(ptl);
2376                 same = pte_same(*page_table, orig_pte);
2377                 spin_unlock(ptl);
2378         }
2379 #endif
2380         pte_unmap(page_table);
2381         return same;
2382 }
2383
2384 static inline bool cow_user_page(struct page *dst, struct page *src,
2385                                  struct vm_fault *vmf)
2386 {
2387         bool ret;
2388         void *kaddr;
2389         void __user *uaddr;
2390         bool locked = false;
2391         struct vm_area_struct *vma = vmf->vma;
2392         struct mm_struct *mm = vma->vm_mm;
2393         unsigned long addr = vmf->address;
2394
2395         debug_dma_assert_idle(src);
2396
2397         if (likely(src)) {
2398                 copy_user_highpage(dst, src, addr, vma);
2399                 return true;
2400         }
2401
2402         /*
2403          * If the source page was a PFN mapping, we don't have
2404          * a "struct page" for it. We do a best-effort copy by
2405          * just copying from the original user address. If that
2406          * fails, we just zero-fill it. Live with it.
2407          */
2408         kaddr = kmap_atomic(dst);
2409         uaddr = (void __user *)(addr & PAGE_MASK);
2410
2411         /*
2412          * On architectures with software "accessed" bits, we would
2413          * take a double page fault, so mark it accessed here.
2414          */
2415         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2416                 pte_t entry;
2417
2418                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2419                 locked = true;
2420                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2421                         /*
2422                          * Other thread has already handled the fault
2423                          * and we don't need to do anything. If it's
2424                          * not the case, the fault will be triggered
2425                          * again on the same address.
2426                          */
2427                         ret = false;
2428                         goto pte_unlock;
2429                 }
2430
2431                 entry = pte_mkyoung(vmf->orig_pte);
2432                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2433                         update_mmu_cache(vma, addr, vmf->pte);
2434         }
2435
2436         /*
2437          * This really shouldn't fail, because the page is there
2438          * in the page tables. But it might just be unreadable,
2439          * in which case we just give up and fill the result with
2440          * zeroes.
2441          */
2442         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2443                 if (locked)
2444                         goto warn;
2445
2446                 /* Re-validate under PTL if the page is still mapped */
2447                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2448                 locked = true;
2449                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2450                         /* The PTE changed under us. Retry page fault. */
2451                         ret = false;
2452                         goto pte_unlock;
2453                 }
2454
2455                 /*
2456                  * The same page can be mapped back since last copy attampt.
2457                  * Try to copy again under PTL.
2458                  */
2459                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2460                         /*
2461                          * Give a warn in case there can be some obscure
2462                          * use-case
2463                          */
2464 warn:
2465                         WARN_ON_ONCE(1);
2466                         clear_page(kaddr);
2467                 }
2468         }
2469
2470         ret = true;
2471
2472 pte_unlock:
2473         if (locked)
2474                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2475         kunmap_atomic(kaddr);
2476         flush_dcache_page(dst);
2477
2478         return ret;
2479 }
2480
2481 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2482 {
2483         struct file *vm_file = vma->vm_file;
2484
2485         if (vm_file)
2486                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2487
2488         /*
2489          * Special mappings (e.g. VDSO) do not have any file so fake
2490          * a default GFP_KERNEL for them.
2491          */
2492         return GFP_KERNEL;
2493 }
2494
2495 /*
2496  * Notify the address space that the page is about to become writable so that
2497  * it can prohibit this or wait for the page to get into an appropriate state.
2498  *
2499  * We do this without the lock held, so that it can sleep if it needs to.
2500  */
2501 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2502 {
2503         vm_fault_t ret;
2504         struct page *page = vmf->page;
2505         unsigned int old_flags = vmf->flags;
2506
2507         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2508
2509         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2510         /* Restore original flags so that caller is not surprised */
2511         vmf->flags = old_flags;
2512         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2513                 return ret;
2514         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2515                 lock_page(page);
2516                 if (!page->mapping) {
2517                         unlock_page(page);
2518                         return 0; /* retry */
2519                 }
2520                 ret |= VM_FAULT_LOCKED;
2521         } else
2522                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2523         return ret;
2524 }
2525
2526 /*
2527  * Handle dirtying of a page in shared file mapping on a write fault.
2528  *
2529  * The function expects the page to be locked and unlocks it.
2530  */
2531 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2532                                     struct page *page)
2533 {
2534         struct address_space *mapping;
2535         bool dirtied;
2536         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2537
2538         dirtied = set_page_dirty(page);
2539         VM_BUG_ON_PAGE(PageAnon(page), page);
2540         /*
2541          * Take a local copy of the address_space - page.mapping may be zeroed
2542          * by truncate after unlock_page().   The address_space itself remains
2543          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2544          * release semantics to prevent the compiler from undoing this copying.
2545          */
2546         mapping = page_rmapping(page);
2547         unlock_page(page);
2548
2549         if ((dirtied || page_mkwrite) && mapping) {
2550                 /*
2551                  * Some device drivers do not set page.mapping
2552                  * but still dirty their pages
2553                  */
2554                 balance_dirty_pages_ratelimited(mapping);
2555         }
2556
2557         if (!page_mkwrite)
2558                 file_update_time(vma->vm_file);
2559 }
2560
2561 /*
2562  * Handle write page faults for pages that can be reused in the current vma
2563  *
2564  * This can happen either due to the mapping being with the VM_SHARED flag,
2565  * or due to us being the last reference standing to the page. In either
2566  * case, all we need to do here is to mark the page as writable and update
2567  * any related book-keeping.
2568  */
2569 static inline void wp_page_reuse(struct vm_fault *vmf)
2570         __releases(vmf->ptl)
2571 {
2572         struct vm_area_struct *vma = vmf->vma;
2573         struct page *page = vmf->page;
2574         pte_t entry;
2575         /*
2576          * Clear the pages cpupid information as the existing
2577          * information potentially belongs to a now completely
2578          * unrelated process.
2579          */
2580         if (page)
2581                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2582
2583         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2584         entry = pte_mkyoung(vmf->orig_pte);
2585         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2586         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2587                 update_mmu_cache(vma, vmf->address, vmf->pte);
2588         pte_unmap_unlock(vmf->pte, vmf->ptl);
2589 }
2590
2591 /*
2592  * Handle the case of a page which we actually need to copy to a new page.
2593  *
2594  * Called with mmap_sem locked and the old page referenced, but
2595  * without the ptl held.
2596  *
2597  * High level logic flow:
2598  *
2599  * - Allocate a page, copy the content of the old page to the new one.
2600  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2601  * - Take the PTL. If the pte changed, bail out and release the allocated page
2602  * - If the pte is still the way we remember it, update the page table and all
2603  *   relevant references. This includes dropping the reference the page-table
2604  *   held to the old page, as well as updating the rmap.
2605  * - In any case, unlock the PTL and drop the reference we took to the old page.
2606  */
2607 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2608 {
2609         struct vm_area_struct *vma = vmf->vma;
2610         struct mm_struct *mm = vma->vm_mm;
2611         struct page *old_page = vmf->page;
2612         struct page *new_page = NULL;
2613         pte_t entry;
2614         int page_copied = 0;
2615         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2616         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2617         struct mem_cgroup *memcg;
2618
2619         if (unlikely(anon_vma_prepare(vma)))
2620                 goto oom;
2621
2622         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2623                 new_page = alloc_zeroed_user_highpage_movable(vma,
2624                                                               vmf->address);
2625                 if (!new_page)
2626                         goto oom;
2627         } else {
2628                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2629                                 vmf->address);
2630                 if (!new_page)
2631                         goto oom;
2632
2633                 if (!cow_user_page(new_page, old_page, vmf)) {
2634                         /*
2635                          * COW failed, if the fault was solved by other,
2636                          * it's fine. If not, userspace would re-fault on
2637                          * the same address and we will handle the fault
2638                          * from the second attempt.
2639                          */
2640                         put_page(new_page);
2641                         if (old_page)
2642                                 put_page(old_page);
2643                         return 0;
2644                 }
2645         }
2646
2647         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2648                 goto oom_free_new;
2649
2650         __SetPageUptodate(new_page);
2651
2652         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2653
2654         /*
2655          * Re-check the pte - we dropped the lock
2656          */
2657         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2658         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2659                 if (old_page) {
2660                         if (!PageAnon(old_page)) {
2661                                 dec_mm_counter_fast(mm,
2662                                                 mm_counter_file(old_page));
2663                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2664                         }
2665                 } else {
2666                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2667                 }
2668                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2669                 entry = mk_pte(new_page, vma->vm_page_prot);
2670                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2671                 /*
2672                  * Clear the pte entry and flush it first, before updating the
2673                  * pte with the new entry. This will avoid a race condition
2674                  * seen in the presence of one thread doing SMC and another
2675                  * thread doing COW.
2676                  */
2677                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2678                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2679                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2680                 lru_cache_add_active_or_unevictable(new_page, vma);
2681                 /*
2682                  * We call the notify macro here because, when using secondary
2683                  * mmu page tables (such as kvm shadow page tables), we want the
2684                  * new page to be mapped directly into the secondary page table.
2685                  */
2686                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2687                 update_mmu_cache(vma, vmf->address, vmf->pte);
2688                 if (old_page) {
2689                         /*
2690                          * Only after switching the pte to the new page may
2691                          * we remove the mapcount here. Otherwise another
2692                          * process may come and find the rmap count decremented
2693                          * before the pte is switched to the new page, and
2694                          * "reuse" the old page writing into it while our pte
2695                          * here still points into it and can be read by other
2696                          * threads.
2697                          *
2698                          * The critical issue is to order this
2699                          * page_remove_rmap with the ptp_clear_flush above.
2700                          * Those stores are ordered by (if nothing else,)
2701                          * the barrier present in the atomic_add_negative
2702                          * in page_remove_rmap.
2703                          *
2704                          * Then the TLB flush in ptep_clear_flush ensures that
2705                          * no process can access the old page before the
2706                          * decremented mapcount is visible. And the old page
2707                          * cannot be reused until after the decremented
2708                          * mapcount is visible. So transitively, TLBs to
2709                          * old page will be flushed before it can be reused.
2710                          */
2711                         page_remove_rmap(old_page, false);
2712                 }
2713
2714                 /* Free the old page.. */
2715                 new_page = old_page;
2716                 page_copied = 1;
2717         } else {
2718                 mem_cgroup_cancel_charge(new_page, memcg, false);
2719         }
2720
2721         if (new_page)
2722                 put_page(new_page);
2723
2724         pte_unmap_unlock(vmf->pte, vmf->ptl);
2725         /*
2726          * No need to double call mmu_notifier->invalidate_range() callback as
2727          * the above ptep_clear_flush_notify() did already call it.
2728          */
2729         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2730         if (old_page) {
2731                 /*
2732                  * Don't let another task, with possibly unlocked vma,
2733                  * keep the mlocked page.
2734                  */
2735                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2736                         lock_page(old_page);    /* LRU manipulation */
2737                         if (PageMlocked(old_page))
2738                                 munlock_vma_page(old_page);
2739                         unlock_page(old_page);
2740                 }
2741                 put_page(old_page);
2742         }
2743         return page_copied ? VM_FAULT_WRITE : 0;
2744 oom_free_new:
2745         put_page(new_page);
2746 oom:
2747         if (old_page)
2748                 put_page(old_page);
2749         return VM_FAULT_OOM;
2750 }
2751
2752 /**
2753  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2754  *                        writeable once the page is prepared
2755  *
2756  * @vmf: structure describing the fault
2757  *
2758  * This function handles all that is needed to finish a write page fault in a
2759  * shared mapping due to PTE being read-only once the mapped page is prepared.
2760  * It handles locking of PTE and modifying it. The function returns
2761  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2762  * lock.
2763  *
2764  * The function expects the page to be locked or other protection against
2765  * concurrent faults / writeback (such as DAX radix tree locks).
2766  */
2767 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2768 {
2769         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2770         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2771                                        &vmf->ptl);
2772         /*
2773          * We might have raced with another page fault while we released the
2774          * pte_offset_map_lock.
2775          */
2776         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2777                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2778                 return VM_FAULT_NOPAGE;
2779         }
2780         wp_page_reuse(vmf);
2781         return 0;
2782 }
2783
2784 /*
2785  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2786  * mapping
2787  */
2788 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2789 {
2790         struct vm_area_struct *vma = vmf->vma;
2791
2792         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2793                 vm_fault_t ret;
2794
2795                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2796                 vmf->flags |= FAULT_FLAG_MKWRITE;
2797                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2798                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2799                         return ret;
2800                 return finish_mkwrite_fault(vmf);
2801         }
2802         wp_page_reuse(vmf);
2803         return VM_FAULT_WRITE;
2804 }
2805
2806 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2807         __releases(vmf->ptl)
2808 {
2809         struct vm_area_struct *vma = vmf->vma;
2810
2811         get_page(vmf->page);
2812
2813         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2814                 vm_fault_t tmp;
2815
2816                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2817                 tmp = do_page_mkwrite(vmf);
2818                 if (unlikely(!tmp || (tmp &
2819                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2820                         put_page(vmf->page);
2821                         return tmp;
2822                 }
2823                 tmp = finish_mkwrite_fault(vmf);
2824                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2825                         unlock_page(vmf->page);
2826                         put_page(vmf->page);
2827                         return tmp;
2828                 }
2829         } else {
2830                 wp_page_reuse(vmf);
2831                 lock_page(vmf->page);
2832         }
2833         fault_dirty_shared_page(vma, vmf->page);
2834         put_page(vmf->page);
2835
2836         return VM_FAULT_WRITE;
2837 }
2838
2839 /*
2840  * This routine handles present pages, when users try to write
2841  * to a shared page. It is done by copying the page to a new address
2842  * and decrementing the shared-page counter for the old page.
2843  *
2844  * Note that this routine assumes that the protection checks have been
2845  * done by the caller (the low-level page fault routine in most cases).
2846  * Thus we can safely just mark it writable once we've done any necessary
2847  * COW.
2848  *
2849  * We also mark the page dirty at this point even though the page will
2850  * change only once the write actually happens. This avoids a few races,
2851  * and potentially makes it more efficient.
2852  *
2853  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2854  * but allow concurrent faults), with pte both mapped and locked.
2855  * We return with mmap_sem still held, but pte unmapped and unlocked.
2856  */
2857 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2858         __releases(vmf->ptl)
2859 {
2860         struct vm_area_struct *vma = vmf->vma;
2861
2862         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2863         if (!vmf->page) {
2864                 /*
2865                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2866                  * VM_PFNMAP VMA.
2867                  *
2868                  * We should not cow pages in a shared writeable mapping.
2869                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2870                  */
2871                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2872                                      (VM_WRITE|VM_SHARED))
2873                         return wp_pfn_shared(vmf);
2874
2875                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2876                 return wp_page_copy(vmf);
2877         }
2878
2879         /*
2880          * Take out anonymous pages first, anonymous shared vmas are
2881          * not dirty accountable.
2882          */
2883         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2884                 int total_map_swapcount;
2885                 if (!trylock_page(vmf->page)) {
2886                         get_page(vmf->page);
2887                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2888                         lock_page(vmf->page);
2889                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2890                                         vmf->address, &vmf->ptl);
2891                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2892                                 unlock_page(vmf->page);
2893                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2894                                 put_page(vmf->page);
2895                                 return 0;
2896                         }
2897                         put_page(vmf->page);
2898                 }
2899                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2900                         if (total_map_swapcount == 1) {
2901                                 /*
2902                                  * The page is all ours. Move it to
2903                                  * our anon_vma so the rmap code will
2904                                  * not search our parent or siblings.
2905                                  * Protected against the rmap code by
2906                                  * the page lock.
2907                                  */
2908                                 page_move_anon_rmap(vmf->page, vma);
2909                         }
2910                         unlock_page(vmf->page);
2911                         wp_page_reuse(vmf);
2912                         return VM_FAULT_WRITE;
2913                 }
2914                 unlock_page(vmf->page);
2915         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2916                                         (VM_WRITE|VM_SHARED))) {
2917                 return wp_page_shared(vmf);
2918         }
2919
2920         /*
2921          * Ok, we need to copy. Oh, well..
2922          */
2923         get_page(vmf->page);
2924
2925         pte_unmap_unlock(vmf->pte, vmf->ptl);
2926         return wp_page_copy(vmf);
2927 }
2928
2929 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2930                 unsigned long start_addr, unsigned long end_addr,
2931                 struct zap_details *details)
2932 {
2933         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2934 }
2935
2936 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2937                                             struct zap_details *details)
2938 {
2939         struct vm_area_struct *vma;
2940         pgoff_t vba, vea, zba, zea;
2941
2942         vma_interval_tree_foreach(vma, root,
2943                         details->first_index, details->last_index) {
2944
2945                 vba = vma->vm_pgoff;
2946                 vea = vba + vma_pages(vma) - 1;
2947                 zba = details->first_index;
2948                 if (zba < vba)
2949                         zba = vba;
2950                 zea = details->last_index;
2951                 if (zea > vea)
2952                         zea = vea;
2953
2954                 unmap_mapping_range_vma(vma,
2955                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2956                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2957                                 details);
2958         }
2959 }
2960
2961 /**
2962  * unmap_mapping_page() - Unmap single page from processes.
2963  * @page: The locked page to be unmapped.
2964  *
2965  * Unmap this page from any userspace process which still has it mmaped.
2966  * Typically, for efficiency, the range of nearby pages has already been
2967  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
2968  * truncation or invalidation holds the lock on a page, it may find that
2969  * the page has been remapped again: and then uses unmap_mapping_page()
2970  * to unmap it finally.
2971  */
2972 void unmap_mapping_page(struct page *page)
2973 {
2974         struct address_space *mapping = page->mapping;
2975         struct zap_details details = { };
2976
2977         VM_BUG_ON(!PageLocked(page));
2978         VM_BUG_ON(PageTail(page));
2979
2980         details.check_mapping = mapping;
2981         details.first_index = page->index;
2982         details.last_index = page->index + hpage_nr_pages(page) - 1;
2983         details.single_page = page;
2984
2985         i_mmap_lock_write(mapping);
2986         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2987                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2988         i_mmap_unlock_write(mapping);
2989 }
2990
2991 /**
2992  * unmap_mapping_pages() - Unmap pages from processes.
2993  * @mapping: The address space containing pages to be unmapped.
2994  * @start: Index of first page to be unmapped.
2995  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2996  * @even_cows: Whether to unmap even private COWed pages.
2997  *
2998  * Unmap the pages in this address space from any userspace process which
2999  * has them mmaped.  Generally, you want to remove COWed pages as well when
3000  * a file is being truncated, but not when invalidating pages from the page
3001  * cache.
3002  */
3003 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3004                 pgoff_t nr, bool even_cows)
3005 {
3006         struct zap_details details = { };
3007
3008         details.check_mapping = even_cows ? NULL : mapping;
3009         details.first_index = start;
3010         details.last_index = start + nr - 1;
3011         if (details.last_index < details.first_index)
3012                 details.last_index = ULONG_MAX;
3013
3014         i_mmap_lock_write(mapping);
3015         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3016                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3017         i_mmap_unlock_write(mapping);
3018 }
3019
3020 /**
3021  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3022  * address_space corresponding to the specified byte range in the underlying
3023  * file.
3024  *
3025  * @mapping: the address space containing mmaps to be unmapped.
3026  * @holebegin: byte in first page to unmap, relative to the start of
3027  * the underlying file.  This will be rounded down to a PAGE_SIZE
3028  * boundary.  Note that this is different from truncate_pagecache(), which
3029  * must keep the partial page.  In contrast, we must get rid of
3030  * partial pages.
3031  * @holelen: size of prospective hole in bytes.  This will be rounded
3032  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3033  * end of the file.
3034  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3035  * but 0 when invalidating pagecache, don't throw away private data.
3036  */
3037 void unmap_mapping_range(struct address_space *mapping,
3038                 loff_t const holebegin, loff_t const holelen, int even_cows)
3039 {
3040         pgoff_t hba = holebegin >> PAGE_SHIFT;
3041         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3042
3043         /* Check for overflow. */
3044         if (sizeof(holelen) > sizeof(hlen)) {
3045                 long long holeend =
3046                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3047                 if (holeend & ~(long long)ULONG_MAX)
3048                         hlen = ULONG_MAX - hba + 1;
3049         }
3050
3051         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3052 }
3053 EXPORT_SYMBOL(unmap_mapping_range);
3054
3055 /*
3056  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3057  * but allow concurrent faults), and pte mapped but not yet locked.
3058  * We return with pte unmapped and unlocked.
3059  *
3060  * We return with the mmap_sem locked or unlocked in the same cases
3061  * as does filemap_fault().
3062  */
3063 vm_fault_t do_swap_page(struct vm_fault *vmf)
3064 {
3065         struct vm_area_struct *vma = vmf->vma;
3066         struct page *page = NULL, *swapcache;
3067         struct mem_cgroup *memcg;
3068         swp_entry_t entry;
3069         pte_t pte;
3070         int locked;
3071         int exclusive = 0;
3072         vm_fault_t ret = 0;
3073
3074         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3075                 goto out;
3076
3077         entry = pte_to_swp_entry(vmf->orig_pte);
3078         if (unlikely(non_swap_entry(entry))) {
3079                 if (is_migration_entry(entry)) {
3080                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3081                                              vmf->address);
3082                 } else if (is_device_private_entry(entry)) {
3083                         /*
3084                          * For un-addressable device memory we call the pgmap
3085                          * fault handler callback. The callback must migrate
3086                          * the page back to some CPU accessible page.
3087                          */
3088                         ret = device_private_entry_fault(vma, vmf->address, entry,
3089                                                  vmf->flags, vmf->pmd);
3090                 } else if (is_hwpoison_entry(entry)) {
3091                         ret = VM_FAULT_HWPOISON;
3092                 } else {
3093                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3094                         ret = VM_FAULT_SIGBUS;
3095                 }
3096                 goto out;
3097         }
3098
3099
3100         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3101         page = lookup_swap_cache(entry, vma, vmf->address);
3102         swapcache = page;
3103
3104         if (!page) {
3105                 struct swap_info_struct *si = swp_swap_info(entry);
3106
3107                 if (si->flags & SWP_SYNCHRONOUS_IO &&
3108                                 __swap_count(si, entry) == 1) {
3109                         /* skip swapcache */
3110                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3111                                                         vmf->address);
3112                         if (page) {
3113                                 __SetPageLocked(page);
3114                                 __SetPageSwapBacked(page);
3115                                 set_page_private(page, entry.val);
3116                                 lru_cache_add_anon(page);
3117                                 swap_readpage(page, true);
3118                         }
3119                 } else {
3120                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3121                                                 vmf);
3122                         swapcache = page;
3123                 }
3124
3125                 if (!page) {
3126                         /*
3127                          * Back out if somebody else faulted in this pte
3128                          * while we released the pte lock.
3129                          */
3130                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3131                                         vmf->address, &vmf->ptl);
3132                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3133                                 ret = VM_FAULT_OOM;
3134                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3135                         goto unlock;
3136                 }
3137
3138                 /* Had to read the page from swap area: Major fault */
3139                 ret = VM_FAULT_MAJOR;
3140                 count_vm_event(PGMAJFAULT);
3141                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3142         } else if (PageHWPoison(page)) {
3143                 /*
3144                  * hwpoisoned dirty swapcache pages are kept for killing
3145                  * owner processes (which may be unknown at hwpoison time)
3146                  */
3147                 ret = VM_FAULT_HWPOISON;
3148                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3149                 goto out_release;
3150         }
3151
3152         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3153
3154         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3155         if (!locked) {
3156                 ret |= VM_FAULT_RETRY;
3157                 goto out_release;
3158         }
3159
3160         /*
3161          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3162          * release the swapcache from under us.  The page pin, and pte_same
3163          * test below, are not enough to exclude that.  Even if it is still
3164          * swapcache, we need to check that the page's swap has not changed.
3165          */
3166         if (unlikely((!PageSwapCache(page) ||
3167                         page_private(page) != entry.val)) && swapcache)
3168                 goto out_page;
3169
3170         page = ksm_might_need_to_copy(page, vma, vmf->address);
3171         if (unlikely(!page)) {
3172                 ret = VM_FAULT_OOM;
3173                 page = swapcache;
3174                 goto out_page;
3175         }
3176
3177         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3178                                         &memcg, false)) {
3179                 ret = VM_FAULT_OOM;
3180                 goto out_page;
3181         }
3182
3183         /*
3184          * Back out if somebody else already faulted in this pte.
3185          */
3186         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3187                         &vmf->ptl);
3188         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3189                 goto out_nomap;
3190
3191         if (unlikely(!PageUptodate(page))) {
3192                 ret = VM_FAULT_SIGBUS;
3193                 goto out_nomap;
3194         }
3195
3196         /*
3197          * The page isn't present yet, go ahead with the fault.
3198          *
3199          * Be careful about the sequence of operations here.
3200          * To get its accounting right, reuse_swap_page() must be called
3201          * while the page is counted on swap but not yet in mapcount i.e.
3202          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3203          * must be called after the swap_free(), or it will never succeed.
3204          */
3205
3206         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3207         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3208         pte = mk_pte(page, vma->vm_page_prot);
3209         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3210                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3211                 vmf->flags &= ~FAULT_FLAG_WRITE;
3212                 ret |= VM_FAULT_WRITE;
3213                 exclusive = RMAP_EXCLUSIVE;
3214         }
3215         flush_icache_page(vma, page);
3216         if (pte_swp_soft_dirty(vmf->orig_pte))
3217                 pte = pte_mksoft_dirty(pte);
3218         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3219         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3220         vmf->orig_pte = pte;
3221
3222         /* ksm created a completely new copy */
3223         if (unlikely(page != swapcache && swapcache)) {
3224                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3225                 mem_cgroup_commit_charge(page, memcg, false, false);
3226                 lru_cache_add_active_or_unevictable(page, vma);
3227         } else {
3228                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3229                 mem_cgroup_commit_charge(page, memcg, true, false);
3230                 activate_page(page);
3231         }
3232
3233         swap_free(entry);
3234         if (mem_cgroup_swap_full(page) ||
3235             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3236                 try_to_free_swap(page);
3237         unlock_page(page);
3238         if (page != swapcache && swapcache) {
3239                 /*
3240                  * Hold the lock to avoid the swap entry to be reused
3241                  * until we take the PT lock for the pte_same() check
3242                  * (to avoid false positives from pte_same). For
3243                  * further safety release the lock after the swap_free
3244                  * so that the swap count won't change under a
3245                  * parallel locked swapcache.
3246                  */
3247                 unlock_page(swapcache);
3248                 put_page(swapcache);
3249         }
3250
3251         if (vmf->flags & FAULT_FLAG_WRITE) {
3252                 ret |= do_wp_page(vmf);
3253                 if (ret & VM_FAULT_ERROR)
3254                         ret &= VM_FAULT_ERROR;
3255                 goto out;
3256         }
3257
3258         /* No need to invalidate - it was non-present before */
3259         update_mmu_cache(vma, vmf->address, vmf->pte);
3260 unlock:
3261         pte_unmap_unlock(vmf->pte, vmf->ptl);
3262 out:
3263         return ret;
3264 out_nomap:
3265         mem_cgroup_cancel_charge(page, memcg, false);
3266         pte_unmap_unlock(vmf->pte, vmf->ptl);
3267 out_page:
3268         unlock_page(page);
3269 out_release:
3270         put_page(page);
3271         if (page != swapcache && swapcache) {
3272                 unlock_page(swapcache);
3273                 put_page(swapcache);
3274         }
3275         return ret;
3276 }
3277
3278 /*
3279  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3280  * but allow concurrent faults), and pte mapped but not yet locked.
3281  * We return with mmap_sem still held, but pte unmapped and unlocked.
3282  */
3283 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3284 {
3285         struct vm_area_struct *vma = vmf->vma;
3286         struct mem_cgroup *memcg;
3287         struct page *page;
3288         vm_fault_t ret = 0;
3289         pte_t entry;
3290
3291         /* File mapping without ->vm_ops ? */
3292         if (vma->vm_flags & VM_SHARED)
3293                 return VM_FAULT_SIGBUS;
3294
3295         /*
3296          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3297          * pte_offset_map() on pmds where a huge pmd might be created
3298          * from a different thread.
3299          *
3300          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3301          * parallel threads are excluded by other means.
3302          *
3303          * Here we only have down_read(mmap_sem).
3304          */
3305         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3306                 return VM_FAULT_OOM;
3307
3308         /* See the comment in pte_alloc_one_map() */
3309         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3310                 return 0;
3311
3312         /* Use the zero-page for reads */
3313         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3314                         !mm_forbids_zeropage(vma->vm_mm)) {
3315                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3316                                                 vma->vm_page_prot));
3317                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3318                                 vmf->address, &vmf->ptl);
3319                 if (!pte_none(*vmf->pte))
3320                         goto unlock;
3321                 ret = check_stable_address_space(vma->vm_mm);
3322                 if (ret)
3323                         goto unlock;
3324                 /* Deliver the page fault to userland, check inside PT lock */
3325                 if (userfaultfd_missing(vma)) {
3326                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3327                         return handle_userfault(vmf, VM_UFFD_MISSING);
3328                 }
3329                 goto setpte;
3330         }
3331
3332         /* Allocate our own private page. */
3333         if (unlikely(anon_vma_prepare(vma)))
3334                 goto oom;
3335         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3336         if (!page)
3337                 goto oom;
3338
3339         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3340                                         false))
3341                 goto oom_free_page;
3342
3343         /*
3344          * The memory barrier inside __SetPageUptodate makes sure that
3345          * preceeding stores to the page contents become visible before
3346          * the set_pte_at() write.
3347          */
3348         __SetPageUptodate(page);
3349
3350         entry = mk_pte(page, vma->vm_page_prot);
3351         if (vma->vm_flags & VM_WRITE)
3352                 entry = pte_mkwrite(pte_mkdirty(entry));
3353
3354         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3355                         &vmf->ptl);
3356         if (!pte_none(*vmf->pte))
3357                 goto release;
3358
3359         ret = check_stable_address_space(vma->vm_mm);
3360         if (ret)
3361                 goto release;
3362
3363         /* Deliver the page fault to userland, check inside PT lock */
3364         if (userfaultfd_missing(vma)) {
3365                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3366                 mem_cgroup_cancel_charge(page, memcg, false);
3367                 put_page(page);
3368                 return handle_userfault(vmf, VM_UFFD_MISSING);
3369         }
3370
3371         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3372         page_add_new_anon_rmap(page, vma, vmf->address, false);
3373         mem_cgroup_commit_charge(page, memcg, false, false);
3374         lru_cache_add_active_or_unevictable(page, vma);
3375 setpte:
3376         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3377
3378         /* No need to invalidate - it was non-present before */
3379         update_mmu_cache(vma, vmf->address, vmf->pte);
3380 unlock:
3381         pte_unmap_unlock(vmf->pte, vmf->ptl);
3382         return ret;
3383 release:
3384         mem_cgroup_cancel_charge(page, memcg, false);
3385         put_page(page);
3386         goto unlock;
3387 oom_free_page:
3388         put_page(page);
3389 oom:
3390         return VM_FAULT_OOM;
3391 }
3392
3393 /*
3394  * The mmap_sem must have been held on entry, and may have been
3395  * released depending on flags and vma->vm_ops->fault() return value.
3396  * See filemap_fault() and __lock_page_retry().
3397  */
3398 static vm_fault_t __do_fault(struct vm_fault *vmf)
3399 {
3400         struct vm_area_struct *vma = vmf->vma;
3401         vm_fault_t ret;
3402
3403         /*
3404          * Preallocate pte before we take page_lock because this might lead to
3405          * deadlocks for memcg reclaim which waits for pages under writeback:
3406          *                              lock_page(A)
3407          *                              SetPageWriteback(A)
3408          *                              unlock_page(A)
3409          * lock_page(B)
3410          *                              lock_page(B)
3411          * pte_alloc_pne
3412          *   shrink_page_list
3413          *     wait_on_page_writeback(A)
3414          *                              SetPageWriteback(B)
3415          *                              unlock_page(B)
3416          *                              # flush A, B to clear the writeback
3417          */
3418         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3419                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3420                                                   vmf->address);
3421                 if (!vmf->prealloc_pte)
3422                         return VM_FAULT_OOM;
3423                 smp_wmb(); /* See comment in __pte_alloc() */
3424         }
3425
3426         ret = vma->vm_ops->fault(vmf);
3427         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3428                             VM_FAULT_DONE_COW)))
3429                 return ret;
3430
3431         if (unlikely(PageHWPoison(vmf->page))) {
3432                 struct page *page = vmf->page;
3433                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3434                 if (ret & VM_FAULT_LOCKED) {
3435                         if (page_mapped(page))
3436                                 unmap_mapping_pages(page_mapping(page),
3437                                                     page->index, 1, false);
3438                         /* Retry if a clean page was removed from the cache. */
3439                         if (invalidate_inode_page(page))
3440                                 poisonret = VM_FAULT_NOPAGE;
3441                         unlock_page(page);
3442                 }
3443                 put_page(page);
3444                 vmf->page = NULL;
3445                 return poisonret;
3446         }
3447
3448         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3449                 lock_page(vmf->page);
3450         else
3451                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3452
3453         return ret;
3454 }
3455
3456 /*
3457  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3458  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3459  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3460  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3461  */
3462 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3463 {
3464         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3465 }
3466
3467 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3468 {
3469         struct vm_area_struct *vma = vmf->vma;
3470
3471         if (!pmd_none(*vmf->pmd))
3472                 goto map_pte;
3473         if (vmf->prealloc_pte) {
3474                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3475                 if (unlikely(!pmd_none(*vmf->pmd))) {
3476                         spin_unlock(vmf->ptl);
3477                         goto map_pte;
3478                 }
3479
3480                 mm_inc_nr_ptes(vma->vm_mm);
3481                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3482                 spin_unlock(vmf->ptl);
3483                 vmf->prealloc_pte = NULL;
3484         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3485                 return VM_FAULT_OOM;
3486         }
3487 map_pte:
3488         /*
3489          * If a huge pmd materialized under us just retry later.  Use
3490          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3491          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3492          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3493          * running immediately after a huge pmd fault in a different thread of
3494          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3495          * All we have to ensure is that it is a regular pmd that we can walk
3496          * with pte_offset_map() and we can do that through an atomic read in
3497          * C, which is what pmd_trans_unstable() provides.
3498          */
3499         if (pmd_devmap_trans_unstable(vmf->pmd))
3500                 return VM_FAULT_NOPAGE;
3501
3502         /*
3503          * At this point we know that our vmf->pmd points to a page of ptes
3504          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3505          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3506          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3507          * be valid and we will re-check to make sure the vmf->pte isn't
3508          * pte_none() under vmf->ptl protection when we return to
3509          * alloc_set_pte().
3510          */
3511         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3512                         &vmf->ptl);
3513         return 0;
3514 }
3515
3516 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3517
3518 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3519 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3520                 unsigned long haddr)
3521 {
3522         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3523                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3524                 return false;
3525         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3526                 return false;
3527         return true;
3528 }
3529
3530 static void deposit_prealloc_pte(struct vm_fault *vmf)
3531 {
3532         struct vm_area_struct *vma = vmf->vma;
3533
3534         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3535         /*
3536          * We are going to consume the prealloc table,
3537          * count that as nr_ptes.
3538          */
3539         mm_inc_nr_ptes(vma->vm_mm);
3540         vmf->prealloc_pte = NULL;
3541 }
3542
3543 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3544 {
3545         struct vm_area_struct *vma = vmf->vma;
3546         bool write = vmf->flags & FAULT_FLAG_WRITE;
3547         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3548         pmd_t entry;
3549         int i;
3550         vm_fault_t ret;
3551
3552         if (!transhuge_vma_suitable(vma, haddr))
3553                 return VM_FAULT_FALLBACK;
3554
3555         ret = VM_FAULT_FALLBACK;
3556         page = compound_head(page);
3557
3558         /*
3559          * Archs like ppc64 need additonal space to store information
3560          * related to pte entry. Use the preallocated table for that.
3561          */
3562         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3563                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3564                 if (!vmf->prealloc_pte)
3565                         return VM_FAULT_OOM;
3566                 smp_wmb(); /* See comment in __pte_alloc() */
3567         }
3568
3569         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3570         if (unlikely(!pmd_none(*vmf->pmd)))
3571                 goto out;
3572
3573         for (i = 0; i < HPAGE_PMD_NR; i++)
3574                 flush_icache_page(vma, page + i);
3575
3576         entry = mk_huge_pmd(page, vma->vm_page_prot);
3577         if (write)
3578                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3579
3580         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3581         page_add_file_rmap(page, true);
3582         /*
3583          * deposit and withdraw with pmd lock held
3584          */
3585         if (arch_needs_pgtable_deposit())
3586                 deposit_prealloc_pte(vmf);
3587
3588         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3589
3590         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3591
3592         /* fault is handled */
3593         ret = 0;
3594         count_vm_event(THP_FILE_MAPPED);
3595 out:
3596         spin_unlock(vmf->ptl);
3597         return ret;
3598 }
3599 #else
3600 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3601 {
3602         BUILD_BUG();
3603         return 0;
3604 }
3605 #endif
3606
3607 /**
3608  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3609  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3610  *
3611  * @vmf: fault environment
3612  * @memcg: memcg to charge page (only for private mappings)
3613  * @page: page to map
3614  *
3615  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3616  * return.
3617  *
3618  * Target users are page handler itself and implementations of
3619  * vm_ops->map_pages.
3620  */
3621 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3622                 struct page *page)
3623 {
3624         struct vm_area_struct *vma = vmf->vma;
3625         bool write = vmf->flags & FAULT_FLAG_WRITE;
3626         pte_t entry;
3627         vm_fault_t ret;
3628
3629         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3630                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3631                 /* THP on COW? */
3632                 VM_BUG_ON_PAGE(memcg, page);
3633
3634                 ret = do_set_pmd(vmf, page);
3635                 if (ret != VM_FAULT_FALLBACK)
3636                         return ret;
3637         }
3638
3639         if (!vmf->pte) {
3640                 ret = pte_alloc_one_map(vmf);
3641                 if (ret)
3642                         return ret;
3643         }
3644
3645         /* Re-check under ptl */
3646         if (unlikely(!pte_none(*vmf->pte)))
3647                 return VM_FAULT_NOPAGE;
3648
3649         flush_icache_page(vma, page);
3650         entry = mk_pte(page, vma->vm_page_prot);
3651         if (write)
3652                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3653         /* copy-on-write page */
3654         if (write && !(vma->vm_flags & VM_SHARED)) {
3655                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3656                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3657                 mem_cgroup_commit_charge(page, memcg, false, false);
3658                 lru_cache_add_active_or_unevictable(page, vma);
3659         } else {
3660                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3661                 page_add_file_rmap(page, false);
3662         }
3663         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3664
3665         /* no need to invalidate: a not-present page won't be cached */
3666         update_mmu_cache(vma, vmf->address, vmf->pte);
3667
3668         return 0;
3669 }
3670
3671
3672 /**
3673  * finish_fault - finish page fault once we have prepared the page to fault
3674  *
3675  * @vmf: structure describing the fault
3676  *
3677  * This function handles all that is needed to finish a page fault once the
3678  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3679  * given page, adds reverse page mapping, handles memcg charges and LRU
3680  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3681  * error.
3682  *
3683  * The function expects the page to be locked and on success it consumes a
3684  * reference of a page being mapped (for the PTE which maps it).
3685  */
3686 vm_fault_t finish_fault(struct vm_fault *vmf)
3687 {
3688         struct page *page;
3689         vm_fault_t ret = 0;
3690
3691         /* Did we COW the page? */
3692         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3693             !(vmf->vma->vm_flags & VM_SHARED))
3694                 page = vmf->cow_page;
3695         else
3696                 page = vmf->page;
3697
3698         /*
3699          * check even for read faults because we might have lost our CoWed
3700          * page
3701          */
3702         if (!(vmf->vma->vm_flags & VM_SHARED))
3703                 ret = check_stable_address_space(vmf->vma->vm_mm);
3704         if (!ret)
3705                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3706         if (vmf->pte)
3707                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3708         return ret;
3709 }
3710
3711 static unsigned long fault_around_bytes __read_mostly =
3712         rounddown_pow_of_two(65536);
3713
3714 #ifdef CONFIG_DEBUG_FS
3715 static int fault_around_bytes_get(void *data, u64 *val)
3716 {
3717         *val = fault_around_bytes;
3718         return 0;
3719 }
3720
3721 /*
3722  * fault_around_bytes must be rounded down to the nearest page order as it's
3723  * what do_fault_around() expects to see.
3724  */
3725 static int fault_around_bytes_set(void *data, u64 val)
3726 {
3727         if (val / PAGE_SIZE > PTRS_PER_PTE)
3728                 return -EINVAL;
3729         if (val > PAGE_SIZE)
3730                 fault_around_bytes = rounddown_pow_of_two(val);
3731         else
3732                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3733         return 0;
3734 }
3735 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3736                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3737
3738 static int __init fault_around_debugfs(void)
3739 {
3740         void *ret;
3741
3742         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3743                         &fault_around_bytes_fops);
3744         if (!ret)
3745                 pr_warn("Failed to create fault_around_bytes in debugfs");
3746         return 0;
3747 }
3748 late_initcall(fault_around_debugfs);
3749 #endif
3750
3751 /*
3752  * do_fault_around() tries to map few pages around the fault address. The hope
3753  * is that the pages will be needed soon and this will lower the number of
3754  * faults to handle.
3755  *
3756  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3757  * not ready to be mapped: not up-to-date, locked, etc.
3758  *
3759  * This function is called with the page table lock taken. In the split ptlock
3760  * case the page table lock only protects only those entries which belong to
3761  * the page table corresponding to the fault address.
3762  *
3763  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3764  * only once.
3765  *
3766  * fault_around_bytes defines how many bytes we'll try to map.
3767  * do_fault_around() expects it to be set to a power of two less than or equal
3768  * to PTRS_PER_PTE.
3769  *
3770  * The virtual address of the area that we map is naturally aligned to
3771  * fault_around_bytes rounded down to the machine page size
3772  * (and therefore to page order).  This way it's easier to guarantee
3773  * that we don't cross page table boundaries.
3774  */
3775 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3776 {
3777         unsigned long address = vmf->address, nr_pages, mask;
3778         pgoff_t start_pgoff = vmf->pgoff;
3779         pgoff_t end_pgoff;
3780         int off;
3781         vm_fault_t ret = 0;
3782
3783         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3784         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3785
3786         vmf->address = max(address & mask, vmf->vma->vm_start);
3787         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3788         start_pgoff -= off;
3789
3790         /*
3791          *  end_pgoff is either the end of the page table, the end of
3792          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3793          */
3794         end_pgoff = start_pgoff -
3795                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3796                 PTRS_PER_PTE - 1;
3797         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3798                         start_pgoff + nr_pages - 1);
3799
3800         if (pmd_none(*vmf->pmd)) {
3801                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3802                                                   vmf->address);
3803                 if (!vmf->prealloc_pte)
3804                         goto out;
3805                 smp_wmb(); /* See comment in __pte_alloc() */
3806         }
3807
3808         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3809
3810         /* Huge page is mapped? Page fault is solved */
3811         if (pmd_trans_huge(*vmf->pmd)) {
3812                 ret = VM_FAULT_NOPAGE;
3813                 goto out;
3814         }
3815
3816         /* ->map_pages() haven't done anything useful. Cold page cache? */
3817         if (!vmf->pte)
3818                 goto out;
3819
3820         /* check if the page fault is solved */
3821         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3822         if (!pte_none(*vmf->pte))
3823                 ret = VM_FAULT_NOPAGE;
3824         pte_unmap_unlock(vmf->pte, vmf->ptl);
3825 out:
3826         vmf->address = address;
3827         vmf->pte = NULL;
3828         return ret;
3829 }
3830
3831 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3832 {
3833         struct vm_area_struct *vma = vmf->vma;
3834         vm_fault_t ret = 0;
3835
3836         /*
3837          * Let's call ->map_pages() first and use ->fault() as fallback
3838          * if page by the offset is not ready to be mapped (cold cache or
3839          * something).
3840          */
3841         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3842                 ret = do_fault_around(vmf);
3843                 if (ret)
3844                         return ret;
3845         }
3846
3847         ret = __do_fault(vmf);
3848         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3849                 return ret;
3850
3851         ret |= finish_fault(vmf);
3852         unlock_page(vmf->page);
3853         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3854                 put_page(vmf->page);
3855         return ret;
3856 }
3857
3858 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3859 {
3860         struct vm_area_struct *vma = vmf->vma;
3861         vm_fault_t ret;
3862
3863         if (unlikely(anon_vma_prepare(vma)))
3864                 return VM_FAULT_OOM;
3865
3866         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3867         if (!vmf->cow_page)
3868                 return VM_FAULT_OOM;
3869
3870         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3871                                 &vmf->memcg, false)) {
3872                 put_page(vmf->cow_page);
3873                 return VM_FAULT_OOM;
3874         }
3875
3876         ret = __do_fault(vmf);
3877         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3878                 goto uncharge_out;
3879         if (ret & VM_FAULT_DONE_COW)
3880                 return ret;
3881
3882         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3883         __SetPageUptodate(vmf->cow_page);
3884
3885         ret |= finish_fault(vmf);
3886         unlock_page(vmf->page);
3887         put_page(vmf->page);
3888         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3889                 goto uncharge_out;
3890         return ret;
3891 uncharge_out:
3892         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3893         put_page(vmf->cow_page);
3894         return ret;
3895 }
3896
3897 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3898 {
3899         struct vm_area_struct *vma = vmf->vma;
3900         vm_fault_t ret, tmp;
3901
3902         ret = __do_fault(vmf);
3903         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3904                 return ret;
3905
3906         /*
3907          * Check if the backing address space wants to know that the page is
3908          * about to become writable
3909          */
3910         if (vma->vm_ops->page_mkwrite) {
3911                 unlock_page(vmf->page);
3912                 tmp = do_page_mkwrite(vmf);
3913                 if (unlikely(!tmp ||
3914                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3915                         put_page(vmf->page);
3916                         return tmp;
3917                 }
3918         }
3919
3920         ret |= finish_fault(vmf);
3921         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3922                                         VM_FAULT_RETRY))) {
3923                 unlock_page(vmf->page);
3924                 put_page(vmf->page);
3925                 return ret;
3926         }
3927
3928         fault_dirty_shared_page(vma, vmf->page);
3929         return ret;
3930 }
3931
3932 /*
3933  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3934  * but allow concurrent faults).
3935  * The mmap_sem may have been released depending on flags and our
3936  * return value.  See filemap_fault() and __lock_page_or_retry().
3937  * If mmap_sem is released, vma may become invalid (for example
3938  * by other thread calling munmap()).
3939  */
3940 static vm_fault_t do_fault(struct vm_fault *vmf)
3941 {
3942         struct vm_area_struct *vma = vmf->vma;
3943         struct mm_struct *vm_mm = vma->vm_mm;
3944         vm_fault_t ret;
3945
3946         /*
3947          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3948          */
3949         if (!vma->vm_ops->fault) {
3950                 /*
3951                  * If we find a migration pmd entry or a none pmd entry, which
3952                  * should never happen, return SIGBUS
3953                  */
3954                 if (unlikely(!pmd_present(*vmf->pmd)))
3955                         ret = VM_FAULT_SIGBUS;
3956                 else {
3957                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3958                                                        vmf->pmd,
3959                                                        vmf->address,
3960                                                        &vmf->ptl);
3961                         /*
3962                          * Make sure this is not a temporary clearing of pte
3963                          * by holding ptl and checking again. A R/M/W update
3964                          * of pte involves: take ptl, clearing the pte so that
3965                          * we don't have concurrent modification by hardware
3966                          * followed by an update.
3967                          */
3968                         if (unlikely(pte_none(*vmf->pte)))
3969                                 ret = VM_FAULT_SIGBUS;
3970                         else
3971                                 ret = VM_FAULT_NOPAGE;
3972
3973                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3974                 }
3975         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3976                 ret = do_read_fault(vmf);
3977         else if (!(vma->vm_flags & VM_SHARED))
3978                 ret = do_cow_fault(vmf);
3979         else
3980                 ret = do_shared_fault(vmf);
3981
3982         /* preallocated pagetable is unused: free it */
3983         if (vmf->prealloc_pte) {
3984                 pte_free(vm_mm, vmf->prealloc_pte);
3985                 vmf->prealloc_pte = NULL;
3986         }
3987         return ret;
3988 }
3989
3990 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3991                                 unsigned long addr, int page_nid,
3992                                 int *flags)
3993 {
3994         get_page(page);
3995
3996         count_vm_numa_event(NUMA_HINT_FAULTS);
3997         if (page_nid == numa_node_id()) {
3998                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3999                 *flags |= TNF_FAULT_LOCAL;
4000         }
4001
4002         return mpol_misplaced(page, vma, addr);
4003 }
4004
4005 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4006 {
4007         struct vm_area_struct *vma = vmf->vma;
4008         struct page *page = NULL;
4009         int page_nid = -1;
4010         int last_cpupid;
4011         int target_nid;
4012         bool migrated = false;
4013         pte_t pte;
4014         bool was_writable = pte_savedwrite(vmf->orig_pte);
4015         int flags = 0;
4016
4017         /*
4018          * The "pte" at this point cannot be used safely without
4019          * validation through pte_unmap_same(). It's of NUMA type but
4020          * the pfn may be screwed if the read is non atomic.
4021          */
4022         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4023         spin_lock(vmf->ptl);
4024         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4025                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4026                 goto out;
4027         }
4028
4029         /*
4030          * Make it present again, Depending on how arch implementes non
4031          * accessible ptes, some can allow access by kernel mode.
4032          */
4033         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4034         pte = pte_modify(pte, vma->vm_page_prot);
4035         pte = pte_mkyoung(pte);
4036         if (was_writable)
4037                 pte = pte_mkwrite(pte);
4038         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
4039         update_mmu_cache(vma, vmf->address, vmf->pte);
4040
4041         page = vm_normal_page(vma, vmf->address, pte);
4042         if (!page) {
4043                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4044                 return 0;
4045         }
4046
4047         /* TODO: handle PTE-mapped THP */
4048         if (PageCompound(page)) {
4049                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4050                 return 0;
4051         }
4052
4053         /*
4054          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4055          * much anyway since they can be in shared cache state. This misses
4056          * the case where a mapping is writable but the process never writes
4057          * to it but pte_write gets cleared during protection updates and
4058          * pte_dirty has unpredictable behaviour between PTE scan updates,
4059          * background writeback, dirty balancing and application behaviour.
4060          */
4061         if (!pte_write(pte))
4062                 flags |= TNF_NO_GROUP;
4063
4064         /*
4065          * Flag if the page is shared between multiple address spaces. This
4066          * is later used when determining whether to group tasks together
4067          */
4068         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4069                 flags |= TNF_SHARED;
4070
4071         last_cpupid = page_cpupid_last(page);
4072         page_nid = page_to_nid(page);
4073         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4074                         &flags);
4075         pte_unmap_unlock(vmf->pte, vmf->ptl);
4076         if (target_nid == -1) {
4077                 put_page(page);
4078                 goto out;
4079         }
4080
4081         /* Migrate to the requested node */
4082         migrated = migrate_misplaced_page(page, vma, target_nid);
4083         if (migrated) {
4084                 page_nid = target_nid;
4085                 flags |= TNF_MIGRATED;
4086         } else
4087                 flags |= TNF_MIGRATE_FAIL;
4088
4089 out:
4090         if (page_nid != -1)
4091                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4092         return 0;
4093 }
4094
4095 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4096 {
4097         if (vma_is_anonymous(vmf->vma))
4098                 return do_huge_pmd_anonymous_page(vmf);
4099         if (vmf->vma->vm_ops->huge_fault)
4100                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4101         return VM_FAULT_FALLBACK;
4102 }
4103
4104 /* `inline' is required to avoid gcc 4.1.2 build error */
4105 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4106 {
4107         if (vma_is_anonymous(vmf->vma))
4108                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4109         if (vmf->vma->vm_ops->huge_fault)
4110                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4111
4112         /* COW handled on pte level: split pmd */
4113         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
4114         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4115
4116         return VM_FAULT_FALLBACK;
4117 }
4118
4119 static inline bool vma_is_accessible(struct vm_area_struct *vma)
4120 {
4121         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
4122 }
4123
4124 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4125 {
4126 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4127         /* No support for anonymous transparent PUD pages yet */
4128         if (vma_is_anonymous(vmf->vma))
4129                 return VM_FAULT_FALLBACK;
4130         if (vmf->vma->vm_ops->huge_fault)
4131                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4132 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4133         return VM_FAULT_FALLBACK;
4134 }
4135
4136 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4137 {
4138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4139         /* No support for anonymous transparent PUD pages yet */
4140         if (vma_is_anonymous(vmf->vma))
4141                 return VM_FAULT_FALLBACK;
4142         if (vmf->vma->vm_ops->huge_fault)
4143                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4144 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4145         return VM_FAULT_FALLBACK;
4146 }
4147
4148 /*
4149  * These routines also need to handle stuff like marking pages dirty
4150  * and/or accessed for architectures that don't do it in hardware (most
4151  * RISC architectures).  The early dirtying is also good on the i386.
4152  *
4153  * There is also a hook called "update_mmu_cache()" that architectures
4154  * with external mmu caches can use to update those (ie the Sparc or
4155  * PowerPC hashed page tables that act as extended TLBs).
4156  *
4157  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4158  * concurrent faults).
4159  *
4160  * The mmap_sem may have been released depending on flags and our return value.
4161  * See filemap_fault() and __lock_page_or_retry().
4162  */
4163 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4164 {
4165         pte_t entry;
4166
4167         if (unlikely(pmd_none(*vmf->pmd))) {
4168                 /*
4169                  * Leave __pte_alloc() until later: because vm_ops->fault may
4170                  * want to allocate huge page, and if we expose page table
4171                  * for an instant, it will be difficult to retract from
4172                  * concurrent faults and from rmap lookups.
4173                  */
4174                 vmf->pte = NULL;
4175         } else {
4176                 /* See comment in pte_alloc_one_map() */
4177                 if (pmd_devmap_trans_unstable(vmf->pmd))
4178                         return 0;
4179                 /*
4180                  * A regular pmd is established and it can't morph into a huge
4181                  * pmd from under us anymore at this point because we hold the
4182                  * mmap_sem read mode and khugepaged takes it in write mode.
4183                  * So now it's safe to run pte_offset_map().
4184                  */
4185                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4186                 vmf->orig_pte = *vmf->pte;
4187
4188                 /*
4189                  * some architectures can have larger ptes than wordsize,
4190                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4191                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4192                  * accesses.  The code below just needs a consistent view
4193                  * for the ifs and we later double check anyway with the
4194                  * ptl lock held. So here a barrier will do.
4195                  */
4196                 barrier();
4197                 if (pte_none(vmf->orig_pte)) {
4198                         pte_unmap(vmf->pte);
4199                         vmf->pte = NULL;
4200                 }
4201         }
4202
4203         if (!vmf->pte) {
4204                 if (vma_is_anonymous(vmf->vma))
4205                         return do_anonymous_page(vmf);
4206                 else
4207                         return do_fault(vmf);
4208         }
4209
4210         if (!pte_present(vmf->orig_pte))
4211                 return do_swap_page(vmf);
4212
4213         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4214                 return do_numa_page(vmf);
4215
4216         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4217         spin_lock(vmf->ptl);
4218         entry = vmf->orig_pte;
4219         if (unlikely(!pte_same(*vmf->pte, entry)))
4220                 goto unlock;
4221         if (vmf->flags & FAULT_FLAG_WRITE) {
4222                 if (!pte_write(entry))
4223                         return do_wp_page(vmf);
4224                 entry = pte_mkdirty(entry);
4225         }
4226         entry = pte_mkyoung(entry);
4227         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4228                                 vmf->flags & FAULT_FLAG_WRITE)) {
4229                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4230         } else {
4231                 /*
4232                  * This is needed only for protection faults but the arch code
4233                  * is not yet telling us if this is a protection fault or not.
4234                  * This still avoids useless tlb flushes for .text page faults
4235                  * with threads.
4236                  */
4237                 if (vmf->flags & FAULT_FLAG_WRITE)
4238                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4239         }
4240 unlock:
4241         pte_unmap_unlock(vmf->pte, vmf->ptl);
4242         return 0;
4243 }
4244
4245 /*
4246  * By the time we get here, we already hold the mm semaphore
4247  *
4248  * The mmap_sem may have been released depending on flags and our
4249  * return value.  See filemap_fault() and __lock_page_or_retry().
4250  */
4251 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4252                 unsigned long address, unsigned int flags)
4253 {
4254         struct vm_fault vmf = {
4255                 .vma = vma,
4256                 .address = address & PAGE_MASK,
4257                 .flags = flags,
4258                 .pgoff = linear_page_index(vma, address),
4259                 .gfp_mask = __get_fault_gfp_mask(vma),
4260         };
4261         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4262         struct mm_struct *mm = vma->vm_mm;
4263         pgd_t *pgd;
4264         p4d_t *p4d;
4265         vm_fault_t ret;
4266
4267         pgd = pgd_offset(mm, address);
4268         p4d = p4d_alloc(mm, pgd, address);
4269         if (!p4d)
4270                 return VM_FAULT_OOM;
4271
4272         vmf.pud = pud_alloc(mm, p4d, address);
4273         if (!vmf.pud)
4274                 return VM_FAULT_OOM;
4275         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4276                 ret = create_huge_pud(&vmf);
4277                 if (!(ret & VM_FAULT_FALLBACK))
4278                         return ret;
4279         } else {
4280                 pud_t orig_pud = *vmf.pud;
4281
4282                 barrier();
4283                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4284
4285                         /* NUMA case for anonymous PUDs would go here */
4286
4287                         if (dirty && !pud_write(orig_pud)) {
4288                                 ret = wp_huge_pud(&vmf, orig_pud);
4289                                 if (!(ret & VM_FAULT_FALLBACK))
4290                                         return ret;
4291                         } else {
4292                                 huge_pud_set_accessed(&vmf, orig_pud);
4293                                 return 0;
4294                         }
4295                 }
4296         }
4297
4298         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4299         if (!vmf.pmd)
4300                 return VM_FAULT_OOM;
4301         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4302                 ret = create_huge_pmd(&vmf);
4303                 if (!(ret & VM_FAULT_FALLBACK))
4304                         return ret;
4305         } else {
4306                 pmd_t orig_pmd = *vmf.pmd;
4307
4308                 barrier();
4309                 if (unlikely(is_swap_pmd(orig_pmd))) {
4310                         VM_BUG_ON(thp_migration_supported() &&
4311                                           !is_pmd_migration_entry(orig_pmd));
4312                         if (is_pmd_migration_entry(orig_pmd))
4313                                 pmd_migration_entry_wait(mm, vmf.pmd);
4314                         return 0;
4315                 }
4316                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4317                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4318                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4319
4320                         if (dirty && !pmd_write(orig_pmd)) {
4321                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4322                                 if (!(ret & VM_FAULT_FALLBACK))
4323                                         return ret;
4324                         } else {
4325                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4326                                 return 0;
4327                         }
4328                 }
4329         }
4330
4331         return handle_pte_fault(&vmf);
4332 }
4333
4334 /*
4335  * By the time we get here, we already hold the mm semaphore
4336  *
4337  * The mmap_sem may have been released depending on flags and our
4338  * return value.  See filemap_fault() and __lock_page_or_retry().
4339  */
4340 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4341                 unsigned int flags)
4342 {
4343         vm_fault_t ret;
4344
4345         __set_current_state(TASK_RUNNING);
4346
4347         count_vm_event(PGFAULT);
4348         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4349
4350         /* do counter updates before entering really critical section. */
4351         check_sync_rss_stat(current);
4352
4353         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4354                                             flags & FAULT_FLAG_INSTRUCTION,
4355                                             flags & FAULT_FLAG_REMOTE))
4356                 return VM_FAULT_SIGSEGV;
4357
4358         /*
4359          * Enable the memcg OOM handling for faults triggered in user
4360          * space.  Kernel faults are handled more gracefully.
4361          */
4362         if (flags & FAULT_FLAG_USER)
4363                 mem_cgroup_enter_user_fault();
4364
4365         if (unlikely(is_vm_hugetlb_page(vma)))
4366                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4367         else
4368                 ret = __handle_mm_fault(vma, address, flags);
4369
4370         if (flags & FAULT_FLAG_USER) {
4371                 mem_cgroup_exit_user_fault();
4372                 /*
4373                  * The task may have entered a memcg OOM situation but
4374                  * if the allocation error was handled gracefully (no
4375                  * VM_FAULT_OOM), there is no need to kill anything.
4376                  * Just clean up the OOM state peacefully.
4377                  */
4378                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4379                         mem_cgroup_oom_synchronize(false);
4380         }
4381
4382         return ret;
4383 }
4384 EXPORT_SYMBOL_GPL(handle_mm_fault);
4385
4386 #ifndef __PAGETABLE_P4D_FOLDED
4387 /*
4388  * Allocate p4d page table.
4389  * We've already handled the fast-path in-line.
4390  */
4391 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4392 {
4393         p4d_t *new = p4d_alloc_one(mm, address);
4394         if (!new)
4395                 return -ENOMEM;
4396
4397         smp_wmb(); /* See comment in __pte_alloc */
4398
4399         spin_lock(&mm->page_table_lock);
4400         if (pgd_present(*pgd))          /* Another has populated it */
4401                 p4d_free(mm, new);
4402         else
4403                 pgd_populate(mm, pgd, new);
4404         spin_unlock(&mm->page_table_lock);
4405         return 0;
4406 }
4407 #endif /* __PAGETABLE_P4D_FOLDED */
4408
4409 #ifndef __PAGETABLE_PUD_FOLDED
4410 /*
4411  * Allocate page upper directory.
4412  * We've already handled the fast-path in-line.
4413  */
4414 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4415 {
4416         pud_t *new = pud_alloc_one(mm, address);
4417         if (!new)
4418                 return -ENOMEM;
4419
4420         smp_wmb(); /* See comment in __pte_alloc */
4421
4422         spin_lock(&mm->page_table_lock);
4423 #ifndef __ARCH_HAS_5LEVEL_HACK
4424         if (!p4d_present(*p4d)) {
4425                 mm_inc_nr_puds(mm);
4426                 p4d_populate(mm, p4d, new);
4427         } else  /* Another has populated it */
4428                 pud_free(mm, new);
4429 #else
4430         if (!pgd_present(*p4d)) {
4431                 mm_inc_nr_puds(mm);
4432                 pgd_populate(mm, p4d, new);
4433         } else  /* Another has populated it */
4434                 pud_free(mm, new);
4435 #endif /* __ARCH_HAS_5LEVEL_HACK */
4436         spin_unlock(&mm->page_table_lock);
4437         return 0;
4438 }
4439 #endif /* __PAGETABLE_PUD_FOLDED */
4440
4441 #ifndef __PAGETABLE_PMD_FOLDED
4442 /*
4443  * Allocate page middle directory.
4444  * We've already handled the fast-path in-line.
4445  */
4446 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4447 {
4448         spinlock_t *ptl;
4449         pmd_t *new = pmd_alloc_one(mm, address);
4450         if (!new)
4451                 return -ENOMEM;
4452
4453         smp_wmb(); /* See comment in __pte_alloc */
4454
4455         ptl = pud_lock(mm, pud);
4456 #ifndef __ARCH_HAS_4LEVEL_HACK
4457         if (!pud_present(*pud)) {
4458                 mm_inc_nr_pmds(mm);
4459                 pud_populate(mm, pud, new);
4460         } else  /* Another has populated it */
4461                 pmd_free(mm, new);
4462 #else
4463         if (!pgd_present(*pud)) {
4464                 mm_inc_nr_pmds(mm);
4465                 pgd_populate(mm, pud, new);
4466         } else /* Another has populated it */
4467                 pmd_free(mm, new);
4468 #endif /* __ARCH_HAS_4LEVEL_HACK */
4469         spin_unlock(ptl);
4470         return 0;
4471 }
4472 #endif /* __PAGETABLE_PMD_FOLDED */
4473
4474 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4475                             unsigned long *start, unsigned long *end,
4476                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4477 {
4478         pgd_t *pgd;
4479         p4d_t *p4d;
4480         pud_t *pud;
4481         pmd_t *pmd;
4482         pte_t *ptep;
4483
4484         pgd = pgd_offset(mm, address);
4485         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4486                 goto out;
4487
4488         p4d = p4d_offset(pgd, address);
4489         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4490                 goto out;
4491
4492         pud = pud_offset(p4d, address);
4493         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4494                 goto out;
4495
4496         pmd = pmd_offset(pud, address);
4497         VM_BUG_ON(pmd_trans_huge(*pmd));
4498
4499         if (pmd_huge(*pmd)) {
4500                 if (!pmdpp)
4501                         goto out;
4502
4503                 if (start && end) {
4504                         *start = address & PMD_MASK;
4505                         *end = *start + PMD_SIZE;
4506                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4507                 }
4508                 *ptlp = pmd_lock(mm, pmd);
4509                 if (pmd_huge(*pmd)) {
4510                         *pmdpp = pmd;
4511                         return 0;
4512                 }
4513                 spin_unlock(*ptlp);
4514                 if (start && end)
4515                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4516         }
4517
4518         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4519                 goto out;
4520
4521         if (start && end) {
4522                 *start = address & PAGE_MASK;
4523                 *end = *start + PAGE_SIZE;
4524                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4525         }
4526         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4527         if (!pte_present(*ptep))
4528                 goto unlock;
4529         *ptepp = ptep;
4530         return 0;
4531 unlock:
4532         pte_unmap_unlock(ptep, *ptlp);
4533         if (start && end)
4534                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4535 out:
4536         return -EINVAL;
4537 }
4538
4539 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4540                              pte_t **ptepp, spinlock_t **ptlp)
4541 {
4542         int res;
4543
4544         /* (void) is needed to make gcc happy */
4545         (void) __cond_lock(*ptlp,
4546                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4547                                                     ptepp, NULL, ptlp)));
4548         return res;
4549 }
4550
4551 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4552                              unsigned long *start, unsigned long *end,
4553                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4554 {
4555         int res;
4556
4557         /* (void) is needed to make gcc happy */
4558         (void) __cond_lock(*ptlp,
4559                            !(res = __follow_pte_pmd(mm, address, start, end,
4560                                                     ptepp, pmdpp, ptlp)));
4561         return res;
4562 }
4563 EXPORT_SYMBOL(follow_pte_pmd);
4564
4565 /**
4566  * follow_pfn - look up PFN at a user virtual address
4567  * @vma: memory mapping
4568  * @address: user virtual address
4569  * @pfn: location to store found PFN
4570  *
4571  * Only IO mappings and raw PFN mappings are allowed.
4572  *
4573  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4574  */
4575 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4576         unsigned long *pfn)
4577 {
4578         int ret = -EINVAL;
4579         spinlock_t *ptl;
4580         pte_t *ptep;
4581
4582         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4583                 return ret;
4584
4585         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4586         if (ret)
4587                 return ret;
4588         *pfn = pte_pfn(*ptep);
4589         pte_unmap_unlock(ptep, ptl);
4590         return 0;
4591 }
4592 EXPORT_SYMBOL(follow_pfn);
4593
4594 #ifdef CONFIG_HAVE_IOREMAP_PROT
4595 int follow_phys(struct vm_area_struct *vma,
4596                 unsigned long address, unsigned int flags,
4597                 unsigned long *prot, resource_size_t *phys)
4598 {
4599         int ret = -EINVAL;
4600         pte_t *ptep, pte;
4601         spinlock_t *ptl;
4602
4603         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4604                 goto out;
4605
4606         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4607                 goto out;
4608         pte = *ptep;
4609
4610         if ((flags & FOLL_WRITE) && !pte_write(pte))
4611                 goto unlock;
4612
4613         *prot = pgprot_val(pte_pgprot(pte));
4614         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4615
4616         ret = 0;
4617 unlock:
4618         pte_unmap_unlock(ptep, ptl);
4619 out:
4620         return ret;
4621 }
4622
4623 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4624                         void *buf, int len, int write)
4625 {
4626         resource_size_t phys_addr;
4627         unsigned long prot = 0;
4628         void __iomem *maddr;
4629         int offset = addr & (PAGE_SIZE-1);
4630
4631         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4632                 return -EINVAL;
4633
4634         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4635         if (!maddr)
4636                 return -ENOMEM;
4637
4638         if (write)
4639                 memcpy_toio(maddr + offset, buf, len);
4640         else
4641                 memcpy_fromio(buf, maddr + offset, len);
4642         iounmap(maddr);
4643
4644         return len;
4645 }
4646 EXPORT_SYMBOL_GPL(generic_access_phys);
4647 #endif
4648
4649 /*
4650  * Access another process' address space as given in mm.  If non-NULL, use the
4651  * given task for page fault accounting.
4652  */
4653 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4654                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4655 {
4656         struct vm_area_struct *vma;
4657         void *old_buf = buf;
4658         int write = gup_flags & FOLL_WRITE;
4659
4660         if (down_read_killable(&mm->mmap_sem))
4661                 return 0;
4662
4663         /* ignore errors, just check how much was successfully transferred */
4664         while (len) {
4665                 int bytes, ret, offset;
4666                 void *maddr;
4667                 struct page *page = NULL;
4668
4669                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4670                                 gup_flags, &page, &vma, NULL);
4671                 if (ret <= 0) {
4672 #ifndef CONFIG_HAVE_IOREMAP_PROT
4673                         break;
4674 #else
4675                         /*
4676                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4677                          * we can access using slightly different code.
4678                          */
4679                         vma = find_vma(mm, addr);
4680                         if (!vma || vma->vm_start > addr)
4681                                 break;
4682                         if (vma->vm_ops && vma->vm_ops->access)
4683                                 ret = vma->vm_ops->access(vma, addr, buf,
4684                                                           len, write);
4685                         if (ret <= 0)
4686                                 break;
4687                         bytes = ret;
4688 #endif
4689                 } else {
4690                         bytes = len;
4691                         offset = addr & (PAGE_SIZE-1);
4692                         if (bytes > PAGE_SIZE-offset)
4693                                 bytes = PAGE_SIZE-offset;
4694
4695                         maddr = kmap(page);
4696                         if (write) {
4697                                 copy_to_user_page(vma, page, addr,
4698                                                   maddr + offset, buf, bytes);
4699                                 set_page_dirty_lock(page);
4700                         } else {
4701                                 copy_from_user_page(vma, page, addr,
4702                                                     buf, maddr + offset, bytes);
4703                         }
4704                         kunmap(page);
4705                         put_page(page);
4706                 }
4707                 len -= bytes;
4708                 buf += bytes;
4709                 addr += bytes;
4710         }
4711         up_read(&mm->mmap_sem);
4712
4713         return buf - old_buf;
4714 }
4715
4716 /**
4717  * access_remote_vm - access another process' address space
4718  * @mm:         the mm_struct of the target address space
4719  * @addr:       start address to access
4720  * @buf:        source or destination buffer
4721  * @len:        number of bytes to transfer
4722  * @gup_flags:  flags modifying lookup behaviour
4723  *
4724  * The caller must hold a reference on @mm.
4725  */
4726 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4727                 void *buf, int len, unsigned int gup_flags)
4728 {
4729         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4730 }
4731
4732 /*
4733  * Access another process' address space.
4734  * Source/target buffer must be kernel space,
4735  * Do not walk the page table directly, use get_user_pages
4736  */
4737 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4738                 void *buf, int len, unsigned int gup_flags)
4739 {
4740         struct mm_struct *mm;
4741         int ret;
4742
4743         mm = get_task_mm(tsk);
4744         if (!mm)
4745                 return 0;
4746
4747         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4748
4749         mmput(mm);
4750
4751         return ret;
4752 }
4753 EXPORT_SYMBOL_GPL(access_process_vm);
4754
4755 /*
4756  * Print the name of a VMA.
4757  */
4758 void print_vma_addr(char *prefix, unsigned long ip)
4759 {
4760         struct mm_struct *mm = current->mm;
4761         struct vm_area_struct *vma;
4762
4763         /*
4764          * we might be running from an atomic context so we cannot sleep
4765          */
4766         if (!down_read_trylock(&mm->mmap_sem))
4767                 return;
4768
4769         vma = find_vma(mm, ip);
4770         if (vma && vma->vm_file) {
4771                 struct file *f = vma->vm_file;
4772                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4773                 if (buf) {
4774                         char *p;
4775
4776                         p = file_path(f, buf, PAGE_SIZE);
4777                         if (IS_ERR(p))
4778                                 p = "?";
4779                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4780                                         vma->vm_start,
4781                                         vma->vm_end - vma->vm_start);
4782                         free_page((unsigned long)buf);
4783                 }
4784         }
4785         up_read(&mm->mmap_sem);
4786 }
4787
4788 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4789 void __might_fault(const char *file, int line)
4790 {
4791         /*
4792          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4793          * holding the mmap_sem, this is safe because kernel memory doesn't
4794          * get paged out, therefore we'll never actually fault, and the
4795          * below annotations will generate false positives.
4796          */
4797         if (uaccess_kernel())
4798                 return;
4799         if (pagefault_disabled())
4800                 return;
4801         __might_sleep(file, line, 0);
4802 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4803         if (current->mm)
4804                 might_lock_read(&current->mm->mmap_sem);
4805 #endif
4806 }
4807 EXPORT_SYMBOL(__might_fault);
4808 #endif
4809
4810 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4811 /*
4812  * Process all subpages of the specified huge page with the specified
4813  * operation.  The target subpage will be processed last to keep its
4814  * cache lines hot.
4815  */
4816 static inline void process_huge_page(
4817         unsigned long addr_hint, unsigned int pages_per_huge_page,
4818         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4819         void *arg)
4820 {
4821         int i, n, base, l;
4822         unsigned long addr = addr_hint &
4823                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4824
4825         /* Process target subpage last to keep its cache lines hot */
4826         might_sleep();
4827         n = (addr_hint - addr) / PAGE_SIZE;
4828         if (2 * n <= pages_per_huge_page) {
4829                 /* If target subpage in first half of huge page */
4830                 base = 0;
4831                 l = n;
4832                 /* Process subpages at the end of huge page */
4833                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4834                         cond_resched();
4835                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4836                 }
4837         } else {
4838                 /* If target subpage in second half of huge page */
4839                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4840                 l = pages_per_huge_page - n;
4841                 /* Process subpages at the begin of huge page */
4842                 for (i = 0; i < base; i++) {
4843                         cond_resched();
4844                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4845                 }
4846         }
4847         /*
4848          * Process remaining subpages in left-right-left-right pattern
4849          * towards the target subpage
4850          */
4851         for (i = 0; i < l; i++) {
4852                 int left_idx = base + i;
4853                 int right_idx = base + 2 * l - 1 - i;
4854
4855                 cond_resched();
4856                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4857                 cond_resched();
4858                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4859         }
4860 }
4861
4862 static void clear_gigantic_page(struct page *page,
4863                                 unsigned long addr,
4864                                 unsigned int pages_per_huge_page)
4865 {
4866         int i;
4867         struct page *p = page;
4868
4869         might_sleep();
4870         for (i = 0; i < pages_per_huge_page;
4871              i++, p = mem_map_next(p, page, i)) {
4872                 cond_resched();
4873                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4874         }
4875 }
4876
4877 static void clear_subpage(unsigned long addr, int idx, void *arg)
4878 {
4879         struct page *page = arg;
4880
4881         clear_user_highpage(page + idx, addr);
4882 }
4883
4884 void clear_huge_page(struct page *page,
4885                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4886 {
4887         unsigned long addr = addr_hint &
4888                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4889
4890         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4891                 clear_gigantic_page(page, addr, pages_per_huge_page);
4892                 return;
4893         }
4894
4895         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4896 }
4897
4898 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4899                                     unsigned long addr,
4900                                     struct vm_area_struct *vma,
4901                                     unsigned int pages_per_huge_page)
4902 {
4903         int i;
4904         struct page *dst_base = dst;
4905         struct page *src_base = src;
4906
4907         for (i = 0; i < pages_per_huge_page; ) {
4908                 cond_resched();
4909                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4910
4911                 i++;
4912                 dst = mem_map_next(dst, dst_base, i);
4913                 src = mem_map_next(src, src_base, i);
4914         }
4915 }
4916
4917 struct copy_subpage_arg {
4918         struct page *dst;
4919         struct page *src;
4920         struct vm_area_struct *vma;
4921 };
4922
4923 static void copy_subpage(unsigned long addr, int idx, void *arg)
4924 {
4925         struct copy_subpage_arg *copy_arg = arg;
4926
4927         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4928                            addr, copy_arg->vma);
4929 }
4930
4931 void copy_user_huge_page(struct page *dst, struct page *src,
4932                          unsigned long addr_hint, struct vm_area_struct *vma,
4933                          unsigned int pages_per_huge_page)
4934 {
4935         unsigned long addr = addr_hint &
4936                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4937         struct copy_subpage_arg arg = {
4938                 .dst = dst,
4939                 .src = src,
4940                 .vma = vma,
4941         };
4942
4943         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4944                 copy_user_gigantic_page(dst, src, addr, vma,
4945                                         pages_per_huge_page);
4946                 return;
4947         }
4948
4949         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4950 }
4951
4952 long copy_huge_page_from_user(struct page *dst_page,
4953                                 const void __user *usr_src,
4954                                 unsigned int pages_per_huge_page,
4955                                 bool allow_pagefault)
4956 {
4957         void *src = (void *)usr_src;
4958         void *page_kaddr;
4959         unsigned long i, rc = 0;
4960         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4961         struct page *subpage = dst_page;
4962
4963         for (i = 0; i < pages_per_huge_page;
4964              i++, subpage = mem_map_next(subpage, dst_page, i)) {
4965                 if (allow_pagefault)
4966                         page_kaddr = kmap(subpage);
4967                 else
4968                         page_kaddr = kmap_atomic(subpage);
4969                 rc = copy_from_user(page_kaddr,
4970                                 (const void __user *)(src + i * PAGE_SIZE),
4971                                 PAGE_SIZE);
4972                 if (allow_pagefault)
4973                         kunmap(subpage);
4974                 else
4975                         kunmap_atomic(page_kaddr);
4976
4977                 ret_val -= (PAGE_SIZE - rc);
4978                 if (rc)
4979                         break;
4980
4981                 cond_resched();
4982         }
4983         return ret_val;
4984 }
4985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4986
4987 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4988
4989 static struct kmem_cache *page_ptl_cachep;
4990
4991 void __init ptlock_cache_init(void)
4992 {
4993         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4994                         SLAB_PANIC, NULL);
4995 }
4996
4997 bool ptlock_alloc(struct page *page)
4998 {
4999         spinlock_t *ptl;
5000
5001         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5002         if (!ptl)
5003                 return false;
5004         page->ptl = ptl;
5005         return true;
5006 }
5007
5008 void ptlock_free(struct page *page)
5009 {
5010         kmem_cache_free(page_ptl_cachep, page->ptl);
5011 }
5012 #endif