GNU Linux-libre 4.19.207-gnu1
[releases.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 #ifndef arch_faults_on_old_pte
120 static inline bool arch_faults_on_old_pte(void)
121 {
122         /*
123          * Those arches which don't have hw access flag feature need to
124          * implement their own helper. By default, "true" means pagefault
125          * will be hit on old pte.
126          */
127         return true;
128 }
129 #endif
130
131 static int __init disable_randmaps(char *s)
132 {
133         randomize_va_space = 0;
134         return 1;
135 }
136 __setup("norandmaps", disable_randmaps);
137
138 unsigned long zero_pfn __read_mostly;
139 EXPORT_SYMBOL(zero_pfn);
140
141 unsigned long highest_memmap_pfn __read_mostly;
142
143 /*
144  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
145  */
146 static int __init init_zero_pfn(void)
147 {
148         zero_pfn = page_to_pfn(ZERO_PAGE(0));
149         return 0;
150 }
151 early_initcall(init_zero_pfn);
152
153
154 #if defined(SPLIT_RSS_COUNTING)
155
156 void sync_mm_rss(struct mm_struct *mm)
157 {
158         int i;
159
160         for (i = 0; i < NR_MM_COUNTERS; i++) {
161                 if (current->rss_stat.count[i]) {
162                         add_mm_counter(mm, i, current->rss_stat.count[i]);
163                         current->rss_stat.count[i] = 0;
164                 }
165         }
166         current->rss_stat.events = 0;
167 }
168
169 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
170 {
171         struct task_struct *task = current;
172
173         if (likely(task->mm == mm))
174                 task->rss_stat.count[member] += val;
175         else
176                 add_mm_counter(mm, member, val);
177 }
178 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
179 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
180
181 /* sync counter once per 64 page faults */
182 #define TASK_RSS_EVENTS_THRESH  (64)
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185         if (unlikely(task != current))
186                 return;
187         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
188                 sync_mm_rss(task->mm);
189 }
190 #else /* SPLIT_RSS_COUNTING */
191
192 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
193 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
194
195 static void check_sync_rss_stat(struct task_struct *task)
196 {
197 }
198
199 #endif /* SPLIT_RSS_COUNTING */
200
201 #ifdef HAVE_GENERIC_MMU_GATHER
202
203 static bool tlb_next_batch(struct mmu_gather *tlb)
204 {
205         struct mmu_gather_batch *batch;
206
207         batch = tlb->active;
208         if (batch->next) {
209                 tlb->active = batch->next;
210                 return true;
211         }
212
213         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
214                 return false;
215
216         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
217         if (!batch)
218                 return false;
219
220         tlb->batch_count++;
221         batch->next = NULL;
222         batch->nr   = 0;
223         batch->max  = MAX_GATHER_BATCH;
224
225         tlb->active->next = batch;
226         tlb->active = batch;
227
228         return true;
229 }
230
231 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
232                                 unsigned long start, unsigned long end)
233 {
234         tlb->mm = mm;
235
236         /* Is it from 0 to ~0? */
237         tlb->fullmm     = !(start | (end+1));
238         tlb->need_flush_all = 0;
239         tlb->local.next = NULL;
240         tlb->local.nr   = 0;
241         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
242         tlb->active     = &tlb->local;
243         tlb->batch_count = 0;
244
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246         tlb->batch = NULL;
247 #endif
248         tlb->page_size = 0;
249
250         __tlb_reset_range(tlb);
251 }
252
253 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 {
255         struct mmu_gather_batch *batch;
256
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258         tlb_table_flush(tlb);
259 #endif
260         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
261                 free_pages_and_swap_cache(batch->pages, batch->nr);
262                 batch->nr = 0;
263         }
264         tlb->active = &tlb->local;
265 }
266
267 void tlb_flush_mmu(struct mmu_gather *tlb)
268 {
269         tlb_flush_mmu_tlbonly(tlb);
270         tlb_flush_mmu_free(tlb);
271 }
272
273 /* tlb_finish_mmu
274  *      Called at the end of the shootdown operation to free up any resources
275  *      that were required.
276  */
277 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
278                 unsigned long start, unsigned long end, bool force)
279 {
280         struct mmu_gather_batch *batch, *next;
281
282         if (force)
283                 __tlb_adjust_range(tlb, start, end - start);
284
285         tlb_flush_mmu(tlb);
286
287         /* keep the page table cache within bounds */
288         check_pgt_cache();
289
290         for (batch = tlb->local.next; batch; batch = next) {
291                 next = batch->next;
292                 free_pages((unsigned long)batch, 0);
293         }
294         tlb->local.next = NULL;
295 }
296
297 /* __tlb_remove_page
298  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
299  *      handling the additional races in SMP caused by other CPUs caching valid
300  *      mappings in their TLBs. Returns the number of free page slots left.
301  *      When out of page slots we must call tlb_flush_mmu().
302  *returns true if the caller should flush.
303  */
304 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
305 {
306         struct mmu_gather_batch *batch;
307
308         VM_BUG_ON(!tlb->end);
309         VM_WARN_ON(tlb->page_size != page_size);
310
311         batch = tlb->active;
312         /*
313          * Add the page and check if we are full. If so
314          * force a flush.
315          */
316         batch->pages[batch->nr++] = page;
317         if (batch->nr == batch->max) {
318                 if (!tlb_next_batch(tlb))
319                         return true;
320                 batch = tlb->active;
321         }
322         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
323
324         return false;
325 }
326
327 #endif /* HAVE_GENERIC_MMU_GATHER */
328
329 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
330
331 /*
332  * See the comment near struct mmu_table_batch.
333  */
334
335 /*
336  * If we want tlb_remove_table() to imply TLB invalidates.
337  */
338 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
339 {
340 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
341         /*
342          * Invalidate page-table caches used by hardware walkers. Then we still
343          * need to RCU-sched wait while freeing the pages because software
344          * walkers can still be in-flight.
345          */
346         tlb_flush_mmu_tlbonly(tlb);
347 #endif
348 }
349
350 static void tlb_remove_table_smp_sync(void *arg)
351 {
352         /* Simply deliver the interrupt */
353 }
354
355 static void tlb_remove_table_one(void *table)
356 {
357         /*
358          * This isn't an RCU grace period and hence the page-tables cannot be
359          * assumed to be actually RCU-freed.
360          *
361          * It is however sufficient for software page-table walkers that rely on
362          * IRQ disabling. See the comment near struct mmu_table_batch.
363          */
364         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
365         __tlb_remove_table(table);
366 }
367
368 static void tlb_remove_table_rcu(struct rcu_head *head)
369 {
370         struct mmu_table_batch *batch;
371         int i;
372
373         batch = container_of(head, struct mmu_table_batch, rcu);
374
375         for (i = 0; i < batch->nr; i++)
376                 __tlb_remove_table(batch->tables[i]);
377
378         free_page((unsigned long)batch);
379 }
380
381 void tlb_table_flush(struct mmu_gather *tlb)
382 {
383         struct mmu_table_batch **batch = &tlb->batch;
384
385         if (*batch) {
386                 tlb_table_invalidate(tlb);
387                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
388                 *batch = NULL;
389         }
390 }
391
392 void tlb_remove_table(struct mmu_gather *tlb, void *table)
393 {
394         struct mmu_table_batch **batch = &tlb->batch;
395
396         if (*batch == NULL) {
397                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
398                 if (*batch == NULL) {
399                         tlb_table_invalidate(tlb);
400                         tlb_remove_table_one(table);
401                         return;
402                 }
403                 (*batch)->nr = 0;
404         }
405
406         (*batch)->tables[(*batch)->nr++] = table;
407         if ((*batch)->nr == MAX_TABLE_BATCH)
408                 tlb_table_flush(tlb);
409 }
410
411 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
412
413 /**
414  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
415  * @tlb: the mmu_gather structure to initialize
416  * @mm: the mm_struct of the target address space
417  * @start: start of the region that will be removed from the page-table
418  * @end: end of the region that will be removed from the page-table
419  *
420  * Called to initialize an (on-stack) mmu_gather structure for page-table
421  * tear-down from @mm. The @start and @end are set to 0 and -1
422  * respectively when @mm is without users and we're going to destroy
423  * the full address space (exit/execve).
424  */
425 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
426                         unsigned long start, unsigned long end)
427 {
428         arch_tlb_gather_mmu(tlb, mm, start, end);
429         inc_tlb_flush_pending(tlb->mm);
430 }
431
432 void tlb_finish_mmu(struct mmu_gather *tlb,
433                 unsigned long start, unsigned long end)
434 {
435         /*
436          * If there are parallel threads are doing PTE changes on same range
437          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
438          * flush by batching, a thread has stable TLB entry can fail to flush
439          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
440          * forcefully if we detect parallel PTE batching threads.
441          */
442         bool force = mm_tlb_flush_nested(tlb->mm);
443
444         arch_tlb_finish_mmu(tlb, start, end, force);
445         dec_tlb_flush_pending(tlb->mm);
446 }
447
448 /*
449  * Note: this doesn't free the actual pages themselves. That
450  * has been handled earlier when unmapping all the memory regions.
451  */
452 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
453                            unsigned long addr)
454 {
455         pgtable_t token = pmd_pgtable(*pmd);
456         pmd_clear(pmd);
457         pte_free_tlb(tlb, token, addr);
458         mm_dec_nr_ptes(tlb->mm);
459 }
460
461 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
462                                 unsigned long addr, unsigned long end,
463                                 unsigned long floor, unsigned long ceiling)
464 {
465         pmd_t *pmd;
466         unsigned long next;
467         unsigned long start;
468
469         start = addr;
470         pmd = pmd_offset(pud, addr);
471         do {
472                 next = pmd_addr_end(addr, end);
473                 if (pmd_none_or_clear_bad(pmd))
474                         continue;
475                 free_pte_range(tlb, pmd, addr);
476         } while (pmd++, addr = next, addr != end);
477
478         start &= PUD_MASK;
479         if (start < floor)
480                 return;
481         if (ceiling) {
482                 ceiling &= PUD_MASK;
483                 if (!ceiling)
484                         return;
485         }
486         if (end - 1 > ceiling - 1)
487                 return;
488
489         pmd = pmd_offset(pud, start);
490         pud_clear(pud);
491         pmd_free_tlb(tlb, pmd, start);
492         mm_dec_nr_pmds(tlb->mm);
493 }
494
495 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
496                                 unsigned long addr, unsigned long end,
497                                 unsigned long floor, unsigned long ceiling)
498 {
499         pud_t *pud;
500         unsigned long next;
501         unsigned long start;
502
503         start = addr;
504         pud = pud_offset(p4d, addr);
505         do {
506                 next = pud_addr_end(addr, end);
507                 if (pud_none_or_clear_bad(pud))
508                         continue;
509                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
510         } while (pud++, addr = next, addr != end);
511
512         start &= P4D_MASK;
513         if (start < floor)
514                 return;
515         if (ceiling) {
516                 ceiling &= P4D_MASK;
517                 if (!ceiling)
518                         return;
519         }
520         if (end - 1 > ceiling - 1)
521                 return;
522
523         pud = pud_offset(p4d, start);
524         p4d_clear(p4d);
525         pud_free_tlb(tlb, pud, start);
526         mm_dec_nr_puds(tlb->mm);
527 }
528
529 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
530                                 unsigned long addr, unsigned long end,
531                                 unsigned long floor, unsigned long ceiling)
532 {
533         p4d_t *p4d;
534         unsigned long next;
535         unsigned long start;
536
537         start = addr;
538         p4d = p4d_offset(pgd, addr);
539         do {
540                 next = p4d_addr_end(addr, end);
541                 if (p4d_none_or_clear_bad(p4d))
542                         continue;
543                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
544         } while (p4d++, addr = next, addr != end);
545
546         start &= PGDIR_MASK;
547         if (start < floor)
548                 return;
549         if (ceiling) {
550                 ceiling &= PGDIR_MASK;
551                 if (!ceiling)
552                         return;
553         }
554         if (end - 1 > ceiling - 1)
555                 return;
556
557         p4d = p4d_offset(pgd, start);
558         pgd_clear(pgd);
559         p4d_free_tlb(tlb, p4d, start);
560 }
561
562 /*
563  * This function frees user-level page tables of a process.
564  */
565 void free_pgd_range(struct mmu_gather *tlb,
566                         unsigned long addr, unsigned long end,
567                         unsigned long floor, unsigned long ceiling)
568 {
569         pgd_t *pgd;
570         unsigned long next;
571
572         /*
573          * The next few lines have given us lots of grief...
574          *
575          * Why are we testing PMD* at this top level?  Because often
576          * there will be no work to do at all, and we'd prefer not to
577          * go all the way down to the bottom just to discover that.
578          *
579          * Why all these "- 1"s?  Because 0 represents both the bottom
580          * of the address space and the top of it (using -1 for the
581          * top wouldn't help much: the masks would do the wrong thing).
582          * The rule is that addr 0 and floor 0 refer to the bottom of
583          * the address space, but end 0 and ceiling 0 refer to the top
584          * Comparisons need to use "end - 1" and "ceiling - 1" (though
585          * that end 0 case should be mythical).
586          *
587          * Wherever addr is brought up or ceiling brought down, we must
588          * be careful to reject "the opposite 0" before it confuses the
589          * subsequent tests.  But what about where end is brought down
590          * by PMD_SIZE below? no, end can't go down to 0 there.
591          *
592          * Whereas we round start (addr) and ceiling down, by different
593          * masks at different levels, in order to test whether a table
594          * now has no other vmas using it, so can be freed, we don't
595          * bother to round floor or end up - the tests don't need that.
596          */
597
598         addr &= PMD_MASK;
599         if (addr < floor) {
600                 addr += PMD_SIZE;
601                 if (!addr)
602                         return;
603         }
604         if (ceiling) {
605                 ceiling &= PMD_MASK;
606                 if (!ceiling)
607                         return;
608         }
609         if (end - 1 > ceiling - 1)
610                 end -= PMD_SIZE;
611         if (addr > end - 1)
612                 return;
613         /*
614          * We add page table cache pages with PAGE_SIZE,
615          * (see pte_free_tlb()), flush the tlb if we need
616          */
617         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
618         pgd = pgd_offset(tlb->mm, addr);
619         do {
620                 next = pgd_addr_end(addr, end);
621                 if (pgd_none_or_clear_bad(pgd))
622                         continue;
623                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
624         } while (pgd++, addr = next, addr != end);
625 }
626
627 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
628                 unsigned long floor, unsigned long ceiling)
629 {
630         while (vma) {
631                 struct vm_area_struct *next = vma->vm_next;
632                 unsigned long addr = vma->vm_start;
633
634                 /*
635                  * Hide vma from rmap and truncate_pagecache before freeing
636                  * pgtables
637                  */
638                 unlink_anon_vmas(vma);
639                 unlink_file_vma(vma);
640
641                 if (is_vm_hugetlb_page(vma)) {
642                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
643                                 floor, next ? next->vm_start : ceiling);
644                 } else {
645                         /*
646                          * Optimization: gather nearby vmas into one call down
647                          */
648                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
649                                && !is_vm_hugetlb_page(next)) {
650                                 vma = next;
651                                 next = vma->vm_next;
652                                 unlink_anon_vmas(vma);
653                                 unlink_file_vma(vma);
654                         }
655                         free_pgd_range(tlb, addr, vma->vm_end,
656                                 floor, next ? next->vm_start : ceiling);
657                 }
658                 vma = next;
659         }
660 }
661
662 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
663 {
664         spinlock_t *ptl;
665         pgtable_t new = pte_alloc_one(mm, address);
666         if (!new)
667                 return -ENOMEM;
668
669         /*
670          * Ensure all pte setup (eg. pte page lock and page clearing) are
671          * visible before the pte is made visible to other CPUs by being
672          * put into page tables.
673          *
674          * The other side of the story is the pointer chasing in the page
675          * table walking code (when walking the page table without locking;
676          * ie. most of the time). Fortunately, these data accesses consist
677          * of a chain of data-dependent loads, meaning most CPUs (alpha
678          * being the notable exception) will already guarantee loads are
679          * seen in-order. See the alpha page table accessors for the
680          * smp_read_barrier_depends() barriers in page table walking code.
681          */
682         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
683
684         ptl = pmd_lock(mm, pmd);
685         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
686                 mm_inc_nr_ptes(mm);
687                 pmd_populate(mm, pmd, new);
688                 new = NULL;
689         }
690         spin_unlock(ptl);
691         if (new)
692                 pte_free(mm, new);
693         return 0;
694 }
695
696 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
697 {
698         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
699         if (!new)
700                 return -ENOMEM;
701
702         smp_wmb(); /* See comment in __pte_alloc */
703
704         spin_lock(&init_mm.page_table_lock);
705         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
706                 pmd_populate_kernel(&init_mm, pmd, new);
707                 new = NULL;
708         }
709         spin_unlock(&init_mm.page_table_lock);
710         if (new)
711                 pte_free_kernel(&init_mm, new);
712         return 0;
713 }
714
715 static inline void init_rss_vec(int *rss)
716 {
717         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
718 }
719
720 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
721 {
722         int i;
723
724         if (current->mm == mm)
725                 sync_mm_rss(mm);
726         for (i = 0; i < NR_MM_COUNTERS; i++)
727                 if (rss[i])
728                         add_mm_counter(mm, i, rss[i]);
729 }
730
731 /*
732  * This function is called to print an error when a bad pte
733  * is found. For example, we might have a PFN-mapped pte in
734  * a region that doesn't allow it.
735  *
736  * The calling function must still handle the error.
737  */
738 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
739                           pte_t pte, struct page *page)
740 {
741         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
742         p4d_t *p4d = p4d_offset(pgd, addr);
743         pud_t *pud = pud_offset(p4d, addr);
744         pmd_t *pmd = pmd_offset(pud, addr);
745         struct address_space *mapping;
746         pgoff_t index;
747         static unsigned long resume;
748         static unsigned long nr_shown;
749         static unsigned long nr_unshown;
750
751         /*
752          * Allow a burst of 60 reports, then keep quiet for that minute;
753          * or allow a steady drip of one report per second.
754          */
755         if (nr_shown == 60) {
756                 if (time_before(jiffies, resume)) {
757                         nr_unshown++;
758                         return;
759                 }
760                 if (nr_unshown) {
761                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
762                                  nr_unshown);
763                         nr_unshown = 0;
764                 }
765                 nr_shown = 0;
766         }
767         if (nr_shown++ == 0)
768                 resume = jiffies + 60 * HZ;
769
770         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
771         index = linear_page_index(vma, addr);
772
773         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
774                  current->comm,
775                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
776         if (page)
777                 dump_page(page, "bad pte");
778         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
779                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
780         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
781                  vma->vm_file,
782                  vma->vm_ops ? vma->vm_ops->fault : NULL,
783                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
784                  mapping ? mapping->a_ops->readpage : NULL);
785         dump_stack();
786         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
787 }
788
789 /*
790  * vm_normal_page -- This function gets the "struct page" associated with a pte.
791  *
792  * "Special" mappings do not wish to be associated with a "struct page" (either
793  * it doesn't exist, or it exists but they don't want to touch it). In this
794  * case, NULL is returned here. "Normal" mappings do have a struct page.
795  *
796  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
797  * pte bit, in which case this function is trivial. Secondly, an architecture
798  * may not have a spare pte bit, which requires a more complicated scheme,
799  * described below.
800  *
801  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
802  * special mapping (even if there are underlying and valid "struct pages").
803  * COWed pages of a VM_PFNMAP are always normal.
804  *
805  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
806  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
807  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
808  * mapping will always honor the rule
809  *
810  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
811  *
812  * And for normal mappings this is false.
813  *
814  * This restricts such mappings to be a linear translation from virtual address
815  * to pfn. To get around this restriction, we allow arbitrary mappings so long
816  * as the vma is not a COW mapping; in that case, we know that all ptes are
817  * special (because none can have been COWed).
818  *
819  *
820  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
821  *
822  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
823  * page" backing, however the difference is that _all_ pages with a struct
824  * page (that is, those where pfn_valid is true) are refcounted and considered
825  * normal pages by the VM. The disadvantage is that pages are refcounted
826  * (which can be slower and simply not an option for some PFNMAP users). The
827  * advantage is that we don't have to follow the strict linearity rule of
828  * PFNMAP mappings in order to support COWable mappings.
829  *
830  */
831 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
832                              pte_t pte, bool with_public_device)
833 {
834         unsigned long pfn = pte_pfn(pte);
835
836         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
837                 if (likely(!pte_special(pte)))
838                         goto check_pfn;
839                 if (vma->vm_ops && vma->vm_ops->find_special_page)
840                         return vma->vm_ops->find_special_page(vma, addr);
841                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
842                         return NULL;
843                 if (is_zero_pfn(pfn))
844                         return NULL;
845
846                 /*
847                  * Device public pages are special pages (they are ZONE_DEVICE
848                  * pages but different from persistent memory). They behave
849                  * allmost like normal pages. The difference is that they are
850                  * not on the lru and thus should never be involve with any-
851                  * thing that involve lru manipulation (mlock, numa balancing,
852                  * ...).
853                  *
854                  * This is why we still want to return NULL for such page from
855                  * vm_normal_page() so that we do not have to special case all
856                  * call site of vm_normal_page().
857                  */
858                 if (likely(pfn <= highest_memmap_pfn)) {
859                         struct page *page = pfn_to_page(pfn);
860
861                         if (is_device_public_page(page)) {
862                                 if (with_public_device)
863                                         return page;
864                                 return NULL;
865                         }
866                 }
867
868                 if (pte_devmap(pte))
869                         return NULL;
870
871                 print_bad_pte(vma, addr, pte, NULL);
872                 return NULL;
873         }
874
875         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
876
877         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
878                 if (vma->vm_flags & VM_MIXEDMAP) {
879                         if (!pfn_valid(pfn))
880                                 return NULL;
881                         goto out;
882                 } else {
883                         unsigned long off;
884                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
885                         if (pfn == vma->vm_pgoff + off)
886                                 return NULL;
887                         if (!is_cow_mapping(vma->vm_flags))
888                                 return NULL;
889                 }
890         }
891
892         if (is_zero_pfn(pfn))
893                 return NULL;
894
895 check_pfn:
896         if (unlikely(pfn > highest_memmap_pfn)) {
897                 print_bad_pte(vma, addr, pte, NULL);
898                 return NULL;
899         }
900
901         /*
902          * NOTE! We still have PageReserved() pages in the page tables.
903          * eg. VDSO mappings can cause them to exist.
904          */
905 out:
906         return pfn_to_page(pfn);
907 }
908
909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
910 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
911                                 pmd_t pmd)
912 {
913         unsigned long pfn = pmd_pfn(pmd);
914
915         /*
916          * There is no pmd_special() but there may be special pmds, e.g.
917          * in a direct-access (dax) mapping, so let's just replicate the
918          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
919          */
920         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
921                 if (vma->vm_flags & VM_MIXEDMAP) {
922                         if (!pfn_valid(pfn))
923                                 return NULL;
924                         goto out;
925                 } else {
926                         unsigned long off;
927                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
928                         if (pfn == vma->vm_pgoff + off)
929                                 return NULL;
930                         if (!is_cow_mapping(vma->vm_flags))
931                                 return NULL;
932                 }
933         }
934
935         if (pmd_devmap(pmd))
936                 return NULL;
937         if (is_zero_pfn(pfn))
938                 return NULL;
939         if (unlikely(pfn > highest_memmap_pfn))
940                 return NULL;
941
942         /*
943          * NOTE! We still have PageReserved() pages in the page tables.
944          * eg. VDSO mappings can cause them to exist.
945          */
946 out:
947         return pfn_to_page(pfn);
948 }
949 #endif
950
951 /*
952  * copy one vm_area from one task to the other. Assumes the page tables
953  * already present in the new task to be cleared in the whole range
954  * covered by this vma.
955  */
956
957 static inline unsigned long
958 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
959                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
960                 unsigned long addr, int *rss)
961 {
962         unsigned long vm_flags = vma->vm_flags;
963         pte_t pte = *src_pte;
964         struct page *page;
965
966         /* pte contains position in swap or file, so copy. */
967         if (unlikely(!pte_present(pte))) {
968                 swp_entry_t entry = pte_to_swp_entry(pte);
969
970                 if (likely(!non_swap_entry(entry))) {
971                         if (swap_duplicate(entry) < 0)
972                                 return entry.val;
973
974                         /* make sure dst_mm is on swapoff's mmlist. */
975                         if (unlikely(list_empty(&dst_mm->mmlist))) {
976                                 spin_lock(&mmlist_lock);
977                                 if (list_empty(&dst_mm->mmlist))
978                                         list_add(&dst_mm->mmlist,
979                                                         &src_mm->mmlist);
980                                 spin_unlock(&mmlist_lock);
981                         }
982                         rss[MM_SWAPENTS]++;
983                 } else if (is_migration_entry(entry)) {
984                         page = migration_entry_to_page(entry);
985
986                         rss[mm_counter(page)]++;
987
988                         if (is_write_migration_entry(entry) &&
989                                         is_cow_mapping(vm_flags)) {
990                                 /*
991                                  * COW mappings require pages in both
992                                  * parent and child to be set to read.
993                                  */
994                                 make_migration_entry_read(&entry);
995                                 pte = swp_entry_to_pte(entry);
996                                 if (pte_swp_soft_dirty(*src_pte))
997                                         pte = pte_swp_mksoft_dirty(pte);
998                                 set_pte_at(src_mm, addr, src_pte, pte);
999                         }
1000                 } else if (is_device_private_entry(entry)) {
1001                         page = device_private_entry_to_page(entry);
1002
1003                         /*
1004                          * Update rss count even for unaddressable pages, as
1005                          * they should treated just like normal pages in this
1006                          * respect.
1007                          *
1008                          * We will likely want to have some new rss counters
1009                          * for unaddressable pages, at some point. But for now
1010                          * keep things as they are.
1011                          */
1012                         get_page(page);
1013                         rss[mm_counter(page)]++;
1014                         page_dup_rmap(page, false);
1015
1016                         /*
1017                          * We do not preserve soft-dirty information, because so
1018                          * far, checkpoint/restore is the only feature that
1019                          * requires that. And checkpoint/restore does not work
1020                          * when a device driver is involved (you cannot easily
1021                          * save and restore device driver state).
1022                          */
1023                         if (is_write_device_private_entry(entry) &&
1024                             is_cow_mapping(vm_flags)) {
1025                                 make_device_private_entry_read(&entry);
1026                                 pte = swp_entry_to_pte(entry);
1027                                 set_pte_at(src_mm, addr, src_pte, pte);
1028                         }
1029                 }
1030                 goto out_set_pte;
1031         }
1032
1033         /*
1034          * If it's a COW mapping, write protect it both
1035          * in the parent and the child
1036          */
1037         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1038                 ptep_set_wrprotect(src_mm, addr, src_pte);
1039                 pte = pte_wrprotect(pte);
1040         }
1041
1042         /*
1043          * If it's a shared mapping, mark it clean in
1044          * the child
1045          */
1046         if (vm_flags & VM_SHARED)
1047                 pte = pte_mkclean(pte);
1048         pte = pte_mkold(pte);
1049
1050         page = vm_normal_page(vma, addr, pte);
1051         if (page) {
1052                 get_page(page);
1053                 page_dup_rmap(page, false);
1054                 rss[mm_counter(page)]++;
1055         } else if (pte_devmap(pte)) {
1056                 page = pte_page(pte);
1057
1058                 /*
1059                  * Cache coherent device memory behave like regular page and
1060                  * not like persistent memory page. For more informations see
1061                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1062                  */
1063                 if (is_device_public_page(page)) {
1064                         get_page(page);
1065                         page_dup_rmap(page, false);
1066                         rss[mm_counter(page)]++;
1067                 }
1068         }
1069
1070 out_set_pte:
1071         set_pte_at(dst_mm, addr, dst_pte, pte);
1072         return 0;
1073 }
1074
1075 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1077                    unsigned long addr, unsigned long end)
1078 {
1079         pte_t *orig_src_pte, *orig_dst_pte;
1080         pte_t *src_pte, *dst_pte;
1081         spinlock_t *src_ptl, *dst_ptl;
1082         int progress = 0;
1083         int rss[NR_MM_COUNTERS];
1084         swp_entry_t entry = (swp_entry_t){0};
1085
1086 again:
1087         init_rss_vec(rss);
1088
1089         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1090         if (!dst_pte)
1091                 return -ENOMEM;
1092         src_pte = pte_offset_map(src_pmd, addr);
1093         src_ptl = pte_lockptr(src_mm, src_pmd);
1094         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1095         orig_src_pte = src_pte;
1096         orig_dst_pte = dst_pte;
1097         arch_enter_lazy_mmu_mode();
1098
1099         do {
1100                 /*
1101                  * We are holding two locks at this point - either of them
1102                  * could generate latencies in another task on another CPU.
1103                  */
1104                 if (progress >= 32) {
1105                         progress = 0;
1106                         if (need_resched() ||
1107                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1108                                 break;
1109                 }
1110                 if (pte_none(*src_pte)) {
1111                         progress++;
1112                         continue;
1113                 }
1114                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1115                                                         vma, addr, rss);
1116                 if (entry.val)
1117                         break;
1118                 progress += 8;
1119         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1120
1121         arch_leave_lazy_mmu_mode();
1122         spin_unlock(src_ptl);
1123         pte_unmap(orig_src_pte);
1124         add_mm_rss_vec(dst_mm, rss);
1125         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1126         cond_resched();
1127
1128         if (entry.val) {
1129                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1130                         return -ENOMEM;
1131                 progress = 0;
1132         }
1133         if (addr != end)
1134                 goto again;
1135         return 0;
1136 }
1137
1138 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1139                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1140                 unsigned long addr, unsigned long end)
1141 {
1142         pmd_t *src_pmd, *dst_pmd;
1143         unsigned long next;
1144
1145         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1146         if (!dst_pmd)
1147                 return -ENOMEM;
1148         src_pmd = pmd_offset(src_pud, addr);
1149         do {
1150                 next = pmd_addr_end(addr, end);
1151                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1152                         || pmd_devmap(*src_pmd)) {
1153                         int err;
1154                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1155                         err = copy_huge_pmd(dst_mm, src_mm,
1156                                             dst_pmd, src_pmd, addr, vma);
1157                         if (err == -ENOMEM)
1158                                 return -ENOMEM;
1159                         if (!err)
1160                                 continue;
1161                         /* fall through */
1162                 }
1163                 if (pmd_none_or_clear_bad(src_pmd))
1164                         continue;
1165                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1166                                                 vma, addr, next))
1167                         return -ENOMEM;
1168         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1169         return 0;
1170 }
1171
1172 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1173                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1174                 unsigned long addr, unsigned long end)
1175 {
1176         pud_t *src_pud, *dst_pud;
1177         unsigned long next;
1178
1179         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1180         if (!dst_pud)
1181                 return -ENOMEM;
1182         src_pud = pud_offset(src_p4d, addr);
1183         do {
1184                 next = pud_addr_end(addr, end);
1185                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1186                         int err;
1187
1188                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1189                         err = copy_huge_pud(dst_mm, src_mm,
1190                                             dst_pud, src_pud, addr, vma);
1191                         if (err == -ENOMEM)
1192                                 return -ENOMEM;
1193                         if (!err)
1194                                 continue;
1195                         /* fall through */
1196                 }
1197                 if (pud_none_or_clear_bad(src_pud))
1198                         continue;
1199                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1200                                                 vma, addr, next))
1201                         return -ENOMEM;
1202         } while (dst_pud++, src_pud++, addr = next, addr != end);
1203         return 0;
1204 }
1205
1206 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1207                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1208                 unsigned long addr, unsigned long end)
1209 {
1210         p4d_t *src_p4d, *dst_p4d;
1211         unsigned long next;
1212
1213         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1214         if (!dst_p4d)
1215                 return -ENOMEM;
1216         src_p4d = p4d_offset(src_pgd, addr);
1217         do {
1218                 next = p4d_addr_end(addr, end);
1219                 if (p4d_none_or_clear_bad(src_p4d))
1220                         continue;
1221                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1222                                                 vma, addr, next))
1223                         return -ENOMEM;
1224         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1225         return 0;
1226 }
1227
1228 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1229                 struct vm_area_struct *vma)
1230 {
1231         pgd_t *src_pgd, *dst_pgd;
1232         unsigned long next;
1233         unsigned long addr = vma->vm_start;
1234         unsigned long end = vma->vm_end;
1235         unsigned long mmun_start;       /* For mmu_notifiers */
1236         unsigned long mmun_end;         /* For mmu_notifiers */
1237         bool is_cow;
1238         int ret;
1239
1240         /*
1241          * Don't copy ptes where a page fault will fill them correctly.
1242          * Fork becomes much lighter when there are big shared or private
1243          * readonly mappings. The tradeoff is that copy_page_range is more
1244          * efficient than faulting.
1245          */
1246         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1247                         !vma->anon_vma)
1248                 return 0;
1249
1250         if (is_vm_hugetlb_page(vma))
1251                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1252
1253         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1254                 /*
1255                  * We do not free on error cases below as remove_vma
1256                  * gets called on error from higher level routine
1257                  */
1258                 ret = track_pfn_copy(vma);
1259                 if (ret)
1260                         return ret;
1261         }
1262
1263         /*
1264          * We need to invalidate the secondary MMU mappings only when
1265          * there could be a permission downgrade on the ptes of the
1266          * parent mm. And a permission downgrade will only happen if
1267          * is_cow_mapping() returns true.
1268          */
1269         is_cow = is_cow_mapping(vma->vm_flags);
1270         mmun_start = addr;
1271         mmun_end   = end;
1272         if (is_cow)
1273                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1274                                                     mmun_end);
1275
1276         ret = 0;
1277         dst_pgd = pgd_offset(dst_mm, addr);
1278         src_pgd = pgd_offset(src_mm, addr);
1279         do {
1280                 next = pgd_addr_end(addr, end);
1281                 if (pgd_none_or_clear_bad(src_pgd))
1282                         continue;
1283                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1284                                             vma, addr, next))) {
1285                         ret = -ENOMEM;
1286                         break;
1287                 }
1288         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1289
1290         if (is_cow)
1291                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1292         return ret;
1293 }
1294
1295 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1296                                 struct vm_area_struct *vma, pmd_t *pmd,
1297                                 unsigned long addr, unsigned long end,
1298                                 struct zap_details *details)
1299 {
1300         struct mm_struct *mm = tlb->mm;
1301         int force_flush = 0;
1302         int rss[NR_MM_COUNTERS];
1303         spinlock_t *ptl;
1304         pte_t *start_pte;
1305         pte_t *pte;
1306         swp_entry_t entry;
1307
1308         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1309 again:
1310         init_rss_vec(rss);
1311         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1312         pte = start_pte;
1313         flush_tlb_batched_pending(mm);
1314         arch_enter_lazy_mmu_mode();
1315         do {
1316                 pte_t ptent = *pte;
1317                 if (pte_none(ptent))
1318                         continue;
1319
1320                 if (pte_present(ptent)) {
1321                         struct page *page;
1322
1323                         page = _vm_normal_page(vma, addr, ptent, true);
1324                         if (unlikely(details) && page) {
1325                                 /*
1326                                  * unmap_shared_mapping_pages() wants to
1327                                  * invalidate cache without truncating:
1328                                  * unmap shared but keep private pages.
1329                                  */
1330                                 if (details->check_mapping &&
1331                                     details->check_mapping != page_rmapping(page))
1332                                         continue;
1333                         }
1334                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1335                                                         tlb->fullmm);
1336                         tlb_remove_tlb_entry(tlb, pte, addr);
1337                         if (unlikely(!page))
1338                                 continue;
1339
1340                         if (!PageAnon(page)) {
1341                                 if (pte_dirty(ptent)) {
1342                                         force_flush = 1;
1343                                         set_page_dirty(page);
1344                                 }
1345                                 if (pte_young(ptent) &&
1346                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1347                                         mark_page_accessed(page);
1348                         }
1349                         rss[mm_counter(page)]--;
1350                         page_remove_rmap(page, false);
1351                         if (unlikely(page_mapcount(page) < 0))
1352                                 print_bad_pte(vma, addr, ptent, page);
1353                         if (unlikely(__tlb_remove_page(tlb, page))) {
1354                                 force_flush = 1;
1355                                 addr += PAGE_SIZE;
1356                                 break;
1357                         }
1358                         continue;
1359                 }
1360
1361                 entry = pte_to_swp_entry(ptent);
1362                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1363                         struct page *page = device_private_entry_to_page(entry);
1364
1365                         if (unlikely(details && details->check_mapping)) {
1366                                 /*
1367                                  * unmap_shared_mapping_pages() wants to
1368                                  * invalidate cache without truncating:
1369                                  * unmap shared but keep private pages.
1370                                  */
1371                                 if (details->check_mapping !=
1372                                     page_rmapping(page))
1373                                         continue;
1374                         }
1375
1376                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1377                         rss[mm_counter(page)]--;
1378                         page_remove_rmap(page, false);
1379                         put_page(page);
1380                         continue;
1381                 }
1382
1383                 /* If details->check_mapping, we leave swap entries. */
1384                 if (unlikely(details))
1385                         continue;
1386
1387                 entry = pte_to_swp_entry(ptent);
1388                 if (!non_swap_entry(entry))
1389                         rss[MM_SWAPENTS]--;
1390                 else if (is_migration_entry(entry)) {
1391                         struct page *page;
1392
1393                         page = migration_entry_to_page(entry);
1394                         rss[mm_counter(page)]--;
1395                 }
1396                 if (unlikely(!free_swap_and_cache(entry)))
1397                         print_bad_pte(vma, addr, ptent, NULL);
1398                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1399         } while (pte++, addr += PAGE_SIZE, addr != end);
1400
1401         add_mm_rss_vec(mm, rss);
1402         arch_leave_lazy_mmu_mode();
1403
1404         /* Do the actual TLB flush before dropping ptl */
1405         if (force_flush)
1406                 tlb_flush_mmu_tlbonly(tlb);
1407         pte_unmap_unlock(start_pte, ptl);
1408
1409         /*
1410          * If we forced a TLB flush (either due to running out of
1411          * batch buffers or because we needed to flush dirty TLB
1412          * entries before releasing the ptl), free the batched
1413          * memory too. Restart if we didn't do everything.
1414          */
1415         if (force_flush) {
1416                 force_flush = 0;
1417                 tlb_flush_mmu_free(tlb);
1418                 if (addr != end)
1419                         goto again;
1420         }
1421
1422         return addr;
1423 }
1424
1425 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1426                                 struct vm_area_struct *vma, pud_t *pud,
1427                                 unsigned long addr, unsigned long end,
1428                                 struct zap_details *details)
1429 {
1430         pmd_t *pmd;
1431         unsigned long next;
1432
1433         pmd = pmd_offset(pud, addr);
1434         do {
1435                 next = pmd_addr_end(addr, end);
1436                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1437                         if (next - addr != HPAGE_PMD_SIZE)
1438                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1439                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1440                                 goto next;
1441                         /* fall through */
1442                 } else if (details && details->single_page &&
1443                            PageTransCompound(details->single_page) &&
1444                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1445                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1446                         /*
1447                          * Take and drop THP pmd lock so that we cannot return
1448                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1449                          * but not yet decremented compound_mapcount().
1450                          */
1451                         spin_unlock(ptl);
1452                 }
1453
1454                 /*
1455                  * Here there can be other concurrent MADV_DONTNEED or
1456                  * trans huge page faults running, and if the pmd is
1457                  * none or trans huge it can change under us. This is
1458                  * because MADV_DONTNEED holds the mmap_sem in read
1459                  * mode.
1460                  */
1461                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1462                         goto next;
1463                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1464 next:
1465                 cond_resched();
1466         } while (pmd++, addr = next, addr != end);
1467
1468         return addr;
1469 }
1470
1471 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1472                                 struct vm_area_struct *vma, p4d_t *p4d,
1473                                 unsigned long addr, unsigned long end,
1474                                 struct zap_details *details)
1475 {
1476         pud_t *pud;
1477         unsigned long next;
1478
1479         pud = pud_offset(p4d, addr);
1480         do {
1481                 next = pud_addr_end(addr, end);
1482                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1483                         if (next - addr != HPAGE_PUD_SIZE) {
1484                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1485                                 split_huge_pud(vma, pud, addr);
1486                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1487                                 goto next;
1488                         /* fall through */
1489                 }
1490                 if (pud_none_or_clear_bad(pud))
1491                         continue;
1492                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1493 next:
1494                 cond_resched();
1495         } while (pud++, addr = next, addr != end);
1496
1497         return addr;
1498 }
1499
1500 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1501                                 struct vm_area_struct *vma, pgd_t *pgd,
1502                                 unsigned long addr, unsigned long end,
1503                                 struct zap_details *details)
1504 {
1505         p4d_t *p4d;
1506         unsigned long next;
1507
1508         p4d = p4d_offset(pgd, addr);
1509         do {
1510                 next = p4d_addr_end(addr, end);
1511                 if (p4d_none_or_clear_bad(p4d))
1512                         continue;
1513                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1514         } while (p4d++, addr = next, addr != end);
1515
1516         return addr;
1517 }
1518
1519 void unmap_page_range(struct mmu_gather *tlb,
1520                              struct vm_area_struct *vma,
1521                              unsigned long addr, unsigned long end,
1522                              struct zap_details *details)
1523 {
1524         pgd_t *pgd;
1525         unsigned long next;
1526
1527         BUG_ON(addr >= end);
1528         tlb_start_vma(tlb, vma);
1529         pgd = pgd_offset(vma->vm_mm, addr);
1530         do {
1531                 next = pgd_addr_end(addr, end);
1532                 if (pgd_none_or_clear_bad(pgd))
1533                         continue;
1534                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1535         } while (pgd++, addr = next, addr != end);
1536         tlb_end_vma(tlb, vma);
1537 }
1538
1539
1540 static void unmap_single_vma(struct mmu_gather *tlb,
1541                 struct vm_area_struct *vma, unsigned long start_addr,
1542                 unsigned long end_addr,
1543                 struct zap_details *details)
1544 {
1545         unsigned long start = max(vma->vm_start, start_addr);
1546         unsigned long end;
1547
1548         if (start >= vma->vm_end)
1549                 return;
1550         end = min(vma->vm_end, end_addr);
1551         if (end <= vma->vm_start)
1552                 return;
1553
1554         if (vma->vm_file)
1555                 uprobe_munmap(vma, start, end);
1556
1557         if (unlikely(vma->vm_flags & VM_PFNMAP))
1558                 untrack_pfn(vma, 0, 0);
1559
1560         if (start != end) {
1561                 if (unlikely(is_vm_hugetlb_page(vma))) {
1562                         /*
1563                          * It is undesirable to test vma->vm_file as it
1564                          * should be non-null for valid hugetlb area.
1565                          * However, vm_file will be NULL in the error
1566                          * cleanup path of mmap_region. When
1567                          * hugetlbfs ->mmap method fails,
1568                          * mmap_region() nullifies vma->vm_file
1569                          * before calling this function to clean up.
1570                          * Since no pte has actually been setup, it is
1571                          * safe to do nothing in this case.
1572                          */
1573                         if (vma->vm_file) {
1574                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1575                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1576                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1577                         }
1578                 } else
1579                         unmap_page_range(tlb, vma, start, end, details);
1580         }
1581 }
1582
1583 /**
1584  * unmap_vmas - unmap a range of memory covered by a list of vma's
1585  * @tlb: address of the caller's struct mmu_gather
1586  * @vma: the starting vma
1587  * @start_addr: virtual address at which to start unmapping
1588  * @end_addr: virtual address at which to end unmapping
1589  *
1590  * Unmap all pages in the vma list.
1591  *
1592  * Only addresses between `start' and `end' will be unmapped.
1593  *
1594  * The VMA list must be sorted in ascending virtual address order.
1595  *
1596  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1597  * range after unmap_vmas() returns.  So the only responsibility here is to
1598  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1599  * drops the lock and schedules.
1600  */
1601 void unmap_vmas(struct mmu_gather *tlb,
1602                 struct vm_area_struct *vma, unsigned long start_addr,
1603                 unsigned long end_addr)
1604 {
1605         struct mm_struct *mm = vma->vm_mm;
1606
1607         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1608         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1609                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1610         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1611 }
1612
1613 /**
1614  * zap_page_range - remove user pages in a given range
1615  * @vma: vm_area_struct holding the applicable pages
1616  * @start: starting address of pages to zap
1617  * @size: number of bytes to zap
1618  *
1619  * Caller must protect the VMA list
1620  */
1621 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1622                 unsigned long size)
1623 {
1624         struct mm_struct *mm = vma->vm_mm;
1625         struct mmu_gather tlb;
1626         unsigned long end = start + size;
1627
1628         lru_add_drain();
1629         tlb_gather_mmu(&tlb, mm, start, end);
1630         update_hiwater_rss(mm);
1631         mmu_notifier_invalidate_range_start(mm, start, end);
1632         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1633                 unmap_single_vma(&tlb, vma, start, end, NULL);
1634         mmu_notifier_invalidate_range_end(mm, start, end);
1635         tlb_finish_mmu(&tlb, start, end);
1636 }
1637
1638 /**
1639  * zap_page_range_single - remove user pages in a given range
1640  * @vma: vm_area_struct holding the applicable pages
1641  * @address: starting address of pages to zap
1642  * @size: number of bytes to zap
1643  * @details: details of shared cache invalidation
1644  *
1645  * The range must fit into one VMA.
1646  */
1647 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1648                 unsigned long size, struct zap_details *details)
1649 {
1650         struct mm_struct *mm = vma->vm_mm;
1651         struct mmu_gather tlb;
1652         unsigned long end = address + size;
1653
1654         lru_add_drain();
1655         tlb_gather_mmu(&tlb, mm, address, end);
1656         update_hiwater_rss(mm);
1657         mmu_notifier_invalidate_range_start(mm, address, end);
1658         unmap_single_vma(&tlb, vma, address, end, details);
1659         mmu_notifier_invalidate_range_end(mm, address, end);
1660         tlb_finish_mmu(&tlb, address, end);
1661 }
1662
1663 /**
1664  * zap_vma_ptes - remove ptes mapping the vma
1665  * @vma: vm_area_struct holding ptes to be zapped
1666  * @address: starting address of pages to zap
1667  * @size: number of bytes to zap
1668  *
1669  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1670  *
1671  * The entire address range must be fully contained within the vma.
1672  *
1673  */
1674 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1675                 unsigned long size)
1676 {
1677         if (address < vma->vm_start || address + size > vma->vm_end ||
1678                         !(vma->vm_flags & VM_PFNMAP))
1679                 return;
1680
1681         zap_page_range_single(vma, address, size, NULL);
1682 }
1683 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1684
1685 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1686                         spinlock_t **ptl)
1687 {
1688         pgd_t *pgd;
1689         p4d_t *p4d;
1690         pud_t *pud;
1691         pmd_t *pmd;
1692
1693         pgd = pgd_offset(mm, addr);
1694         p4d = p4d_alloc(mm, pgd, addr);
1695         if (!p4d)
1696                 return NULL;
1697         pud = pud_alloc(mm, p4d, addr);
1698         if (!pud)
1699                 return NULL;
1700         pmd = pmd_alloc(mm, pud, addr);
1701         if (!pmd)
1702                 return NULL;
1703
1704         VM_BUG_ON(pmd_trans_huge(*pmd));
1705         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1706 }
1707
1708 /*
1709  * This is the old fallback for page remapping.
1710  *
1711  * For historical reasons, it only allows reserved pages. Only
1712  * old drivers should use this, and they needed to mark their
1713  * pages reserved for the old functions anyway.
1714  */
1715 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1716                         struct page *page, pgprot_t prot)
1717 {
1718         struct mm_struct *mm = vma->vm_mm;
1719         int retval;
1720         pte_t *pte;
1721         spinlock_t *ptl;
1722
1723         retval = -EINVAL;
1724         if (PageAnon(page))
1725                 goto out;
1726         retval = -ENOMEM;
1727         flush_dcache_page(page);
1728         pte = get_locked_pte(mm, addr, &ptl);
1729         if (!pte)
1730                 goto out;
1731         retval = -EBUSY;
1732         if (!pte_none(*pte))
1733                 goto out_unlock;
1734
1735         /* Ok, finally just insert the thing.. */
1736         get_page(page);
1737         inc_mm_counter_fast(mm, mm_counter_file(page));
1738         page_add_file_rmap(page, false);
1739         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1740
1741         retval = 0;
1742         pte_unmap_unlock(pte, ptl);
1743         return retval;
1744 out_unlock:
1745         pte_unmap_unlock(pte, ptl);
1746 out:
1747         return retval;
1748 }
1749
1750 /**
1751  * vm_insert_page - insert single page into user vma
1752  * @vma: user vma to map to
1753  * @addr: target user address of this page
1754  * @page: source kernel page
1755  *
1756  * This allows drivers to insert individual pages they've allocated
1757  * into a user vma.
1758  *
1759  * The page has to be a nice clean _individual_ kernel allocation.
1760  * If you allocate a compound page, you need to have marked it as
1761  * such (__GFP_COMP), or manually just split the page up yourself
1762  * (see split_page()).
1763  *
1764  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1765  * took an arbitrary page protection parameter. This doesn't allow
1766  * that. Your vma protection will have to be set up correctly, which
1767  * means that if you want a shared writable mapping, you'd better
1768  * ask for a shared writable mapping!
1769  *
1770  * The page does not need to be reserved.
1771  *
1772  * Usually this function is called from f_op->mmap() handler
1773  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1774  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1775  * function from other places, for example from page-fault handler.
1776  */
1777 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1778                         struct page *page)
1779 {
1780         if (addr < vma->vm_start || addr >= vma->vm_end)
1781                 return -EFAULT;
1782         if (!page_count(page))
1783                 return -EINVAL;
1784         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1785                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1786                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1787                 vma->vm_flags |= VM_MIXEDMAP;
1788         }
1789         return insert_page(vma, addr, page, vma->vm_page_prot);
1790 }
1791 EXPORT_SYMBOL(vm_insert_page);
1792
1793 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1794                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1795 {
1796         struct mm_struct *mm = vma->vm_mm;
1797         int retval;
1798         pte_t *pte, entry;
1799         spinlock_t *ptl;
1800
1801         retval = -ENOMEM;
1802         pte = get_locked_pte(mm, addr, &ptl);
1803         if (!pte)
1804                 goto out;
1805         retval = -EBUSY;
1806         if (!pte_none(*pte)) {
1807                 if (mkwrite) {
1808                         /*
1809                          * For read faults on private mappings the PFN passed
1810                          * in may not match the PFN we have mapped if the
1811                          * mapped PFN is a writeable COW page.  In the mkwrite
1812                          * case we are creating a writable PTE for a shared
1813                          * mapping and we expect the PFNs to match. If they
1814                          * don't match, we are likely racing with block
1815                          * allocation and mapping invalidation so just skip the
1816                          * update.
1817                          */
1818                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1819                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1820                                 goto out_unlock;
1821                         }
1822                         entry = pte_mkyoung(*pte);
1823                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1824                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1825                                 update_mmu_cache(vma, addr, pte);
1826                 }
1827                 goto out_unlock;
1828         }
1829
1830         /* Ok, finally just insert the thing.. */
1831         if (pfn_t_devmap(pfn))
1832                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1833         else
1834                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1835
1836         if (mkwrite) {
1837                 entry = pte_mkyoung(entry);
1838                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1839         }
1840
1841         set_pte_at(mm, addr, pte, entry);
1842         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1843
1844         retval = 0;
1845 out_unlock:
1846         pte_unmap_unlock(pte, ptl);
1847 out:
1848         return retval;
1849 }
1850
1851 /**
1852  * vm_insert_pfn - insert single pfn into user vma
1853  * @vma: user vma to map to
1854  * @addr: target user address of this page
1855  * @pfn: source kernel pfn
1856  *
1857  * Similar to vm_insert_page, this allows drivers to insert individual pages
1858  * they've allocated into a user vma. Same comments apply.
1859  *
1860  * This function should only be called from a vm_ops->fault handler, and
1861  * in that case the handler should return NULL.
1862  *
1863  * vma cannot be a COW mapping.
1864  *
1865  * As this is called only for pages that do not currently exist, we
1866  * do not need to flush old virtual caches or the TLB.
1867  */
1868 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1869                         unsigned long pfn)
1870 {
1871         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1872 }
1873 EXPORT_SYMBOL(vm_insert_pfn);
1874
1875 /**
1876  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1877  * @vma: user vma to map to
1878  * @addr: target user address of this page
1879  * @pfn: source kernel pfn
1880  * @pgprot: pgprot flags for the inserted page
1881  *
1882  * This is exactly like vm_insert_pfn, except that it allows drivers to
1883  * to override pgprot on a per-page basis.
1884  *
1885  * This only makes sense for IO mappings, and it makes no sense for
1886  * cow mappings.  In general, using multiple vmas is preferable;
1887  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1888  * impractical.
1889  */
1890 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1891                         unsigned long pfn, pgprot_t pgprot)
1892 {
1893         int ret;
1894         /*
1895          * Technically, architectures with pte_special can avoid all these
1896          * restrictions (same for remap_pfn_range).  However we would like
1897          * consistency in testing and feature parity among all, so we should
1898          * try to keep these invariants in place for everybody.
1899          */
1900         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1901         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1902                                                 (VM_PFNMAP|VM_MIXEDMAP));
1903         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1904         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1905
1906         if (addr < vma->vm_start || addr >= vma->vm_end)
1907                 return -EFAULT;
1908
1909         if (!pfn_modify_allowed(pfn, pgprot))
1910                 return -EACCES;
1911
1912         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1913
1914         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1915                         false);
1916
1917         return ret;
1918 }
1919 EXPORT_SYMBOL(vm_insert_pfn_prot);
1920
1921 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1922 {
1923         /* these checks mirror the abort conditions in vm_normal_page */
1924         if (vma->vm_flags & VM_MIXEDMAP)
1925                 return true;
1926         if (pfn_t_devmap(pfn))
1927                 return true;
1928         if (pfn_t_special(pfn))
1929                 return true;
1930         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1931                 return true;
1932         return false;
1933 }
1934
1935 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1936                         pfn_t pfn, bool mkwrite)
1937 {
1938         pgprot_t pgprot = vma->vm_page_prot;
1939
1940         BUG_ON(!vm_mixed_ok(vma, pfn));
1941
1942         if (addr < vma->vm_start || addr >= vma->vm_end)
1943                 return -EFAULT;
1944
1945         track_pfn_insert(vma, &pgprot, pfn);
1946
1947         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1948                 return -EACCES;
1949
1950         /*
1951          * If we don't have pte special, then we have to use the pfn_valid()
1952          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1953          * refcount the page if pfn_valid is true (hence insert_page rather
1954          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1955          * without pte special, it would there be refcounted as a normal page.
1956          */
1957         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1958             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1959                 struct page *page;
1960
1961                 /*
1962                  * At this point we are committed to insert_page()
1963                  * regardless of whether the caller specified flags that
1964                  * result in pfn_t_has_page() == false.
1965                  */
1966                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1967                 return insert_page(vma, addr, page, pgprot);
1968         }
1969         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1970 }
1971
1972 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1973                         pfn_t pfn)
1974 {
1975         return __vm_insert_mixed(vma, addr, pfn, false);
1976
1977 }
1978 EXPORT_SYMBOL(vm_insert_mixed);
1979
1980 /*
1981  *  If the insertion of PTE failed because someone else already added a
1982  *  different entry in the mean time, we treat that as success as we assume
1983  *  the same entry was actually inserted.
1984  */
1985
1986 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1987                 unsigned long addr, pfn_t pfn)
1988 {
1989         int err;
1990
1991         err =  __vm_insert_mixed(vma, addr, pfn, true);
1992         if (err == -ENOMEM)
1993                 return VM_FAULT_OOM;
1994         if (err < 0 && err != -EBUSY)
1995                 return VM_FAULT_SIGBUS;
1996         return VM_FAULT_NOPAGE;
1997 }
1998 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1999
2000 /*
2001  * maps a range of physical memory into the requested pages. the old
2002  * mappings are removed. any references to nonexistent pages results
2003  * in null mappings (currently treated as "copy-on-access")
2004  */
2005 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2006                         unsigned long addr, unsigned long end,
2007                         unsigned long pfn, pgprot_t prot)
2008 {
2009         pte_t *pte, *mapped_pte;
2010         spinlock_t *ptl;
2011         int err = 0;
2012
2013         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2014         if (!pte)
2015                 return -ENOMEM;
2016         arch_enter_lazy_mmu_mode();
2017         do {
2018                 BUG_ON(!pte_none(*pte));
2019                 if (!pfn_modify_allowed(pfn, prot)) {
2020                         err = -EACCES;
2021                         break;
2022                 }
2023                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2024                 pfn++;
2025         } while (pte++, addr += PAGE_SIZE, addr != end);
2026         arch_leave_lazy_mmu_mode();
2027         pte_unmap_unlock(mapped_pte, ptl);
2028         return err;
2029 }
2030
2031 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2032                         unsigned long addr, unsigned long end,
2033                         unsigned long pfn, pgprot_t prot)
2034 {
2035         pmd_t *pmd;
2036         unsigned long next;
2037         int err;
2038
2039         pfn -= addr >> PAGE_SHIFT;
2040         pmd = pmd_alloc(mm, pud, addr);
2041         if (!pmd)
2042                 return -ENOMEM;
2043         VM_BUG_ON(pmd_trans_huge(*pmd));
2044         do {
2045                 next = pmd_addr_end(addr, end);
2046                 err = remap_pte_range(mm, pmd, addr, next,
2047                                 pfn + (addr >> PAGE_SHIFT), prot);
2048                 if (err)
2049                         return err;
2050         } while (pmd++, addr = next, addr != end);
2051         return 0;
2052 }
2053
2054 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2055                         unsigned long addr, unsigned long end,
2056                         unsigned long pfn, pgprot_t prot)
2057 {
2058         pud_t *pud;
2059         unsigned long next;
2060         int err;
2061
2062         pfn -= addr >> PAGE_SHIFT;
2063         pud = pud_alloc(mm, p4d, addr);
2064         if (!pud)
2065                 return -ENOMEM;
2066         do {
2067                 next = pud_addr_end(addr, end);
2068                 err = remap_pmd_range(mm, pud, addr, next,
2069                                 pfn + (addr >> PAGE_SHIFT), prot);
2070                 if (err)
2071                         return err;
2072         } while (pud++, addr = next, addr != end);
2073         return 0;
2074 }
2075
2076 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2077                         unsigned long addr, unsigned long end,
2078                         unsigned long pfn, pgprot_t prot)
2079 {
2080         p4d_t *p4d;
2081         unsigned long next;
2082         int err;
2083
2084         pfn -= addr >> PAGE_SHIFT;
2085         p4d = p4d_alloc(mm, pgd, addr);
2086         if (!p4d)
2087                 return -ENOMEM;
2088         do {
2089                 next = p4d_addr_end(addr, end);
2090                 err = remap_pud_range(mm, p4d, addr, next,
2091                                 pfn + (addr >> PAGE_SHIFT), prot);
2092                 if (err)
2093                         return err;
2094         } while (p4d++, addr = next, addr != end);
2095         return 0;
2096 }
2097
2098 /**
2099  * remap_pfn_range - remap kernel memory to userspace
2100  * @vma: user vma to map to
2101  * @addr: target user address to start at
2102  * @pfn: physical address of kernel memory
2103  * @size: size of map area
2104  * @prot: page protection flags for this mapping
2105  *
2106  *  Note: this is only safe if the mm semaphore is held when called.
2107  */
2108 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2109                     unsigned long pfn, unsigned long size, pgprot_t prot)
2110 {
2111         pgd_t *pgd;
2112         unsigned long next;
2113         unsigned long end = addr + PAGE_ALIGN(size);
2114         struct mm_struct *mm = vma->vm_mm;
2115         unsigned long remap_pfn = pfn;
2116         int err;
2117
2118         /*
2119          * Physically remapped pages are special. Tell the
2120          * rest of the world about it:
2121          *   VM_IO tells people not to look at these pages
2122          *      (accesses can have side effects).
2123          *   VM_PFNMAP tells the core MM that the base pages are just
2124          *      raw PFN mappings, and do not have a "struct page" associated
2125          *      with them.
2126          *   VM_DONTEXPAND
2127          *      Disable vma merging and expanding with mremap().
2128          *   VM_DONTDUMP
2129          *      Omit vma from core dump, even when VM_IO turned off.
2130          *
2131          * There's a horrible special case to handle copy-on-write
2132          * behaviour that some programs depend on. We mark the "original"
2133          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2134          * See vm_normal_page() for details.
2135          */
2136         if (is_cow_mapping(vma->vm_flags)) {
2137                 if (addr != vma->vm_start || end != vma->vm_end)
2138                         return -EINVAL;
2139                 vma->vm_pgoff = pfn;
2140         }
2141
2142         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2143         if (err)
2144                 return -EINVAL;
2145
2146         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2147
2148         BUG_ON(addr >= end);
2149         pfn -= addr >> PAGE_SHIFT;
2150         pgd = pgd_offset(mm, addr);
2151         flush_cache_range(vma, addr, end);
2152         do {
2153                 next = pgd_addr_end(addr, end);
2154                 err = remap_p4d_range(mm, pgd, addr, next,
2155                                 pfn + (addr >> PAGE_SHIFT), prot);
2156                 if (err)
2157                         break;
2158         } while (pgd++, addr = next, addr != end);
2159
2160         if (err)
2161                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2162
2163         return err;
2164 }
2165 EXPORT_SYMBOL(remap_pfn_range);
2166
2167 /**
2168  * vm_iomap_memory - remap memory to userspace
2169  * @vma: user vma to map to
2170  * @start: start of area
2171  * @len: size of area
2172  *
2173  * This is a simplified io_remap_pfn_range() for common driver use. The
2174  * driver just needs to give us the physical memory range to be mapped,
2175  * we'll figure out the rest from the vma information.
2176  *
2177  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2178  * whatever write-combining details or similar.
2179  */
2180 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2181 {
2182         unsigned long vm_len, pfn, pages;
2183
2184         /* Check that the physical memory area passed in looks valid */
2185         if (start + len < start)
2186                 return -EINVAL;
2187         /*
2188          * You *really* shouldn't map things that aren't page-aligned,
2189          * but we've historically allowed it because IO memory might
2190          * just have smaller alignment.
2191          */
2192         len += start & ~PAGE_MASK;
2193         pfn = start >> PAGE_SHIFT;
2194         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2195         if (pfn + pages < pfn)
2196                 return -EINVAL;
2197
2198         /* We start the mapping 'vm_pgoff' pages into the area */
2199         if (vma->vm_pgoff > pages)
2200                 return -EINVAL;
2201         pfn += vma->vm_pgoff;
2202         pages -= vma->vm_pgoff;
2203
2204         /* Can we fit all of the mapping? */
2205         vm_len = vma->vm_end - vma->vm_start;
2206         if (vm_len >> PAGE_SHIFT > pages)
2207                 return -EINVAL;
2208
2209         /* Ok, let it rip */
2210         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2211 }
2212 EXPORT_SYMBOL(vm_iomap_memory);
2213
2214 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2215                                      unsigned long addr, unsigned long end,
2216                                      pte_fn_t fn, void *data)
2217 {
2218         pte_t *pte;
2219         int err;
2220         pgtable_t token;
2221         spinlock_t *uninitialized_var(ptl);
2222
2223         pte = (mm == &init_mm) ?
2224                 pte_alloc_kernel(pmd, addr) :
2225                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2226         if (!pte)
2227                 return -ENOMEM;
2228
2229         BUG_ON(pmd_huge(*pmd));
2230
2231         arch_enter_lazy_mmu_mode();
2232
2233         token = pmd_pgtable(*pmd);
2234
2235         do {
2236                 err = fn(pte++, token, addr, data);
2237                 if (err)
2238                         break;
2239         } while (addr += PAGE_SIZE, addr != end);
2240
2241         arch_leave_lazy_mmu_mode();
2242
2243         if (mm != &init_mm)
2244                 pte_unmap_unlock(pte-1, ptl);
2245         return err;
2246 }
2247
2248 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2249                                      unsigned long addr, unsigned long end,
2250                                      pte_fn_t fn, void *data)
2251 {
2252         pmd_t *pmd;
2253         unsigned long next;
2254         int err;
2255
2256         BUG_ON(pud_huge(*pud));
2257
2258         pmd = pmd_alloc(mm, pud, addr);
2259         if (!pmd)
2260                 return -ENOMEM;
2261         do {
2262                 next = pmd_addr_end(addr, end);
2263                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2264                 if (err)
2265                         break;
2266         } while (pmd++, addr = next, addr != end);
2267         return err;
2268 }
2269
2270 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2271                                      unsigned long addr, unsigned long end,
2272                                      pte_fn_t fn, void *data)
2273 {
2274         pud_t *pud;
2275         unsigned long next;
2276         int err;
2277
2278         pud = pud_alloc(mm, p4d, addr);
2279         if (!pud)
2280                 return -ENOMEM;
2281         do {
2282                 next = pud_addr_end(addr, end);
2283                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2284                 if (err)
2285                         break;
2286         } while (pud++, addr = next, addr != end);
2287         return err;
2288 }
2289
2290 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2291                                      unsigned long addr, unsigned long end,
2292                                      pte_fn_t fn, void *data)
2293 {
2294         p4d_t *p4d;
2295         unsigned long next;
2296         int err;
2297
2298         p4d = p4d_alloc(mm, pgd, addr);
2299         if (!p4d)
2300                 return -ENOMEM;
2301         do {
2302                 next = p4d_addr_end(addr, end);
2303                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2304                 if (err)
2305                         break;
2306         } while (p4d++, addr = next, addr != end);
2307         return err;
2308 }
2309
2310 /*
2311  * Scan a region of virtual memory, filling in page tables as necessary
2312  * and calling a provided function on each leaf page table.
2313  */
2314 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2315                         unsigned long size, pte_fn_t fn, void *data)
2316 {
2317         pgd_t *pgd;
2318         unsigned long next;
2319         unsigned long end = addr + size;
2320         int err;
2321
2322         if (WARN_ON(addr >= end))
2323                 return -EINVAL;
2324
2325         pgd = pgd_offset(mm, addr);
2326         do {
2327                 next = pgd_addr_end(addr, end);
2328                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2329                 if (err)
2330                         break;
2331         } while (pgd++, addr = next, addr != end);
2332
2333         return err;
2334 }
2335 EXPORT_SYMBOL_GPL(apply_to_page_range);
2336
2337 /*
2338  * handle_pte_fault chooses page fault handler according to an entry which was
2339  * read non-atomically.  Before making any commitment, on those architectures
2340  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2341  * parts, do_swap_page must check under lock before unmapping the pte and
2342  * proceeding (but do_wp_page is only called after already making such a check;
2343  * and do_anonymous_page can safely check later on).
2344  */
2345 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2346                                 pte_t *page_table, pte_t orig_pte)
2347 {
2348         int same = 1;
2349 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2350         if (sizeof(pte_t) > sizeof(unsigned long)) {
2351                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2352                 spin_lock(ptl);
2353                 same = pte_same(*page_table, orig_pte);
2354                 spin_unlock(ptl);
2355         }
2356 #endif
2357         pte_unmap(page_table);
2358         return same;
2359 }
2360
2361 static inline bool cow_user_page(struct page *dst, struct page *src,
2362                                  struct vm_fault *vmf)
2363 {
2364         bool ret;
2365         void *kaddr;
2366         void __user *uaddr;
2367         bool locked = false;
2368         struct vm_area_struct *vma = vmf->vma;
2369         struct mm_struct *mm = vma->vm_mm;
2370         unsigned long addr = vmf->address;
2371
2372         debug_dma_assert_idle(src);
2373
2374         if (likely(src)) {
2375                 copy_user_highpage(dst, src, addr, vma);
2376                 return true;
2377         }
2378
2379         /*
2380          * If the source page was a PFN mapping, we don't have
2381          * a "struct page" for it. We do a best-effort copy by
2382          * just copying from the original user address. If that
2383          * fails, we just zero-fill it. Live with it.
2384          */
2385         kaddr = kmap_atomic(dst);
2386         uaddr = (void __user *)(addr & PAGE_MASK);
2387
2388         /*
2389          * On architectures with software "accessed" bits, we would
2390          * take a double page fault, so mark it accessed here.
2391          */
2392         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2393                 pte_t entry;
2394
2395                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2396                 locked = true;
2397                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2398                         /*
2399                          * Other thread has already handled the fault
2400                          * and we don't need to do anything. If it's
2401                          * not the case, the fault will be triggered
2402                          * again on the same address.
2403                          */
2404                         ret = false;
2405                         goto pte_unlock;
2406                 }
2407
2408                 entry = pte_mkyoung(vmf->orig_pte);
2409                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2410                         update_mmu_cache(vma, addr, vmf->pte);
2411         }
2412
2413         /*
2414          * This really shouldn't fail, because the page is there
2415          * in the page tables. But it might just be unreadable,
2416          * in which case we just give up and fill the result with
2417          * zeroes.
2418          */
2419         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2420                 if (locked)
2421                         goto warn;
2422
2423                 /* Re-validate under PTL if the page is still mapped */
2424                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2425                 locked = true;
2426                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2427                         /* The PTE changed under us. Retry page fault. */
2428                         ret = false;
2429                         goto pte_unlock;
2430                 }
2431
2432                 /*
2433                  * The same page can be mapped back since last copy attampt.
2434                  * Try to copy again under PTL.
2435                  */
2436                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2437                         /*
2438                          * Give a warn in case there can be some obscure
2439                          * use-case
2440                          */
2441 warn:
2442                         WARN_ON_ONCE(1);
2443                         clear_page(kaddr);
2444                 }
2445         }
2446
2447         ret = true;
2448
2449 pte_unlock:
2450         if (locked)
2451                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2452         kunmap_atomic(kaddr);
2453         flush_dcache_page(dst);
2454
2455         return ret;
2456 }
2457
2458 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2459 {
2460         struct file *vm_file = vma->vm_file;
2461
2462         if (vm_file)
2463                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2464
2465         /*
2466          * Special mappings (e.g. VDSO) do not have any file so fake
2467          * a default GFP_KERNEL for them.
2468          */
2469         return GFP_KERNEL;
2470 }
2471
2472 /*
2473  * Notify the address space that the page is about to become writable so that
2474  * it can prohibit this or wait for the page to get into an appropriate state.
2475  *
2476  * We do this without the lock held, so that it can sleep if it needs to.
2477  */
2478 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2479 {
2480         vm_fault_t ret;
2481         struct page *page = vmf->page;
2482         unsigned int old_flags = vmf->flags;
2483
2484         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2485
2486         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2487         /* Restore original flags so that caller is not surprised */
2488         vmf->flags = old_flags;
2489         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2490                 return ret;
2491         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2492                 lock_page(page);
2493                 if (!page->mapping) {
2494                         unlock_page(page);
2495                         return 0; /* retry */
2496                 }
2497                 ret |= VM_FAULT_LOCKED;
2498         } else
2499                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2500         return ret;
2501 }
2502
2503 /*
2504  * Handle dirtying of a page in shared file mapping on a write fault.
2505  *
2506  * The function expects the page to be locked and unlocks it.
2507  */
2508 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2509                                     struct page *page)
2510 {
2511         struct address_space *mapping;
2512         bool dirtied;
2513         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2514
2515         dirtied = set_page_dirty(page);
2516         VM_BUG_ON_PAGE(PageAnon(page), page);
2517         /*
2518          * Take a local copy of the address_space - page.mapping may be zeroed
2519          * by truncate after unlock_page().   The address_space itself remains
2520          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2521          * release semantics to prevent the compiler from undoing this copying.
2522          */
2523         mapping = page_rmapping(page);
2524         unlock_page(page);
2525
2526         if ((dirtied || page_mkwrite) && mapping) {
2527                 /*
2528                  * Some device drivers do not set page.mapping
2529                  * but still dirty their pages
2530                  */
2531                 balance_dirty_pages_ratelimited(mapping);
2532         }
2533
2534         if (!page_mkwrite)
2535                 file_update_time(vma->vm_file);
2536 }
2537
2538 /*
2539  * Handle write page faults for pages that can be reused in the current vma
2540  *
2541  * This can happen either due to the mapping being with the VM_SHARED flag,
2542  * or due to us being the last reference standing to the page. In either
2543  * case, all we need to do here is to mark the page as writable and update
2544  * any related book-keeping.
2545  */
2546 static inline void wp_page_reuse(struct vm_fault *vmf)
2547         __releases(vmf->ptl)
2548 {
2549         struct vm_area_struct *vma = vmf->vma;
2550         struct page *page = vmf->page;
2551         pte_t entry;
2552         /*
2553          * Clear the pages cpupid information as the existing
2554          * information potentially belongs to a now completely
2555          * unrelated process.
2556          */
2557         if (page)
2558                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2559
2560         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2561         entry = pte_mkyoung(vmf->orig_pte);
2562         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2563         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2564                 update_mmu_cache(vma, vmf->address, vmf->pte);
2565         pte_unmap_unlock(vmf->pte, vmf->ptl);
2566 }
2567
2568 /*
2569  * Handle the case of a page which we actually need to copy to a new page.
2570  *
2571  * Called with mmap_sem locked and the old page referenced, but
2572  * without the ptl held.
2573  *
2574  * High level logic flow:
2575  *
2576  * - Allocate a page, copy the content of the old page to the new one.
2577  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2578  * - Take the PTL. If the pte changed, bail out and release the allocated page
2579  * - If the pte is still the way we remember it, update the page table and all
2580  *   relevant references. This includes dropping the reference the page-table
2581  *   held to the old page, as well as updating the rmap.
2582  * - In any case, unlock the PTL and drop the reference we took to the old page.
2583  */
2584 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2585 {
2586         struct vm_area_struct *vma = vmf->vma;
2587         struct mm_struct *mm = vma->vm_mm;
2588         struct page *old_page = vmf->page;
2589         struct page *new_page = NULL;
2590         pte_t entry;
2591         int page_copied = 0;
2592         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2593         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2594         struct mem_cgroup *memcg;
2595
2596         if (unlikely(anon_vma_prepare(vma)))
2597                 goto oom;
2598
2599         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2600                 new_page = alloc_zeroed_user_highpage_movable(vma,
2601                                                               vmf->address);
2602                 if (!new_page)
2603                         goto oom;
2604         } else {
2605                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2606                                 vmf->address);
2607                 if (!new_page)
2608                         goto oom;
2609
2610                 if (!cow_user_page(new_page, old_page, vmf)) {
2611                         /*
2612                          * COW failed, if the fault was solved by other,
2613                          * it's fine. If not, userspace would re-fault on
2614                          * the same address and we will handle the fault
2615                          * from the second attempt.
2616                          */
2617                         put_page(new_page);
2618                         if (old_page)
2619                                 put_page(old_page);
2620                         return 0;
2621                 }
2622         }
2623
2624         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2625                 goto oom_free_new;
2626
2627         __SetPageUptodate(new_page);
2628
2629         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2630
2631         /*
2632          * Re-check the pte - we dropped the lock
2633          */
2634         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2635         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2636                 if (old_page) {
2637                         if (!PageAnon(old_page)) {
2638                                 dec_mm_counter_fast(mm,
2639                                                 mm_counter_file(old_page));
2640                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2641                         }
2642                 } else {
2643                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2644                 }
2645                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2646                 entry = mk_pte(new_page, vma->vm_page_prot);
2647                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2648                 /*
2649                  * Clear the pte entry and flush it first, before updating the
2650                  * pte with the new entry. This will avoid a race condition
2651                  * seen in the presence of one thread doing SMC and another
2652                  * thread doing COW.
2653                  */
2654                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2655                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2656                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2657                 lru_cache_add_active_or_unevictable(new_page, vma);
2658                 /*
2659                  * We call the notify macro here because, when using secondary
2660                  * mmu page tables (such as kvm shadow page tables), we want the
2661                  * new page to be mapped directly into the secondary page table.
2662                  */
2663                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2664                 update_mmu_cache(vma, vmf->address, vmf->pte);
2665                 if (old_page) {
2666                         /*
2667                          * Only after switching the pte to the new page may
2668                          * we remove the mapcount here. Otherwise another
2669                          * process may come and find the rmap count decremented
2670                          * before the pte is switched to the new page, and
2671                          * "reuse" the old page writing into it while our pte
2672                          * here still points into it and can be read by other
2673                          * threads.
2674                          *
2675                          * The critical issue is to order this
2676                          * page_remove_rmap with the ptp_clear_flush above.
2677                          * Those stores are ordered by (if nothing else,)
2678                          * the barrier present in the atomic_add_negative
2679                          * in page_remove_rmap.
2680                          *
2681                          * Then the TLB flush in ptep_clear_flush ensures that
2682                          * no process can access the old page before the
2683                          * decremented mapcount is visible. And the old page
2684                          * cannot be reused until after the decremented
2685                          * mapcount is visible. So transitively, TLBs to
2686                          * old page will be flushed before it can be reused.
2687                          */
2688                         page_remove_rmap(old_page, false);
2689                 }
2690
2691                 /* Free the old page.. */
2692                 new_page = old_page;
2693                 page_copied = 1;
2694         } else {
2695                 mem_cgroup_cancel_charge(new_page, memcg, false);
2696         }
2697
2698         if (new_page)
2699                 put_page(new_page);
2700
2701         pte_unmap_unlock(vmf->pte, vmf->ptl);
2702         /*
2703          * No need to double call mmu_notifier->invalidate_range() callback as
2704          * the above ptep_clear_flush_notify() did already call it.
2705          */
2706         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2707         if (old_page) {
2708                 /*
2709                  * Don't let another task, with possibly unlocked vma,
2710                  * keep the mlocked page.
2711                  */
2712                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2713                         lock_page(old_page);    /* LRU manipulation */
2714                         if (PageMlocked(old_page))
2715                                 munlock_vma_page(old_page);
2716                         unlock_page(old_page);
2717                 }
2718                 put_page(old_page);
2719         }
2720         return page_copied ? VM_FAULT_WRITE : 0;
2721 oom_free_new:
2722         put_page(new_page);
2723 oom:
2724         if (old_page)
2725                 put_page(old_page);
2726         return VM_FAULT_OOM;
2727 }
2728
2729 /**
2730  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2731  *                        writeable once the page is prepared
2732  *
2733  * @vmf: structure describing the fault
2734  *
2735  * This function handles all that is needed to finish a write page fault in a
2736  * shared mapping due to PTE being read-only once the mapped page is prepared.
2737  * It handles locking of PTE and modifying it. The function returns
2738  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2739  * lock.
2740  *
2741  * The function expects the page to be locked or other protection against
2742  * concurrent faults / writeback (such as DAX radix tree locks).
2743  */
2744 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2745 {
2746         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2747         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2748                                        &vmf->ptl);
2749         /*
2750          * We might have raced with another page fault while we released the
2751          * pte_offset_map_lock.
2752          */
2753         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2754                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2755                 return VM_FAULT_NOPAGE;
2756         }
2757         wp_page_reuse(vmf);
2758         return 0;
2759 }
2760
2761 /*
2762  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2763  * mapping
2764  */
2765 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2766 {
2767         struct vm_area_struct *vma = vmf->vma;
2768
2769         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2770                 vm_fault_t ret;
2771
2772                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2773                 vmf->flags |= FAULT_FLAG_MKWRITE;
2774                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2775                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2776                         return ret;
2777                 return finish_mkwrite_fault(vmf);
2778         }
2779         wp_page_reuse(vmf);
2780         return VM_FAULT_WRITE;
2781 }
2782
2783 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2784         __releases(vmf->ptl)
2785 {
2786         struct vm_area_struct *vma = vmf->vma;
2787
2788         get_page(vmf->page);
2789
2790         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2791                 vm_fault_t tmp;
2792
2793                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2794                 tmp = do_page_mkwrite(vmf);
2795                 if (unlikely(!tmp || (tmp &
2796                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2797                         put_page(vmf->page);
2798                         return tmp;
2799                 }
2800                 tmp = finish_mkwrite_fault(vmf);
2801                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2802                         unlock_page(vmf->page);
2803                         put_page(vmf->page);
2804                         return tmp;
2805                 }
2806         } else {
2807                 wp_page_reuse(vmf);
2808                 lock_page(vmf->page);
2809         }
2810         fault_dirty_shared_page(vma, vmf->page);
2811         put_page(vmf->page);
2812
2813         return VM_FAULT_WRITE;
2814 }
2815
2816 /*
2817  * This routine handles present pages, when users try to write
2818  * to a shared page. It is done by copying the page to a new address
2819  * and decrementing the shared-page counter for the old page.
2820  *
2821  * Note that this routine assumes that the protection checks have been
2822  * done by the caller (the low-level page fault routine in most cases).
2823  * Thus we can safely just mark it writable once we've done any necessary
2824  * COW.
2825  *
2826  * We also mark the page dirty at this point even though the page will
2827  * change only once the write actually happens. This avoids a few races,
2828  * and potentially makes it more efficient.
2829  *
2830  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2831  * but allow concurrent faults), with pte both mapped and locked.
2832  * We return with mmap_sem still held, but pte unmapped and unlocked.
2833  */
2834 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2835         __releases(vmf->ptl)
2836 {
2837         struct vm_area_struct *vma = vmf->vma;
2838
2839         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2840         if (!vmf->page) {
2841                 /*
2842                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2843                  * VM_PFNMAP VMA.
2844                  *
2845                  * We should not cow pages in a shared writeable mapping.
2846                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2847                  */
2848                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2849                                      (VM_WRITE|VM_SHARED))
2850                         return wp_pfn_shared(vmf);
2851
2852                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2853                 return wp_page_copy(vmf);
2854         }
2855
2856         /*
2857          * Take out anonymous pages first, anonymous shared vmas are
2858          * not dirty accountable.
2859          */
2860         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2861                 int total_map_swapcount;
2862                 if (!trylock_page(vmf->page)) {
2863                         get_page(vmf->page);
2864                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2865                         lock_page(vmf->page);
2866                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2867                                         vmf->address, &vmf->ptl);
2868                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2869                                 unlock_page(vmf->page);
2870                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2871                                 put_page(vmf->page);
2872                                 return 0;
2873                         }
2874                         put_page(vmf->page);
2875                 }
2876                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2877                         if (total_map_swapcount == 1) {
2878                                 /*
2879                                  * The page is all ours. Move it to
2880                                  * our anon_vma so the rmap code will
2881                                  * not search our parent or siblings.
2882                                  * Protected against the rmap code by
2883                                  * the page lock.
2884                                  */
2885                                 page_move_anon_rmap(vmf->page, vma);
2886                         }
2887                         unlock_page(vmf->page);
2888                         wp_page_reuse(vmf);
2889                         return VM_FAULT_WRITE;
2890                 }
2891                 unlock_page(vmf->page);
2892         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2893                                         (VM_WRITE|VM_SHARED))) {
2894                 return wp_page_shared(vmf);
2895         }
2896
2897         /*
2898          * Ok, we need to copy. Oh, well..
2899          */
2900         get_page(vmf->page);
2901
2902         pte_unmap_unlock(vmf->pte, vmf->ptl);
2903         return wp_page_copy(vmf);
2904 }
2905
2906 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2907                 unsigned long start_addr, unsigned long end_addr,
2908                 struct zap_details *details)
2909 {
2910         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2911 }
2912
2913 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2914                                             struct zap_details *details)
2915 {
2916         struct vm_area_struct *vma;
2917         pgoff_t vba, vea, zba, zea;
2918
2919         vma_interval_tree_foreach(vma, root,
2920                         details->first_index, details->last_index) {
2921
2922                 vba = vma->vm_pgoff;
2923                 vea = vba + vma_pages(vma) - 1;
2924                 zba = details->first_index;
2925                 if (zba < vba)
2926                         zba = vba;
2927                 zea = details->last_index;
2928                 if (zea > vea)
2929                         zea = vea;
2930
2931                 unmap_mapping_range_vma(vma,
2932                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2933                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2934                                 details);
2935         }
2936 }
2937
2938 /**
2939  * unmap_mapping_page() - Unmap single page from processes.
2940  * @page: The locked page to be unmapped.
2941  *
2942  * Unmap this page from any userspace process which still has it mmaped.
2943  * Typically, for efficiency, the range of nearby pages has already been
2944  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
2945  * truncation or invalidation holds the lock on a page, it may find that
2946  * the page has been remapped again: and then uses unmap_mapping_page()
2947  * to unmap it finally.
2948  */
2949 void unmap_mapping_page(struct page *page)
2950 {
2951         struct address_space *mapping = page->mapping;
2952         struct zap_details details = { };
2953
2954         VM_BUG_ON(!PageLocked(page));
2955         VM_BUG_ON(PageTail(page));
2956
2957         details.check_mapping = mapping;
2958         details.first_index = page->index;
2959         details.last_index = page->index + hpage_nr_pages(page) - 1;
2960         details.single_page = page;
2961
2962         i_mmap_lock_write(mapping);
2963         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2964                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2965         i_mmap_unlock_write(mapping);
2966 }
2967
2968 /**
2969  * unmap_mapping_pages() - Unmap pages from processes.
2970  * @mapping: The address space containing pages to be unmapped.
2971  * @start: Index of first page to be unmapped.
2972  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2973  * @even_cows: Whether to unmap even private COWed pages.
2974  *
2975  * Unmap the pages in this address space from any userspace process which
2976  * has them mmaped.  Generally, you want to remove COWed pages as well when
2977  * a file is being truncated, but not when invalidating pages from the page
2978  * cache.
2979  */
2980 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2981                 pgoff_t nr, bool even_cows)
2982 {
2983         struct zap_details details = { };
2984
2985         details.check_mapping = even_cows ? NULL : mapping;
2986         details.first_index = start;
2987         details.last_index = start + nr - 1;
2988         if (details.last_index < details.first_index)
2989                 details.last_index = ULONG_MAX;
2990
2991         i_mmap_lock_write(mapping);
2992         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2993                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2994         i_mmap_unlock_write(mapping);
2995 }
2996
2997 /**
2998  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2999  * address_space corresponding to the specified byte range in the underlying
3000  * file.
3001  *
3002  * @mapping: the address space containing mmaps to be unmapped.
3003  * @holebegin: byte in first page to unmap, relative to the start of
3004  * the underlying file.  This will be rounded down to a PAGE_SIZE
3005  * boundary.  Note that this is different from truncate_pagecache(), which
3006  * must keep the partial page.  In contrast, we must get rid of
3007  * partial pages.
3008  * @holelen: size of prospective hole in bytes.  This will be rounded
3009  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3010  * end of the file.
3011  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3012  * but 0 when invalidating pagecache, don't throw away private data.
3013  */
3014 void unmap_mapping_range(struct address_space *mapping,
3015                 loff_t const holebegin, loff_t const holelen, int even_cows)
3016 {
3017         pgoff_t hba = holebegin >> PAGE_SHIFT;
3018         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3019
3020         /* Check for overflow. */
3021         if (sizeof(holelen) > sizeof(hlen)) {
3022                 long long holeend =
3023                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3024                 if (holeend & ~(long long)ULONG_MAX)
3025                         hlen = ULONG_MAX - hba + 1;
3026         }
3027
3028         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3029 }
3030 EXPORT_SYMBOL(unmap_mapping_range);
3031
3032 /*
3033  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3034  * but allow concurrent faults), and pte mapped but not yet locked.
3035  * We return with pte unmapped and unlocked.
3036  *
3037  * We return with the mmap_sem locked or unlocked in the same cases
3038  * as does filemap_fault().
3039  */
3040 vm_fault_t do_swap_page(struct vm_fault *vmf)
3041 {
3042         struct vm_area_struct *vma = vmf->vma;
3043         struct page *page = NULL, *swapcache;
3044         struct mem_cgroup *memcg;
3045         swp_entry_t entry;
3046         pte_t pte;
3047         int locked;
3048         int exclusive = 0;
3049         vm_fault_t ret = 0;
3050
3051         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3052                 goto out;
3053
3054         entry = pte_to_swp_entry(vmf->orig_pte);
3055         if (unlikely(non_swap_entry(entry))) {
3056                 if (is_migration_entry(entry)) {
3057                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3058                                              vmf->address);
3059                 } else if (is_device_private_entry(entry)) {
3060                         /*
3061                          * For un-addressable device memory we call the pgmap
3062                          * fault handler callback. The callback must migrate
3063                          * the page back to some CPU accessible page.
3064                          */
3065                         ret = device_private_entry_fault(vma, vmf->address, entry,
3066                                                  vmf->flags, vmf->pmd);
3067                 } else if (is_hwpoison_entry(entry)) {
3068                         ret = VM_FAULT_HWPOISON;
3069                 } else {
3070                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3071                         ret = VM_FAULT_SIGBUS;
3072                 }
3073                 goto out;
3074         }
3075
3076
3077         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3078         page = lookup_swap_cache(entry, vma, vmf->address);
3079         swapcache = page;
3080
3081         if (!page) {
3082                 struct swap_info_struct *si = swp_swap_info(entry);
3083
3084                 if (si->flags & SWP_SYNCHRONOUS_IO &&
3085                                 __swap_count(si, entry) == 1) {
3086                         /* skip swapcache */
3087                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3088                                                         vmf->address);
3089                         if (page) {
3090                                 __SetPageLocked(page);
3091                                 __SetPageSwapBacked(page);
3092                                 set_page_private(page, entry.val);
3093                                 lru_cache_add_anon(page);
3094                                 swap_readpage(page, true);
3095                         }
3096                 } else {
3097                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3098                                                 vmf);
3099                         swapcache = page;
3100                 }
3101
3102                 if (!page) {
3103                         /*
3104                          * Back out if somebody else faulted in this pte
3105                          * while we released the pte lock.
3106                          */
3107                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3108                                         vmf->address, &vmf->ptl);
3109                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3110                                 ret = VM_FAULT_OOM;
3111                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3112                         goto unlock;
3113                 }
3114
3115                 /* Had to read the page from swap area: Major fault */
3116                 ret = VM_FAULT_MAJOR;
3117                 count_vm_event(PGMAJFAULT);
3118                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3119         } else if (PageHWPoison(page)) {
3120                 /*
3121                  * hwpoisoned dirty swapcache pages are kept for killing
3122                  * owner processes (which may be unknown at hwpoison time)
3123                  */
3124                 ret = VM_FAULT_HWPOISON;
3125                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3126                 goto out_release;
3127         }
3128
3129         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3130
3131         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3132         if (!locked) {
3133                 ret |= VM_FAULT_RETRY;
3134                 goto out_release;
3135         }
3136
3137         /*
3138          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3139          * release the swapcache from under us.  The page pin, and pte_same
3140          * test below, are not enough to exclude that.  Even if it is still
3141          * swapcache, we need to check that the page's swap has not changed.
3142          */
3143         if (unlikely((!PageSwapCache(page) ||
3144                         page_private(page) != entry.val)) && swapcache)
3145                 goto out_page;
3146
3147         page = ksm_might_need_to_copy(page, vma, vmf->address);
3148         if (unlikely(!page)) {
3149                 ret = VM_FAULT_OOM;
3150                 page = swapcache;
3151                 goto out_page;
3152         }
3153
3154         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3155                                         &memcg, false)) {
3156                 ret = VM_FAULT_OOM;
3157                 goto out_page;
3158         }
3159
3160         /*
3161          * Back out if somebody else already faulted in this pte.
3162          */
3163         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3164                         &vmf->ptl);
3165         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3166                 goto out_nomap;
3167
3168         if (unlikely(!PageUptodate(page))) {
3169                 ret = VM_FAULT_SIGBUS;
3170                 goto out_nomap;
3171         }
3172
3173         /*
3174          * The page isn't present yet, go ahead with the fault.
3175          *
3176          * Be careful about the sequence of operations here.
3177          * To get its accounting right, reuse_swap_page() must be called
3178          * while the page is counted on swap but not yet in mapcount i.e.
3179          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3180          * must be called after the swap_free(), or it will never succeed.
3181          */
3182
3183         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3184         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3185         pte = mk_pte(page, vma->vm_page_prot);
3186         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3187                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3188                 vmf->flags &= ~FAULT_FLAG_WRITE;
3189                 ret |= VM_FAULT_WRITE;
3190                 exclusive = RMAP_EXCLUSIVE;
3191         }
3192         flush_icache_page(vma, page);
3193         if (pte_swp_soft_dirty(vmf->orig_pte))
3194                 pte = pte_mksoft_dirty(pte);
3195         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3196         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3197         vmf->orig_pte = pte;
3198
3199         /* ksm created a completely new copy */
3200         if (unlikely(page != swapcache && swapcache)) {
3201                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3202                 mem_cgroup_commit_charge(page, memcg, false, false);
3203                 lru_cache_add_active_or_unevictable(page, vma);
3204         } else {
3205                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3206                 mem_cgroup_commit_charge(page, memcg, true, false);
3207                 activate_page(page);
3208         }
3209
3210         swap_free(entry);
3211         if (mem_cgroup_swap_full(page) ||
3212             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3213                 try_to_free_swap(page);
3214         unlock_page(page);
3215         if (page != swapcache && swapcache) {
3216                 /*
3217                  * Hold the lock to avoid the swap entry to be reused
3218                  * until we take the PT lock for the pte_same() check
3219                  * (to avoid false positives from pte_same). For
3220                  * further safety release the lock after the swap_free
3221                  * so that the swap count won't change under a
3222                  * parallel locked swapcache.
3223                  */
3224                 unlock_page(swapcache);
3225                 put_page(swapcache);
3226         }
3227
3228         if (vmf->flags & FAULT_FLAG_WRITE) {
3229                 ret |= do_wp_page(vmf);
3230                 if (ret & VM_FAULT_ERROR)
3231                         ret &= VM_FAULT_ERROR;
3232                 goto out;
3233         }
3234
3235         /* No need to invalidate - it was non-present before */
3236         update_mmu_cache(vma, vmf->address, vmf->pte);
3237 unlock:
3238         pte_unmap_unlock(vmf->pte, vmf->ptl);
3239 out:
3240         return ret;
3241 out_nomap:
3242         mem_cgroup_cancel_charge(page, memcg, false);
3243         pte_unmap_unlock(vmf->pte, vmf->ptl);
3244 out_page:
3245         unlock_page(page);
3246 out_release:
3247         put_page(page);
3248         if (page != swapcache && swapcache) {
3249                 unlock_page(swapcache);
3250                 put_page(swapcache);
3251         }
3252         return ret;
3253 }
3254
3255 /*
3256  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3257  * but allow concurrent faults), and pte mapped but not yet locked.
3258  * We return with mmap_sem still held, but pte unmapped and unlocked.
3259  */
3260 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3261 {
3262         struct vm_area_struct *vma = vmf->vma;
3263         struct mem_cgroup *memcg;
3264         struct page *page;
3265         vm_fault_t ret = 0;
3266         pte_t entry;
3267
3268         /* File mapping without ->vm_ops ? */
3269         if (vma->vm_flags & VM_SHARED)
3270                 return VM_FAULT_SIGBUS;
3271
3272         /*
3273          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3274          * pte_offset_map() on pmds where a huge pmd might be created
3275          * from a different thread.
3276          *
3277          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3278          * parallel threads are excluded by other means.
3279          *
3280          * Here we only have down_read(mmap_sem).
3281          */
3282         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3283                 return VM_FAULT_OOM;
3284
3285         /* See the comment in pte_alloc_one_map() */
3286         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3287                 return 0;
3288
3289         /* Use the zero-page for reads */
3290         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3291                         !mm_forbids_zeropage(vma->vm_mm)) {
3292                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3293                                                 vma->vm_page_prot));
3294                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3295                                 vmf->address, &vmf->ptl);
3296                 if (!pte_none(*vmf->pte))
3297                         goto unlock;
3298                 ret = check_stable_address_space(vma->vm_mm);
3299                 if (ret)
3300                         goto unlock;
3301                 /* Deliver the page fault to userland, check inside PT lock */
3302                 if (userfaultfd_missing(vma)) {
3303                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3304                         return handle_userfault(vmf, VM_UFFD_MISSING);
3305                 }
3306                 goto setpte;
3307         }
3308
3309         /* Allocate our own private page. */
3310         if (unlikely(anon_vma_prepare(vma)))
3311                 goto oom;
3312         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3313         if (!page)
3314                 goto oom;
3315
3316         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3317                                         false))
3318                 goto oom_free_page;
3319
3320         /*
3321          * The memory barrier inside __SetPageUptodate makes sure that
3322          * preceeding stores to the page contents become visible before
3323          * the set_pte_at() write.
3324          */
3325         __SetPageUptodate(page);
3326
3327         entry = mk_pte(page, vma->vm_page_prot);
3328         if (vma->vm_flags & VM_WRITE)
3329                 entry = pte_mkwrite(pte_mkdirty(entry));
3330
3331         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3332                         &vmf->ptl);
3333         if (!pte_none(*vmf->pte))
3334                 goto release;
3335
3336         ret = check_stable_address_space(vma->vm_mm);
3337         if (ret)
3338                 goto release;
3339
3340         /* Deliver the page fault to userland, check inside PT lock */
3341         if (userfaultfd_missing(vma)) {
3342                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3343                 mem_cgroup_cancel_charge(page, memcg, false);
3344                 put_page(page);
3345                 return handle_userfault(vmf, VM_UFFD_MISSING);
3346         }
3347
3348         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3349         page_add_new_anon_rmap(page, vma, vmf->address, false);
3350         mem_cgroup_commit_charge(page, memcg, false, false);
3351         lru_cache_add_active_or_unevictable(page, vma);
3352 setpte:
3353         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3354
3355         /* No need to invalidate - it was non-present before */
3356         update_mmu_cache(vma, vmf->address, vmf->pte);
3357 unlock:
3358         pte_unmap_unlock(vmf->pte, vmf->ptl);
3359         return ret;
3360 release:
3361         mem_cgroup_cancel_charge(page, memcg, false);
3362         put_page(page);
3363         goto unlock;
3364 oom_free_page:
3365         put_page(page);
3366 oom:
3367         return VM_FAULT_OOM;
3368 }
3369
3370 /*
3371  * The mmap_sem must have been held on entry, and may have been
3372  * released depending on flags and vma->vm_ops->fault() return value.
3373  * See filemap_fault() and __lock_page_retry().
3374  */
3375 static vm_fault_t __do_fault(struct vm_fault *vmf)
3376 {
3377         struct vm_area_struct *vma = vmf->vma;
3378         vm_fault_t ret;
3379
3380         /*
3381          * Preallocate pte before we take page_lock because this might lead to
3382          * deadlocks for memcg reclaim which waits for pages under writeback:
3383          *                              lock_page(A)
3384          *                              SetPageWriteback(A)
3385          *                              unlock_page(A)
3386          * lock_page(B)
3387          *                              lock_page(B)
3388          * pte_alloc_pne
3389          *   shrink_page_list
3390          *     wait_on_page_writeback(A)
3391          *                              SetPageWriteback(B)
3392          *                              unlock_page(B)
3393          *                              # flush A, B to clear the writeback
3394          */
3395         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3396                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3397                                                   vmf->address);
3398                 if (!vmf->prealloc_pte)
3399                         return VM_FAULT_OOM;
3400                 smp_wmb(); /* See comment in __pte_alloc() */
3401         }
3402
3403         ret = vma->vm_ops->fault(vmf);
3404         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3405                             VM_FAULT_DONE_COW)))
3406                 return ret;
3407
3408         if (unlikely(PageHWPoison(vmf->page))) {
3409                 if (ret & VM_FAULT_LOCKED)
3410                         unlock_page(vmf->page);
3411                 put_page(vmf->page);
3412                 vmf->page = NULL;
3413                 return VM_FAULT_HWPOISON;
3414         }
3415
3416         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3417                 lock_page(vmf->page);
3418         else
3419                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3420
3421         return ret;
3422 }
3423
3424 /*
3425  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3426  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3427  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3428  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3429  */
3430 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3431 {
3432         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3433 }
3434
3435 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3436 {
3437         struct vm_area_struct *vma = vmf->vma;
3438
3439         if (!pmd_none(*vmf->pmd))
3440                 goto map_pte;
3441         if (vmf->prealloc_pte) {
3442                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3443                 if (unlikely(!pmd_none(*vmf->pmd))) {
3444                         spin_unlock(vmf->ptl);
3445                         goto map_pte;
3446                 }
3447
3448                 mm_inc_nr_ptes(vma->vm_mm);
3449                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3450                 spin_unlock(vmf->ptl);
3451                 vmf->prealloc_pte = NULL;
3452         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3453                 return VM_FAULT_OOM;
3454         }
3455 map_pte:
3456         /*
3457          * If a huge pmd materialized under us just retry later.  Use
3458          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3459          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3460          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3461          * running immediately after a huge pmd fault in a different thread of
3462          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3463          * All we have to ensure is that it is a regular pmd that we can walk
3464          * with pte_offset_map() and we can do that through an atomic read in
3465          * C, which is what pmd_trans_unstable() provides.
3466          */
3467         if (pmd_devmap_trans_unstable(vmf->pmd))
3468                 return VM_FAULT_NOPAGE;
3469
3470         /*
3471          * At this point we know that our vmf->pmd points to a page of ptes
3472          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3473          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3474          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3475          * be valid and we will re-check to make sure the vmf->pte isn't
3476          * pte_none() under vmf->ptl protection when we return to
3477          * alloc_set_pte().
3478          */
3479         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3480                         &vmf->ptl);
3481         return 0;
3482 }
3483
3484 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3485
3486 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3487 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3488                 unsigned long haddr)
3489 {
3490         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3491                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3492                 return false;
3493         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3494                 return false;
3495         return true;
3496 }
3497
3498 static void deposit_prealloc_pte(struct vm_fault *vmf)
3499 {
3500         struct vm_area_struct *vma = vmf->vma;
3501
3502         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3503         /*
3504          * We are going to consume the prealloc table,
3505          * count that as nr_ptes.
3506          */
3507         mm_inc_nr_ptes(vma->vm_mm);
3508         vmf->prealloc_pte = NULL;
3509 }
3510
3511 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3512 {
3513         struct vm_area_struct *vma = vmf->vma;
3514         bool write = vmf->flags & FAULT_FLAG_WRITE;
3515         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3516         pmd_t entry;
3517         int i;
3518         vm_fault_t ret;
3519
3520         if (!transhuge_vma_suitable(vma, haddr))
3521                 return VM_FAULT_FALLBACK;
3522
3523         ret = VM_FAULT_FALLBACK;
3524         page = compound_head(page);
3525
3526         /*
3527          * Archs like ppc64 need additonal space to store information
3528          * related to pte entry. Use the preallocated table for that.
3529          */
3530         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3531                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3532                 if (!vmf->prealloc_pte)
3533                         return VM_FAULT_OOM;
3534                 smp_wmb(); /* See comment in __pte_alloc() */
3535         }
3536
3537         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3538         if (unlikely(!pmd_none(*vmf->pmd)))
3539                 goto out;
3540
3541         for (i = 0; i < HPAGE_PMD_NR; i++)
3542                 flush_icache_page(vma, page + i);
3543
3544         entry = mk_huge_pmd(page, vma->vm_page_prot);
3545         if (write)
3546                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3547
3548         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3549         page_add_file_rmap(page, true);
3550         /*
3551          * deposit and withdraw with pmd lock held
3552          */
3553         if (arch_needs_pgtable_deposit())
3554                 deposit_prealloc_pte(vmf);
3555
3556         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3557
3558         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3559
3560         /* fault is handled */
3561         ret = 0;
3562         count_vm_event(THP_FILE_MAPPED);
3563 out:
3564         spin_unlock(vmf->ptl);
3565         return ret;
3566 }
3567 #else
3568 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3569 {
3570         BUILD_BUG();
3571         return 0;
3572 }
3573 #endif
3574
3575 /**
3576  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3577  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3578  *
3579  * @vmf: fault environment
3580  * @memcg: memcg to charge page (only for private mappings)
3581  * @page: page to map
3582  *
3583  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3584  * return.
3585  *
3586  * Target users are page handler itself and implementations of
3587  * vm_ops->map_pages.
3588  */
3589 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3590                 struct page *page)
3591 {
3592         struct vm_area_struct *vma = vmf->vma;
3593         bool write = vmf->flags & FAULT_FLAG_WRITE;
3594         pte_t entry;
3595         vm_fault_t ret;
3596
3597         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3598                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3599                 /* THP on COW? */
3600                 VM_BUG_ON_PAGE(memcg, page);
3601
3602                 ret = do_set_pmd(vmf, page);
3603                 if (ret != VM_FAULT_FALLBACK)
3604                         return ret;
3605         }
3606
3607         if (!vmf->pte) {
3608                 ret = pte_alloc_one_map(vmf);
3609                 if (ret)
3610                         return ret;
3611         }
3612
3613         /* Re-check under ptl */
3614         if (unlikely(!pte_none(*vmf->pte)))
3615                 return VM_FAULT_NOPAGE;
3616
3617         flush_icache_page(vma, page);
3618         entry = mk_pte(page, vma->vm_page_prot);
3619         if (write)
3620                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3621         /* copy-on-write page */
3622         if (write && !(vma->vm_flags & VM_SHARED)) {
3623                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3624                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3625                 mem_cgroup_commit_charge(page, memcg, false, false);
3626                 lru_cache_add_active_or_unevictable(page, vma);
3627         } else {
3628                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3629                 page_add_file_rmap(page, false);
3630         }
3631         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3632
3633         /* no need to invalidate: a not-present page won't be cached */
3634         update_mmu_cache(vma, vmf->address, vmf->pte);
3635
3636         return 0;
3637 }
3638
3639
3640 /**
3641  * finish_fault - finish page fault once we have prepared the page to fault
3642  *
3643  * @vmf: structure describing the fault
3644  *
3645  * This function handles all that is needed to finish a page fault once the
3646  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3647  * given page, adds reverse page mapping, handles memcg charges and LRU
3648  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3649  * error.
3650  *
3651  * The function expects the page to be locked and on success it consumes a
3652  * reference of a page being mapped (for the PTE which maps it).
3653  */
3654 vm_fault_t finish_fault(struct vm_fault *vmf)
3655 {
3656         struct page *page;
3657         vm_fault_t ret = 0;
3658
3659         /* Did we COW the page? */
3660         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3661             !(vmf->vma->vm_flags & VM_SHARED))
3662                 page = vmf->cow_page;
3663         else
3664                 page = vmf->page;
3665
3666         /*
3667          * check even for read faults because we might have lost our CoWed
3668          * page
3669          */
3670         if (!(vmf->vma->vm_flags & VM_SHARED))
3671                 ret = check_stable_address_space(vmf->vma->vm_mm);
3672         if (!ret)
3673                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3674         if (vmf->pte)
3675                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3676         return ret;
3677 }
3678
3679 static unsigned long fault_around_bytes __read_mostly =
3680         rounddown_pow_of_two(65536);
3681
3682 #ifdef CONFIG_DEBUG_FS
3683 static int fault_around_bytes_get(void *data, u64 *val)
3684 {
3685         *val = fault_around_bytes;
3686         return 0;
3687 }
3688
3689 /*
3690  * fault_around_bytes must be rounded down to the nearest page order as it's
3691  * what do_fault_around() expects to see.
3692  */
3693 static int fault_around_bytes_set(void *data, u64 val)
3694 {
3695         if (val / PAGE_SIZE > PTRS_PER_PTE)
3696                 return -EINVAL;
3697         if (val > PAGE_SIZE)
3698                 fault_around_bytes = rounddown_pow_of_two(val);
3699         else
3700                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3701         return 0;
3702 }
3703 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3704                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3705
3706 static int __init fault_around_debugfs(void)
3707 {
3708         void *ret;
3709
3710         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3711                         &fault_around_bytes_fops);
3712         if (!ret)
3713                 pr_warn("Failed to create fault_around_bytes in debugfs");
3714         return 0;
3715 }
3716 late_initcall(fault_around_debugfs);
3717 #endif
3718
3719 /*
3720  * do_fault_around() tries to map few pages around the fault address. The hope
3721  * is that the pages will be needed soon and this will lower the number of
3722  * faults to handle.
3723  *
3724  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3725  * not ready to be mapped: not up-to-date, locked, etc.
3726  *
3727  * This function is called with the page table lock taken. In the split ptlock
3728  * case the page table lock only protects only those entries which belong to
3729  * the page table corresponding to the fault address.
3730  *
3731  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3732  * only once.
3733  *
3734  * fault_around_bytes defines how many bytes we'll try to map.
3735  * do_fault_around() expects it to be set to a power of two less than or equal
3736  * to PTRS_PER_PTE.
3737  *
3738  * The virtual address of the area that we map is naturally aligned to
3739  * fault_around_bytes rounded down to the machine page size
3740  * (and therefore to page order).  This way it's easier to guarantee
3741  * that we don't cross page table boundaries.
3742  */
3743 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3744 {
3745         unsigned long address = vmf->address, nr_pages, mask;
3746         pgoff_t start_pgoff = vmf->pgoff;
3747         pgoff_t end_pgoff;
3748         int off;
3749         vm_fault_t ret = 0;
3750
3751         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3752         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3753
3754         vmf->address = max(address & mask, vmf->vma->vm_start);
3755         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3756         start_pgoff -= off;
3757
3758         /*
3759          *  end_pgoff is either the end of the page table, the end of
3760          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3761          */
3762         end_pgoff = start_pgoff -
3763                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3764                 PTRS_PER_PTE - 1;
3765         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3766                         start_pgoff + nr_pages - 1);
3767
3768         if (pmd_none(*vmf->pmd)) {
3769                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3770                                                   vmf->address);
3771                 if (!vmf->prealloc_pte)
3772                         goto out;
3773                 smp_wmb(); /* See comment in __pte_alloc() */
3774         }
3775
3776         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3777
3778         /* Huge page is mapped? Page fault is solved */
3779         if (pmd_trans_huge(*vmf->pmd)) {
3780                 ret = VM_FAULT_NOPAGE;
3781                 goto out;
3782         }
3783
3784         /* ->map_pages() haven't done anything useful. Cold page cache? */
3785         if (!vmf->pte)
3786                 goto out;
3787
3788         /* check if the page fault is solved */
3789         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3790         if (!pte_none(*vmf->pte))
3791                 ret = VM_FAULT_NOPAGE;
3792         pte_unmap_unlock(vmf->pte, vmf->ptl);
3793 out:
3794         vmf->address = address;
3795         vmf->pte = NULL;
3796         return ret;
3797 }
3798
3799 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3800 {
3801         struct vm_area_struct *vma = vmf->vma;
3802         vm_fault_t ret = 0;
3803
3804         /*
3805          * Let's call ->map_pages() first and use ->fault() as fallback
3806          * if page by the offset is not ready to be mapped (cold cache or
3807          * something).
3808          */
3809         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3810                 ret = do_fault_around(vmf);
3811                 if (ret)
3812                         return ret;
3813         }
3814
3815         ret = __do_fault(vmf);
3816         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3817                 return ret;
3818
3819         ret |= finish_fault(vmf);
3820         unlock_page(vmf->page);
3821         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3822                 put_page(vmf->page);
3823         return ret;
3824 }
3825
3826 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3827 {
3828         struct vm_area_struct *vma = vmf->vma;
3829         vm_fault_t ret;
3830
3831         if (unlikely(anon_vma_prepare(vma)))
3832                 return VM_FAULT_OOM;
3833
3834         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3835         if (!vmf->cow_page)
3836                 return VM_FAULT_OOM;
3837
3838         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3839                                 &vmf->memcg, false)) {
3840                 put_page(vmf->cow_page);
3841                 return VM_FAULT_OOM;
3842         }
3843
3844         ret = __do_fault(vmf);
3845         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3846                 goto uncharge_out;
3847         if (ret & VM_FAULT_DONE_COW)
3848                 return ret;
3849
3850         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3851         __SetPageUptodate(vmf->cow_page);
3852
3853         ret |= finish_fault(vmf);
3854         unlock_page(vmf->page);
3855         put_page(vmf->page);
3856         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3857                 goto uncharge_out;
3858         return ret;
3859 uncharge_out:
3860         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3861         put_page(vmf->cow_page);
3862         return ret;
3863 }
3864
3865 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3866 {
3867         struct vm_area_struct *vma = vmf->vma;
3868         vm_fault_t ret, tmp;
3869
3870         ret = __do_fault(vmf);
3871         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3872                 return ret;
3873
3874         /*
3875          * Check if the backing address space wants to know that the page is
3876          * about to become writable
3877          */
3878         if (vma->vm_ops->page_mkwrite) {
3879                 unlock_page(vmf->page);
3880                 tmp = do_page_mkwrite(vmf);
3881                 if (unlikely(!tmp ||
3882                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3883                         put_page(vmf->page);
3884                         return tmp;
3885                 }
3886         }
3887
3888         ret |= finish_fault(vmf);
3889         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3890                                         VM_FAULT_RETRY))) {
3891                 unlock_page(vmf->page);
3892                 put_page(vmf->page);
3893                 return ret;
3894         }
3895
3896         fault_dirty_shared_page(vma, vmf->page);
3897         return ret;
3898 }
3899
3900 /*
3901  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3902  * but allow concurrent faults).
3903  * The mmap_sem may have been released depending on flags and our
3904  * return value.  See filemap_fault() and __lock_page_or_retry().
3905  * If mmap_sem is released, vma may become invalid (for example
3906  * by other thread calling munmap()).
3907  */
3908 static vm_fault_t do_fault(struct vm_fault *vmf)
3909 {
3910         struct vm_area_struct *vma = vmf->vma;
3911         struct mm_struct *vm_mm = vma->vm_mm;
3912         vm_fault_t ret;
3913
3914         /*
3915          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3916          */
3917         if (!vma->vm_ops->fault) {
3918                 /*
3919                  * If we find a migration pmd entry or a none pmd entry, which
3920                  * should never happen, return SIGBUS
3921                  */
3922                 if (unlikely(!pmd_present(*vmf->pmd)))
3923                         ret = VM_FAULT_SIGBUS;
3924                 else {
3925                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3926                                                        vmf->pmd,
3927                                                        vmf->address,
3928                                                        &vmf->ptl);
3929                         /*
3930                          * Make sure this is not a temporary clearing of pte
3931                          * by holding ptl and checking again. A R/M/W update
3932                          * of pte involves: take ptl, clearing the pte so that
3933                          * we don't have concurrent modification by hardware
3934                          * followed by an update.
3935                          */
3936                         if (unlikely(pte_none(*vmf->pte)))
3937                                 ret = VM_FAULT_SIGBUS;
3938                         else
3939                                 ret = VM_FAULT_NOPAGE;
3940
3941                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3942                 }
3943         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3944                 ret = do_read_fault(vmf);
3945         else if (!(vma->vm_flags & VM_SHARED))
3946                 ret = do_cow_fault(vmf);
3947         else
3948                 ret = do_shared_fault(vmf);
3949
3950         /* preallocated pagetable is unused: free it */
3951         if (vmf->prealloc_pte) {
3952                 pte_free(vm_mm, vmf->prealloc_pte);
3953                 vmf->prealloc_pte = NULL;
3954         }
3955         return ret;
3956 }
3957
3958 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3959                                 unsigned long addr, int page_nid,
3960                                 int *flags)
3961 {
3962         get_page(page);
3963
3964         count_vm_numa_event(NUMA_HINT_FAULTS);
3965         if (page_nid == numa_node_id()) {
3966                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3967                 *flags |= TNF_FAULT_LOCAL;
3968         }
3969
3970         return mpol_misplaced(page, vma, addr);
3971 }
3972
3973 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3974 {
3975         struct vm_area_struct *vma = vmf->vma;
3976         struct page *page = NULL;
3977         int page_nid = -1;
3978         int last_cpupid;
3979         int target_nid;
3980         bool migrated = false;
3981         pte_t pte;
3982         bool was_writable = pte_savedwrite(vmf->orig_pte);
3983         int flags = 0;
3984
3985         /*
3986          * The "pte" at this point cannot be used safely without
3987          * validation through pte_unmap_same(). It's of NUMA type but
3988          * the pfn may be screwed if the read is non atomic.
3989          */
3990         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3991         spin_lock(vmf->ptl);
3992         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3993                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3994                 goto out;
3995         }
3996
3997         /*
3998          * Make it present again, Depending on how arch implementes non
3999          * accessible ptes, some can allow access by kernel mode.
4000          */
4001         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4002         pte = pte_modify(pte, vma->vm_page_prot);
4003         pte = pte_mkyoung(pte);
4004         if (was_writable)
4005                 pte = pte_mkwrite(pte);
4006         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
4007         update_mmu_cache(vma, vmf->address, vmf->pte);
4008
4009         page = vm_normal_page(vma, vmf->address, pte);
4010         if (!page) {
4011                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4012                 return 0;
4013         }
4014
4015         /* TODO: handle PTE-mapped THP */
4016         if (PageCompound(page)) {
4017                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4018                 return 0;
4019         }
4020
4021         /*
4022          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4023          * much anyway since they can be in shared cache state. This misses
4024          * the case where a mapping is writable but the process never writes
4025          * to it but pte_write gets cleared during protection updates and
4026          * pte_dirty has unpredictable behaviour between PTE scan updates,
4027          * background writeback, dirty balancing and application behaviour.
4028          */
4029         if (!pte_write(pte))
4030                 flags |= TNF_NO_GROUP;
4031
4032         /*
4033          * Flag if the page is shared between multiple address spaces. This
4034          * is later used when determining whether to group tasks together
4035          */
4036         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4037                 flags |= TNF_SHARED;
4038
4039         last_cpupid = page_cpupid_last(page);
4040         page_nid = page_to_nid(page);
4041         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4042                         &flags);
4043         pte_unmap_unlock(vmf->pte, vmf->ptl);
4044         if (target_nid == -1) {
4045                 put_page(page);
4046                 goto out;
4047         }
4048
4049         /* Migrate to the requested node */
4050         migrated = migrate_misplaced_page(page, vma, target_nid);
4051         if (migrated) {
4052                 page_nid = target_nid;
4053                 flags |= TNF_MIGRATED;
4054         } else
4055                 flags |= TNF_MIGRATE_FAIL;
4056
4057 out:
4058         if (page_nid != -1)
4059                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4060         return 0;
4061 }
4062
4063 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4064 {
4065         if (vma_is_anonymous(vmf->vma))
4066                 return do_huge_pmd_anonymous_page(vmf);
4067         if (vmf->vma->vm_ops->huge_fault)
4068                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4069         return VM_FAULT_FALLBACK;
4070 }
4071
4072 /* `inline' is required to avoid gcc 4.1.2 build error */
4073 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4074 {
4075         if (vma_is_anonymous(vmf->vma))
4076                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4077         if (vmf->vma->vm_ops->huge_fault)
4078                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4079
4080         /* COW handled on pte level: split pmd */
4081         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
4082         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4083
4084         return VM_FAULT_FALLBACK;
4085 }
4086
4087 static inline bool vma_is_accessible(struct vm_area_struct *vma)
4088 {
4089         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
4090 }
4091
4092 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4093 {
4094 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4095         /* No support for anonymous transparent PUD pages yet */
4096         if (vma_is_anonymous(vmf->vma))
4097                 return VM_FAULT_FALLBACK;
4098         if (vmf->vma->vm_ops->huge_fault)
4099                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4100 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4101         return VM_FAULT_FALLBACK;
4102 }
4103
4104 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4105 {
4106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4107         /* No support for anonymous transparent PUD pages yet */
4108         if (vma_is_anonymous(vmf->vma))
4109                 return VM_FAULT_FALLBACK;
4110         if (vmf->vma->vm_ops->huge_fault)
4111                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4112 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4113         return VM_FAULT_FALLBACK;
4114 }
4115
4116 /*
4117  * These routines also need to handle stuff like marking pages dirty
4118  * and/or accessed for architectures that don't do it in hardware (most
4119  * RISC architectures).  The early dirtying is also good on the i386.
4120  *
4121  * There is also a hook called "update_mmu_cache()" that architectures
4122  * with external mmu caches can use to update those (ie the Sparc or
4123  * PowerPC hashed page tables that act as extended TLBs).
4124  *
4125  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4126  * concurrent faults).
4127  *
4128  * The mmap_sem may have been released depending on flags and our return value.
4129  * See filemap_fault() and __lock_page_or_retry().
4130  */
4131 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4132 {
4133         pte_t entry;
4134
4135         if (unlikely(pmd_none(*vmf->pmd))) {
4136                 /*
4137                  * Leave __pte_alloc() until later: because vm_ops->fault may
4138                  * want to allocate huge page, and if we expose page table
4139                  * for an instant, it will be difficult to retract from
4140                  * concurrent faults and from rmap lookups.
4141                  */
4142                 vmf->pte = NULL;
4143         } else {
4144                 /* See comment in pte_alloc_one_map() */
4145                 if (pmd_devmap_trans_unstable(vmf->pmd))
4146                         return 0;
4147                 /*
4148                  * A regular pmd is established and it can't morph into a huge
4149                  * pmd from under us anymore at this point because we hold the
4150                  * mmap_sem read mode and khugepaged takes it in write mode.
4151                  * So now it's safe to run pte_offset_map().
4152                  */
4153                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4154                 vmf->orig_pte = *vmf->pte;
4155
4156                 /*
4157                  * some architectures can have larger ptes than wordsize,
4158                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4159                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4160                  * accesses.  The code below just needs a consistent view
4161                  * for the ifs and we later double check anyway with the
4162                  * ptl lock held. So here a barrier will do.
4163                  */
4164                 barrier();
4165                 if (pte_none(vmf->orig_pte)) {
4166                         pte_unmap(vmf->pte);
4167                         vmf->pte = NULL;
4168                 }
4169         }
4170
4171         if (!vmf->pte) {
4172                 if (vma_is_anonymous(vmf->vma))
4173                         return do_anonymous_page(vmf);
4174                 else
4175                         return do_fault(vmf);
4176         }
4177
4178         if (!pte_present(vmf->orig_pte))
4179                 return do_swap_page(vmf);
4180
4181         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4182                 return do_numa_page(vmf);
4183
4184         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4185         spin_lock(vmf->ptl);
4186         entry = vmf->orig_pte;
4187         if (unlikely(!pte_same(*vmf->pte, entry)))
4188                 goto unlock;
4189         if (vmf->flags & FAULT_FLAG_WRITE) {
4190                 if (!pte_write(entry))
4191                         return do_wp_page(vmf);
4192                 entry = pte_mkdirty(entry);
4193         }
4194         entry = pte_mkyoung(entry);
4195         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4196                                 vmf->flags & FAULT_FLAG_WRITE)) {
4197                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4198         } else {
4199                 /*
4200                  * This is needed only for protection faults but the arch code
4201                  * is not yet telling us if this is a protection fault or not.
4202                  * This still avoids useless tlb flushes for .text page faults
4203                  * with threads.
4204                  */
4205                 if (vmf->flags & FAULT_FLAG_WRITE)
4206                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4207         }
4208 unlock:
4209         pte_unmap_unlock(vmf->pte, vmf->ptl);
4210         return 0;
4211 }
4212
4213 /*
4214  * By the time we get here, we already hold the mm semaphore
4215  *
4216  * The mmap_sem may have been released depending on flags and our
4217  * return value.  See filemap_fault() and __lock_page_or_retry().
4218  */
4219 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4220                 unsigned long address, unsigned int flags)
4221 {
4222         struct vm_fault vmf = {
4223                 .vma = vma,
4224                 .address = address & PAGE_MASK,
4225                 .flags = flags,
4226                 .pgoff = linear_page_index(vma, address),
4227                 .gfp_mask = __get_fault_gfp_mask(vma),
4228         };
4229         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4230         struct mm_struct *mm = vma->vm_mm;
4231         pgd_t *pgd;
4232         p4d_t *p4d;
4233         vm_fault_t ret;
4234
4235         pgd = pgd_offset(mm, address);
4236         p4d = p4d_alloc(mm, pgd, address);
4237         if (!p4d)
4238                 return VM_FAULT_OOM;
4239
4240         vmf.pud = pud_alloc(mm, p4d, address);
4241         if (!vmf.pud)
4242                 return VM_FAULT_OOM;
4243         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4244                 ret = create_huge_pud(&vmf);
4245                 if (!(ret & VM_FAULT_FALLBACK))
4246                         return ret;
4247         } else {
4248                 pud_t orig_pud = *vmf.pud;
4249
4250                 barrier();
4251                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4252
4253                         /* NUMA case for anonymous PUDs would go here */
4254
4255                         if (dirty && !pud_write(orig_pud)) {
4256                                 ret = wp_huge_pud(&vmf, orig_pud);
4257                                 if (!(ret & VM_FAULT_FALLBACK))
4258                                         return ret;
4259                         } else {
4260                                 huge_pud_set_accessed(&vmf, orig_pud);
4261                                 return 0;
4262                         }
4263                 }
4264         }
4265
4266         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4267         if (!vmf.pmd)
4268                 return VM_FAULT_OOM;
4269         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4270                 ret = create_huge_pmd(&vmf);
4271                 if (!(ret & VM_FAULT_FALLBACK))
4272                         return ret;
4273         } else {
4274                 pmd_t orig_pmd = *vmf.pmd;
4275
4276                 barrier();
4277                 if (unlikely(is_swap_pmd(orig_pmd))) {
4278                         VM_BUG_ON(thp_migration_supported() &&
4279                                           !is_pmd_migration_entry(orig_pmd));
4280                         if (is_pmd_migration_entry(orig_pmd))
4281                                 pmd_migration_entry_wait(mm, vmf.pmd);
4282                         return 0;
4283                 }
4284                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4285                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4286                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4287
4288                         if (dirty && !pmd_write(orig_pmd)) {
4289                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4290                                 if (!(ret & VM_FAULT_FALLBACK))
4291                                         return ret;
4292                         } else {
4293                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4294                                 return 0;
4295                         }
4296                 }
4297         }
4298
4299         return handle_pte_fault(&vmf);
4300 }
4301
4302 /*
4303  * By the time we get here, we already hold the mm semaphore
4304  *
4305  * The mmap_sem may have been released depending on flags and our
4306  * return value.  See filemap_fault() and __lock_page_or_retry().
4307  */
4308 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4309                 unsigned int flags)
4310 {
4311         vm_fault_t ret;
4312
4313         __set_current_state(TASK_RUNNING);
4314
4315         count_vm_event(PGFAULT);
4316         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4317
4318         /* do counter updates before entering really critical section. */
4319         check_sync_rss_stat(current);
4320
4321         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4322                                             flags & FAULT_FLAG_INSTRUCTION,
4323                                             flags & FAULT_FLAG_REMOTE))
4324                 return VM_FAULT_SIGSEGV;
4325
4326         /*
4327          * Enable the memcg OOM handling for faults triggered in user
4328          * space.  Kernel faults are handled more gracefully.
4329          */
4330         if (flags & FAULT_FLAG_USER)
4331                 mem_cgroup_enter_user_fault();
4332
4333         if (unlikely(is_vm_hugetlb_page(vma)))
4334                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4335         else
4336                 ret = __handle_mm_fault(vma, address, flags);
4337
4338         if (flags & FAULT_FLAG_USER) {
4339                 mem_cgroup_exit_user_fault();
4340                 /*
4341                  * The task may have entered a memcg OOM situation but
4342                  * if the allocation error was handled gracefully (no
4343                  * VM_FAULT_OOM), there is no need to kill anything.
4344                  * Just clean up the OOM state peacefully.
4345                  */
4346                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4347                         mem_cgroup_oom_synchronize(false);
4348         }
4349
4350         return ret;
4351 }
4352 EXPORT_SYMBOL_GPL(handle_mm_fault);
4353
4354 #ifndef __PAGETABLE_P4D_FOLDED
4355 /*
4356  * Allocate p4d page table.
4357  * We've already handled the fast-path in-line.
4358  */
4359 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4360 {
4361         p4d_t *new = p4d_alloc_one(mm, address);
4362         if (!new)
4363                 return -ENOMEM;
4364
4365         smp_wmb(); /* See comment in __pte_alloc */
4366
4367         spin_lock(&mm->page_table_lock);
4368         if (pgd_present(*pgd))          /* Another has populated it */
4369                 p4d_free(mm, new);
4370         else
4371                 pgd_populate(mm, pgd, new);
4372         spin_unlock(&mm->page_table_lock);
4373         return 0;
4374 }
4375 #endif /* __PAGETABLE_P4D_FOLDED */
4376
4377 #ifndef __PAGETABLE_PUD_FOLDED
4378 /*
4379  * Allocate page upper directory.
4380  * We've already handled the fast-path in-line.
4381  */
4382 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4383 {
4384         pud_t *new = pud_alloc_one(mm, address);
4385         if (!new)
4386                 return -ENOMEM;
4387
4388         smp_wmb(); /* See comment in __pte_alloc */
4389
4390         spin_lock(&mm->page_table_lock);
4391 #ifndef __ARCH_HAS_5LEVEL_HACK
4392         if (!p4d_present(*p4d)) {
4393                 mm_inc_nr_puds(mm);
4394                 p4d_populate(mm, p4d, new);
4395         } else  /* Another has populated it */
4396                 pud_free(mm, new);
4397 #else
4398         if (!pgd_present(*p4d)) {
4399                 mm_inc_nr_puds(mm);
4400                 pgd_populate(mm, p4d, new);
4401         } else  /* Another has populated it */
4402                 pud_free(mm, new);
4403 #endif /* __ARCH_HAS_5LEVEL_HACK */
4404         spin_unlock(&mm->page_table_lock);
4405         return 0;
4406 }
4407 #endif /* __PAGETABLE_PUD_FOLDED */
4408
4409 #ifndef __PAGETABLE_PMD_FOLDED
4410 /*
4411  * Allocate page middle directory.
4412  * We've already handled the fast-path in-line.
4413  */
4414 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4415 {
4416         spinlock_t *ptl;
4417         pmd_t *new = pmd_alloc_one(mm, address);
4418         if (!new)
4419                 return -ENOMEM;
4420
4421         smp_wmb(); /* See comment in __pte_alloc */
4422
4423         ptl = pud_lock(mm, pud);
4424 #ifndef __ARCH_HAS_4LEVEL_HACK
4425         if (!pud_present(*pud)) {
4426                 mm_inc_nr_pmds(mm);
4427                 pud_populate(mm, pud, new);
4428         } else  /* Another has populated it */
4429                 pmd_free(mm, new);
4430 #else
4431         if (!pgd_present(*pud)) {
4432                 mm_inc_nr_pmds(mm);
4433                 pgd_populate(mm, pud, new);
4434         } else /* Another has populated it */
4435                 pmd_free(mm, new);
4436 #endif /* __ARCH_HAS_4LEVEL_HACK */
4437         spin_unlock(ptl);
4438         return 0;
4439 }
4440 #endif /* __PAGETABLE_PMD_FOLDED */
4441
4442 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4443                             unsigned long *start, unsigned long *end,
4444                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4445 {
4446         pgd_t *pgd;
4447         p4d_t *p4d;
4448         pud_t *pud;
4449         pmd_t *pmd;
4450         pte_t *ptep;
4451
4452         pgd = pgd_offset(mm, address);
4453         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4454                 goto out;
4455
4456         p4d = p4d_offset(pgd, address);
4457         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4458                 goto out;
4459
4460         pud = pud_offset(p4d, address);
4461         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4462                 goto out;
4463
4464         pmd = pmd_offset(pud, address);
4465         VM_BUG_ON(pmd_trans_huge(*pmd));
4466
4467         if (pmd_huge(*pmd)) {
4468                 if (!pmdpp)
4469                         goto out;
4470
4471                 if (start && end) {
4472                         *start = address & PMD_MASK;
4473                         *end = *start + PMD_SIZE;
4474                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4475                 }
4476                 *ptlp = pmd_lock(mm, pmd);
4477                 if (pmd_huge(*pmd)) {
4478                         *pmdpp = pmd;
4479                         return 0;
4480                 }
4481                 spin_unlock(*ptlp);
4482                 if (start && end)
4483                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4484         }
4485
4486         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4487                 goto out;
4488
4489         if (start && end) {
4490                 *start = address & PAGE_MASK;
4491                 *end = *start + PAGE_SIZE;
4492                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4493         }
4494         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4495         if (!pte_present(*ptep))
4496                 goto unlock;
4497         *ptepp = ptep;
4498         return 0;
4499 unlock:
4500         pte_unmap_unlock(ptep, *ptlp);
4501         if (start && end)
4502                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4503 out:
4504         return -EINVAL;
4505 }
4506
4507 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4508                              pte_t **ptepp, spinlock_t **ptlp)
4509 {
4510         int res;
4511
4512         /* (void) is needed to make gcc happy */
4513         (void) __cond_lock(*ptlp,
4514                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4515                                                     ptepp, NULL, ptlp)));
4516         return res;
4517 }
4518
4519 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4520                              unsigned long *start, unsigned long *end,
4521                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4522 {
4523         int res;
4524
4525         /* (void) is needed to make gcc happy */
4526         (void) __cond_lock(*ptlp,
4527                            !(res = __follow_pte_pmd(mm, address, start, end,
4528                                                     ptepp, pmdpp, ptlp)));
4529         return res;
4530 }
4531 EXPORT_SYMBOL(follow_pte_pmd);
4532
4533 /**
4534  * follow_pfn - look up PFN at a user virtual address
4535  * @vma: memory mapping
4536  * @address: user virtual address
4537  * @pfn: location to store found PFN
4538  *
4539  * Only IO mappings and raw PFN mappings are allowed.
4540  *
4541  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4542  */
4543 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4544         unsigned long *pfn)
4545 {
4546         int ret = -EINVAL;
4547         spinlock_t *ptl;
4548         pte_t *ptep;
4549
4550         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4551                 return ret;
4552
4553         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4554         if (ret)
4555                 return ret;
4556         *pfn = pte_pfn(*ptep);
4557         pte_unmap_unlock(ptep, ptl);
4558         return 0;
4559 }
4560 EXPORT_SYMBOL(follow_pfn);
4561
4562 #ifdef CONFIG_HAVE_IOREMAP_PROT
4563 int follow_phys(struct vm_area_struct *vma,
4564                 unsigned long address, unsigned int flags,
4565                 unsigned long *prot, resource_size_t *phys)
4566 {
4567         int ret = -EINVAL;
4568         pte_t *ptep, pte;
4569         spinlock_t *ptl;
4570
4571         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4572                 goto out;
4573
4574         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4575                 goto out;
4576         pte = *ptep;
4577
4578         if ((flags & FOLL_WRITE) && !pte_write(pte))
4579                 goto unlock;
4580
4581         *prot = pgprot_val(pte_pgprot(pte));
4582         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4583
4584         ret = 0;
4585 unlock:
4586         pte_unmap_unlock(ptep, ptl);
4587 out:
4588         return ret;
4589 }
4590
4591 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4592                         void *buf, int len, int write)
4593 {
4594         resource_size_t phys_addr;
4595         unsigned long prot = 0;
4596         void __iomem *maddr;
4597         int offset = addr & (PAGE_SIZE-1);
4598
4599         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4600                 return -EINVAL;
4601
4602         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4603         if (!maddr)
4604                 return -ENOMEM;
4605
4606         if (write)
4607                 memcpy_toio(maddr + offset, buf, len);
4608         else
4609                 memcpy_fromio(buf, maddr + offset, len);
4610         iounmap(maddr);
4611
4612         return len;
4613 }
4614 EXPORT_SYMBOL_GPL(generic_access_phys);
4615 #endif
4616
4617 /*
4618  * Access another process' address space as given in mm.  If non-NULL, use the
4619  * given task for page fault accounting.
4620  */
4621 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4622                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4623 {
4624         struct vm_area_struct *vma;
4625         void *old_buf = buf;
4626         int write = gup_flags & FOLL_WRITE;
4627
4628         if (down_read_killable(&mm->mmap_sem))
4629                 return 0;
4630
4631         /* ignore errors, just check how much was successfully transferred */
4632         while (len) {
4633                 int bytes, ret, offset;
4634                 void *maddr;
4635                 struct page *page = NULL;
4636
4637                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4638                                 gup_flags, &page, &vma, NULL);
4639                 if (ret <= 0) {
4640 #ifndef CONFIG_HAVE_IOREMAP_PROT
4641                         break;
4642 #else
4643                         /*
4644                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4645                          * we can access using slightly different code.
4646                          */
4647                         vma = find_vma(mm, addr);
4648                         if (!vma || vma->vm_start > addr)
4649                                 break;
4650                         if (vma->vm_ops && vma->vm_ops->access)
4651                                 ret = vma->vm_ops->access(vma, addr, buf,
4652                                                           len, write);
4653                         if (ret <= 0)
4654                                 break;
4655                         bytes = ret;
4656 #endif
4657                 } else {
4658                         bytes = len;
4659                         offset = addr & (PAGE_SIZE-1);
4660                         if (bytes > PAGE_SIZE-offset)
4661                                 bytes = PAGE_SIZE-offset;
4662
4663                         maddr = kmap(page);
4664                         if (write) {
4665                                 copy_to_user_page(vma, page, addr,
4666                                                   maddr + offset, buf, bytes);
4667                                 set_page_dirty_lock(page);
4668                         } else {
4669                                 copy_from_user_page(vma, page, addr,
4670                                                     buf, maddr + offset, bytes);
4671                         }
4672                         kunmap(page);
4673                         put_page(page);
4674                 }
4675                 len -= bytes;
4676                 buf += bytes;
4677                 addr += bytes;
4678         }
4679         up_read(&mm->mmap_sem);
4680
4681         return buf - old_buf;
4682 }
4683
4684 /**
4685  * access_remote_vm - access another process' address space
4686  * @mm:         the mm_struct of the target address space
4687  * @addr:       start address to access
4688  * @buf:        source or destination buffer
4689  * @len:        number of bytes to transfer
4690  * @gup_flags:  flags modifying lookup behaviour
4691  *
4692  * The caller must hold a reference on @mm.
4693  */
4694 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4695                 void *buf, int len, unsigned int gup_flags)
4696 {
4697         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4698 }
4699
4700 /*
4701  * Access another process' address space.
4702  * Source/target buffer must be kernel space,
4703  * Do not walk the page table directly, use get_user_pages
4704  */
4705 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4706                 void *buf, int len, unsigned int gup_flags)
4707 {
4708         struct mm_struct *mm;
4709         int ret;
4710
4711         mm = get_task_mm(tsk);
4712         if (!mm)
4713                 return 0;
4714
4715         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4716
4717         mmput(mm);
4718
4719         return ret;
4720 }
4721 EXPORT_SYMBOL_GPL(access_process_vm);
4722
4723 /*
4724  * Print the name of a VMA.
4725  */
4726 void print_vma_addr(char *prefix, unsigned long ip)
4727 {
4728         struct mm_struct *mm = current->mm;
4729         struct vm_area_struct *vma;
4730
4731         /*
4732          * we might be running from an atomic context so we cannot sleep
4733          */
4734         if (!down_read_trylock(&mm->mmap_sem))
4735                 return;
4736
4737         vma = find_vma(mm, ip);
4738         if (vma && vma->vm_file) {
4739                 struct file *f = vma->vm_file;
4740                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4741                 if (buf) {
4742                         char *p;
4743
4744                         p = file_path(f, buf, PAGE_SIZE);
4745                         if (IS_ERR(p))
4746                                 p = "?";
4747                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4748                                         vma->vm_start,
4749                                         vma->vm_end - vma->vm_start);
4750                         free_page((unsigned long)buf);
4751                 }
4752         }
4753         up_read(&mm->mmap_sem);
4754 }
4755
4756 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4757 void __might_fault(const char *file, int line)
4758 {
4759         /*
4760          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4761          * holding the mmap_sem, this is safe because kernel memory doesn't
4762          * get paged out, therefore we'll never actually fault, and the
4763          * below annotations will generate false positives.
4764          */
4765         if (uaccess_kernel())
4766                 return;
4767         if (pagefault_disabled())
4768                 return;
4769         __might_sleep(file, line, 0);
4770 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4771         if (current->mm)
4772                 might_lock_read(&current->mm->mmap_sem);
4773 #endif
4774 }
4775 EXPORT_SYMBOL(__might_fault);
4776 #endif
4777
4778 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4779 /*
4780  * Process all subpages of the specified huge page with the specified
4781  * operation.  The target subpage will be processed last to keep its
4782  * cache lines hot.
4783  */
4784 static inline void process_huge_page(
4785         unsigned long addr_hint, unsigned int pages_per_huge_page,
4786         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4787         void *arg)
4788 {
4789         int i, n, base, l;
4790         unsigned long addr = addr_hint &
4791                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4792
4793         /* Process target subpage last to keep its cache lines hot */
4794         might_sleep();
4795         n = (addr_hint - addr) / PAGE_SIZE;
4796         if (2 * n <= pages_per_huge_page) {
4797                 /* If target subpage in first half of huge page */
4798                 base = 0;
4799                 l = n;
4800                 /* Process subpages at the end of huge page */
4801                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4802                         cond_resched();
4803                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4804                 }
4805         } else {
4806                 /* If target subpage in second half of huge page */
4807                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4808                 l = pages_per_huge_page - n;
4809                 /* Process subpages at the begin of huge page */
4810                 for (i = 0; i < base; i++) {
4811                         cond_resched();
4812                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4813                 }
4814         }
4815         /*
4816          * Process remaining subpages in left-right-left-right pattern
4817          * towards the target subpage
4818          */
4819         for (i = 0; i < l; i++) {
4820                 int left_idx = base + i;
4821                 int right_idx = base + 2 * l - 1 - i;
4822
4823                 cond_resched();
4824                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4825                 cond_resched();
4826                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4827         }
4828 }
4829
4830 static void clear_gigantic_page(struct page *page,
4831                                 unsigned long addr,
4832                                 unsigned int pages_per_huge_page)
4833 {
4834         int i;
4835         struct page *p = page;
4836
4837         might_sleep();
4838         for (i = 0; i < pages_per_huge_page;
4839              i++, p = mem_map_next(p, page, i)) {
4840                 cond_resched();
4841                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4842         }
4843 }
4844
4845 static void clear_subpage(unsigned long addr, int idx, void *arg)
4846 {
4847         struct page *page = arg;
4848
4849         clear_user_highpage(page + idx, addr);
4850 }
4851
4852 void clear_huge_page(struct page *page,
4853                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4854 {
4855         unsigned long addr = addr_hint &
4856                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4857
4858         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4859                 clear_gigantic_page(page, addr, pages_per_huge_page);
4860                 return;
4861         }
4862
4863         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4864 }
4865
4866 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4867                                     unsigned long addr,
4868                                     struct vm_area_struct *vma,
4869                                     unsigned int pages_per_huge_page)
4870 {
4871         int i;
4872         struct page *dst_base = dst;
4873         struct page *src_base = src;
4874
4875         for (i = 0; i < pages_per_huge_page; ) {
4876                 cond_resched();
4877                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4878
4879                 i++;
4880                 dst = mem_map_next(dst, dst_base, i);
4881                 src = mem_map_next(src, src_base, i);
4882         }
4883 }
4884
4885 struct copy_subpage_arg {
4886         struct page *dst;
4887         struct page *src;
4888         struct vm_area_struct *vma;
4889 };
4890
4891 static void copy_subpage(unsigned long addr, int idx, void *arg)
4892 {
4893         struct copy_subpage_arg *copy_arg = arg;
4894
4895         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4896                            addr, copy_arg->vma);
4897 }
4898
4899 void copy_user_huge_page(struct page *dst, struct page *src,
4900                          unsigned long addr_hint, struct vm_area_struct *vma,
4901                          unsigned int pages_per_huge_page)
4902 {
4903         unsigned long addr = addr_hint &
4904                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4905         struct copy_subpage_arg arg = {
4906                 .dst = dst,
4907                 .src = src,
4908                 .vma = vma,
4909         };
4910
4911         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4912                 copy_user_gigantic_page(dst, src, addr, vma,
4913                                         pages_per_huge_page);
4914                 return;
4915         }
4916
4917         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4918 }
4919
4920 long copy_huge_page_from_user(struct page *dst_page,
4921                                 const void __user *usr_src,
4922                                 unsigned int pages_per_huge_page,
4923                                 bool allow_pagefault)
4924 {
4925         void *src = (void *)usr_src;
4926         void *page_kaddr;
4927         unsigned long i, rc = 0;
4928         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4929         struct page *subpage = dst_page;
4930
4931         for (i = 0; i < pages_per_huge_page;
4932              i++, subpage = mem_map_next(subpage, dst_page, i)) {
4933                 if (allow_pagefault)
4934                         page_kaddr = kmap(subpage);
4935                 else
4936                         page_kaddr = kmap_atomic(subpage);
4937                 rc = copy_from_user(page_kaddr,
4938                                 (const void __user *)(src + i * PAGE_SIZE),
4939                                 PAGE_SIZE);
4940                 if (allow_pagefault)
4941                         kunmap(subpage);
4942                 else
4943                         kunmap_atomic(page_kaddr);
4944
4945                 ret_val -= (PAGE_SIZE - rc);
4946                 if (rc)
4947                         break;
4948
4949                 cond_resched();
4950         }
4951         return ret_val;
4952 }
4953 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4954
4955 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4956
4957 static struct kmem_cache *page_ptl_cachep;
4958
4959 void __init ptlock_cache_init(void)
4960 {
4961         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4962                         SLAB_PANIC, NULL);
4963 }
4964
4965 bool ptlock_alloc(struct page *page)
4966 {
4967         spinlock_t *ptl;
4968
4969         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4970         if (!ptl)
4971                 return false;
4972         page->ptl = ptl;
4973         return true;
4974 }
4975
4976 void ptlock_free(struct page *page)
4977 {
4978         kmem_cache_free(page_ptl_cachep, page->ptl);
4979 }
4980 #endif