GNU Linux-libre 5.10.217-gnu1
[releases.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 static int __init disable_randmaps(char *s)
138 {
139         randomize_va_space = 0;
140         return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146
147 unsigned long highest_memmap_pfn __read_mostly;
148
149 /*
150  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151  */
152 static int __init init_zero_pfn(void)
153 {
154         zero_pfn = page_to_pfn(ZERO_PAGE(0));
155         return 0;
156 }
157 early_initcall(init_zero_pfn);
158
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161         trace_rss_stat(mm, member, count);
162 }
163
164 #if defined(SPLIT_RSS_COUNTING)
165
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168         int i;
169
170         for (i = 0; i < NR_MM_COUNTERS; i++) {
171                 if (current->rss_stat.count[i]) {
172                         add_mm_counter(mm, i, current->rss_stat.count[i]);
173                         current->rss_stat.count[i] = 0;
174                 }
175         }
176         current->rss_stat.events = 0;
177 }
178
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181         struct task_struct *task = current;
182
183         if (likely(task->mm == mm))
184                 task->rss_stat.count[member] += val;
185         else
186                 add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH  (64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195         if (unlikely(task != current))
196                 return;
197         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198                 sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208
209 #endif /* SPLIT_RSS_COUNTING */
210
211 /*
212  * Note: this doesn't free the actual pages themselves. That
213  * has been handled earlier when unmapping all the memory regions.
214  */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216                            unsigned long addr)
217 {
218         pgtable_t token = pmd_pgtable(*pmd);
219         pmd_clear(pmd);
220         pte_free_tlb(tlb, token, addr);
221         mm_dec_nr_ptes(tlb->mm);
222 }
223
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225                                 unsigned long addr, unsigned long end,
226                                 unsigned long floor, unsigned long ceiling)
227 {
228         pmd_t *pmd;
229         unsigned long next;
230         unsigned long start;
231
232         start = addr;
233         pmd = pmd_offset(pud, addr);
234         do {
235                 next = pmd_addr_end(addr, end);
236                 if (pmd_none_or_clear_bad(pmd))
237                         continue;
238                 free_pte_range(tlb, pmd, addr);
239         } while (pmd++, addr = next, addr != end);
240
241         start &= PUD_MASK;
242         if (start < floor)
243                 return;
244         if (ceiling) {
245                 ceiling &= PUD_MASK;
246                 if (!ceiling)
247                         return;
248         }
249         if (end - 1 > ceiling - 1)
250                 return;
251
252         pmd = pmd_offset(pud, start);
253         pud_clear(pud);
254         pmd_free_tlb(tlb, pmd, start);
255         mm_dec_nr_pmds(tlb->mm);
256 }
257
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259                                 unsigned long addr, unsigned long end,
260                                 unsigned long floor, unsigned long ceiling)
261 {
262         pud_t *pud;
263         unsigned long next;
264         unsigned long start;
265
266         start = addr;
267         pud = pud_offset(p4d, addr);
268         do {
269                 next = pud_addr_end(addr, end);
270                 if (pud_none_or_clear_bad(pud))
271                         continue;
272                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273         } while (pud++, addr = next, addr != end);
274
275         start &= P4D_MASK;
276         if (start < floor)
277                 return;
278         if (ceiling) {
279                 ceiling &= P4D_MASK;
280                 if (!ceiling)
281                         return;
282         }
283         if (end - 1 > ceiling - 1)
284                 return;
285
286         pud = pud_offset(p4d, start);
287         p4d_clear(p4d);
288         pud_free_tlb(tlb, pud, start);
289         mm_dec_nr_puds(tlb->mm);
290 }
291
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293                                 unsigned long addr, unsigned long end,
294                                 unsigned long floor, unsigned long ceiling)
295 {
296         p4d_t *p4d;
297         unsigned long next;
298         unsigned long start;
299
300         start = addr;
301         p4d = p4d_offset(pgd, addr);
302         do {
303                 next = p4d_addr_end(addr, end);
304                 if (p4d_none_or_clear_bad(p4d))
305                         continue;
306                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307         } while (p4d++, addr = next, addr != end);
308
309         start &= PGDIR_MASK;
310         if (start < floor)
311                 return;
312         if (ceiling) {
313                 ceiling &= PGDIR_MASK;
314                 if (!ceiling)
315                         return;
316         }
317         if (end - 1 > ceiling - 1)
318                 return;
319
320         p4d = p4d_offset(pgd, start);
321         pgd_clear(pgd);
322         p4d_free_tlb(tlb, p4d, start);
323 }
324
325 /*
326  * This function frees user-level page tables of a process.
327  */
328 void free_pgd_range(struct mmu_gather *tlb,
329                         unsigned long addr, unsigned long end,
330                         unsigned long floor, unsigned long ceiling)
331 {
332         pgd_t *pgd;
333         unsigned long next;
334
335         /*
336          * The next few lines have given us lots of grief...
337          *
338          * Why are we testing PMD* at this top level?  Because often
339          * there will be no work to do at all, and we'd prefer not to
340          * go all the way down to the bottom just to discover that.
341          *
342          * Why all these "- 1"s?  Because 0 represents both the bottom
343          * of the address space and the top of it (using -1 for the
344          * top wouldn't help much: the masks would do the wrong thing).
345          * The rule is that addr 0 and floor 0 refer to the bottom of
346          * the address space, but end 0 and ceiling 0 refer to the top
347          * Comparisons need to use "end - 1" and "ceiling - 1" (though
348          * that end 0 case should be mythical).
349          *
350          * Wherever addr is brought up or ceiling brought down, we must
351          * be careful to reject "the opposite 0" before it confuses the
352          * subsequent tests.  But what about where end is brought down
353          * by PMD_SIZE below? no, end can't go down to 0 there.
354          *
355          * Whereas we round start (addr) and ceiling down, by different
356          * masks at different levels, in order to test whether a table
357          * now has no other vmas using it, so can be freed, we don't
358          * bother to round floor or end up - the tests don't need that.
359          */
360
361         addr &= PMD_MASK;
362         if (addr < floor) {
363                 addr += PMD_SIZE;
364                 if (!addr)
365                         return;
366         }
367         if (ceiling) {
368                 ceiling &= PMD_MASK;
369                 if (!ceiling)
370                         return;
371         }
372         if (end - 1 > ceiling - 1)
373                 end -= PMD_SIZE;
374         if (addr > end - 1)
375                 return;
376         /*
377          * We add page table cache pages with PAGE_SIZE,
378          * (see pte_free_tlb()), flush the tlb if we need
379          */
380         tlb_change_page_size(tlb, PAGE_SIZE);
381         pgd = pgd_offset(tlb->mm, addr);
382         do {
383                 next = pgd_addr_end(addr, end);
384                 if (pgd_none_or_clear_bad(pgd))
385                         continue;
386                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387         } while (pgd++, addr = next, addr != end);
388 }
389
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391                 unsigned long floor, unsigned long ceiling)
392 {
393         while (vma) {
394                 struct vm_area_struct *next = vma->vm_next;
395                 unsigned long addr = vma->vm_start;
396
397                 /*
398                  * Hide vma from rmap and truncate_pagecache before freeing
399                  * pgtables
400                  */
401                 unlink_anon_vmas(vma);
402                 unlink_file_vma(vma);
403
404                 if (is_vm_hugetlb_page(vma)) {
405                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406                                 floor, next ? next->vm_start : ceiling);
407                 } else {
408                         /*
409                          * Optimization: gather nearby vmas into one call down
410                          */
411                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412                                && !is_vm_hugetlb_page(next)) {
413                                 vma = next;
414                                 next = vma->vm_next;
415                                 unlink_anon_vmas(vma);
416                                 unlink_file_vma(vma);
417                         }
418                         free_pgd_range(tlb, addr, vma->vm_end,
419                                 floor, next ? next->vm_start : ceiling);
420                 }
421                 vma = next;
422         }
423 }
424
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427         spinlock_t *ptl;
428         pgtable_t new = pte_alloc_one(mm);
429         if (!new)
430                 return -ENOMEM;
431
432         /*
433          * Ensure all pte setup (eg. pte page lock and page clearing) are
434          * visible before the pte is made visible to other CPUs by being
435          * put into page tables.
436          *
437          * The other side of the story is the pointer chasing in the page
438          * table walking code (when walking the page table without locking;
439          * ie. most of the time). Fortunately, these data accesses consist
440          * of a chain of data-dependent loads, meaning most CPUs (alpha
441          * being the notable exception) will already guarantee loads are
442          * seen in-order. See the alpha page table accessors for the
443          * smp_rmb() barriers in page table walking code.
444          */
445         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
447         ptl = pmd_lock(mm, pmd);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 mm_inc_nr_ptes(mm);
450                 pmd_populate(mm, pmd, new);
451                 new = NULL;
452         }
453         spin_unlock(ptl);
454         if (new)
455                 pte_free(mm, new);
456         return 0;
457 }
458
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461         pte_t *new = pte_alloc_one_kernel(&init_mm);
462         if (!new)
463                 return -ENOMEM;
464
465         smp_wmb(); /* See comment in __pte_alloc */
466
467         spin_lock(&init_mm.page_table_lock);
468         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
469                 pmd_populate_kernel(&init_mm, pmd, new);
470                 new = NULL;
471         }
472         spin_unlock(&init_mm.page_table_lock);
473         if (new)
474                 pte_free_kernel(&init_mm, new);
475         return 0;
476 }
477
478 static inline void init_rss_vec(int *rss)
479 {
480         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485         int i;
486
487         if (current->mm == mm)
488                 sync_mm_rss(mm);
489         for (i = 0; i < NR_MM_COUNTERS; i++)
490                 if (rss[i])
491                         add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495  * This function is called to print an error when a bad pte
496  * is found. For example, we might have a PFN-mapped pte in
497  * a region that doesn't allow it.
498  *
499  * The calling function must still handle the error.
500  */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502                           pte_t pte, struct page *page)
503 {
504         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505         p4d_t *p4d = p4d_offset(pgd, addr);
506         pud_t *pud = pud_offset(p4d, addr);
507         pmd_t *pmd = pmd_offset(pud, addr);
508         struct address_space *mapping;
509         pgoff_t index;
510         static unsigned long resume;
511         static unsigned long nr_shown;
512         static unsigned long nr_unshown;
513
514         /*
515          * Allow a burst of 60 reports, then keep quiet for that minute;
516          * or allow a steady drip of one report per second.
517          */
518         if (nr_shown == 60) {
519                 if (time_before(jiffies, resume)) {
520                         nr_unshown++;
521                         return;
522                 }
523                 if (nr_unshown) {
524                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525                                  nr_unshown);
526                         nr_unshown = 0;
527                 }
528                 nr_shown = 0;
529         }
530         if (nr_shown++ == 0)
531                 resume = jiffies + 60 * HZ;
532
533         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534         index = linear_page_index(vma, addr);
535
536         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
537                  current->comm,
538                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
539         if (page)
540                 dump_page(page, "bad pte");
541         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544                  vma->vm_file,
545                  vma->vm_ops ? vma->vm_ops->fault : NULL,
546                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547                  mapping ? mapping->a_ops->readpage : NULL);
548         dump_stack();
549         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553  * vm_normal_page -- This function gets the "struct page" associated with a pte.
554  *
555  * "Special" mappings do not wish to be associated with a "struct page" (either
556  * it doesn't exist, or it exists but they don't want to touch it). In this
557  * case, NULL is returned here. "Normal" mappings do have a struct page.
558  *
559  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560  * pte bit, in which case this function is trivial. Secondly, an architecture
561  * may not have a spare pte bit, which requires a more complicated scheme,
562  * described below.
563  *
564  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565  * special mapping (even if there are underlying and valid "struct pages").
566  * COWed pages of a VM_PFNMAP are always normal.
567  *
568  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571  * mapping will always honor the rule
572  *
573  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574  *
575  * And for normal mappings this is false.
576  *
577  * This restricts such mappings to be a linear translation from virtual address
578  * to pfn. To get around this restriction, we allow arbitrary mappings so long
579  * as the vma is not a COW mapping; in that case, we know that all ptes are
580  * special (because none can have been COWed).
581  *
582  *
583  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584  *
585  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586  * page" backing, however the difference is that _all_ pages with a struct
587  * page (that is, those where pfn_valid is true) are refcounted and considered
588  * normal pages by the VM. The disadvantage is that pages are refcounted
589  * (which can be slower and simply not an option for some PFNMAP users). The
590  * advantage is that we don't have to follow the strict linearity rule of
591  * PFNMAP mappings in order to support COWable mappings.
592  *
593  */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595                             pte_t pte)
596 {
597         unsigned long pfn = pte_pfn(pte);
598
599         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600                 if (likely(!pte_special(pte)))
601                         goto check_pfn;
602                 if (vma->vm_ops && vma->vm_ops->find_special_page)
603                         return vma->vm_ops->find_special_page(vma, addr);
604                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605                         return NULL;
606                 if (is_zero_pfn(pfn))
607                         return NULL;
608                 if (pte_devmap(pte))
609                         return NULL;
610
611                 print_bad_pte(vma, addr, pte, NULL);
612                 return NULL;
613         }
614
615         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616
617         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618                 if (vma->vm_flags & VM_MIXEDMAP) {
619                         if (!pfn_valid(pfn))
620                                 return NULL;
621                         goto out;
622                 } else {
623                         unsigned long off;
624                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
625                         if (pfn == vma->vm_pgoff + off)
626                                 return NULL;
627                         if (!is_cow_mapping(vma->vm_flags))
628                                 return NULL;
629                 }
630         }
631
632         if (is_zero_pfn(pfn))
633                 return NULL;
634
635 check_pfn:
636         if (unlikely(pfn > highest_memmap_pfn)) {
637                 print_bad_pte(vma, addr, pte, NULL);
638                 return NULL;
639         }
640
641         /*
642          * NOTE! We still have PageReserved() pages in the page tables.
643          * eg. VDSO mappings can cause them to exist.
644          */
645 out:
646         return pfn_to_page(pfn);
647 }
648
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651                                 pmd_t pmd)
652 {
653         unsigned long pfn = pmd_pfn(pmd);
654
655         /*
656          * There is no pmd_special() but there may be special pmds, e.g.
657          * in a direct-access (dax) mapping, so let's just replicate the
658          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659          */
660         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661                 if (vma->vm_flags & VM_MIXEDMAP) {
662                         if (!pfn_valid(pfn))
663                                 return NULL;
664                         goto out;
665                 } else {
666                         unsigned long off;
667                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
668                         if (pfn == vma->vm_pgoff + off)
669                                 return NULL;
670                         if (!is_cow_mapping(vma->vm_flags))
671                                 return NULL;
672                 }
673         }
674
675         if (pmd_devmap(pmd))
676                 return NULL;
677         if (is_huge_zero_pmd(pmd))
678                 return NULL;
679         if (unlikely(pfn > highest_memmap_pfn))
680                 return NULL;
681
682         /*
683          * NOTE! We still have PageReserved() pages in the page tables.
684          * eg. VDSO mappings can cause them to exist.
685          */
686 out:
687         return pfn_to_page(pfn);
688 }
689 #endif
690
691 /*
692  * copy one vm_area from one task to the other. Assumes the page tables
693  * already present in the new task to be cleared in the whole range
694  * covered by this vma.
695  */
696
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
700                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
701 {
702         unsigned long vm_flags = dst_vma->vm_flags;
703         pte_t pte = *src_pte;
704         struct page *page;
705         swp_entry_t entry = pte_to_swp_entry(pte);
706
707         if (likely(!non_swap_entry(entry))) {
708                 if (swap_duplicate(entry) < 0)
709                         return entry.val;
710
711                 /* make sure dst_mm is on swapoff's mmlist. */
712                 if (unlikely(list_empty(&dst_mm->mmlist))) {
713                         spin_lock(&mmlist_lock);
714                         if (list_empty(&dst_mm->mmlist))
715                                 list_add(&dst_mm->mmlist,
716                                                 &src_mm->mmlist);
717                         spin_unlock(&mmlist_lock);
718                 }
719                 rss[MM_SWAPENTS]++;
720         } else if (is_migration_entry(entry)) {
721                 page = migration_entry_to_page(entry);
722
723                 rss[mm_counter(page)]++;
724
725                 if (is_write_migration_entry(entry) &&
726                                 is_cow_mapping(vm_flags)) {
727                         /*
728                          * COW mappings require pages in both
729                          * parent and child to be set to read.
730                          */
731                         make_migration_entry_read(&entry);
732                         pte = swp_entry_to_pte(entry);
733                         if (pte_swp_soft_dirty(*src_pte))
734                                 pte = pte_swp_mksoft_dirty(pte);
735                         if (pte_swp_uffd_wp(*src_pte))
736                                 pte = pte_swp_mkuffd_wp(pte);
737                         set_pte_at(src_mm, addr, src_pte, pte);
738                 }
739         } else if (is_device_private_entry(entry)) {
740                 page = device_private_entry_to_page(entry);
741
742                 /*
743                  * Update rss count even for unaddressable pages, as
744                  * they should treated just like normal pages in this
745                  * respect.
746                  *
747                  * We will likely want to have some new rss counters
748                  * for unaddressable pages, at some point. But for now
749                  * keep things as they are.
750                  */
751                 get_page(page);
752                 rss[mm_counter(page)]++;
753                 page_dup_rmap(page, false);
754
755                 /*
756                  * We do not preserve soft-dirty information, because so
757                  * far, checkpoint/restore is the only feature that
758                  * requires that. And checkpoint/restore does not work
759                  * when a device driver is involved (you cannot easily
760                  * save and restore device driver state).
761                  */
762                 if (is_write_device_private_entry(entry) &&
763                     is_cow_mapping(vm_flags)) {
764                         make_device_private_entry_read(&entry);
765                         pte = swp_entry_to_pte(entry);
766                         if (pte_swp_uffd_wp(*src_pte))
767                                 pte = pte_swp_mkuffd_wp(pte);
768                         set_pte_at(src_mm, addr, src_pte, pte);
769                 }
770         }
771         if (!userfaultfd_wp(dst_vma))
772                 pte = pte_swp_clear_uffd_wp(pte);
773         set_pte_at(dst_mm, addr, dst_pte, pte);
774         return 0;
775 }
776
777 /*
778  * Copy a present and normal page if necessary.
779  *
780  * NOTE! The usual case is that this doesn't need to do
781  * anything, and can just return a positive value. That
782  * will let the caller know that it can just increase
783  * the page refcount and re-use the pte the traditional
784  * way.
785  *
786  * But _if_ we need to copy it because it needs to be
787  * pinned in the parent (and the child should get its own
788  * copy rather than just a reference to the same page),
789  * we'll do that here and return zero to let the caller
790  * know we're done.
791  *
792  * And if we need a pre-allocated page but don't yet have
793  * one, return a negative error to let the preallocation
794  * code know so that it can do so outside the page table
795  * lock.
796  */
797 static inline int
798 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
799                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
800                   struct page **prealloc, pte_t pte, struct page *page)
801 {
802         struct mm_struct *src_mm = src_vma->vm_mm;
803         struct page *new_page;
804
805         if (!is_cow_mapping(src_vma->vm_flags))
806                 return 1;
807
808         /*
809          * What we want to do is to check whether this page may
810          * have been pinned by the parent process.  If so,
811          * instead of wrprotect the pte on both sides, we copy
812          * the page immediately so that we'll always guarantee
813          * the pinned page won't be randomly replaced in the
814          * future.
815          *
816          * The page pinning checks are just "has this mm ever
817          * seen pinning", along with the (inexact) check of
818          * the page count. That might give false positives for
819          * for pinning, but it will work correctly.
820          */
821         if (likely(!atomic_read(&src_mm->has_pinned)))
822                 return 1;
823         if (likely(!page_maybe_dma_pinned(page)))
824                 return 1;
825
826         /*
827          * The vma->anon_vma of the child process may be NULL
828          * because the entire vma does not contain anonymous pages.
829          * A BUG will occur when the copy_present_page() passes
830          * a copy of a non-anonymous page of that vma to the
831          * page_add_new_anon_rmap() to set up new anonymous rmap.
832          * Return 1 if the page is not an anonymous page.
833          */
834         if (!PageAnon(page))
835                 return 1;
836
837         new_page = *prealloc;
838         if (!new_page)
839                 return -EAGAIN;
840
841         /*
842          * We have a prealloc page, all good!  Take it
843          * over and copy the page & arm it.
844          */
845         *prealloc = NULL;
846         copy_user_highpage(new_page, page, addr, src_vma);
847         __SetPageUptodate(new_page);
848         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
849         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
850         rss[mm_counter(new_page)]++;
851
852         /* All done, just insert the new page copy in the child */
853         pte = mk_pte(new_page, dst_vma->vm_page_prot);
854         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
855         if (userfaultfd_pte_wp(dst_vma, *src_pte))
856                 /* Uffd-wp needs to be delivered to dest pte as well */
857                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
858         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
859         return 0;
860 }
861
862 /*
863  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
864  * is required to copy this pte.
865  */
866 static inline int
867 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
868                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
869                  struct page **prealloc)
870 {
871         struct mm_struct *src_mm = src_vma->vm_mm;
872         unsigned long vm_flags = src_vma->vm_flags;
873         pte_t pte = *src_pte;
874         struct page *page;
875
876         page = vm_normal_page(src_vma, addr, pte);
877         if (page) {
878                 int retval;
879
880                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
881                                            addr, rss, prealloc, pte, page);
882                 if (retval <= 0)
883                         return retval;
884
885                 get_page(page);
886                 page_dup_rmap(page, false);
887                 rss[mm_counter(page)]++;
888         }
889
890         /*
891          * If it's a COW mapping, write protect it both
892          * in the parent and the child
893          */
894         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
895                 ptep_set_wrprotect(src_mm, addr, src_pte);
896                 pte = pte_wrprotect(pte);
897         }
898
899         /*
900          * If it's a shared mapping, mark it clean in
901          * the child
902          */
903         if (vm_flags & VM_SHARED)
904                 pte = pte_mkclean(pte);
905         pte = pte_mkold(pte);
906
907         if (!userfaultfd_wp(dst_vma))
908                 pte = pte_clear_uffd_wp(pte);
909
910         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
911         return 0;
912 }
913
914 static inline struct page *
915 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
916                    unsigned long addr)
917 {
918         struct page *new_page;
919
920         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
921         if (!new_page)
922                 return NULL;
923
924         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
925                 put_page(new_page);
926                 return NULL;
927         }
928         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
929
930         return new_page;
931 }
932
933 static int
934 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
935                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
936                unsigned long end)
937 {
938         struct mm_struct *dst_mm = dst_vma->vm_mm;
939         struct mm_struct *src_mm = src_vma->vm_mm;
940         pte_t *orig_src_pte, *orig_dst_pte;
941         pte_t *src_pte, *dst_pte;
942         spinlock_t *src_ptl, *dst_ptl;
943         int progress, ret = 0;
944         int rss[NR_MM_COUNTERS];
945         swp_entry_t entry = (swp_entry_t){0};
946         struct page *prealloc = NULL;
947
948 again:
949         progress = 0;
950         init_rss_vec(rss);
951
952         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
953         if (!dst_pte) {
954                 ret = -ENOMEM;
955                 goto out;
956         }
957         src_pte = pte_offset_map(src_pmd, addr);
958         src_ptl = pte_lockptr(src_mm, src_pmd);
959         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
960         orig_src_pte = src_pte;
961         orig_dst_pte = dst_pte;
962         arch_enter_lazy_mmu_mode();
963
964         do {
965                 /*
966                  * We are holding two locks at this point - either of them
967                  * could generate latencies in another task on another CPU.
968                  */
969                 if (progress >= 32) {
970                         progress = 0;
971                         if (need_resched() ||
972                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
973                                 break;
974                 }
975                 if (pte_none(*src_pte)) {
976                         progress++;
977                         continue;
978                 }
979                 if (unlikely(!pte_present(*src_pte))) {
980                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
981                                                         dst_pte, src_pte,
982                                                         dst_vma, src_vma,
983                                                         addr, rss);
984                         if (entry.val)
985                                 break;
986                         progress += 8;
987                         continue;
988                 }
989                 /* copy_present_pte() will clear `*prealloc' if consumed */
990                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
991                                        addr, rss, &prealloc);
992                 /*
993                  * If we need a pre-allocated page for this pte, drop the
994                  * locks, allocate, and try again.
995                  */
996                 if (unlikely(ret == -EAGAIN))
997                         break;
998                 if (unlikely(prealloc)) {
999                         /*
1000                          * pre-alloc page cannot be reused by next time so as
1001                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1002                          * will allocate page according to address).  This
1003                          * could only happen if one pinned pte changed.
1004                          */
1005                         put_page(prealloc);
1006                         prealloc = NULL;
1007                 }
1008                 progress += 8;
1009         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1010
1011         arch_leave_lazy_mmu_mode();
1012         spin_unlock(src_ptl);
1013         pte_unmap(orig_src_pte);
1014         add_mm_rss_vec(dst_mm, rss);
1015         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1016         cond_resched();
1017
1018         if (entry.val) {
1019                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1020                         ret = -ENOMEM;
1021                         goto out;
1022                 }
1023                 entry.val = 0;
1024         } else if (ret) {
1025                 WARN_ON_ONCE(ret != -EAGAIN);
1026                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1027                 if (!prealloc)
1028                         return -ENOMEM;
1029                 /* We've captured and resolved the error. Reset, try again. */
1030                 ret = 0;
1031         }
1032         if (addr != end)
1033                 goto again;
1034 out:
1035         if (unlikely(prealloc))
1036                 put_page(prealloc);
1037         return ret;
1038 }
1039
1040 static inline int
1041 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1042                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1043                unsigned long end)
1044 {
1045         struct mm_struct *dst_mm = dst_vma->vm_mm;
1046         struct mm_struct *src_mm = src_vma->vm_mm;
1047         pmd_t *src_pmd, *dst_pmd;
1048         unsigned long next;
1049
1050         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1051         if (!dst_pmd)
1052                 return -ENOMEM;
1053         src_pmd = pmd_offset(src_pud, addr);
1054         do {
1055                 next = pmd_addr_end(addr, end);
1056                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1057                         || pmd_devmap(*src_pmd)) {
1058                         int err;
1059                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1060                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1061                                             addr, dst_vma, src_vma);
1062                         if (err == -ENOMEM)
1063                                 return -ENOMEM;
1064                         if (!err)
1065                                 continue;
1066                         /* fall through */
1067                 }
1068                 if (pmd_none_or_clear_bad(src_pmd))
1069                         continue;
1070                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1071                                    addr, next))
1072                         return -ENOMEM;
1073         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1074         return 0;
1075 }
1076
1077 static inline int
1078 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1080                unsigned long end)
1081 {
1082         struct mm_struct *dst_mm = dst_vma->vm_mm;
1083         struct mm_struct *src_mm = src_vma->vm_mm;
1084         pud_t *src_pud, *dst_pud;
1085         unsigned long next;
1086
1087         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1088         if (!dst_pud)
1089                 return -ENOMEM;
1090         src_pud = pud_offset(src_p4d, addr);
1091         do {
1092                 next = pud_addr_end(addr, end);
1093                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1094                         int err;
1095
1096                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1097                         err = copy_huge_pud(dst_mm, src_mm,
1098                                             dst_pud, src_pud, addr, src_vma);
1099                         if (err == -ENOMEM)
1100                                 return -ENOMEM;
1101                         if (!err)
1102                                 continue;
1103                         /* fall through */
1104                 }
1105                 if (pud_none_or_clear_bad(src_pud))
1106                         continue;
1107                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1108                                    addr, next))
1109                         return -ENOMEM;
1110         } while (dst_pud++, src_pud++, addr = next, addr != end);
1111         return 0;
1112 }
1113
1114 static inline int
1115 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1116                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1117                unsigned long end)
1118 {
1119         struct mm_struct *dst_mm = dst_vma->vm_mm;
1120         p4d_t *src_p4d, *dst_p4d;
1121         unsigned long next;
1122
1123         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1124         if (!dst_p4d)
1125                 return -ENOMEM;
1126         src_p4d = p4d_offset(src_pgd, addr);
1127         do {
1128                 next = p4d_addr_end(addr, end);
1129                 if (p4d_none_or_clear_bad(src_p4d))
1130                         continue;
1131                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1132                                    addr, next))
1133                         return -ENOMEM;
1134         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1135         return 0;
1136 }
1137
1138 int
1139 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1140 {
1141         pgd_t *src_pgd, *dst_pgd;
1142         unsigned long next;
1143         unsigned long addr = src_vma->vm_start;
1144         unsigned long end = src_vma->vm_end;
1145         struct mm_struct *dst_mm = dst_vma->vm_mm;
1146         struct mm_struct *src_mm = src_vma->vm_mm;
1147         struct mmu_notifier_range range;
1148         bool is_cow;
1149         int ret;
1150
1151         /*
1152          * Don't copy ptes where a page fault will fill them correctly.
1153          * Fork becomes much lighter when there are big shared or private
1154          * readonly mappings. The tradeoff is that copy_page_range is more
1155          * efficient than faulting.
1156          */
1157         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1158             !src_vma->anon_vma)
1159                 return 0;
1160
1161         if (is_vm_hugetlb_page(src_vma))
1162                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1163
1164         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1165                 /*
1166                  * We do not free on error cases below as remove_vma
1167                  * gets called on error from higher level routine
1168                  */
1169                 ret = track_pfn_copy(src_vma);
1170                 if (ret)
1171                         return ret;
1172         }
1173
1174         /*
1175          * We need to invalidate the secondary MMU mappings only when
1176          * there could be a permission downgrade on the ptes of the
1177          * parent mm. And a permission downgrade will only happen if
1178          * is_cow_mapping() returns true.
1179          */
1180         is_cow = is_cow_mapping(src_vma->vm_flags);
1181
1182         if (is_cow) {
1183                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1184                                         0, src_vma, src_mm, addr, end);
1185                 mmu_notifier_invalidate_range_start(&range);
1186                 /*
1187                  * Disabling preemption is not needed for the write side, as
1188                  * the read side doesn't spin, but goes to the mmap_lock.
1189                  *
1190                  * Use the raw variant of the seqcount_t write API to avoid
1191                  * lockdep complaining about preemptibility.
1192                  */
1193                 mmap_assert_write_locked(src_mm);
1194                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1195         }
1196
1197         ret = 0;
1198         dst_pgd = pgd_offset(dst_mm, addr);
1199         src_pgd = pgd_offset(src_mm, addr);
1200         do {
1201                 next = pgd_addr_end(addr, end);
1202                 if (pgd_none_or_clear_bad(src_pgd))
1203                         continue;
1204                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1205                                             addr, next))) {
1206                         ret = -ENOMEM;
1207                         break;
1208                 }
1209         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1210
1211         if (is_cow) {
1212                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1213                 mmu_notifier_invalidate_range_end(&range);
1214         }
1215         return ret;
1216 }
1217
1218 /* Whether we should zap all COWed (private) pages too */
1219 static inline bool should_zap_cows(struct zap_details *details)
1220 {
1221         /* By default, zap all pages */
1222         if (!details)
1223                 return true;
1224
1225         /* Or, we zap COWed pages only if the caller wants to */
1226         return !details->check_mapping;
1227 }
1228
1229 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1230                                 struct vm_area_struct *vma, pmd_t *pmd,
1231                                 unsigned long addr, unsigned long end,
1232                                 struct zap_details *details)
1233 {
1234         struct mm_struct *mm = tlb->mm;
1235         int force_flush = 0;
1236         int rss[NR_MM_COUNTERS];
1237         spinlock_t *ptl;
1238         pte_t *start_pte;
1239         pte_t *pte;
1240         swp_entry_t entry;
1241
1242         tlb_change_page_size(tlb, PAGE_SIZE);
1243 again:
1244         init_rss_vec(rss);
1245         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1246         pte = start_pte;
1247         flush_tlb_batched_pending(mm);
1248         arch_enter_lazy_mmu_mode();
1249         do {
1250                 pte_t ptent = *pte;
1251                 if (pte_none(ptent))
1252                         continue;
1253
1254                 if (need_resched())
1255                         break;
1256
1257                 if (pte_present(ptent)) {
1258                         struct page *page;
1259
1260                         page = vm_normal_page(vma, addr, ptent);
1261                         if (unlikely(details) && page) {
1262                                 /*
1263                                  * unmap_shared_mapping_pages() wants to
1264                                  * invalidate cache without truncating:
1265                                  * unmap shared but keep private pages.
1266                                  */
1267                                 if (details->check_mapping &&
1268                                     details->check_mapping != page_rmapping(page))
1269                                         continue;
1270                         }
1271                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1272                                                         tlb->fullmm);
1273                         tlb_remove_tlb_entry(tlb, pte, addr);
1274                         if (unlikely(!page))
1275                                 continue;
1276
1277                         if (!PageAnon(page)) {
1278                                 if (pte_dirty(ptent)) {
1279                                         force_flush = 1;
1280                                         set_page_dirty(page);
1281                                 }
1282                                 if (pte_young(ptent) &&
1283                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1284                                         mark_page_accessed(page);
1285                         }
1286                         rss[mm_counter(page)]--;
1287                         page_remove_rmap(page, false);
1288                         if (unlikely(page_mapcount(page) < 0))
1289                                 print_bad_pte(vma, addr, ptent, page);
1290                         if (unlikely(__tlb_remove_page(tlb, page))) {
1291                                 force_flush = 1;
1292                                 addr += PAGE_SIZE;
1293                                 break;
1294                         }
1295                         continue;
1296                 }
1297
1298                 entry = pte_to_swp_entry(ptent);
1299                 if (is_device_private_entry(entry)) {
1300                         struct page *page = device_private_entry_to_page(entry);
1301
1302                         if (unlikely(details && details->check_mapping)) {
1303                                 /*
1304                                  * unmap_shared_mapping_pages() wants to
1305                                  * invalidate cache without truncating:
1306                                  * unmap shared but keep private pages.
1307                                  */
1308                                 if (details->check_mapping !=
1309                                     page_rmapping(page))
1310                                         continue;
1311                         }
1312
1313                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1314                         rss[mm_counter(page)]--;
1315                         page_remove_rmap(page, false);
1316                         put_page(page);
1317                         continue;
1318                 }
1319
1320                 if (!non_swap_entry(entry)) {
1321                         /* Genuine swap entry, hence a private anon page */
1322                         if (!should_zap_cows(details))
1323                                 continue;
1324                         rss[MM_SWAPENTS]--;
1325                 } else if (is_migration_entry(entry)) {
1326                         struct page *page;
1327
1328                         page = migration_entry_to_page(entry);
1329                         if (details && details->check_mapping &&
1330                             details->check_mapping != page_rmapping(page))
1331                                 continue;
1332                         rss[mm_counter(page)]--;
1333                 }
1334                 if (unlikely(!free_swap_and_cache(entry)))
1335                         print_bad_pte(vma, addr, ptent, NULL);
1336                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1337         } while (pte++, addr += PAGE_SIZE, addr != end);
1338
1339         add_mm_rss_vec(mm, rss);
1340         arch_leave_lazy_mmu_mode();
1341
1342         /* Do the actual TLB flush before dropping ptl */
1343         if (force_flush)
1344                 tlb_flush_mmu_tlbonly(tlb);
1345         pte_unmap_unlock(start_pte, ptl);
1346
1347         /*
1348          * If we forced a TLB flush (either due to running out of
1349          * batch buffers or because we needed to flush dirty TLB
1350          * entries before releasing the ptl), free the batched
1351          * memory too. Restart if we didn't do everything.
1352          */
1353         if (force_flush) {
1354                 force_flush = 0;
1355                 tlb_flush_mmu(tlb);
1356         }
1357
1358         if (addr != end) {
1359                 cond_resched();
1360                 goto again;
1361         }
1362
1363         return addr;
1364 }
1365
1366 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1367                                 struct vm_area_struct *vma, pud_t *pud,
1368                                 unsigned long addr, unsigned long end,
1369                                 struct zap_details *details)
1370 {
1371         pmd_t *pmd;
1372         unsigned long next;
1373
1374         pmd = pmd_offset(pud, addr);
1375         do {
1376                 next = pmd_addr_end(addr, end);
1377                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1378                         if (next - addr != HPAGE_PMD_SIZE)
1379                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1380                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1381                                 goto next;
1382                         /* fall through */
1383                 } else if (details && details->single_page &&
1384                            PageTransCompound(details->single_page) &&
1385                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1386                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1387                         /*
1388                          * Take and drop THP pmd lock so that we cannot return
1389                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1390                          * but not yet decremented compound_mapcount().
1391                          */
1392                         spin_unlock(ptl);
1393                 }
1394
1395                 /*
1396                  * Here there can be other concurrent MADV_DONTNEED or
1397                  * trans huge page faults running, and if the pmd is
1398                  * none or trans huge it can change under us. This is
1399                  * because MADV_DONTNEED holds the mmap_lock in read
1400                  * mode.
1401                  */
1402                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1403                         goto next;
1404                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1405 next:
1406                 cond_resched();
1407         } while (pmd++, addr = next, addr != end);
1408
1409         return addr;
1410 }
1411
1412 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1413                                 struct vm_area_struct *vma, p4d_t *p4d,
1414                                 unsigned long addr, unsigned long end,
1415                                 struct zap_details *details)
1416 {
1417         pud_t *pud;
1418         unsigned long next;
1419
1420         pud = pud_offset(p4d, addr);
1421         do {
1422                 next = pud_addr_end(addr, end);
1423                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1424                         if (next - addr != HPAGE_PUD_SIZE) {
1425                                 mmap_assert_locked(tlb->mm);
1426                                 split_huge_pud(vma, pud, addr);
1427                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1428                                 goto next;
1429                         /* fall through */
1430                 }
1431                 if (pud_none_or_clear_bad(pud))
1432                         continue;
1433                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1434 next:
1435                 cond_resched();
1436         } while (pud++, addr = next, addr != end);
1437
1438         return addr;
1439 }
1440
1441 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1442                                 struct vm_area_struct *vma, pgd_t *pgd,
1443                                 unsigned long addr, unsigned long end,
1444                                 struct zap_details *details)
1445 {
1446         p4d_t *p4d;
1447         unsigned long next;
1448
1449         p4d = p4d_offset(pgd, addr);
1450         do {
1451                 next = p4d_addr_end(addr, end);
1452                 if (p4d_none_or_clear_bad(p4d))
1453                         continue;
1454                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1455         } while (p4d++, addr = next, addr != end);
1456
1457         return addr;
1458 }
1459
1460 void unmap_page_range(struct mmu_gather *tlb,
1461                              struct vm_area_struct *vma,
1462                              unsigned long addr, unsigned long end,
1463                              struct zap_details *details)
1464 {
1465         pgd_t *pgd;
1466         unsigned long next;
1467
1468         BUG_ON(addr >= end);
1469         tlb_start_vma(tlb, vma);
1470         pgd = pgd_offset(vma->vm_mm, addr);
1471         do {
1472                 next = pgd_addr_end(addr, end);
1473                 if (pgd_none_or_clear_bad(pgd))
1474                         continue;
1475                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1476         } while (pgd++, addr = next, addr != end);
1477         tlb_end_vma(tlb, vma);
1478 }
1479
1480
1481 static void unmap_single_vma(struct mmu_gather *tlb,
1482                 struct vm_area_struct *vma, unsigned long start_addr,
1483                 unsigned long end_addr,
1484                 struct zap_details *details)
1485 {
1486         unsigned long start = max(vma->vm_start, start_addr);
1487         unsigned long end;
1488
1489         if (start >= vma->vm_end)
1490                 return;
1491         end = min(vma->vm_end, end_addr);
1492         if (end <= vma->vm_start)
1493                 return;
1494
1495         if (vma->vm_file)
1496                 uprobe_munmap(vma, start, end);
1497
1498         if (unlikely(vma->vm_flags & VM_PFNMAP))
1499                 untrack_pfn(vma, 0, 0);
1500
1501         if (start != end) {
1502                 if (unlikely(is_vm_hugetlb_page(vma))) {
1503                         /*
1504                          * It is undesirable to test vma->vm_file as it
1505                          * should be non-null for valid hugetlb area.
1506                          * However, vm_file will be NULL in the error
1507                          * cleanup path of mmap_region. When
1508                          * hugetlbfs ->mmap method fails,
1509                          * mmap_region() nullifies vma->vm_file
1510                          * before calling this function to clean up.
1511                          * Since no pte has actually been setup, it is
1512                          * safe to do nothing in this case.
1513                          */
1514                         if (vma->vm_file) {
1515                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1516                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1517                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1518                         }
1519                 } else
1520                         unmap_page_range(tlb, vma, start, end, details);
1521         }
1522 }
1523
1524 /**
1525  * unmap_vmas - unmap a range of memory covered by a list of vma's
1526  * @tlb: address of the caller's struct mmu_gather
1527  * @vma: the starting vma
1528  * @start_addr: virtual address at which to start unmapping
1529  * @end_addr: virtual address at which to end unmapping
1530  *
1531  * Unmap all pages in the vma list.
1532  *
1533  * Only addresses between `start' and `end' will be unmapped.
1534  *
1535  * The VMA list must be sorted in ascending virtual address order.
1536  *
1537  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1538  * range after unmap_vmas() returns.  So the only responsibility here is to
1539  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1540  * drops the lock and schedules.
1541  */
1542 void unmap_vmas(struct mmu_gather *tlb,
1543                 struct vm_area_struct *vma, unsigned long start_addr,
1544                 unsigned long end_addr)
1545 {
1546         struct mmu_notifier_range range;
1547
1548         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1549                                 start_addr, end_addr);
1550         mmu_notifier_invalidate_range_start(&range);
1551         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1552                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1553         mmu_notifier_invalidate_range_end(&range);
1554 }
1555
1556 /**
1557  * zap_page_range - remove user pages in a given range
1558  * @vma: vm_area_struct holding the applicable pages
1559  * @start: starting address of pages to zap
1560  * @size: number of bytes to zap
1561  *
1562  * Caller must protect the VMA list
1563  */
1564 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1565                 unsigned long size)
1566 {
1567         struct mmu_notifier_range range;
1568         struct mmu_gather tlb;
1569
1570         lru_add_drain();
1571         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1572                                 start, start + size);
1573         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1574         update_hiwater_rss(vma->vm_mm);
1575         mmu_notifier_invalidate_range_start(&range);
1576         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1577                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1578         mmu_notifier_invalidate_range_end(&range);
1579         tlb_finish_mmu(&tlb, start, range.end);
1580 }
1581
1582 /**
1583  * zap_page_range_single - remove user pages in a given range
1584  * @vma: vm_area_struct holding the applicable pages
1585  * @address: starting address of pages to zap
1586  * @size: number of bytes to zap
1587  * @details: details of shared cache invalidation
1588  *
1589  * The range must fit into one VMA.
1590  */
1591 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1592                 unsigned long size, struct zap_details *details)
1593 {
1594         struct mmu_notifier_range range;
1595         struct mmu_gather tlb;
1596
1597         lru_add_drain();
1598         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1599                                 address, address + size);
1600         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1601         update_hiwater_rss(vma->vm_mm);
1602         mmu_notifier_invalidate_range_start(&range);
1603         unmap_single_vma(&tlb, vma, address, range.end, details);
1604         mmu_notifier_invalidate_range_end(&range);
1605         tlb_finish_mmu(&tlb, address, range.end);
1606 }
1607
1608 /**
1609  * zap_vma_ptes - remove ptes mapping the vma
1610  * @vma: vm_area_struct holding ptes to be zapped
1611  * @address: starting address of pages to zap
1612  * @size: number of bytes to zap
1613  *
1614  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1615  *
1616  * The entire address range must be fully contained within the vma.
1617  *
1618  */
1619 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1620                 unsigned long size)
1621 {
1622         if (address < vma->vm_start || address + size > vma->vm_end ||
1623                         !(vma->vm_flags & VM_PFNMAP))
1624                 return;
1625
1626         zap_page_range_single(vma, address, size, NULL);
1627 }
1628 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1629
1630 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1631 {
1632         pgd_t *pgd;
1633         p4d_t *p4d;
1634         pud_t *pud;
1635         pmd_t *pmd;
1636
1637         pgd = pgd_offset(mm, addr);
1638         p4d = p4d_alloc(mm, pgd, addr);
1639         if (!p4d)
1640                 return NULL;
1641         pud = pud_alloc(mm, p4d, addr);
1642         if (!pud)
1643                 return NULL;
1644         pmd = pmd_alloc(mm, pud, addr);
1645         if (!pmd)
1646                 return NULL;
1647
1648         VM_BUG_ON(pmd_trans_huge(*pmd));
1649         return pmd;
1650 }
1651
1652 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1653                         spinlock_t **ptl)
1654 {
1655         pmd_t *pmd = walk_to_pmd(mm, addr);
1656
1657         if (!pmd)
1658                 return NULL;
1659         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1660 }
1661
1662 static int validate_page_before_insert(struct page *page)
1663 {
1664         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1665                 return -EINVAL;
1666         flush_dcache_page(page);
1667         return 0;
1668 }
1669
1670 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1671                         unsigned long addr, struct page *page, pgprot_t prot)
1672 {
1673         if (!pte_none(*pte))
1674                 return -EBUSY;
1675         /* Ok, finally just insert the thing.. */
1676         get_page(page);
1677         inc_mm_counter_fast(mm, mm_counter_file(page));
1678         page_add_file_rmap(page, false);
1679         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1680         return 0;
1681 }
1682
1683 /*
1684  * This is the old fallback for page remapping.
1685  *
1686  * For historical reasons, it only allows reserved pages. Only
1687  * old drivers should use this, and they needed to mark their
1688  * pages reserved for the old functions anyway.
1689  */
1690 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1691                         struct page *page, pgprot_t prot)
1692 {
1693         struct mm_struct *mm = vma->vm_mm;
1694         int retval;
1695         pte_t *pte;
1696         spinlock_t *ptl;
1697
1698         retval = validate_page_before_insert(page);
1699         if (retval)
1700                 goto out;
1701         retval = -ENOMEM;
1702         pte = get_locked_pte(mm, addr, &ptl);
1703         if (!pte)
1704                 goto out;
1705         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1706         pte_unmap_unlock(pte, ptl);
1707 out:
1708         return retval;
1709 }
1710
1711 #ifdef pte_index
1712 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1713                         unsigned long addr, struct page *page, pgprot_t prot)
1714 {
1715         int err;
1716
1717         if (!page_count(page))
1718                 return -EINVAL;
1719         err = validate_page_before_insert(page);
1720         if (err)
1721                 return err;
1722         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1723 }
1724
1725 /* insert_pages() amortizes the cost of spinlock operations
1726  * when inserting pages in a loop. Arch *must* define pte_index.
1727  */
1728 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1729                         struct page **pages, unsigned long *num, pgprot_t prot)
1730 {
1731         pmd_t *pmd = NULL;
1732         pte_t *start_pte, *pte;
1733         spinlock_t *pte_lock;
1734         struct mm_struct *const mm = vma->vm_mm;
1735         unsigned long curr_page_idx = 0;
1736         unsigned long remaining_pages_total = *num;
1737         unsigned long pages_to_write_in_pmd;
1738         int ret;
1739 more:
1740         ret = -EFAULT;
1741         pmd = walk_to_pmd(mm, addr);
1742         if (!pmd)
1743                 goto out;
1744
1745         pages_to_write_in_pmd = min_t(unsigned long,
1746                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1747
1748         /* Allocate the PTE if necessary; takes PMD lock once only. */
1749         ret = -ENOMEM;
1750         if (pte_alloc(mm, pmd))
1751                 goto out;
1752
1753         while (pages_to_write_in_pmd) {
1754                 int pte_idx = 0;
1755                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1756
1757                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1758                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1759                         int err = insert_page_in_batch_locked(mm, pte,
1760                                 addr, pages[curr_page_idx], prot);
1761                         if (unlikely(err)) {
1762                                 pte_unmap_unlock(start_pte, pte_lock);
1763                                 ret = err;
1764                                 remaining_pages_total -= pte_idx;
1765                                 goto out;
1766                         }
1767                         addr += PAGE_SIZE;
1768                         ++curr_page_idx;
1769                 }
1770                 pte_unmap_unlock(start_pte, pte_lock);
1771                 pages_to_write_in_pmd -= batch_size;
1772                 remaining_pages_total -= batch_size;
1773         }
1774         if (remaining_pages_total)
1775                 goto more;
1776         ret = 0;
1777 out:
1778         *num = remaining_pages_total;
1779         return ret;
1780 }
1781 #endif  /* ifdef pte_index */
1782
1783 /**
1784  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1785  * @vma: user vma to map to
1786  * @addr: target start user address of these pages
1787  * @pages: source kernel pages
1788  * @num: in: number of pages to map. out: number of pages that were *not*
1789  * mapped. (0 means all pages were successfully mapped).
1790  *
1791  * Preferred over vm_insert_page() when inserting multiple pages.
1792  *
1793  * In case of error, we may have mapped a subset of the provided
1794  * pages. It is the caller's responsibility to account for this case.
1795  *
1796  * The same restrictions apply as in vm_insert_page().
1797  */
1798 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1799                         struct page **pages, unsigned long *num)
1800 {
1801 #ifdef pte_index
1802         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1803
1804         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1805                 return -EFAULT;
1806         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1807                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1808                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1809                 vma->vm_flags |= VM_MIXEDMAP;
1810         }
1811         /* Defer page refcount checking till we're about to map that page. */
1812         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1813 #else
1814         unsigned long idx = 0, pgcount = *num;
1815         int err = -EINVAL;
1816
1817         for (; idx < pgcount; ++idx) {
1818                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1819                 if (err)
1820                         break;
1821         }
1822         *num = pgcount - idx;
1823         return err;
1824 #endif  /* ifdef pte_index */
1825 }
1826 EXPORT_SYMBOL(vm_insert_pages);
1827
1828 /**
1829  * vm_insert_page - insert single page into user vma
1830  * @vma: user vma to map to
1831  * @addr: target user address of this page
1832  * @page: source kernel page
1833  *
1834  * This allows drivers to insert individual pages they've allocated
1835  * into a user vma.
1836  *
1837  * The page has to be a nice clean _individual_ kernel allocation.
1838  * If you allocate a compound page, you need to have marked it as
1839  * such (__GFP_COMP), or manually just split the page up yourself
1840  * (see split_page()).
1841  *
1842  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1843  * took an arbitrary page protection parameter. This doesn't allow
1844  * that. Your vma protection will have to be set up correctly, which
1845  * means that if you want a shared writable mapping, you'd better
1846  * ask for a shared writable mapping!
1847  *
1848  * The page does not need to be reserved.
1849  *
1850  * Usually this function is called from f_op->mmap() handler
1851  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1852  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1853  * function from other places, for example from page-fault handler.
1854  *
1855  * Return: %0 on success, negative error code otherwise.
1856  */
1857 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1858                         struct page *page)
1859 {
1860         if (addr < vma->vm_start || addr >= vma->vm_end)
1861                 return -EFAULT;
1862         if (!page_count(page))
1863                 return -EINVAL;
1864         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1865                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1866                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1867                 vma->vm_flags |= VM_MIXEDMAP;
1868         }
1869         return insert_page(vma, addr, page, vma->vm_page_prot);
1870 }
1871 EXPORT_SYMBOL(vm_insert_page);
1872
1873 /*
1874  * __vm_map_pages - maps range of kernel pages into user vma
1875  * @vma: user vma to map to
1876  * @pages: pointer to array of source kernel pages
1877  * @num: number of pages in page array
1878  * @offset: user's requested vm_pgoff
1879  *
1880  * This allows drivers to map range of kernel pages into a user vma.
1881  *
1882  * Return: 0 on success and error code otherwise.
1883  */
1884 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1885                                 unsigned long num, unsigned long offset)
1886 {
1887         unsigned long count = vma_pages(vma);
1888         unsigned long uaddr = vma->vm_start;
1889         int ret, i;
1890
1891         /* Fail if the user requested offset is beyond the end of the object */
1892         if (offset >= num)
1893                 return -ENXIO;
1894
1895         /* Fail if the user requested size exceeds available object size */
1896         if (count > num - offset)
1897                 return -ENXIO;
1898
1899         for (i = 0; i < count; i++) {
1900                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1901                 if (ret < 0)
1902                         return ret;
1903                 uaddr += PAGE_SIZE;
1904         }
1905
1906         return 0;
1907 }
1908
1909 /**
1910  * vm_map_pages - maps range of kernel pages starts with non zero offset
1911  * @vma: user vma to map to
1912  * @pages: pointer to array of source kernel pages
1913  * @num: number of pages in page array
1914  *
1915  * Maps an object consisting of @num pages, catering for the user's
1916  * requested vm_pgoff
1917  *
1918  * If we fail to insert any page into the vma, the function will return
1919  * immediately leaving any previously inserted pages present.  Callers
1920  * from the mmap handler may immediately return the error as their caller
1921  * will destroy the vma, removing any successfully inserted pages. Other
1922  * callers should make their own arrangements for calling unmap_region().
1923  *
1924  * Context: Process context. Called by mmap handlers.
1925  * Return: 0 on success and error code otherwise.
1926  */
1927 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1928                                 unsigned long num)
1929 {
1930         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1931 }
1932 EXPORT_SYMBOL(vm_map_pages);
1933
1934 /**
1935  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1936  * @vma: user vma to map to
1937  * @pages: pointer to array of source kernel pages
1938  * @num: number of pages in page array
1939  *
1940  * Similar to vm_map_pages(), except that it explicitly sets the offset
1941  * to 0. This function is intended for the drivers that did not consider
1942  * vm_pgoff.
1943  *
1944  * Context: Process context. Called by mmap handlers.
1945  * Return: 0 on success and error code otherwise.
1946  */
1947 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1948                                 unsigned long num)
1949 {
1950         return __vm_map_pages(vma, pages, num, 0);
1951 }
1952 EXPORT_SYMBOL(vm_map_pages_zero);
1953
1954 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1955                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1956 {
1957         struct mm_struct *mm = vma->vm_mm;
1958         pte_t *pte, entry;
1959         spinlock_t *ptl;
1960
1961         pte = get_locked_pte(mm, addr, &ptl);
1962         if (!pte)
1963                 return VM_FAULT_OOM;
1964         if (!pte_none(*pte)) {
1965                 if (mkwrite) {
1966                         /*
1967                          * For read faults on private mappings the PFN passed
1968                          * in may not match the PFN we have mapped if the
1969                          * mapped PFN is a writeable COW page.  In the mkwrite
1970                          * case we are creating a writable PTE for a shared
1971                          * mapping and we expect the PFNs to match. If they
1972                          * don't match, we are likely racing with block
1973                          * allocation and mapping invalidation so just skip the
1974                          * update.
1975                          */
1976                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1977                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1978                                 goto out_unlock;
1979                         }
1980                         entry = pte_mkyoung(*pte);
1981                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1982                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1983                                 update_mmu_cache(vma, addr, pte);
1984                 }
1985                 goto out_unlock;
1986         }
1987
1988         /* Ok, finally just insert the thing.. */
1989         if (pfn_t_devmap(pfn))
1990                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1991         else
1992                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1993
1994         if (mkwrite) {
1995                 entry = pte_mkyoung(entry);
1996                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1997         }
1998
1999         set_pte_at(mm, addr, pte, entry);
2000         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2001
2002 out_unlock:
2003         pte_unmap_unlock(pte, ptl);
2004         return VM_FAULT_NOPAGE;
2005 }
2006
2007 /**
2008  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2009  * @vma: user vma to map to
2010  * @addr: target user address of this page
2011  * @pfn: source kernel pfn
2012  * @pgprot: pgprot flags for the inserted page
2013  *
2014  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2015  * to override pgprot on a per-page basis.
2016  *
2017  * This only makes sense for IO mappings, and it makes no sense for
2018  * COW mappings.  In general, using multiple vmas is preferable;
2019  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2020  * impractical.
2021  *
2022  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2023  * a value of @pgprot different from that of @vma->vm_page_prot.
2024  *
2025  * Context: Process context.  May allocate using %GFP_KERNEL.
2026  * Return: vm_fault_t value.
2027  */
2028 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2029                         unsigned long pfn, pgprot_t pgprot)
2030 {
2031         /*
2032          * Technically, architectures with pte_special can avoid all these
2033          * restrictions (same for remap_pfn_range).  However we would like
2034          * consistency in testing and feature parity among all, so we should
2035          * try to keep these invariants in place for everybody.
2036          */
2037         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2038         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2039                                                 (VM_PFNMAP|VM_MIXEDMAP));
2040         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2041         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2042
2043         if (addr < vma->vm_start || addr >= vma->vm_end)
2044                 return VM_FAULT_SIGBUS;
2045
2046         if (!pfn_modify_allowed(pfn, pgprot))
2047                 return VM_FAULT_SIGBUS;
2048
2049         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2050
2051         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2052                         false);
2053 }
2054 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2055
2056 /**
2057  * vmf_insert_pfn - insert single pfn into user vma
2058  * @vma: user vma to map to
2059  * @addr: target user address of this page
2060  * @pfn: source kernel pfn
2061  *
2062  * Similar to vm_insert_page, this allows drivers to insert individual pages
2063  * they've allocated into a user vma. Same comments apply.
2064  *
2065  * This function should only be called from a vm_ops->fault handler, and
2066  * in that case the handler should return the result of this function.
2067  *
2068  * vma cannot be a COW mapping.
2069  *
2070  * As this is called only for pages that do not currently exist, we
2071  * do not need to flush old virtual caches or the TLB.
2072  *
2073  * Context: Process context.  May allocate using %GFP_KERNEL.
2074  * Return: vm_fault_t value.
2075  */
2076 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2077                         unsigned long pfn)
2078 {
2079         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2080 }
2081 EXPORT_SYMBOL(vmf_insert_pfn);
2082
2083 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2084 {
2085         /* these checks mirror the abort conditions in vm_normal_page */
2086         if (vma->vm_flags & VM_MIXEDMAP)
2087                 return true;
2088         if (pfn_t_devmap(pfn))
2089                 return true;
2090         if (pfn_t_special(pfn))
2091                 return true;
2092         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2093                 return true;
2094         return false;
2095 }
2096
2097 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2098                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2099                 bool mkwrite)
2100 {
2101         int err;
2102
2103         BUG_ON(!vm_mixed_ok(vma, pfn));
2104
2105         if (addr < vma->vm_start || addr >= vma->vm_end)
2106                 return VM_FAULT_SIGBUS;
2107
2108         track_pfn_insert(vma, &pgprot, pfn);
2109
2110         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2111                 return VM_FAULT_SIGBUS;
2112
2113         /*
2114          * If we don't have pte special, then we have to use the pfn_valid()
2115          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2116          * refcount the page if pfn_valid is true (hence insert_page rather
2117          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2118          * without pte special, it would there be refcounted as a normal page.
2119          */
2120         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2121             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2122                 struct page *page;
2123
2124                 /*
2125                  * At this point we are committed to insert_page()
2126                  * regardless of whether the caller specified flags that
2127                  * result in pfn_t_has_page() == false.
2128                  */
2129                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2130                 err = insert_page(vma, addr, page, pgprot);
2131         } else {
2132                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2133         }
2134
2135         if (err == -ENOMEM)
2136                 return VM_FAULT_OOM;
2137         if (err < 0 && err != -EBUSY)
2138                 return VM_FAULT_SIGBUS;
2139
2140         return VM_FAULT_NOPAGE;
2141 }
2142
2143 /**
2144  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2145  * @vma: user vma to map to
2146  * @addr: target user address of this page
2147  * @pfn: source kernel pfn
2148  * @pgprot: pgprot flags for the inserted page
2149  *
2150  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2151  * to override pgprot on a per-page basis.
2152  *
2153  * Typically this function should be used by drivers to set caching- and
2154  * encryption bits different than those of @vma->vm_page_prot, because
2155  * the caching- or encryption mode may not be known at mmap() time.
2156  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2157  * to set caching and encryption bits for those vmas (except for COW pages).
2158  * This is ensured by core vm only modifying these page table entries using
2159  * functions that don't touch caching- or encryption bits, using pte_modify()
2160  * if needed. (See for example mprotect()).
2161  * Also when new page-table entries are created, this is only done using the
2162  * fault() callback, and never using the value of vma->vm_page_prot,
2163  * except for page-table entries that point to anonymous pages as the result
2164  * of COW.
2165  *
2166  * Context: Process context.  May allocate using %GFP_KERNEL.
2167  * Return: vm_fault_t value.
2168  */
2169 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2170                                  pfn_t pfn, pgprot_t pgprot)
2171 {
2172         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2173 }
2174 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2175
2176 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2177                 pfn_t pfn)
2178 {
2179         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2180 }
2181 EXPORT_SYMBOL(vmf_insert_mixed);
2182
2183 /*
2184  *  If the insertion of PTE failed because someone else already added a
2185  *  different entry in the mean time, we treat that as success as we assume
2186  *  the same entry was actually inserted.
2187  */
2188 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2189                 unsigned long addr, pfn_t pfn)
2190 {
2191         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2192 }
2193 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2194
2195 /*
2196  * maps a range of physical memory into the requested pages. the old
2197  * mappings are removed. any references to nonexistent pages results
2198  * in null mappings (currently treated as "copy-on-access")
2199  */
2200 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2201                         unsigned long addr, unsigned long end,
2202                         unsigned long pfn, pgprot_t prot)
2203 {
2204         pte_t *pte, *mapped_pte;
2205         spinlock_t *ptl;
2206         int err = 0;
2207
2208         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2209         if (!pte)
2210                 return -ENOMEM;
2211         arch_enter_lazy_mmu_mode();
2212         do {
2213                 BUG_ON(!pte_none(*pte));
2214                 if (!pfn_modify_allowed(pfn, prot)) {
2215                         err = -EACCES;
2216                         break;
2217                 }
2218                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2219                 pfn++;
2220         } while (pte++, addr += PAGE_SIZE, addr != end);
2221         arch_leave_lazy_mmu_mode();
2222         pte_unmap_unlock(mapped_pte, ptl);
2223         return err;
2224 }
2225
2226 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2227                         unsigned long addr, unsigned long end,
2228                         unsigned long pfn, pgprot_t prot)
2229 {
2230         pmd_t *pmd;
2231         unsigned long next;
2232         int err;
2233
2234         pfn -= addr >> PAGE_SHIFT;
2235         pmd = pmd_alloc(mm, pud, addr);
2236         if (!pmd)
2237                 return -ENOMEM;
2238         VM_BUG_ON(pmd_trans_huge(*pmd));
2239         do {
2240                 next = pmd_addr_end(addr, end);
2241                 err = remap_pte_range(mm, pmd, addr, next,
2242                                 pfn + (addr >> PAGE_SHIFT), prot);
2243                 if (err)
2244                         return err;
2245         } while (pmd++, addr = next, addr != end);
2246         return 0;
2247 }
2248
2249 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2250                         unsigned long addr, unsigned long end,
2251                         unsigned long pfn, pgprot_t prot)
2252 {
2253         pud_t *pud;
2254         unsigned long next;
2255         int err;
2256
2257         pfn -= addr >> PAGE_SHIFT;
2258         pud = pud_alloc(mm, p4d, addr);
2259         if (!pud)
2260                 return -ENOMEM;
2261         do {
2262                 next = pud_addr_end(addr, end);
2263                 err = remap_pmd_range(mm, pud, addr, next,
2264                                 pfn + (addr >> PAGE_SHIFT), prot);
2265                 if (err)
2266                         return err;
2267         } while (pud++, addr = next, addr != end);
2268         return 0;
2269 }
2270
2271 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2272                         unsigned long addr, unsigned long end,
2273                         unsigned long pfn, pgprot_t prot)
2274 {
2275         p4d_t *p4d;
2276         unsigned long next;
2277         int err;
2278
2279         pfn -= addr >> PAGE_SHIFT;
2280         p4d = p4d_alloc(mm, pgd, addr);
2281         if (!p4d)
2282                 return -ENOMEM;
2283         do {
2284                 next = p4d_addr_end(addr, end);
2285                 err = remap_pud_range(mm, p4d, addr, next,
2286                                 pfn + (addr >> PAGE_SHIFT), prot);
2287                 if (err)
2288                         return err;
2289         } while (p4d++, addr = next, addr != end);
2290         return 0;
2291 }
2292
2293 /**
2294  * remap_pfn_range - remap kernel memory to userspace
2295  * @vma: user vma to map to
2296  * @addr: target page aligned user address to start at
2297  * @pfn: page frame number of kernel physical memory address
2298  * @size: size of mapping area
2299  * @prot: page protection flags for this mapping
2300  *
2301  * Note: this is only safe if the mm semaphore is held when called.
2302  *
2303  * Return: %0 on success, negative error code otherwise.
2304  */
2305 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2306                     unsigned long pfn, unsigned long size, pgprot_t prot)
2307 {
2308         pgd_t *pgd;
2309         unsigned long next;
2310         unsigned long end = addr + PAGE_ALIGN(size);
2311         struct mm_struct *mm = vma->vm_mm;
2312         unsigned long remap_pfn = pfn;
2313         int err;
2314
2315         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2316                 return -EINVAL;
2317
2318         /*
2319          * Physically remapped pages are special. Tell the
2320          * rest of the world about it:
2321          *   VM_IO tells people not to look at these pages
2322          *      (accesses can have side effects).
2323          *   VM_PFNMAP tells the core MM that the base pages are just
2324          *      raw PFN mappings, and do not have a "struct page" associated
2325          *      with them.
2326          *   VM_DONTEXPAND
2327          *      Disable vma merging and expanding with mremap().
2328          *   VM_DONTDUMP
2329          *      Omit vma from core dump, even when VM_IO turned off.
2330          *
2331          * There's a horrible special case to handle copy-on-write
2332          * behaviour that some programs depend on. We mark the "original"
2333          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2334          * See vm_normal_page() for details.
2335          */
2336         if (is_cow_mapping(vma->vm_flags)) {
2337                 if (addr != vma->vm_start || end != vma->vm_end)
2338                         return -EINVAL;
2339                 vma->vm_pgoff = pfn;
2340         }
2341
2342         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2343         if (err)
2344                 return -EINVAL;
2345
2346         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2347
2348         BUG_ON(addr >= end);
2349         pfn -= addr >> PAGE_SHIFT;
2350         pgd = pgd_offset(mm, addr);
2351         flush_cache_range(vma, addr, end);
2352         do {
2353                 next = pgd_addr_end(addr, end);
2354                 err = remap_p4d_range(mm, pgd, addr, next,
2355                                 pfn + (addr >> PAGE_SHIFT), prot);
2356                 if (err)
2357                         break;
2358         } while (pgd++, addr = next, addr != end);
2359
2360         if (err)
2361                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2362
2363         return err;
2364 }
2365 EXPORT_SYMBOL(remap_pfn_range);
2366
2367 /**
2368  * vm_iomap_memory - remap memory to userspace
2369  * @vma: user vma to map to
2370  * @start: start of the physical memory to be mapped
2371  * @len: size of area
2372  *
2373  * This is a simplified io_remap_pfn_range() for common driver use. The
2374  * driver just needs to give us the physical memory range to be mapped,
2375  * we'll figure out the rest from the vma information.
2376  *
2377  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2378  * whatever write-combining details or similar.
2379  *
2380  * Return: %0 on success, negative error code otherwise.
2381  */
2382 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2383 {
2384         unsigned long vm_len, pfn, pages;
2385
2386         /* Check that the physical memory area passed in looks valid */
2387         if (start + len < start)
2388                 return -EINVAL;
2389         /*
2390          * You *really* shouldn't map things that aren't page-aligned,
2391          * but we've historically allowed it because IO memory might
2392          * just have smaller alignment.
2393          */
2394         len += start & ~PAGE_MASK;
2395         pfn = start >> PAGE_SHIFT;
2396         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2397         if (pfn + pages < pfn)
2398                 return -EINVAL;
2399
2400         /* We start the mapping 'vm_pgoff' pages into the area */
2401         if (vma->vm_pgoff > pages)
2402                 return -EINVAL;
2403         pfn += vma->vm_pgoff;
2404         pages -= vma->vm_pgoff;
2405
2406         /* Can we fit all of the mapping? */
2407         vm_len = vma->vm_end - vma->vm_start;
2408         if (vm_len >> PAGE_SHIFT > pages)
2409                 return -EINVAL;
2410
2411         /* Ok, let it rip */
2412         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2413 }
2414 EXPORT_SYMBOL(vm_iomap_memory);
2415
2416 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2417                                      unsigned long addr, unsigned long end,
2418                                      pte_fn_t fn, void *data, bool create,
2419                                      pgtbl_mod_mask *mask)
2420 {
2421         pte_t *pte;
2422         int err = 0;
2423         spinlock_t *ptl;
2424
2425         if (create) {
2426                 pte = (mm == &init_mm) ?
2427                         pte_alloc_kernel_track(pmd, addr, mask) :
2428                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2429                 if (!pte)
2430                         return -ENOMEM;
2431         } else {
2432                 pte = (mm == &init_mm) ?
2433                         pte_offset_kernel(pmd, addr) :
2434                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2435         }
2436
2437         BUG_ON(pmd_huge(*pmd));
2438
2439         arch_enter_lazy_mmu_mode();
2440
2441         if (fn) {
2442                 do {
2443                         if (create || !pte_none(*pte)) {
2444                                 err = fn(pte++, addr, data);
2445                                 if (err)
2446                                         break;
2447                         }
2448                 } while (addr += PAGE_SIZE, addr != end);
2449         }
2450         *mask |= PGTBL_PTE_MODIFIED;
2451
2452         arch_leave_lazy_mmu_mode();
2453
2454         if (mm != &init_mm)
2455                 pte_unmap_unlock(pte-1, ptl);
2456         return err;
2457 }
2458
2459 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2460                                      unsigned long addr, unsigned long end,
2461                                      pte_fn_t fn, void *data, bool create,
2462                                      pgtbl_mod_mask *mask)
2463 {
2464         pmd_t *pmd;
2465         unsigned long next;
2466         int err = 0;
2467
2468         BUG_ON(pud_huge(*pud));
2469
2470         if (create) {
2471                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2472                 if (!pmd)
2473                         return -ENOMEM;
2474         } else {
2475                 pmd = pmd_offset(pud, addr);
2476         }
2477         do {
2478                 next = pmd_addr_end(addr, end);
2479                 if (create || !pmd_none_or_clear_bad(pmd)) {
2480                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2481                                                  create, mask);
2482                         if (err)
2483                                 break;
2484                 }
2485         } while (pmd++, addr = next, addr != end);
2486         return err;
2487 }
2488
2489 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2490                                      unsigned long addr, unsigned long end,
2491                                      pte_fn_t fn, void *data, bool create,
2492                                      pgtbl_mod_mask *mask)
2493 {
2494         pud_t *pud;
2495         unsigned long next;
2496         int err = 0;
2497
2498         if (create) {
2499                 pud = pud_alloc_track(mm, p4d, addr, mask);
2500                 if (!pud)
2501                         return -ENOMEM;
2502         } else {
2503                 pud = pud_offset(p4d, addr);
2504         }
2505         do {
2506                 next = pud_addr_end(addr, end);
2507                 if (create || !pud_none_or_clear_bad(pud)) {
2508                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2509                                                  create, mask);
2510                         if (err)
2511                                 break;
2512                 }
2513         } while (pud++, addr = next, addr != end);
2514         return err;
2515 }
2516
2517 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2518                                      unsigned long addr, unsigned long end,
2519                                      pte_fn_t fn, void *data, bool create,
2520                                      pgtbl_mod_mask *mask)
2521 {
2522         p4d_t *p4d;
2523         unsigned long next;
2524         int err = 0;
2525
2526         if (create) {
2527                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2528                 if (!p4d)
2529                         return -ENOMEM;
2530         } else {
2531                 p4d = p4d_offset(pgd, addr);
2532         }
2533         do {
2534                 next = p4d_addr_end(addr, end);
2535                 if (create || !p4d_none_or_clear_bad(p4d)) {
2536                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2537                                                  create, mask);
2538                         if (err)
2539                                 break;
2540                 }
2541         } while (p4d++, addr = next, addr != end);
2542         return err;
2543 }
2544
2545 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2546                                  unsigned long size, pte_fn_t fn,
2547                                  void *data, bool create)
2548 {
2549         pgd_t *pgd;
2550         unsigned long start = addr, next;
2551         unsigned long end = addr + size;
2552         pgtbl_mod_mask mask = 0;
2553         int err = 0;
2554
2555         if (WARN_ON(addr >= end))
2556                 return -EINVAL;
2557
2558         pgd = pgd_offset(mm, addr);
2559         do {
2560                 next = pgd_addr_end(addr, end);
2561                 if (!create && pgd_none_or_clear_bad(pgd))
2562                         continue;
2563                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2564                 if (err)
2565                         break;
2566         } while (pgd++, addr = next, addr != end);
2567
2568         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2569                 arch_sync_kernel_mappings(start, start + size);
2570
2571         return err;
2572 }
2573
2574 /*
2575  * Scan a region of virtual memory, filling in page tables as necessary
2576  * and calling a provided function on each leaf page table.
2577  */
2578 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2579                         unsigned long size, pte_fn_t fn, void *data)
2580 {
2581         return __apply_to_page_range(mm, addr, size, fn, data, true);
2582 }
2583 EXPORT_SYMBOL_GPL(apply_to_page_range);
2584
2585 /*
2586  * Scan a region of virtual memory, calling a provided function on
2587  * each leaf page table where it exists.
2588  *
2589  * Unlike apply_to_page_range, this does _not_ fill in page tables
2590  * where they are absent.
2591  */
2592 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2593                                  unsigned long size, pte_fn_t fn, void *data)
2594 {
2595         return __apply_to_page_range(mm, addr, size, fn, data, false);
2596 }
2597 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2598
2599 /*
2600  * handle_pte_fault chooses page fault handler according to an entry which was
2601  * read non-atomically.  Before making any commitment, on those architectures
2602  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2603  * parts, do_swap_page must check under lock before unmapping the pte and
2604  * proceeding (but do_wp_page is only called after already making such a check;
2605  * and do_anonymous_page can safely check later on).
2606  */
2607 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2608                                 pte_t *page_table, pte_t orig_pte)
2609 {
2610         int same = 1;
2611 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2612         if (sizeof(pte_t) > sizeof(unsigned long)) {
2613                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2614                 spin_lock(ptl);
2615                 same = pte_same(*page_table, orig_pte);
2616                 spin_unlock(ptl);
2617         }
2618 #endif
2619         pte_unmap(page_table);
2620         return same;
2621 }
2622
2623 static inline bool cow_user_page(struct page *dst, struct page *src,
2624                                  struct vm_fault *vmf)
2625 {
2626         bool ret;
2627         void *kaddr;
2628         void __user *uaddr;
2629         bool locked = false;
2630         struct vm_area_struct *vma = vmf->vma;
2631         struct mm_struct *mm = vma->vm_mm;
2632         unsigned long addr = vmf->address;
2633
2634         if (likely(src)) {
2635                 copy_user_highpage(dst, src, addr, vma);
2636                 return true;
2637         }
2638
2639         /*
2640          * If the source page was a PFN mapping, we don't have
2641          * a "struct page" for it. We do a best-effort copy by
2642          * just copying from the original user address. If that
2643          * fails, we just zero-fill it. Live with it.
2644          */
2645         kaddr = kmap_atomic(dst);
2646         uaddr = (void __user *)(addr & PAGE_MASK);
2647
2648         /*
2649          * On architectures with software "accessed" bits, we would
2650          * take a double page fault, so mark it accessed here.
2651          */
2652         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2653                 pte_t entry;
2654
2655                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2656                 locked = true;
2657                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2658                         /*
2659                          * Other thread has already handled the fault
2660                          * and update local tlb only
2661                          */
2662                         update_mmu_tlb(vma, addr, vmf->pte);
2663                         ret = false;
2664                         goto pte_unlock;
2665                 }
2666
2667                 entry = pte_mkyoung(vmf->orig_pte);
2668                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2669                         update_mmu_cache(vma, addr, vmf->pte);
2670         }
2671
2672         /*
2673          * This really shouldn't fail, because the page is there
2674          * in the page tables. But it might just be unreadable,
2675          * in which case we just give up and fill the result with
2676          * zeroes.
2677          */
2678         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2679                 if (locked)
2680                         goto warn;
2681
2682                 /* Re-validate under PTL if the page is still mapped */
2683                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2684                 locked = true;
2685                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2686                         /* The PTE changed under us, update local tlb */
2687                         update_mmu_tlb(vma, addr, vmf->pte);
2688                         ret = false;
2689                         goto pte_unlock;
2690                 }
2691
2692                 /*
2693                  * The same page can be mapped back since last copy attempt.
2694                  * Try to copy again under PTL.
2695                  */
2696                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2697                         /*
2698                          * Give a warn in case there can be some obscure
2699                          * use-case
2700                          */
2701 warn:
2702                         WARN_ON_ONCE(1);
2703                         clear_page(kaddr);
2704                 }
2705         }
2706
2707         ret = true;
2708
2709 pte_unlock:
2710         if (locked)
2711                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2712         kunmap_atomic(kaddr);
2713         flush_dcache_page(dst);
2714
2715         return ret;
2716 }
2717
2718 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2719 {
2720         struct file *vm_file = vma->vm_file;
2721
2722         if (vm_file)
2723                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2724
2725         /*
2726          * Special mappings (e.g. VDSO) do not have any file so fake
2727          * a default GFP_KERNEL for them.
2728          */
2729         return GFP_KERNEL;
2730 }
2731
2732 /*
2733  * Notify the address space that the page is about to become writable so that
2734  * it can prohibit this or wait for the page to get into an appropriate state.
2735  *
2736  * We do this without the lock held, so that it can sleep if it needs to.
2737  */
2738 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2739 {
2740         vm_fault_t ret;
2741         struct page *page = vmf->page;
2742         unsigned int old_flags = vmf->flags;
2743
2744         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2745
2746         if (vmf->vma->vm_file &&
2747             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2748                 return VM_FAULT_SIGBUS;
2749
2750         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2751         /* Restore original flags so that caller is not surprised */
2752         vmf->flags = old_flags;
2753         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2754                 return ret;
2755         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2756                 lock_page(page);
2757                 if (!page->mapping) {
2758                         unlock_page(page);
2759                         return 0; /* retry */
2760                 }
2761                 ret |= VM_FAULT_LOCKED;
2762         } else
2763                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2764         return ret;
2765 }
2766
2767 /*
2768  * Handle dirtying of a page in shared file mapping on a write fault.
2769  *
2770  * The function expects the page to be locked and unlocks it.
2771  */
2772 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2773 {
2774         struct vm_area_struct *vma = vmf->vma;
2775         struct address_space *mapping;
2776         struct page *page = vmf->page;
2777         bool dirtied;
2778         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2779
2780         dirtied = set_page_dirty(page);
2781         VM_BUG_ON_PAGE(PageAnon(page), page);
2782         /*
2783          * Take a local copy of the address_space - page.mapping may be zeroed
2784          * by truncate after unlock_page().   The address_space itself remains
2785          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2786          * release semantics to prevent the compiler from undoing this copying.
2787          */
2788         mapping = page_rmapping(page);
2789         unlock_page(page);
2790
2791         if (!page_mkwrite)
2792                 file_update_time(vma->vm_file);
2793
2794         /*
2795          * Throttle page dirtying rate down to writeback speed.
2796          *
2797          * mapping may be NULL here because some device drivers do not
2798          * set page.mapping but still dirty their pages
2799          *
2800          * Drop the mmap_lock before waiting on IO, if we can. The file
2801          * is pinning the mapping, as per above.
2802          */
2803         if ((dirtied || page_mkwrite) && mapping) {
2804                 struct file *fpin;
2805
2806                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2807                 balance_dirty_pages_ratelimited(mapping);
2808                 if (fpin) {
2809                         fput(fpin);
2810                         return VM_FAULT_RETRY;
2811                 }
2812         }
2813
2814         return 0;
2815 }
2816
2817 /*
2818  * Handle write page faults for pages that can be reused in the current vma
2819  *
2820  * This can happen either due to the mapping being with the VM_SHARED flag,
2821  * or due to us being the last reference standing to the page. In either
2822  * case, all we need to do here is to mark the page as writable and update
2823  * any related book-keeping.
2824  */
2825 static inline void wp_page_reuse(struct vm_fault *vmf)
2826         __releases(vmf->ptl)
2827 {
2828         struct vm_area_struct *vma = vmf->vma;
2829         struct page *page = vmf->page;
2830         pte_t entry;
2831         /*
2832          * Clear the pages cpupid information as the existing
2833          * information potentially belongs to a now completely
2834          * unrelated process.
2835          */
2836         if (page)
2837                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2838
2839         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2840         entry = pte_mkyoung(vmf->orig_pte);
2841         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2842         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2843                 update_mmu_cache(vma, vmf->address, vmf->pte);
2844         pte_unmap_unlock(vmf->pte, vmf->ptl);
2845         count_vm_event(PGREUSE);
2846 }
2847
2848 /*
2849  * Handle the case of a page which we actually need to copy to a new page.
2850  *
2851  * Called with mmap_lock locked and the old page referenced, but
2852  * without the ptl held.
2853  *
2854  * High level logic flow:
2855  *
2856  * - Allocate a page, copy the content of the old page to the new one.
2857  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2858  * - Take the PTL. If the pte changed, bail out and release the allocated page
2859  * - If the pte is still the way we remember it, update the page table and all
2860  *   relevant references. This includes dropping the reference the page-table
2861  *   held to the old page, as well as updating the rmap.
2862  * - In any case, unlock the PTL and drop the reference we took to the old page.
2863  */
2864 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2865 {
2866         struct vm_area_struct *vma = vmf->vma;
2867         struct mm_struct *mm = vma->vm_mm;
2868         struct page *old_page = vmf->page;
2869         struct page *new_page = NULL;
2870         pte_t entry;
2871         int page_copied = 0;
2872         struct mmu_notifier_range range;
2873
2874         if (unlikely(anon_vma_prepare(vma)))
2875                 goto oom;
2876
2877         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2878                 new_page = alloc_zeroed_user_highpage_movable(vma,
2879                                                               vmf->address);
2880                 if (!new_page)
2881                         goto oom;
2882         } else {
2883                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2884                                 vmf->address);
2885                 if (!new_page)
2886                         goto oom;
2887
2888                 if (!cow_user_page(new_page, old_page, vmf)) {
2889                         /*
2890                          * COW failed, if the fault was solved by other,
2891                          * it's fine. If not, userspace would re-fault on
2892                          * the same address and we will handle the fault
2893                          * from the second attempt.
2894                          */
2895                         put_page(new_page);
2896                         if (old_page)
2897                                 put_page(old_page);
2898                         return 0;
2899                 }
2900         }
2901
2902         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2903                 goto oom_free_new;
2904         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2905
2906         __SetPageUptodate(new_page);
2907
2908         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2909                                 vmf->address & PAGE_MASK,
2910                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2911         mmu_notifier_invalidate_range_start(&range);
2912
2913         /*
2914          * Re-check the pte - we dropped the lock
2915          */
2916         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2917         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2918                 if (old_page) {
2919                         if (!PageAnon(old_page)) {
2920                                 dec_mm_counter_fast(mm,
2921                                                 mm_counter_file(old_page));
2922                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2923                         }
2924                 } else {
2925                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2926                 }
2927                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2928                 entry = mk_pte(new_page, vma->vm_page_prot);
2929                 entry = pte_sw_mkyoung(entry);
2930                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2931                 /*
2932                  * Clear the pte entry and flush it first, before updating the
2933                  * pte with the new entry. This will avoid a race condition
2934                  * seen in the presence of one thread doing SMC and another
2935                  * thread doing COW.
2936                  */
2937                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2938                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2939                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2940                 /*
2941                  * We call the notify macro here because, when using secondary
2942                  * mmu page tables (such as kvm shadow page tables), we want the
2943                  * new page to be mapped directly into the secondary page table.
2944                  */
2945                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2946                 update_mmu_cache(vma, vmf->address, vmf->pte);
2947                 if (old_page) {
2948                         /*
2949                          * Only after switching the pte to the new page may
2950                          * we remove the mapcount here. Otherwise another
2951                          * process may come and find the rmap count decremented
2952                          * before the pte is switched to the new page, and
2953                          * "reuse" the old page writing into it while our pte
2954                          * here still points into it and can be read by other
2955                          * threads.
2956                          *
2957                          * The critical issue is to order this
2958                          * page_remove_rmap with the ptp_clear_flush above.
2959                          * Those stores are ordered by (if nothing else,)
2960                          * the barrier present in the atomic_add_negative
2961                          * in page_remove_rmap.
2962                          *
2963                          * Then the TLB flush in ptep_clear_flush ensures that
2964                          * no process can access the old page before the
2965                          * decremented mapcount is visible. And the old page
2966                          * cannot be reused until after the decremented
2967                          * mapcount is visible. So transitively, TLBs to
2968                          * old page will be flushed before it can be reused.
2969                          */
2970                         page_remove_rmap(old_page, false);
2971                 }
2972
2973                 /* Free the old page.. */
2974                 new_page = old_page;
2975                 page_copied = 1;
2976         } else {
2977                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2978         }
2979
2980         if (new_page)
2981                 put_page(new_page);
2982
2983         pte_unmap_unlock(vmf->pte, vmf->ptl);
2984         /*
2985          * No need to double call mmu_notifier->invalidate_range() callback as
2986          * the above ptep_clear_flush_notify() did already call it.
2987          */
2988         mmu_notifier_invalidate_range_only_end(&range);
2989         if (old_page) {
2990                 /*
2991                  * Don't let another task, with possibly unlocked vma,
2992                  * keep the mlocked page.
2993                  */
2994                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2995                         lock_page(old_page);    /* LRU manipulation */
2996                         if (PageMlocked(old_page))
2997                                 munlock_vma_page(old_page);
2998                         unlock_page(old_page);
2999                 }
3000                 put_page(old_page);
3001         }
3002         return page_copied ? VM_FAULT_WRITE : 0;
3003 oom_free_new:
3004         put_page(new_page);
3005 oom:
3006         if (old_page)
3007                 put_page(old_page);
3008         return VM_FAULT_OOM;
3009 }
3010
3011 /**
3012  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3013  *                        writeable once the page is prepared
3014  *
3015  * @vmf: structure describing the fault
3016  *
3017  * This function handles all that is needed to finish a write page fault in a
3018  * shared mapping due to PTE being read-only once the mapped page is prepared.
3019  * It handles locking of PTE and modifying it.
3020  *
3021  * The function expects the page to be locked or other protection against
3022  * concurrent faults / writeback (such as DAX radix tree locks).
3023  *
3024  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3025  * we acquired PTE lock.
3026  */
3027 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3028 {
3029         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3030         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3031                                        &vmf->ptl);
3032         /*
3033          * We might have raced with another page fault while we released the
3034          * pte_offset_map_lock.
3035          */
3036         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3037                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3038                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3039                 return VM_FAULT_NOPAGE;
3040         }
3041         wp_page_reuse(vmf);
3042         return 0;
3043 }
3044
3045 /*
3046  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3047  * mapping
3048  */
3049 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3050 {
3051         struct vm_area_struct *vma = vmf->vma;
3052
3053         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3054                 vm_fault_t ret;
3055
3056                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3057                 vmf->flags |= FAULT_FLAG_MKWRITE;
3058                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3059                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3060                         return ret;
3061                 return finish_mkwrite_fault(vmf);
3062         }
3063         wp_page_reuse(vmf);
3064         return VM_FAULT_WRITE;
3065 }
3066
3067 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3068         __releases(vmf->ptl)
3069 {
3070         struct vm_area_struct *vma = vmf->vma;
3071         vm_fault_t ret = VM_FAULT_WRITE;
3072
3073         get_page(vmf->page);
3074
3075         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3076                 vm_fault_t tmp;
3077
3078                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3079                 tmp = do_page_mkwrite(vmf);
3080                 if (unlikely(!tmp || (tmp &
3081                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3082                         put_page(vmf->page);
3083                         return tmp;
3084                 }
3085                 tmp = finish_mkwrite_fault(vmf);
3086                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3087                         unlock_page(vmf->page);
3088                         put_page(vmf->page);
3089                         return tmp;
3090                 }
3091         } else {
3092                 wp_page_reuse(vmf);
3093                 lock_page(vmf->page);
3094         }
3095         ret |= fault_dirty_shared_page(vmf);
3096         put_page(vmf->page);
3097
3098         return ret;
3099 }
3100
3101 /*
3102  * This routine handles present pages, when users try to write
3103  * to a shared page. It is done by copying the page to a new address
3104  * and decrementing the shared-page counter for the old page.
3105  *
3106  * Note that this routine assumes that the protection checks have been
3107  * done by the caller (the low-level page fault routine in most cases).
3108  * Thus we can safely just mark it writable once we've done any necessary
3109  * COW.
3110  *
3111  * We also mark the page dirty at this point even though the page will
3112  * change only once the write actually happens. This avoids a few races,
3113  * and potentially makes it more efficient.
3114  *
3115  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3116  * but allow concurrent faults), with pte both mapped and locked.
3117  * We return with mmap_lock still held, but pte unmapped and unlocked.
3118  */
3119 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3120         __releases(vmf->ptl)
3121 {
3122         struct vm_area_struct *vma = vmf->vma;
3123
3124         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3125                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3126                 return handle_userfault(vmf, VM_UFFD_WP);
3127         }
3128
3129         /*
3130          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3131          * is flushed in this case before copying.
3132          */
3133         if (unlikely(userfaultfd_wp(vmf->vma) &&
3134                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3135                 flush_tlb_page(vmf->vma, vmf->address);
3136
3137         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3138         if (!vmf->page) {
3139                 /*
3140                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3141                  * VM_PFNMAP VMA.
3142                  *
3143                  * We should not cow pages in a shared writeable mapping.
3144                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3145                  */
3146                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3147                                      (VM_WRITE|VM_SHARED))
3148                         return wp_pfn_shared(vmf);
3149
3150                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3151                 return wp_page_copy(vmf);
3152         }
3153
3154         /*
3155          * Take out anonymous pages first, anonymous shared vmas are
3156          * not dirty accountable.
3157          */
3158         if (PageAnon(vmf->page)) {
3159                 struct page *page = vmf->page;
3160
3161                 /* PageKsm() doesn't necessarily raise the page refcount */
3162                 if (PageKsm(page) || page_count(page) != 1)
3163                         goto copy;
3164                 if (!trylock_page(page))
3165                         goto copy;
3166                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3167                         unlock_page(page);
3168                         goto copy;
3169                 }
3170                 /*
3171                  * Ok, we've got the only map reference, and the only
3172                  * page count reference, and the page is locked,
3173                  * it's dark out, and we're wearing sunglasses. Hit it.
3174                  */
3175                 unlock_page(page);
3176                 wp_page_reuse(vmf);
3177                 return VM_FAULT_WRITE;
3178         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3179                                         (VM_WRITE|VM_SHARED))) {
3180                 return wp_page_shared(vmf);
3181         }
3182 copy:
3183         /*
3184          * Ok, we need to copy. Oh, well..
3185          */
3186         get_page(vmf->page);
3187
3188         pte_unmap_unlock(vmf->pte, vmf->ptl);
3189         return wp_page_copy(vmf);
3190 }
3191
3192 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3193                 unsigned long start_addr, unsigned long end_addr,
3194                 struct zap_details *details)
3195 {
3196         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3197 }
3198
3199 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3200                                             struct zap_details *details)
3201 {
3202         struct vm_area_struct *vma;
3203         pgoff_t vba, vea, zba, zea;
3204
3205         vma_interval_tree_foreach(vma, root,
3206                         details->first_index, details->last_index) {
3207
3208                 vba = vma->vm_pgoff;
3209                 vea = vba + vma_pages(vma) - 1;
3210                 zba = details->first_index;
3211                 if (zba < vba)
3212                         zba = vba;
3213                 zea = details->last_index;
3214                 if (zea > vea)
3215                         zea = vea;
3216
3217                 unmap_mapping_range_vma(vma,
3218                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3219                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3220                                 details);
3221         }
3222 }
3223
3224 /**
3225  * unmap_mapping_page() - Unmap single page from processes.
3226  * @page: The locked page to be unmapped.
3227  *
3228  * Unmap this page from any userspace process which still has it mmaped.
3229  * Typically, for efficiency, the range of nearby pages has already been
3230  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3231  * truncation or invalidation holds the lock on a page, it may find that
3232  * the page has been remapped again: and then uses unmap_mapping_page()
3233  * to unmap it finally.
3234  */
3235 void unmap_mapping_page(struct page *page)
3236 {
3237         struct address_space *mapping = page->mapping;
3238         struct zap_details details = { };
3239
3240         VM_BUG_ON(!PageLocked(page));
3241         VM_BUG_ON(PageTail(page));
3242
3243         details.check_mapping = mapping;
3244         details.first_index = page->index;
3245         details.last_index = page->index + thp_nr_pages(page) - 1;
3246         details.single_page = page;
3247
3248         i_mmap_lock_write(mapping);
3249         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3250                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3251         i_mmap_unlock_write(mapping);
3252 }
3253
3254 /**
3255  * unmap_mapping_pages() - Unmap pages from processes.
3256  * @mapping: The address space containing pages to be unmapped.
3257  * @start: Index of first page to be unmapped.
3258  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3259  * @even_cows: Whether to unmap even private COWed pages.
3260  *
3261  * Unmap the pages in this address space from any userspace process which
3262  * has them mmaped.  Generally, you want to remove COWed pages as well when
3263  * a file is being truncated, but not when invalidating pages from the page
3264  * cache.
3265  */
3266 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3267                 pgoff_t nr, bool even_cows)
3268 {
3269         struct zap_details details = { };
3270
3271         details.check_mapping = even_cows ? NULL : mapping;
3272         details.first_index = start;
3273         details.last_index = start + nr - 1;
3274         if (details.last_index < details.first_index)
3275                 details.last_index = ULONG_MAX;
3276
3277         i_mmap_lock_write(mapping);
3278         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3279                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3280         i_mmap_unlock_write(mapping);
3281 }
3282
3283 /**
3284  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3285  * address_space corresponding to the specified byte range in the underlying
3286  * file.
3287  *
3288  * @mapping: the address space containing mmaps to be unmapped.
3289  * @holebegin: byte in first page to unmap, relative to the start of
3290  * the underlying file.  This will be rounded down to a PAGE_SIZE
3291  * boundary.  Note that this is different from truncate_pagecache(), which
3292  * must keep the partial page.  In contrast, we must get rid of
3293  * partial pages.
3294  * @holelen: size of prospective hole in bytes.  This will be rounded
3295  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3296  * end of the file.
3297  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3298  * but 0 when invalidating pagecache, don't throw away private data.
3299  */
3300 void unmap_mapping_range(struct address_space *mapping,
3301                 loff_t const holebegin, loff_t const holelen, int even_cows)
3302 {
3303         pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3304         pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3305
3306         /* Check for overflow. */
3307         if (sizeof(holelen) > sizeof(hlen)) {
3308                 long long holeend =
3309                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3310                 if (holeend & ~(long long)ULONG_MAX)
3311                         hlen = ULONG_MAX - hba + 1;
3312         }
3313
3314         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3315 }
3316 EXPORT_SYMBOL(unmap_mapping_range);
3317
3318 /*
3319  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3320  * but allow concurrent faults), and pte mapped but not yet locked.
3321  * We return with pte unmapped and unlocked.
3322  *
3323  * We return with the mmap_lock locked or unlocked in the same cases
3324  * as does filemap_fault().
3325  */
3326 vm_fault_t do_swap_page(struct vm_fault *vmf)
3327 {
3328         struct vm_area_struct *vma = vmf->vma;
3329         struct page *page = NULL, *swapcache;
3330         swp_entry_t entry;
3331         pte_t pte;
3332         int locked;
3333         int exclusive = 0;
3334         vm_fault_t ret = 0;
3335         void *shadow = NULL;
3336
3337         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3338                 goto out;
3339
3340         entry = pte_to_swp_entry(vmf->orig_pte);
3341         if (unlikely(non_swap_entry(entry))) {
3342                 if (is_migration_entry(entry)) {
3343                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3344                                              vmf->address);
3345                 } else if (is_device_private_entry(entry)) {
3346                         vmf->page = device_private_entry_to_page(entry);
3347                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3348                 } else if (is_hwpoison_entry(entry)) {
3349                         ret = VM_FAULT_HWPOISON;
3350                 } else {
3351                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3352                         ret = VM_FAULT_SIGBUS;
3353                 }
3354                 goto out;
3355         }
3356
3357
3358         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3359         page = lookup_swap_cache(entry, vma, vmf->address);
3360         swapcache = page;
3361
3362         if (!page) {
3363                 struct swap_info_struct *si = swp_swap_info(entry);
3364
3365                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3366                     __swap_count(entry) == 1) {
3367                         /* skip swapcache */
3368                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3369                                                         vmf->address);
3370                         if (page) {
3371                                 int err;
3372
3373                                 __SetPageLocked(page);
3374                                 __SetPageSwapBacked(page);
3375                                 set_page_private(page, entry.val);
3376
3377                                 /* Tell memcg to use swap ownership records */
3378                                 SetPageSwapCache(page);
3379                                 err = mem_cgroup_charge(page, vma->vm_mm,
3380                                                         GFP_KERNEL);
3381                                 ClearPageSwapCache(page);
3382                                 if (err) {
3383                                         ret = VM_FAULT_OOM;
3384                                         goto out_page;
3385                                 }
3386
3387                                 shadow = get_shadow_from_swap_cache(entry);
3388                                 if (shadow)
3389                                         workingset_refault(page, shadow);
3390
3391                                 lru_cache_add(page);
3392                                 swap_readpage(page, true);
3393                         }
3394                 } else {
3395                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3396                                                 vmf);
3397                         swapcache = page;
3398                 }
3399
3400                 if (!page) {
3401                         /*
3402                          * Back out if somebody else faulted in this pte
3403                          * while we released the pte lock.
3404                          */
3405                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3406                                         vmf->address, &vmf->ptl);
3407                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3408                                 ret = VM_FAULT_OOM;
3409                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3410                         goto unlock;
3411                 }
3412
3413                 /* Had to read the page from swap area: Major fault */
3414                 ret = VM_FAULT_MAJOR;
3415                 count_vm_event(PGMAJFAULT);
3416                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3417         } else if (PageHWPoison(page)) {
3418                 /*
3419                  * hwpoisoned dirty swapcache pages are kept for killing
3420                  * owner processes (which may be unknown at hwpoison time)
3421                  */
3422                 ret = VM_FAULT_HWPOISON;
3423                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3424                 goto out_release;
3425         }
3426
3427         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3428
3429         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3430         if (!locked) {
3431                 ret |= VM_FAULT_RETRY;
3432                 goto out_release;
3433         }
3434
3435         /*
3436          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3437          * release the swapcache from under us.  The page pin, and pte_same
3438          * test below, are not enough to exclude that.  Even if it is still
3439          * swapcache, we need to check that the page's swap has not changed.
3440          */
3441         if (unlikely((!PageSwapCache(page) ||
3442                         page_private(page) != entry.val)) && swapcache)
3443                 goto out_page;
3444
3445         page = ksm_might_need_to_copy(page, vma, vmf->address);
3446         if (unlikely(!page)) {
3447                 ret = VM_FAULT_OOM;
3448                 page = swapcache;
3449                 goto out_page;
3450         }
3451
3452         cgroup_throttle_swaprate(page, GFP_KERNEL);
3453
3454         /*
3455          * Back out if somebody else already faulted in this pte.
3456          */
3457         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3458                         &vmf->ptl);
3459         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3460                 goto out_nomap;
3461
3462         if (unlikely(!PageUptodate(page))) {
3463                 ret = VM_FAULT_SIGBUS;
3464                 goto out_nomap;
3465         }
3466
3467         /*
3468          * The page isn't present yet, go ahead with the fault.
3469          *
3470          * Be careful about the sequence of operations here.
3471          * To get its accounting right, reuse_swap_page() must be called
3472          * while the page is counted on swap but not yet in mapcount i.e.
3473          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3474          * must be called after the swap_free(), or it will never succeed.
3475          */
3476
3477         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3478         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3479         pte = mk_pte(page, vma->vm_page_prot);
3480         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3481                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3482                 vmf->flags &= ~FAULT_FLAG_WRITE;
3483                 ret |= VM_FAULT_WRITE;
3484                 exclusive = RMAP_EXCLUSIVE;
3485         }
3486         flush_icache_page(vma, page);
3487         if (pte_swp_soft_dirty(vmf->orig_pte))
3488                 pte = pte_mksoft_dirty(pte);
3489         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3490                 pte = pte_mkuffd_wp(pte);
3491                 pte = pte_wrprotect(pte);
3492         }
3493         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3494         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3495         vmf->orig_pte = pte;
3496
3497         /* ksm created a completely new copy */
3498         if (unlikely(page != swapcache && swapcache)) {
3499                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3500                 lru_cache_add_inactive_or_unevictable(page, vma);
3501         } else {
3502                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3503         }
3504
3505         swap_free(entry);
3506         if (mem_cgroup_swap_full(page) ||
3507             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3508                 try_to_free_swap(page);
3509         unlock_page(page);
3510         if (page != swapcache && swapcache) {
3511                 /*
3512                  * Hold the lock to avoid the swap entry to be reused
3513                  * until we take the PT lock for the pte_same() check
3514                  * (to avoid false positives from pte_same). For
3515                  * further safety release the lock after the swap_free
3516                  * so that the swap count won't change under a
3517                  * parallel locked swapcache.
3518                  */
3519                 unlock_page(swapcache);
3520                 put_page(swapcache);
3521         }
3522
3523         if (vmf->flags & FAULT_FLAG_WRITE) {
3524                 ret |= do_wp_page(vmf);
3525                 if (ret & VM_FAULT_ERROR)
3526                         ret &= VM_FAULT_ERROR;
3527                 goto out;
3528         }
3529
3530         /* No need to invalidate - it was non-present before */
3531         update_mmu_cache(vma, vmf->address, vmf->pte);
3532 unlock:
3533         pte_unmap_unlock(vmf->pte, vmf->ptl);
3534 out:
3535         return ret;
3536 out_nomap:
3537         pte_unmap_unlock(vmf->pte, vmf->ptl);
3538 out_page:
3539         unlock_page(page);
3540 out_release:
3541         put_page(page);
3542         if (page != swapcache && swapcache) {
3543                 unlock_page(swapcache);
3544                 put_page(swapcache);
3545         }
3546         return ret;
3547 }
3548
3549 /*
3550  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3551  * but allow concurrent faults), and pte mapped but not yet locked.
3552  * We return with mmap_lock still held, but pte unmapped and unlocked.
3553  */
3554 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3555 {
3556         struct vm_area_struct *vma = vmf->vma;
3557         struct page *page;
3558         vm_fault_t ret = 0;
3559         pte_t entry;
3560
3561         /* File mapping without ->vm_ops ? */
3562         if (vma->vm_flags & VM_SHARED)
3563                 return VM_FAULT_SIGBUS;
3564
3565         /*
3566          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3567          * pte_offset_map() on pmds where a huge pmd might be created
3568          * from a different thread.
3569          *
3570          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3571          * parallel threads are excluded by other means.
3572          *
3573          * Here we only have mmap_read_lock(mm).
3574          */
3575         if (pte_alloc(vma->vm_mm, vmf->pmd))
3576                 return VM_FAULT_OOM;
3577
3578         /* See the comment in pte_alloc_one_map() */
3579         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3580                 return 0;
3581
3582         /* Use the zero-page for reads */
3583         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3584                         !mm_forbids_zeropage(vma->vm_mm)) {
3585                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3586                                                 vma->vm_page_prot));
3587                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3588                                 vmf->address, &vmf->ptl);
3589                 if (!pte_none(*vmf->pte)) {
3590                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3591                         goto unlock;
3592                 }
3593                 ret = check_stable_address_space(vma->vm_mm);
3594                 if (ret)
3595                         goto unlock;
3596                 /* Deliver the page fault to userland, check inside PT lock */
3597                 if (userfaultfd_missing(vma)) {
3598                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3599                         return handle_userfault(vmf, VM_UFFD_MISSING);
3600                 }
3601                 goto setpte;
3602         }
3603
3604         /* Allocate our own private page. */
3605         if (unlikely(anon_vma_prepare(vma)))
3606                 goto oom;
3607         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3608         if (!page)
3609                 goto oom;
3610
3611         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3612                 goto oom_free_page;
3613         cgroup_throttle_swaprate(page, GFP_KERNEL);
3614
3615         /*
3616          * The memory barrier inside __SetPageUptodate makes sure that
3617          * preceding stores to the page contents become visible before
3618          * the set_pte_at() write.
3619          */
3620         __SetPageUptodate(page);
3621
3622         entry = mk_pte(page, vma->vm_page_prot);
3623         entry = pte_sw_mkyoung(entry);
3624         if (vma->vm_flags & VM_WRITE)
3625                 entry = pte_mkwrite(pte_mkdirty(entry));
3626
3627         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3628                         &vmf->ptl);
3629         if (!pte_none(*vmf->pte)) {
3630                 update_mmu_cache(vma, vmf->address, vmf->pte);
3631                 goto release;
3632         }
3633
3634         ret = check_stable_address_space(vma->vm_mm);
3635         if (ret)
3636                 goto release;
3637
3638         /* Deliver the page fault to userland, check inside PT lock */
3639         if (userfaultfd_missing(vma)) {
3640                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3641                 put_page(page);
3642                 return handle_userfault(vmf, VM_UFFD_MISSING);
3643         }
3644
3645         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3646         page_add_new_anon_rmap(page, vma, vmf->address, false);
3647         lru_cache_add_inactive_or_unevictable(page, vma);
3648 setpte:
3649         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3650
3651         /* No need to invalidate - it was non-present before */
3652         update_mmu_cache(vma, vmf->address, vmf->pte);
3653 unlock:
3654         pte_unmap_unlock(vmf->pte, vmf->ptl);
3655         return ret;
3656 release:
3657         put_page(page);
3658         goto unlock;
3659 oom_free_page:
3660         put_page(page);
3661 oom:
3662         return VM_FAULT_OOM;
3663 }
3664
3665 /*
3666  * The mmap_lock must have been held on entry, and may have been
3667  * released depending on flags and vma->vm_ops->fault() return value.
3668  * See filemap_fault() and __lock_page_retry().
3669  */
3670 static vm_fault_t __do_fault(struct vm_fault *vmf)
3671 {
3672         struct vm_area_struct *vma = vmf->vma;
3673         vm_fault_t ret;
3674
3675         /*
3676          * Preallocate pte before we take page_lock because this might lead to
3677          * deadlocks for memcg reclaim which waits for pages under writeback:
3678          *                              lock_page(A)
3679          *                              SetPageWriteback(A)
3680          *                              unlock_page(A)
3681          * lock_page(B)
3682          *                              lock_page(B)
3683          * pte_alloc_one
3684          *   shrink_page_list
3685          *     wait_on_page_writeback(A)
3686          *                              SetPageWriteback(B)
3687          *                              unlock_page(B)
3688          *                              # flush A, B to clear the writeback
3689          */
3690         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3691                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3692                 if (!vmf->prealloc_pte)
3693                         return VM_FAULT_OOM;
3694                 smp_wmb(); /* See comment in __pte_alloc() */
3695         }
3696
3697         ret = vma->vm_ops->fault(vmf);
3698         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3699                             VM_FAULT_DONE_COW)))
3700                 return ret;
3701
3702         if (unlikely(PageHWPoison(vmf->page))) {
3703                 struct page *page = vmf->page;
3704                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3705                 if (ret & VM_FAULT_LOCKED) {
3706                         if (page_mapped(page))
3707                                 unmap_mapping_pages(page_mapping(page),
3708                                                     page->index, 1, false);
3709                         /* Retry if a clean page was removed from the cache. */
3710                         if (invalidate_inode_page(page))
3711                                 poisonret = VM_FAULT_NOPAGE;
3712                         unlock_page(page);
3713                 }
3714                 put_page(page);
3715                 vmf->page = NULL;
3716                 return poisonret;
3717         }
3718
3719         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3720                 lock_page(vmf->page);
3721         else
3722                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3723
3724         return ret;
3725 }
3726
3727 /*
3728  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3729  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3730  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3731  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3732  */
3733 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3734 {
3735         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3736 }
3737
3738 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3739 {
3740         struct vm_area_struct *vma = vmf->vma;
3741
3742         if (!pmd_none(*vmf->pmd))
3743                 goto map_pte;
3744         if (vmf->prealloc_pte) {
3745                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3746                 if (unlikely(!pmd_none(*vmf->pmd))) {
3747                         spin_unlock(vmf->ptl);
3748                         goto map_pte;
3749                 }
3750
3751                 mm_inc_nr_ptes(vma->vm_mm);
3752                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3753                 spin_unlock(vmf->ptl);
3754                 vmf->prealloc_pte = NULL;
3755         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3756                 return VM_FAULT_OOM;
3757         }
3758 map_pte:
3759         /*
3760          * If a huge pmd materialized under us just retry later.  Use
3761          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3762          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3763          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3764          * running immediately after a huge pmd fault in a different thread of
3765          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3766          * All we have to ensure is that it is a regular pmd that we can walk
3767          * with pte_offset_map() and we can do that through an atomic read in
3768          * C, which is what pmd_trans_unstable() provides.
3769          */
3770         if (pmd_devmap_trans_unstable(vmf->pmd))
3771                 return VM_FAULT_NOPAGE;
3772
3773         /*
3774          * At this point we know that our vmf->pmd points to a page of ptes
3775          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3776          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3777          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3778          * be valid and we will re-check to make sure the vmf->pte isn't
3779          * pte_none() under vmf->ptl protection when we return to
3780          * alloc_set_pte().
3781          */
3782         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3783                         &vmf->ptl);
3784         return 0;
3785 }
3786
3787 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3788 static void deposit_prealloc_pte(struct vm_fault *vmf)
3789 {
3790         struct vm_area_struct *vma = vmf->vma;
3791
3792         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3793         /*
3794          * We are going to consume the prealloc table,
3795          * count that as nr_ptes.
3796          */
3797         mm_inc_nr_ptes(vma->vm_mm);
3798         vmf->prealloc_pte = NULL;
3799 }
3800
3801 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3802 {
3803         struct vm_area_struct *vma = vmf->vma;
3804         bool write = vmf->flags & FAULT_FLAG_WRITE;
3805         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3806         pmd_t entry;
3807         int i;
3808         vm_fault_t ret = VM_FAULT_FALLBACK;
3809
3810         if (!transhuge_vma_suitable(vma, haddr))
3811                 return ret;
3812
3813         page = compound_head(page);
3814         if (compound_order(page) != HPAGE_PMD_ORDER)
3815                 return ret;
3816
3817         /*
3818          * Archs like ppc64 need additonal space to store information
3819          * related to pte entry. Use the preallocated table for that.
3820          */
3821         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3822                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3823                 if (!vmf->prealloc_pte)
3824                         return VM_FAULT_OOM;
3825                 smp_wmb(); /* See comment in __pte_alloc() */
3826         }
3827
3828         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3829         if (unlikely(!pmd_none(*vmf->pmd)))
3830                 goto out;
3831
3832         for (i = 0; i < HPAGE_PMD_NR; i++)
3833                 flush_icache_page(vma, page + i);
3834
3835         entry = mk_huge_pmd(page, vma->vm_page_prot);
3836         if (write)
3837                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3838
3839         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3840         page_add_file_rmap(page, true);
3841         /*
3842          * deposit and withdraw with pmd lock held
3843          */
3844         if (arch_needs_pgtable_deposit())
3845                 deposit_prealloc_pte(vmf);
3846
3847         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3848
3849         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3850
3851         /* fault is handled */
3852         ret = 0;
3853         count_vm_event(THP_FILE_MAPPED);
3854 out:
3855         spin_unlock(vmf->ptl);
3856         return ret;
3857 }
3858 #else
3859 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3860 {
3861         BUILD_BUG();
3862         return 0;
3863 }
3864 #endif
3865
3866 /**
3867  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3868  * mapping. If needed, the function allocates page table or use pre-allocated.
3869  *
3870  * @vmf: fault environment
3871  * @page: page to map
3872  *
3873  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3874  * return.
3875  *
3876  * Target users are page handler itself and implementations of
3877  * vm_ops->map_pages.
3878  *
3879  * Return: %0 on success, %VM_FAULT_ code in case of error.
3880  */
3881 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3882 {
3883         struct vm_area_struct *vma = vmf->vma;
3884         bool write = vmf->flags & FAULT_FLAG_WRITE;
3885         pte_t entry;
3886         vm_fault_t ret;
3887
3888         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3889                 ret = do_set_pmd(vmf, page);
3890                 if (ret != VM_FAULT_FALLBACK)
3891                         return ret;
3892         }
3893
3894         if (!vmf->pte) {
3895                 ret = pte_alloc_one_map(vmf);
3896                 if (ret)
3897                         return ret;
3898         }
3899
3900         /* Re-check under ptl */
3901         if (unlikely(!pte_none(*vmf->pte))) {
3902                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3903                 return VM_FAULT_NOPAGE;
3904         }
3905
3906         flush_icache_page(vma, page);
3907         entry = mk_pte(page, vma->vm_page_prot);
3908         entry = pte_sw_mkyoung(entry);
3909         if (write)
3910                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3911         /* copy-on-write page */
3912         if (write && !(vma->vm_flags & VM_SHARED)) {
3913                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3914                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3915                 lru_cache_add_inactive_or_unevictable(page, vma);
3916         } else {
3917                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3918                 page_add_file_rmap(page, false);
3919         }
3920         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3921
3922         /* no need to invalidate: a not-present page won't be cached */
3923         update_mmu_cache(vma, vmf->address, vmf->pte);
3924
3925         return 0;
3926 }
3927
3928
3929 /**
3930  * finish_fault - finish page fault once we have prepared the page to fault
3931  *
3932  * @vmf: structure describing the fault
3933  *
3934  * This function handles all that is needed to finish a page fault once the
3935  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3936  * given page, adds reverse page mapping, handles memcg charges and LRU
3937  * addition.
3938  *
3939  * The function expects the page to be locked and on success it consumes a
3940  * reference of a page being mapped (for the PTE which maps it).
3941  *
3942  * Return: %0 on success, %VM_FAULT_ code in case of error.
3943  */
3944 vm_fault_t finish_fault(struct vm_fault *vmf)
3945 {
3946         struct page *page;
3947         vm_fault_t ret = 0;
3948
3949         /* Did we COW the page? */
3950         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3951             !(vmf->vma->vm_flags & VM_SHARED))
3952                 page = vmf->cow_page;
3953         else
3954                 page = vmf->page;
3955
3956         /*
3957          * check even for read faults because we might have lost our CoWed
3958          * page
3959          */
3960         if (!(vmf->vma->vm_flags & VM_SHARED))
3961                 ret = check_stable_address_space(vmf->vma->vm_mm);
3962         if (!ret)
3963                 ret = alloc_set_pte(vmf, page);
3964         if (vmf->pte)
3965                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3966         return ret;
3967 }
3968
3969 static unsigned long fault_around_bytes __read_mostly =
3970         rounddown_pow_of_two(65536);
3971
3972 #ifdef CONFIG_DEBUG_FS
3973 static int fault_around_bytes_get(void *data, u64 *val)
3974 {
3975         *val = fault_around_bytes;
3976         return 0;
3977 }
3978
3979 /*
3980  * fault_around_bytes must be rounded down to the nearest page order as it's
3981  * what do_fault_around() expects to see.
3982  */
3983 static int fault_around_bytes_set(void *data, u64 val)
3984 {
3985         if (val / PAGE_SIZE > PTRS_PER_PTE)
3986                 return -EINVAL;
3987         if (val > PAGE_SIZE)
3988                 fault_around_bytes = rounddown_pow_of_two(val);
3989         else
3990                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3991         return 0;
3992 }
3993 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3994                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3995
3996 static int __init fault_around_debugfs(void)
3997 {
3998         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3999                                    &fault_around_bytes_fops);
4000         return 0;
4001 }
4002 late_initcall(fault_around_debugfs);
4003 #endif
4004
4005 /*
4006  * do_fault_around() tries to map few pages around the fault address. The hope
4007  * is that the pages will be needed soon and this will lower the number of
4008  * faults to handle.
4009  *
4010  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4011  * not ready to be mapped: not up-to-date, locked, etc.
4012  *
4013  * This function is called with the page table lock taken. In the split ptlock
4014  * case the page table lock only protects only those entries which belong to
4015  * the page table corresponding to the fault address.
4016  *
4017  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4018  * only once.
4019  *
4020  * fault_around_bytes defines how many bytes we'll try to map.
4021  * do_fault_around() expects it to be set to a power of two less than or equal
4022  * to PTRS_PER_PTE.
4023  *
4024  * The virtual address of the area that we map is naturally aligned to
4025  * fault_around_bytes rounded down to the machine page size
4026  * (and therefore to page order).  This way it's easier to guarantee
4027  * that we don't cross page table boundaries.
4028  */
4029 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4030 {
4031         unsigned long address = vmf->address, nr_pages, mask;
4032         pgoff_t start_pgoff = vmf->pgoff;
4033         pgoff_t end_pgoff;
4034         int off;
4035         vm_fault_t ret = 0;
4036
4037         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4038         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4039
4040         vmf->address = max(address & mask, vmf->vma->vm_start);
4041         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4042         start_pgoff -= off;
4043
4044         /*
4045          *  end_pgoff is either the end of the page table, the end of
4046          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4047          */
4048         end_pgoff = start_pgoff -
4049                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4050                 PTRS_PER_PTE - 1;
4051         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4052                         start_pgoff + nr_pages - 1);
4053
4054         if (pmd_none(*vmf->pmd)) {
4055                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4056                 if (!vmf->prealloc_pte)
4057                         goto out;
4058                 smp_wmb(); /* See comment in __pte_alloc() */
4059         }
4060
4061         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4062
4063         /* Huge page is mapped? Page fault is solved */
4064         if (pmd_trans_huge(*vmf->pmd)) {
4065                 ret = VM_FAULT_NOPAGE;
4066                 goto out;
4067         }
4068
4069         /* ->map_pages() haven't done anything useful. Cold page cache? */
4070         if (!vmf->pte)
4071                 goto out;
4072
4073         /* check if the page fault is solved */
4074         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4075         if (!pte_none(*vmf->pte))
4076                 ret = VM_FAULT_NOPAGE;
4077         pte_unmap_unlock(vmf->pte, vmf->ptl);
4078 out:
4079         vmf->address = address;
4080         vmf->pte = NULL;
4081         return ret;
4082 }
4083
4084 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4085 {
4086         struct vm_area_struct *vma = vmf->vma;
4087         vm_fault_t ret = 0;
4088
4089         /*
4090          * Let's call ->map_pages() first and use ->fault() as fallback
4091          * if page by the offset is not ready to be mapped (cold cache or
4092          * something).
4093          */
4094         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4095                 ret = do_fault_around(vmf);
4096                 if (ret)
4097                         return ret;
4098         }
4099
4100         ret = __do_fault(vmf);
4101         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4102                 return ret;
4103
4104         ret |= finish_fault(vmf);
4105         unlock_page(vmf->page);
4106         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4107                 put_page(vmf->page);
4108         return ret;
4109 }
4110
4111 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4112 {
4113         struct vm_area_struct *vma = vmf->vma;
4114         vm_fault_t ret;
4115
4116         if (unlikely(anon_vma_prepare(vma)))
4117                 return VM_FAULT_OOM;
4118
4119         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4120         if (!vmf->cow_page)
4121                 return VM_FAULT_OOM;
4122
4123         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4124                 put_page(vmf->cow_page);
4125                 return VM_FAULT_OOM;
4126         }
4127         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4128
4129         ret = __do_fault(vmf);
4130         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4131                 goto uncharge_out;
4132         if (ret & VM_FAULT_DONE_COW)
4133                 return ret;
4134
4135         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4136         __SetPageUptodate(vmf->cow_page);
4137
4138         ret |= finish_fault(vmf);
4139         unlock_page(vmf->page);
4140         put_page(vmf->page);
4141         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4142                 goto uncharge_out;
4143         return ret;
4144 uncharge_out:
4145         put_page(vmf->cow_page);
4146         return ret;
4147 }
4148
4149 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4150 {
4151         struct vm_area_struct *vma = vmf->vma;
4152         vm_fault_t ret, tmp;
4153
4154         ret = __do_fault(vmf);
4155         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4156                 return ret;
4157
4158         /*
4159          * Check if the backing address space wants to know that the page is
4160          * about to become writable
4161          */
4162         if (vma->vm_ops->page_mkwrite) {
4163                 unlock_page(vmf->page);
4164                 tmp = do_page_mkwrite(vmf);
4165                 if (unlikely(!tmp ||
4166                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4167                         put_page(vmf->page);
4168                         return tmp;
4169                 }
4170         }
4171
4172         ret |= finish_fault(vmf);
4173         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4174                                         VM_FAULT_RETRY))) {
4175                 unlock_page(vmf->page);
4176                 put_page(vmf->page);
4177                 return ret;
4178         }
4179
4180         ret |= fault_dirty_shared_page(vmf);
4181         return ret;
4182 }
4183
4184 /*
4185  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4186  * but allow concurrent faults).
4187  * The mmap_lock may have been released depending on flags and our
4188  * return value.  See filemap_fault() and __lock_page_or_retry().
4189  * If mmap_lock is released, vma may become invalid (for example
4190  * by other thread calling munmap()).
4191  */
4192 static vm_fault_t do_fault(struct vm_fault *vmf)
4193 {
4194         struct vm_area_struct *vma = vmf->vma;
4195         struct mm_struct *vm_mm = vma->vm_mm;
4196         vm_fault_t ret;
4197
4198         /*
4199          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4200          */
4201         if (!vma->vm_ops->fault) {
4202                 /*
4203                  * If we find a migration pmd entry or a none pmd entry, which
4204                  * should never happen, return SIGBUS
4205                  */
4206                 if (unlikely(!pmd_present(*vmf->pmd)))
4207                         ret = VM_FAULT_SIGBUS;
4208                 else {
4209                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4210                                                        vmf->pmd,
4211                                                        vmf->address,
4212                                                        &vmf->ptl);
4213                         /*
4214                          * Make sure this is not a temporary clearing of pte
4215                          * by holding ptl and checking again. A R/M/W update
4216                          * of pte involves: take ptl, clearing the pte so that
4217                          * we don't have concurrent modification by hardware
4218                          * followed by an update.
4219                          */
4220                         if (unlikely(pte_none(*vmf->pte)))
4221                                 ret = VM_FAULT_SIGBUS;
4222                         else
4223                                 ret = VM_FAULT_NOPAGE;
4224
4225                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4226                 }
4227         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4228                 ret = do_read_fault(vmf);
4229         else if (!(vma->vm_flags & VM_SHARED))
4230                 ret = do_cow_fault(vmf);
4231         else
4232                 ret = do_shared_fault(vmf);
4233
4234         /* preallocated pagetable is unused: free it */
4235         if (vmf->prealloc_pte) {
4236                 pte_free(vm_mm, vmf->prealloc_pte);
4237                 vmf->prealloc_pte = NULL;
4238         }
4239         return ret;
4240 }
4241
4242 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4243                                 unsigned long addr, int page_nid,
4244                                 int *flags)
4245 {
4246         get_page(page);
4247
4248         count_vm_numa_event(NUMA_HINT_FAULTS);
4249         if (page_nid == numa_node_id()) {
4250                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4251                 *flags |= TNF_FAULT_LOCAL;
4252         }
4253
4254         return mpol_misplaced(page, vma, addr);
4255 }
4256
4257 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4258 {
4259         struct vm_area_struct *vma = vmf->vma;
4260         struct page *page = NULL;
4261         int page_nid = NUMA_NO_NODE;
4262         int last_cpupid;
4263         int target_nid;
4264         bool migrated = false;
4265         pte_t pte, old_pte;
4266         bool was_writable = pte_savedwrite(vmf->orig_pte);
4267         int flags = 0;
4268
4269         /*
4270          * The "pte" at this point cannot be used safely without
4271          * validation through pte_unmap_same(). It's of NUMA type but
4272          * the pfn may be screwed if the read is non atomic.
4273          */
4274         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4275         spin_lock(vmf->ptl);
4276         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4277                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4278                 goto out;
4279         }
4280
4281         /*
4282          * Make it present again, Depending on how arch implementes non
4283          * accessible ptes, some can allow access by kernel mode.
4284          */
4285         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4286         pte = pte_modify(old_pte, vma->vm_page_prot);
4287         pte = pte_mkyoung(pte);
4288         if (was_writable)
4289                 pte = pte_mkwrite(pte);
4290         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4291         update_mmu_cache(vma, vmf->address, vmf->pte);
4292
4293         page = vm_normal_page(vma, vmf->address, pte);
4294         if (!page) {
4295                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4296                 return 0;
4297         }
4298
4299         /* TODO: handle PTE-mapped THP */
4300         if (PageCompound(page)) {
4301                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4302                 return 0;
4303         }
4304
4305         /*
4306          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4307          * much anyway since they can be in shared cache state. This misses
4308          * the case where a mapping is writable but the process never writes
4309          * to it but pte_write gets cleared during protection updates and
4310          * pte_dirty has unpredictable behaviour between PTE scan updates,
4311          * background writeback, dirty balancing and application behaviour.
4312          */
4313         if (!pte_write(pte))
4314                 flags |= TNF_NO_GROUP;
4315
4316         /*
4317          * Flag if the page is shared between multiple address spaces. This
4318          * is later used when determining whether to group tasks together
4319          */
4320         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4321                 flags |= TNF_SHARED;
4322
4323         last_cpupid = page_cpupid_last(page);
4324         page_nid = page_to_nid(page);
4325         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4326                         &flags);
4327         pte_unmap_unlock(vmf->pte, vmf->ptl);
4328         if (target_nid == NUMA_NO_NODE) {
4329                 put_page(page);
4330                 goto out;
4331         }
4332
4333         /* Migrate to the requested node */
4334         migrated = migrate_misplaced_page(page, vma, target_nid);
4335         if (migrated) {
4336                 page_nid = target_nid;
4337                 flags |= TNF_MIGRATED;
4338         } else
4339                 flags |= TNF_MIGRATE_FAIL;
4340
4341 out:
4342         if (page_nid != NUMA_NO_NODE)
4343                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4344         return 0;
4345 }
4346
4347 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4348 {
4349         if (vma_is_anonymous(vmf->vma))
4350                 return do_huge_pmd_anonymous_page(vmf);
4351         if (vmf->vma->vm_ops->huge_fault)
4352                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4353         return VM_FAULT_FALLBACK;
4354 }
4355
4356 /* `inline' is required to avoid gcc 4.1.2 build error */
4357 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4358 {
4359         if (vma_is_anonymous(vmf->vma)) {
4360                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4361                         return handle_userfault(vmf, VM_UFFD_WP);
4362                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4363         }
4364         if (vmf->vma->vm_ops->huge_fault) {
4365                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4366
4367                 if (!(ret & VM_FAULT_FALLBACK))
4368                         return ret;
4369         }
4370
4371         /* COW or write-notify handled on pte level: split pmd. */
4372         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4373
4374         return VM_FAULT_FALLBACK;
4375 }
4376
4377 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4378 {
4379 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4380         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4381         /* No support for anonymous transparent PUD pages yet */
4382         if (vma_is_anonymous(vmf->vma))
4383                 return VM_FAULT_FALLBACK;
4384         if (vmf->vma->vm_ops->huge_fault)
4385                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4387         return VM_FAULT_FALLBACK;
4388 }
4389
4390 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4391 {
4392 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4393         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4394         /* No support for anonymous transparent PUD pages yet */
4395         if (vma_is_anonymous(vmf->vma))
4396                 goto split;
4397         if (vmf->vma->vm_ops->huge_fault) {
4398                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4399
4400                 if (!(ret & VM_FAULT_FALLBACK))
4401                         return ret;
4402         }
4403 split:
4404         /* COW or write-notify not handled on PUD level: split pud.*/
4405         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4406 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4407         return VM_FAULT_FALLBACK;
4408 }
4409
4410 /*
4411  * These routines also need to handle stuff like marking pages dirty
4412  * and/or accessed for architectures that don't do it in hardware (most
4413  * RISC architectures).  The early dirtying is also good on the i386.
4414  *
4415  * There is also a hook called "update_mmu_cache()" that architectures
4416  * with external mmu caches can use to update those (ie the Sparc or
4417  * PowerPC hashed page tables that act as extended TLBs).
4418  *
4419  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4420  * concurrent faults).
4421  *
4422  * The mmap_lock may have been released depending on flags and our return value.
4423  * See filemap_fault() and __lock_page_or_retry().
4424  */
4425 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4426 {
4427         pte_t entry;
4428
4429         if (unlikely(pmd_none(*vmf->pmd))) {
4430                 /*
4431                  * Leave __pte_alloc() until later: because vm_ops->fault may
4432                  * want to allocate huge page, and if we expose page table
4433                  * for an instant, it will be difficult to retract from
4434                  * concurrent faults and from rmap lookups.
4435                  */
4436                 vmf->pte = NULL;
4437         } else {
4438                 /* See comment in pte_alloc_one_map() */
4439                 if (pmd_devmap_trans_unstable(vmf->pmd))
4440                         return 0;
4441                 /*
4442                  * A regular pmd is established and it can't morph into a huge
4443                  * pmd from under us anymore at this point because we hold the
4444                  * mmap_lock read mode and khugepaged takes it in write mode.
4445                  * So now it's safe to run pte_offset_map().
4446                  */
4447                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4448                 vmf->orig_pte = *vmf->pte;
4449
4450                 /*
4451                  * some architectures can have larger ptes than wordsize,
4452                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4453                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4454                  * accesses.  The code below just needs a consistent view
4455                  * for the ifs and we later double check anyway with the
4456                  * ptl lock held. So here a barrier will do.
4457                  */
4458                 barrier();
4459                 if (pte_none(vmf->orig_pte)) {
4460                         pte_unmap(vmf->pte);
4461                         vmf->pte = NULL;
4462                 }
4463         }
4464
4465         if (!vmf->pte) {
4466                 if (vma_is_anonymous(vmf->vma))
4467                         return do_anonymous_page(vmf);
4468                 else
4469                         return do_fault(vmf);
4470         }
4471
4472         if (!pte_present(vmf->orig_pte))
4473                 return do_swap_page(vmf);
4474
4475         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4476                 return do_numa_page(vmf);
4477
4478         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4479         spin_lock(vmf->ptl);
4480         entry = vmf->orig_pte;
4481         if (unlikely(!pte_same(*vmf->pte, entry))) {
4482                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4483                 goto unlock;
4484         }
4485         if (vmf->flags & FAULT_FLAG_WRITE) {
4486                 if (!pte_write(entry))
4487                         return do_wp_page(vmf);
4488                 entry = pte_mkdirty(entry);
4489         }
4490         entry = pte_mkyoung(entry);
4491         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4492                                 vmf->flags & FAULT_FLAG_WRITE)) {
4493                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4494         } else {
4495                 /* Skip spurious TLB flush for retried page fault */
4496                 if (vmf->flags & FAULT_FLAG_TRIED)
4497                         goto unlock;
4498                 /*
4499                  * This is needed only for protection faults but the arch code
4500                  * is not yet telling us if this is a protection fault or not.
4501                  * This still avoids useless tlb flushes for .text page faults
4502                  * with threads.
4503                  */
4504                 if (vmf->flags & FAULT_FLAG_WRITE)
4505                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4506         }
4507 unlock:
4508         pte_unmap_unlock(vmf->pte, vmf->ptl);
4509         return 0;
4510 }
4511
4512 /*
4513  * By the time we get here, we already hold the mm semaphore
4514  *
4515  * The mmap_lock may have been released depending on flags and our
4516  * return value.  See filemap_fault() and __lock_page_or_retry().
4517  */
4518 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4519                 unsigned long address, unsigned int flags)
4520 {
4521         struct vm_fault vmf = {
4522                 .vma = vma,
4523                 .address = address & PAGE_MASK,
4524                 .flags = flags,
4525                 .pgoff = linear_page_index(vma, address),
4526                 .gfp_mask = __get_fault_gfp_mask(vma),
4527         };
4528         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4529         struct mm_struct *mm = vma->vm_mm;
4530         pgd_t *pgd;
4531         p4d_t *p4d;
4532         vm_fault_t ret;
4533
4534         pgd = pgd_offset(mm, address);
4535         p4d = p4d_alloc(mm, pgd, address);
4536         if (!p4d)
4537                 return VM_FAULT_OOM;
4538
4539         vmf.pud = pud_alloc(mm, p4d, address);
4540         if (!vmf.pud)
4541                 return VM_FAULT_OOM;
4542 retry_pud:
4543         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4544                 ret = create_huge_pud(&vmf);
4545                 if (!(ret & VM_FAULT_FALLBACK))
4546                         return ret;
4547         } else {
4548                 pud_t orig_pud = *vmf.pud;
4549
4550                 barrier();
4551                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4552
4553                         /* NUMA case for anonymous PUDs would go here */
4554
4555                         if (dirty && !pud_write(orig_pud)) {
4556                                 ret = wp_huge_pud(&vmf, orig_pud);
4557                                 if (!(ret & VM_FAULT_FALLBACK))
4558                                         return ret;
4559                         } else {
4560                                 huge_pud_set_accessed(&vmf, orig_pud);
4561                                 return 0;
4562                         }
4563                 }
4564         }
4565
4566         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4567         if (!vmf.pmd)
4568                 return VM_FAULT_OOM;
4569
4570         /* Huge pud page fault raced with pmd_alloc? */
4571         if (pud_trans_unstable(vmf.pud))
4572                 goto retry_pud;
4573
4574         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4575                 ret = create_huge_pmd(&vmf);
4576                 if (!(ret & VM_FAULT_FALLBACK))
4577                         return ret;
4578         } else {
4579                 pmd_t orig_pmd = *vmf.pmd;
4580
4581                 barrier();
4582                 if (unlikely(is_swap_pmd(orig_pmd))) {
4583                         VM_BUG_ON(thp_migration_supported() &&
4584                                           !is_pmd_migration_entry(orig_pmd));
4585                         if (is_pmd_migration_entry(orig_pmd))
4586                                 pmd_migration_entry_wait(mm, vmf.pmd);
4587                         return 0;
4588                 }
4589                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4590                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4591                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4592
4593                         if (dirty && !pmd_write(orig_pmd)) {
4594                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4595                                 if (!(ret & VM_FAULT_FALLBACK))
4596                                         return ret;
4597                         } else {
4598                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4599                                 return 0;
4600                         }
4601                 }
4602         }
4603
4604         return handle_pte_fault(&vmf);
4605 }
4606
4607 /**
4608  * mm_account_fault - Do page fault accountings
4609  *
4610  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4611  *        of perf event counters, but we'll still do the per-task accounting to
4612  *        the task who triggered this page fault.
4613  * @address: the faulted address.
4614  * @flags: the fault flags.
4615  * @ret: the fault retcode.
4616  *
4617  * This will take care of most of the page fault accountings.  Meanwhile, it
4618  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4619  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4620  * still be in per-arch page fault handlers at the entry of page fault.
4621  */
4622 static inline void mm_account_fault(struct pt_regs *regs,
4623                                     unsigned long address, unsigned int flags,
4624                                     vm_fault_t ret)
4625 {
4626         bool major;
4627
4628         /*
4629          * We don't do accounting for some specific faults:
4630          *
4631          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4632          *   includes arch_vma_access_permitted() failing before reaching here.
4633          *   So this is not a "this many hardware page faults" counter.  We
4634          *   should use the hw profiling for that.
4635          *
4636          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4637          *   once they're completed.
4638          */
4639         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4640                 return;
4641
4642         /*
4643          * We define the fault as a major fault when the final successful fault
4644          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4645          * handle it immediately previously).
4646          */
4647         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4648
4649         if (major)
4650                 current->maj_flt++;
4651         else
4652                 current->min_flt++;
4653
4654         /*
4655          * If the fault is done for GUP, regs will be NULL.  We only do the
4656          * accounting for the per thread fault counters who triggered the
4657          * fault, and we skip the perf event updates.
4658          */
4659         if (!regs)
4660                 return;
4661
4662         if (major)
4663                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4664         else
4665                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4666 }
4667
4668 /*
4669  * By the time we get here, we already hold the mm semaphore
4670  *
4671  * The mmap_lock may have been released depending on flags and our
4672  * return value.  See filemap_fault() and __lock_page_or_retry().
4673  */
4674 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4675                            unsigned int flags, struct pt_regs *regs)
4676 {
4677         vm_fault_t ret;
4678
4679         __set_current_state(TASK_RUNNING);
4680
4681         count_vm_event(PGFAULT);
4682         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4683
4684         /* do counter updates before entering really critical section. */
4685         check_sync_rss_stat(current);
4686
4687         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4688                                             flags & FAULT_FLAG_INSTRUCTION,
4689                                             flags & FAULT_FLAG_REMOTE))
4690                 return VM_FAULT_SIGSEGV;
4691
4692         /*
4693          * Enable the memcg OOM handling for faults triggered in user
4694          * space.  Kernel faults are handled more gracefully.
4695          */
4696         if (flags & FAULT_FLAG_USER)
4697                 mem_cgroup_enter_user_fault();
4698
4699         if (unlikely(is_vm_hugetlb_page(vma)))
4700                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4701         else
4702                 ret = __handle_mm_fault(vma, address, flags);
4703
4704         if (flags & FAULT_FLAG_USER) {
4705                 mem_cgroup_exit_user_fault();
4706                 /*
4707                  * The task may have entered a memcg OOM situation but
4708                  * if the allocation error was handled gracefully (no
4709                  * VM_FAULT_OOM), there is no need to kill anything.
4710                  * Just clean up the OOM state peacefully.
4711                  */
4712                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4713                         mem_cgroup_oom_synchronize(false);
4714         }
4715
4716         mm_account_fault(regs, address, flags, ret);
4717
4718         return ret;
4719 }
4720 EXPORT_SYMBOL_GPL(handle_mm_fault);
4721
4722 #ifndef __PAGETABLE_P4D_FOLDED
4723 /*
4724  * Allocate p4d page table.
4725  * We've already handled the fast-path in-line.
4726  */
4727 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4728 {
4729         p4d_t *new = p4d_alloc_one(mm, address);
4730         if (!new)
4731                 return -ENOMEM;
4732
4733         smp_wmb(); /* See comment in __pte_alloc */
4734
4735         spin_lock(&mm->page_table_lock);
4736         if (pgd_present(*pgd))          /* Another has populated it */
4737                 p4d_free(mm, new);
4738         else
4739                 pgd_populate(mm, pgd, new);
4740         spin_unlock(&mm->page_table_lock);
4741         return 0;
4742 }
4743 #endif /* __PAGETABLE_P4D_FOLDED */
4744
4745 #ifndef __PAGETABLE_PUD_FOLDED
4746 /*
4747  * Allocate page upper directory.
4748  * We've already handled the fast-path in-line.
4749  */
4750 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4751 {
4752         pud_t *new = pud_alloc_one(mm, address);
4753         if (!new)
4754                 return -ENOMEM;
4755
4756         smp_wmb(); /* See comment in __pte_alloc */
4757
4758         spin_lock(&mm->page_table_lock);
4759         if (!p4d_present(*p4d)) {
4760                 mm_inc_nr_puds(mm);
4761                 p4d_populate(mm, p4d, new);
4762         } else  /* Another has populated it */
4763                 pud_free(mm, new);
4764         spin_unlock(&mm->page_table_lock);
4765         return 0;
4766 }
4767 #endif /* __PAGETABLE_PUD_FOLDED */
4768
4769 #ifndef __PAGETABLE_PMD_FOLDED
4770 /*
4771  * Allocate page middle directory.
4772  * We've already handled the fast-path in-line.
4773  */
4774 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4775 {
4776         spinlock_t *ptl;
4777         pmd_t *new = pmd_alloc_one(mm, address);
4778         if (!new)
4779                 return -ENOMEM;
4780
4781         smp_wmb(); /* See comment in __pte_alloc */
4782
4783         ptl = pud_lock(mm, pud);
4784         if (!pud_present(*pud)) {
4785                 mm_inc_nr_pmds(mm);
4786                 pud_populate(mm, pud, new);
4787         } else  /* Another has populated it */
4788                 pmd_free(mm, new);
4789         spin_unlock(ptl);
4790         return 0;
4791 }
4792 #endif /* __PAGETABLE_PMD_FOLDED */
4793
4794 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4795                           struct mmu_notifier_range *range, pte_t **ptepp,
4796                           pmd_t **pmdpp, spinlock_t **ptlp)
4797 {
4798         pgd_t *pgd;
4799         p4d_t *p4d;
4800         pud_t *pud;
4801         pmd_t *pmd;
4802         pte_t *ptep;
4803
4804         pgd = pgd_offset(mm, address);
4805         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4806                 goto out;
4807
4808         p4d = p4d_offset(pgd, address);
4809         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4810                 goto out;
4811
4812         pud = pud_offset(p4d, address);
4813         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4814                 goto out;
4815
4816         pmd = pmd_offset(pud, address);
4817         VM_BUG_ON(pmd_trans_huge(*pmd));
4818
4819         if (pmd_huge(*pmd)) {
4820                 if (!pmdpp)
4821                         goto out;
4822
4823                 if (range) {
4824                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4825                                                 NULL, mm, address & PMD_MASK,
4826                                                 (address & PMD_MASK) + PMD_SIZE);
4827                         mmu_notifier_invalidate_range_start(range);
4828                 }
4829                 *ptlp = pmd_lock(mm, pmd);
4830                 if (pmd_huge(*pmd)) {
4831                         *pmdpp = pmd;
4832                         return 0;
4833                 }
4834                 spin_unlock(*ptlp);
4835                 if (range)
4836                         mmu_notifier_invalidate_range_end(range);
4837         }
4838
4839         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4840                 goto out;
4841
4842         if (range) {
4843                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4844                                         address & PAGE_MASK,
4845                                         (address & PAGE_MASK) + PAGE_SIZE);
4846                 mmu_notifier_invalidate_range_start(range);
4847         }
4848         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4849         if (!pte_present(*ptep))
4850                 goto unlock;
4851         *ptepp = ptep;
4852         return 0;
4853 unlock:
4854         pte_unmap_unlock(ptep, *ptlp);
4855         if (range)
4856                 mmu_notifier_invalidate_range_end(range);
4857 out:
4858         return -EINVAL;
4859 }
4860
4861 /**
4862  * follow_pte - look up PTE at a user virtual address
4863  * @mm: the mm_struct of the target address space
4864  * @address: user virtual address
4865  * @ptepp: location to store found PTE
4866  * @ptlp: location to store the lock for the PTE
4867  *
4868  * On a successful return, the pointer to the PTE is stored in @ptepp;
4869  * the corresponding lock is taken and its location is stored in @ptlp.
4870  * The contents of the PTE are only stable until @ptlp is released;
4871  * any further use, if any, must be protected against invalidation
4872  * with MMU notifiers.
4873  *
4874  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4875  * should be taken for read.
4876  *
4877  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4878  * it is not a good general-purpose API.
4879  *
4880  * Return: zero on success, -ve otherwise.
4881  */
4882 int follow_pte(struct mm_struct *mm, unsigned long address,
4883                pte_t **ptepp, spinlock_t **ptlp)
4884 {
4885         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4886 }
4887 EXPORT_SYMBOL_GPL(follow_pte);
4888
4889 /**
4890  * follow_pfn - look up PFN at a user virtual address
4891  * @vma: memory mapping
4892  * @address: user virtual address
4893  * @pfn: location to store found PFN
4894  *
4895  * Only IO mappings and raw PFN mappings are allowed.
4896  *
4897  * This function does not allow the caller to read the permissions
4898  * of the PTE.  Do not use it.
4899  *
4900  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4901  */
4902 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4903         unsigned long *pfn)
4904 {
4905         int ret = -EINVAL;
4906         spinlock_t *ptl;
4907         pte_t *ptep;
4908
4909         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4910                 return ret;
4911
4912         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4913         if (ret)
4914                 return ret;
4915         *pfn = pte_pfn(*ptep);
4916         pte_unmap_unlock(ptep, ptl);
4917         return 0;
4918 }
4919 EXPORT_SYMBOL(follow_pfn);
4920
4921 #ifdef CONFIG_HAVE_IOREMAP_PROT
4922 int follow_phys(struct vm_area_struct *vma,
4923                 unsigned long address, unsigned int flags,
4924                 unsigned long *prot, resource_size_t *phys)
4925 {
4926         int ret = -EINVAL;
4927         pte_t *ptep, pte;
4928         spinlock_t *ptl;
4929
4930         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4931                 goto out;
4932
4933         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4934                 goto out;
4935         pte = *ptep;
4936
4937         /* Never return PFNs of anon folios in COW mappings. */
4938         if (vm_normal_page(vma, address, pte))
4939                 goto unlock;
4940
4941         if ((flags & FOLL_WRITE) && !pte_write(pte))
4942                 goto unlock;
4943
4944         *prot = pgprot_val(pte_pgprot(pte));
4945         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4946
4947         ret = 0;
4948 unlock:
4949         pte_unmap_unlock(ptep, ptl);
4950 out:
4951         return ret;
4952 }
4953
4954 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4955                         void *buf, int len, int write)
4956 {
4957         resource_size_t phys_addr;
4958         unsigned long prot = 0;
4959         void __iomem *maddr;
4960         int offset = addr & (PAGE_SIZE-1);
4961
4962         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4963                 return -EINVAL;
4964
4965         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4966         if (!maddr)
4967                 return -ENOMEM;
4968
4969         if (write)
4970                 memcpy_toio(maddr + offset, buf, len);
4971         else
4972                 memcpy_fromio(buf, maddr + offset, len);
4973         iounmap(maddr);
4974
4975         return len;
4976 }
4977 EXPORT_SYMBOL_GPL(generic_access_phys);
4978 #endif
4979
4980 /*
4981  * Access another process' address space as given in mm.  If non-NULL, use the
4982  * given task for page fault accounting.
4983  */
4984 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4985                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4986 {
4987         struct vm_area_struct *vma;
4988         void *old_buf = buf;
4989         int write = gup_flags & FOLL_WRITE;
4990
4991         if (mmap_read_lock_killable(mm))
4992                 return 0;
4993
4994         /* ignore errors, just check how much was successfully transferred */
4995         while (len) {
4996                 int bytes, ret, offset;
4997                 void *maddr;
4998                 struct page *page = NULL;
4999
5000                 ret = get_user_pages_remote(mm, addr, 1,
5001                                 gup_flags, &page, &vma, NULL);
5002                 if (ret <= 0) {
5003 #ifndef CONFIG_HAVE_IOREMAP_PROT
5004                         break;
5005 #else
5006                         /*
5007                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5008                          * we can access using slightly different code.
5009                          */
5010                         vma = find_vma(mm, addr);
5011                         if (!vma || vma->vm_start > addr)
5012                                 break;
5013                         if (vma->vm_ops && vma->vm_ops->access)
5014                                 ret = vma->vm_ops->access(vma, addr, buf,
5015                                                           len, write);
5016                         if (ret <= 0)
5017                                 break;
5018                         bytes = ret;
5019 #endif
5020                 } else {
5021                         bytes = len;
5022                         offset = addr & (PAGE_SIZE-1);
5023                         if (bytes > PAGE_SIZE-offset)
5024                                 bytes = PAGE_SIZE-offset;
5025
5026                         maddr = kmap(page);
5027                         if (write) {
5028                                 copy_to_user_page(vma, page, addr,
5029                                                   maddr + offset, buf, bytes);
5030                                 set_page_dirty_lock(page);
5031                         } else {
5032                                 copy_from_user_page(vma, page, addr,
5033                                                     buf, maddr + offset, bytes);
5034                         }
5035                         kunmap(page);
5036                         put_page(page);
5037                 }
5038                 len -= bytes;
5039                 buf += bytes;
5040                 addr += bytes;
5041         }
5042         mmap_read_unlock(mm);
5043
5044         return buf - old_buf;
5045 }
5046
5047 /**
5048  * access_remote_vm - access another process' address space
5049  * @mm:         the mm_struct of the target address space
5050  * @addr:       start address to access
5051  * @buf:        source or destination buffer
5052  * @len:        number of bytes to transfer
5053  * @gup_flags:  flags modifying lookup behaviour
5054  *
5055  * The caller must hold a reference on @mm.
5056  *
5057  * Return: number of bytes copied from source to destination.
5058  */
5059 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5060                 void *buf, int len, unsigned int gup_flags)
5061 {
5062         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5063 }
5064
5065 /*
5066  * Access another process' address space.
5067  * Source/target buffer must be kernel space,
5068  * Do not walk the page table directly, use get_user_pages
5069  */
5070 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5071                 void *buf, int len, unsigned int gup_flags)
5072 {
5073         struct mm_struct *mm;
5074         int ret;
5075
5076         mm = get_task_mm(tsk);
5077         if (!mm)
5078                 return 0;
5079
5080         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5081
5082         mmput(mm);
5083
5084         return ret;
5085 }
5086 EXPORT_SYMBOL_GPL(access_process_vm);
5087
5088 /*
5089  * Print the name of a VMA.
5090  */
5091 void print_vma_addr(char *prefix, unsigned long ip)
5092 {
5093         struct mm_struct *mm = current->mm;
5094         struct vm_area_struct *vma;
5095
5096         /*
5097          * we might be running from an atomic context so we cannot sleep
5098          */
5099         if (!mmap_read_trylock(mm))
5100                 return;
5101
5102         vma = find_vma(mm, ip);
5103         if (vma && vma->vm_file) {
5104                 struct file *f = vma->vm_file;
5105                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5106                 if (buf) {
5107                         char *p;
5108
5109                         p = file_path(f, buf, PAGE_SIZE);
5110                         if (IS_ERR(p))
5111                                 p = "?";
5112                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5113                                         vma->vm_start,
5114                                         vma->vm_end - vma->vm_start);
5115                         free_page((unsigned long)buf);
5116                 }
5117         }
5118         mmap_read_unlock(mm);
5119 }
5120
5121 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5122 void __might_fault(const char *file, int line)
5123 {
5124         /*
5125          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5126          * holding the mmap_lock, this is safe because kernel memory doesn't
5127          * get paged out, therefore we'll never actually fault, and the
5128          * below annotations will generate false positives.
5129          */
5130         if (uaccess_kernel())
5131                 return;
5132         if (pagefault_disabled())
5133                 return;
5134         __might_sleep(file, line, 0);
5135 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5136         if (current->mm)
5137                 might_lock_read(&current->mm->mmap_lock);
5138 #endif
5139 }
5140 EXPORT_SYMBOL(__might_fault);
5141 #endif
5142
5143 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5144 /*
5145  * Process all subpages of the specified huge page with the specified
5146  * operation.  The target subpage will be processed last to keep its
5147  * cache lines hot.
5148  */
5149 static inline void process_huge_page(
5150         unsigned long addr_hint, unsigned int pages_per_huge_page,
5151         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5152         void *arg)
5153 {
5154         int i, n, base, l;
5155         unsigned long addr = addr_hint &
5156                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5157
5158         /* Process target subpage last to keep its cache lines hot */
5159         might_sleep();
5160         n = (addr_hint - addr) / PAGE_SIZE;
5161         if (2 * n <= pages_per_huge_page) {
5162                 /* If target subpage in first half of huge page */
5163                 base = 0;
5164                 l = n;
5165                 /* Process subpages at the end of huge page */
5166                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5167                         cond_resched();
5168                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5169                 }
5170         } else {
5171                 /* If target subpage in second half of huge page */
5172                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5173                 l = pages_per_huge_page - n;
5174                 /* Process subpages at the begin of huge page */
5175                 for (i = 0; i < base; i++) {
5176                         cond_resched();
5177                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5178                 }
5179         }
5180         /*
5181          * Process remaining subpages in left-right-left-right pattern
5182          * towards the target subpage
5183          */
5184         for (i = 0; i < l; i++) {
5185                 int left_idx = base + i;
5186                 int right_idx = base + 2 * l - 1 - i;
5187
5188                 cond_resched();
5189                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5190                 cond_resched();
5191                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5192         }
5193 }
5194
5195 static void clear_gigantic_page(struct page *page,
5196                                 unsigned long addr,
5197                                 unsigned int pages_per_huge_page)
5198 {
5199         int i;
5200         struct page *p = page;
5201
5202         might_sleep();
5203         for (i = 0; i < pages_per_huge_page;
5204              i++, p = mem_map_next(p, page, i)) {
5205                 cond_resched();
5206                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5207         }
5208 }
5209
5210 static void clear_subpage(unsigned long addr, int idx, void *arg)
5211 {
5212         struct page *page = arg;
5213
5214         clear_user_highpage(page + idx, addr);
5215 }
5216
5217 void clear_huge_page(struct page *page,
5218                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5219 {
5220         unsigned long addr = addr_hint &
5221                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5222
5223         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5224                 clear_gigantic_page(page, addr, pages_per_huge_page);
5225                 return;
5226         }
5227
5228         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5229 }
5230
5231 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5232                                     unsigned long addr,
5233                                     struct vm_area_struct *vma,
5234                                     unsigned int pages_per_huge_page)
5235 {
5236         int i;
5237         struct page *dst_base = dst;
5238         struct page *src_base = src;
5239
5240         for (i = 0; i < pages_per_huge_page; ) {
5241                 cond_resched();
5242                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5243
5244                 i++;
5245                 dst = mem_map_next(dst, dst_base, i);
5246                 src = mem_map_next(src, src_base, i);
5247         }
5248 }
5249
5250 struct copy_subpage_arg {
5251         struct page *dst;
5252         struct page *src;
5253         struct vm_area_struct *vma;
5254 };
5255
5256 static void copy_subpage(unsigned long addr, int idx, void *arg)
5257 {
5258         struct copy_subpage_arg *copy_arg = arg;
5259
5260         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5261                            addr, copy_arg->vma);
5262 }
5263
5264 void copy_user_huge_page(struct page *dst, struct page *src,
5265                          unsigned long addr_hint, struct vm_area_struct *vma,
5266                          unsigned int pages_per_huge_page)
5267 {
5268         unsigned long addr = addr_hint &
5269                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5270         struct copy_subpage_arg arg = {
5271                 .dst = dst,
5272                 .src = src,
5273                 .vma = vma,
5274         };
5275
5276         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5277                 copy_user_gigantic_page(dst, src, addr, vma,
5278                                         pages_per_huge_page);
5279                 return;
5280         }
5281
5282         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5283 }
5284
5285 long copy_huge_page_from_user(struct page *dst_page,
5286                                 const void __user *usr_src,
5287                                 unsigned int pages_per_huge_page,
5288                                 bool allow_pagefault)
5289 {
5290         void *src = (void *)usr_src;
5291         void *page_kaddr;
5292         unsigned long i, rc = 0;
5293         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5294         struct page *subpage = dst_page;
5295
5296         for (i = 0; i < pages_per_huge_page;
5297              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5298                 if (allow_pagefault)
5299                         page_kaddr = kmap(subpage);
5300                 else
5301                         page_kaddr = kmap_atomic(subpage);
5302                 rc = copy_from_user(page_kaddr,
5303                                 (const void __user *)(src + i * PAGE_SIZE),
5304                                 PAGE_SIZE);
5305                 if (allow_pagefault)
5306                         kunmap(subpage);
5307                 else
5308                         kunmap_atomic(page_kaddr);
5309
5310                 ret_val -= (PAGE_SIZE - rc);
5311                 if (rc)
5312                         break;
5313
5314                 flush_dcache_page(subpage);
5315
5316                 cond_resched();
5317         }
5318         return ret_val;
5319 }
5320 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5321
5322 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5323
5324 static struct kmem_cache *page_ptl_cachep;
5325
5326 void __init ptlock_cache_init(void)
5327 {
5328         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5329                         SLAB_PANIC, NULL);
5330 }
5331
5332 bool ptlock_alloc(struct page *page)
5333 {
5334         spinlock_t *ptl;
5335
5336         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5337         if (!ptl)
5338                 return false;
5339         page->ptl = ptl;
5340         return true;
5341 }
5342
5343 void ptlock_free(struct page *page)
5344 {
5345         kmem_cache_free(page_ptl_cachep, page->ptl);
5346 }
5347 #endif