GNU Linux-libre 4.19.223-gnu1
[releases.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 #ifndef arch_faults_on_old_pte
120 static inline bool arch_faults_on_old_pte(void)
121 {
122         /*
123          * Those arches which don't have hw access flag feature need to
124          * implement their own helper. By default, "true" means pagefault
125          * will be hit on old pte.
126          */
127         return true;
128 }
129 #endif
130
131 static int __init disable_randmaps(char *s)
132 {
133         randomize_va_space = 0;
134         return 1;
135 }
136 __setup("norandmaps", disable_randmaps);
137
138 unsigned long zero_pfn __read_mostly;
139 EXPORT_SYMBOL(zero_pfn);
140
141 unsigned long highest_memmap_pfn __read_mostly;
142
143 /*
144  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
145  */
146 static int __init init_zero_pfn(void)
147 {
148         zero_pfn = page_to_pfn(ZERO_PAGE(0));
149         return 0;
150 }
151 early_initcall(init_zero_pfn);
152
153
154 #if defined(SPLIT_RSS_COUNTING)
155
156 void sync_mm_rss(struct mm_struct *mm)
157 {
158         int i;
159
160         for (i = 0; i < NR_MM_COUNTERS; i++) {
161                 if (current->rss_stat.count[i]) {
162                         add_mm_counter(mm, i, current->rss_stat.count[i]);
163                         current->rss_stat.count[i] = 0;
164                 }
165         }
166         current->rss_stat.events = 0;
167 }
168
169 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
170 {
171         struct task_struct *task = current;
172
173         if (likely(task->mm == mm))
174                 task->rss_stat.count[member] += val;
175         else
176                 add_mm_counter(mm, member, val);
177 }
178 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
179 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
180
181 /* sync counter once per 64 page faults */
182 #define TASK_RSS_EVENTS_THRESH  (64)
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185         if (unlikely(task != current))
186                 return;
187         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
188                 sync_mm_rss(task->mm);
189 }
190 #else /* SPLIT_RSS_COUNTING */
191
192 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
193 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
194
195 static void check_sync_rss_stat(struct task_struct *task)
196 {
197 }
198
199 #endif /* SPLIT_RSS_COUNTING */
200
201 #ifdef HAVE_GENERIC_MMU_GATHER
202
203 static bool tlb_next_batch(struct mmu_gather *tlb)
204 {
205         struct mmu_gather_batch *batch;
206
207         batch = tlb->active;
208         if (batch->next) {
209                 tlb->active = batch->next;
210                 return true;
211         }
212
213         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
214                 return false;
215
216         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
217         if (!batch)
218                 return false;
219
220         tlb->batch_count++;
221         batch->next = NULL;
222         batch->nr   = 0;
223         batch->max  = MAX_GATHER_BATCH;
224
225         tlb->active->next = batch;
226         tlb->active = batch;
227
228         return true;
229 }
230
231 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
232                                 unsigned long start, unsigned long end)
233 {
234         tlb->mm = mm;
235
236         /* Is it from 0 to ~0? */
237         tlb->fullmm     = !(start | (end+1));
238         tlb->need_flush_all = 0;
239         tlb->local.next = NULL;
240         tlb->local.nr   = 0;
241         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
242         tlb->active     = &tlb->local;
243         tlb->batch_count = 0;
244
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246         tlb->batch = NULL;
247 #endif
248         tlb->page_size = 0;
249
250         __tlb_reset_range(tlb);
251 }
252
253 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 {
255         struct mmu_gather_batch *batch;
256
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258         tlb_table_flush(tlb);
259 #endif
260         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
261                 free_pages_and_swap_cache(batch->pages, batch->nr);
262                 batch->nr = 0;
263         }
264         tlb->active = &tlb->local;
265 }
266
267 void tlb_flush_mmu(struct mmu_gather *tlb)
268 {
269         tlb_flush_mmu_tlbonly(tlb);
270         tlb_flush_mmu_free(tlb);
271 }
272
273 /* tlb_finish_mmu
274  *      Called at the end of the shootdown operation to free up any resources
275  *      that were required.
276  */
277 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
278                 unsigned long start, unsigned long end, bool force)
279 {
280         struct mmu_gather_batch *batch, *next;
281
282         if (force)
283                 __tlb_adjust_range(tlb, start, end - start);
284
285         tlb_flush_mmu(tlb);
286
287         /* keep the page table cache within bounds */
288         check_pgt_cache();
289
290         for (batch = tlb->local.next; batch; batch = next) {
291                 next = batch->next;
292                 free_pages((unsigned long)batch, 0);
293         }
294         tlb->local.next = NULL;
295 }
296
297 /* __tlb_remove_page
298  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
299  *      handling the additional races in SMP caused by other CPUs caching valid
300  *      mappings in their TLBs. Returns the number of free page slots left.
301  *      When out of page slots we must call tlb_flush_mmu().
302  *returns true if the caller should flush.
303  */
304 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
305 {
306         struct mmu_gather_batch *batch;
307
308         VM_BUG_ON(!tlb->end);
309         VM_WARN_ON(tlb->page_size != page_size);
310
311         batch = tlb->active;
312         /*
313          * Add the page and check if we are full. If so
314          * force a flush.
315          */
316         batch->pages[batch->nr++] = page;
317         if (batch->nr == batch->max) {
318                 if (!tlb_next_batch(tlb))
319                         return true;
320                 batch = tlb->active;
321         }
322         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
323
324         return false;
325 }
326
327 void tlb_flush_pmd_range(struct mmu_gather *tlb, unsigned long address,
328                          unsigned long size)
329 {
330         if (tlb->page_size != 0 && tlb->page_size != PMD_SIZE)
331                 tlb_flush_mmu(tlb);
332
333         tlb->page_size = PMD_SIZE;
334         tlb->start = min(tlb->start, address);
335         tlb->end = max(tlb->end, address + size);
336 }
337 #endif /* HAVE_GENERIC_MMU_GATHER */
338
339 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
340
341 /*
342  * See the comment near struct mmu_table_batch.
343  */
344
345 /*
346  * If we want tlb_remove_table() to imply TLB invalidates.
347  */
348 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
349 {
350 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
351         /*
352          * Invalidate page-table caches used by hardware walkers. Then we still
353          * need to RCU-sched wait while freeing the pages because software
354          * walkers can still be in-flight.
355          */
356         tlb_flush_mmu_tlbonly(tlb);
357 #endif
358 }
359
360 static void tlb_remove_table_smp_sync(void *arg)
361 {
362         /* Simply deliver the interrupt */
363 }
364
365 static void tlb_remove_table_one(void *table)
366 {
367         /*
368          * This isn't an RCU grace period and hence the page-tables cannot be
369          * assumed to be actually RCU-freed.
370          *
371          * It is however sufficient for software page-table walkers that rely on
372          * IRQ disabling. See the comment near struct mmu_table_batch.
373          */
374         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
375         __tlb_remove_table(table);
376 }
377
378 static void tlb_remove_table_rcu(struct rcu_head *head)
379 {
380         struct mmu_table_batch *batch;
381         int i;
382
383         batch = container_of(head, struct mmu_table_batch, rcu);
384
385         for (i = 0; i < batch->nr; i++)
386                 __tlb_remove_table(batch->tables[i]);
387
388         free_page((unsigned long)batch);
389 }
390
391 void tlb_table_flush(struct mmu_gather *tlb)
392 {
393         struct mmu_table_batch **batch = &tlb->batch;
394
395         if (*batch) {
396                 tlb_table_invalidate(tlb);
397                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
398                 *batch = NULL;
399         }
400 }
401
402 void tlb_remove_table(struct mmu_gather *tlb, void *table)
403 {
404         struct mmu_table_batch **batch = &tlb->batch;
405
406         if (*batch == NULL) {
407                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
408                 if (*batch == NULL) {
409                         tlb_table_invalidate(tlb);
410                         tlb_remove_table_one(table);
411                         return;
412                 }
413                 (*batch)->nr = 0;
414         }
415
416         (*batch)->tables[(*batch)->nr++] = table;
417         if ((*batch)->nr == MAX_TABLE_BATCH)
418                 tlb_table_flush(tlb);
419 }
420
421 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
422
423 /**
424  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
425  * @tlb: the mmu_gather structure to initialize
426  * @mm: the mm_struct of the target address space
427  * @start: start of the region that will be removed from the page-table
428  * @end: end of the region that will be removed from the page-table
429  *
430  * Called to initialize an (on-stack) mmu_gather structure for page-table
431  * tear-down from @mm. The @start and @end are set to 0 and -1
432  * respectively when @mm is without users and we're going to destroy
433  * the full address space (exit/execve).
434  */
435 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
436                         unsigned long start, unsigned long end)
437 {
438         arch_tlb_gather_mmu(tlb, mm, start, end);
439         inc_tlb_flush_pending(tlb->mm);
440 }
441
442 void tlb_finish_mmu(struct mmu_gather *tlb,
443                 unsigned long start, unsigned long end)
444 {
445         /*
446          * If there are parallel threads are doing PTE changes on same range
447          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
448          * flush by batching, a thread has stable TLB entry can fail to flush
449          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
450          * forcefully if we detect parallel PTE batching threads.
451          */
452         bool force = mm_tlb_flush_nested(tlb->mm);
453
454         arch_tlb_finish_mmu(tlb, start, end, force);
455         dec_tlb_flush_pending(tlb->mm);
456 }
457
458 /*
459  * Note: this doesn't free the actual pages themselves. That
460  * has been handled earlier when unmapping all the memory regions.
461  */
462 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
463                            unsigned long addr)
464 {
465         pgtable_t token = pmd_pgtable(*pmd);
466         pmd_clear(pmd);
467         pte_free_tlb(tlb, token, addr);
468         mm_dec_nr_ptes(tlb->mm);
469 }
470
471 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
472                                 unsigned long addr, unsigned long end,
473                                 unsigned long floor, unsigned long ceiling)
474 {
475         pmd_t *pmd;
476         unsigned long next;
477         unsigned long start;
478
479         start = addr;
480         pmd = pmd_offset(pud, addr);
481         do {
482                 next = pmd_addr_end(addr, end);
483                 if (pmd_none_or_clear_bad(pmd))
484                         continue;
485                 free_pte_range(tlb, pmd, addr);
486         } while (pmd++, addr = next, addr != end);
487
488         start &= PUD_MASK;
489         if (start < floor)
490                 return;
491         if (ceiling) {
492                 ceiling &= PUD_MASK;
493                 if (!ceiling)
494                         return;
495         }
496         if (end - 1 > ceiling - 1)
497                 return;
498
499         pmd = pmd_offset(pud, start);
500         pud_clear(pud);
501         pmd_free_tlb(tlb, pmd, start);
502         mm_dec_nr_pmds(tlb->mm);
503 }
504
505 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
506                                 unsigned long addr, unsigned long end,
507                                 unsigned long floor, unsigned long ceiling)
508 {
509         pud_t *pud;
510         unsigned long next;
511         unsigned long start;
512
513         start = addr;
514         pud = pud_offset(p4d, addr);
515         do {
516                 next = pud_addr_end(addr, end);
517                 if (pud_none_or_clear_bad(pud))
518                         continue;
519                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
520         } while (pud++, addr = next, addr != end);
521
522         start &= P4D_MASK;
523         if (start < floor)
524                 return;
525         if (ceiling) {
526                 ceiling &= P4D_MASK;
527                 if (!ceiling)
528                         return;
529         }
530         if (end - 1 > ceiling - 1)
531                 return;
532
533         pud = pud_offset(p4d, start);
534         p4d_clear(p4d);
535         pud_free_tlb(tlb, pud, start);
536         mm_dec_nr_puds(tlb->mm);
537 }
538
539 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
540                                 unsigned long addr, unsigned long end,
541                                 unsigned long floor, unsigned long ceiling)
542 {
543         p4d_t *p4d;
544         unsigned long next;
545         unsigned long start;
546
547         start = addr;
548         p4d = p4d_offset(pgd, addr);
549         do {
550                 next = p4d_addr_end(addr, end);
551                 if (p4d_none_or_clear_bad(p4d))
552                         continue;
553                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
554         } while (p4d++, addr = next, addr != end);
555
556         start &= PGDIR_MASK;
557         if (start < floor)
558                 return;
559         if (ceiling) {
560                 ceiling &= PGDIR_MASK;
561                 if (!ceiling)
562                         return;
563         }
564         if (end - 1 > ceiling - 1)
565                 return;
566
567         p4d = p4d_offset(pgd, start);
568         pgd_clear(pgd);
569         p4d_free_tlb(tlb, p4d, start);
570 }
571
572 /*
573  * This function frees user-level page tables of a process.
574  */
575 void free_pgd_range(struct mmu_gather *tlb,
576                         unsigned long addr, unsigned long end,
577                         unsigned long floor, unsigned long ceiling)
578 {
579         pgd_t *pgd;
580         unsigned long next;
581
582         /*
583          * The next few lines have given us lots of grief...
584          *
585          * Why are we testing PMD* at this top level?  Because often
586          * there will be no work to do at all, and we'd prefer not to
587          * go all the way down to the bottom just to discover that.
588          *
589          * Why all these "- 1"s?  Because 0 represents both the bottom
590          * of the address space and the top of it (using -1 for the
591          * top wouldn't help much: the masks would do the wrong thing).
592          * The rule is that addr 0 and floor 0 refer to the bottom of
593          * the address space, but end 0 and ceiling 0 refer to the top
594          * Comparisons need to use "end - 1" and "ceiling - 1" (though
595          * that end 0 case should be mythical).
596          *
597          * Wherever addr is brought up or ceiling brought down, we must
598          * be careful to reject "the opposite 0" before it confuses the
599          * subsequent tests.  But what about where end is brought down
600          * by PMD_SIZE below? no, end can't go down to 0 there.
601          *
602          * Whereas we round start (addr) and ceiling down, by different
603          * masks at different levels, in order to test whether a table
604          * now has no other vmas using it, so can be freed, we don't
605          * bother to round floor or end up - the tests don't need that.
606          */
607
608         addr &= PMD_MASK;
609         if (addr < floor) {
610                 addr += PMD_SIZE;
611                 if (!addr)
612                         return;
613         }
614         if (ceiling) {
615                 ceiling &= PMD_MASK;
616                 if (!ceiling)
617                         return;
618         }
619         if (end - 1 > ceiling - 1)
620                 end -= PMD_SIZE;
621         if (addr > end - 1)
622                 return;
623         /*
624          * We add page table cache pages with PAGE_SIZE,
625          * (see pte_free_tlb()), flush the tlb if we need
626          */
627         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
628         pgd = pgd_offset(tlb->mm, addr);
629         do {
630                 next = pgd_addr_end(addr, end);
631                 if (pgd_none_or_clear_bad(pgd))
632                         continue;
633                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
634         } while (pgd++, addr = next, addr != end);
635 }
636
637 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
638                 unsigned long floor, unsigned long ceiling)
639 {
640         while (vma) {
641                 struct vm_area_struct *next = vma->vm_next;
642                 unsigned long addr = vma->vm_start;
643
644                 /*
645                  * Hide vma from rmap and truncate_pagecache before freeing
646                  * pgtables
647                  */
648                 unlink_anon_vmas(vma);
649                 unlink_file_vma(vma);
650
651                 if (is_vm_hugetlb_page(vma)) {
652                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
653                                 floor, next ? next->vm_start : ceiling);
654                 } else {
655                         /*
656                          * Optimization: gather nearby vmas into one call down
657                          */
658                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
659                                && !is_vm_hugetlb_page(next)) {
660                                 vma = next;
661                                 next = vma->vm_next;
662                                 unlink_anon_vmas(vma);
663                                 unlink_file_vma(vma);
664                         }
665                         free_pgd_range(tlb, addr, vma->vm_end,
666                                 floor, next ? next->vm_start : ceiling);
667                 }
668                 vma = next;
669         }
670 }
671
672 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
673 {
674         spinlock_t *ptl;
675         pgtable_t new = pte_alloc_one(mm, address);
676         if (!new)
677                 return -ENOMEM;
678
679         /*
680          * Ensure all pte setup (eg. pte page lock and page clearing) are
681          * visible before the pte is made visible to other CPUs by being
682          * put into page tables.
683          *
684          * The other side of the story is the pointer chasing in the page
685          * table walking code (when walking the page table without locking;
686          * ie. most of the time). Fortunately, these data accesses consist
687          * of a chain of data-dependent loads, meaning most CPUs (alpha
688          * being the notable exception) will already guarantee loads are
689          * seen in-order. See the alpha page table accessors for the
690          * smp_read_barrier_depends() barriers in page table walking code.
691          */
692         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
693
694         ptl = pmd_lock(mm, pmd);
695         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
696                 mm_inc_nr_ptes(mm);
697                 pmd_populate(mm, pmd, new);
698                 new = NULL;
699         }
700         spin_unlock(ptl);
701         if (new)
702                 pte_free(mm, new);
703         return 0;
704 }
705
706 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
707 {
708         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
709         if (!new)
710                 return -ENOMEM;
711
712         smp_wmb(); /* See comment in __pte_alloc */
713
714         spin_lock(&init_mm.page_table_lock);
715         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
716                 pmd_populate_kernel(&init_mm, pmd, new);
717                 new = NULL;
718         }
719         spin_unlock(&init_mm.page_table_lock);
720         if (new)
721                 pte_free_kernel(&init_mm, new);
722         return 0;
723 }
724
725 static inline void init_rss_vec(int *rss)
726 {
727         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
728 }
729
730 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
731 {
732         int i;
733
734         if (current->mm == mm)
735                 sync_mm_rss(mm);
736         for (i = 0; i < NR_MM_COUNTERS; i++)
737                 if (rss[i])
738                         add_mm_counter(mm, i, rss[i]);
739 }
740
741 /*
742  * This function is called to print an error when a bad pte
743  * is found. For example, we might have a PFN-mapped pte in
744  * a region that doesn't allow it.
745  *
746  * The calling function must still handle the error.
747  */
748 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
749                           pte_t pte, struct page *page)
750 {
751         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
752         p4d_t *p4d = p4d_offset(pgd, addr);
753         pud_t *pud = pud_offset(p4d, addr);
754         pmd_t *pmd = pmd_offset(pud, addr);
755         struct address_space *mapping;
756         pgoff_t index;
757         static unsigned long resume;
758         static unsigned long nr_shown;
759         static unsigned long nr_unshown;
760
761         /*
762          * Allow a burst of 60 reports, then keep quiet for that minute;
763          * or allow a steady drip of one report per second.
764          */
765         if (nr_shown == 60) {
766                 if (time_before(jiffies, resume)) {
767                         nr_unshown++;
768                         return;
769                 }
770                 if (nr_unshown) {
771                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
772                                  nr_unshown);
773                         nr_unshown = 0;
774                 }
775                 nr_shown = 0;
776         }
777         if (nr_shown++ == 0)
778                 resume = jiffies + 60 * HZ;
779
780         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
781         index = linear_page_index(vma, addr);
782
783         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
784                  current->comm,
785                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
786         if (page)
787                 dump_page(page, "bad pte");
788         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
789                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
790         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
791                  vma->vm_file,
792                  vma->vm_ops ? vma->vm_ops->fault : NULL,
793                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
794                  mapping ? mapping->a_ops->readpage : NULL);
795         dump_stack();
796         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
797 }
798
799 /*
800  * vm_normal_page -- This function gets the "struct page" associated with a pte.
801  *
802  * "Special" mappings do not wish to be associated with a "struct page" (either
803  * it doesn't exist, or it exists but they don't want to touch it). In this
804  * case, NULL is returned here. "Normal" mappings do have a struct page.
805  *
806  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
807  * pte bit, in which case this function is trivial. Secondly, an architecture
808  * may not have a spare pte bit, which requires a more complicated scheme,
809  * described below.
810  *
811  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
812  * special mapping (even if there are underlying and valid "struct pages").
813  * COWed pages of a VM_PFNMAP are always normal.
814  *
815  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
816  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
817  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
818  * mapping will always honor the rule
819  *
820  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
821  *
822  * And for normal mappings this is false.
823  *
824  * This restricts such mappings to be a linear translation from virtual address
825  * to pfn. To get around this restriction, we allow arbitrary mappings so long
826  * as the vma is not a COW mapping; in that case, we know that all ptes are
827  * special (because none can have been COWed).
828  *
829  *
830  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
831  *
832  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
833  * page" backing, however the difference is that _all_ pages with a struct
834  * page (that is, those where pfn_valid is true) are refcounted and considered
835  * normal pages by the VM. The disadvantage is that pages are refcounted
836  * (which can be slower and simply not an option for some PFNMAP users). The
837  * advantage is that we don't have to follow the strict linearity rule of
838  * PFNMAP mappings in order to support COWable mappings.
839  *
840  */
841 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
842                              pte_t pte, bool with_public_device)
843 {
844         unsigned long pfn = pte_pfn(pte);
845
846         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
847                 if (likely(!pte_special(pte)))
848                         goto check_pfn;
849                 if (vma->vm_ops && vma->vm_ops->find_special_page)
850                         return vma->vm_ops->find_special_page(vma, addr);
851                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
852                         return NULL;
853                 if (is_zero_pfn(pfn))
854                         return NULL;
855
856                 /*
857                  * Device public pages are special pages (they are ZONE_DEVICE
858                  * pages but different from persistent memory). They behave
859                  * allmost like normal pages. The difference is that they are
860                  * not on the lru and thus should never be involve with any-
861                  * thing that involve lru manipulation (mlock, numa balancing,
862                  * ...).
863                  *
864                  * This is why we still want to return NULL for such page from
865                  * vm_normal_page() so that we do not have to special case all
866                  * call site of vm_normal_page().
867                  */
868                 if (likely(pfn <= highest_memmap_pfn)) {
869                         struct page *page = pfn_to_page(pfn);
870
871                         if (is_device_public_page(page)) {
872                                 if (with_public_device)
873                                         return page;
874                                 return NULL;
875                         }
876                 }
877
878                 if (pte_devmap(pte))
879                         return NULL;
880
881                 print_bad_pte(vma, addr, pte, NULL);
882                 return NULL;
883         }
884
885         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
886
887         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
888                 if (vma->vm_flags & VM_MIXEDMAP) {
889                         if (!pfn_valid(pfn))
890                                 return NULL;
891                         goto out;
892                 } else {
893                         unsigned long off;
894                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
895                         if (pfn == vma->vm_pgoff + off)
896                                 return NULL;
897                         if (!is_cow_mapping(vma->vm_flags))
898                                 return NULL;
899                 }
900         }
901
902         if (is_zero_pfn(pfn))
903                 return NULL;
904
905 check_pfn:
906         if (unlikely(pfn > highest_memmap_pfn)) {
907                 print_bad_pte(vma, addr, pte, NULL);
908                 return NULL;
909         }
910
911         /*
912          * NOTE! We still have PageReserved() pages in the page tables.
913          * eg. VDSO mappings can cause them to exist.
914          */
915 out:
916         return pfn_to_page(pfn);
917 }
918
919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
920 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
921                                 pmd_t pmd)
922 {
923         unsigned long pfn = pmd_pfn(pmd);
924
925         /*
926          * There is no pmd_special() but there may be special pmds, e.g.
927          * in a direct-access (dax) mapping, so let's just replicate the
928          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
929          */
930         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
931                 if (vma->vm_flags & VM_MIXEDMAP) {
932                         if (!pfn_valid(pfn))
933                                 return NULL;
934                         goto out;
935                 } else {
936                         unsigned long off;
937                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
938                         if (pfn == vma->vm_pgoff + off)
939                                 return NULL;
940                         if (!is_cow_mapping(vma->vm_flags))
941                                 return NULL;
942                 }
943         }
944
945         if (pmd_devmap(pmd))
946                 return NULL;
947         if (is_zero_pfn(pfn))
948                 return NULL;
949         if (unlikely(pfn > highest_memmap_pfn))
950                 return NULL;
951
952         /*
953          * NOTE! We still have PageReserved() pages in the page tables.
954          * eg. VDSO mappings can cause them to exist.
955          */
956 out:
957         return pfn_to_page(pfn);
958 }
959 #endif
960
961 /*
962  * copy one vm_area from one task to the other. Assumes the page tables
963  * already present in the new task to be cleared in the whole range
964  * covered by this vma.
965  */
966
967 static inline unsigned long
968 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
970                 unsigned long addr, int *rss)
971 {
972         unsigned long vm_flags = vma->vm_flags;
973         pte_t pte = *src_pte;
974         struct page *page;
975
976         /* pte contains position in swap or file, so copy. */
977         if (unlikely(!pte_present(pte))) {
978                 swp_entry_t entry = pte_to_swp_entry(pte);
979
980                 if (likely(!non_swap_entry(entry))) {
981                         if (swap_duplicate(entry) < 0)
982                                 return entry.val;
983
984                         /* make sure dst_mm is on swapoff's mmlist. */
985                         if (unlikely(list_empty(&dst_mm->mmlist))) {
986                                 spin_lock(&mmlist_lock);
987                                 if (list_empty(&dst_mm->mmlist))
988                                         list_add(&dst_mm->mmlist,
989                                                         &src_mm->mmlist);
990                                 spin_unlock(&mmlist_lock);
991                         }
992                         rss[MM_SWAPENTS]++;
993                 } else if (is_migration_entry(entry)) {
994                         page = migration_entry_to_page(entry);
995
996                         rss[mm_counter(page)]++;
997
998                         if (is_write_migration_entry(entry) &&
999                                         is_cow_mapping(vm_flags)) {
1000                                 /*
1001                                  * COW mappings require pages in both
1002                                  * parent and child to be set to read.
1003                                  */
1004                                 make_migration_entry_read(&entry);
1005                                 pte = swp_entry_to_pte(entry);
1006                                 if (pte_swp_soft_dirty(*src_pte))
1007                                         pte = pte_swp_mksoft_dirty(pte);
1008                                 set_pte_at(src_mm, addr, src_pte, pte);
1009                         }
1010                 } else if (is_device_private_entry(entry)) {
1011                         page = device_private_entry_to_page(entry);
1012
1013                         /*
1014                          * Update rss count even for unaddressable pages, as
1015                          * they should treated just like normal pages in this
1016                          * respect.
1017                          *
1018                          * We will likely want to have some new rss counters
1019                          * for unaddressable pages, at some point. But for now
1020                          * keep things as they are.
1021                          */
1022                         get_page(page);
1023                         rss[mm_counter(page)]++;
1024                         page_dup_rmap(page, false);
1025
1026                         /*
1027                          * We do not preserve soft-dirty information, because so
1028                          * far, checkpoint/restore is the only feature that
1029                          * requires that. And checkpoint/restore does not work
1030                          * when a device driver is involved (you cannot easily
1031                          * save and restore device driver state).
1032                          */
1033                         if (is_write_device_private_entry(entry) &&
1034                             is_cow_mapping(vm_flags)) {
1035                                 make_device_private_entry_read(&entry);
1036                                 pte = swp_entry_to_pte(entry);
1037                                 set_pte_at(src_mm, addr, src_pte, pte);
1038                         }
1039                 }
1040                 goto out_set_pte;
1041         }
1042
1043         /*
1044          * If it's a COW mapping, write protect it both
1045          * in the parent and the child
1046          */
1047         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1048                 ptep_set_wrprotect(src_mm, addr, src_pte);
1049                 pte = pte_wrprotect(pte);
1050         }
1051
1052         /*
1053          * If it's a shared mapping, mark it clean in
1054          * the child
1055          */
1056         if (vm_flags & VM_SHARED)
1057                 pte = pte_mkclean(pte);
1058         pte = pte_mkold(pte);
1059
1060         page = vm_normal_page(vma, addr, pte);
1061         if (page) {
1062                 get_page(page);
1063                 page_dup_rmap(page, false);
1064                 rss[mm_counter(page)]++;
1065         } else if (pte_devmap(pte)) {
1066                 page = pte_page(pte);
1067
1068                 /*
1069                  * Cache coherent device memory behave like regular page and
1070                  * not like persistent memory page. For more informations see
1071                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1072                  */
1073                 if (is_device_public_page(page)) {
1074                         get_page(page);
1075                         page_dup_rmap(page, false);
1076                         rss[mm_counter(page)]++;
1077                 }
1078         }
1079
1080 out_set_pte:
1081         set_pte_at(dst_mm, addr, dst_pte, pte);
1082         return 0;
1083 }
1084
1085 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1086                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1087                    unsigned long addr, unsigned long end)
1088 {
1089         pte_t *orig_src_pte, *orig_dst_pte;
1090         pte_t *src_pte, *dst_pte;
1091         spinlock_t *src_ptl, *dst_ptl;
1092         int progress = 0;
1093         int rss[NR_MM_COUNTERS];
1094         swp_entry_t entry = (swp_entry_t){0};
1095
1096 again:
1097         init_rss_vec(rss);
1098
1099         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1100         if (!dst_pte)
1101                 return -ENOMEM;
1102         src_pte = pte_offset_map(src_pmd, addr);
1103         src_ptl = pte_lockptr(src_mm, src_pmd);
1104         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1105         orig_src_pte = src_pte;
1106         orig_dst_pte = dst_pte;
1107         arch_enter_lazy_mmu_mode();
1108
1109         do {
1110                 /*
1111                  * We are holding two locks at this point - either of them
1112                  * could generate latencies in another task on another CPU.
1113                  */
1114                 if (progress >= 32) {
1115                         progress = 0;
1116                         if (need_resched() ||
1117                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1118                                 break;
1119                 }
1120                 if (pte_none(*src_pte)) {
1121                         progress++;
1122                         continue;
1123                 }
1124                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1125                                                         vma, addr, rss);
1126                 if (entry.val)
1127                         break;
1128                 progress += 8;
1129         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1130
1131         arch_leave_lazy_mmu_mode();
1132         spin_unlock(src_ptl);
1133         pte_unmap(orig_src_pte);
1134         add_mm_rss_vec(dst_mm, rss);
1135         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1136         cond_resched();
1137
1138         if (entry.val) {
1139                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1140                         return -ENOMEM;
1141                 progress = 0;
1142         }
1143         if (addr != end)
1144                 goto again;
1145         return 0;
1146 }
1147
1148 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1149                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1150                 unsigned long addr, unsigned long end)
1151 {
1152         pmd_t *src_pmd, *dst_pmd;
1153         unsigned long next;
1154
1155         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1156         if (!dst_pmd)
1157                 return -ENOMEM;
1158         src_pmd = pmd_offset(src_pud, addr);
1159         do {
1160                 next = pmd_addr_end(addr, end);
1161                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1162                         || pmd_devmap(*src_pmd)) {
1163                         int err;
1164                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1165                         err = copy_huge_pmd(dst_mm, src_mm,
1166                                             dst_pmd, src_pmd, addr, vma);
1167                         if (err == -ENOMEM)
1168                                 return -ENOMEM;
1169                         if (!err)
1170                                 continue;
1171                         /* fall through */
1172                 }
1173                 if (pmd_none_or_clear_bad(src_pmd))
1174                         continue;
1175                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1176                                                 vma, addr, next))
1177                         return -ENOMEM;
1178         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1179         return 0;
1180 }
1181
1182 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1183                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1184                 unsigned long addr, unsigned long end)
1185 {
1186         pud_t *src_pud, *dst_pud;
1187         unsigned long next;
1188
1189         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1190         if (!dst_pud)
1191                 return -ENOMEM;
1192         src_pud = pud_offset(src_p4d, addr);
1193         do {
1194                 next = pud_addr_end(addr, end);
1195                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1196                         int err;
1197
1198                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1199                         err = copy_huge_pud(dst_mm, src_mm,
1200                                             dst_pud, src_pud, addr, vma);
1201                         if (err == -ENOMEM)
1202                                 return -ENOMEM;
1203                         if (!err)
1204                                 continue;
1205                         /* fall through */
1206                 }
1207                 if (pud_none_or_clear_bad(src_pud))
1208                         continue;
1209                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1210                                                 vma, addr, next))
1211                         return -ENOMEM;
1212         } while (dst_pud++, src_pud++, addr = next, addr != end);
1213         return 0;
1214 }
1215
1216 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1217                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1218                 unsigned long addr, unsigned long end)
1219 {
1220         p4d_t *src_p4d, *dst_p4d;
1221         unsigned long next;
1222
1223         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1224         if (!dst_p4d)
1225                 return -ENOMEM;
1226         src_p4d = p4d_offset(src_pgd, addr);
1227         do {
1228                 next = p4d_addr_end(addr, end);
1229                 if (p4d_none_or_clear_bad(src_p4d))
1230                         continue;
1231                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1232                                                 vma, addr, next))
1233                         return -ENOMEM;
1234         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1235         return 0;
1236 }
1237
1238 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1239                 struct vm_area_struct *vma)
1240 {
1241         pgd_t *src_pgd, *dst_pgd;
1242         unsigned long next;
1243         unsigned long addr = vma->vm_start;
1244         unsigned long end = vma->vm_end;
1245         unsigned long mmun_start;       /* For mmu_notifiers */
1246         unsigned long mmun_end;         /* For mmu_notifiers */
1247         bool is_cow;
1248         int ret;
1249
1250         /*
1251          * Don't copy ptes where a page fault will fill them correctly.
1252          * Fork becomes much lighter when there are big shared or private
1253          * readonly mappings. The tradeoff is that copy_page_range is more
1254          * efficient than faulting.
1255          */
1256         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1257                         !vma->anon_vma)
1258                 return 0;
1259
1260         if (is_vm_hugetlb_page(vma))
1261                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1262
1263         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1264                 /*
1265                  * We do not free on error cases below as remove_vma
1266                  * gets called on error from higher level routine
1267                  */
1268                 ret = track_pfn_copy(vma);
1269                 if (ret)
1270                         return ret;
1271         }
1272
1273         /*
1274          * We need to invalidate the secondary MMU mappings only when
1275          * there could be a permission downgrade on the ptes of the
1276          * parent mm. And a permission downgrade will only happen if
1277          * is_cow_mapping() returns true.
1278          */
1279         is_cow = is_cow_mapping(vma->vm_flags);
1280         mmun_start = addr;
1281         mmun_end   = end;
1282         if (is_cow)
1283                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1284                                                     mmun_end);
1285
1286         ret = 0;
1287         dst_pgd = pgd_offset(dst_mm, addr);
1288         src_pgd = pgd_offset(src_mm, addr);
1289         do {
1290                 next = pgd_addr_end(addr, end);
1291                 if (pgd_none_or_clear_bad(src_pgd))
1292                         continue;
1293                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1294                                             vma, addr, next))) {
1295                         ret = -ENOMEM;
1296                         break;
1297                 }
1298         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1299
1300         if (is_cow)
1301                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1302         return ret;
1303 }
1304
1305 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1306                                 struct vm_area_struct *vma, pmd_t *pmd,
1307                                 unsigned long addr, unsigned long end,
1308                                 struct zap_details *details)
1309 {
1310         struct mm_struct *mm = tlb->mm;
1311         int force_flush = 0;
1312         int rss[NR_MM_COUNTERS];
1313         spinlock_t *ptl;
1314         pte_t *start_pte;
1315         pte_t *pte;
1316         swp_entry_t entry;
1317
1318         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1319 again:
1320         init_rss_vec(rss);
1321         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1322         pte = start_pte;
1323         flush_tlb_batched_pending(mm);
1324         arch_enter_lazy_mmu_mode();
1325         do {
1326                 pte_t ptent = *pte;
1327                 if (pte_none(ptent))
1328                         continue;
1329
1330                 if (pte_present(ptent)) {
1331                         struct page *page;
1332
1333                         page = _vm_normal_page(vma, addr, ptent, true);
1334                         if (unlikely(details) && page) {
1335                                 /*
1336                                  * unmap_shared_mapping_pages() wants to
1337                                  * invalidate cache without truncating:
1338                                  * unmap shared but keep private pages.
1339                                  */
1340                                 if (details->check_mapping &&
1341                                     details->check_mapping != page_rmapping(page))
1342                                         continue;
1343                         }
1344                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1345                                                         tlb->fullmm);
1346                         tlb_remove_tlb_entry(tlb, pte, addr);
1347                         if (unlikely(!page))
1348                                 continue;
1349
1350                         if (!PageAnon(page)) {
1351                                 if (pte_dirty(ptent)) {
1352                                         force_flush = 1;
1353                                         set_page_dirty(page);
1354                                 }
1355                                 if (pte_young(ptent) &&
1356                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1357                                         mark_page_accessed(page);
1358                         }
1359                         rss[mm_counter(page)]--;
1360                         page_remove_rmap(page, false);
1361                         if (unlikely(page_mapcount(page) < 0))
1362                                 print_bad_pte(vma, addr, ptent, page);
1363                         if (unlikely(__tlb_remove_page(tlb, page))) {
1364                                 force_flush = 1;
1365                                 addr += PAGE_SIZE;
1366                                 break;
1367                         }
1368                         continue;
1369                 }
1370
1371                 entry = pte_to_swp_entry(ptent);
1372                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1373                         struct page *page = device_private_entry_to_page(entry);
1374
1375                         if (unlikely(details && details->check_mapping)) {
1376                                 /*
1377                                  * unmap_shared_mapping_pages() wants to
1378                                  * invalidate cache without truncating:
1379                                  * unmap shared but keep private pages.
1380                                  */
1381                                 if (details->check_mapping !=
1382                                     page_rmapping(page))
1383                                         continue;
1384                         }
1385
1386                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1387                         rss[mm_counter(page)]--;
1388                         page_remove_rmap(page, false);
1389                         put_page(page);
1390                         continue;
1391                 }
1392
1393                 /* If details->check_mapping, we leave swap entries. */
1394                 if (unlikely(details))
1395                         continue;
1396
1397                 entry = pte_to_swp_entry(ptent);
1398                 if (!non_swap_entry(entry))
1399                         rss[MM_SWAPENTS]--;
1400                 else if (is_migration_entry(entry)) {
1401                         struct page *page;
1402
1403                         page = migration_entry_to_page(entry);
1404                         rss[mm_counter(page)]--;
1405                 }
1406                 if (unlikely(!free_swap_and_cache(entry)))
1407                         print_bad_pte(vma, addr, ptent, NULL);
1408                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1409         } while (pte++, addr += PAGE_SIZE, addr != end);
1410
1411         add_mm_rss_vec(mm, rss);
1412         arch_leave_lazy_mmu_mode();
1413
1414         /* Do the actual TLB flush before dropping ptl */
1415         if (force_flush)
1416                 tlb_flush_mmu_tlbonly(tlb);
1417         pte_unmap_unlock(start_pte, ptl);
1418
1419         /*
1420          * If we forced a TLB flush (either due to running out of
1421          * batch buffers or because we needed to flush dirty TLB
1422          * entries before releasing the ptl), free the batched
1423          * memory too. Restart if we didn't do everything.
1424          */
1425         if (force_flush) {
1426                 force_flush = 0;
1427                 tlb_flush_mmu_free(tlb);
1428                 if (addr != end)
1429                         goto again;
1430         }
1431
1432         return addr;
1433 }
1434
1435 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1436                                 struct vm_area_struct *vma, pud_t *pud,
1437                                 unsigned long addr, unsigned long end,
1438                                 struct zap_details *details)
1439 {
1440         pmd_t *pmd;
1441         unsigned long next;
1442
1443         pmd = pmd_offset(pud, addr);
1444         do {
1445                 next = pmd_addr_end(addr, end);
1446                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1447                         if (next - addr != HPAGE_PMD_SIZE)
1448                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1449                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1450                                 goto next;
1451                         /* fall through */
1452                 } else if (details && details->single_page &&
1453                            PageTransCompound(details->single_page) &&
1454                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1455                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1456                         /*
1457                          * Take and drop THP pmd lock so that we cannot return
1458                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1459                          * but not yet decremented compound_mapcount().
1460                          */
1461                         spin_unlock(ptl);
1462                 }
1463
1464                 /*
1465                  * Here there can be other concurrent MADV_DONTNEED or
1466                  * trans huge page faults running, and if the pmd is
1467                  * none or trans huge it can change under us. This is
1468                  * because MADV_DONTNEED holds the mmap_sem in read
1469                  * mode.
1470                  */
1471                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1472                         goto next;
1473                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1474 next:
1475                 cond_resched();
1476         } while (pmd++, addr = next, addr != end);
1477
1478         return addr;
1479 }
1480
1481 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1482                                 struct vm_area_struct *vma, p4d_t *p4d,
1483                                 unsigned long addr, unsigned long end,
1484                                 struct zap_details *details)
1485 {
1486         pud_t *pud;
1487         unsigned long next;
1488
1489         pud = pud_offset(p4d, addr);
1490         do {
1491                 next = pud_addr_end(addr, end);
1492                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1493                         if (next - addr != HPAGE_PUD_SIZE) {
1494                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1495                                 split_huge_pud(vma, pud, addr);
1496                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1497                                 goto next;
1498                         /* fall through */
1499                 }
1500                 if (pud_none_or_clear_bad(pud))
1501                         continue;
1502                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1503 next:
1504                 cond_resched();
1505         } while (pud++, addr = next, addr != end);
1506
1507         return addr;
1508 }
1509
1510 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1511                                 struct vm_area_struct *vma, pgd_t *pgd,
1512                                 unsigned long addr, unsigned long end,
1513                                 struct zap_details *details)
1514 {
1515         p4d_t *p4d;
1516         unsigned long next;
1517
1518         p4d = p4d_offset(pgd, addr);
1519         do {
1520                 next = p4d_addr_end(addr, end);
1521                 if (p4d_none_or_clear_bad(p4d))
1522                         continue;
1523                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1524         } while (p4d++, addr = next, addr != end);
1525
1526         return addr;
1527 }
1528
1529 void unmap_page_range(struct mmu_gather *tlb,
1530                              struct vm_area_struct *vma,
1531                              unsigned long addr, unsigned long end,
1532                              struct zap_details *details)
1533 {
1534         pgd_t *pgd;
1535         unsigned long next;
1536
1537         BUG_ON(addr >= end);
1538         tlb_start_vma(tlb, vma);
1539         pgd = pgd_offset(vma->vm_mm, addr);
1540         do {
1541                 next = pgd_addr_end(addr, end);
1542                 if (pgd_none_or_clear_bad(pgd))
1543                         continue;
1544                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1545         } while (pgd++, addr = next, addr != end);
1546         tlb_end_vma(tlb, vma);
1547 }
1548
1549
1550 static void unmap_single_vma(struct mmu_gather *tlb,
1551                 struct vm_area_struct *vma, unsigned long start_addr,
1552                 unsigned long end_addr,
1553                 struct zap_details *details)
1554 {
1555         unsigned long start = max(vma->vm_start, start_addr);
1556         unsigned long end;
1557
1558         if (start >= vma->vm_end)
1559                 return;
1560         end = min(vma->vm_end, end_addr);
1561         if (end <= vma->vm_start)
1562                 return;
1563
1564         if (vma->vm_file)
1565                 uprobe_munmap(vma, start, end);
1566
1567         if (unlikely(vma->vm_flags & VM_PFNMAP))
1568                 untrack_pfn(vma, 0, 0);
1569
1570         if (start != end) {
1571                 if (unlikely(is_vm_hugetlb_page(vma))) {
1572                         /*
1573                          * It is undesirable to test vma->vm_file as it
1574                          * should be non-null for valid hugetlb area.
1575                          * However, vm_file will be NULL in the error
1576                          * cleanup path of mmap_region. When
1577                          * hugetlbfs ->mmap method fails,
1578                          * mmap_region() nullifies vma->vm_file
1579                          * before calling this function to clean up.
1580                          * Since no pte has actually been setup, it is
1581                          * safe to do nothing in this case.
1582                          */
1583                         if (vma->vm_file) {
1584                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1585                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1586                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1587                         }
1588                 } else
1589                         unmap_page_range(tlb, vma, start, end, details);
1590         }
1591 }
1592
1593 /**
1594  * unmap_vmas - unmap a range of memory covered by a list of vma's
1595  * @tlb: address of the caller's struct mmu_gather
1596  * @vma: the starting vma
1597  * @start_addr: virtual address at which to start unmapping
1598  * @end_addr: virtual address at which to end unmapping
1599  *
1600  * Unmap all pages in the vma list.
1601  *
1602  * Only addresses between `start' and `end' will be unmapped.
1603  *
1604  * The VMA list must be sorted in ascending virtual address order.
1605  *
1606  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1607  * range after unmap_vmas() returns.  So the only responsibility here is to
1608  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1609  * drops the lock and schedules.
1610  */
1611 void unmap_vmas(struct mmu_gather *tlb,
1612                 struct vm_area_struct *vma, unsigned long start_addr,
1613                 unsigned long end_addr)
1614 {
1615         struct mm_struct *mm = vma->vm_mm;
1616
1617         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1618         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1619                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1620         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1621 }
1622
1623 /**
1624  * zap_page_range - remove user pages in a given range
1625  * @vma: vm_area_struct holding the applicable pages
1626  * @start: starting address of pages to zap
1627  * @size: number of bytes to zap
1628  *
1629  * Caller must protect the VMA list
1630  */
1631 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1632                 unsigned long size)
1633 {
1634         struct mm_struct *mm = vma->vm_mm;
1635         struct mmu_gather tlb;
1636         unsigned long end = start + size;
1637
1638         lru_add_drain();
1639         tlb_gather_mmu(&tlb, mm, start, end);
1640         update_hiwater_rss(mm);
1641         mmu_notifier_invalidate_range_start(mm, start, end);
1642         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1643                 unmap_single_vma(&tlb, vma, start, end, NULL);
1644         mmu_notifier_invalidate_range_end(mm, start, end);
1645         tlb_finish_mmu(&tlb, start, end);
1646 }
1647
1648 /**
1649  * zap_page_range_single - remove user pages in a given range
1650  * @vma: vm_area_struct holding the applicable pages
1651  * @address: starting address of pages to zap
1652  * @size: number of bytes to zap
1653  * @details: details of shared cache invalidation
1654  *
1655  * The range must fit into one VMA.
1656  */
1657 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1658                 unsigned long size, struct zap_details *details)
1659 {
1660         struct mm_struct *mm = vma->vm_mm;
1661         struct mmu_gather tlb;
1662         unsigned long end = address + size;
1663
1664         lru_add_drain();
1665         tlb_gather_mmu(&tlb, mm, address, end);
1666         update_hiwater_rss(mm);
1667         mmu_notifier_invalidate_range_start(mm, address, end);
1668         unmap_single_vma(&tlb, vma, address, end, details);
1669         mmu_notifier_invalidate_range_end(mm, address, end);
1670         tlb_finish_mmu(&tlb, address, end);
1671 }
1672
1673 /**
1674  * zap_vma_ptes - remove ptes mapping the vma
1675  * @vma: vm_area_struct holding ptes to be zapped
1676  * @address: starting address of pages to zap
1677  * @size: number of bytes to zap
1678  *
1679  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1680  *
1681  * The entire address range must be fully contained within the vma.
1682  *
1683  */
1684 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1685                 unsigned long size)
1686 {
1687         if (address < vma->vm_start || address + size > vma->vm_end ||
1688                         !(vma->vm_flags & VM_PFNMAP))
1689                 return;
1690
1691         zap_page_range_single(vma, address, size, NULL);
1692 }
1693 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1694
1695 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1696                         spinlock_t **ptl)
1697 {
1698         pgd_t *pgd;
1699         p4d_t *p4d;
1700         pud_t *pud;
1701         pmd_t *pmd;
1702
1703         pgd = pgd_offset(mm, addr);
1704         p4d = p4d_alloc(mm, pgd, addr);
1705         if (!p4d)
1706                 return NULL;
1707         pud = pud_alloc(mm, p4d, addr);
1708         if (!pud)
1709                 return NULL;
1710         pmd = pmd_alloc(mm, pud, addr);
1711         if (!pmd)
1712                 return NULL;
1713
1714         VM_BUG_ON(pmd_trans_huge(*pmd));
1715         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1716 }
1717
1718 /*
1719  * This is the old fallback for page remapping.
1720  *
1721  * For historical reasons, it only allows reserved pages. Only
1722  * old drivers should use this, and they needed to mark their
1723  * pages reserved for the old functions anyway.
1724  */
1725 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1726                         struct page *page, pgprot_t prot)
1727 {
1728         struct mm_struct *mm = vma->vm_mm;
1729         int retval;
1730         pte_t *pte;
1731         spinlock_t *ptl;
1732
1733         retval = -EINVAL;
1734         if (PageAnon(page))
1735                 goto out;
1736         retval = -ENOMEM;
1737         flush_dcache_page(page);
1738         pte = get_locked_pte(mm, addr, &ptl);
1739         if (!pte)
1740                 goto out;
1741         retval = -EBUSY;
1742         if (!pte_none(*pte))
1743                 goto out_unlock;
1744
1745         /* Ok, finally just insert the thing.. */
1746         get_page(page);
1747         inc_mm_counter_fast(mm, mm_counter_file(page));
1748         page_add_file_rmap(page, false);
1749         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1750
1751         retval = 0;
1752         pte_unmap_unlock(pte, ptl);
1753         return retval;
1754 out_unlock:
1755         pte_unmap_unlock(pte, ptl);
1756 out:
1757         return retval;
1758 }
1759
1760 /**
1761  * vm_insert_page - insert single page into user vma
1762  * @vma: user vma to map to
1763  * @addr: target user address of this page
1764  * @page: source kernel page
1765  *
1766  * This allows drivers to insert individual pages they've allocated
1767  * into a user vma.
1768  *
1769  * The page has to be a nice clean _individual_ kernel allocation.
1770  * If you allocate a compound page, you need to have marked it as
1771  * such (__GFP_COMP), or manually just split the page up yourself
1772  * (see split_page()).
1773  *
1774  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1775  * took an arbitrary page protection parameter. This doesn't allow
1776  * that. Your vma protection will have to be set up correctly, which
1777  * means that if you want a shared writable mapping, you'd better
1778  * ask for a shared writable mapping!
1779  *
1780  * The page does not need to be reserved.
1781  *
1782  * Usually this function is called from f_op->mmap() handler
1783  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1784  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1785  * function from other places, for example from page-fault handler.
1786  */
1787 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1788                         struct page *page)
1789 {
1790         if (addr < vma->vm_start || addr >= vma->vm_end)
1791                 return -EFAULT;
1792         if (!page_count(page))
1793                 return -EINVAL;
1794         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1795                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1796                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1797                 vma->vm_flags |= VM_MIXEDMAP;
1798         }
1799         return insert_page(vma, addr, page, vma->vm_page_prot);
1800 }
1801 EXPORT_SYMBOL(vm_insert_page);
1802
1803 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1804                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1805 {
1806         struct mm_struct *mm = vma->vm_mm;
1807         int retval;
1808         pte_t *pte, entry;
1809         spinlock_t *ptl;
1810
1811         retval = -ENOMEM;
1812         pte = get_locked_pte(mm, addr, &ptl);
1813         if (!pte)
1814                 goto out;
1815         retval = -EBUSY;
1816         if (!pte_none(*pte)) {
1817                 if (mkwrite) {
1818                         /*
1819                          * For read faults on private mappings the PFN passed
1820                          * in may not match the PFN we have mapped if the
1821                          * mapped PFN is a writeable COW page.  In the mkwrite
1822                          * case we are creating a writable PTE for a shared
1823                          * mapping and we expect the PFNs to match. If they
1824                          * don't match, we are likely racing with block
1825                          * allocation and mapping invalidation so just skip the
1826                          * update.
1827                          */
1828                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1829                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1830                                 goto out_unlock;
1831                         }
1832                         entry = pte_mkyoung(*pte);
1833                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1834                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1835                                 update_mmu_cache(vma, addr, pte);
1836                 }
1837                 goto out_unlock;
1838         }
1839
1840         /* Ok, finally just insert the thing.. */
1841         if (pfn_t_devmap(pfn))
1842                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1843         else
1844                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1845
1846         if (mkwrite) {
1847                 entry = pte_mkyoung(entry);
1848                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1849         }
1850
1851         set_pte_at(mm, addr, pte, entry);
1852         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1853
1854         retval = 0;
1855 out_unlock:
1856         pte_unmap_unlock(pte, ptl);
1857 out:
1858         return retval;
1859 }
1860
1861 /**
1862  * vm_insert_pfn - insert single pfn into user vma
1863  * @vma: user vma to map to
1864  * @addr: target user address of this page
1865  * @pfn: source kernel pfn
1866  *
1867  * Similar to vm_insert_page, this allows drivers to insert individual pages
1868  * they've allocated into a user vma. Same comments apply.
1869  *
1870  * This function should only be called from a vm_ops->fault handler, and
1871  * in that case the handler should return NULL.
1872  *
1873  * vma cannot be a COW mapping.
1874  *
1875  * As this is called only for pages that do not currently exist, we
1876  * do not need to flush old virtual caches or the TLB.
1877  */
1878 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1879                         unsigned long pfn)
1880 {
1881         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1882 }
1883 EXPORT_SYMBOL(vm_insert_pfn);
1884
1885 /**
1886  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1887  * @vma: user vma to map to
1888  * @addr: target user address of this page
1889  * @pfn: source kernel pfn
1890  * @pgprot: pgprot flags for the inserted page
1891  *
1892  * This is exactly like vm_insert_pfn, except that it allows drivers to
1893  * to override pgprot on a per-page basis.
1894  *
1895  * This only makes sense for IO mappings, and it makes no sense for
1896  * cow mappings.  In general, using multiple vmas is preferable;
1897  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1898  * impractical.
1899  */
1900 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1901                         unsigned long pfn, pgprot_t pgprot)
1902 {
1903         int ret;
1904         /*
1905          * Technically, architectures with pte_special can avoid all these
1906          * restrictions (same for remap_pfn_range).  However we would like
1907          * consistency in testing and feature parity among all, so we should
1908          * try to keep these invariants in place for everybody.
1909          */
1910         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1911         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1912                                                 (VM_PFNMAP|VM_MIXEDMAP));
1913         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1914         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1915
1916         if (addr < vma->vm_start || addr >= vma->vm_end)
1917                 return -EFAULT;
1918
1919         if (!pfn_modify_allowed(pfn, pgprot))
1920                 return -EACCES;
1921
1922         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1923
1924         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1925                         false);
1926
1927         return ret;
1928 }
1929 EXPORT_SYMBOL(vm_insert_pfn_prot);
1930
1931 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1932 {
1933         /* these checks mirror the abort conditions in vm_normal_page */
1934         if (vma->vm_flags & VM_MIXEDMAP)
1935                 return true;
1936         if (pfn_t_devmap(pfn))
1937                 return true;
1938         if (pfn_t_special(pfn))
1939                 return true;
1940         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1941                 return true;
1942         return false;
1943 }
1944
1945 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1946                         pfn_t pfn, bool mkwrite)
1947 {
1948         pgprot_t pgprot = vma->vm_page_prot;
1949
1950         BUG_ON(!vm_mixed_ok(vma, pfn));
1951
1952         if (addr < vma->vm_start || addr >= vma->vm_end)
1953                 return -EFAULT;
1954
1955         track_pfn_insert(vma, &pgprot, pfn);
1956
1957         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1958                 return -EACCES;
1959
1960         /*
1961          * If we don't have pte special, then we have to use the pfn_valid()
1962          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1963          * refcount the page if pfn_valid is true (hence insert_page rather
1964          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1965          * without pte special, it would there be refcounted as a normal page.
1966          */
1967         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1968             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1969                 struct page *page;
1970
1971                 /*
1972                  * At this point we are committed to insert_page()
1973                  * regardless of whether the caller specified flags that
1974                  * result in pfn_t_has_page() == false.
1975                  */
1976                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1977                 return insert_page(vma, addr, page, pgprot);
1978         }
1979         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1980 }
1981
1982 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1983                         pfn_t pfn)
1984 {
1985         return __vm_insert_mixed(vma, addr, pfn, false);
1986
1987 }
1988 EXPORT_SYMBOL(vm_insert_mixed);
1989
1990 /*
1991  *  If the insertion of PTE failed because someone else already added a
1992  *  different entry in the mean time, we treat that as success as we assume
1993  *  the same entry was actually inserted.
1994  */
1995
1996 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1997                 unsigned long addr, pfn_t pfn)
1998 {
1999         int err;
2000
2001         err =  __vm_insert_mixed(vma, addr, pfn, true);
2002         if (err == -ENOMEM)
2003                 return VM_FAULT_OOM;
2004         if (err < 0 && err != -EBUSY)
2005                 return VM_FAULT_SIGBUS;
2006         return VM_FAULT_NOPAGE;
2007 }
2008 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2009
2010 /*
2011  * maps a range of physical memory into the requested pages. the old
2012  * mappings are removed. any references to nonexistent pages results
2013  * in null mappings (currently treated as "copy-on-access")
2014  */
2015 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2016                         unsigned long addr, unsigned long end,
2017                         unsigned long pfn, pgprot_t prot)
2018 {
2019         pte_t *pte, *mapped_pte;
2020         spinlock_t *ptl;
2021         int err = 0;
2022
2023         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2024         if (!pte)
2025                 return -ENOMEM;
2026         arch_enter_lazy_mmu_mode();
2027         do {
2028                 BUG_ON(!pte_none(*pte));
2029                 if (!pfn_modify_allowed(pfn, prot)) {
2030                         err = -EACCES;
2031                         break;
2032                 }
2033                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2034                 pfn++;
2035         } while (pte++, addr += PAGE_SIZE, addr != end);
2036         arch_leave_lazy_mmu_mode();
2037         pte_unmap_unlock(mapped_pte, ptl);
2038         return err;
2039 }
2040
2041 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2042                         unsigned long addr, unsigned long end,
2043                         unsigned long pfn, pgprot_t prot)
2044 {
2045         pmd_t *pmd;
2046         unsigned long next;
2047         int err;
2048
2049         pfn -= addr >> PAGE_SHIFT;
2050         pmd = pmd_alloc(mm, pud, addr);
2051         if (!pmd)
2052                 return -ENOMEM;
2053         VM_BUG_ON(pmd_trans_huge(*pmd));
2054         do {
2055                 next = pmd_addr_end(addr, end);
2056                 err = remap_pte_range(mm, pmd, addr, next,
2057                                 pfn + (addr >> PAGE_SHIFT), prot);
2058                 if (err)
2059                         return err;
2060         } while (pmd++, addr = next, addr != end);
2061         return 0;
2062 }
2063
2064 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2065                         unsigned long addr, unsigned long end,
2066                         unsigned long pfn, pgprot_t prot)
2067 {
2068         pud_t *pud;
2069         unsigned long next;
2070         int err;
2071
2072         pfn -= addr >> PAGE_SHIFT;
2073         pud = pud_alloc(mm, p4d, addr);
2074         if (!pud)
2075                 return -ENOMEM;
2076         do {
2077                 next = pud_addr_end(addr, end);
2078                 err = remap_pmd_range(mm, pud, addr, next,
2079                                 pfn + (addr >> PAGE_SHIFT), prot);
2080                 if (err)
2081                         return err;
2082         } while (pud++, addr = next, addr != end);
2083         return 0;
2084 }
2085
2086 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2087                         unsigned long addr, unsigned long end,
2088                         unsigned long pfn, pgprot_t prot)
2089 {
2090         p4d_t *p4d;
2091         unsigned long next;
2092         int err;
2093
2094         pfn -= addr >> PAGE_SHIFT;
2095         p4d = p4d_alloc(mm, pgd, addr);
2096         if (!p4d)
2097                 return -ENOMEM;
2098         do {
2099                 next = p4d_addr_end(addr, end);
2100                 err = remap_pud_range(mm, p4d, addr, next,
2101                                 pfn + (addr >> PAGE_SHIFT), prot);
2102                 if (err)
2103                         return err;
2104         } while (p4d++, addr = next, addr != end);
2105         return 0;
2106 }
2107
2108 /**
2109  * remap_pfn_range - remap kernel memory to userspace
2110  * @vma: user vma to map to
2111  * @addr: target user address to start at
2112  * @pfn: physical address of kernel memory
2113  * @size: size of map area
2114  * @prot: page protection flags for this mapping
2115  *
2116  *  Note: this is only safe if the mm semaphore is held when called.
2117  */
2118 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2119                     unsigned long pfn, unsigned long size, pgprot_t prot)
2120 {
2121         pgd_t *pgd;
2122         unsigned long next;
2123         unsigned long end = addr + PAGE_ALIGN(size);
2124         struct mm_struct *mm = vma->vm_mm;
2125         unsigned long remap_pfn = pfn;
2126         int err;
2127
2128         /*
2129          * Physically remapped pages are special. Tell the
2130          * rest of the world about it:
2131          *   VM_IO tells people not to look at these pages
2132          *      (accesses can have side effects).
2133          *   VM_PFNMAP tells the core MM that the base pages are just
2134          *      raw PFN mappings, and do not have a "struct page" associated
2135          *      with them.
2136          *   VM_DONTEXPAND
2137          *      Disable vma merging and expanding with mremap().
2138          *   VM_DONTDUMP
2139          *      Omit vma from core dump, even when VM_IO turned off.
2140          *
2141          * There's a horrible special case to handle copy-on-write
2142          * behaviour that some programs depend on. We mark the "original"
2143          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2144          * See vm_normal_page() for details.
2145          */
2146         if (is_cow_mapping(vma->vm_flags)) {
2147                 if (addr != vma->vm_start || end != vma->vm_end)
2148                         return -EINVAL;
2149                 vma->vm_pgoff = pfn;
2150         }
2151
2152         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2153         if (err)
2154                 return -EINVAL;
2155
2156         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2157
2158         BUG_ON(addr >= end);
2159         pfn -= addr >> PAGE_SHIFT;
2160         pgd = pgd_offset(mm, addr);
2161         flush_cache_range(vma, addr, end);
2162         do {
2163                 next = pgd_addr_end(addr, end);
2164                 err = remap_p4d_range(mm, pgd, addr, next,
2165                                 pfn + (addr >> PAGE_SHIFT), prot);
2166                 if (err)
2167                         break;
2168         } while (pgd++, addr = next, addr != end);
2169
2170         if (err)
2171                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2172
2173         return err;
2174 }
2175 EXPORT_SYMBOL(remap_pfn_range);
2176
2177 /**
2178  * vm_iomap_memory - remap memory to userspace
2179  * @vma: user vma to map to
2180  * @start: start of area
2181  * @len: size of area
2182  *
2183  * This is a simplified io_remap_pfn_range() for common driver use. The
2184  * driver just needs to give us the physical memory range to be mapped,
2185  * we'll figure out the rest from the vma information.
2186  *
2187  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2188  * whatever write-combining details or similar.
2189  */
2190 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2191 {
2192         unsigned long vm_len, pfn, pages;
2193
2194         /* Check that the physical memory area passed in looks valid */
2195         if (start + len < start)
2196                 return -EINVAL;
2197         /*
2198          * You *really* shouldn't map things that aren't page-aligned,
2199          * but we've historically allowed it because IO memory might
2200          * just have smaller alignment.
2201          */
2202         len += start & ~PAGE_MASK;
2203         pfn = start >> PAGE_SHIFT;
2204         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2205         if (pfn + pages < pfn)
2206                 return -EINVAL;
2207
2208         /* We start the mapping 'vm_pgoff' pages into the area */
2209         if (vma->vm_pgoff > pages)
2210                 return -EINVAL;
2211         pfn += vma->vm_pgoff;
2212         pages -= vma->vm_pgoff;
2213
2214         /* Can we fit all of the mapping? */
2215         vm_len = vma->vm_end - vma->vm_start;
2216         if (vm_len >> PAGE_SHIFT > pages)
2217                 return -EINVAL;
2218
2219         /* Ok, let it rip */
2220         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2221 }
2222 EXPORT_SYMBOL(vm_iomap_memory);
2223
2224 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2225                                      unsigned long addr, unsigned long end,
2226                                      pte_fn_t fn, void *data)
2227 {
2228         pte_t *pte;
2229         int err;
2230         pgtable_t token;
2231         spinlock_t *uninitialized_var(ptl);
2232
2233         pte = (mm == &init_mm) ?
2234                 pte_alloc_kernel(pmd, addr) :
2235                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2236         if (!pte)
2237                 return -ENOMEM;
2238
2239         BUG_ON(pmd_huge(*pmd));
2240
2241         arch_enter_lazy_mmu_mode();
2242
2243         token = pmd_pgtable(*pmd);
2244
2245         do {
2246                 err = fn(pte++, token, addr, data);
2247                 if (err)
2248                         break;
2249         } while (addr += PAGE_SIZE, addr != end);
2250
2251         arch_leave_lazy_mmu_mode();
2252
2253         if (mm != &init_mm)
2254                 pte_unmap_unlock(pte-1, ptl);
2255         return err;
2256 }
2257
2258 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2259                                      unsigned long addr, unsigned long end,
2260                                      pte_fn_t fn, void *data)
2261 {
2262         pmd_t *pmd;
2263         unsigned long next;
2264         int err;
2265
2266         BUG_ON(pud_huge(*pud));
2267
2268         pmd = pmd_alloc(mm, pud, addr);
2269         if (!pmd)
2270                 return -ENOMEM;
2271         do {
2272                 next = pmd_addr_end(addr, end);
2273                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2274                 if (err)
2275                         break;
2276         } while (pmd++, addr = next, addr != end);
2277         return err;
2278 }
2279
2280 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2281                                      unsigned long addr, unsigned long end,
2282                                      pte_fn_t fn, void *data)
2283 {
2284         pud_t *pud;
2285         unsigned long next;
2286         int err;
2287
2288         pud = pud_alloc(mm, p4d, addr);
2289         if (!pud)
2290                 return -ENOMEM;
2291         do {
2292                 next = pud_addr_end(addr, end);
2293                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2294                 if (err)
2295                         break;
2296         } while (pud++, addr = next, addr != end);
2297         return err;
2298 }
2299
2300 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2301                                      unsigned long addr, unsigned long end,
2302                                      pte_fn_t fn, void *data)
2303 {
2304         p4d_t *p4d;
2305         unsigned long next;
2306         int err;
2307
2308         p4d = p4d_alloc(mm, pgd, addr);
2309         if (!p4d)
2310                 return -ENOMEM;
2311         do {
2312                 next = p4d_addr_end(addr, end);
2313                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2314                 if (err)
2315                         break;
2316         } while (p4d++, addr = next, addr != end);
2317         return err;
2318 }
2319
2320 /*
2321  * Scan a region of virtual memory, filling in page tables as necessary
2322  * and calling a provided function on each leaf page table.
2323  */
2324 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2325                         unsigned long size, pte_fn_t fn, void *data)
2326 {
2327         pgd_t *pgd;
2328         unsigned long next;
2329         unsigned long end = addr + size;
2330         int err;
2331
2332         if (WARN_ON(addr >= end))
2333                 return -EINVAL;
2334
2335         pgd = pgd_offset(mm, addr);
2336         do {
2337                 next = pgd_addr_end(addr, end);
2338                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2339                 if (err)
2340                         break;
2341         } while (pgd++, addr = next, addr != end);
2342
2343         return err;
2344 }
2345 EXPORT_SYMBOL_GPL(apply_to_page_range);
2346
2347 /*
2348  * handle_pte_fault chooses page fault handler according to an entry which was
2349  * read non-atomically.  Before making any commitment, on those architectures
2350  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2351  * parts, do_swap_page must check under lock before unmapping the pte and
2352  * proceeding (but do_wp_page is only called after already making such a check;
2353  * and do_anonymous_page can safely check later on).
2354  */
2355 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2356                                 pte_t *page_table, pte_t orig_pte)
2357 {
2358         int same = 1;
2359 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2360         if (sizeof(pte_t) > sizeof(unsigned long)) {
2361                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2362                 spin_lock(ptl);
2363                 same = pte_same(*page_table, orig_pte);
2364                 spin_unlock(ptl);
2365         }
2366 #endif
2367         pte_unmap(page_table);
2368         return same;
2369 }
2370
2371 static inline bool cow_user_page(struct page *dst, struct page *src,
2372                                  struct vm_fault *vmf)
2373 {
2374         bool ret;
2375         void *kaddr;
2376         void __user *uaddr;
2377         bool locked = false;
2378         struct vm_area_struct *vma = vmf->vma;
2379         struct mm_struct *mm = vma->vm_mm;
2380         unsigned long addr = vmf->address;
2381
2382         debug_dma_assert_idle(src);
2383
2384         if (likely(src)) {
2385                 copy_user_highpage(dst, src, addr, vma);
2386                 return true;
2387         }
2388
2389         /*
2390          * If the source page was a PFN mapping, we don't have
2391          * a "struct page" for it. We do a best-effort copy by
2392          * just copying from the original user address. If that
2393          * fails, we just zero-fill it. Live with it.
2394          */
2395         kaddr = kmap_atomic(dst);
2396         uaddr = (void __user *)(addr & PAGE_MASK);
2397
2398         /*
2399          * On architectures with software "accessed" bits, we would
2400          * take a double page fault, so mark it accessed here.
2401          */
2402         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2403                 pte_t entry;
2404
2405                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2406                 locked = true;
2407                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2408                         /*
2409                          * Other thread has already handled the fault
2410                          * and we don't need to do anything. If it's
2411                          * not the case, the fault will be triggered
2412                          * again on the same address.
2413                          */
2414                         ret = false;
2415                         goto pte_unlock;
2416                 }
2417
2418                 entry = pte_mkyoung(vmf->orig_pte);
2419                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2420                         update_mmu_cache(vma, addr, vmf->pte);
2421         }
2422
2423         /*
2424          * This really shouldn't fail, because the page is there
2425          * in the page tables. But it might just be unreadable,
2426          * in which case we just give up and fill the result with
2427          * zeroes.
2428          */
2429         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2430                 if (locked)
2431                         goto warn;
2432
2433                 /* Re-validate under PTL if the page is still mapped */
2434                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2435                 locked = true;
2436                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2437                         /* The PTE changed under us. Retry page fault. */
2438                         ret = false;
2439                         goto pte_unlock;
2440                 }
2441
2442                 /*
2443                  * The same page can be mapped back since last copy attampt.
2444                  * Try to copy again under PTL.
2445                  */
2446                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2447                         /*
2448                          * Give a warn in case there can be some obscure
2449                          * use-case
2450                          */
2451 warn:
2452                         WARN_ON_ONCE(1);
2453                         clear_page(kaddr);
2454                 }
2455         }
2456
2457         ret = true;
2458
2459 pte_unlock:
2460         if (locked)
2461                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2462         kunmap_atomic(kaddr);
2463         flush_dcache_page(dst);
2464
2465         return ret;
2466 }
2467
2468 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2469 {
2470         struct file *vm_file = vma->vm_file;
2471
2472         if (vm_file)
2473                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2474
2475         /*
2476          * Special mappings (e.g. VDSO) do not have any file so fake
2477          * a default GFP_KERNEL for them.
2478          */
2479         return GFP_KERNEL;
2480 }
2481
2482 /*
2483  * Notify the address space that the page is about to become writable so that
2484  * it can prohibit this or wait for the page to get into an appropriate state.
2485  *
2486  * We do this without the lock held, so that it can sleep if it needs to.
2487  */
2488 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2489 {
2490         vm_fault_t ret;
2491         struct page *page = vmf->page;
2492         unsigned int old_flags = vmf->flags;
2493
2494         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2495
2496         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2497         /* Restore original flags so that caller is not surprised */
2498         vmf->flags = old_flags;
2499         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2500                 return ret;
2501         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2502                 lock_page(page);
2503                 if (!page->mapping) {
2504                         unlock_page(page);
2505                         return 0; /* retry */
2506                 }
2507                 ret |= VM_FAULT_LOCKED;
2508         } else
2509                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2510         return ret;
2511 }
2512
2513 /*
2514  * Handle dirtying of a page in shared file mapping on a write fault.
2515  *
2516  * The function expects the page to be locked and unlocks it.
2517  */
2518 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2519                                     struct page *page)
2520 {
2521         struct address_space *mapping;
2522         bool dirtied;
2523         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2524
2525         dirtied = set_page_dirty(page);
2526         VM_BUG_ON_PAGE(PageAnon(page), page);
2527         /*
2528          * Take a local copy of the address_space - page.mapping may be zeroed
2529          * by truncate after unlock_page().   The address_space itself remains
2530          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2531          * release semantics to prevent the compiler from undoing this copying.
2532          */
2533         mapping = page_rmapping(page);
2534         unlock_page(page);
2535
2536         if ((dirtied || page_mkwrite) && mapping) {
2537                 /*
2538                  * Some device drivers do not set page.mapping
2539                  * but still dirty their pages
2540                  */
2541                 balance_dirty_pages_ratelimited(mapping);
2542         }
2543
2544         if (!page_mkwrite)
2545                 file_update_time(vma->vm_file);
2546 }
2547
2548 /*
2549  * Handle write page faults for pages that can be reused in the current vma
2550  *
2551  * This can happen either due to the mapping being with the VM_SHARED flag,
2552  * or due to us being the last reference standing to the page. In either
2553  * case, all we need to do here is to mark the page as writable and update
2554  * any related book-keeping.
2555  */
2556 static inline void wp_page_reuse(struct vm_fault *vmf)
2557         __releases(vmf->ptl)
2558 {
2559         struct vm_area_struct *vma = vmf->vma;
2560         struct page *page = vmf->page;
2561         pte_t entry;
2562         /*
2563          * Clear the pages cpupid information as the existing
2564          * information potentially belongs to a now completely
2565          * unrelated process.
2566          */
2567         if (page)
2568                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2569
2570         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2571         entry = pte_mkyoung(vmf->orig_pte);
2572         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2573         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2574                 update_mmu_cache(vma, vmf->address, vmf->pte);
2575         pte_unmap_unlock(vmf->pte, vmf->ptl);
2576 }
2577
2578 /*
2579  * Handle the case of a page which we actually need to copy to a new page.
2580  *
2581  * Called with mmap_sem locked and the old page referenced, but
2582  * without the ptl held.
2583  *
2584  * High level logic flow:
2585  *
2586  * - Allocate a page, copy the content of the old page to the new one.
2587  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2588  * - Take the PTL. If the pte changed, bail out and release the allocated page
2589  * - If the pte is still the way we remember it, update the page table and all
2590  *   relevant references. This includes dropping the reference the page-table
2591  *   held to the old page, as well as updating the rmap.
2592  * - In any case, unlock the PTL and drop the reference we took to the old page.
2593  */
2594 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2595 {
2596         struct vm_area_struct *vma = vmf->vma;
2597         struct mm_struct *mm = vma->vm_mm;
2598         struct page *old_page = vmf->page;
2599         struct page *new_page = NULL;
2600         pte_t entry;
2601         int page_copied = 0;
2602         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2603         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2604         struct mem_cgroup *memcg;
2605
2606         if (unlikely(anon_vma_prepare(vma)))
2607                 goto oom;
2608
2609         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2610                 new_page = alloc_zeroed_user_highpage_movable(vma,
2611                                                               vmf->address);
2612                 if (!new_page)
2613                         goto oom;
2614         } else {
2615                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2616                                 vmf->address);
2617                 if (!new_page)
2618                         goto oom;
2619
2620                 if (!cow_user_page(new_page, old_page, vmf)) {
2621                         /*
2622                          * COW failed, if the fault was solved by other,
2623                          * it's fine. If not, userspace would re-fault on
2624                          * the same address and we will handle the fault
2625                          * from the second attempt.
2626                          */
2627                         put_page(new_page);
2628                         if (old_page)
2629                                 put_page(old_page);
2630                         return 0;
2631                 }
2632         }
2633
2634         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2635                 goto oom_free_new;
2636
2637         __SetPageUptodate(new_page);
2638
2639         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2640
2641         /*
2642          * Re-check the pte - we dropped the lock
2643          */
2644         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2645         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2646                 if (old_page) {
2647                         if (!PageAnon(old_page)) {
2648                                 dec_mm_counter_fast(mm,
2649                                                 mm_counter_file(old_page));
2650                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2651                         }
2652                 } else {
2653                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2654                 }
2655                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2656                 entry = mk_pte(new_page, vma->vm_page_prot);
2657                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2658                 /*
2659                  * Clear the pte entry and flush it first, before updating the
2660                  * pte with the new entry. This will avoid a race condition
2661                  * seen in the presence of one thread doing SMC and another
2662                  * thread doing COW.
2663                  */
2664                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2665                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2666                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2667                 lru_cache_add_active_or_unevictable(new_page, vma);
2668                 /*
2669                  * We call the notify macro here because, when using secondary
2670                  * mmu page tables (such as kvm shadow page tables), we want the
2671                  * new page to be mapped directly into the secondary page table.
2672                  */
2673                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2674                 update_mmu_cache(vma, vmf->address, vmf->pte);
2675                 if (old_page) {
2676                         /*
2677                          * Only after switching the pte to the new page may
2678                          * we remove the mapcount here. Otherwise another
2679                          * process may come and find the rmap count decremented
2680                          * before the pte is switched to the new page, and
2681                          * "reuse" the old page writing into it while our pte
2682                          * here still points into it and can be read by other
2683                          * threads.
2684                          *
2685                          * The critical issue is to order this
2686                          * page_remove_rmap with the ptp_clear_flush above.
2687                          * Those stores are ordered by (if nothing else,)
2688                          * the barrier present in the atomic_add_negative
2689                          * in page_remove_rmap.
2690                          *
2691                          * Then the TLB flush in ptep_clear_flush ensures that
2692                          * no process can access the old page before the
2693                          * decremented mapcount is visible. And the old page
2694                          * cannot be reused until after the decremented
2695                          * mapcount is visible. So transitively, TLBs to
2696                          * old page will be flushed before it can be reused.
2697                          */
2698                         page_remove_rmap(old_page, false);
2699                 }
2700
2701                 /* Free the old page.. */
2702                 new_page = old_page;
2703                 page_copied = 1;
2704         } else {
2705                 mem_cgroup_cancel_charge(new_page, memcg, false);
2706         }
2707
2708         if (new_page)
2709                 put_page(new_page);
2710
2711         pte_unmap_unlock(vmf->pte, vmf->ptl);
2712         /*
2713          * No need to double call mmu_notifier->invalidate_range() callback as
2714          * the above ptep_clear_flush_notify() did already call it.
2715          */
2716         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2717         if (old_page) {
2718                 /*
2719                  * Don't let another task, with possibly unlocked vma,
2720                  * keep the mlocked page.
2721                  */
2722                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2723                         lock_page(old_page);    /* LRU manipulation */
2724                         if (PageMlocked(old_page))
2725                                 munlock_vma_page(old_page);
2726                         unlock_page(old_page);
2727                 }
2728                 put_page(old_page);
2729         }
2730         return page_copied ? VM_FAULT_WRITE : 0;
2731 oom_free_new:
2732         put_page(new_page);
2733 oom:
2734         if (old_page)
2735                 put_page(old_page);
2736         return VM_FAULT_OOM;
2737 }
2738
2739 /**
2740  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2741  *                        writeable once the page is prepared
2742  *
2743  * @vmf: structure describing the fault
2744  *
2745  * This function handles all that is needed to finish a write page fault in a
2746  * shared mapping due to PTE being read-only once the mapped page is prepared.
2747  * It handles locking of PTE and modifying it. The function returns
2748  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2749  * lock.
2750  *
2751  * The function expects the page to be locked or other protection against
2752  * concurrent faults / writeback (such as DAX radix tree locks).
2753  */
2754 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2755 {
2756         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2757         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2758                                        &vmf->ptl);
2759         /*
2760          * We might have raced with another page fault while we released the
2761          * pte_offset_map_lock.
2762          */
2763         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2764                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2765                 return VM_FAULT_NOPAGE;
2766         }
2767         wp_page_reuse(vmf);
2768         return 0;
2769 }
2770
2771 /*
2772  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2773  * mapping
2774  */
2775 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2776 {
2777         struct vm_area_struct *vma = vmf->vma;
2778
2779         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2780                 vm_fault_t ret;
2781
2782                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2783                 vmf->flags |= FAULT_FLAG_MKWRITE;
2784                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2785                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2786                         return ret;
2787                 return finish_mkwrite_fault(vmf);
2788         }
2789         wp_page_reuse(vmf);
2790         return VM_FAULT_WRITE;
2791 }
2792
2793 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2794         __releases(vmf->ptl)
2795 {
2796         struct vm_area_struct *vma = vmf->vma;
2797
2798         get_page(vmf->page);
2799
2800         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2801                 vm_fault_t tmp;
2802
2803                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2804                 tmp = do_page_mkwrite(vmf);
2805                 if (unlikely(!tmp || (tmp &
2806                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2807                         put_page(vmf->page);
2808                         return tmp;
2809                 }
2810                 tmp = finish_mkwrite_fault(vmf);
2811                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2812                         unlock_page(vmf->page);
2813                         put_page(vmf->page);
2814                         return tmp;
2815                 }
2816         } else {
2817                 wp_page_reuse(vmf);
2818                 lock_page(vmf->page);
2819         }
2820         fault_dirty_shared_page(vma, vmf->page);
2821         put_page(vmf->page);
2822
2823         return VM_FAULT_WRITE;
2824 }
2825
2826 /*
2827  * This routine handles present pages, when users try to write
2828  * to a shared page. It is done by copying the page to a new address
2829  * and decrementing the shared-page counter for the old page.
2830  *
2831  * Note that this routine assumes that the protection checks have been
2832  * done by the caller (the low-level page fault routine in most cases).
2833  * Thus we can safely just mark it writable once we've done any necessary
2834  * COW.
2835  *
2836  * We also mark the page dirty at this point even though the page will
2837  * change only once the write actually happens. This avoids a few races,
2838  * and potentially makes it more efficient.
2839  *
2840  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2841  * but allow concurrent faults), with pte both mapped and locked.
2842  * We return with mmap_sem still held, but pte unmapped and unlocked.
2843  */
2844 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2845         __releases(vmf->ptl)
2846 {
2847         struct vm_area_struct *vma = vmf->vma;
2848
2849         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2850         if (!vmf->page) {
2851                 /*
2852                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2853                  * VM_PFNMAP VMA.
2854                  *
2855                  * We should not cow pages in a shared writeable mapping.
2856                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2857                  */
2858                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2859                                      (VM_WRITE|VM_SHARED))
2860                         return wp_pfn_shared(vmf);
2861
2862                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2863                 return wp_page_copy(vmf);
2864         }
2865
2866         /*
2867          * Take out anonymous pages first, anonymous shared vmas are
2868          * not dirty accountable.
2869          */
2870         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2871                 int total_map_swapcount;
2872                 if (!trylock_page(vmf->page)) {
2873                         get_page(vmf->page);
2874                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2875                         lock_page(vmf->page);
2876                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2877                                         vmf->address, &vmf->ptl);
2878                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2879                                 unlock_page(vmf->page);
2880                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2881                                 put_page(vmf->page);
2882                                 return 0;
2883                         }
2884                         put_page(vmf->page);
2885                 }
2886                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2887                         if (total_map_swapcount == 1) {
2888                                 /*
2889                                  * The page is all ours. Move it to
2890                                  * our anon_vma so the rmap code will
2891                                  * not search our parent or siblings.
2892                                  * Protected against the rmap code by
2893                                  * the page lock.
2894                                  */
2895                                 page_move_anon_rmap(vmf->page, vma);
2896                         }
2897                         unlock_page(vmf->page);
2898                         wp_page_reuse(vmf);
2899                         return VM_FAULT_WRITE;
2900                 }
2901                 unlock_page(vmf->page);
2902         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2903                                         (VM_WRITE|VM_SHARED))) {
2904                 return wp_page_shared(vmf);
2905         }
2906
2907         /*
2908          * Ok, we need to copy. Oh, well..
2909          */
2910         get_page(vmf->page);
2911
2912         pte_unmap_unlock(vmf->pte, vmf->ptl);
2913         return wp_page_copy(vmf);
2914 }
2915
2916 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2917                 unsigned long start_addr, unsigned long end_addr,
2918                 struct zap_details *details)
2919 {
2920         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2921 }
2922
2923 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2924                                             struct zap_details *details)
2925 {
2926         struct vm_area_struct *vma;
2927         pgoff_t vba, vea, zba, zea;
2928
2929         vma_interval_tree_foreach(vma, root,
2930                         details->first_index, details->last_index) {
2931
2932                 vba = vma->vm_pgoff;
2933                 vea = vba + vma_pages(vma) - 1;
2934                 zba = details->first_index;
2935                 if (zba < vba)
2936                         zba = vba;
2937                 zea = details->last_index;
2938                 if (zea > vea)
2939                         zea = vea;
2940
2941                 unmap_mapping_range_vma(vma,
2942                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2943                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2944                                 details);
2945         }
2946 }
2947
2948 /**
2949  * unmap_mapping_page() - Unmap single page from processes.
2950  * @page: The locked page to be unmapped.
2951  *
2952  * Unmap this page from any userspace process which still has it mmaped.
2953  * Typically, for efficiency, the range of nearby pages has already been
2954  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
2955  * truncation or invalidation holds the lock on a page, it may find that
2956  * the page has been remapped again: and then uses unmap_mapping_page()
2957  * to unmap it finally.
2958  */
2959 void unmap_mapping_page(struct page *page)
2960 {
2961         struct address_space *mapping = page->mapping;
2962         struct zap_details details = { };
2963
2964         VM_BUG_ON(!PageLocked(page));
2965         VM_BUG_ON(PageTail(page));
2966
2967         details.check_mapping = mapping;
2968         details.first_index = page->index;
2969         details.last_index = page->index + hpage_nr_pages(page) - 1;
2970         details.single_page = page;
2971
2972         i_mmap_lock_write(mapping);
2973         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2974                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2975         i_mmap_unlock_write(mapping);
2976 }
2977
2978 /**
2979  * unmap_mapping_pages() - Unmap pages from processes.
2980  * @mapping: The address space containing pages to be unmapped.
2981  * @start: Index of first page to be unmapped.
2982  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2983  * @even_cows: Whether to unmap even private COWed pages.
2984  *
2985  * Unmap the pages in this address space from any userspace process which
2986  * has them mmaped.  Generally, you want to remove COWed pages as well when
2987  * a file is being truncated, but not when invalidating pages from the page
2988  * cache.
2989  */
2990 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2991                 pgoff_t nr, bool even_cows)
2992 {
2993         struct zap_details details = { };
2994
2995         details.check_mapping = even_cows ? NULL : mapping;
2996         details.first_index = start;
2997         details.last_index = start + nr - 1;
2998         if (details.last_index < details.first_index)
2999                 details.last_index = ULONG_MAX;
3000
3001         i_mmap_lock_write(mapping);
3002         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3003                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3004         i_mmap_unlock_write(mapping);
3005 }
3006
3007 /**
3008  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3009  * address_space corresponding to the specified byte range in the underlying
3010  * file.
3011  *
3012  * @mapping: the address space containing mmaps to be unmapped.
3013  * @holebegin: byte in first page to unmap, relative to the start of
3014  * the underlying file.  This will be rounded down to a PAGE_SIZE
3015  * boundary.  Note that this is different from truncate_pagecache(), which
3016  * must keep the partial page.  In contrast, we must get rid of
3017  * partial pages.
3018  * @holelen: size of prospective hole in bytes.  This will be rounded
3019  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3020  * end of the file.
3021  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3022  * but 0 when invalidating pagecache, don't throw away private data.
3023  */
3024 void unmap_mapping_range(struct address_space *mapping,
3025                 loff_t const holebegin, loff_t const holelen, int even_cows)
3026 {
3027         pgoff_t hba = holebegin >> PAGE_SHIFT;
3028         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3029
3030         /* Check for overflow. */
3031         if (sizeof(holelen) > sizeof(hlen)) {
3032                 long long holeend =
3033                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3034                 if (holeend & ~(long long)ULONG_MAX)
3035                         hlen = ULONG_MAX - hba + 1;
3036         }
3037
3038         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3039 }
3040 EXPORT_SYMBOL(unmap_mapping_range);
3041
3042 /*
3043  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3044  * but allow concurrent faults), and pte mapped but not yet locked.
3045  * We return with pte unmapped and unlocked.
3046  *
3047  * We return with the mmap_sem locked or unlocked in the same cases
3048  * as does filemap_fault().
3049  */
3050 vm_fault_t do_swap_page(struct vm_fault *vmf)
3051 {
3052         struct vm_area_struct *vma = vmf->vma;
3053         struct page *page = NULL, *swapcache;
3054         struct mem_cgroup *memcg;
3055         swp_entry_t entry;
3056         pte_t pte;
3057         int locked;
3058         int exclusive = 0;
3059         vm_fault_t ret = 0;
3060
3061         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3062                 goto out;
3063
3064         entry = pte_to_swp_entry(vmf->orig_pte);
3065         if (unlikely(non_swap_entry(entry))) {
3066                 if (is_migration_entry(entry)) {
3067                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3068                                              vmf->address);
3069                 } else if (is_device_private_entry(entry)) {
3070                         /*
3071                          * For un-addressable device memory we call the pgmap
3072                          * fault handler callback. The callback must migrate
3073                          * the page back to some CPU accessible page.
3074                          */
3075                         ret = device_private_entry_fault(vma, vmf->address, entry,
3076                                                  vmf->flags, vmf->pmd);
3077                 } else if (is_hwpoison_entry(entry)) {
3078                         ret = VM_FAULT_HWPOISON;
3079                 } else {
3080                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3081                         ret = VM_FAULT_SIGBUS;
3082                 }
3083                 goto out;
3084         }
3085
3086
3087         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3088         page = lookup_swap_cache(entry, vma, vmf->address);
3089         swapcache = page;
3090
3091         if (!page) {
3092                 struct swap_info_struct *si = swp_swap_info(entry);
3093
3094                 if (si->flags & SWP_SYNCHRONOUS_IO &&
3095                                 __swap_count(si, entry) == 1) {
3096                         /* skip swapcache */
3097                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3098                                                         vmf->address);
3099                         if (page) {
3100                                 __SetPageLocked(page);
3101                                 __SetPageSwapBacked(page);
3102                                 set_page_private(page, entry.val);
3103                                 lru_cache_add_anon(page);
3104                                 swap_readpage(page, true);
3105                         }
3106                 } else {
3107                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3108                                                 vmf);
3109                         swapcache = page;
3110                 }
3111
3112                 if (!page) {
3113                         /*
3114                          * Back out if somebody else faulted in this pte
3115                          * while we released the pte lock.
3116                          */
3117                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3118                                         vmf->address, &vmf->ptl);
3119                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3120                                 ret = VM_FAULT_OOM;
3121                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3122                         goto unlock;
3123                 }
3124
3125                 /* Had to read the page from swap area: Major fault */
3126                 ret = VM_FAULT_MAJOR;
3127                 count_vm_event(PGMAJFAULT);
3128                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3129         } else if (PageHWPoison(page)) {
3130                 /*
3131                  * hwpoisoned dirty swapcache pages are kept for killing
3132                  * owner processes (which may be unknown at hwpoison time)
3133                  */
3134                 ret = VM_FAULT_HWPOISON;
3135                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3136                 goto out_release;
3137         }
3138
3139         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3140
3141         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3142         if (!locked) {
3143                 ret |= VM_FAULT_RETRY;
3144                 goto out_release;
3145         }
3146
3147         /*
3148          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3149          * release the swapcache from under us.  The page pin, and pte_same
3150          * test below, are not enough to exclude that.  Even if it is still
3151          * swapcache, we need to check that the page's swap has not changed.
3152          */
3153         if (unlikely((!PageSwapCache(page) ||
3154                         page_private(page) != entry.val)) && swapcache)
3155                 goto out_page;
3156
3157         page = ksm_might_need_to_copy(page, vma, vmf->address);
3158         if (unlikely(!page)) {
3159                 ret = VM_FAULT_OOM;
3160                 page = swapcache;
3161                 goto out_page;
3162         }
3163
3164         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3165                                         &memcg, false)) {
3166                 ret = VM_FAULT_OOM;
3167                 goto out_page;
3168         }
3169
3170         /*
3171          * Back out if somebody else already faulted in this pte.
3172          */
3173         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3174                         &vmf->ptl);
3175         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3176                 goto out_nomap;
3177
3178         if (unlikely(!PageUptodate(page))) {
3179                 ret = VM_FAULT_SIGBUS;
3180                 goto out_nomap;
3181         }
3182
3183         /*
3184          * The page isn't present yet, go ahead with the fault.
3185          *
3186          * Be careful about the sequence of operations here.
3187          * To get its accounting right, reuse_swap_page() must be called
3188          * while the page is counted on swap but not yet in mapcount i.e.
3189          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3190          * must be called after the swap_free(), or it will never succeed.
3191          */
3192
3193         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3194         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3195         pte = mk_pte(page, vma->vm_page_prot);
3196         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3197                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3198                 vmf->flags &= ~FAULT_FLAG_WRITE;
3199                 ret |= VM_FAULT_WRITE;
3200                 exclusive = RMAP_EXCLUSIVE;
3201         }
3202         flush_icache_page(vma, page);
3203         if (pte_swp_soft_dirty(vmf->orig_pte))
3204                 pte = pte_mksoft_dirty(pte);
3205         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3206         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3207         vmf->orig_pte = pte;
3208
3209         /* ksm created a completely new copy */
3210         if (unlikely(page != swapcache && swapcache)) {
3211                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3212                 mem_cgroup_commit_charge(page, memcg, false, false);
3213                 lru_cache_add_active_or_unevictable(page, vma);
3214         } else {
3215                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3216                 mem_cgroup_commit_charge(page, memcg, true, false);
3217                 activate_page(page);
3218         }
3219
3220         swap_free(entry);
3221         if (mem_cgroup_swap_full(page) ||
3222             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3223                 try_to_free_swap(page);
3224         unlock_page(page);
3225         if (page != swapcache && swapcache) {
3226                 /*
3227                  * Hold the lock to avoid the swap entry to be reused
3228                  * until we take the PT lock for the pte_same() check
3229                  * (to avoid false positives from pte_same). For
3230                  * further safety release the lock after the swap_free
3231                  * so that the swap count won't change under a
3232                  * parallel locked swapcache.
3233                  */
3234                 unlock_page(swapcache);
3235                 put_page(swapcache);
3236         }
3237
3238         if (vmf->flags & FAULT_FLAG_WRITE) {
3239                 ret |= do_wp_page(vmf);
3240                 if (ret & VM_FAULT_ERROR)
3241                         ret &= VM_FAULT_ERROR;
3242                 goto out;
3243         }
3244
3245         /* No need to invalidate - it was non-present before */
3246         update_mmu_cache(vma, vmf->address, vmf->pte);
3247 unlock:
3248         pte_unmap_unlock(vmf->pte, vmf->ptl);
3249 out:
3250         return ret;
3251 out_nomap:
3252         mem_cgroup_cancel_charge(page, memcg, false);
3253         pte_unmap_unlock(vmf->pte, vmf->ptl);
3254 out_page:
3255         unlock_page(page);
3256 out_release:
3257         put_page(page);
3258         if (page != swapcache && swapcache) {
3259                 unlock_page(swapcache);
3260                 put_page(swapcache);
3261         }
3262         return ret;
3263 }
3264
3265 /*
3266  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3267  * but allow concurrent faults), and pte mapped but not yet locked.
3268  * We return with mmap_sem still held, but pte unmapped and unlocked.
3269  */
3270 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3271 {
3272         struct vm_area_struct *vma = vmf->vma;
3273         struct mem_cgroup *memcg;
3274         struct page *page;
3275         vm_fault_t ret = 0;
3276         pte_t entry;
3277
3278         /* File mapping without ->vm_ops ? */
3279         if (vma->vm_flags & VM_SHARED)
3280                 return VM_FAULT_SIGBUS;
3281
3282         /*
3283          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3284          * pte_offset_map() on pmds where a huge pmd might be created
3285          * from a different thread.
3286          *
3287          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3288          * parallel threads are excluded by other means.
3289          *
3290          * Here we only have down_read(mmap_sem).
3291          */
3292         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3293                 return VM_FAULT_OOM;
3294
3295         /* See the comment in pte_alloc_one_map() */
3296         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3297                 return 0;
3298
3299         /* Use the zero-page for reads */
3300         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3301                         !mm_forbids_zeropage(vma->vm_mm)) {
3302                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3303                                                 vma->vm_page_prot));
3304                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3305                                 vmf->address, &vmf->ptl);
3306                 if (!pte_none(*vmf->pte))
3307                         goto unlock;
3308                 ret = check_stable_address_space(vma->vm_mm);
3309                 if (ret)
3310                         goto unlock;
3311                 /* Deliver the page fault to userland, check inside PT lock */
3312                 if (userfaultfd_missing(vma)) {
3313                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3314                         return handle_userfault(vmf, VM_UFFD_MISSING);
3315                 }
3316                 goto setpte;
3317         }
3318
3319         /* Allocate our own private page. */
3320         if (unlikely(anon_vma_prepare(vma)))
3321                 goto oom;
3322         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3323         if (!page)
3324                 goto oom;
3325
3326         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3327                                         false))
3328                 goto oom_free_page;
3329
3330         /*
3331          * The memory barrier inside __SetPageUptodate makes sure that
3332          * preceeding stores to the page contents become visible before
3333          * the set_pte_at() write.
3334          */
3335         __SetPageUptodate(page);
3336
3337         entry = mk_pte(page, vma->vm_page_prot);
3338         if (vma->vm_flags & VM_WRITE)
3339                 entry = pte_mkwrite(pte_mkdirty(entry));
3340
3341         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3342                         &vmf->ptl);
3343         if (!pte_none(*vmf->pte))
3344                 goto release;
3345
3346         ret = check_stable_address_space(vma->vm_mm);
3347         if (ret)
3348                 goto release;
3349
3350         /* Deliver the page fault to userland, check inside PT lock */
3351         if (userfaultfd_missing(vma)) {
3352                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3353                 mem_cgroup_cancel_charge(page, memcg, false);
3354                 put_page(page);
3355                 return handle_userfault(vmf, VM_UFFD_MISSING);
3356         }
3357
3358         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3359         page_add_new_anon_rmap(page, vma, vmf->address, false);
3360         mem_cgroup_commit_charge(page, memcg, false, false);
3361         lru_cache_add_active_or_unevictable(page, vma);
3362 setpte:
3363         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3364
3365         /* No need to invalidate - it was non-present before */
3366         update_mmu_cache(vma, vmf->address, vmf->pte);
3367 unlock:
3368         pte_unmap_unlock(vmf->pte, vmf->ptl);
3369         return ret;
3370 release:
3371         mem_cgroup_cancel_charge(page, memcg, false);
3372         put_page(page);
3373         goto unlock;
3374 oom_free_page:
3375         put_page(page);
3376 oom:
3377         return VM_FAULT_OOM;
3378 }
3379
3380 /*
3381  * The mmap_sem must have been held on entry, and may have been
3382  * released depending on flags and vma->vm_ops->fault() return value.
3383  * See filemap_fault() and __lock_page_retry().
3384  */
3385 static vm_fault_t __do_fault(struct vm_fault *vmf)
3386 {
3387         struct vm_area_struct *vma = vmf->vma;
3388         vm_fault_t ret;
3389
3390         /*
3391          * Preallocate pte before we take page_lock because this might lead to
3392          * deadlocks for memcg reclaim which waits for pages under writeback:
3393          *                              lock_page(A)
3394          *                              SetPageWriteback(A)
3395          *                              unlock_page(A)
3396          * lock_page(B)
3397          *                              lock_page(B)
3398          * pte_alloc_pne
3399          *   shrink_page_list
3400          *     wait_on_page_writeback(A)
3401          *                              SetPageWriteback(B)
3402          *                              unlock_page(B)
3403          *                              # flush A, B to clear the writeback
3404          */
3405         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3406                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3407                                                   vmf->address);
3408                 if (!vmf->prealloc_pte)
3409                         return VM_FAULT_OOM;
3410                 smp_wmb(); /* See comment in __pte_alloc() */
3411         }
3412
3413         ret = vma->vm_ops->fault(vmf);
3414         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3415                             VM_FAULT_DONE_COW)))
3416                 return ret;
3417
3418         if (unlikely(PageHWPoison(vmf->page))) {
3419                 if (ret & VM_FAULT_LOCKED)
3420                         unlock_page(vmf->page);
3421                 put_page(vmf->page);
3422                 vmf->page = NULL;
3423                 return VM_FAULT_HWPOISON;
3424         }
3425
3426         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3427                 lock_page(vmf->page);
3428         else
3429                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3430
3431         return ret;
3432 }
3433
3434 /*
3435  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3436  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3437  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3438  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3439  */
3440 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3441 {
3442         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3443 }
3444
3445 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3446 {
3447         struct vm_area_struct *vma = vmf->vma;
3448
3449         if (!pmd_none(*vmf->pmd))
3450                 goto map_pte;
3451         if (vmf->prealloc_pte) {
3452                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3453                 if (unlikely(!pmd_none(*vmf->pmd))) {
3454                         spin_unlock(vmf->ptl);
3455                         goto map_pte;
3456                 }
3457
3458                 mm_inc_nr_ptes(vma->vm_mm);
3459                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3460                 spin_unlock(vmf->ptl);
3461                 vmf->prealloc_pte = NULL;
3462         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3463                 return VM_FAULT_OOM;
3464         }
3465 map_pte:
3466         /*
3467          * If a huge pmd materialized under us just retry later.  Use
3468          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3469          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3470          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3471          * running immediately after a huge pmd fault in a different thread of
3472          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3473          * All we have to ensure is that it is a regular pmd that we can walk
3474          * with pte_offset_map() and we can do that through an atomic read in
3475          * C, which is what pmd_trans_unstable() provides.
3476          */
3477         if (pmd_devmap_trans_unstable(vmf->pmd))
3478                 return VM_FAULT_NOPAGE;
3479
3480         /*
3481          * At this point we know that our vmf->pmd points to a page of ptes
3482          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3483          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3484          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3485          * be valid and we will re-check to make sure the vmf->pte isn't
3486          * pte_none() under vmf->ptl protection when we return to
3487          * alloc_set_pte().
3488          */
3489         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3490                         &vmf->ptl);
3491         return 0;
3492 }
3493
3494 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3495
3496 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3497 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3498                 unsigned long haddr)
3499 {
3500         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3501                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3502                 return false;
3503         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3504                 return false;
3505         return true;
3506 }
3507
3508 static void deposit_prealloc_pte(struct vm_fault *vmf)
3509 {
3510         struct vm_area_struct *vma = vmf->vma;
3511
3512         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3513         /*
3514          * We are going to consume the prealloc table,
3515          * count that as nr_ptes.
3516          */
3517         mm_inc_nr_ptes(vma->vm_mm);
3518         vmf->prealloc_pte = NULL;
3519 }
3520
3521 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3522 {
3523         struct vm_area_struct *vma = vmf->vma;
3524         bool write = vmf->flags & FAULT_FLAG_WRITE;
3525         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3526         pmd_t entry;
3527         int i;
3528         vm_fault_t ret;
3529
3530         if (!transhuge_vma_suitable(vma, haddr))
3531                 return VM_FAULT_FALLBACK;
3532
3533         ret = VM_FAULT_FALLBACK;
3534         page = compound_head(page);
3535
3536         /*
3537          * Archs like ppc64 need additonal space to store information
3538          * related to pte entry. Use the preallocated table for that.
3539          */
3540         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3541                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3542                 if (!vmf->prealloc_pte)
3543                         return VM_FAULT_OOM;
3544                 smp_wmb(); /* See comment in __pte_alloc() */
3545         }
3546
3547         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3548         if (unlikely(!pmd_none(*vmf->pmd)))
3549                 goto out;
3550
3551         for (i = 0; i < HPAGE_PMD_NR; i++)
3552                 flush_icache_page(vma, page + i);
3553
3554         entry = mk_huge_pmd(page, vma->vm_page_prot);
3555         if (write)
3556                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3557
3558         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3559         page_add_file_rmap(page, true);
3560         /*
3561          * deposit and withdraw with pmd lock held
3562          */
3563         if (arch_needs_pgtable_deposit())
3564                 deposit_prealloc_pte(vmf);
3565
3566         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3567
3568         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3569
3570         /* fault is handled */
3571         ret = 0;
3572         count_vm_event(THP_FILE_MAPPED);
3573 out:
3574         spin_unlock(vmf->ptl);
3575         return ret;
3576 }
3577 #else
3578 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3579 {
3580         BUILD_BUG();
3581         return 0;
3582 }
3583 #endif
3584
3585 /**
3586  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3587  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3588  *
3589  * @vmf: fault environment
3590  * @memcg: memcg to charge page (only for private mappings)
3591  * @page: page to map
3592  *
3593  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3594  * return.
3595  *
3596  * Target users are page handler itself and implementations of
3597  * vm_ops->map_pages.
3598  */
3599 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3600                 struct page *page)
3601 {
3602         struct vm_area_struct *vma = vmf->vma;
3603         bool write = vmf->flags & FAULT_FLAG_WRITE;
3604         pte_t entry;
3605         vm_fault_t ret;
3606
3607         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3608                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3609                 /* THP on COW? */
3610                 VM_BUG_ON_PAGE(memcg, page);
3611
3612                 ret = do_set_pmd(vmf, page);
3613                 if (ret != VM_FAULT_FALLBACK)
3614                         return ret;
3615         }
3616
3617         if (!vmf->pte) {
3618                 ret = pte_alloc_one_map(vmf);
3619                 if (ret)
3620                         return ret;
3621         }
3622
3623         /* Re-check under ptl */
3624         if (unlikely(!pte_none(*vmf->pte)))
3625                 return VM_FAULT_NOPAGE;
3626
3627         flush_icache_page(vma, page);
3628         entry = mk_pte(page, vma->vm_page_prot);
3629         if (write)
3630                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3631         /* copy-on-write page */
3632         if (write && !(vma->vm_flags & VM_SHARED)) {
3633                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3634                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3635                 mem_cgroup_commit_charge(page, memcg, false, false);
3636                 lru_cache_add_active_or_unevictable(page, vma);
3637         } else {
3638                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3639                 page_add_file_rmap(page, false);
3640         }
3641         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3642
3643         /* no need to invalidate: a not-present page won't be cached */
3644         update_mmu_cache(vma, vmf->address, vmf->pte);
3645
3646         return 0;
3647 }
3648
3649
3650 /**
3651  * finish_fault - finish page fault once we have prepared the page to fault
3652  *
3653  * @vmf: structure describing the fault
3654  *
3655  * This function handles all that is needed to finish a page fault once the
3656  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3657  * given page, adds reverse page mapping, handles memcg charges and LRU
3658  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3659  * error.
3660  *
3661  * The function expects the page to be locked and on success it consumes a
3662  * reference of a page being mapped (for the PTE which maps it).
3663  */
3664 vm_fault_t finish_fault(struct vm_fault *vmf)
3665 {
3666         struct page *page;
3667         vm_fault_t ret = 0;
3668
3669         /* Did we COW the page? */
3670         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3671             !(vmf->vma->vm_flags & VM_SHARED))
3672                 page = vmf->cow_page;
3673         else
3674                 page = vmf->page;
3675
3676         /*
3677          * check even for read faults because we might have lost our CoWed
3678          * page
3679          */
3680         if (!(vmf->vma->vm_flags & VM_SHARED))
3681                 ret = check_stable_address_space(vmf->vma->vm_mm);
3682         if (!ret)
3683                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3684         if (vmf->pte)
3685                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3686         return ret;
3687 }
3688
3689 static unsigned long fault_around_bytes __read_mostly =
3690         rounddown_pow_of_two(65536);
3691
3692 #ifdef CONFIG_DEBUG_FS
3693 static int fault_around_bytes_get(void *data, u64 *val)
3694 {
3695         *val = fault_around_bytes;
3696         return 0;
3697 }
3698
3699 /*
3700  * fault_around_bytes must be rounded down to the nearest page order as it's
3701  * what do_fault_around() expects to see.
3702  */
3703 static int fault_around_bytes_set(void *data, u64 val)
3704 {
3705         if (val / PAGE_SIZE > PTRS_PER_PTE)
3706                 return -EINVAL;
3707         if (val > PAGE_SIZE)
3708                 fault_around_bytes = rounddown_pow_of_two(val);
3709         else
3710                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3711         return 0;
3712 }
3713 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3714                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3715
3716 static int __init fault_around_debugfs(void)
3717 {
3718         void *ret;
3719
3720         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3721                         &fault_around_bytes_fops);
3722         if (!ret)
3723                 pr_warn("Failed to create fault_around_bytes in debugfs");
3724         return 0;
3725 }
3726 late_initcall(fault_around_debugfs);
3727 #endif
3728
3729 /*
3730  * do_fault_around() tries to map few pages around the fault address. The hope
3731  * is that the pages will be needed soon and this will lower the number of
3732  * faults to handle.
3733  *
3734  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3735  * not ready to be mapped: not up-to-date, locked, etc.
3736  *
3737  * This function is called with the page table lock taken. In the split ptlock
3738  * case the page table lock only protects only those entries which belong to
3739  * the page table corresponding to the fault address.
3740  *
3741  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3742  * only once.
3743  *
3744  * fault_around_bytes defines how many bytes we'll try to map.
3745  * do_fault_around() expects it to be set to a power of two less than or equal
3746  * to PTRS_PER_PTE.
3747  *
3748  * The virtual address of the area that we map is naturally aligned to
3749  * fault_around_bytes rounded down to the machine page size
3750  * (and therefore to page order).  This way it's easier to guarantee
3751  * that we don't cross page table boundaries.
3752  */
3753 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3754 {
3755         unsigned long address = vmf->address, nr_pages, mask;
3756         pgoff_t start_pgoff = vmf->pgoff;
3757         pgoff_t end_pgoff;
3758         int off;
3759         vm_fault_t ret = 0;
3760
3761         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3762         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3763
3764         vmf->address = max(address & mask, vmf->vma->vm_start);
3765         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3766         start_pgoff -= off;
3767
3768         /*
3769          *  end_pgoff is either the end of the page table, the end of
3770          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3771          */
3772         end_pgoff = start_pgoff -
3773                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3774                 PTRS_PER_PTE - 1;
3775         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3776                         start_pgoff + nr_pages - 1);
3777
3778         if (pmd_none(*vmf->pmd)) {
3779                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3780                                                   vmf->address);
3781                 if (!vmf->prealloc_pte)
3782                         goto out;
3783                 smp_wmb(); /* See comment in __pte_alloc() */
3784         }
3785
3786         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3787
3788         /* Huge page is mapped? Page fault is solved */
3789         if (pmd_trans_huge(*vmf->pmd)) {
3790                 ret = VM_FAULT_NOPAGE;
3791                 goto out;
3792         }
3793
3794         /* ->map_pages() haven't done anything useful. Cold page cache? */
3795         if (!vmf->pte)
3796                 goto out;
3797
3798         /* check if the page fault is solved */
3799         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3800         if (!pte_none(*vmf->pte))
3801                 ret = VM_FAULT_NOPAGE;
3802         pte_unmap_unlock(vmf->pte, vmf->ptl);
3803 out:
3804         vmf->address = address;
3805         vmf->pte = NULL;
3806         return ret;
3807 }
3808
3809 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3810 {
3811         struct vm_area_struct *vma = vmf->vma;
3812         vm_fault_t ret = 0;
3813
3814         /*
3815          * Let's call ->map_pages() first and use ->fault() as fallback
3816          * if page by the offset is not ready to be mapped (cold cache or
3817          * something).
3818          */
3819         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3820                 ret = do_fault_around(vmf);
3821                 if (ret)
3822                         return ret;
3823         }
3824
3825         ret = __do_fault(vmf);
3826         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3827                 return ret;
3828
3829         ret |= finish_fault(vmf);
3830         unlock_page(vmf->page);
3831         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3832                 put_page(vmf->page);
3833         return ret;
3834 }
3835
3836 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3837 {
3838         struct vm_area_struct *vma = vmf->vma;
3839         vm_fault_t ret;
3840
3841         if (unlikely(anon_vma_prepare(vma)))
3842                 return VM_FAULT_OOM;
3843
3844         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3845         if (!vmf->cow_page)
3846                 return VM_FAULT_OOM;
3847
3848         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3849                                 &vmf->memcg, false)) {
3850                 put_page(vmf->cow_page);
3851                 return VM_FAULT_OOM;
3852         }
3853
3854         ret = __do_fault(vmf);
3855         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3856                 goto uncharge_out;
3857         if (ret & VM_FAULT_DONE_COW)
3858                 return ret;
3859
3860         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3861         __SetPageUptodate(vmf->cow_page);
3862
3863         ret |= finish_fault(vmf);
3864         unlock_page(vmf->page);
3865         put_page(vmf->page);
3866         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3867                 goto uncharge_out;
3868         return ret;
3869 uncharge_out:
3870         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3871         put_page(vmf->cow_page);
3872         return ret;
3873 }
3874
3875 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3876 {
3877         struct vm_area_struct *vma = vmf->vma;
3878         vm_fault_t ret, tmp;
3879
3880         ret = __do_fault(vmf);
3881         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3882                 return ret;
3883
3884         /*
3885          * Check if the backing address space wants to know that the page is
3886          * about to become writable
3887          */
3888         if (vma->vm_ops->page_mkwrite) {
3889                 unlock_page(vmf->page);
3890                 tmp = do_page_mkwrite(vmf);
3891                 if (unlikely(!tmp ||
3892                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3893                         put_page(vmf->page);
3894                         return tmp;
3895                 }
3896         }
3897
3898         ret |= finish_fault(vmf);
3899         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3900                                         VM_FAULT_RETRY))) {
3901                 unlock_page(vmf->page);
3902                 put_page(vmf->page);
3903                 return ret;
3904         }
3905
3906         fault_dirty_shared_page(vma, vmf->page);
3907         return ret;
3908 }
3909
3910 /*
3911  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3912  * but allow concurrent faults).
3913  * The mmap_sem may have been released depending on flags and our
3914  * return value.  See filemap_fault() and __lock_page_or_retry().
3915  * If mmap_sem is released, vma may become invalid (for example
3916  * by other thread calling munmap()).
3917  */
3918 static vm_fault_t do_fault(struct vm_fault *vmf)
3919 {
3920         struct vm_area_struct *vma = vmf->vma;
3921         struct mm_struct *vm_mm = vma->vm_mm;
3922         vm_fault_t ret;
3923
3924         /*
3925          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3926          */
3927         if (!vma->vm_ops->fault) {
3928                 /*
3929                  * If we find a migration pmd entry or a none pmd entry, which
3930                  * should never happen, return SIGBUS
3931                  */
3932                 if (unlikely(!pmd_present(*vmf->pmd)))
3933                         ret = VM_FAULT_SIGBUS;
3934                 else {
3935                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3936                                                        vmf->pmd,
3937                                                        vmf->address,
3938                                                        &vmf->ptl);
3939                         /*
3940                          * Make sure this is not a temporary clearing of pte
3941                          * by holding ptl and checking again. A R/M/W update
3942                          * of pte involves: take ptl, clearing the pte so that
3943                          * we don't have concurrent modification by hardware
3944                          * followed by an update.
3945                          */
3946                         if (unlikely(pte_none(*vmf->pte)))
3947                                 ret = VM_FAULT_SIGBUS;
3948                         else
3949                                 ret = VM_FAULT_NOPAGE;
3950
3951                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3952                 }
3953         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3954                 ret = do_read_fault(vmf);
3955         else if (!(vma->vm_flags & VM_SHARED))
3956                 ret = do_cow_fault(vmf);
3957         else
3958                 ret = do_shared_fault(vmf);
3959
3960         /* preallocated pagetable is unused: free it */
3961         if (vmf->prealloc_pte) {
3962                 pte_free(vm_mm, vmf->prealloc_pte);
3963                 vmf->prealloc_pte = NULL;
3964         }
3965         return ret;
3966 }
3967
3968 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3969                                 unsigned long addr, int page_nid,
3970                                 int *flags)
3971 {
3972         get_page(page);
3973
3974         count_vm_numa_event(NUMA_HINT_FAULTS);
3975         if (page_nid == numa_node_id()) {
3976                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3977                 *flags |= TNF_FAULT_LOCAL;
3978         }
3979
3980         return mpol_misplaced(page, vma, addr);
3981 }
3982
3983 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3984 {
3985         struct vm_area_struct *vma = vmf->vma;
3986         struct page *page = NULL;
3987         int page_nid = -1;
3988         int last_cpupid;
3989         int target_nid;
3990         bool migrated = false;
3991         pte_t pte;
3992         bool was_writable = pte_savedwrite(vmf->orig_pte);
3993         int flags = 0;
3994
3995         /*
3996          * The "pte" at this point cannot be used safely without
3997          * validation through pte_unmap_same(). It's of NUMA type but
3998          * the pfn may be screwed if the read is non atomic.
3999          */
4000         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4001         spin_lock(vmf->ptl);
4002         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4003                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4004                 goto out;
4005         }
4006
4007         /*
4008          * Make it present again, Depending on how arch implementes non
4009          * accessible ptes, some can allow access by kernel mode.
4010          */
4011         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4012         pte = pte_modify(pte, vma->vm_page_prot);
4013         pte = pte_mkyoung(pte);
4014         if (was_writable)
4015                 pte = pte_mkwrite(pte);
4016         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
4017         update_mmu_cache(vma, vmf->address, vmf->pte);
4018
4019         page = vm_normal_page(vma, vmf->address, pte);
4020         if (!page) {
4021                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4022                 return 0;
4023         }
4024
4025         /* TODO: handle PTE-mapped THP */
4026         if (PageCompound(page)) {
4027                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4028                 return 0;
4029         }
4030
4031         /*
4032          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4033          * much anyway since they can be in shared cache state. This misses
4034          * the case where a mapping is writable but the process never writes
4035          * to it but pte_write gets cleared during protection updates and
4036          * pte_dirty has unpredictable behaviour between PTE scan updates,
4037          * background writeback, dirty balancing and application behaviour.
4038          */
4039         if (!pte_write(pte))
4040                 flags |= TNF_NO_GROUP;
4041
4042         /*
4043          * Flag if the page is shared between multiple address spaces. This
4044          * is later used when determining whether to group tasks together
4045          */
4046         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4047                 flags |= TNF_SHARED;
4048
4049         last_cpupid = page_cpupid_last(page);
4050         page_nid = page_to_nid(page);
4051         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4052                         &flags);
4053         pte_unmap_unlock(vmf->pte, vmf->ptl);
4054         if (target_nid == -1) {
4055                 put_page(page);
4056                 goto out;
4057         }
4058
4059         /* Migrate to the requested node */
4060         migrated = migrate_misplaced_page(page, vma, target_nid);
4061         if (migrated) {
4062                 page_nid = target_nid;
4063                 flags |= TNF_MIGRATED;
4064         } else
4065                 flags |= TNF_MIGRATE_FAIL;
4066
4067 out:
4068         if (page_nid != -1)
4069                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4070         return 0;
4071 }
4072
4073 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4074 {
4075         if (vma_is_anonymous(vmf->vma))
4076                 return do_huge_pmd_anonymous_page(vmf);
4077         if (vmf->vma->vm_ops->huge_fault)
4078                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4079         return VM_FAULT_FALLBACK;
4080 }
4081
4082 /* `inline' is required to avoid gcc 4.1.2 build error */
4083 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4084 {
4085         if (vma_is_anonymous(vmf->vma))
4086                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4087         if (vmf->vma->vm_ops->huge_fault)
4088                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4089
4090         /* COW handled on pte level: split pmd */
4091         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
4092         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4093
4094         return VM_FAULT_FALLBACK;
4095 }
4096
4097 static inline bool vma_is_accessible(struct vm_area_struct *vma)
4098 {
4099         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
4100 }
4101
4102 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4103 {
4104 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4105         /* No support for anonymous transparent PUD pages yet */
4106         if (vma_is_anonymous(vmf->vma))
4107                 return VM_FAULT_FALLBACK;
4108         if (vmf->vma->vm_ops->huge_fault)
4109                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4110 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4111         return VM_FAULT_FALLBACK;
4112 }
4113
4114 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4115 {
4116 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4117         /* No support for anonymous transparent PUD pages yet */
4118         if (vma_is_anonymous(vmf->vma))
4119                 return VM_FAULT_FALLBACK;
4120         if (vmf->vma->vm_ops->huge_fault)
4121                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4122 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4123         return VM_FAULT_FALLBACK;
4124 }
4125
4126 /*
4127  * These routines also need to handle stuff like marking pages dirty
4128  * and/or accessed for architectures that don't do it in hardware (most
4129  * RISC architectures).  The early dirtying is also good on the i386.
4130  *
4131  * There is also a hook called "update_mmu_cache()" that architectures
4132  * with external mmu caches can use to update those (ie the Sparc or
4133  * PowerPC hashed page tables that act as extended TLBs).
4134  *
4135  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4136  * concurrent faults).
4137  *
4138  * The mmap_sem may have been released depending on flags and our return value.
4139  * See filemap_fault() and __lock_page_or_retry().
4140  */
4141 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4142 {
4143         pte_t entry;
4144
4145         if (unlikely(pmd_none(*vmf->pmd))) {
4146                 /*
4147                  * Leave __pte_alloc() until later: because vm_ops->fault may
4148                  * want to allocate huge page, and if we expose page table
4149                  * for an instant, it will be difficult to retract from
4150                  * concurrent faults and from rmap lookups.
4151                  */
4152                 vmf->pte = NULL;
4153         } else {
4154                 /* See comment in pte_alloc_one_map() */
4155                 if (pmd_devmap_trans_unstable(vmf->pmd))
4156                         return 0;
4157                 /*
4158                  * A regular pmd is established and it can't morph into a huge
4159                  * pmd from under us anymore at this point because we hold the
4160                  * mmap_sem read mode and khugepaged takes it in write mode.
4161                  * So now it's safe to run pte_offset_map().
4162                  */
4163                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4164                 vmf->orig_pte = *vmf->pte;
4165
4166                 /*
4167                  * some architectures can have larger ptes than wordsize,
4168                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4169                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4170                  * accesses.  The code below just needs a consistent view
4171                  * for the ifs and we later double check anyway with the
4172                  * ptl lock held. So here a barrier will do.
4173                  */
4174                 barrier();
4175                 if (pte_none(vmf->orig_pte)) {
4176                         pte_unmap(vmf->pte);
4177                         vmf->pte = NULL;
4178                 }
4179         }
4180
4181         if (!vmf->pte) {
4182                 if (vma_is_anonymous(vmf->vma))
4183                         return do_anonymous_page(vmf);
4184                 else
4185                         return do_fault(vmf);
4186         }
4187
4188         if (!pte_present(vmf->orig_pte))
4189                 return do_swap_page(vmf);
4190
4191         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4192                 return do_numa_page(vmf);
4193
4194         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4195         spin_lock(vmf->ptl);
4196         entry = vmf->orig_pte;
4197         if (unlikely(!pte_same(*vmf->pte, entry)))
4198                 goto unlock;
4199         if (vmf->flags & FAULT_FLAG_WRITE) {
4200                 if (!pte_write(entry))
4201                         return do_wp_page(vmf);
4202                 entry = pte_mkdirty(entry);
4203         }
4204         entry = pte_mkyoung(entry);
4205         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4206                                 vmf->flags & FAULT_FLAG_WRITE)) {
4207                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4208         } else {
4209                 /*
4210                  * This is needed only for protection faults but the arch code
4211                  * is not yet telling us if this is a protection fault or not.
4212                  * This still avoids useless tlb flushes for .text page faults
4213                  * with threads.
4214                  */
4215                 if (vmf->flags & FAULT_FLAG_WRITE)
4216                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4217         }
4218 unlock:
4219         pte_unmap_unlock(vmf->pte, vmf->ptl);
4220         return 0;
4221 }
4222
4223 /*
4224  * By the time we get here, we already hold the mm semaphore
4225  *
4226  * The mmap_sem may have been released depending on flags and our
4227  * return value.  See filemap_fault() and __lock_page_or_retry().
4228  */
4229 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4230                 unsigned long address, unsigned int flags)
4231 {
4232         struct vm_fault vmf = {
4233                 .vma = vma,
4234                 .address = address & PAGE_MASK,
4235                 .flags = flags,
4236                 .pgoff = linear_page_index(vma, address),
4237                 .gfp_mask = __get_fault_gfp_mask(vma),
4238         };
4239         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4240         struct mm_struct *mm = vma->vm_mm;
4241         pgd_t *pgd;
4242         p4d_t *p4d;
4243         vm_fault_t ret;
4244
4245         pgd = pgd_offset(mm, address);
4246         p4d = p4d_alloc(mm, pgd, address);
4247         if (!p4d)
4248                 return VM_FAULT_OOM;
4249
4250         vmf.pud = pud_alloc(mm, p4d, address);
4251         if (!vmf.pud)
4252                 return VM_FAULT_OOM;
4253         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4254                 ret = create_huge_pud(&vmf);
4255                 if (!(ret & VM_FAULT_FALLBACK))
4256                         return ret;
4257         } else {
4258                 pud_t orig_pud = *vmf.pud;
4259
4260                 barrier();
4261                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4262
4263                         /* NUMA case for anonymous PUDs would go here */
4264
4265                         if (dirty && !pud_write(orig_pud)) {
4266                                 ret = wp_huge_pud(&vmf, orig_pud);
4267                                 if (!(ret & VM_FAULT_FALLBACK))
4268                                         return ret;
4269                         } else {
4270                                 huge_pud_set_accessed(&vmf, orig_pud);
4271                                 return 0;
4272                         }
4273                 }
4274         }
4275
4276         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4277         if (!vmf.pmd)
4278                 return VM_FAULT_OOM;
4279         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4280                 ret = create_huge_pmd(&vmf);
4281                 if (!(ret & VM_FAULT_FALLBACK))
4282                         return ret;
4283         } else {
4284                 pmd_t orig_pmd = *vmf.pmd;
4285
4286                 barrier();
4287                 if (unlikely(is_swap_pmd(orig_pmd))) {
4288                         VM_BUG_ON(thp_migration_supported() &&
4289                                           !is_pmd_migration_entry(orig_pmd));
4290                         if (is_pmd_migration_entry(orig_pmd))
4291                                 pmd_migration_entry_wait(mm, vmf.pmd);
4292                         return 0;
4293                 }
4294                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4295                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4296                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4297
4298                         if (dirty && !pmd_write(orig_pmd)) {
4299                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4300                                 if (!(ret & VM_FAULT_FALLBACK))
4301                                         return ret;
4302                         } else {
4303                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4304                                 return 0;
4305                         }
4306                 }
4307         }
4308
4309         return handle_pte_fault(&vmf);
4310 }
4311
4312 /*
4313  * By the time we get here, we already hold the mm semaphore
4314  *
4315  * The mmap_sem may have been released depending on flags and our
4316  * return value.  See filemap_fault() and __lock_page_or_retry().
4317  */
4318 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4319                 unsigned int flags)
4320 {
4321         vm_fault_t ret;
4322
4323         __set_current_state(TASK_RUNNING);
4324
4325         count_vm_event(PGFAULT);
4326         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4327
4328         /* do counter updates before entering really critical section. */
4329         check_sync_rss_stat(current);
4330
4331         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4332                                             flags & FAULT_FLAG_INSTRUCTION,
4333                                             flags & FAULT_FLAG_REMOTE))
4334                 return VM_FAULT_SIGSEGV;
4335
4336         /*
4337          * Enable the memcg OOM handling for faults triggered in user
4338          * space.  Kernel faults are handled more gracefully.
4339          */
4340         if (flags & FAULT_FLAG_USER)
4341                 mem_cgroup_enter_user_fault();
4342
4343         if (unlikely(is_vm_hugetlb_page(vma)))
4344                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4345         else
4346                 ret = __handle_mm_fault(vma, address, flags);
4347
4348         if (flags & FAULT_FLAG_USER) {
4349                 mem_cgroup_exit_user_fault();
4350                 /*
4351                  * The task may have entered a memcg OOM situation but
4352                  * if the allocation error was handled gracefully (no
4353                  * VM_FAULT_OOM), there is no need to kill anything.
4354                  * Just clean up the OOM state peacefully.
4355                  */
4356                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4357                         mem_cgroup_oom_synchronize(false);
4358         }
4359
4360         return ret;
4361 }
4362 EXPORT_SYMBOL_GPL(handle_mm_fault);
4363
4364 #ifndef __PAGETABLE_P4D_FOLDED
4365 /*
4366  * Allocate p4d page table.
4367  * We've already handled the fast-path in-line.
4368  */
4369 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4370 {
4371         p4d_t *new = p4d_alloc_one(mm, address);
4372         if (!new)
4373                 return -ENOMEM;
4374
4375         smp_wmb(); /* See comment in __pte_alloc */
4376
4377         spin_lock(&mm->page_table_lock);
4378         if (pgd_present(*pgd))          /* Another has populated it */
4379                 p4d_free(mm, new);
4380         else
4381                 pgd_populate(mm, pgd, new);
4382         spin_unlock(&mm->page_table_lock);
4383         return 0;
4384 }
4385 #endif /* __PAGETABLE_P4D_FOLDED */
4386
4387 #ifndef __PAGETABLE_PUD_FOLDED
4388 /*
4389  * Allocate page upper directory.
4390  * We've already handled the fast-path in-line.
4391  */
4392 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4393 {
4394         pud_t *new = pud_alloc_one(mm, address);
4395         if (!new)
4396                 return -ENOMEM;
4397
4398         smp_wmb(); /* See comment in __pte_alloc */
4399
4400         spin_lock(&mm->page_table_lock);
4401 #ifndef __ARCH_HAS_5LEVEL_HACK
4402         if (!p4d_present(*p4d)) {
4403                 mm_inc_nr_puds(mm);
4404                 p4d_populate(mm, p4d, new);
4405         } else  /* Another has populated it */
4406                 pud_free(mm, new);
4407 #else
4408         if (!pgd_present(*p4d)) {
4409                 mm_inc_nr_puds(mm);
4410                 pgd_populate(mm, p4d, new);
4411         } else  /* Another has populated it */
4412                 pud_free(mm, new);
4413 #endif /* __ARCH_HAS_5LEVEL_HACK */
4414         spin_unlock(&mm->page_table_lock);
4415         return 0;
4416 }
4417 #endif /* __PAGETABLE_PUD_FOLDED */
4418
4419 #ifndef __PAGETABLE_PMD_FOLDED
4420 /*
4421  * Allocate page middle directory.
4422  * We've already handled the fast-path in-line.
4423  */
4424 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4425 {
4426         spinlock_t *ptl;
4427         pmd_t *new = pmd_alloc_one(mm, address);
4428         if (!new)
4429                 return -ENOMEM;
4430
4431         smp_wmb(); /* See comment in __pte_alloc */
4432
4433         ptl = pud_lock(mm, pud);
4434 #ifndef __ARCH_HAS_4LEVEL_HACK
4435         if (!pud_present(*pud)) {
4436                 mm_inc_nr_pmds(mm);
4437                 pud_populate(mm, pud, new);
4438         } else  /* Another has populated it */
4439                 pmd_free(mm, new);
4440 #else
4441         if (!pgd_present(*pud)) {
4442                 mm_inc_nr_pmds(mm);
4443                 pgd_populate(mm, pud, new);
4444         } else /* Another has populated it */
4445                 pmd_free(mm, new);
4446 #endif /* __ARCH_HAS_4LEVEL_HACK */
4447         spin_unlock(ptl);
4448         return 0;
4449 }
4450 #endif /* __PAGETABLE_PMD_FOLDED */
4451
4452 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4453                             unsigned long *start, unsigned long *end,
4454                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4455 {
4456         pgd_t *pgd;
4457         p4d_t *p4d;
4458         pud_t *pud;
4459         pmd_t *pmd;
4460         pte_t *ptep;
4461
4462         pgd = pgd_offset(mm, address);
4463         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4464                 goto out;
4465
4466         p4d = p4d_offset(pgd, address);
4467         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4468                 goto out;
4469
4470         pud = pud_offset(p4d, address);
4471         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4472                 goto out;
4473
4474         pmd = pmd_offset(pud, address);
4475         VM_BUG_ON(pmd_trans_huge(*pmd));
4476
4477         if (pmd_huge(*pmd)) {
4478                 if (!pmdpp)
4479                         goto out;
4480
4481                 if (start && end) {
4482                         *start = address & PMD_MASK;
4483                         *end = *start + PMD_SIZE;
4484                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4485                 }
4486                 *ptlp = pmd_lock(mm, pmd);
4487                 if (pmd_huge(*pmd)) {
4488                         *pmdpp = pmd;
4489                         return 0;
4490                 }
4491                 spin_unlock(*ptlp);
4492                 if (start && end)
4493                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4494         }
4495
4496         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4497                 goto out;
4498
4499         if (start && end) {
4500                 *start = address & PAGE_MASK;
4501                 *end = *start + PAGE_SIZE;
4502                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4503         }
4504         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4505         if (!pte_present(*ptep))
4506                 goto unlock;
4507         *ptepp = ptep;
4508         return 0;
4509 unlock:
4510         pte_unmap_unlock(ptep, *ptlp);
4511         if (start && end)
4512                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4513 out:
4514         return -EINVAL;
4515 }
4516
4517 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4518                              pte_t **ptepp, spinlock_t **ptlp)
4519 {
4520         int res;
4521
4522         /* (void) is needed to make gcc happy */
4523         (void) __cond_lock(*ptlp,
4524                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4525                                                     ptepp, NULL, ptlp)));
4526         return res;
4527 }
4528
4529 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4530                              unsigned long *start, unsigned long *end,
4531                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4532 {
4533         int res;
4534
4535         /* (void) is needed to make gcc happy */
4536         (void) __cond_lock(*ptlp,
4537                            !(res = __follow_pte_pmd(mm, address, start, end,
4538                                                     ptepp, pmdpp, ptlp)));
4539         return res;
4540 }
4541 EXPORT_SYMBOL(follow_pte_pmd);
4542
4543 /**
4544  * follow_pfn - look up PFN at a user virtual address
4545  * @vma: memory mapping
4546  * @address: user virtual address
4547  * @pfn: location to store found PFN
4548  *
4549  * Only IO mappings and raw PFN mappings are allowed.
4550  *
4551  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4552  */
4553 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4554         unsigned long *pfn)
4555 {
4556         int ret = -EINVAL;
4557         spinlock_t *ptl;
4558         pte_t *ptep;
4559
4560         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4561                 return ret;
4562
4563         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4564         if (ret)
4565                 return ret;
4566         *pfn = pte_pfn(*ptep);
4567         pte_unmap_unlock(ptep, ptl);
4568         return 0;
4569 }
4570 EXPORT_SYMBOL(follow_pfn);
4571
4572 #ifdef CONFIG_HAVE_IOREMAP_PROT
4573 int follow_phys(struct vm_area_struct *vma,
4574                 unsigned long address, unsigned int flags,
4575                 unsigned long *prot, resource_size_t *phys)
4576 {
4577         int ret = -EINVAL;
4578         pte_t *ptep, pte;
4579         spinlock_t *ptl;
4580
4581         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4582                 goto out;
4583
4584         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4585                 goto out;
4586         pte = *ptep;
4587
4588         if ((flags & FOLL_WRITE) && !pte_write(pte))
4589                 goto unlock;
4590
4591         *prot = pgprot_val(pte_pgprot(pte));
4592         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4593
4594         ret = 0;
4595 unlock:
4596         pte_unmap_unlock(ptep, ptl);
4597 out:
4598         return ret;
4599 }
4600
4601 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4602                         void *buf, int len, int write)
4603 {
4604         resource_size_t phys_addr;
4605         unsigned long prot = 0;
4606         void __iomem *maddr;
4607         int offset = addr & (PAGE_SIZE-1);
4608
4609         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4610                 return -EINVAL;
4611
4612         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4613         if (!maddr)
4614                 return -ENOMEM;
4615
4616         if (write)
4617                 memcpy_toio(maddr + offset, buf, len);
4618         else
4619                 memcpy_fromio(buf, maddr + offset, len);
4620         iounmap(maddr);
4621
4622         return len;
4623 }
4624 EXPORT_SYMBOL_GPL(generic_access_phys);
4625 #endif
4626
4627 /*
4628  * Access another process' address space as given in mm.  If non-NULL, use the
4629  * given task for page fault accounting.
4630  */
4631 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4632                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4633 {
4634         struct vm_area_struct *vma;
4635         void *old_buf = buf;
4636         int write = gup_flags & FOLL_WRITE;
4637
4638         if (down_read_killable(&mm->mmap_sem))
4639                 return 0;
4640
4641         /* ignore errors, just check how much was successfully transferred */
4642         while (len) {
4643                 int bytes, ret, offset;
4644                 void *maddr;
4645                 struct page *page = NULL;
4646
4647                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4648                                 gup_flags, &page, &vma, NULL);
4649                 if (ret <= 0) {
4650 #ifndef CONFIG_HAVE_IOREMAP_PROT
4651                         break;
4652 #else
4653                         /*
4654                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4655                          * we can access using slightly different code.
4656                          */
4657                         vma = find_vma(mm, addr);
4658                         if (!vma || vma->vm_start > addr)
4659                                 break;
4660                         if (vma->vm_ops && vma->vm_ops->access)
4661                                 ret = vma->vm_ops->access(vma, addr, buf,
4662                                                           len, write);
4663                         if (ret <= 0)
4664                                 break;
4665                         bytes = ret;
4666 #endif
4667                 } else {
4668                         bytes = len;
4669                         offset = addr & (PAGE_SIZE-1);
4670                         if (bytes > PAGE_SIZE-offset)
4671                                 bytes = PAGE_SIZE-offset;
4672
4673                         maddr = kmap(page);
4674                         if (write) {
4675                                 copy_to_user_page(vma, page, addr,
4676                                                   maddr + offset, buf, bytes);
4677                                 set_page_dirty_lock(page);
4678                         } else {
4679                                 copy_from_user_page(vma, page, addr,
4680                                                     buf, maddr + offset, bytes);
4681                         }
4682                         kunmap(page);
4683                         put_page(page);
4684                 }
4685                 len -= bytes;
4686                 buf += bytes;
4687                 addr += bytes;
4688         }
4689         up_read(&mm->mmap_sem);
4690
4691         return buf - old_buf;
4692 }
4693
4694 /**
4695  * access_remote_vm - access another process' address space
4696  * @mm:         the mm_struct of the target address space
4697  * @addr:       start address to access
4698  * @buf:        source or destination buffer
4699  * @len:        number of bytes to transfer
4700  * @gup_flags:  flags modifying lookup behaviour
4701  *
4702  * The caller must hold a reference on @mm.
4703  */
4704 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4705                 void *buf, int len, unsigned int gup_flags)
4706 {
4707         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4708 }
4709
4710 /*
4711  * Access another process' address space.
4712  * Source/target buffer must be kernel space,
4713  * Do not walk the page table directly, use get_user_pages
4714  */
4715 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4716                 void *buf, int len, unsigned int gup_flags)
4717 {
4718         struct mm_struct *mm;
4719         int ret;
4720
4721         mm = get_task_mm(tsk);
4722         if (!mm)
4723                 return 0;
4724
4725         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4726
4727         mmput(mm);
4728
4729         return ret;
4730 }
4731 EXPORT_SYMBOL_GPL(access_process_vm);
4732
4733 /*
4734  * Print the name of a VMA.
4735  */
4736 void print_vma_addr(char *prefix, unsigned long ip)
4737 {
4738         struct mm_struct *mm = current->mm;
4739         struct vm_area_struct *vma;
4740
4741         /*
4742          * we might be running from an atomic context so we cannot sleep
4743          */
4744         if (!down_read_trylock(&mm->mmap_sem))
4745                 return;
4746
4747         vma = find_vma(mm, ip);
4748         if (vma && vma->vm_file) {
4749                 struct file *f = vma->vm_file;
4750                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4751                 if (buf) {
4752                         char *p;
4753
4754                         p = file_path(f, buf, PAGE_SIZE);
4755                         if (IS_ERR(p))
4756                                 p = "?";
4757                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4758                                         vma->vm_start,
4759                                         vma->vm_end - vma->vm_start);
4760                         free_page((unsigned long)buf);
4761                 }
4762         }
4763         up_read(&mm->mmap_sem);
4764 }
4765
4766 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4767 void __might_fault(const char *file, int line)
4768 {
4769         /*
4770          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4771          * holding the mmap_sem, this is safe because kernel memory doesn't
4772          * get paged out, therefore we'll never actually fault, and the
4773          * below annotations will generate false positives.
4774          */
4775         if (uaccess_kernel())
4776                 return;
4777         if (pagefault_disabled())
4778                 return;
4779         __might_sleep(file, line, 0);
4780 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4781         if (current->mm)
4782                 might_lock_read(&current->mm->mmap_sem);
4783 #endif
4784 }
4785 EXPORT_SYMBOL(__might_fault);
4786 #endif
4787
4788 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4789 /*
4790  * Process all subpages of the specified huge page with the specified
4791  * operation.  The target subpage will be processed last to keep its
4792  * cache lines hot.
4793  */
4794 static inline void process_huge_page(
4795         unsigned long addr_hint, unsigned int pages_per_huge_page,
4796         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4797         void *arg)
4798 {
4799         int i, n, base, l;
4800         unsigned long addr = addr_hint &
4801                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4802
4803         /* Process target subpage last to keep its cache lines hot */
4804         might_sleep();
4805         n = (addr_hint - addr) / PAGE_SIZE;
4806         if (2 * n <= pages_per_huge_page) {
4807                 /* If target subpage in first half of huge page */
4808                 base = 0;
4809                 l = n;
4810                 /* Process subpages at the end of huge page */
4811                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4812                         cond_resched();
4813                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4814                 }
4815         } else {
4816                 /* If target subpage in second half of huge page */
4817                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4818                 l = pages_per_huge_page - n;
4819                 /* Process subpages at the begin of huge page */
4820                 for (i = 0; i < base; i++) {
4821                         cond_resched();
4822                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4823                 }
4824         }
4825         /*
4826          * Process remaining subpages in left-right-left-right pattern
4827          * towards the target subpage
4828          */
4829         for (i = 0; i < l; i++) {
4830                 int left_idx = base + i;
4831                 int right_idx = base + 2 * l - 1 - i;
4832
4833                 cond_resched();
4834                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4835                 cond_resched();
4836                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4837         }
4838 }
4839
4840 static void clear_gigantic_page(struct page *page,
4841                                 unsigned long addr,
4842                                 unsigned int pages_per_huge_page)
4843 {
4844         int i;
4845         struct page *p = page;
4846
4847         might_sleep();
4848         for (i = 0; i < pages_per_huge_page;
4849              i++, p = mem_map_next(p, page, i)) {
4850                 cond_resched();
4851                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4852         }
4853 }
4854
4855 static void clear_subpage(unsigned long addr, int idx, void *arg)
4856 {
4857         struct page *page = arg;
4858
4859         clear_user_highpage(page + idx, addr);
4860 }
4861
4862 void clear_huge_page(struct page *page,
4863                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4864 {
4865         unsigned long addr = addr_hint &
4866                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4867
4868         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4869                 clear_gigantic_page(page, addr, pages_per_huge_page);
4870                 return;
4871         }
4872
4873         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4874 }
4875
4876 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4877                                     unsigned long addr,
4878                                     struct vm_area_struct *vma,
4879                                     unsigned int pages_per_huge_page)
4880 {
4881         int i;
4882         struct page *dst_base = dst;
4883         struct page *src_base = src;
4884
4885         for (i = 0; i < pages_per_huge_page; ) {
4886                 cond_resched();
4887                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4888
4889                 i++;
4890                 dst = mem_map_next(dst, dst_base, i);
4891                 src = mem_map_next(src, src_base, i);
4892         }
4893 }
4894
4895 struct copy_subpage_arg {
4896         struct page *dst;
4897         struct page *src;
4898         struct vm_area_struct *vma;
4899 };
4900
4901 static void copy_subpage(unsigned long addr, int idx, void *arg)
4902 {
4903         struct copy_subpage_arg *copy_arg = arg;
4904
4905         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4906                            addr, copy_arg->vma);
4907 }
4908
4909 void copy_user_huge_page(struct page *dst, struct page *src,
4910                          unsigned long addr_hint, struct vm_area_struct *vma,
4911                          unsigned int pages_per_huge_page)
4912 {
4913         unsigned long addr = addr_hint &
4914                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4915         struct copy_subpage_arg arg = {
4916                 .dst = dst,
4917                 .src = src,
4918                 .vma = vma,
4919         };
4920
4921         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4922                 copy_user_gigantic_page(dst, src, addr, vma,
4923                                         pages_per_huge_page);
4924                 return;
4925         }
4926
4927         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4928 }
4929
4930 long copy_huge_page_from_user(struct page *dst_page,
4931                                 const void __user *usr_src,
4932                                 unsigned int pages_per_huge_page,
4933                                 bool allow_pagefault)
4934 {
4935         void *src = (void *)usr_src;
4936         void *page_kaddr;
4937         unsigned long i, rc = 0;
4938         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4939         struct page *subpage = dst_page;
4940
4941         for (i = 0; i < pages_per_huge_page;
4942              i++, subpage = mem_map_next(subpage, dst_page, i)) {
4943                 if (allow_pagefault)
4944                         page_kaddr = kmap(subpage);
4945                 else
4946                         page_kaddr = kmap_atomic(subpage);
4947                 rc = copy_from_user(page_kaddr,
4948                                 (const void __user *)(src + i * PAGE_SIZE),
4949                                 PAGE_SIZE);
4950                 if (allow_pagefault)
4951                         kunmap(subpage);
4952                 else
4953                         kunmap_atomic(page_kaddr);
4954
4955                 ret_val -= (PAGE_SIZE - rc);
4956                 if (rc)
4957                         break;
4958
4959                 cond_resched();
4960         }
4961         return ret_val;
4962 }
4963 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4964
4965 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4966
4967 static struct kmem_cache *page_ptl_cachep;
4968
4969 void __init ptlock_cache_init(void)
4970 {
4971         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4972                         SLAB_PANIC, NULL);
4973 }
4974
4975 bool ptlock_alloc(struct page *page)
4976 {
4977         spinlock_t *ptl;
4978
4979         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4980         if (!ptl)
4981                 return false;
4982         page->ptl = ptl;
4983         return true;
4984 }
4985
4986 void ptlock_free(struct page *page)
4987 {
4988         kmem_cache_free(page_ptl_cachep, page->ptl);
4989 }
4990 #endif