GNU Linux-libre 5.15.137-gnu
[releases.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119                                         1;
120 #else
121                                         2;
122 #endif
123
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127         /*
128          * Those arches which don't have hw access flag feature need to
129          * implement their own helper. By default, "true" means pagefault
130          * will be hit on old pte.
131          */
132         return true;
133 }
134 #endif
135
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139         /*
140          * Transitioning a PTE from 'old' to 'young' can be expensive on
141          * some architectures, even if it's performed in hardware. By
142          * default, "false" means prefaulted entries will be 'young'.
143          */
144         return false;
145 }
146 #endif
147
148 static int __init disable_randmaps(char *s)
149 {
150         randomize_va_space = 0;
151         return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157
158 unsigned long highest_memmap_pfn __read_mostly;
159
160 /*
161  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162  */
163 static int __init init_zero_pfn(void)
164 {
165         zero_pfn = page_to_pfn(ZERO_PAGE(0));
166         return 0;
167 }
168 early_initcall(init_zero_pfn);
169
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172         trace_rss_stat(mm, member, count);
173 }
174
175 #if defined(SPLIT_RSS_COUNTING)
176
177 void sync_mm_rss(struct mm_struct *mm)
178 {
179         int i;
180
181         for (i = 0; i < NR_MM_COUNTERS; i++) {
182                 if (current->rss_stat.count[i]) {
183                         add_mm_counter(mm, i, current->rss_stat.count[i]);
184                         current->rss_stat.count[i] = 0;
185                 }
186         }
187         current->rss_stat.events = 0;
188 }
189
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192         struct task_struct *task = current;
193
194         if (likely(task->mm == mm))
195                 task->rss_stat.count[member] += val;
196         else
197                 add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH  (64)
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206         if (unlikely(task != current))
207                 return;
208         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209                 sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219
220 #endif /* SPLIT_RSS_COUNTING */
221
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227                            unsigned long addr)
228 {
229         pgtable_t token = pmd_pgtable(*pmd);
230         pmd_clear(pmd);
231         pte_free_tlb(tlb, token, addr);
232         mm_dec_nr_ptes(tlb->mm);
233 }
234
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236                                 unsigned long addr, unsigned long end,
237                                 unsigned long floor, unsigned long ceiling)
238 {
239         pmd_t *pmd;
240         unsigned long next;
241         unsigned long start;
242
243         start = addr;
244         pmd = pmd_offset(pud, addr);
245         do {
246                 next = pmd_addr_end(addr, end);
247                 if (pmd_none_or_clear_bad(pmd))
248                         continue;
249                 free_pte_range(tlb, pmd, addr);
250         } while (pmd++, addr = next, addr != end);
251
252         start &= PUD_MASK;
253         if (start < floor)
254                 return;
255         if (ceiling) {
256                 ceiling &= PUD_MASK;
257                 if (!ceiling)
258                         return;
259         }
260         if (end - 1 > ceiling - 1)
261                 return;
262
263         pmd = pmd_offset(pud, start);
264         pud_clear(pud);
265         pmd_free_tlb(tlb, pmd, start);
266         mm_dec_nr_pmds(tlb->mm);
267 }
268
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270                                 unsigned long addr, unsigned long end,
271                                 unsigned long floor, unsigned long ceiling)
272 {
273         pud_t *pud;
274         unsigned long next;
275         unsigned long start;
276
277         start = addr;
278         pud = pud_offset(p4d, addr);
279         do {
280                 next = pud_addr_end(addr, end);
281                 if (pud_none_or_clear_bad(pud))
282                         continue;
283                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284         } while (pud++, addr = next, addr != end);
285
286         start &= P4D_MASK;
287         if (start < floor)
288                 return;
289         if (ceiling) {
290                 ceiling &= P4D_MASK;
291                 if (!ceiling)
292                         return;
293         }
294         if (end - 1 > ceiling - 1)
295                 return;
296
297         pud = pud_offset(p4d, start);
298         p4d_clear(p4d);
299         pud_free_tlb(tlb, pud, start);
300         mm_dec_nr_puds(tlb->mm);
301 }
302
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304                                 unsigned long addr, unsigned long end,
305                                 unsigned long floor, unsigned long ceiling)
306 {
307         p4d_t *p4d;
308         unsigned long next;
309         unsigned long start;
310
311         start = addr;
312         p4d = p4d_offset(pgd, addr);
313         do {
314                 next = p4d_addr_end(addr, end);
315                 if (p4d_none_or_clear_bad(p4d))
316                         continue;
317                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318         } while (p4d++, addr = next, addr != end);
319
320         start &= PGDIR_MASK;
321         if (start < floor)
322                 return;
323         if (ceiling) {
324                 ceiling &= PGDIR_MASK;
325                 if (!ceiling)
326                         return;
327         }
328         if (end - 1 > ceiling - 1)
329                 return;
330
331         p4d = p4d_offset(pgd, start);
332         pgd_clear(pgd);
333         p4d_free_tlb(tlb, p4d, start);
334 }
335
336 /*
337  * This function frees user-level page tables of a process.
338  */
339 void free_pgd_range(struct mmu_gather *tlb,
340                         unsigned long addr, unsigned long end,
341                         unsigned long floor, unsigned long ceiling)
342 {
343         pgd_t *pgd;
344         unsigned long next;
345
346         /*
347          * The next few lines have given us lots of grief...
348          *
349          * Why are we testing PMD* at this top level?  Because often
350          * there will be no work to do at all, and we'd prefer not to
351          * go all the way down to the bottom just to discover that.
352          *
353          * Why all these "- 1"s?  Because 0 represents both the bottom
354          * of the address space and the top of it (using -1 for the
355          * top wouldn't help much: the masks would do the wrong thing).
356          * The rule is that addr 0 and floor 0 refer to the bottom of
357          * the address space, but end 0 and ceiling 0 refer to the top
358          * Comparisons need to use "end - 1" and "ceiling - 1" (though
359          * that end 0 case should be mythical).
360          *
361          * Wherever addr is brought up or ceiling brought down, we must
362          * be careful to reject "the opposite 0" before it confuses the
363          * subsequent tests.  But what about where end is brought down
364          * by PMD_SIZE below? no, end can't go down to 0 there.
365          *
366          * Whereas we round start (addr) and ceiling down, by different
367          * masks at different levels, in order to test whether a table
368          * now has no other vmas using it, so can be freed, we don't
369          * bother to round floor or end up - the tests don't need that.
370          */
371
372         addr &= PMD_MASK;
373         if (addr < floor) {
374                 addr += PMD_SIZE;
375                 if (!addr)
376                         return;
377         }
378         if (ceiling) {
379                 ceiling &= PMD_MASK;
380                 if (!ceiling)
381                         return;
382         }
383         if (end - 1 > ceiling - 1)
384                 end -= PMD_SIZE;
385         if (addr > end - 1)
386                 return;
387         /*
388          * We add page table cache pages with PAGE_SIZE,
389          * (see pte_free_tlb()), flush the tlb if we need
390          */
391         tlb_change_page_size(tlb, PAGE_SIZE);
392         pgd = pgd_offset(tlb->mm, addr);
393         do {
394                 next = pgd_addr_end(addr, end);
395                 if (pgd_none_or_clear_bad(pgd))
396                         continue;
397                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398         } while (pgd++, addr = next, addr != end);
399 }
400
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402                 unsigned long floor, unsigned long ceiling)
403 {
404         while (vma) {
405                 struct vm_area_struct *next = vma->vm_next;
406                 unsigned long addr = vma->vm_start;
407
408                 /*
409                  * Hide vma from rmap and truncate_pagecache before freeing
410                  * pgtables
411                  */
412                 unlink_anon_vmas(vma);
413                 unlink_file_vma(vma);
414
415                 if (is_vm_hugetlb_page(vma)) {
416                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 } else {
419                         /*
420                          * Optimization: gather nearby vmas into one call down
421                          */
422                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423                                && !is_vm_hugetlb_page(next)) {
424                                 vma = next;
425                                 next = vma->vm_next;
426                                 unlink_anon_vmas(vma);
427                                 unlink_file_vma(vma);
428                         }
429                         free_pgd_range(tlb, addr, vma->vm_end,
430                                 floor, next ? next->vm_start : ceiling);
431                 }
432                 vma = next;
433         }
434 }
435
436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438         spinlock_t *ptl;
439         pgtable_t new = pte_alloc_one(mm);
440         if (!new)
441                 return -ENOMEM;
442
443         /*
444          * Ensure all pte setup (eg. pte page lock and page clearing) are
445          * visible before the pte is made visible to other CPUs by being
446          * put into page tables.
447          *
448          * The other side of the story is the pointer chasing in the page
449          * table walking code (when walking the page table without locking;
450          * ie. most of the time). Fortunately, these data accesses consist
451          * of a chain of data-dependent loads, meaning most CPUs (alpha
452          * being the notable exception) will already guarantee loads are
453          * seen in-order. See the alpha page table accessors for the
454          * smp_rmb() barriers in page table walking code.
455          */
456         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457
458         ptl = pmd_lock(mm, pmd);
459         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
460                 mm_inc_nr_ptes(mm);
461                 pmd_populate(mm, pmd, new);
462                 new = NULL;
463         }
464         spin_unlock(ptl);
465         if (new)
466                 pte_free(mm, new);
467         return 0;
468 }
469
470 int __pte_alloc_kernel(pmd_t *pmd)
471 {
472         pte_t *new = pte_alloc_one_kernel(&init_mm);
473         if (!new)
474                 return -ENOMEM;
475
476         smp_wmb(); /* See comment in __pte_alloc */
477
478         spin_lock(&init_mm.page_table_lock);
479         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
480                 pmd_populate_kernel(&init_mm, pmd, new);
481                 new = NULL;
482         }
483         spin_unlock(&init_mm.page_table_lock);
484         if (new)
485                 pte_free_kernel(&init_mm, new);
486         return 0;
487 }
488
489 static inline void init_rss_vec(int *rss)
490 {
491         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492 }
493
494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495 {
496         int i;
497
498         if (current->mm == mm)
499                 sync_mm_rss(mm);
500         for (i = 0; i < NR_MM_COUNTERS; i++)
501                 if (rss[i])
502                         add_mm_counter(mm, i, rss[i]);
503 }
504
505 /*
506  * This function is called to print an error when a bad pte
507  * is found. For example, we might have a PFN-mapped pte in
508  * a region that doesn't allow it.
509  *
510  * The calling function must still handle the error.
511  */
512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513                           pte_t pte, struct page *page)
514 {
515         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516         p4d_t *p4d = p4d_offset(pgd, addr);
517         pud_t *pud = pud_offset(p4d, addr);
518         pmd_t *pmd = pmd_offset(pud, addr);
519         struct address_space *mapping;
520         pgoff_t index;
521         static unsigned long resume;
522         static unsigned long nr_shown;
523         static unsigned long nr_unshown;
524
525         /*
526          * Allow a burst of 60 reports, then keep quiet for that minute;
527          * or allow a steady drip of one report per second.
528          */
529         if (nr_shown == 60) {
530                 if (time_before(jiffies, resume)) {
531                         nr_unshown++;
532                         return;
533                 }
534                 if (nr_unshown) {
535                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536                                  nr_unshown);
537                         nr_unshown = 0;
538                 }
539                 nr_shown = 0;
540         }
541         if (nr_shown++ == 0)
542                 resume = jiffies + 60 * HZ;
543
544         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545         index = linear_page_index(vma, addr);
546
547         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
548                  current->comm,
549                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
550         if (page)
551                 dump_page(page, "bad pte");
552         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555                  vma->vm_file,
556                  vma->vm_ops ? vma->vm_ops->fault : NULL,
557                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558                  mapping ? mapping->a_ops->readpage : NULL);
559         dump_stack();
560         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562
563 /*
564  * vm_normal_page -- This function gets the "struct page" associated with a pte.
565  *
566  * "Special" mappings do not wish to be associated with a "struct page" (either
567  * it doesn't exist, or it exists but they don't want to touch it). In this
568  * case, NULL is returned here. "Normal" mappings do have a struct page.
569  *
570  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571  * pte bit, in which case this function is trivial. Secondly, an architecture
572  * may not have a spare pte bit, which requires a more complicated scheme,
573  * described below.
574  *
575  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576  * special mapping (even if there are underlying and valid "struct pages").
577  * COWed pages of a VM_PFNMAP are always normal.
578  *
579  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582  * mapping will always honor the rule
583  *
584  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585  *
586  * And for normal mappings this is false.
587  *
588  * This restricts such mappings to be a linear translation from virtual address
589  * to pfn. To get around this restriction, we allow arbitrary mappings so long
590  * as the vma is not a COW mapping; in that case, we know that all ptes are
591  * special (because none can have been COWed).
592  *
593  *
594  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595  *
596  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597  * page" backing, however the difference is that _all_ pages with a struct
598  * page (that is, those where pfn_valid is true) are refcounted and considered
599  * normal pages by the VM. The disadvantage is that pages are refcounted
600  * (which can be slower and simply not an option for some PFNMAP users). The
601  * advantage is that we don't have to follow the strict linearity rule of
602  * PFNMAP mappings in order to support COWable mappings.
603  *
604  */
605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606                             pte_t pte)
607 {
608         unsigned long pfn = pte_pfn(pte);
609
610         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
611                 if (likely(!pte_special(pte)))
612                         goto check_pfn;
613                 if (vma->vm_ops && vma->vm_ops->find_special_page)
614                         return vma->vm_ops->find_special_page(vma, addr);
615                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616                         return NULL;
617                 if (is_zero_pfn(pfn))
618                         return NULL;
619                 if (pte_devmap(pte))
620                         return NULL;
621
622                 print_bad_pte(vma, addr, pte, NULL);
623                 return NULL;
624         }
625
626         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627
628         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629                 if (vma->vm_flags & VM_MIXEDMAP) {
630                         if (!pfn_valid(pfn))
631                                 return NULL;
632                         goto out;
633                 } else {
634                         unsigned long off;
635                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
636                         if (pfn == vma->vm_pgoff + off)
637                                 return NULL;
638                         if (!is_cow_mapping(vma->vm_flags))
639                                 return NULL;
640                 }
641         }
642
643         if (is_zero_pfn(pfn))
644                 return NULL;
645
646 check_pfn:
647         if (unlikely(pfn > highest_memmap_pfn)) {
648                 print_bad_pte(vma, addr, pte, NULL);
649                 return NULL;
650         }
651
652         /*
653          * NOTE! We still have PageReserved() pages in the page tables.
654          * eg. VDSO mappings can cause them to exist.
655          */
656 out:
657         return pfn_to_page(pfn);
658 }
659
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662                                 pmd_t pmd)
663 {
664         unsigned long pfn = pmd_pfn(pmd);
665
666         /*
667          * There is no pmd_special() but there may be special pmds, e.g.
668          * in a direct-access (dax) mapping, so let's just replicate the
669          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670          */
671         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672                 if (vma->vm_flags & VM_MIXEDMAP) {
673                         if (!pfn_valid(pfn))
674                                 return NULL;
675                         goto out;
676                 } else {
677                         unsigned long off;
678                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
679                         if (pfn == vma->vm_pgoff + off)
680                                 return NULL;
681                         if (!is_cow_mapping(vma->vm_flags))
682                                 return NULL;
683                 }
684         }
685
686         if (pmd_devmap(pmd))
687                 return NULL;
688         if (is_huge_zero_pmd(pmd))
689                 return NULL;
690         if (unlikely(pfn > highest_memmap_pfn))
691                 return NULL;
692
693         /*
694          * NOTE! We still have PageReserved() pages in the page tables.
695          * eg. VDSO mappings can cause them to exist.
696          */
697 out:
698         return pfn_to_page(pfn);
699 }
700 #endif
701
702 static void restore_exclusive_pte(struct vm_area_struct *vma,
703                                   struct page *page, unsigned long address,
704                                   pte_t *ptep)
705 {
706         pte_t pte;
707         swp_entry_t entry;
708
709         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
710         if (pte_swp_soft_dirty(*ptep))
711                 pte = pte_mksoft_dirty(pte);
712
713         entry = pte_to_swp_entry(*ptep);
714         if (pte_swp_uffd_wp(*ptep))
715                 pte = pte_mkuffd_wp(pte);
716         else if (is_writable_device_exclusive_entry(entry))
717                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
718
719         set_pte_at(vma->vm_mm, address, ptep, pte);
720
721         /*
722          * No need to take a page reference as one was already
723          * created when the swap entry was made.
724          */
725         if (PageAnon(page))
726                 page_add_anon_rmap(page, vma, address, false);
727         else
728                 /*
729                  * Currently device exclusive access only supports anonymous
730                  * memory so the entry shouldn't point to a filebacked page.
731                  */
732                 WARN_ON_ONCE(!PageAnon(page));
733
734         if (vma->vm_flags & VM_LOCKED)
735                 mlock_vma_page(page);
736
737         /*
738          * No need to invalidate - it was non-present before. However
739          * secondary CPUs may have mappings that need invalidating.
740          */
741         update_mmu_cache(vma, address, ptep);
742 }
743
744 /*
745  * Tries to restore an exclusive pte if the page lock can be acquired without
746  * sleeping.
747  */
748 static int
749 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
750                         unsigned long addr)
751 {
752         swp_entry_t entry = pte_to_swp_entry(*src_pte);
753         struct page *page = pfn_swap_entry_to_page(entry);
754
755         if (trylock_page(page)) {
756                 restore_exclusive_pte(vma, page, addr, src_pte);
757                 unlock_page(page);
758                 return 0;
759         }
760
761         return -EBUSY;
762 }
763
764 /*
765  * copy one vm_area from one task to the other. Assumes the page tables
766  * already present in the new task to be cleared in the whole range
767  * covered by this vma.
768  */
769
770 static unsigned long
771 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
772                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
773                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
774 {
775         unsigned long vm_flags = dst_vma->vm_flags;
776         pte_t pte = *src_pte;
777         struct page *page;
778         swp_entry_t entry = pte_to_swp_entry(pte);
779
780         if (likely(!non_swap_entry(entry))) {
781                 if (swap_duplicate(entry) < 0)
782                         return -EIO;
783
784                 /* make sure dst_mm is on swapoff's mmlist. */
785                 if (unlikely(list_empty(&dst_mm->mmlist))) {
786                         spin_lock(&mmlist_lock);
787                         if (list_empty(&dst_mm->mmlist))
788                                 list_add(&dst_mm->mmlist,
789                                                 &src_mm->mmlist);
790                         spin_unlock(&mmlist_lock);
791                 }
792                 rss[MM_SWAPENTS]++;
793         } else if (is_migration_entry(entry)) {
794                 page = pfn_swap_entry_to_page(entry);
795
796                 rss[mm_counter(page)]++;
797
798                 if (is_writable_migration_entry(entry) &&
799                                 is_cow_mapping(vm_flags)) {
800                         /*
801                          * COW mappings require pages in both
802                          * parent and child to be set to read.
803                          */
804                         entry = make_readable_migration_entry(
805                                                         swp_offset(entry));
806                         pte = swp_entry_to_pte(entry);
807                         if (pte_swp_soft_dirty(*src_pte))
808                                 pte = pte_swp_mksoft_dirty(pte);
809                         if (pte_swp_uffd_wp(*src_pte))
810                                 pte = pte_swp_mkuffd_wp(pte);
811                         set_pte_at(src_mm, addr, src_pte, pte);
812                 }
813         } else if (is_device_private_entry(entry)) {
814                 page = pfn_swap_entry_to_page(entry);
815
816                 /*
817                  * Update rss count even for unaddressable pages, as
818                  * they should treated just like normal pages in this
819                  * respect.
820                  *
821                  * We will likely want to have some new rss counters
822                  * for unaddressable pages, at some point. But for now
823                  * keep things as they are.
824                  */
825                 get_page(page);
826                 rss[mm_counter(page)]++;
827                 page_dup_rmap(page, false);
828
829                 /*
830                  * We do not preserve soft-dirty information, because so
831                  * far, checkpoint/restore is the only feature that
832                  * requires that. And checkpoint/restore does not work
833                  * when a device driver is involved (you cannot easily
834                  * save and restore device driver state).
835                  */
836                 if (is_writable_device_private_entry(entry) &&
837                     is_cow_mapping(vm_flags)) {
838                         entry = make_readable_device_private_entry(
839                                                         swp_offset(entry));
840                         pte = swp_entry_to_pte(entry);
841                         if (pte_swp_uffd_wp(*src_pte))
842                                 pte = pte_swp_mkuffd_wp(pte);
843                         set_pte_at(src_mm, addr, src_pte, pte);
844                 }
845         } else if (is_device_exclusive_entry(entry)) {
846                 /*
847                  * Make device exclusive entries present by restoring the
848                  * original entry then copying as for a present pte. Device
849                  * exclusive entries currently only support private writable
850                  * (ie. COW) mappings.
851                  */
852                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
853                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
854                         return -EBUSY;
855                 return -ENOENT;
856         }
857         if (!userfaultfd_wp(dst_vma))
858                 pte = pte_swp_clear_uffd_wp(pte);
859         set_pte_at(dst_mm, addr, dst_pte, pte);
860         return 0;
861 }
862
863 /*
864  * Copy a present and normal page if necessary.
865  *
866  * NOTE! The usual case is that this doesn't need to do
867  * anything, and can just return a positive value. That
868  * will let the caller know that it can just increase
869  * the page refcount and re-use the pte the traditional
870  * way.
871  *
872  * But _if_ we need to copy it because it needs to be
873  * pinned in the parent (and the child should get its own
874  * copy rather than just a reference to the same page),
875  * we'll do that here and return zero to let the caller
876  * know we're done.
877  *
878  * And if we need a pre-allocated page but don't yet have
879  * one, return a negative error to let the preallocation
880  * code know so that it can do so outside the page table
881  * lock.
882  */
883 static inline int
884 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
885                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
886                   struct page **prealloc, pte_t pte, struct page *page)
887 {
888         struct page *new_page;
889
890         /*
891          * What we want to do is to check whether this page may
892          * have been pinned by the parent process.  If so,
893          * instead of wrprotect the pte on both sides, we copy
894          * the page immediately so that we'll always guarantee
895          * the pinned page won't be randomly replaced in the
896          * future.
897          *
898          * The page pinning checks are just "has this mm ever
899          * seen pinning", along with the (inexact) check of
900          * the page count. That might give false positives for
901          * for pinning, but it will work correctly.
902          */
903         if (likely(!page_needs_cow_for_dma(src_vma, page)))
904                 return 1;
905
906         new_page = *prealloc;
907         if (!new_page)
908                 return -EAGAIN;
909
910         /*
911          * We have a prealloc page, all good!  Take it
912          * over and copy the page & arm it.
913          */
914         *prealloc = NULL;
915         copy_user_highpage(new_page, page, addr, src_vma);
916         __SetPageUptodate(new_page);
917         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
918         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
919         rss[mm_counter(new_page)]++;
920
921         /* All done, just insert the new page copy in the child */
922         pte = mk_pte(new_page, dst_vma->vm_page_prot);
923         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
924         if (userfaultfd_pte_wp(dst_vma, *src_pte))
925                 /* Uffd-wp needs to be delivered to dest pte as well */
926                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
927         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
928         return 0;
929 }
930
931 /*
932  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
933  * is required to copy this pte.
934  */
935 static inline int
936 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
938                  struct page **prealloc)
939 {
940         struct mm_struct *src_mm = src_vma->vm_mm;
941         unsigned long vm_flags = src_vma->vm_flags;
942         pte_t pte = *src_pte;
943         struct page *page;
944
945         page = vm_normal_page(src_vma, addr, pte);
946         if (page) {
947                 int retval;
948
949                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950                                            addr, rss, prealloc, pte, page);
951                 if (retval <= 0)
952                         return retval;
953
954                 get_page(page);
955                 page_dup_rmap(page, false);
956                 rss[mm_counter(page)]++;
957         }
958
959         /*
960          * If it's a COW mapping, write protect it both
961          * in the parent and the child
962          */
963         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
964                 ptep_set_wrprotect(src_mm, addr, src_pte);
965                 pte = pte_wrprotect(pte);
966         }
967
968         /*
969          * If it's a shared mapping, mark it clean in
970          * the child
971          */
972         if (vm_flags & VM_SHARED)
973                 pte = pte_mkclean(pte);
974         pte = pte_mkold(pte);
975
976         if (!userfaultfd_wp(dst_vma))
977                 pte = pte_clear_uffd_wp(pte);
978
979         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
980         return 0;
981 }
982
983 static inline struct page *
984 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
985                    unsigned long addr)
986 {
987         struct page *new_page;
988
989         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
990         if (!new_page)
991                 return NULL;
992
993         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
994                 put_page(new_page);
995                 return NULL;
996         }
997         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
998
999         return new_page;
1000 }
1001
1002 static int
1003 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005                unsigned long end)
1006 {
1007         struct mm_struct *dst_mm = dst_vma->vm_mm;
1008         struct mm_struct *src_mm = src_vma->vm_mm;
1009         pte_t *orig_src_pte, *orig_dst_pte;
1010         pte_t *src_pte, *dst_pte;
1011         spinlock_t *src_ptl, *dst_ptl;
1012         int progress, ret = 0;
1013         int rss[NR_MM_COUNTERS];
1014         swp_entry_t entry = (swp_entry_t){0};
1015         struct page *prealloc = NULL;
1016
1017 again:
1018         progress = 0;
1019         init_rss_vec(rss);
1020
1021         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1022         if (!dst_pte) {
1023                 ret = -ENOMEM;
1024                 goto out;
1025         }
1026         src_pte = pte_offset_map(src_pmd, addr);
1027         src_ptl = pte_lockptr(src_mm, src_pmd);
1028         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1029         orig_src_pte = src_pte;
1030         orig_dst_pte = dst_pte;
1031         arch_enter_lazy_mmu_mode();
1032
1033         do {
1034                 /*
1035                  * We are holding two locks at this point - either of them
1036                  * could generate latencies in another task on another CPU.
1037                  */
1038                 if (progress >= 32) {
1039                         progress = 0;
1040                         if (need_resched() ||
1041                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1042                                 break;
1043                 }
1044                 if (pte_none(*src_pte)) {
1045                         progress++;
1046                         continue;
1047                 }
1048                 if (unlikely(!pte_present(*src_pte))) {
1049                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1050                                                   dst_pte, src_pte,
1051                                                   dst_vma, src_vma,
1052                                                   addr, rss);
1053                         if (ret == -EIO) {
1054                                 entry = pte_to_swp_entry(*src_pte);
1055                                 break;
1056                         } else if (ret == -EBUSY) {
1057                                 break;
1058                         } else if (!ret) {
1059                                 progress += 8;
1060                                 continue;
1061                         }
1062
1063                         /*
1064                          * Device exclusive entry restored, continue by copying
1065                          * the now present pte.
1066                          */
1067                         WARN_ON_ONCE(ret != -ENOENT);
1068                 }
1069                 /* copy_present_pte() will clear `*prealloc' if consumed */
1070                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1071                                        addr, rss, &prealloc);
1072                 /*
1073                  * If we need a pre-allocated page for this pte, drop the
1074                  * locks, allocate, and try again.
1075                  */
1076                 if (unlikely(ret == -EAGAIN))
1077                         break;
1078                 if (unlikely(prealloc)) {
1079                         /*
1080                          * pre-alloc page cannot be reused by next time so as
1081                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1082                          * will allocate page according to address).  This
1083                          * could only happen if one pinned pte changed.
1084                          */
1085                         put_page(prealloc);
1086                         prealloc = NULL;
1087                 }
1088                 progress += 8;
1089         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1090
1091         arch_leave_lazy_mmu_mode();
1092         spin_unlock(src_ptl);
1093         pte_unmap(orig_src_pte);
1094         add_mm_rss_vec(dst_mm, rss);
1095         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1096         cond_resched();
1097
1098         if (ret == -EIO) {
1099                 VM_WARN_ON_ONCE(!entry.val);
1100                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1101                         ret = -ENOMEM;
1102                         goto out;
1103                 }
1104                 entry.val = 0;
1105         } else if (ret == -EBUSY) {
1106                 goto out;
1107         } else if (ret ==  -EAGAIN) {
1108                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1109                 if (!prealloc)
1110                         return -ENOMEM;
1111         } else if (ret) {
1112                 VM_WARN_ON_ONCE(1);
1113         }
1114
1115         /* We've captured and resolved the error. Reset, try again. */
1116         ret = 0;
1117
1118         if (addr != end)
1119                 goto again;
1120 out:
1121         if (unlikely(prealloc))
1122                 put_page(prealloc);
1123         return ret;
1124 }
1125
1126 static inline int
1127 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1128                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1129                unsigned long end)
1130 {
1131         struct mm_struct *dst_mm = dst_vma->vm_mm;
1132         struct mm_struct *src_mm = src_vma->vm_mm;
1133         pmd_t *src_pmd, *dst_pmd;
1134         unsigned long next;
1135
1136         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137         if (!dst_pmd)
1138                 return -ENOMEM;
1139         src_pmd = pmd_offset(src_pud, addr);
1140         do {
1141                 next = pmd_addr_end(addr, end);
1142                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143                         || pmd_devmap(*src_pmd)) {
1144                         int err;
1145                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1146                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1147                                             addr, dst_vma, src_vma);
1148                         if (err == -ENOMEM)
1149                                 return -ENOMEM;
1150                         if (!err)
1151                                 continue;
1152                         /* fall through */
1153                 }
1154                 if (pmd_none_or_clear_bad(src_pmd))
1155                         continue;
1156                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1157                                    addr, next))
1158                         return -ENOMEM;
1159         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160         return 0;
1161 }
1162
1163 static inline int
1164 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1165                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1166                unsigned long end)
1167 {
1168         struct mm_struct *dst_mm = dst_vma->vm_mm;
1169         struct mm_struct *src_mm = src_vma->vm_mm;
1170         pud_t *src_pud, *dst_pud;
1171         unsigned long next;
1172
1173         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1174         if (!dst_pud)
1175                 return -ENOMEM;
1176         src_pud = pud_offset(src_p4d, addr);
1177         do {
1178                 next = pud_addr_end(addr, end);
1179                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1180                         int err;
1181
1182                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1183                         err = copy_huge_pud(dst_mm, src_mm,
1184                                             dst_pud, src_pud, addr, src_vma);
1185                         if (err == -ENOMEM)
1186                                 return -ENOMEM;
1187                         if (!err)
1188                                 continue;
1189                         /* fall through */
1190                 }
1191                 if (pud_none_or_clear_bad(src_pud))
1192                         continue;
1193                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1194                                    addr, next))
1195                         return -ENOMEM;
1196         } while (dst_pud++, src_pud++, addr = next, addr != end);
1197         return 0;
1198 }
1199
1200 static inline int
1201 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1202                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1203                unsigned long end)
1204 {
1205         struct mm_struct *dst_mm = dst_vma->vm_mm;
1206         p4d_t *src_p4d, *dst_p4d;
1207         unsigned long next;
1208
1209         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1210         if (!dst_p4d)
1211                 return -ENOMEM;
1212         src_p4d = p4d_offset(src_pgd, addr);
1213         do {
1214                 next = p4d_addr_end(addr, end);
1215                 if (p4d_none_or_clear_bad(src_p4d))
1216                         continue;
1217                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1218                                    addr, next))
1219                         return -ENOMEM;
1220         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1221         return 0;
1222 }
1223
1224 int
1225 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226 {
1227         pgd_t *src_pgd, *dst_pgd;
1228         unsigned long next;
1229         unsigned long addr = src_vma->vm_start;
1230         unsigned long end = src_vma->vm_end;
1231         struct mm_struct *dst_mm = dst_vma->vm_mm;
1232         struct mm_struct *src_mm = src_vma->vm_mm;
1233         struct mmu_notifier_range range;
1234         bool is_cow;
1235         int ret;
1236
1237         /*
1238          * Don't copy ptes where a page fault will fill them correctly.
1239          * Fork becomes much lighter when there are big shared or private
1240          * readonly mappings. The tradeoff is that copy_page_range is more
1241          * efficient than faulting.
1242          */
1243         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1244             !src_vma->anon_vma)
1245                 return 0;
1246
1247         if (is_vm_hugetlb_page(src_vma))
1248                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1249
1250         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1251                 /*
1252                  * We do not free on error cases below as remove_vma
1253                  * gets called on error from higher level routine
1254                  */
1255                 ret = track_pfn_copy(src_vma);
1256                 if (ret)
1257                         return ret;
1258         }
1259
1260         /*
1261          * We need to invalidate the secondary MMU mappings only when
1262          * there could be a permission downgrade on the ptes of the
1263          * parent mm. And a permission downgrade will only happen if
1264          * is_cow_mapping() returns true.
1265          */
1266         is_cow = is_cow_mapping(src_vma->vm_flags);
1267
1268         if (is_cow) {
1269                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1270                                         0, src_vma, src_mm, addr, end);
1271                 mmu_notifier_invalidate_range_start(&range);
1272                 /*
1273                  * Disabling preemption is not needed for the write side, as
1274                  * the read side doesn't spin, but goes to the mmap_lock.
1275                  *
1276                  * Use the raw variant of the seqcount_t write API to avoid
1277                  * lockdep complaining about preemptibility.
1278                  */
1279                 mmap_assert_write_locked(src_mm);
1280                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1281         }
1282
1283         ret = 0;
1284         dst_pgd = pgd_offset(dst_mm, addr);
1285         src_pgd = pgd_offset(src_mm, addr);
1286         do {
1287                 next = pgd_addr_end(addr, end);
1288                 if (pgd_none_or_clear_bad(src_pgd))
1289                         continue;
1290                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1291                                             addr, next))) {
1292                         ret = -ENOMEM;
1293                         break;
1294                 }
1295         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1296
1297         if (is_cow) {
1298                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1299                 mmu_notifier_invalidate_range_end(&range);
1300         }
1301         return ret;
1302 }
1303
1304 /* Whether we should zap all COWed (private) pages too */
1305 static inline bool should_zap_cows(struct zap_details *details)
1306 {
1307         /* By default, zap all pages */
1308         if (!details)
1309                 return true;
1310
1311         /* Or, we zap COWed pages only if the caller wants to */
1312         return !details->check_mapping;
1313 }
1314
1315 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1316                                 struct vm_area_struct *vma, pmd_t *pmd,
1317                                 unsigned long addr, unsigned long end,
1318                                 struct zap_details *details)
1319 {
1320         struct mm_struct *mm = tlb->mm;
1321         int force_flush = 0;
1322         int rss[NR_MM_COUNTERS];
1323         spinlock_t *ptl;
1324         pte_t *start_pte;
1325         pte_t *pte;
1326         swp_entry_t entry;
1327
1328         tlb_change_page_size(tlb, PAGE_SIZE);
1329 again:
1330         init_rss_vec(rss);
1331         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1332         pte = start_pte;
1333         flush_tlb_batched_pending(mm);
1334         arch_enter_lazy_mmu_mode();
1335         do {
1336                 pte_t ptent = *pte;
1337                 if (pte_none(ptent))
1338                         continue;
1339
1340                 if (need_resched())
1341                         break;
1342
1343                 if (pte_present(ptent)) {
1344                         struct page *page;
1345
1346                         page = vm_normal_page(vma, addr, ptent);
1347                         if (unlikely(details) && page) {
1348                                 /*
1349                                  * unmap_shared_mapping_pages() wants to
1350                                  * invalidate cache without truncating:
1351                                  * unmap shared but keep private pages.
1352                                  */
1353                                 if (details->check_mapping &&
1354                                     details->check_mapping != page_rmapping(page))
1355                                         continue;
1356                         }
1357                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1358                                                         tlb->fullmm);
1359                         tlb_remove_tlb_entry(tlb, pte, addr);
1360                         if (unlikely(!page))
1361                                 continue;
1362
1363                         if (!PageAnon(page)) {
1364                                 if (pte_dirty(ptent)) {
1365                                         force_flush = 1;
1366                                         set_page_dirty(page);
1367                                 }
1368                                 if (pte_young(ptent) &&
1369                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1370                                         mark_page_accessed(page);
1371                         }
1372                         rss[mm_counter(page)]--;
1373                         page_remove_rmap(page, false);
1374                         if (unlikely(page_mapcount(page) < 0))
1375                                 print_bad_pte(vma, addr, ptent, page);
1376                         if (unlikely(__tlb_remove_page(tlb, page))) {
1377                                 force_flush = 1;
1378                                 addr += PAGE_SIZE;
1379                                 break;
1380                         }
1381                         continue;
1382                 }
1383
1384                 entry = pte_to_swp_entry(ptent);
1385                 if (is_device_private_entry(entry) ||
1386                     is_device_exclusive_entry(entry)) {
1387                         struct page *page = pfn_swap_entry_to_page(entry);
1388
1389                         if (unlikely(details && details->check_mapping)) {
1390                                 /*
1391                                  * unmap_shared_mapping_pages() wants to
1392                                  * invalidate cache without truncating:
1393                                  * unmap shared but keep private pages.
1394                                  */
1395                                 if (details->check_mapping !=
1396                                     page_rmapping(page))
1397                                         continue;
1398                         }
1399
1400                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1401                         rss[mm_counter(page)]--;
1402
1403                         if (is_device_private_entry(entry))
1404                                 page_remove_rmap(page, false);
1405
1406                         put_page(page);
1407                         continue;
1408                 }
1409
1410                 if (!non_swap_entry(entry)) {
1411                         /* Genuine swap entry, hence a private anon page */
1412                         if (!should_zap_cows(details))
1413                                 continue;
1414                         rss[MM_SWAPENTS]--;
1415                 } else if (is_migration_entry(entry)) {
1416                         struct page *page;
1417
1418                         page = pfn_swap_entry_to_page(entry);
1419                         if (details && details->check_mapping &&
1420                             details->check_mapping != page_rmapping(page))
1421                                 continue;
1422                         rss[mm_counter(page)]--;
1423                 }
1424                 if (unlikely(!free_swap_and_cache(entry)))
1425                         print_bad_pte(vma, addr, ptent, NULL);
1426                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1427         } while (pte++, addr += PAGE_SIZE, addr != end);
1428
1429         add_mm_rss_vec(mm, rss);
1430         arch_leave_lazy_mmu_mode();
1431
1432         /* Do the actual TLB flush before dropping ptl */
1433         if (force_flush)
1434                 tlb_flush_mmu_tlbonly(tlb);
1435         pte_unmap_unlock(start_pte, ptl);
1436
1437         /*
1438          * If we forced a TLB flush (either due to running out of
1439          * batch buffers or because we needed to flush dirty TLB
1440          * entries before releasing the ptl), free the batched
1441          * memory too. Restart if we didn't do everything.
1442          */
1443         if (force_flush) {
1444                 force_flush = 0;
1445                 tlb_flush_mmu(tlb);
1446         }
1447
1448         if (addr != end) {
1449                 cond_resched();
1450                 goto again;
1451         }
1452
1453         return addr;
1454 }
1455
1456 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1457                                 struct vm_area_struct *vma, pud_t *pud,
1458                                 unsigned long addr, unsigned long end,
1459                                 struct zap_details *details)
1460 {
1461         pmd_t *pmd;
1462         unsigned long next;
1463
1464         pmd = pmd_offset(pud, addr);
1465         do {
1466                 next = pmd_addr_end(addr, end);
1467                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1468                         if (next - addr != HPAGE_PMD_SIZE)
1469                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1470                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1471                                 goto next;
1472                         /* fall through */
1473                 } else if (details && details->single_page &&
1474                            PageTransCompound(details->single_page) &&
1475                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1476                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1477                         /*
1478                          * Take and drop THP pmd lock so that we cannot return
1479                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1480                          * but not yet decremented compound_mapcount().
1481                          */
1482                         spin_unlock(ptl);
1483                 }
1484
1485                 /*
1486                  * Here there can be other concurrent MADV_DONTNEED or
1487                  * trans huge page faults running, and if the pmd is
1488                  * none or trans huge it can change under us. This is
1489                  * because MADV_DONTNEED holds the mmap_lock in read
1490                  * mode.
1491                  */
1492                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1493                         goto next;
1494                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1495 next:
1496                 cond_resched();
1497         } while (pmd++, addr = next, addr != end);
1498
1499         return addr;
1500 }
1501
1502 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1503                                 struct vm_area_struct *vma, p4d_t *p4d,
1504                                 unsigned long addr, unsigned long end,
1505                                 struct zap_details *details)
1506 {
1507         pud_t *pud;
1508         unsigned long next;
1509
1510         pud = pud_offset(p4d, addr);
1511         do {
1512                 next = pud_addr_end(addr, end);
1513                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1514                         if (next - addr != HPAGE_PUD_SIZE) {
1515                                 mmap_assert_locked(tlb->mm);
1516                                 split_huge_pud(vma, pud, addr);
1517                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1518                                 goto next;
1519                         /* fall through */
1520                 }
1521                 if (pud_none_or_clear_bad(pud))
1522                         continue;
1523                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1524 next:
1525                 cond_resched();
1526         } while (pud++, addr = next, addr != end);
1527
1528         return addr;
1529 }
1530
1531 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1532                                 struct vm_area_struct *vma, pgd_t *pgd,
1533                                 unsigned long addr, unsigned long end,
1534                                 struct zap_details *details)
1535 {
1536         p4d_t *p4d;
1537         unsigned long next;
1538
1539         p4d = p4d_offset(pgd, addr);
1540         do {
1541                 next = p4d_addr_end(addr, end);
1542                 if (p4d_none_or_clear_bad(p4d))
1543                         continue;
1544                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1545         } while (p4d++, addr = next, addr != end);
1546
1547         return addr;
1548 }
1549
1550 void unmap_page_range(struct mmu_gather *tlb,
1551                              struct vm_area_struct *vma,
1552                              unsigned long addr, unsigned long end,
1553                              struct zap_details *details)
1554 {
1555         pgd_t *pgd;
1556         unsigned long next;
1557
1558         BUG_ON(addr >= end);
1559         tlb_start_vma(tlb, vma);
1560         pgd = pgd_offset(vma->vm_mm, addr);
1561         do {
1562                 next = pgd_addr_end(addr, end);
1563                 if (pgd_none_or_clear_bad(pgd))
1564                         continue;
1565                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1566         } while (pgd++, addr = next, addr != end);
1567         tlb_end_vma(tlb, vma);
1568 }
1569
1570
1571 static void unmap_single_vma(struct mmu_gather *tlb,
1572                 struct vm_area_struct *vma, unsigned long start_addr,
1573                 unsigned long end_addr,
1574                 struct zap_details *details)
1575 {
1576         unsigned long start = max(vma->vm_start, start_addr);
1577         unsigned long end;
1578
1579         if (start >= vma->vm_end)
1580                 return;
1581         end = min(vma->vm_end, end_addr);
1582         if (end <= vma->vm_start)
1583                 return;
1584
1585         if (vma->vm_file)
1586                 uprobe_munmap(vma, start, end);
1587
1588         if (unlikely(vma->vm_flags & VM_PFNMAP))
1589                 untrack_pfn(vma, 0, 0);
1590
1591         if (start != end) {
1592                 if (unlikely(is_vm_hugetlb_page(vma))) {
1593                         /*
1594                          * It is undesirable to test vma->vm_file as it
1595                          * should be non-null for valid hugetlb area.
1596                          * However, vm_file will be NULL in the error
1597                          * cleanup path of mmap_region. When
1598                          * hugetlbfs ->mmap method fails,
1599                          * mmap_region() nullifies vma->vm_file
1600                          * before calling this function to clean up.
1601                          * Since no pte has actually been setup, it is
1602                          * safe to do nothing in this case.
1603                          */
1604                         if (vma->vm_file) {
1605                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1606                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1607                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1608                         }
1609                 } else
1610                         unmap_page_range(tlb, vma, start, end, details);
1611         }
1612 }
1613
1614 /**
1615  * unmap_vmas - unmap a range of memory covered by a list of vma's
1616  * @tlb: address of the caller's struct mmu_gather
1617  * @vma: the starting vma
1618  * @start_addr: virtual address at which to start unmapping
1619  * @end_addr: virtual address at which to end unmapping
1620  *
1621  * Unmap all pages in the vma list.
1622  *
1623  * Only addresses between `start' and `end' will be unmapped.
1624  *
1625  * The VMA list must be sorted in ascending virtual address order.
1626  *
1627  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1628  * range after unmap_vmas() returns.  So the only responsibility here is to
1629  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1630  * drops the lock and schedules.
1631  */
1632 void unmap_vmas(struct mmu_gather *tlb,
1633                 struct vm_area_struct *vma, unsigned long start_addr,
1634                 unsigned long end_addr)
1635 {
1636         struct mmu_notifier_range range;
1637
1638         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1639                                 start_addr, end_addr);
1640         mmu_notifier_invalidate_range_start(&range);
1641         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1642                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1643         mmu_notifier_invalidate_range_end(&range);
1644 }
1645
1646 /**
1647  * zap_page_range - remove user pages in a given range
1648  * @vma: vm_area_struct holding the applicable pages
1649  * @start: starting address of pages to zap
1650  * @size: number of bytes to zap
1651  *
1652  * Caller must protect the VMA list
1653  */
1654 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1655                 unsigned long size)
1656 {
1657         struct mmu_notifier_range range;
1658         struct mmu_gather tlb;
1659
1660         lru_add_drain();
1661         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1662                                 start, start + size);
1663         tlb_gather_mmu(&tlb, vma->vm_mm);
1664         update_hiwater_rss(vma->vm_mm);
1665         mmu_notifier_invalidate_range_start(&range);
1666         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1667                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1668         mmu_notifier_invalidate_range_end(&range);
1669         tlb_finish_mmu(&tlb);
1670 }
1671
1672 /**
1673  * zap_page_range_single - remove user pages in a given range
1674  * @vma: vm_area_struct holding the applicable pages
1675  * @address: starting address of pages to zap
1676  * @size: number of bytes to zap
1677  * @details: details of shared cache invalidation
1678  *
1679  * The range must fit into one VMA.
1680  */
1681 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1682                 unsigned long size, struct zap_details *details)
1683 {
1684         struct mmu_notifier_range range;
1685         struct mmu_gather tlb;
1686
1687         lru_add_drain();
1688         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1689                                 address, address + size);
1690         tlb_gather_mmu(&tlb, vma->vm_mm);
1691         update_hiwater_rss(vma->vm_mm);
1692         mmu_notifier_invalidate_range_start(&range);
1693         unmap_single_vma(&tlb, vma, address, range.end, details);
1694         mmu_notifier_invalidate_range_end(&range);
1695         tlb_finish_mmu(&tlb);
1696 }
1697
1698 /**
1699  * zap_vma_ptes - remove ptes mapping the vma
1700  * @vma: vm_area_struct holding ptes to be zapped
1701  * @address: starting address of pages to zap
1702  * @size: number of bytes to zap
1703  *
1704  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1705  *
1706  * The entire address range must be fully contained within the vma.
1707  *
1708  */
1709 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1710                 unsigned long size)
1711 {
1712         if (address < vma->vm_start || address + size > vma->vm_end ||
1713                         !(vma->vm_flags & VM_PFNMAP))
1714                 return;
1715
1716         zap_page_range_single(vma, address, size, NULL);
1717 }
1718 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1719
1720 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1721 {
1722         pgd_t *pgd;
1723         p4d_t *p4d;
1724         pud_t *pud;
1725         pmd_t *pmd;
1726
1727         pgd = pgd_offset(mm, addr);
1728         p4d = p4d_alloc(mm, pgd, addr);
1729         if (!p4d)
1730                 return NULL;
1731         pud = pud_alloc(mm, p4d, addr);
1732         if (!pud)
1733                 return NULL;
1734         pmd = pmd_alloc(mm, pud, addr);
1735         if (!pmd)
1736                 return NULL;
1737
1738         VM_BUG_ON(pmd_trans_huge(*pmd));
1739         return pmd;
1740 }
1741
1742 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1743                         spinlock_t **ptl)
1744 {
1745         pmd_t *pmd = walk_to_pmd(mm, addr);
1746
1747         if (!pmd)
1748                 return NULL;
1749         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1750 }
1751
1752 static int validate_page_before_insert(struct page *page)
1753 {
1754         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1755                 return -EINVAL;
1756         flush_dcache_page(page);
1757         return 0;
1758 }
1759
1760 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1761                         unsigned long addr, struct page *page, pgprot_t prot)
1762 {
1763         if (!pte_none(*pte))
1764                 return -EBUSY;
1765         /* Ok, finally just insert the thing.. */
1766         get_page(page);
1767         inc_mm_counter_fast(mm, mm_counter_file(page));
1768         page_add_file_rmap(page, false);
1769         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1770         return 0;
1771 }
1772
1773 /*
1774  * This is the old fallback for page remapping.
1775  *
1776  * For historical reasons, it only allows reserved pages. Only
1777  * old drivers should use this, and they needed to mark their
1778  * pages reserved for the old functions anyway.
1779  */
1780 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1781                         struct page *page, pgprot_t prot)
1782 {
1783         struct mm_struct *mm = vma->vm_mm;
1784         int retval;
1785         pte_t *pte;
1786         spinlock_t *ptl;
1787
1788         retval = validate_page_before_insert(page);
1789         if (retval)
1790                 goto out;
1791         retval = -ENOMEM;
1792         pte = get_locked_pte(mm, addr, &ptl);
1793         if (!pte)
1794                 goto out;
1795         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1796         pte_unmap_unlock(pte, ptl);
1797 out:
1798         return retval;
1799 }
1800
1801 #ifdef pte_index
1802 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1803                         unsigned long addr, struct page *page, pgprot_t prot)
1804 {
1805         int err;
1806
1807         if (!page_count(page))
1808                 return -EINVAL;
1809         err = validate_page_before_insert(page);
1810         if (err)
1811                 return err;
1812         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1813 }
1814
1815 /* insert_pages() amortizes the cost of spinlock operations
1816  * when inserting pages in a loop. Arch *must* define pte_index.
1817  */
1818 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1819                         struct page **pages, unsigned long *num, pgprot_t prot)
1820 {
1821         pmd_t *pmd = NULL;
1822         pte_t *start_pte, *pte;
1823         spinlock_t *pte_lock;
1824         struct mm_struct *const mm = vma->vm_mm;
1825         unsigned long curr_page_idx = 0;
1826         unsigned long remaining_pages_total = *num;
1827         unsigned long pages_to_write_in_pmd;
1828         int ret;
1829 more:
1830         ret = -EFAULT;
1831         pmd = walk_to_pmd(mm, addr);
1832         if (!pmd)
1833                 goto out;
1834
1835         pages_to_write_in_pmd = min_t(unsigned long,
1836                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1837
1838         /* Allocate the PTE if necessary; takes PMD lock once only. */
1839         ret = -ENOMEM;
1840         if (pte_alloc(mm, pmd))
1841                 goto out;
1842
1843         while (pages_to_write_in_pmd) {
1844                 int pte_idx = 0;
1845                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1846
1847                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1848                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1849                         int err = insert_page_in_batch_locked(mm, pte,
1850                                 addr, pages[curr_page_idx], prot);
1851                         if (unlikely(err)) {
1852                                 pte_unmap_unlock(start_pte, pte_lock);
1853                                 ret = err;
1854                                 remaining_pages_total -= pte_idx;
1855                                 goto out;
1856                         }
1857                         addr += PAGE_SIZE;
1858                         ++curr_page_idx;
1859                 }
1860                 pte_unmap_unlock(start_pte, pte_lock);
1861                 pages_to_write_in_pmd -= batch_size;
1862                 remaining_pages_total -= batch_size;
1863         }
1864         if (remaining_pages_total)
1865                 goto more;
1866         ret = 0;
1867 out:
1868         *num = remaining_pages_total;
1869         return ret;
1870 }
1871 #endif  /* ifdef pte_index */
1872
1873 /**
1874  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1875  * @vma: user vma to map to
1876  * @addr: target start user address of these pages
1877  * @pages: source kernel pages
1878  * @num: in: number of pages to map. out: number of pages that were *not*
1879  * mapped. (0 means all pages were successfully mapped).
1880  *
1881  * Preferred over vm_insert_page() when inserting multiple pages.
1882  *
1883  * In case of error, we may have mapped a subset of the provided
1884  * pages. It is the caller's responsibility to account for this case.
1885  *
1886  * The same restrictions apply as in vm_insert_page().
1887  */
1888 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1889                         struct page **pages, unsigned long *num)
1890 {
1891 #ifdef pte_index
1892         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1893
1894         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1895                 return -EFAULT;
1896         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1897                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1898                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1899                 vma->vm_flags |= VM_MIXEDMAP;
1900         }
1901         /* Defer page refcount checking till we're about to map that page. */
1902         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1903 #else
1904         unsigned long idx = 0, pgcount = *num;
1905         int err = -EINVAL;
1906
1907         for (; idx < pgcount; ++idx) {
1908                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1909                 if (err)
1910                         break;
1911         }
1912         *num = pgcount - idx;
1913         return err;
1914 #endif  /* ifdef pte_index */
1915 }
1916 EXPORT_SYMBOL(vm_insert_pages);
1917
1918 /**
1919  * vm_insert_page - insert single page into user vma
1920  * @vma: user vma to map to
1921  * @addr: target user address of this page
1922  * @page: source kernel page
1923  *
1924  * This allows drivers to insert individual pages they've allocated
1925  * into a user vma.
1926  *
1927  * The page has to be a nice clean _individual_ kernel allocation.
1928  * If you allocate a compound page, you need to have marked it as
1929  * such (__GFP_COMP), or manually just split the page up yourself
1930  * (see split_page()).
1931  *
1932  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1933  * took an arbitrary page protection parameter. This doesn't allow
1934  * that. Your vma protection will have to be set up correctly, which
1935  * means that if you want a shared writable mapping, you'd better
1936  * ask for a shared writable mapping!
1937  *
1938  * The page does not need to be reserved.
1939  *
1940  * Usually this function is called from f_op->mmap() handler
1941  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1942  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1943  * function from other places, for example from page-fault handler.
1944  *
1945  * Return: %0 on success, negative error code otherwise.
1946  */
1947 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1948                         struct page *page)
1949 {
1950         if (addr < vma->vm_start || addr >= vma->vm_end)
1951                 return -EFAULT;
1952         if (!page_count(page))
1953                 return -EINVAL;
1954         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1955                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1956                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1957                 vma->vm_flags |= VM_MIXEDMAP;
1958         }
1959         return insert_page(vma, addr, page, vma->vm_page_prot);
1960 }
1961 EXPORT_SYMBOL(vm_insert_page);
1962
1963 /*
1964  * __vm_map_pages - maps range of kernel pages into user vma
1965  * @vma: user vma to map to
1966  * @pages: pointer to array of source kernel pages
1967  * @num: number of pages in page array
1968  * @offset: user's requested vm_pgoff
1969  *
1970  * This allows drivers to map range of kernel pages into a user vma.
1971  *
1972  * Return: 0 on success and error code otherwise.
1973  */
1974 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1975                                 unsigned long num, unsigned long offset)
1976 {
1977         unsigned long count = vma_pages(vma);
1978         unsigned long uaddr = vma->vm_start;
1979         int ret, i;
1980
1981         /* Fail if the user requested offset is beyond the end of the object */
1982         if (offset >= num)
1983                 return -ENXIO;
1984
1985         /* Fail if the user requested size exceeds available object size */
1986         if (count > num - offset)
1987                 return -ENXIO;
1988
1989         for (i = 0; i < count; i++) {
1990                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1991                 if (ret < 0)
1992                         return ret;
1993                 uaddr += PAGE_SIZE;
1994         }
1995
1996         return 0;
1997 }
1998
1999 /**
2000  * vm_map_pages - maps range of kernel pages starts with non zero offset
2001  * @vma: user vma to map to
2002  * @pages: pointer to array of source kernel pages
2003  * @num: number of pages in page array
2004  *
2005  * Maps an object consisting of @num pages, catering for the user's
2006  * requested vm_pgoff
2007  *
2008  * If we fail to insert any page into the vma, the function will return
2009  * immediately leaving any previously inserted pages present.  Callers
2010  * from the mmap handler may immediately return the error as their caller
2011  * will destroy the vma, removing any successfully inserted pages. Other
2012  * callers should make their own arrangements for calling unmap_region().
2013  *
2014  * Context: Process context. Called by mmap handlers.
2015  * Return: 0 on success and error code otherwise.
2016  */
2017 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2018                                 unsigned long num)
2019 {
2020         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2021 }
2022 EXPORT_SYMBOL(vm_map_pages);
2023
2024 /**
2025  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2026  * @vma: user vma to map to
2027  * @pages: pointer to array of source kernel pages
2028  * @num: number of pages in page array
2029  *
2030  * Similar to vm_map_pages(), except that it explicitly sets the offset
2031  * to 0. This function is intended for the drivers that did not consider
2032  * vm_pgoff.
2033  *
2034  * Context: Process context. Called by mmap handlers.
2035  * Return: 0 on success and error code otherwise.
2036  */
2037 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2038                                 unsigned long num)
2039 {
2040         return __vm_map_pages(vma, pages, num, 0);
2041 }
2042 EXPORT_SYMBOL(vm_map_pages_zero);
2043
2044 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2045                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2046 {
2047         struct mm_struct *mm = vma->vm_mm;
2048         pte_t *pte, entry;
2049         spinlock_t *ptl;
2050
2051         pte = get_locked_pte(mm, addr, &ptl);
2052         if (!pte)
2053                 return VM_FAULT_OOM;
2054         if (!pte_none(*pte)) {
2055                 if (mkwrite) {
2056                         /*
2057                          * For read faults on private mappings the PFN passed
2058                          * in may not match the PFN we have mapped if the
2059                          * mapped PFN is a writeable COW page.  In the mkwrite
2060                          * case we are creating a writable PTE for a shared
2061                          * mapping and we expect the PFNs to match. If they
2062                          * don't match, we are likely racing with block
2063                          * allocation and mapping invalidation so just skip the
2064                          * update.
2065                          */
2066                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2067                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2068                                 goto out_unlock;
2069                         }
2070                         entry = pte_mkyoung(*pte);
2071                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2072                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2073                                 update_mmu_cache(vma, addr, pte);
2074                 }
2075                 goto out_unlock;
2076         }
2077
2078         /* Ok, finally just insert the thing.. */
2079         if (pfn_t_devmap(pfn))
2080                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2081         else
2082                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2083
2084         if (mkwrite) {
2085                 entry = pte_mkyoung(entry);
2086                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2087         }
2088
2089         set_pte_at(mm, addr, pte, entry);
2090         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2091
2092 out_unlock:
2093         pte_unmap_unlock(pte, ptl);
2094         return VM_FAULT_NOPAGE;
2095 }
2096
2097 /**
2098  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2099  * @vma: user vma to map to
2100  * @addr: target user address of this page
2101  * @pfn: source kernel pfn
2102  * @pgprot: pgprot flags for the inserted page
2103  *
2104  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2105  * to override pgprot on a per-page basis.
2106  *
2107  * This only makes sense for IO mappings, and it makes no sense for
2108  * COW mappings.  In general, using multiple vmas is preferable;
2109  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2110  * impractical.
2111  *
2112  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2113  * a value of @pgprot different from that of @vma->vm_page_prot.
2114  *
2115  * Context: Process context.  May allocate using %GFP_KERNEL.
2116  * Return: vm_fault_t value.
2117  */
2118 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2119                         unsigned long pfn, pgprot_t pgprot)
2120 {
2121         /*
2122          * Technically, architectures with pte_special can avoid all these
2123          * restrictions (same for remap_pfn_range).  However we would like
2124          * consistency in testing and feature parity among all, so we should
2125          * try to keep these invariants in place for everybody.
2126          */
2127         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2128         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2129                                                 (VM_PFNMAP|VM_MIXEDMAP));
2130         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2131         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2132
2133         if (addr < vma->vm_start || addr >= vma->vm_end)
2134                 return VM_FAULT_SIGBUS;
2135
2136         if (!pfn_modify_allowed(pfn, pgprot))
2137                 return VM_FAULT_SIGBUS;
2138
2139         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2140
2141         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2142                         false);
2143 }
2144 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2145
2146 /**
2147  * vmf_insert_pfn - insert single pfn into user vma
2148  * @vma: user vma to map to
2149  * @addr: target user address of this page
2150  * @pfn: source kernel pfn
2151  *
2152  * Similar to vm_insert_page, this allows drivers to insert individual pages
2153  * they've allocated into a user vma. Same comments apply.
2154  *
2155  * This function should only be called from a vm_ops->fault handler, and
2156  * in that case the handler should return the result of this function.
2157  *
2158  * vma cannot be a COW mapping.
2159  *
2160  * As this is called only for pages that do not currently exist, we
2161  * do not need to flush old virtual caches or the TLB.
2162  *
2163  * Context: Process context.  May allocate using %GFP_KERNEL.
2164  * Return: vm_fault_t value.
2165  */
2166 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2167                         unsigned long pfn)
2168 {
2169         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2170 }
2171 EXPORT_SYMBOL(vmf_insert_pfn);
2172
2173 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2174 {
2175         /* these checks mirror the abort conditions in vm_normal_page */
2176         if (vma->vm_flags & VM_MIXEDMAP)
2177                 return true;
2178         if (pfn_t_devmap(pfn))
2179                 return true;
2180         if (pfn_t_special(pfn))
2181                 return true;
2182         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2183                 return true;
2184         return false;
2185 }
2186
2187 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2188                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2189                 bool mkwrite)
2190 {
2191         int err;
2192
2193         BUG_ON(!vm_mixed_ok(vma, pfn));
2194
2195         if (addr < vma->vm_start || addr >= vma->vm_end)
2196                 return VM_FAULT_SIGBUS;
2197
2198         track_pfn_insert(vma, &pgprot, pfn);
2199
2200         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2201                 return VM_FAULT_SIGBUS;
2202
2203         /*
2204          * If we don't have pte special, then we have to use the pfn_valid()
2205          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2206          * refcount the page if pfn_valid is true (hence insert_page rather
2207          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2208          * without pte special, it would there be refcounted as a normal page.
2209          */
2210         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2211             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2212                 struct page *page;
2213
2214                 /*
2215                  * At this point we are committed to insert_page()
2216                  * regardless of whether the caller specified flags that
2217                  * result in pfn_t_has_page() == false.
2218                  */
2219                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2220                 err = insert_page(vma, addr, page, pgprot);
2221         } else {
2222                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2223         }
2224
2225         if (err == -ENOMEM)
2226                 return VM_FAULT_OOM;
2227         if (err < 0 && err != -EBUSY)
2228                 return VM_FAULT_SIGBUS;
2229
2230         return VM_FAULT_NOPAGE;
2231 }
2232
2233 /**
2234  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2235  * @vma: user vma to map to
2236  * @addr: target user address of this page
2237  * @pfn: source kernel pfn
2238  * @pgprot: pgprot flags for the inserted page
2239  *
2240  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2241  * to override pgprot on a per-page basis.
2242  *
2243  * Typically this function should be used by drivers to set caching- and
2244  * encryption bits different than those of @vma->vm_page_prot, because
2245  * the caching- or encryption mode may not be known at mmap() time.
2246  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2247  * to set caching and encryption bits for those vmas (except for COW pages).
2248  * This is ensured by core vm only modifying these page table entries using
2249  * functions that don't touch caching- or encryption bits, using pte_modify()
2250  * if needed. (See for example mprotect()).
2251  * Also when new page-table entries are created, this is only done using the
2252  * fault() callback, and never using the value of vma->vm_page_prot,
2253  * except for page-table entries that point to anonymous pages as the result
2254  * of COW.
2255  *
2256  * Context: Process context.  May allocate using %GFP_KERNEL.
2257  * Return: vm_fault_t value.
2258  */
2259 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2260                                  pfn_t pfn, pgprot_t pgprot)
2261 {
2262         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2263 }
2264 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2265
2266 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2267                 pfn_t pfn)
2268 {
2269         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2270 }
2271 EXPORT_SYMBOL(vmf_insert_mixed);
2272
2273 /*
2274  *  If the insertion of PTE failed because someone else already added a
2275  *  different entry in the mean time, we treat that as success as we assume
2276  *  the same entry was actually inserted.
2277  */
2278 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2279                 unsigned long addr, pfn_t pfn)
2280 {
2281         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2282 }
2283 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2284
2285 /*
2286  * maps a range of physical memory into the requested pages. the old
2287  * mappings are removed. any references to nonexistent pages results
2288  * in null mappings (currently treated as "copy-on-access")
2289  */
2290 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2291                         unsigned long addr, unsigned long end,
2292                         unsigned long pfn, pgprot_t prot)
2293 {
2294         pte_t *pte, *mapped_pte;
2295         spinlock_t *ptl;
2296         int err = 0;
2297
2298         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2299         if (!pte)
2300                 return -ENOMEM;
2301         arch_enter_lazy_mmu_mode();
2302         do {
2303                 BUG_ON(!pte_none(*pte));
2304                 if (!pfn_modify_allowed(pfn, prot)) {
2305                         err = -EACCES;
2306                         break;
2307                 }
2308                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2309                 pfn++;
2310         } while (pte++, addr += PAGE_SIZE, addr != end);
2311         arch_leave_lazy_mmu_mode();
2312         pte_unmap_unlock(mapped_pte, ptl);
2313         return err;
2314 }
2315
2316 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2317                         unsigned long addr, unsigned long end,
2318                         unsigned long pfn, pgprot_t prot)
2319 {
2320         pmd_t *pmd;
2321         unsigned long next;
2322         int err;
2323
2324         pfn -= addr >> PAGE_SHIFT;
2325         pmd = pmd_alloc(mm, pud, addr);
2326         if (!pmd)
2327                 return -ENOMEM;
2328         VM_BUG_ON(pmd_trans_huge(*pmd));
2329         do {
2330                 next = pmd_addr_end(addr, end);
2331                 err = remap_pte_range(mm, pmd, addr, next,
2332                                 pfn + (addr >> PAGE_SHIFT), prot);
2333                 if (err)
2334                         return err;
2335         } while (pmd++, addr = next, addr != end);
2336         return 0;
2337 }
2338
2339 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2340                         unsigned long addr, unsigned long end,
2341                         unsigned long pfn, pgprot_t prot)
2342 {
2343         pud_t *pud;
2344         unsigned long next;
2345         int err;
2346
2347         pfn -= addr >> PAGE_SHIFT;
2348         pud = pud_alloc(mm, p4d, addr);
2349         if (!pud)
2350                 return -ENOMEM;
2351         do {
2352                 next = pud_addr_end(addr, end);
2353                 err = remap_pmd_range(mm, pud, addr, next,
2354                                 pfn + (addr >> PAGE_SHIFT), prot);
2355                 if (err)
2356                         return err;
2357         } while (pud++, addr = next, addr != end);
2358         return 0;
2359 }
2360
2361 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2362                         unsigned long addr, unsigned long end,
2363                         unsigned long pfn, pgprot_t prot)
2364 {
2365         p4d_t *p4d;
2366         unsigned long next;
2367         int err;
2368
2369         pfn -= addr >> PAGE_SHIFT;
2370         p4d = p4d_alloc(mm, pgd, addr);
2371         if (!p4d)
2372                 return -ENOMEM;
2373         do {
2374                 next = p4d_addr_end(addr, end);
2375                 err = remap_pud_range(mm, p4d, addr, next,
2376                                 pfn + (addr >> PAGE_SHIFT), prot);
2377                 if (err)
2378                         return err;
2379         } while (p4d++, addr = next, addr != end);
2380         return 0;
2381 }
2382
2383 /*
2384  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2385  * must have pre-validated the caching bits of the pgprot_t.
2386  */
2387 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2388                 unsigned long pfn, unsigned long size, pgprot_t prot)
2389 {
2390         pgd_t *pgd;
2391         unsigned long next;
2392         unsigned long end = addr + PAGE_ALIGN(size);
2393         struct mm_struct *mm = vma->vm_mm;
2394         int err;
2395
2396         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2397                 return -EINVAL;
2398
2399         /*
2400          * Physically remapped pages are special. Tell the
2401          * rest of the world about it:
2402          *   VM_IO tells people not to look at these pages
2403          *      (accesses can have side effects).
2404          *   VM_PFNMAP tells the core MM that the base pages are just
2405          *      raw PFN mappings, and do not have a "struct page" associated
2406          *      with them.
2407          *   VM_DONTEXPAND
2408          *      Disable vma merging and expanding with mremap().
2409          *   VM_DONTDUMP
2410          *      Omit vma from core dump, even when VM_IO turned off.
2411          *
2412          * There's a horrible special case to handle copy-on-write
2413          * behaviour that some programs depend on. We mark the "original"
2414          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2415          * See vm_normal_page() for details.
2416          */
2417         if (is_cow_mapping(vma->vm_flags)) {
2418                 if (addr != vma->vm_start || end != vma->vm_end)
2419                         return -EINVAL;
2420                 vma->vm_pgoff = pfn;
2421         }
2422
2423         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2424
2425         BUG_ON(addr >= end);
2426         pfn -= addr >> PAGE_SHIFT;
2427         pgd = pgd_offset(mm, addr);
2428         flush_cache_range(vma, addr, end);
2429         do {
2430                 next = pgd_addr_end(addr, end);
2431                 err = remap_p4d_range(mm, pgd, addr, next,
2432                                 pfn + (addr >> PAGE_SHIFT), prot);
2433                 if (err)
2434                         return err;
2435         } while (pgd++, addr = next, addr != end);
2436
2437         return 0;
2438 }
2439
2440 /**
2441  * remap_pfn_range - remap kernel memory to userspace
2442  * @vma: user vma to map to
2443  * @addr: target page aligned user address to start at
2444  * @pfn: page frame number of kernel physical memory address
2445  * @size: size of mapping area
2446  * @prot: page protection flags for this mapping
2447  *
2448  * Note: this is only safe if the mm semaphore is held when called.
2449  *
2450  * Return: %0 on success, negative error code otherwise.
2451  */
2452 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2453                     unsigned long pfn, unsigned long size, pgprot_t prot)
2454 {
2455         int err;
2456
2457         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2458         if (err)
2459                 return -EINVAL;
2460
2461         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2462         if (err)
2463                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2464         return err;
2465 }
2466 EXPORT_SYMBOL(remap_pfn_range);
2467
2468 /**
2469  * vm_iomap_memory - remap memory to userspace
2470  * @vma: user vma to map to
2471  * @start: start of the physical memory to be mapped
2472  * @len: size of area
2473  *
2474  * This is a simplified io_remap_pfn_range() for common driver use. The
2475  * driver just needs to give us the physical memory range to be mapped,
2476  * we'll figure out the rest from the vma information.
2477  *
2478  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2479  * whatever write-combining details or similar.
2480  *
2481  * Return: %0 on success, negative error code otherwise.
2482  */
2483 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2484 {
2485         unsigned long vm_len, pfn, pages;
2486
2487         /* Check that the physical memory area passed in looks valid */
2488         if (start + len < start)
2489                 return -EINVAL;
2490         /*
2491          * You *really* shouldn't map things that aren't page-aligned,
2492          * but we've historically allowed it because IO memory might
2493          * just have smaller alignment.
2494          */
2495         len += start & ~PAGE_MASK;
2496         pfn = start >> PAGE_SHIFT;
2497         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2498         if (pfn + pages < pfn)
2499                 return -EINVAL;
2500
2501         /* We start the mapping 'vm_pgoff' pages into the area */
2502         if (vma->vm_pgoff > pages)
2503                 return -EINVAL;
2504         pfn += vma->vm_pgoff;
2505         pages -= vma->vm_pgoff;
2506
2507         /* Can we fit all of the mapping? */
2508         vm_len = vma->vm_end - vma->vm_start;
2509         if (vm_len >> PAGE_SHIFT > pages)
2510                 return -EINVAL;
2511
2512         /* Ok, let it rip */
2513         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2514 }
2515 EXPORT_SYMBOL(vm_iomap_memory);
2516
2517 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2518                                      unsigned long addr, unsigned long end,
2519                                      pte_fn_t fn, void *data, bool create,
2520                                      pgtbl_mod_mask *mask)
2521 {
2522         pte_t *pte, *mapped_pte;
2523         int err = 0;
2524         spinlock_t *ptl;
2525
2526         if (create) {
2527                 mapped_pte = pte = (mm == &init_mm) ?
2528                         pte_alloc_kernel_track(pmd, addr, mask) :
2529                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2530                 if (!pte)
2531                         return -ENOMEM;
2532         } else {
2533                 mapped_pte = pte = (mm == &init_mm) ?
2534                         pte_offset_kernel(pmd, addr) :
2535                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2536         }
2537
2538         BUG_ON(pmd_huge(*pmd));
2539
2540         arch_enter_lazy_mmu_mode();
2541
2542         if (fn) {
2543                 do {
2544                         if (create || !pte_none(*pte)) {
2545                                 err = fn(pte++, addr, data);
2546                                 if (err)
2547                                         break;
2548                         }
2549                 } while (addr += PAGE_SIZE, addr != end);
2550         }
2551         *mask |= PGTBL_PTE_MODIFIED;
2552
2553         arch_leave_lazy_mmu_mode();
2554
2555         if (mm != &init_mm)
2556                 pte_unmap_unlock(mapped_pte, ptl);
2557         return err;
2558 }
2559
2560 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2561                                      unsigned long addr, unsigned long end,
2562                                      pte_fn_t fn, void *data, bool create,
2563                                      pgtbl_mod_mask *mask)
2564 {
2565         pmd_t *pmd;
2566         unsigned long next;
2567         int err = 0;
2568
2569         BUG_ON(pud_huge(*pud));
2570
2571         if (create) {
2572                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2573                 if (!pmd)
2574                         return -ENOMEM;
2575         } else {
2576                 pmd = pmd_offset(pud, addr);
2577         }
2578         do {
2579                 next = pmd_addr_end(addr, end);
2580                 if (pmd_none(*pmd) && !create)
2581                         continue;
2582                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2583                         return -EINVAL;
2584                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2585                         if (!create)
2586                                 continue;
2587                         pmd_clear_bad(pmd);
2588                 }
2589                 err = apply_to_pte_range(mm, pmd, addr, next,
2590                                          fn, data, create, mask);
2591                 if (err)
2592                         break;
2593         } while (pmd++, addr = next, addr != end);
2594
2595         return err;
2596 }
2597
2598 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2599                                      unsigned long addr, unsigned long end,
2600                                      pte_fn_t fn, void *data, bool create,
2601                                      pgtbl_mod_mask *mask)
2602 {
2603         pud_t *pud;
2604         unsigned long next;
2605         int err = 0;
2606
2607         if (create) {
2608                 pud = pud_alloc_track(mm, p4d, addr, mask);
2609                 if (!pud)
2610                         return -ENOMEM;
2611         } else {
2612                 pud = pud_offset(p4d, addr);
2613         }
2614         do {
2615                 next = pud_addr_end(addr, end);
2616                 if (pud_none(*pud) && !create)
2617                         continue;
2618                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2619                         return -EINVAL;
2620                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2621                         if (!create)
2622                                 continue;
2623                         pud_clear_bad(pud);
2624                 }
2625                 err = apply_to_pmd_range(mm, pud, addr, next,
2626                                          fn, data, create, mask);
2627                 if (err)
2628                         break;
2629         } while (pud++, addr = next, addr != end);
2630
2631         return err;
2632 }
2633
2634 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2635                                      unsigned long addr, unsigned long end,
2636                                      pte_fn_t fn, void *data, bool create,
2637                                      pgtbl_mod_mask *mask)
2638 {
2639         p4d_t *p4d;
2640         unsigned long next;
2641         int err = 0;
2642
2643         if (create) {
2644                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2645                 if (!p4d)
2646                         return -ENOMEM;
2647         } else {
2648                 p4d = p4d_offset(pgd, addr);
2649         }
2650         do {
2651                 next = p4d_addr_end(addr, end);
2652                 if (p4d_none(*p4d) && !create)
2653                         continue;
2654                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2655                         return -EINVAL;
2656                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2657                         if (!create)
2658                                 continue;
2659                         p4d_clear_bad(p4d);
2660                 }
2661                 err = apply_to_pud_range(mm, p4d, addr, next,
2662                                          fn, data, create, mask);
2663                 if (err)
2664                         break;
2665         } while (p4d++, addr = next, addr != end);
2666
2667         return err;
2668 }
2669
2670 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2671                                  unsigned long size, pte_fn_t fn,
2672                                  void *data, bool create)
2673 {
2674         pgd_t *pgd;
2675         unsigned long start = addr, next;
2676         unsigned long end = addr + size;
2677         pgtbl_mod_mask mask = 0;
2678         int err = 0;
2679
2680         if (WARN_ON(addr >= end))
2681                 return -EINVAL;
2682
2683         pgd = pgd_offset(mm, addr);
2684         do {
2685                 next = pgd_addr_end(addr, end);
2686                 if (pgd_none(*pgd) && !create)
2687                         continue;
2688                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2689                         return -EINVAL;
2690                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2691                         if (!create)
2692                                 continue;
2693                         pgd_clear_bad(pgd);
2694                 }
2695                 err = apply_to_p4d_range(mm, pgd, addr, next,
2696                                          fn, data, create, &mask);
2697                 if (err)
2698                         break;
2699         } while (pgd++, addr = next, addr != end);
2700
2701         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2702                 arch_sync_kernel_mappings(start, start + size);
2703
2704         return err;
2705 }
2706
2707 /*
2708  * Scan a region of virtual memory, filling in page tables as necessary
2709  * and calling a provided function on each leaf page table.
2710  */
2711 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2712                         unsigned long size, pte_fn_t fn, void *data)
2713 {
2714         return __apply_to_page_range(mm, addr, size, fn, data, true);
2715 }
2716 EXPORT_SYMBOL_GPL(apply_to_page_range);
2717
2718 /*
2719  * Scan a region of virtual memory, calling a provided function on
2720  * each leaf page table where it exists.
2721  *
2722  * Unlike apply_to_page_range, this does _not_ fill in page tables
2723  * where they are absent.
2724  */
2725 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2726                                  unsigned long size, pte_fn_t fn, void *data)
2727 {
2728         return __apply_to_page_range(mm, addr, size, fn, data, false);
2729 }
2730 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2731
2732 /*
2733  * handle_pte_fault chooses page fault handler according to an entry which was
2734  * read non-atomically.  Before making any commitment, on those architectures
2735  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2736  * parts, do_swap_page must check under lock before unmapping the pte and
2737  * proceeding (but do_wp_page is only called after already making such a check;
2738  * and do_anonymous_page can safely check later on).
2739  */
2740 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2741                                 pte_t *page_table, pte_t orig_pte)
2742 {
2743         int same = 1;
2744 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2745         if (sizeof(pte_t) > sizeof(unsigned long)) {
2746                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2747                 spin_lock(ptl);
2748                 same = pte_same(*page_table, orig_pte);
2749                 spin_unlock(ptl);
2750         }
2751 #endif
2752         pte_unmap(page_table);
2753         return same;
2754 }
2755
2756 /*
2757  * Return:
2758  *      0:              copied succeeded
2759  *      -EHWPOISON:     copy failed due to hwpoison in source page
2760  *      -EAGAIN:        copied failed (some other reason)
2761  */
2762 static inline int cow_user_page(struct page *dst, struct page *src,
2763                                       struct vm_fault *vmf)
2764 {
2765         int ret;
2766         void *kaddr;
2767         void __user *uaddr;
2768         bool locked = false;
2769         struct vm_area_struct *vma = vmf->vma;
2770         struct mm_struct *mm = vma->vm_mm;
2771         unsigned long addr = vmf->address;
2772
2773         if (likely(src)) {
2774                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2775                         memory_failure_queue(page_to_pfn(src), 0);
2776                         return -EHWPOISON;
2777                 }
2778                 return 0;
2779         }
2780
2781         /*
2782          * If the source page was a PFN mapping, we don't have
2783          * a "struct page" for it. We do a best-effort copy by
2784          * just copying from the original user address. If that
2785          * fails, we just zero-fill it. Live with it.
2786          */
2787         kaddr = kmap_atomic(dst);
2788         uaddr = (void __user *)(addr & PAGE_MASK);
2789
2790         /*
2791          * On architectures with software "accessed" bits, we would
2792          * take a double page fault, so mark it accessed here.
2793          */
2794         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2795                 pte_t entry;
2796
2797                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2798                 locked = true;
2799                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2800                         /*
2801                          * Other thread has already handled the fault
2802                          * and update local tlb only
2803                          */
2804                         update_mmu_tlb(vma, addr, vmf->pte);
2805                         ret = -EAGAIN;
2806                         goto pte_unlock;
2807                 }
2808
2809                 entry = pte_mkyoung(vmf->orig_pte);
2810                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2811                         update_mmu_cache(vma, addr, vmf->pte);
2812         }
2813
2814         /*
2815          * This really shouldn't fail, because the page is there
2816          * in the page tables. But it might just be unreadable,
2817          * in which case we just give up and fill the result with
2818          * zeroes.
2819          */
2820         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2821                 if (locked)
2822                         goto warn;
2823
2824                 /* Re-validate under PTL if the page is still mapped */
2825                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2826                 locked = true;
2827                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2828                         /* The PTE changed under us, update local tlb */
2829                         update_mmu_tlb(vma, addr, vmf->pte);
2830                         ret = -EAGAIN;
2831                         goto pte_unlock;
2832                 }
2833
2834                 /*
2835                  * The same page can be mapped back since last copy attempt.
2836                  * Try to copy again under PTL.
2837                  */
2838                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2839                         /*
2840                          * Give a warn in case there can be some obscure
2841                          * use-case
2842                          */
2843 warn:
2844                         WARN_ON_ONCE(1);
2845                         clear_page(kaddr);
2846                 }
2847         }
2848
2849         ret = 0;
2850
2851 pte_unlock:
2852         if (locked)
2853                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2854         kunmap_atomic(kaddr);
2855         flush_dcache_page(dst);
2856
2857         return ret;
2858 }
2859
2860 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2861 {
2862         struct file *vm_file = vma->vm_file;
2863
2864         if (vm_file)
2865                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2866
2867         /*
2868          * Special mappings (e.g. VDSO) do not have any file so fake
2869          * a default GFP_KERNEL for them.
2870          */
2871         return GFP_KERNEL;
2872 }
2873
2874 /*
2875  * Notify the address space that the page is about to become writable so that
2876  * it can prohibit this or wait for the page to get into an appropriate state.
2877  *
2878  * We do this without the lock held, so that it can sleep if it needs to.
2879  */
2880 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2881 {
2882         vm_fault_t ret;
2883         struct page *page = vmf->page;
2884         unsigned int old_flags = vmf->flags;
2885
2886         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2887
2888         if (vmf->vma->vm_file &&
2889             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2890                 return VM_FAULT_SIGBUS;
2891
2892         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2893         /* Restore original flags so that caller is not surprised */
2894         vmf->flags = old_flags;
2895         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2896                 return ret;
2897         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2898                 lock_page(page);
2899                 if (!page->mapping) {
2900                         unlock_page(page);
2901                         return 0; /* retry */
2902                 }
2903                 ret |= VM_FAULT_LOCKED;
2904         } else
2905                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2906         return ret;
2907 }
2908
2909 /*
2910  * Handle dirtying of a page in shared file mapping on a write fault.
2911  *
2912  * The function expects the page to be locked and unlocks it.
2913  */
2914 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2915 {
2916         struct vm_area_struct *vma = vmf->vma;
2917         struct address_space *mapping;
2918         struct page *page = vmf->page;
2919         bool dirtied;
2920         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2921
2922         dirtied = set_page_dirty(page);
2923         VM_BUG_ON_PAGE(PageAnon(page), page);
2924         /*
2925          * Take a local copy of the address_space - page.mapping may be zeroed
2926          * by truncate after unlock_page().   The address_space itself remains
2927          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2928          * release semantics to prevent the compiler from undoing this copying.
2929          */
2930         mapping = page_rmapping(page);
2931         unlock_page(page);
2932
2933         if (!page_mkwrite)
2934                 file_update_time(vma->vm_file);
2935
2936         /*
2937          * Throttle page dirtying rate down to writeback speed.
2938          *
2939          * mapping may be NULL here because some device drivers do not
2940          * set page.mapping but still dirty their pages
2941          *
2942          * Drop the mmap_lock before waiting on IO, if we can. The file
2943          * is pinning the mapping, as per above.
2944          */
2945         if ((dirtied || page_mkwrite) && mapping) {
2946                 struct file *fpin;
2947
2948                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2949                 balance_dirty_pages_ratelimited(mapping);
2950                 if (fpin) {
2951                         fput(fpin);
2952                         return VM_FAULT_RETRY;
2953                 }
2954         }
2955
2956         return 0;
2957 }
2958
2959 /*
2960  * Handle write page faults for pages that can be reused in the current vma
2961  *
2962  * This can happen either due to the mapping being with the VM_SHARED flag,
2963  * or due to us being the last reference standing to the page. In either
2964  * case, all we need to do here is to mark the page as writable and update
2965  * any related book-keeping.
2966  */
2967 static inline void wp_page_reuse(struct vm_fault *vmf)
2968         __releases(vmf->ptl)
2969 {
2970         struct vm_area_struct *vma = vmf->vma;
2971         struct page *page = vmf->page;
2972         pte_t entry;
2973         /*
2974          * Clear the pages cpupid information as the existing
2975          * information potentially belongs to a now completely
2976          * unrelated process.
2977          */
2978         if (page)
2979                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2980
2981         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2982         entry = pte_mkyoung(vmf->orig_pte);
2983         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2984         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2985                 update_mmu_cache(vma, vmf->address, vmf->pte);
2986         pte_unmap_unlock(vmf->pte, vmf->ptl);
2987         count_vm_event(PGREUSE);
2988 }
2989
2990 /*
2991  * Handle the case of a page which we actually need to copy to a new page.
2992  *
2993  * Called with mmap_lock locked and the old page referenced, but
2994  * without the ptl held.
2995  *
2996  * High level logic flow:
2997  *
2998  * - Allocate a page, copy the content of the old page to the new one.
2999  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3000  * - Take the PTL. If the pte changed, bail out and release the allocated page
3001  * - If the pte is still the way we remember it, update the page table and all
3002  *   relevant references. This includes dropping the reference the page-table
3003  *   held to the old page, as well as updating the rmap.
3004  * - In any case, unlock the PTL and drop the reference we took to the old page.
3005  */
3006 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3007 {
3008         struct vm_area_struct *vma = vmf->vma;
3009         struct mm_struct *mm = vma->vm_mm;
3010         struct page *old_page = vmf->page;
3011         struct page *new_page = NULL;
3012         pte_t entry;
3013         int page_copied = 0;
3014         struct mmu_notifier_range range;
3015         int ret;
3016
3017         if (unlikely(anon_vma_prepare(vma)))
3018                 goto oom;
3019
3020         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3021                 new_page = alloc_zeroed_user_highpage_movable(vma,
3022                                                               vmf->address);
3023                 if (!new_page)
3024                         goto oom;
3025         } else {
3026                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3027                                 vmf->address);
3028                 if (!new_page)
3029                         goto oom;
3030
3031                 ret = cow_user_page(new_page, old_page, vmf);
3032                 if (ret) {
3033                         /*
3034                          * COW failed, if the fault was solved by other,
3035                          * it's fine. If not, userspace would re-fault on
3036                          * the same address and we will handle the fault
3037                          * from the second attempt.
3038                          * The -EHWPOISON case will not be retried.
3039                          */
3040                         put_page(new_page);
3041                         if (old_page)
3042                                 put_page(old_page);
3043
3044                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3045                 }
3046         }
3047
3048         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3049                 goto oom_free_new;
3050         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3051
3052         __SetPageUptodate(new_page);
3053
3054         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3055                                 vmf->address & PAGE_MASK,
3056                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3057         mmu_notifier_invalidate_range_start(&range);
3058
3059         /*
3060          * Re-check the pte - we dropped the lock
3061          */
3062         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3063         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3064                 if (old_page) {
3065                         if (!PageAnon(old_page)) {
3066                                 dec_mm_counter_fast(mm,
3067                                                 mm_counter_file(old_page));
3068                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3069                         }
3070                 } else {
3071                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3072                 }
3073                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3074                 entry = mk_pte(new_page, vma->vm_page_prot);
3075                 entry = pte_sw_mkyoung(entry);
3076                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3077
3078                 /*
3079                  * Clear the pte entry and flush it first, before updating the
3080                  * pte with the new entry, to keep TLBs on different CPUs in
3081                  * sync. This code used to set the new PTE then flush TLBs, but
3082                  * that left a window where the new PTE could be loaded into
3083                  * some TLBs while the old PTE remains in others.
3084                  */
3085                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3086                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3087                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3088                 /*
3089                  * We call the notify macro here because, when using secondary
3090                  * mmu page tables (such as kvm shadow page tables), we want the
3091                  * new page to be mapped directly into the secondary page table.
3092                  */
3093                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3094                 update_mmu_cache(vma, vmf->address, vmf->pte);
3095                 if (old_page) {
3096                         /*
3097                          * Only after switching the pte to the new page may
3098                          * we remove the mapcount here. Otherwise another
3099                          * process may come and find the rmap count decremented
3100                          * before the pte is switched to the new page, and
3101                          * "reuse" the old page writing into it while our pte
3102                          * here still points into it and can be read by other
3103                          * threads.
3104                          *
3105                          * The critical issue is to order this
3106                          * page_remove_rmap with the ptp_clear_flush above.
3107                          * Those stores are ordered by (if nothing else,)
3108                          * the barrier present in the atomic_add_negative
3109                          * in page_remove_rmap.
3110                          *
3111                          * Then the TLB flush in ptep_clear_flush ensures that
3112                          * no process can access the old page before the
3113                          * decremented mapcount is visible. And the old page
3114                          * cannot be reused until after the decremented
3115                          * mapcount is visible. So transitively, TLBs to
3116                          * old page will be flushed before it can be reused.
3117                          */
3118                         page_remove_rmap(old_page, false);
3119                 }
3120
3121                 /* Free the old page.. */
3122                 new_page = old_page;
3123                 page_copied = 1;
3124         } else {
3125                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3126         }
3127
3128         if (new_page)
3129                 put_page(new_page);
3130
3131         pte_unmap_unlock(vmf->pte, vmf->ptl);
3132         /*
3133          * No need to double call mmu_notifier->invalidate_range() callback as
3134          * the above ptep_clear_flush_notify() did already call it.
3135          */
3136         mmu_notifier_invalidate_range_only_end(&range);
3137         if (old_page) {
3138                 /*
3139                  * Don't let another task, with possibly unlocked vma,
3140                  * keep the mlocked page.
3141                  */
3142                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3143                         lock_page(old_page);    /* LRU manipulation */
3144                         if (PageMlocked(old_page))
3145                                 munlock_vma_page(old_page);
3146                         unlock_page(old_page);
3147                 }
3148                 if (page_copied)
3149                         free_swap_cache(old_page);
3150                 put_page(old_page);
3151         }
3152         return page_copied ? VM_FAULT_WRITE : 0;
3153 oom_free_new:
3154         put_page(new_page);
3155 oom:
3156         if (old_page)
3157                 put_page(old_page);
3158         return VM_FAULT_OOM;
3159 }
3160
3161 /**
3162  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3163  *                        writeable once the page is prepared
3164  *
3165  * @vmf: structure describing the fault
3166  *
3167  * This function handles all that is needed to finish a write page fault in a
3168  * shared mapping due to PTE being read-only once the mapped page is prepared.
3169  * It handles locking of PTE and modifying it.
3170  *
3171  * The function expects the page to be locked or other protection against
3172  * concurrent faults / writeback (such as DAX radix tree locks).
3173  *
3174  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3175  * we acquired PTE lock.
3176  */
3177 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3178 {
3179         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3180         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3181                                        &vmf->ptl);
3182         /*
3183          * We might have raced with another page fault while we released the
3184          * pte_offset_map_lock.
3185          */
3186         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3187                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3188                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3189                 return VM_FAULT_NOPAGE;
3190         }
3191         wp_page_reuse(vmf);
3192         return 0;
3193 }
3194
3195 /*
3196  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3197  * mapping
3198  */
3199 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3200 {
3201         struct vm_area_struct *vma = vmf->vma;
3202
3203         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3204                 vm_fault_t ret;
3205
3206                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3207                 vmf->flags |= FAULT_FLAG_MKWRITE;
3208                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3209                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3210                         return ret;
3211                 return finish_mkwrite_fault(vmf);
3212         }
3213         wp_page_reuse(vmf);
3214         return VM_FAULT_WRITE;
3215 }
3216
3217 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3218         __releases(vmf->ptl)
3219 {
3220         struct vm_area_struct *vma = vmf->vma;
3221         vm_fault_t ret = VM_FAULT_WRITE;
3222
3223         get_page(vmf->page);
3224
3225         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3226                 vm_fault_t tmp;
3227
3228                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3229                 tmp = do_page_mkwrite(vmf);
3230                 if (unlikely(!tmp || (tmp &
3231                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3232                         put_page(vmf->page);
3233                         return tmp;
3234                 }
3235                 tmp = finish_mkwrite_fault(vmf);
3236                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3237                         unlock_page(vmf->page);
3238                         put_page(vmf->page);
3239                         return tmp;
3240                 }
3241         } else {
3242                 wp_page_reuse(vmf);
3243                 lock_page(vmf->page);
3244         }
3245         ret |= fault_dirty_shared_page(vmf);
3246         put_page(vmf->page);
3247
3248         return ret;
3249 }
3250
3251 /*
3252  * This routine handles present pages, when users try to write
3253  * to a shared page. It is done by copying the page to a new address
3254  * and decrementing the shared-page counter for the old page.
3255  *
3256  * Note that this routine assumes that the protection checks have been
3257  * done by the caller (the low-level page fault routine in most cases).
3258  * Thus we can safely just mark it writable once we've done any necessary
3259  * COW.
3260  *
3261  * We also mark the page dirty at this point even though the page will
3262  * change only once the write actually happens. This avoids a few races,
3263  * and potentially makes it more efficient.
3264  *
3265  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3266  * but allow concurrent faults), with pte both mapped and locked.
3267  * We return with mmap_lock still held, but pte unmapped and unlocked.
3268  */
3269 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3270         __releases(vmf->ptl)
3271 {
3272         struct vm_area_struct *vma = vmf->vma;
3273
3274         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3275                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3276                 return handle_userfault(vmf, VM_UFFD_WP);
3277         }
3278
3279         /*
3280          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3281          * is flushed in this case before copying.
3282          */
3283         if (unlikely(userfaultfd_wp(vmf->vma) &&
3284                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3285                 flush_tlb_page(vmf->vma, vmf->address);
3286
3287         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3288         if (!vmf->page) {
3289                 /*
3290                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3291                  * VM_PFNMAP VMA.
3292                  *
3293                  * We should not cow pages in a shared writeable mapping.
3294                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3295                  */
3296                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3297                                      (VM_WRITE|VM_SHARED))
3298                         return wp_pfn_shared(vmf);
3299
3300                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3301                 return wp_page_copy(vmf);
3302         }
3303
3304         /*
3305          * Take out anonymous pages first, anonymous shared vmas are
3306          * not dirty accountable.
3307          */
3308         if (PageAnon(vmf->page)) {
3309                 struct page *page = vmf->page;
3310
3311                 /* PageKsm() doesn't necessarily raise the page refcount */
3312                 if (PageKsm(page) || page_count(page) != 1)
3313                         goto copy;
3314                 if (!trylock_page(page))
3315                         goto copy;
3316                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3317                         unlock_page(page);
3318                         goto copy;
3319                 }
3320                 /*
3321                  * Ok, we've got the only map reference, and the only
3322                  * page count reference, and the page is locked,
3323                  * it's dark out, and we're wearing sunglasses. Hit it.
3324                  */
3325                 unlock_page(page);
3326                 wp_page_reuse(vmf);
3327                 return VM_FAULT_WRITE;
3328         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3329                                         (VM_WRITE|VM_SHARED))) {
3330                 return wp_page_shared(vmf);
3331         }
3332 copy:
3333         /*
3334          * Ok, we need to copy. Oh, well..
3335          */
3336         get_page(vmf->page);
3337
3338         pte_unmap_unlock(vmf->pte, vmf->ptl);
3339         return wp_page_copy(vmf);
3340 }
3341
3342 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3343                 unsigned long start_addr, unsigned long end_addr,
3344                 struct zap_details *details)
3345 {
3346         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3347 }
3348
3349 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3350                                             struct zap_details *details)
3351 {
3352         struct vm_area_struct *vma;
3353         pgoff_t vba, vea, zba, zea;
3354
3355         vma_interval_tree_foreach(vma, root,
3356                         details->first_index, details->last_index) {
3357
3358                 vba = vma->vm_pgoff;
3359                 vea = vba + vma_pages(vma) - 1;
3360                 zba = details->first_index;
3361                 if (zba < vba)
3362                         zba = vba;
3363                 zea = details->last_index;
3364                 if (zea > vea)
3365                         zea = vea;
3366
3367                 unmap_mapping_range_vma(vma,
3368                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3369                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3370                                 details);
3371         }
3372 }
3373
3374 /**
3375  * unmap_mapping_page() - Unmap single page from processes.
3376  * @page: The locked page to be unmapped.
3377  *
3378  * Unmap this page from any userspace process which still has it mmaped.
3379  * Typically, for efficiency, the range of nearby pages has already been
3380  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3381  * truncation or invalidation holds the lock on a page, it may find that
3382  * the page has been remapped again: and then uses unmap_mapping_page()
3383  * to unmap it finally.
3384  */
3385 void unmap_mapping_page(struct page *page)
3386 {
3387         struct address_space *mapping = page->mapping;
3388         struct zap_details details = { };
3389
3390         VM_BUG_ON(!PageLocked(page));
3391         VM_BUG_ON(PageTail(page));
3392
3393         details.check_mapping = mapping;
3394         details.first_index = page->index;
3395         details.last_index = page->index + thp_nr_pages(page) - 1;
3396         details.single_page = page;
3397
3398         i_mmap_lock_write(mapping);
3399         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3400                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3401         i_mmap_unlock_write(mapping);
3402 }
3403
3404 /**
3405  * unmap_mapping_pages() - Unmap pages from processes.
3406  * @mapping: The address space containing pages to be unmapped.
3407  * @start: Index of first page to be unmapped.
3408  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3409  * @even_cows: Whether to unmap even private COWed pages.
3410  *
3411  * Unmap the pages in this address space from any userspace process which
3412  * has them mmaped.  Generally, you want to remove COWed pages as well when
3413  * a file is being truncated, but not when invalidating pages from the page
3414  * cache.
3415  */
3416 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3417                 pgoff_t nr, bool even_cows)
3418 {
3419         struct zap_details details = { };
3420
3421         details.check_mapping = even_cows ? NULL : mapping;
3422         details.first_index = start;
3423         details.last_index = start + nr - 1;
3424         if (details.last_index < details.first_index)
3425                 details.last_index = ULONG_MAX;
3426
3427         i_mmap_lock_write(mapping);
3428         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3429                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3430         i_mmap_unlock_write(mapping);
3431 }
3432 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3433
3434 /**
3435  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3436  * address_space corresponding to the specified byte range in the underlying
3437  * file.
3438  *
3439  * @mapping: the address space containing mmaps to be unmapped.
3440  * @holebegin: byte in first page to unmap, relative to the start of
3441  * the underlying file.  This will be rounded down to a PAGE_SIZE
3442  * boundary.  Note that this is different from truncate_pagecache(), which
3443  * must keep the partial page.  In contrast, we must get rid of
3444  * partial pages.
3445  * @holelen: size of prospective hole in bytes.  This will be rounded
3446  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3447  * end of the file.
3448  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3449  * but 0 when invalidating pagecache, don't throw away private data.
3450  */
3451 void unmap_mapping_range(struct address_space *mapping,
3452                 loff_t const holebegin, loff_t const holelen, int even_cows)
3453 {
3454         pgoff_t hba = holebegin >> PAGE_SHIFT;
3455         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3456
3457         /* Check for overflow. */
3458         if (sizeof(holelen) > sizeof(hlen)) {
3459                 long long holeend =
3460                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3461                 if (holeend & ~(long long)ULONG_MAX)
3462                         hlen = ULONG_MAX - hba + 1;
3463         }
3464
3465         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3466 }
3467 EXPORT_SYMBOL(unmap_mapping_range);
3468
3469 /*
3470  * Restore a potential device exclusive pte to a working pte entry
3471  */
3472 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3473 {
3474         struct page *page = vmf->page;
3475         struct vm_area_struct *vma = vmf->vma;
3476         struct mmu_notifier_range range;
3477
3478         /*
3479          * We need a reference to lock the page because we don't hold
3480          * the PTL so a racing thread can remove the device-exclusive
3481          * entry and unmap it. If the page is free the entry must
3482          * have been removed already. If it happens to have already
3483          * been re-allocated after being freed all we do is lock and
3484          * unlock it.
3485          */
3486         if (!get_page_unless_zero(page))
3487                 return 0;
3488
3489         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
3490                 put_page(page);
3491                 return VM_FAULT_RETRY;
3492         }
3493         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3494                                 vma->vm_mm, vmf->address & PAGE_MASK,
3495                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3496         mmu_notifier_invalidate_range_start(&range);
3497
3498         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3499                                 &vmf->ptl);
3500         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3501                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3502
3503         pte_unmap_unlock(vmf->pte, vmf->ptl);
3504         unlock_page(page);
3505         put_page(page);
3506
3507         mmu_notifier_invalidate_range_end(&range);
3508         return 0;
3509 }
3510
3511 /*
3512  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3513  * but allow concurrent faults), and pte mapped but not yet locked.
3514  * We return with pte unmapped and unlocked.
3515  *
3516  * We return with the mmap_lock locked or unlocked in the same cases
3517  * as does filemap_fault().
3518  */
3519 vm_fault_t do_swap_page(struct vm_fault *vmf)
3520 {
3521         struct vm_area_struct *vma = vmf->vma;
3522         struct page *page = NULL, *swapcache;
3523         struct swap_info_struct *si = NULL;
3524         swp_entry_t entry;
3525         pte_t pte;
3526         int locked;
3527         int exclusive = 0;
3528         vm_fault_t ret = 0;
3529         void *shadow = NULL;
3530
3531         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3532                 goto out;
3533
3534         entry = pte_to_swp_entry(vmf->orig_pte);
3535         if (unlikely(non_swap_entry(entry))) {
3536                 if (is_migration_entry(entry)) {
3537                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3538                                              vmf->address);
3539                 } else if (is_device_exclusive_entry(entry)) {
3540                         vmf->page = pfn_swap_entry_to_page(entry);
3541                         ret = remove_device_exclusive_entry(vmf);
3542                 } else if (is_device_private_entry(entry)) {
3543                         vmf->page = pfn_swap_entry_to_page(entry);
3544                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3545                 } else if (is_hwpoison_entry(entry)) {
3546                         ret = VM_FAULT_HWPOISON;
3547                 } else {
3548                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3549                         ret = VM_FAULT_SIGBUS;
3550                 }
3551                 goto out;
3552         }
3553
3554         /* Prevent swapoff from happening to us. */
3555         si = get_swap_device(entry);
3556         if (unlikely(!si))
3557                 goto out;
3558
3559         delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3560         page = lookup_swap_cache(entry, vma, vmf->address);
3561         swapcache = page;
3562
3563         if (!page) {
3564                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3565                     __swap_count(entry) == 1) {
3566                         /* skip swapcache */
3567                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3568                                                         vmf->address);
3569                         if (page) {
3570                                 __SetPageLocked(page);
3571                                 __SetPageSwapBacked(page);
3572
3573                                 if (mem_cgroup_swapin_charge_page(page,
3574                                         vma->vm_mm, GFP_KERNEL, entry)) {
3575                                         ret = VM_FAULT_OOM;
3576                                         goto out_page;
3577                                 }
3578                                 mem_cgroup_swapin_uncharge_swap(entry);
3579
3580                                 shadow = get_shadow_from_swap_cache(entry);
3581                                 if (shadow)
3582                                         workingset_refault(page, shadow);
3583
3584                                 lru_cache_add(page);
3585
3586                                 /* To provide entry to swap_readpage() */
3587                                 set_page_private(page, entry.val);
3588                                 swap_readpage(page, true);
3589                                 set_page_private(page, 0);
3590                         }
3591                 } else {
3592                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3593                                                 vmf);
3594                         swapcache = page;
3595                 }
3596
3597                 if (!page) {
3598                         /*
3599                          * Back out if somebody else faulted in this pte
3600                          * while we released the pte lock.
3601                          */
3602                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3603                                         vmf->address, &vmf->ptl);
3604                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3605                                 ret = VM_FAULT_OOM;
3606                         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3607                         goto unlock;
3608                 }
3609
3610                 /* Had to read the page from swap area: Major fault */
3611                 ret = VM_FAULT_MAJOR;
3612                 count_vm_event(PGMAJFAULT);
3613                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3614         } else if (PageHWPoison(page)) {
3615                 /*
3616                  * hwpoisoned dirty swapcache pages are kept for killing
3617                  * owner processes (which may be unknown at hwpoison time)
3618                  */
3619                 ret = VM_FAULT_HWPOISON;
3620                 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3621                 goto out_release;
3622         }
3623
3624         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3625
3626         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3627         if (!locked) {
3628                 ret |= VM_FAULT_RETRY;
3629                 goto out_release;
3630         }
3631
3632         /*
3633          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3634          * release the swapcache from under us.  The page pin, and pte_same
3635          * test below, are not enough to exclude that.  Even if it is still
3636          * swapcache, we need to check that the page's swap has not changed.
3637          */
3638         if (unlikely((!PageSwapCache(page) ||
3639                         page_private(page) != entry.val)) && swapcache)
3640                 goto out_page;
3641
3642         page = ksm_might_need_to_copy(page, vma, vmf->address);
3643         if (unlikely(!page)) {
3644                 ret = VM_FAULT_OOM;
3645                 page = swapcache;
3646                 goto out_page;
3647         }
3648
3649         cgroup_throttle_swaprate(page, GFP_KERNEL);
3650
3651         /*
3652          * Back out if somebody else already faulted in this pte.
3653          */
3654         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3655                         &vmf->ptl);
3656         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3657                 goto out_nomap;
3658
3659         if (unlikely(!PageUptodate(page))) {
3660                 ret = VM_FAULT_SIGBUS;
3661                 goto out_nomap;
3662         }
3663
3664         /*
3665          * The page isn't present yet, go ahead with the fault.
3666          *
3667          * Be careful about the sequence of operations here.
3668          * To get its accounting right, reuse_swap_page() must be called
3669          * while the page is counted on swap but not yet in mapcount i.e.
3670          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3671          * must be called after the swap_free(), or it will never succeed.
3672          */
3673
3674         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3675         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3676         pte = mk_pte(page, vma->vm_page_prot);
3677         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3678                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3679                 vmf->flags &= ~FAULT_FLAG_WRITE;
3680                 ret |= VM_FAULT_WRITE;
3681                 exclusive = RMAP_EXCLUSIVE;
3682         }
3683         flush_icache_page(vma, page);
3684         if (pte_swp_soft_dirty(vmf->orig_pte))
3685                 pte = pte_mksoft_dirty(pte);
3686         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3687                 pte = pte_mkuffd_wp(pte);
3688                 pte = pte_wrprotect(pte);
3689         }
3690         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3691         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3692         vmf->orig_pte = pte;
3693
3694         /* ksm created a completely new copy */
3695         if (unlikely(page != swapcache && swapcache)) {
3696                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3697                 lru_cache_add_inactive_or_unevictable(page, vma);
3698         } else {
3699                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3700         }
3701
3702         swap_free(entry);
3703         if (mem_cgroup_swap_full(page) ||
3704             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3705                 try_to_free_swap(page);
3706         unlock_page(page);
3707         if (page != swapcache && swapcache) {
3708                 /*
3709                  * Hold the lock to avoid the swap entry to be reused
3710                  * until we take the PT lock for the pte_same() check
3711                  * (to avoid false positives from pte_same). For
3712                  * further safety release the lock after the swap_free
3713                  * so that the swap count won't change under a
3714                  * parallel locked swapcache.
3715                  */
3716                 unlock_page(swapcache);
3717                 put_page(swapcache);
3718         }
3719
3720         if (vmf->flags & FAULT_FLAG_WRITE) {
3721                 ret |= do_wp_page(vmf);
3722                 if (ret & VM_FAULT_ERROR)
3723                         ret &= VM_FAULT_ERROR;
3724                 goto out;
3725         }
3726
3727         /* No need to invalidate - it was non-present before */
3728         update_mmu_cache(vma, vmf->address, vmf->pte);
3729 unlock:
3730         pte_unmap_unlock(vmf->pte, vmf->ptl);
3731 out:
3732         if (si)
3733                 put_swap_device(si);
3734         return ret;
3735 out_nomap:
3736         pte_unmap_unlock(vmf->pte, vmf->ptl);
3737 out_page:
3738         unlock_page(page);
3739 out_release:
3740         put_page(page);
3741         if (page != swapcache && swapcache) {
3742                 unlock_page(swapcache);
3743                 put_page(swapcache);
3744         }
3745         if (si)
3746                 put_swap_device(si);
3747         return ret;
3748 }
3749
3750 /*
3751  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3752  * but allow concurrent faults), and pte mapped but not yet locked.
3753  * We return with mmap_lock still held, but pte unmapped and unlocked.
3754  */
3755 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3756 {
3757         struct vm_area_struct *vma = vmf->vma;
3758         struct page *page;
3759         vm_fault_t ret = 0;
3760         pte_t entry;
3761
3762         /* File mapping without ->vm_ops ? */
3763         if (vma->vm_flags & VM_SHARED)
3764                 return VM_FAULT_SIGBUS;
3765
3766         /*
3767          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3768          * pte_offset_map() on pmds where a huge pmd might be created
3769          * from a different thread.
3770          *
3771          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3772          * parallel threads are excluded by other means.
3773          *
3774          * Here we only have mmap_read_lock(mm).
3775          */
3776         if (pte_alloc(vma->vm_mm, vmf->pmd))
3777                 return VM_FAULT_OOM;
3778
3779         /* See comment in handle_pte_fault() */
3780         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3781                 return 0;
3782
3783         /* Use the zero-page for reads */
3784         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3785                         !mm_forbids_zeropage(vma->vm_mm)) {
3786                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3787                                                 vma->vm_page_prot));
3788                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3789                                 vmf->address, &vmf->ptl);
3790                 if (!pte_none(*vmf->pte)) {
3791                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3792                         goto unlock;
3793                 }
3794                 ret = check_stable_address_space(vma->vm_mm);
3795                 if (ret)
3796                         goto unlock;
3797                 /* Deliver the page fault to userland, check inside PT lock */
3798                 if (userfaultfd_missing(vma)) {
3799                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3800                         return handle_userfault(vmf, VM_UFFD_MISSING);
3801                 }
3802                 goto setpte;
3803         }
3804
3805         /* Allocate our own private page. */
3806         if (unlikely(anon_vma_prepare(vma)))
3807                 goto oom;
3808         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3809         if (!page)
3810                 goto oom;
3811
3812         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3813                 goto oom_free_page;
3814         cgroup_throttle_swaprate(page, GFP_KERNEL);
3815
3816         /*
3817          * The memory barrier inside __SetPageUptodate makes sure that
3818          * preceding stores to the page contents become visible before
3819          * the set_pte_at() write.
3820          */
3821         __SetPageUptodate(page);
3822
3823         entry = mk_pte(page, vma->vm_page_prot);
3824         entry = pte_sw_mkyoung(entry);
3825         if (vma->vm_flags & VM_WRITE)
3826                 entry = pte_mkwrite(pte_mkdirty(entry));
3827
3828         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3829                         &vmf->ptl);
3830         if (!pte_none(*vmf->pte)) {
3831                 update_mmu_cache(vma, vmf->address, vmf->pte);
3832                 goto release;
3833         }
3834
3835         ret = check_stable_address_space(vma->vm_mm);
3836         if (ret)
3837                 goto release;
3838
3839         /* Deliver the page fault to userland, check inside PT lock */
3840         if (userfaultfd_missing(vma)) {
3841                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3842                 put_page(page);
3843                 return handle_userfault(vmf, VM_UFFD_MISSING);
3844         }
3845
3846         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3847         page_add_new_anon_rmap(page, vma, vmf->address, false);
3848         lru_cache_add_inactive_or_unevictable(page, vma);
3849 setpte:
3850         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3851
3852         /* No need to invalidate - it was non-present before */
3853         update_mmu_cache(vma, vmf->address, vmf->pte);
3854 unlock:
3855         pte_unmap_unlock(vmf->pte, vmf->ptl);
3856         return ret;
3857 release:
3858         put_page(page);
3859         goto unlock;
3860 oom_free_page:
3861         put_page(page);
3862 oom:
3863         return VM_FAULT_OOM;
3864 }
3865
3866 /*
3867  * The mmap_lock must have been held on entry, and may have been
3868  * released depending on flags and vma->vm_ops->fault() return value.
3869  * See filemap_fault() and __lock_page_retry().
3870  */
3871 static vm_fault_t __do_fault(struct vm_fault *vmf)
3872 {
3873         struct vm_area_struct *vma = vmf->vma;
3874         vm_fault_t ret;
3875
3876         /*
3877          * Preallocate pte before we take page_lock because this might lead to
3878          * deadlocks for memcg reclaim which waits for pages under writeback:
3879          *                              lock_page(A)
3880          *                              SetPageWriteback(A)
3881          *                              unlock_page(A)
3882          * lock_page(B)
3883          *                              lock_page(B)
3884          * pte_alloc_one
3885          *   shrink_page_list
3886          *     wait_on_page_writeback(A)
3887          *                              SetPageWriteback(B)
3888          *                              unlock_page(B)
3889          *                              # flush A, B to clear the writeback
3890          */
3891         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3892                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3893                 if (!vmf->prealloc_pte)
3894                         return VM_FAULT_OOM;
3895                 smp_wmb(); /* See comment in __pte_alloc() */
3896         }
3897
3898         ret = vma->vm_ops->fault(vmf);
3899         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3900                             VM_FAULT_DONE_COW)))
3901                 return ret;
3902
3903         if (unlikely(PageHWPoison(vmf->page))) {
3904                 struct page *page = vmf->page;
3905                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3906                 if (ret & VM_FAULT_LOCKED) {
3907                         if (page_mapped(page))
3908                                 unmap_mapping_pages(page_mapping(page),
3909                                                     page->index, 1, false);
3910                         /* Retry if a clean page was removed from the cache. */
3911                         if (invalidate_inode_page(page))
3912                                 poisonret = VM_FAULT_NOPAGE;
3913                         unlock_page(page);
3914                 }
3915                 put_page(page);
3916                 vmf->page = NULL;
3917                 return poisonret;
3918         }
3919
3920         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3921                 lock_page(vmf->page);
3922         else
3923                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3924
3925         return ret;
3926 }
3927
3928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3929 static void deposit_prealloc_pte(struct vm_fault *vmf)
3930 {
3931         struct vm_area_struct *vma = vmf->vma;
3932
3933         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3934         /*
3935          * We are going to consume the prealloc table,
3936          * count that as nr_ptes.
3937          */
3938         mm_inc_nr_ptes(vma->vm_mm);
3939         vmf->prealloc_pte = NULL;
3940 }
3941
3942 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3943 {
3944         struct vm_area_struct *vma = vmf->vma;
3945         bool write = vmf->flags & FAULT_FLAG_WRITE;
3946         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3947         pmd_t entry;
3948         int i;
3949         vm_fault_t ret = VM_FAULT_FALLBACK;
3950
3951         if (!transhuge_vma_suitable(vma, haddr))
3952                 return ret;
3953
3954         page = compound_head(page);
3955         if (compound_order(page) != HPAGE_PMD_ORDER)
3956                 return ret;
3957
3958         /*
3959          * Just backoff if any subpage of a THP is corrupted otherwise
3960          * the corrupted page may mapped by PMD silently to escape the
3961          * check.  This kind of THP just can be PTE mapped.  Access to
3962          * the corrupted subpage should trigger SIGBUS as expected.
3963          */
3964         if (unlikely(PageHasHWPoisoned(page)))
3965                 return ret;
3966
3967         /*
3968          * Archs like ppc64 need additional space to store information
3969          * related to pte entry. Use the preallocated table for that.
3970          */
3971         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3972                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3973                 if (!vmf->prealloc_pte)
3974                         return VM_FAULT_OOM;
3975                 smp_wmb(); /* See comment in __pte_alloc() */
3976         }
3977
3978         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3979         if (unlikely(!pmd_none(*vmf->pmd)))
3980                 goto out;
3981
3982         for (i = 0; i < HPAGE_PMD_NR; i++)
3983                 flush_icache_page(vma, page + i);
3984
3985         entry = mk_huge_pmd(page, vma->vm_page_prot);
3986         if (write)
3987                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3988
3989         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3990         page_add_file_rmap(page, true);
3991         /*
3992          * deposit and withdraw with pmd lock held
3993          */
3994         if (arch_needs_pgtable_deposit())
3995                 deposit_prealloc_pte(vmf);
3996
3997         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3998
3999         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4000
4001         /* fault is handled */
4002         ret = 0;
4003         count_vm_event(THP_FILE_MAPPED);
4004 out:
4005         spin_unlock(vmf->ptl);
4006         return ret;
4007 }
4008 #else
4009 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4010 {
4011         return VM_FAULT_FALLBACK;
4012 }
4013 #endif
4014
4015 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4016 {
4017         struct vm_area_struct *vma = vmf->vma;
4018         bool write = vmf->flags & FAULT_FLAG_WRITE;
4019         bool prefault = vmf->address != addr;
4020         pte_t entry;
4021
4022         flush_icache_page(vma, page);
4023         entry = mk_pte(page, vma->vm_page_prot);
4024
4025         if (prefault && arch_wants_old_prefaulted_pte())
4026                 entry = pte_mkold(entry);
4027         else
4028                 entry = pte_sw_mkyoung(entry);
4029
4030         if (write)
4031                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4032         /* copy-on-write page */
4033         if (write && !(vma->vm_flags & VM_SHARED)) {
4034                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4035                 page_add_new_anon_rmap(page, vma, addr, false);
4036                 lru_cache_add_inactive_or_unevictable(page, vma);
4037         } else {
4038                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4039                 page_add_file_rmap(page, false);
4040         }
4041         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4042 }
4043
4044 /**
4045  * finish_fault - finish page fault once we have prepared the page to fault
4046  *
4047  * @vmf: structure describing the fault
4048  *
4049  * This function handles all that is needed to finish a page fault once the
4050  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4051  * given page, adds reverse page mapping, handles memcg charges and LRU
4052  * addition.
4053  *
4054  * The function expects the page to be locked and on success it consumes a
4055  * reference of a page being mapped (for the PTE which maps it).
4056  *
4057  * Return: %0 on success, %VM_FAULT_ code in case of error.
4058  */
4059 vm_fault_t finish_fault(struct vm_fault *vmf)
4060 {
4061         struct vm_area_struct *vma = vmf->vma;
4062         struct page *page;
4063         vm_fault_t ret;
4064
4065         /* Did we COW the page? */
4066         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4067                 page = vmf->cow_page;
4068         else
4069                 page = vmf->page;
4070
4071         /*
4072          * check even for read faults because we might have lost our CoWed
4073          * page
4074          */
4075         if (!(vma->vm_flags & VM_SHARED)) {
4076                 ret = check_stable_address_space(vma->vm_mm);
4077                 if (ret)
4078                         return ret;
4079         }
4080
4081         if (pmd_none(*vmf->pmd)) {
4082                 if (PageTransCompound(page)) {
4083                         ret = do_set_pmd(vmf, page);
4084                         if (ret != VM_FAULT_FALLBACK)
4085                                 return ret;
4086                 }
4087
4088                 if (vmf->prealloc_pte) {
4089                         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4090                         if (likely(pmd_none(*vmf->pmd))) {
4091                                 mm_inc_nr_ptes(vma->vm_mm);
4092                                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4093                                 vmf->prealloc_pte = NULL;
4094                         }
4095                         spin_unlock(vmf->ptl);
4096                 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4097                         return VM_FAULT_OOM;
4098                 }
4099         }
4100
4101         /*
4102          * See comment in handle_pte_fault() for how this scenario happens, we
4103          * need to return NOPAGE so that we drop this page.
4104          */
4105         if (pmd_devmap_trans_unstable(vmf->pmd))
4106                 return VM_FAULT_NOPAGE;
4107
4108         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4109                                       vmf->address, &vmf->ptl);
4110         ret = 0;
4111         /* Re-check under ptl */
4112         if (likely(pte_none(*vmf->pte)))
4113                 do_set_pte(vmf, page, vmf->address);
4114         else
4115                 ret = VM_FAULT_NOPAGE;
4116
4117         update_mmu_tlb(vma, vmf->address, vmf->pte);
4118         pte_unmap_unlock(vmf->pte, vmf->ptl);
4119         return ret;
4120 }
4121
4122 static unsigned long fault_around_bytes __read_mostly =
4123         rounddown_pow_of_two(65536);
4124
4125 #ifdef CONFIG_DEBUG_FS
4126 static int fault_around_bytes_get(void *data, u64 *val)
4127 {
4128         *val = fault_around_bytes;
4129         return 0;
4130 }
4131
4132 /*
4133  * fault_around_bytes must be rounded down to the nearest page order as it's
4134  * what do_fault_around() expects to see.
4135  */
4136 static int fault_around_bytes_set(void *data, u64 val)
4137 {
4138         if (val / PAGE_SIZE > PTRS_PER_PTE)
4139                 return -EINVAL;
4140         if (val > PAGE_SIZE)
4141                 fault_around_bytes = rounddown_pow_of_two(val);
4142         else
4143                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4144         return 0;
4145 }
4146 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4147                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4148
4149 static int __init fault_around_debugfs(void)
4150 {
4151         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4152                                    &fault_around_bytes_fops);
4153         return 0;
4154 }
4155 late_initcall(fault_around_debugfs);
4156 #endif
4157
4158 /*
4159  * do_fault_around() tries to map few pages around the fault address. The hope
4160  * is that the pages will be needed soon and this will lower the number of
4161  * faults to handle.
4162  *
4163  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4164  * not ready to be mapped: not up-to-date, locked, etc.
4165  *
4166  * This function is called with the page table lock taken. In the split ptlock
4167  * case the page table lock only protects only those entries which belong to
4168  * the page table corresponding to the fault address.
4169  *
4170  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4171  * only once.
4172  *
4173  * fault_around_bytes defines how many bytes we'll try to map.
4174  * do_fault_around() expects it to be set to a power of two less than or equal
4175  * to PTRS_PER_PTE.
4176  *
4177  * The virtual address of the area that we map is naturally aligned to
4178  * fault_around_bytes rounded down to the machine page size
4179  * (and therefore to page order).  This way it's easier to guarantee
4180  * that we don't cross page table boundaries.
4181  */
4182 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4183 {
4184         unsigned long address = vmf->address, nr_pages, mask;
4185         pgoff_t start_pgoff = vmf->pgoff;
4186         pgoff_t end_pgoff;
4187         int off;
4188
4189         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4190         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4191
4192         address = max(address & mask, vmf->vma->vm_start);
4193         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4194         start_pgoff -= off;
4195
4196         /*
4197          *  end_pgoff is either the end of the page table, the end of
4198          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4199          */
4200         end_pgoff = start_pgoff -
4201                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4202                 PTRS_PER_PTE - 1;
4203         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4204                         start_pgoff + nr_pages - 1);
4205
4206         if (pmd_none(*vmf->pmd)) {
4207                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4208                 if (!vmf->prealloc_pte)
4209                         return VM_FAULT_OOM;
4210                 smp_wmb(); /* See comment in __pte_alloc() */
4211         }
4212
4213         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4214 }
4215
4216 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4217 {
4218         struct vm_area_struct *vma = vmf->vma;
4219         vm_fault_t ret = 0;
4220
4221         /*
4222          * Let's call ->map_pages() first and use ->fault() as fallback
4223          * if page by the offset is not ready to be mapped (cold cache or
4224          * something).
4225          */
4226         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4227                 if (likely(!userfaultfd_minor(vmf->vma))) {
4228                         ret = do_fault_around(vmf);
4229                         if (ret)
4230                                 return ret;
4231                 }
4232         }
4233
4234         ret = __do_fault(vmf);
4235         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4236                 return ret;
4237
4238         ret |= finish_fault(vmf);
4239         unlock_page(vmf->page);
4240         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4241                 put_page(vmf->page);
4242         return ret;
4243 }
4244
4245 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4246 {
4247         struct vm_area_struct *vma = vmf->vma;
4248         vm_fault_t ret;
4249
4250         if (unlikely(anon_vma_prepare(vma)))
4251                 return VM_FAULT_OOM;
4252
4253         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4254         if (!vmf->cow_page)
4255                 return VM_FAULT_OOM;
4256
4257         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4258                 put_page(vmf->cow_page);
4259                 return VM_FAULT_OOM;
4260         }
4261         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4262
4263         ret = __do_fault(vmf);
4264         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4265                 goto uncharge_out;
4266         if (ret & VM_FAULT_DONE_COW)
4267                 return ret;
4268
4269         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4270         __SetPageUptodate(vmf->cow_page);
4271
4272         ret |= finish_fault(vmf);
4273         unlock_page(vmf->page);
4274         put_page(vmf->page);
4275         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4276                 goto uncharge_out;
4277         return ret;
4278 uncharge_out:
4279         put_page(vmf->cow_page);
4280         return ret;
4281 }
4282
4283 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4284 {
4285         struct vm_area_struct *vma = vmf->vma;
4286         vm_fault_t ret, tmp;
4287
4288         ret = __do_fault(vmf);
4289         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4290                 return ret;
4291
4292         /*
4293          * Check if the backing address space wants to know that the page is
4294          * about to become writable
4295          */
4296         if (vma->vm_ops->page_mkwrite) {
4297                 unlock_page(vmf->page);
4298                 tmp = do_page_mkwrite(vmf);
4299                 if (unlikely(!tmp ||
4300                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4301                         put_page(vmf->page);
4302                         return tmp;
4303                 }
4304         }
4305
4306         ret |= finish_fault(vmf);
4307         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4308                                         VM_FAULT_RETRY))) {
4309                 unlock_page(vmf->page);
4310                 put_page(vmf->page);
4311                 return ret;
4312         }
4313
4314         ret |= fault_dirty_shared_page(vmf);
4315         return ret;
4316 }
4317
4318 /*
4319  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4320  * but allow concurrent faults).
4321  * The mmap_lock may have been released depending on flags and our
4322  * return value.  See filemap_fault() and __lock_page_or_retry().
4323  * If mmap_lock is released, vma may become invalid (for example
4324  * by other thread calling munmap()).
4325  */
4326 static vm_fault_t do_fault(struct vm_fault *vmf)
4327 {
4328         struct vm_area_struct *vma = vmf->vma;
4329         struct mm_struct *vm_mm = vma->vm_mm;
4330         vm_fault_t ret;
4331
4332         /*
4333          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4334          */
4335         if (!vma->vm_ops->fault) {
4336                 /*
4337                  * If we find a migration pmd entry or a none pmd entry, which
4338                  * should never happen, return SIGBUS
4339                  */
4340                 if (unlikely(!pmd_present(*vmf->pmd)))
4341                         ret = VM_FAULT_SIGBUS;
4342                 else {
4343                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4344                                                        vmf->pmd,
4345                                                        vmf->address,
4346                                                        &vmf->ptl);
4347                         /*
4348                          * Make sure this is not a temporary clearing of pte
4349                          * by holding ptl and checking again. A R/M/W update
4350                          * of pte involves: take ptl, clearing the pte so that
4351                          * we don't have concurrent modification by hardware
4352                          * followed by an update.
4353                          */
4354                         if (unlikely(pte_none(*vmf->pte)))
4355                                 ret = VM_FAULT_SIGBUS;
4356                         else
4357                                 ret = VM_FAULT_NOPAGE;
4358
4359                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4360                 }
4361         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4362                 ret = do_read_fault(vmf);
4363         else if (!(vma->vm_flags & VM_SHARED))
4364                 ret = do_cow_fault(vmf);
4365         else
4366                 ret = do_shared_fault(vmf);
4367
4368         /* preallocated pagetable is unused: free it */
4369         if (vmf->prealloc_pte) {
4370                 pte_free(vm_mm, vmf->prealloc_pte);
4371                 vmf->prealloc_pte = NULL;
4372         }
4373         return ret;
4374 }
4375
4376 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4377                       unsigned long addr, int page_nid, int *flags)
4378 {
4379         get_page(page);
4380
4381         count_vm_numa_event(NUMA_HINT_FAULTS);
4382         if (page_nid == numa_node_id()) {
4383                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4384                 *flags |= TNF_FAULT_LOCAL;
4385         }
4386
4387         return mpol_misplaced(page, vma, addr);
4388 }
4389
4390 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4391 {
4392         struct vm_area_struct *vma = vmf->vma;
4393         struct page *page = NULL;
4394         int page_nid = NUMA_NO_NODE;
4395         int last_cpupid;
4396         int target_nid;
4397         pte_t pte, old_pte;
4398         bool was_writable = pte_savedwrite(vmf->orig_pte);
4399         int flags = 0;
4400
4401         /*
4402          * The "pte" at this point cannot be used safely without
4403          * validation through pte_unmap_same(). It's of NUMA type but
4404          * the pfn may be screwed if the read is non atomic.
4405          */
4406         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4407         spin_lock(vmf->ptl);
4408         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4409                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4410                 goto out;
4411         }
4412
4413         /* Get the normal PTE  */
4414         old_pte = ptep_get(vmf->pte);
4415         pte = pte_modify(old_pte, vma->vm_page_prot);
4416
4417         page = vm_normal_page(vma, vmf->address, pte);
4418         if (!page)
4419                 goto out_map;
4420
4421         /* TODO: handle PTE-mapped THP */
4422         if (PageCompound(page))
4423                 goto out_map;
4424
4425         /*
4426          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4427          * much anyway since they can be in shared cache state. This misses
4428          * the case where a mapping is writable but the process never writes
4429          * to it but pte_write gets cleared during protection updates and
4430          * pte_dirty has unpredictable behaviour between PTE scan updates,
4431          * background writeback, dirty balancing and application behaviour.
4432          */
4433         if (!was_writable)
4434                 flags |= TNF_NO_GROUP;
4435
4436         /*
4437          * Flag if the page is shared between multiple address spaces. This
4438          * is later used when determining whether to group tasks together
4439          */
4440         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4441                 flags |= TNF_SHARED;
4442
4443         last_cpupid = page_cpupid_last(page);
4444         page_nid = page_to_nid(page);
4445         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4446                         &flags);
4447         if (target_nid == NUMA_NO_NODE) {
4448                 put_page(page);
4449                 goto out_map;
4450         }
4451         pte_unmap_unlock(vmf->pte, vmf->ptl);
4452
4453         /* Migrate to the requested node */
4454         if (migrate_misplaced_page(page, vma, target_nid)) {
4455                 page_nid = target_nid;
4456                 flags |= TNF_MIGRATED;
4457         } else {
4458                 flags |= TNF_MIGRATE_FAIL;
4459                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4460                 spin_lock(vmf->ptl);
4461                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4462                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4463                         goto out;
4464                 }
4465                 goto out_map;
4466         }
4467
4468 out:
4469         if (page_nid != NUMA_NO_NODE)
4470                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4471         return 0;
4472 out_map:
4473         /*
4474          * Make it present again, depending on how arch implements
4475          * non-accessible ptes, some can allow access by kernel mode.
4476          */
4477         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4478         pte = pte_modify(old_pte, vma->vm_page_prot);
4479         pte = pte_mkyoung(pte);
4480         if (was_writable)
4481                 pte = pte_mkwrite(pte);
4482         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4483         update_mmu_cache(vma, vmf->address, vmf->pte);
4484         pte_unmap_unlock(vmf->pte, vmf->ptl);
4485         goto out;
4486 }
4487
4488 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4489 {
4490         if (vma_is_anonymous(vmf->vma))
4491                 return do_huge_pmd_anonymous_page(vmf);
4492         if (vmf->vma->vm_ops->huge_fault)
4493                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4494         return VM_FAULT_FALLBACK;
4495 }
4496
4497 /* `inline' is required to avoid gcc 4.1.2 build error */
4498 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4499 {
4500         if (vma_is_anonymous(vmf->vma)) {
4501                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4502                         return handle_userfault(vmf, VM_UFFD_WP);
4503                 return do_huge_pmd_wp_page(vmf);
4504         }
4505         if (vmf->vma->vm_ops->huge_fault) {
4506                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4507
4508                 if (!(ret & VM_FAULT_FALLBACK))
4509                         return ret;
4510         }
4511
4512         /* COW or write-notify handled on pte level: split pmd. */
4513         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4514
4515         return VM_FAULT_FALLBACK;
4516 }
4517
4518 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4519 {
4520 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4521         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4522         /* No support for anonymous transparent PUD pages yet */
4523         if (vma_is_anonymous(vmf->vma))
4524                 return VM_FAULT_FALLBACK;
4525         if (vmf->vma->vm_ops->huge_fault)
4526                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4527 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4528         return VM_FAULT_FALLBACK;
4529 }
4530
4531 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4532 {
4533 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4534         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4535         /* No support for anonymous transparent PUD pages yet */
4536         if (vma_is_anonymous(vmf->vma))
4537                 goto split;
4538         if (vmf->vma->vm_ops->huge_fault) {
4539                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4540
4541                 if (!(ret & VM_FAULT_FALLBACK))
4542                         return ret;
4543         }
4544 split:
4545         /* COW or write-notify not handled on PUD level: split pud.*/
4546         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4548         return VM_FAULT_FALLBACK;
4549 }
4550
4551 /*
4552  * These routines also need to handle stuff like marking pages dirty
4553  * and/or accessed for architectures that don't do it in hardware (most
4554  * RISC architectures).  The early dirtying is also good on the i386.
4555  *
4556  * There is also a hook called "update_mmu_cache()" that architectures
4557  * with external mmu caches can use to update those (ie the Sparc or
4558  * PowerPC hashed page tables that act as extended TLBs).
4559  *
4560  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4561  * concurrent faults).
4562  *
4563  * The mmap_lock may have been released depending on flags and our return value.
4564  * See filemap_fault() and __lock_page_or_retry().
4565  */
4566 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4567 {
4568         pte_t entry;
4569
4570         if (unlikely(pmd_none(*vmf->pmd))) {
4571                 /*
4572                  * Leave __pte_alloc() until later: because vm_ops->fault may
4573                  * want to allocate huge page, and if we expose page table
4574                  * for an instant, it will be difficult to retract from
4575                  * concurrent faults and from rmap lookups.
4576                  */
4577                 vmf->pte = NULL;
4578         } else {
4579                 /*
4580                  * If a huge pmd materialized under us just retry later.  Use
4581                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4582                  * of pmd_trans_huge() to ensure the pmd didn't become
4583                  * pmd_trans_huge under us and then back to pmd_none, as a
4584                  * result of MADV_DONTNEED running immediately after a huge pmd
4585                  * fault in a different thread of this mm, in turn leading to a
4586                  * misleading pmd_trans_huge() retval. All we have to ensure is
4587                  * that it is a regular pmd that we can walk with
4588                  * pte_offset_map() and we can do that through an atomic read
4589                  * in C, which is what pmd_trans_unstable() provides.
4590                  */
4591                 if (pmd_devmap_trans_unstable(vmf->pmd))
4592                         return 0;
4593                 /*
4594                  * A regular pmd is established and it can't morph into a huge
4595                  * pmd from under us anymore at this point because we hold the
4596                  * mmap_lock read mode and khugepaged takes it in write mode.
4597                  * So now it's safe to run pte_offset_map().
4598                  */
4599                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4600                 vmf->orig_pte = *vmf->pte;
4601
4602                 /*
4603                  * some architectures can have larger ptes than wordsize,
4604                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4605                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4606                  * accesses.  The code below just needs a consistent view
4607                  * for the ifs and we later double check anyway with the
4608                  * ptl lock held. So here a barrier will do.
4609                  */
4610                 barrier();
4611                 if (pte_none(vmf->orig_pte)) {
4612                         pte_unmap(vmf->pte);
4613                         vmf->pte = NULL;
4614                 }
4615         }
4616
4617         if (!vmf->pte) {
4618                 if (vma_is_anonymous(vmf->vma))
4619                         return do_anonymous_page(vmf);
4620                 else
4621                         return do_fault(vmf);
4622         }
4623
4624         if (!pte_present(vmf->orig_pte))
4625                 return do_swap_page(vmf);
4626
4627         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4628                 return do_numa_page(vmf);
4629
4630         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4631         spin_lock(vmf->ptl);
4632         entry = vmf->orig_pte;
4633         if (unlikely(!pte_same(*vmf->pte, entry))) {
4634                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4635                 goto unlock;
4636         }
4637         if (vmf->flags & FAULT_FLAG_WRITE) {
4638                 if (!pte_write(entry))
4639                         return do_wp_page(vmf);
4640                 entry = pte_mkdirty(entry);
4641         }
4642         entry = pte_mkyoung(entry);
4643         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4644                                 vmf->flags & FAULT_FLAG_WRITE)) {
4645                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4646         } else {
4647                 /* Skip spurious TLB flush for retried page fault */
4648                 if (vmf->flags & FAULT_FLAG_TRIED)
4649                         goto unlock;
4650                 /*
4651                  * This is needed only for protection faults but the arch code
4652                  * is not yet telling us if this is a protection fault or not.
4653                  * This still avoids useless tlb flushes for .text page faults
4654                  * with threads.
4655                  */
4656                 if (vmf->flags & FAULT_FLAG_WRITE)
4657                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4658         }
4659 unlock:
4660         pte_unmap_unlock(vmf->pte, vmf->ptl);
4661         return 0;
4662 }
4663
4664 /*
4665  * By the time we get here, we already hold the mm semaphore
4666  *
4667  * The mmap_lock may have been released depending on flags and our
4668  * return value.  See filemap_fault() and __lock_page_or_retry().
4669  */
4670 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4671                 unsigned long address, unsigned int flags)
4672 {
4673         struct vm_fault vmf = {
4674                 .vma = vma,
4675                 .address = address & PAGE_MASK,
4676                 .flags = flags,
4677                 .pgoff = linear_page_index(vma, address),
4678                 .gfp_mask = __get_fault_gfp_mask(vma),
4679         };
4680         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4681         struct mm_struct *mm = vma->vm_mm;
4682         pgd_t *pgd;
4683         p4d_t *p4d;
4684         vm_fault_t ret;
4685
4686         pgd = pgd_offset(mm, address);
4687         p4d = p4d_alloc(mm, pgd, address);
4688         if (!p4d)
4689                 return VM_FAULT_OOM;
4690
4691         vmf.pud = pud_alloc(mm, p4d, address);
4692         if (!vmf.pud)
4693                 return VM_FAULT_OOM;
4694 retry_pud:
4695         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4696                 ret = create_huge_pud(&vmf);
4697                 if (!(ret & VM_FAULT_FALLBACK))
4698                         return ret;
4699         } else {
4700                 pud_t orig_pud = *vmf.pud;
4701
4702                 barrier();
4703                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4704
4705                         /* NUMA case for anonymous PUDs would go here */
4706
4707                         if (dirty && !pud_write(orig_pud)) {
4708                                 ret = wp_huge_pud(&vmf, orig_pud);
4709                                 if (!(ret & VM_FAULT_FALLBACK))
4710                                         return ret;
4711                         } else {
4712                                 huge_pud_set_accessed(&vmf, orig_pud);
4713                                 return 0;
4714                         }
4715                 }
4716         }
4717
4718         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4719         if (!vmf.pmd)
4720                 return VM_FAULT_OOM;
4721
4722         /* Huge pud page fault raced with pmd_alloc? */
4723         if (pud_trans_unstable(vmf.pud))
4724                 goto retry_pud;
4725
4726         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4727                 ret = create_huge_pmd(&vmf);
4728                 if (!(ret & VM_FAULT_FALLBACK))
4729                         return ret;
4730         } else {
4731                 vmf.orig_pmd = *vmf.pmd;
4732
4733                 barrier();
4734                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4735                         VM_BUG_ON(thp_migration_supported() &&
4736                                           !is_pmd_migration_entry(vmf.orig_pmd));
4737                         if (is_pmd_migration_entry(vmf.orig_pmd))
4738                                 pmd_migration_entry_wait(mm, vmf.pmd);
4739                         return 0;
4740                 }
4741                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4742                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4743                                 return do_huge_pmd_numa_page(&vmf);
4744
4745                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4746                                 ret = wp_huge_pmd(&vmf);
4747                                 if (!(ret & VM_FAULT_FALLBACK))
4748                                         return ret;
4749                         } else {
4750                                 huge_pmd_set_accessed(&vmf);
4751                                 return 0;
4752                         }
4753                 }
4754         }
4755
4756         return handle_pte_fault(&vmf);
4757 }
4758
4759 /**
4760  * mm_account_fault - Do page fault accounting
4761  *
4762  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4763  *        of perf event counters, but we'll still do the per-task accounting to
4764  *        the task who triggered this page fault.
4765  * @address: the faulted address.
4766  * @flags: the fault flags.
4767  * @ret: the fault retcode.
4768  *
4769  * This will take care of most of the page fault accounting.  Meanwhile, it
4770  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4771  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4772  * still be in per-arch page fault handlers at the entry of page fault.
4773  */
4774 static inline void mm_account_fault(struct pt_regs *regs,
4775                                     unsigned long address, unsigned int flags,
4776                                     vm_fault_t ret)
4777 {
4778         bool major;
4779
4780         /*
4781          * We don't do accounting for some specific faults:
4782          *
4783          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4784          *   includes arch_vma_access_permitted() failing before reaching here.
4785          *   So this is not a "this many hardware page faults" counter.  We
4786          *   should use the hw profiling for that.
4787          *
4788          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4789          *   once they're completed.
4790          */
4791         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4792                 return;
4793
4794         /*
4795          * We define the fault as a major fault when the final successful fault
4796          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4797          * handle it immediately previously).
4798          */
4799         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4800
4801         if (major)
4802                 current->maj_flt++;
4803         else
4804                 current->min_flt++;
4805
4806         /*
4807          * If the fault is done for GUP, regs will be NULL.  We only do the
4808          * accounting for the per thread fault counters who triggered the
4809          * fault, and we skip the perf event updates.
4810          */
4811         if (!regs)
4812                 return;
4813
4814         if (major)
4815                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4816         else
4817                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4818 }
4819
4820 /*
4821  * By the time we get here, we already hold the mm semaphore
4822  *
4823  * The mmap_lock may have been released depending on flags and our
4824  * return value.  See filemap_fault() and __lock_page_or_retry().
4825  */
4826 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4827                            unsigned int flags, struct pt_regs *regs)
4828 {
4829         vm_fault_t ret;
4830
4831         __set_current_state(TASK_RUNNING);
4832
4833         count_vm_event(PGFAULT);
4834         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4835
4836         /* do counter updates before entering really critical section. */
4837         check_sync_rss_stat(current);
4838
4839         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4840                                             flags & FAULT_FLAG_INSTRUCTION,
4841                                             flags & FAULT_FLAG_REMOTE))
4842                 return VM_FAULT_SIGSEGV;
4843
4844         /*
4845          * Enable the memcg OOM handling for faults triggered in user
4846          * space.  Kernel faults are handled more gracefully.
4847          */
4848         if (flags & FAULT_FLAG_USER)
4849                 mem_cgroup_enter_user_fault();
4850
4851         if (unlikely(is_vm_hugetlb_page(vma)))
4852                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4853         else
4854                 ret = __handle_mm_fault(vma, address, flags);
4855
4856         if (flags & FAULT_FLAG_USER) {
4857                 mem_cgroup_exit_user_fault();
4858                 /*
4859                  * The task may have entered a memcg OOM situation but
4860                  * if the allocation error was handled gracefully (no
4861                  * VM_FAULT_OOM), there is no need to kill anything.
4862                  * Just clean up the OOM state peacefully.
4863                  */
4864                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4865                         mem_cgroup_oom_synchronize(false);
4866         }
4867
4868         mm_account_fault(regs, address, flags, ret);
4869
4870         return ret;
4871 }
4872 EXPORT_SYMBOL_GPL(handle_mm_fault);
4873
4874 #ifndef __PAGETABLE_P4D_FOLDED
4875 /*
4876  * Allocate p4d page table.
4877  * We've already handled the fast-path in-line.
4878  */
4879 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4880 {
4881         p4d_t *new = p4d_alloc_one(mm, address);
4882         if (!new)
4883                 return -ENOMEM;
4884
4885         smp_wmb(); /* See comment in __pte_alloc */
4886
4887         spin_lock(&mm->page_table_lock);
4888         if (pgd_present(*pgd))          /* Another has populated it */
4889                 p4d_free(mm, new);
4890         else
4891                 pgd_populate(mm, pgd, new);
4892         spin_unlock(&mm->page_table_lock);
4893         return 0;
4894 }
4895 #endif /* __PAGETABLE_P4D_FOLDED */
4896
4897 #ifndef __PAGETABLE_PUD_FOLDED
4898 /*
4899  * Allocate page upper directory.
4900  * We've already handled the fast-path in-line.
4901  */
4902 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4903 {
4904         pud_t *new = pud_alloc_one(mm, address);
4905         if (!new)
4906                 return -ENOMEM;
4907
4908         smp_wmb(); /* See comment in __pte_alloc */
4909
4910         spin_lock(&mm->page_table_lock);
4911         if (!p4d_present(*p4d)) {
4912                 mm_inc_nr_puds(mm);
4913                 p4d_populate(mm, p4d, new);
4914         } else  /* Another has populated it */
4915                 pud_free(mm, new);
4916         spin_unlock(&mm->page_table_lock);
4917         return 0;
4918 }
4919 #endif /* __PAGETABLE_PUD_FOLDED */
4920
4921 #ifndef __PAGETABLE_PMD_FOLDED
4922 /*
4923  * Allocate page middle directory.
4924  * We've already handled the fast-path in-line.
4925  */
4926 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4927 {
4928         spinlock_t *ptl;
4929         pmd_t *new = pmd_alloc_one(mm, address);
4930         if (!new)
4931                 return -ENOMEM;
4932
4933         smp_wmb(); /* See comment in __pte_alloc */
4934
4935         ptl = pud_lock(mm, pud);
4936         if (!pud_present(*pud)) {
4937                 mm_inc_nr_pmds(mm);
4938                 pud_populate(mm, pud, new);
4939         } else  /* Another has populated it */
4940                 pmd_free(mm, new);
4941         spin_unlock(ptl);
4942         return 0;
4943 }
4944 #endif /* __PAGETABLE_PMD_FOLDED */
4945
4946 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4947                           struct mmu_notifier_range *range, pte_t **ptepp,
4948                           pmd_t **pmdpp, spinlock_t **ptlp)
4949 {
4950         pgd_t *pgd;
4951         p4d_t *p4d;
4952         pud_t *pud;
4953         pmd_t *pmd;
4954         pte_t *ptep;
4955
4956         pgd = pgd_offset(mm, address);
4957         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4958                 goto out;
4959
4960         p4d = p4d_offset(pgd, address);
4961         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4962                 goto out;
4963
4964         pud = pud_offset(p4d, address);
4965         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4966                 goto out;
4967
4968         pmd = pmd_offset(pud, address);
4969         VM_BUG_ON(pmd_trans_huge(*pmd));
4970
4971         if (pmd_huge(*pmd)) {
4972                 if (!pmdpp)
4973                         goto out;
4974
4975                 if (range) {
4976                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4977                                                 NULL, mm, address & PMD_MASK,
4978                                                 (address & PMD_MASK) + PMD_SIZE);
4979                         mmu_notifier_invalidate_range_start(range);
4980                 }
4981                 *ptlp = pmd_lock(mm, pmd);
4982                 if (pmd_huge(*pmd)) {
4983                         *pmdpp = pmd;
4984                         return 0;
4985                 }
4986                 spin_unlock(*ptlp);
4987                 if (range)
4988                         mmu_notifier_invalidate_range_end(range);
4989         }
4990
4991         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4992                 goto out;
4993
4994         if (range) {
4995                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4996                                         address & PAGE_MASK,
4997                                         (address & PAGE_MASK) + PAGE_SIZE);
4998                 mmu_notifier_invalidate_range_start(range);
4999         }
5000         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5001         if (!pte_present(*ptep))
5002                 goto unlock;
5003         *ptepp = ptep;
5004         return 0;
5005 unlock:
5006         pte_unmap_unlock(ptep, *ptlp);
5007         if (range)
5008                 mmu_notifier_invalidate_range_end(range);
5009 out:
5010         return -EINVAL;
5011 }
5012
5013 /**
5014  * follow_pte - look up PTE at a user virtual address
5015  * @mm: the mm_struct of the target address space
5016  * @address: user virtual address
5017  * @ptepp: location to store found PTE
5018  * @ptlp: location to store the lock for the PTE
5019  *
5020  * On a successful return, the pointer to the PTE is stored in @ptepp;
5021  * the corresponding lock is taken and its location is stored in @ptlp.
5022  * The contents of the PTE are only stable until @ptlp is released;
5023  * any further use, if any, must be protected against invalidation
5024  * with MMU notifiers.
5025  *
5026  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5027  * should be taken for read.
5028  *
5029  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5030  * it is not a good general-purpose API.
5031  *
5032  * Return: zero on success, -ve otherwise.
5033  */
5034 int follow_pte(struct mm_struct *mm, unsigned long address,
5035                pte_t **ptepp, spinlock_t **ptlp)
5036 {
5037         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
5038 }
5039 EXPORT_SYMBOL_GPL(follow_pte);
5040
5041 /**
5042  * follow_pfn - look up PFN at a user virtual address
5043  * @vma: memory mapping
5044  * @address: user virtual address
5045  * @pfn: location to store found PFN
5046  *
5047  * Only IO mappings and raw PFN mappings are allowed.
5048  *
5049  * This function does not allow the caller to read the permissions
5050  * of the PTE.  Do not use it.
5051  *
5052  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5053  */
5054 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5055         unsigned long *pfn)
5056 {
5057         int ret = -EINVAL;
5058         spinlock_t *ptl;
5059         pte_t *ptep;
5060
5061         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5062                 return ret;
5063
5064         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5065         if (ret)
5066                 return ret;
5067         *pfn = pte_pfn(*ptep);
5068         pte_unmap_unlock(ptep, ptl);
5069         return 0;
5070 }
5071 EXPORT_SYMBOL(follow_pfn);
5072
5073 #ifdef CONFIG_HAVE_IOREMAP_PROT
5074 int follow_phys(struct vm_area_struct *vma,
5075                 unsigned long address, unsigned int flags,
5076                 unsigned long *prot, resource_size_t *phys)
5077 {
5078         int ret = -EINVAL;
5079         pte_t *ptep, pte;
5080         spinlock_t *ptl;
5081
5082         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5083                 goto out;
5084
5085         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5086                 goto out;
5087         pte = *ptep;
5088
5089         if ((flags & FOLL_WRITE) && !pte_write(pte))
5090                 goto unlock;
5091
5092         *prot = pgprot_val(pte_pgprot(pte));
5093         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5094
5095         ret = 0;
5096 unlock:
5097         pte_unmap_unlock(ptep, ptl);
5098 out:
5099         return ret;
5100 }
5101
5102 /**
5103  * generic_access_phys - generic implementation for iomem mmap access
5104  * @vma: the vma to access
5105  * @addr: userspace address, not relative offset within @vma
5106  * @buf: buffer to read/write
5107  * @len: length of transfer
5108  * @write: set to FOLL_WRITE when writing, otherwise reading
5109  *
5110  * This is a generic implementation for &vm_operations_struct.access for an
5111  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5112  * not page based.
5113  */
5114 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5115                         void *buf, int len, int write)
5116 {
5117         resource_size_t phys_addr;
5118         unsigned long prot = 0;
5119         void __iomem *maddr;
5120         pte_t *ptep, pte;
5121         spinlock_t *ptl;
5122         int offset = offset_in_page(addr);
5123         int ret = -EINVAL;
5124
5125         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5126                 return -EINVAL;
5127
5128 retry:
5129         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5130                 return -EINVAL;
5131         pte = *ptep;
5132         pte_unmap_unlock(ptep, ptl);
5133
5134         prot = pgprot_val(pte_pgprot(pte));
5135         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5136
5137         if ((write & FOLL_WRITE) && !pte_write(pte))
5138                 return -EINVAL;
5139
5140         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5141         if (!maddr)
5142                 return -ENOMEM;
5143
5144         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5145                 goto out_unmap;
5146
5147         if (!pte_same(pte, *ptep)) {
5148                 pte_unmap_unlock(ptep, ptl);
5149                 iounmap(maddr);
5150
5151                 goto retry;
5152         }
5153
5154         if (write)
5155                 memcpy_toio(maddr + offset, buf, len);
5156         else
5157                 memcpy_fromio(buf, maddr + offset, len);
5158         ret = len;
5159         pte_unmap_unlock(ptep, ptl);
5160 out_unmap:
5161         iounmap(maddr);
5162
5163         return ret;
5164 }
5165 EXPORT_SYMBOL_GPL(generic_access_phys);
5166 #endif
5167
5168 /*
5169  * Access another process' address space as given in mm.
5170  */
5171 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5172                        int len, unsigned int gup_flags)
5173 {
5174         struct vm_area_struct *vma;
5175         void *old_buf = buf;
5176         int write = gup_flags & FOLL_WRITE;
5177
5178         if (mmap_read_lock_killable(mm))
5179                 return 0;
5180
5181         /* ignore errors, just check how much was successfully transferred */
5182         while (len) {
5183                 int bytes, ret, offset;
5184                 void *maddr;
5185                 struct page *page = NULL;
5186
5187                 ret = get_user_pages_remote(mm, addr, 1,
5188                                 gup_flags, &page, &vma, NULL);
5189                 if (ret <= 0) {
5190 #ifndef CONFIG_HAVE_IOREMAP_PROT
5191                         break;
5192 #else
5193                         /*
5194                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5195                          * we can access using slightly different code.
5196                          */
5197                         vma = vma_lookup(mm, addr);
5198                         if (!vma)
5199                                 break;
5200                         if (vma->vm_ops && vma->vm_ops->access)
5201                                 ret = vma->vm_ops->access(vma, addr, buf,
5202                                                           len, write);
5203                         if (ret <= 0)
5204                                 break;
5205                         bytes = ret;
5206 #endif
5207                 } else {
5208                         bytes = len;
5209                         offset = addr & (PAGE_SIZE-1);
5210                         if (bytes > PAGE_SIZE-offset)
5211                                 bytes = PAGE_SIZE-offset;
5212
5213                         maddr = kmap(page);
5214                         if (write) {
5215                                 copy_to_user_page(vma, page, addr,
5216                                                   maddr + offset, buf, bytes);
5217                                 set_page_dirty_lock(page);
5218                         } else {
5219                                 copy_from_user_page(vma, page, addr,
5220                                                     buf, maddr + offset, bytes);
5221                         }
5222                         kunmap(page);
5223                         put_page(page);
5224                 }
5225                 len -= bytes;
5226                 buf += bytes;
5227                 addr += bytes;
5228         }
5229         mmap_read_unlock(mm);
5230
5231         return buf - old_buf;
5232 }
5233
5234 /**
5235  * access_remote_vm - access another process' address space
5236  * @mm:         the mm_struct of the target address space
5237  * @addr:       start address to access
5238  * @buf:        source or destination buffer
5239  * @len:        number of bytes to transfer
5240  * @gup_flags:  flags modifying lookup behaviour
5241  *
5242  * The caller must hold a reference on @mm.
5243  *
5244  * Return: number of bytes copied from source to destination.
5245  */
5246 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5247                 void *buf, int len, unsigned int gup_flags)
5248 {
5249         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5250 }
5251
5252 /*
5253  * Access another process' address space.
5254  * Source/target buffer must be kernel space,
5255  * Do not walk the page table directly, use get_user_pages
5256  */
5257 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5258                 void *buf, int len, unsigned int gup_flags)
5259 {
5260         struct mm_struct *mm;
5261         int ret;
5262
5263         mm = get_task_mm(tsk);
5264         if (!mm)
5265                 return 0;
5266
5267         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5268
5269         mmput(mm);
5270
5271         return ret;
5272 }
5273 EXPORT_SYMBOL_GPL(access_process_vm);
5274
5275 /*
5276  * Print the name of a VMA.
5277  */
5278 void print_vma_addr(char *prefix, unsigned long ip)
5279 {
5280         struct mm_struct *mm = current->mm;
5281         struct vm_area_struct *vma;
5282
5283         /*
5284          * we might be running from an atomic context so we cannot sleep
5285          */
5286         if (!mmap_read_trylock(mm))
5287                 return;
5288
5289         vma = find_vma(mm, ip);
5290         if (vma && vma->vm_file) {
5291                 struct file *f = vma->vm_file;
5292                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5293                 if (buf) {
5294                         char *p;
5295
5296                         p = file_path(f, buf, PAGE_SIZE);
5297                         if (IS_ERR(p))
5298                                 p = "?";
5299                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5300                                         vma->vm_start,
5301                                         vma->vm_end - vma->vm_start);
5302                         free_page((unsigned long)buf);
5303                 }
5304         }
5305         mmap_read_unlock(mm);
5306 }
5307
5308 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5309 void __might_fault(const char *file, int line)
5310 {
5311         /*
5312          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5313          * holding the mmap_lock, this is safe because kernel memory doesn't
5314          * get paged out, therefore we'll never actually fault, and the
5315          * below annotations will generate false positives.
5316          */
5317         if (uaccess_kernel())
5318                 return;
5319         if (pagefault_disabled())
5320                 return;
5321         __might_sleep(file, line, 0);
5322 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5323         if (current->mm)
5324                 might_lock_read(&current->mm->mmap_lock);
5325 #endif
5326 }
5327 EXPORT_SYMBOL(__might_fault);
5328 #endif
5329
5330 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5331 /*
5332  * Process all subpages of the specified huge page with the specified
5333  * operation.  The target subpage will be processed last to keep its
5334  * cache lines hot.
5335  */
5336 static inline void process_huge_page(
5337         unsigned long addr_hint, unsigned int pages_per_huge_page,
5338         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5339         void *arg)
5340 {
5341         int i, n, base, l;
5342         unsigned long addr = addr_hint &
5343                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5344
5345         /* Process target subpage last to keep its cache lines hot */
5346         might_sleep();
5347         n = (addr_hint - addr) / PAGE_SIZE;
5348         if (2 * n <= pages_per_huge_page) {
5349                 /* If target subpage in first half of huge page */
5350                 base = 0;
5351                 l = n;
5352                 /* Process subpages at the end of huge page */
5353                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5354                         cond_resched();
5355                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5356                 }
5357         } else {
5358                 /* If target subpage in second half of huge page */
5359                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5360                 l = pages_per_huge_page - n;
5361                 /* Process subpages at the begin of huge page */
5362                 for (i = 0; i < base; i++) {
5363                         cond_resched();
5364                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5365                 }
5366         }
5367         /*
5368          * Process remaining subpages in left-right-left-right pattern
5369          * towards the target subpage
5370          */
5371         for (i = 0; i < l; i++) {
5372                 int left_idx = base + i;
5373                 int right_idx = base + 2 * l - 1 - i;
5374
5375                 cond_resched();
5376                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5377                 cond_resched();
5378                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5379         }
5380 }
5381
5382 static void clear_gigantic_page(struct page *page,
5383                                 unsigned long addr,
5384                                 unsigned int pages_per_huge_page)
5385 {
5386         int i;
5387         struct page *p = page;
5388
5389         might_sleep();
5390         for (i = 0; i < pages_per_huge_page;
5391              i++, p = mem_map_next(p, page, i)) {
5392                 cond_resched();
5393                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5394         }
5395 }
5396
5397 static void clear_subpage(unsigned long addr, int idx, void *arg)
5398 {
5399         struct page *page = arg;
5400
5401         clear_user_highpage(page + idx, addr);
5402 }
5403
5404 void clear_huge_page(struct page *page,
5405                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5406 {
5407         unsigned long addr = addr_hint &
5408                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5409
5410         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5411                 clear_gigantic_page(page, addr, pages_per_huge_page);
5412                 return;
5413         }
5414
5415         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5416 }
5417
5418 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5419                                     unsigned long addr,
5420                                     struct vm_area_struct *vma,
5421                                     unsigned int pages_per_huge_page)
5422 {
5423         int i;
5424         struct page *dst_base = dst;
5425         struct page *src_base = src;
5426
5427         for (i = 0; i < pages_per_huge_page; ) {
5428                 cond_resched();
5429                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5430
5431                 i++;
5432                 dst = mem_map_next(dst, dst_base, i);
5433                 src = mem_map_next(src, src_base, i);
5434         }
5435 }
5436
5437 struct copy_subpage_arg {
5438         struct page *dst;
5439         struct page *src;
5440         struct vm_area_struct *vma;
5441 };
5442
5443 static void copy_subpage(unsigned long addr, int idx, void *arg)
5444 {
5445         struct copy_subpage_arg *copy_arg = arg;
5446
5447         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5448                            addr, copy_arg->vma);
5449 }
5450
5451 void copy_user_huge_page(struct page *dst, struct page *src,
5452                          unsigned long addr_hint, struct vm_area_struct *vma,
5453                          unsigned int pages_per_huge_page)
5454 {
5455         unsigned long addr = addr_hint &
5456                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5457         struct copy_subpage_arg arg = {
5458                 .dst = dst,
5459                 .src = src,
5460                 .vma = vma,
5461         };
5462
5463         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5464                 copy_user_gigantic_page(dst, src, addr, vma,
5465                                         pages_per_huge_page);
5466                 return;
5467         }
5468
5469         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5470 }
5471
5472 long copy_huge_page_from_user(struct page *dst_page,
5473                                 const void __user *usr_src,
5474                                 unsigned int pages_per_huge_page,
5475                                 bool allow_pagefault)
5476 {
5477         void *src = (void *)usr_src;
5478         void *page_kaddr;
5479         unsigned long i, rc = 0;
5480         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5481         struct page *subpage = dst_page;
5482
5483         for (i = 0; i < pages_per_huge_page;
5484              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5485                 if (allow_pagefault)
5486                         page_kaddr = kmap(subpage);
5487                 else
5488                         page_kaddr = kmap_atomic(subpage);
5489                 rc = copy_from_user(page_kaddr,
5490                                 (const void __user *)(src + i * PAGE_SIZE),
5491                                 PAGE_SIZE);
5492                 if (allow_pagefault)
5493                         kunmap(subpage);
5494                 else
5495                         kunmap_atomic(page_kaddr);
5496
5497                 ret_val -= (PAGE_SIZE - rc);
5498                 if (rc)
5499                         break;
5500
5501                 flush_dcache_page(subpage);
5502
5503                 cond_resched();
5504         }
5505         return ret_val;
5506 }
5507 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5508
5509 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5510
5511 static struct kmem_cache *page_ptl_cachep;
5512
5513 void __init ptlock_cache_init(void)
5514 {
5515         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5516                         SLAB_PANIC, NULL);
5517 }
5518
5519 bool ptlock_alloc(struct page *page)
5520 {
5521         spinlock_t *ptl;
5522
5523         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5524         if (!ptl)
5525                 return false;
5526         page->ptl = ptl;
5527         return true;
5528 }
5529
5530 void ptlock_free(struct page *page)
5531 {
5532         kmem_cache_free(page_ptl_cachep, page->ptl);
5533 }
5534 #endif