GNU Linux-libre 6.4.15-gnu
[releases.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102         return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112
113 struct mem_cgroup_tree_per_node {
114         struct rb_root rb_root;
115         struct rb_node *rb_rightmost;
116         spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127         struct list_head list;
128         struct eventfd_ctx *eventfd;
129 };
130
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135         /*
136          * memcg which the event belongs to.
137          */
138         struct mem_cgroup *memcg;
139         /*
140          * eventfd to signal userspace about the event.
141          */
142         struct eventfd_ctx *eventfd;
143         /*
144          * Each of these stored in a list by the cgroup.
145          */
146         struct list_head list;
147         /*
148          * register_event() callback will be used to add new userspace
149          * waiter for changes related to this event.  Use eventfd_signal()
150          * on eventfd to send notification to userspace.
151          */
152         int (*register_event)(struct mem_cgroup *memcg,
153                               struct eventfd_ctx *eventfd, const char *args);
154         /*
155          * unregister_event() callback will be called when userspace closes
156          * the eventfd or on cgroup removing.  This callback must be set,
157          * if you want provide notification functionality.
158          */
159         void (*unregister_event)(struct mem_cgroup *memcg,
160                                  struct eventfd_ctx *eventfd);
161         /*
162          * All fields below needed to unregister event when
163          * userspace closes eventfd.
164          */
165         poll_table pt;
166         wait_queue_head_t *wqh;
167         wait_queue_entry_t wait;
168         struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON       0x1U
179 #define MOVE_FILE       0x2U
180 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184         spinlock_t        lock; /* for from, to */
185         struct mm_struct  *mm;
186         struct mem_cgroup *from;
187         struct mem_cgroup *to;
188         unsigned long flags;
189         unsigned long precharge;
190         unsigned long moved_charge;
191         unsigned long moved_swap;
192         struct task_struct *moving_task;        /* a task moving charges */
193         wait_queue_head_t waitq;                /* a waitq for other context */
194 } mc = {
195         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208         _MEM,
209         _MEMSWAP,
210         _KMEM,
211         _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
217
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)            \
224         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
225              iter != NULL;                              \
226              iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter)                       \
229         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool task_is_dying(void)
234 {
235         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236                 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242         if (!memcg)
243                 memcg = root_mem_cgroup;
244         return &memcg->vmpressure;
245 }
246
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249         return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254
255 bool mem_cgroup_kmem_disabled(void)
256 {
257         return cgroup_memory_nokmem;
258 }
259
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261                                       unsigned int nr_pages);
262
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266         unsigned int nr_bytes;
267         unsigned int nr_pages;
268         unsigned long flags;
269
270         /*
271          * At this point all allocated objects are freed, and
272          * objcg->nr_charged_bytes can't have an arbitrary byte value.
273          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274          *
275          * The following sequence can lead to it:
276          * 1) CPU0: objcg == stock->cached_objcg
277          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278          *          PAGE_SIZE bytes are charged
279          * 3) CPU1: a process from another memcg is allocating something,
280          *          the stock if flushed,
281          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282          * 5) CPU0: we do release this object,
283          *          92 bytes are added to stock->nr_bytes
284          * 6) CPU0: stock is flushed,
285          *          92 bytes are added to objcg->nr_charged_bytes
286          *
287          * In the result, nr_charged_bytes == PAGE_SIZE.
288          * This page will be uncharged in obj_cgroup_release().
289          */
290         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292         nr_pages = nr_bytes >> PAGE_SHIFT;
293
294         if (nr_pages)
295                 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297         spin_lock_irqsave(&objcg_lock, flags);
298         list_del(&objcg->list);
299         spin_unlock_irqrestore(&objcg_lock, flags);
300
301         percpu_ref_exit(ref);
302         kfree_rcu(objcg, rcu);
303 }
304
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307         struct obj_cgroup *objcg;
308         int ret;
309
310         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311         if (!objcg)
312                 return NULL;
313
314         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315                               GFP_KERNEL);
316         if (ret) {
317                 kfree(objcg);
318                 return NULL;
319         }
320         INIT_LIST_HEAD(&objcg->list);
321         return objcg;
322 }
323
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325                                   struct mem_cgroup *parent)
326 {
327         struct obj_cgroup *objcg, *iter;
328
329         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331         spin_lock_irq(&objcg_lock);
332
333         /* 1) Ready to reparent active objcg. */
334         list_add(&objcg->list, &memcg->objcg_list);
335         /* 2) Reparent active objcg and already reparented objcgs to parent. */
336         list_for_each_entry(iter, &memcg->objcg_list, list)
337                 WRITE_ONCE(iter->memcg, parent);
338         /* 3) Move already reparented objcgs to the parent's list */
339         list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341         spin_unlock_irq(&objcg_lock);
342
343         percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372         struct mem_cgroup *memcg = folio_memcg(folio);
373
374         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375                 memcg = root_mem_cgroup;
376
377         return &memcg->css;
378 }
379
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395         struct mem_cgroup *memcg;
396         unsigned long ino = 0;
397
398         rcu_read_lock();
399         /* page_folio() is racy here, but the entire function is racy anyway */
400         memcg = folio_memcg_check(page_folio(page));
401
402         while (memcg && !(memcg->css.flags & CSS_ONLINE))
403                 memcg = parent_mem_cgroup(memcg);
404         if (memcg)
405                 ino = cgroup_ino(memcg->css.cgroup);
406         rcu_read_unlock();
407         return ino;
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411                                          struct mem_cgroup_tree_per_node *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_node *mz_node;
417         bool rightmost = true;
418
419         if (mz->on_tree)
420                 return;
421
422         mz->usage_in_excess = new_usage_in_excess;
423         if (!mz->usage_in_excess)
424                 return;
425         while (*p) {
426                 parent = *p;
427                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428                                         tree_node);
429                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430                         p = &(*p)->rb_left;
431                         rightmost = false;
432                 } else {
433                         p = &(*p)->rb_right;
434                 }
435         }
436
437         if (rightmost)
438                 mctz->rb_rightmost = &mz->tree_node;
439
440         rb_link_node(&mz->tree_node, parent, p);
441         rb_insert_color(&mz->tree_node, &mctz->rb_root);
442         mz->on_tree = true;
443 }
444
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446                                          struct mem_cgroup_tree_per_node *mctz)
447 {
448         if (!mz->on_tree)
449                 return;
450
451         if (&mz->tree_node == mctz->rb_rightmost)
452                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454         rb_erase(&mz->tree_node, &mctz->rb_root);
455         mz->on_tree = false;
456 }
457
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459                                        struct mem_cgroup_tree_per_node *mctz)
460 {
461         unsigned long flags;
462
463         spin_lock_irqsave(&mctz->lock, flags);
464         __mem_cgroup_remove_exceeded(mz, mctz);
465         spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470         unsigned long nr_pages = page_counter_read(&memcg->memory);
471         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472         unsigned long excess = 0;
473
474         if (nr_pages > soft_limit)
475                 excess = nr_pages - soft_limit;
476
477         return excess;
478 }
479
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482         unsigned long excess;
483         struct mem_cgroup_per_node *mz;
484         struct mem_cgroup_tree_per_node *mctz;
485
486         if (lru_gen_enabled()) {
487                 if (soft_limit_excess(memcg))
488                         lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
489                 return;
490         }
491
492         mctz = soft_limit_tree.rb_tree_per_node[nid];
493         if (!mctz)
494                 return;
495         /*
496          * Necessary to update all ancestors when hierarchy is used.
497          * because their event counter is not touched.
498          */
499         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500                 mz = memcg->nodeinfo[nid];
501                 excess = soft_limit_excess(memcg);
502                 /*
503                  * We have to update the tree if mz is on RB-tree or
504                  * mem is over its softlimit.
505                  */
506                 if (excess || mz->on_tree) {
507                         unsigned long flags;
508
509                         spin_lock_irqsave(&mctz->lock, flags);
510                         /* if on-tree, remove it */
511                         if (mz->on_tree)
512                                 __mem_cgroup_remove_exceeded(mz, mctz);
513                         /*
514                          * Insert again. mz->usage_in_excess will be updated.
515                          * If excess is 0, no tree ops.
516                          */
517                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
518                         spin_unlock_irqrestore(&mctz->lock, flags);
519                 }
520         }
521 }
522
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525         struct mem_cgroup_tree_per_node *mctz;
526         struct mem_cgroup_per_node *mz;
527         int nid;
528
529         for_each_node(nid) {
530                 mz = memcg->nodeinfo[nid];
531                 mctz = soft_limit_tree.rb_tree_per_node[nid];
532                 if (mctz)
533                         mem_cgroup_remove_exceeded(mz, mctz);
534         }
535 }
536
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540         struct mem_cgroup_per_node *mz;
541
542 retry:
543         mz = NULL;
544         if (!mctz->rb_rightmost)
545                 goto done;              /* Nothing to reclaim from */
546
547         mz = rb_entry(mctz->rb_rightmost,
548                       struct mem_cgroup_per_node, tree_node);
549         /*
550          * Remove the node now but someone else can add it back,
551          * we will to add it back at the end of reclaim to its correct
552          * position in the tree.
553          */
554         __mem_cgroup_remove_exceeded(mz, mctz);
555         if (!soft_limit_excess(mz->memcg) ||
556             !css_tryget(&mz->memcg->css))
557                 goto retry;
558 done:
559         return mz;
560 }
561
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565         struct mem_cgroup_per_node *mz;
566
567         spin_lock_irq(&mctz->lock);
568         mz = __mem_cgroup_largest_soft_limit_node(mctz);
569         spin_unlock_irq(&mctz->lock);
570         return mz;
571 }
572
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594
595 #define FLUSH_TIME (2UL*HZ)
596
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605         preempt_disable_nested();
606         VM_WARN_ON_IRQS_ENABLED();
607 }
608
609 static void __memcg_stats_lock(void)
610 {
611         preempt_disable_nested();
612 }
613
614 static void memcg_stats_unlock(void)
615 {
616         preempt_enable_nested();
617 }
618
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621         unsigned int x;
622
623         if (!val)
624                 return;
625
626         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628         x = __this_cpu_add_return(stats_updates, abs(val));
629         if (x > MEMCG_CHARGE_BATCH) {
630                 /*
631                  * If stats_flush_threshold exceeds the threshold
632                  * (>num_online_cpus()), cgroup stats update will be triggered
633                  * in __mem_cgroup_flush_stats(). Increasing this var further
634                  * is redundant and simply adds overhead in atomic update.
635                  */
636                 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637                         atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638                 __this_cpu_write(stats_updates, 0);
639         }
640 }
641
642 static void do_flush_stats(bool atomic)
643 {
644         /*
645          * We always flush the entire tree, so concurrent flushers can just
646          * skip. This avoids a thundering herd problem on the rstat global lock
647          * from memcg flushers (e.g. reclaim, refault, etc).
648          */
649         if (atomic_read(&stats_flush_ongoing) ||
650             atomic_xchg(&stats_flush_ongoing, 1))
651                 return;
652
653         WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655         if (atomic)
656                 cgroup_rstat_flush_atomic(root_mem_cgroup->css.cgroup);
657         else
658                 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
659
660         atomic_set(&stats_flush_threshold, 0);
661         atomic_set(&stats_flush_ongoing, 0);
662 }
663
664 static bool should_flush_stats(void)
665 {
666         return atomic_read(&stats_flush_threshold) > num_online_cpus();
667 }
668
669 void mem_cgroup_flush_stats(void)
670 {
671         if (should_flush_stats())
672                 do_flush_stats(false);
673 }
674
675 void mem_cgroup_flush_stats_atomic(void)
676 {
677         if (should_flush_stats())
678                 do_flush_stats(true);
679 }
680
681 void mem_cgroup_flush_stats_ratelimited(void)
682 {
683         if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
684                 mem_cgroup_flush_stats();
685 }
686
687 static void flush_memcg_stats_dwork(struct work_struct *w)
688 {
689         /*
690          * Always flush here so that flushing in latency-sensitive paths is
691          * as cheap as possible.
692          */
693         do_flush_stats(false);
694         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
695 }
696
697 /* Subset of vm_event_item to report for memcg event stats */
698 static const unsigned int memcg_vm_event_stat[] = {
699         PGPGIN,
700         PGPGOUT,
701         PGSCAN_KSWAPD,
702         PGSCAN_DIRECT,
703         PGSCAN_KHUGEPAGED,
704         PGSTEAL_KSWAPD,
705         PGSTEAL_DIRECT,
706         PGSTEAL_KHUGEPAGED,
707         PGFAULT,
708         PGMAJFAULT,
709         PGREFILL,
710         PGACTIVATE,
711         PGDEACTIVATE,
712         PGLAZYFREE,
713         PGLAZYFREED,
714 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
715         ZSWPIN,
716         ZSWPOUT,
717 #endif
718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
719         THP_FAULT_ALLOC,
720         THP_COLLAPSE_ALLOC,
721 #endif
722 };
723
724 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
725 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
726
727 static void init_memcg_events(void)
728 {
729         int i;
730
731         for (i = 0; i < NR_MEMCG_EVENTS; ++i)
732                 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
733 }
734
735 static inline int memcg_events_index(enum vm_event_item idx)
736 {
737         return mem_cgroup_events_index[idx] - 1;
738 }
739
740 struct memcg_vmstats_percpu {
741         /* Local (CPU and cgroup) page state & events */
742         long                    state[MEMCG_NR_STAT];
743         unsigned long           events[NR_MEMCG_EVENTS];
744
745         /* Delta calculation for lockless upward propagation */
746         long                    state_prev[MEMCG_NR_STAT];
747         unsigned long           events_prev[NR_MEMCG_EVENTS];
748
749         /* Cgroup1: threshold notifications & softlimit tree updates */
750         unsigned long           nr_page_events;
751         unsigned long           targets[MEM_CGROUP_NTARGETS];
752 };
753
754 struct memcg_vmstats {
755         /* Aggregated (CPU and subtree) page state & events */
756         long                    state[MEMCG_NR_STAT];
757         unsigned long           events[NR_MEMCG_EVENTS];
758
759         /* Pending child counts during tree propagation */
760         long                    state_pending[MEMCG_NR_STAT];
761         unsigned long           events_pending[NR_MEMCG_EVENTS];
762 };
763
764 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
765 {
766         long x = READ_ONCE(memcg->vmstats->state[idx]);
767 #ifdef CONFIG_SMP
768         if (x < 0)
769                 x = 0;
770 #endif
771         return x;
772 }
773
774 /**
775  * __mod_memcg_state - update cgroup memory statistics
776  * @memcg: the memory cgroup
777  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
778  * @val: delta to add to the counter, can be negative
779  */
780 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
781 {
782         if (mem_cgroup_disabled())
783                 return;
784
785         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
786         memcg_rstat_updated(memcg, val);
787 }
788
789 /* idx can be of type enum memcg_stat_item or node_stat_item. */
790 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
791 {
792         long x = 0;
793         int cpu;
794
795         for_each_possible_cpu(cpu)
796                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
797 #ifdef CONFIG_SMP
798         if (x < 0)
799                 x = 0;
800 #endif
801         return x;
802 }
803
804 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
805                               int val)
806 {
807         struct mem_cgroup_per_node *pn;
808         struct mem_cgroup *memcg;
809
810         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
811         memcg = pn->memcg;
812
813         /*
814          * The caller from rmap relay on disabled preemption becase they never
815          * update their counter from in-interrupt context. For these two
816          * counters we check that the update is never performed from an
817          * interrupt context while other caller need to have disabled interrupt.
818          */
819         __memcg_stats_lock();
820         if (IS_ENABLED(CONFIG_DEBUG_VM)) {
821                 switch (idx) {
822                 case NR_ANON_MAPPED:
823                 case NR_FILE_MAPPED:
824                 case NR_ANON_THPS:
825                 case NR_SHMEM_PMDMAPPED:
826                 case NR_FILE_PMDMAPPED:
827                         WARN_ON_ONCE(!in_task());
828                         break;
829                 default:
830                         VM_WARN_ON_IRQS_ENABLED();
831                 }
832         }
833
834         /* Update memcg */
835         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
836
837         /* Update lruvec */
838         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
839
840         memcg_rstat_updated(memcg, val);
841         memcg_stats_unlock();
842 }
843
844 /**
845  * __mod_lruvec_state - update lruvec memory statistics
846  * @lruvec: the lruvec
847  * @idx: the stat item
848  * @val: delta to add to the counter, can be negative
849  *
850  * The lruvec is the intersection of the NUMA node and a cgroup. This
851  * function updates the all three counters that are affected by a
852  * change of state at this level: per-node, per-cgroup, per-lruvec.
853  */
854 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
855                         int val)
856 {
857         /* Update node */
858         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
859
860         /* Update memcg and lruvec */
861         if (!mem_cgroup_disabled())
862                 __mod_memcg_lruvec_state(lruvec, idx, val);
863 }
864
865 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
866                              int val)
867 {
868         struct page *head = compound_head(page); /* rmap on tail pages */
869         struct mem_cgroup *memcg;
870         pg_data_t *pgdat = page_pgdat(page);
871         struct lruvec *lruvec;
872
873         rcu_read_lock();
874         memcg = page_memcg(head);
875         /* Untracked pages have no memcg, no lruvec. Update only the node */
876         if (!memcg) {
877                 rcu_read_unlock();
878                 __mod_node_page_state(pgdat, idx, val);
879                 return;
880         }
881
882         lruvec = mem_cgroup_lruvec(memcg, pgdat);
883         __mod_lruvec_state(lruvec, idx, val);
884         rcu_read_unlock();
885 }
886 EXPORT_SYMBOL(__mod_lruvec_page_state);
887
888 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
889 {
890         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
891         struct mem_cgroup *memcg;
892         struct lruvec *lruvec;
893
894         rcu_read_lock();
895         memcg = mem_cgroup_from_slab_obj(p);
896
897         /*
898          * Untracked pages have no memcg, no lruvec. Update only the
899          * node. If we reparent the slab objects to the root memcg,
900          * when we free the slab object, we need to update the per-memcg
901          * vmstats to keep it correct for the root memcg.
902          */
903         if (!memcg) {
904                 __mod_node_page_state(pgdat, idx, val);
905         } else {
906                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
907                 __mod_lruvec_state(lruvec, idx, val);
908         }
909         rcu_read_unlock();
910 }
911
912 /**
913  * __count_memcg_events - account VM events in a cgroup
914  * @memcg: the memory cgroup
915  * @idx: the event item
916  * @count: the number of events that occurred
917  */
918 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
919                           unsigned long count)
920 {
921         int index = memcg_events_index(idx);
922
923         if (mem_cgroup_disabled() || index < 0)
924                 return;
925
926         memcg_stats_lock();
927         __this_cpu_add(memcg->vmstats_percpu->events[index], count);
928         memcg_rstat_updated(memcg, count);
929         memcg_stats_unlock();
930 }
931
932 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
933 {
934         int index = memcg_events_index(event);
935
936         if (index < 0)
937                 return 0;
938         return READ_ONCE(memcg->vmstats->events[index]);
939 }
940
941 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
942 {
943         long x = 0;
944         int cpu;
945         int index = memcg_events_index(event);
946
947         if (index < 0)
948                 return 0;
949
950         for_each_possible_cpu(cpu)
951                 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
952         return x;
953 }
954
955 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
956                                          int nr_pages)
957 {
958         /* pagein of a big page is an event. So, ignore page size */
959         if (nr_pages > 0)
960                 __count_memcg_events(memcg, PGPGIN, 1);
961         else {
962                 __count_memcg_events(memcg, PGPGOUT, 1);
963                 nr_pages = -nr_pages; /* for event */
964         }
965
966         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
967 }
968
969 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
970                                        enum mem_cgroup_events_target target)
971 {
972         unsigned long val, next;
973
974         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
975         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
976         /* from time_after() in jiffies.h */
977         if ((long)(next - val) < 0) {
978                 switch (target) {
979                 case MEM_CGROUP_TARGET_THRESH:
980                         next = val + THRESHOLDS_EVENTS_TARGET;
981                         break;
982                 case MEM_CGROUP_TARGET_SOFTLIMIT:
983                         next = val + SOFTLIMIT_EVENTS_TARGET;
984                         break;
985                 default:
986                         break;
987                 }
988                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
989                 return true;
990         }
991         return false;
992 }
993
994 /*
995  * Check events in order.
996  *
997  */
998 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
999 {
1000         if (IS_ENABLED(CONFIG_PREEMPT_RT))
1001                 return;
1002
1003         /* threshold event is triggered in finer grain than soft limit */
1004         if (unlikely(mem_cgroup_event_ratelimit(memcg,
1005                                                 MEM_CGROUP_TARGET_THRESH))) {
1006                 bool do_softlimit;
1007
1008                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1009                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
1010                 mem_cgroup_threshold(memcg);
1011                 if (unlikely(do_softlimit))
1012                         mem_cgroup_update_tree(memcg, nid);
1013         }
1014 }
1015
1016 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1017 {
1018         /*
1019          * mm_update_next_owner() may clear mm->owner to NULL
1020          * if it races with swapoff, page migration, etc.
1021          * So this can be called with p == NULL.
1022          */
1023         if (unlikely(!p))
1024                 return NULL;
1025
1026         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1027 }
1028 EXPORT_SYMBOL(mem_cgroup_from_task);
1029
1030 static __always_inline struct mem_cgroup *active_memcg(void)
1031 {
1032         if (!in_task())
1033                 return this_cpu_read(int_active_memcg);
1034         else
1035                 return current->active_memcg;
1036 }
1037
1038 /**
1039  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1040  * @mm: mm from which memcg should be extracted. It can be NULL.
1041  *
1042  * Obtain a reference on mm->memcg and returns it if successful. If mm
1043  * is NULL, then the memcg is chosen as follows:
1044  * 1) The active memcg, if set.
1045  * 2) current->mm->memcg, if available
1046  * 3) root memcg
1047  * If mem_cgroup is disabled, NULL is returned.
1048  */
1049 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1050 {
1051         struct mem_cgroup *memcg;
1052
1053         if (mem_cgroup_disabled())
1054                 return NULL;
1055
1056         /*
1057          * Page cache insertions can happen without an
1058          * actual mm context, e.g. during disk probing
1059          * on boot, loopback IO, acct() writes etc.
1060          *
1061          * No need to css_get on root memcg as the reference
1062          * counting is disabled on the root level in the
1063          * cgroup core. See CSS_NO_REF.
1064          */
1065         if (unlikely(!mm)) {
1066                 memcg = active_memcg();
1067                 if (unlikely(memcg)) {
1068                         /* remote memcg must hold a ref */
1069                         css_get(&memcg->css);
1070                         return memcg;
1071                 }
1072                 mm = current->mm;
1073                 if (unlikely(!mm))
1074                         return root_mem_cgroup;
1075         }
1076
1077         rcu_read_lock();
1078         do {
1079                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1080                 if (unlikely(!memcg))
1081                         memcg = root_mem_cgroup;
1082         } while (!css_tryget(&memcg->css));
1083         rcu_read_unlock();
1084         return memcg;
1085 }
1086 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1087
1088 static __always_inline bool memcg_kmem_bypass(void)
1089 {
1090         /* Allow remote memcg charging from any context. */
1091         if (unlikely(active_memcg()))
1092                 return false;
1093
1094         /* Memcg to charge can't be determined. */
1095         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1096                 return true;
1097
1098         return false;
1099 }
1100
1101 /**
1102  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1103  * @root: hierarchy root
1104  * @prev: previously returned memcg, NULL on first invocation
1105  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1106  *
1107  * Returns references to children of the hierarchy below @root, or
1108  * @root itself, or %NULL after a full round-trip.
1109  *
1110  * Caller must pass the return value in @prev on subsequent
1111  * invocations for reference counting, or use mem_cgroup_iter_break()
1112  * to cancel a hierarchy walk before the round-trip is complete.
1113  *
1114  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1115  * in the hierarchy among all concurrent reclaimers operating on the
1116  * same node.
1117  */
1118 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1119                                    struct mem_cgroup *prev,
1120                                    struct mem_cgroup_reclaim_cookie *reclaim)
1121 {
1122         struct mem_cgroup_reclaim_iter *iter;
1123         struct cgroup_subsys_state *css = NULL;
1124         struct mem_cgroup *memcg = NULL;
1125         struct mem_cgroup *pos = NULL;
1126
1127         if (mem_cgroup_disabled())
1128                 return NULL;
1129
1130         if (!root)
1131                 root = root_mem_cgroup;
1132
1133         rcu_read_lock();
1134
1135         if (reclaim) {
1136                 struct mem_cgroup_per_node *mz;
1137
1138                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1139                 iter = &mz->iter;
1140
1141                 /*
1142                  * On start, join the current reclaim iteration cycle.
1143                  * Exit when a concurrent walker completes it.
1144                  */
1145                 if (!prev)
1146                         reclaim->generation = iter->generation;
1147                 else if (reclaim->generation != iter->generation)
1148                         goto out_unlock;
1149
1150                 while (1) {
1151                         pos = READ_ONCE(iter->position);
1152                         if (!pos || css_tryget(&pos->css))
1153                                 break;
1154                         /*
1155                          * css reference reached zero, so iter->position will
1156                          * be cleared by ->css_released. However, we should not
1157                          * rely on this happening soon, because ->css_released
1158                          * is called from a work queue, and by busy-waiting we
1159                          * might block it. So we clear iter->position right
1160                          * away.
1161                          */
1162                         (void)cmpxchg(&iter->position, pos, NULL);
1163                 }
1164         } else if (prev) {
1165                 pos = prev;
1166         }
1167
1168         if (pos)
1169                 css = &pos->css;
1170
1171         for (;;) {
1172                 css = css_next_descendant_pre(css, &root->css);
1173                 if (!css) {
1174                         /*
1175                          * Reclaimers share the hierarchy walk, and a
1176                          * new one might jump in right at the end of
1177                          * the hierarchy - make sure they see at least
1178                          * one group and restart from the beginning.
1179                          */
1180                         if (!prev)
1181                                 continue;
1182                         break;
1183                 }
1184
1185                 /*
1186                  * Verify the css and acquire a reference.  The root
1187                  * is provided by the caller, so we know it's alive
1188                  * and kicking, and don't take an extra reference.
1189                  */
1190                 if (css == &root->css || css_tryget(css)) {
1191                         memcg = mem_cgroup_from_css(css);
1192                         break;
1193                 }
1194         }
1195
1196         if (reclaim) {
1197                 /*
1198                  * The position could have already been updated by a competing
1199                  * thread, so check that the value hasn't changed since we read
1200                  * it to avoid reclaiming from the same cgroup twice.
1201                  */
1202                 (void)cmpxchg(&iter->position, pos, memcg);
1203
1204                 if (pos)
1205                         css_put(&pos->css);
1206
1207                 if (!memcg)
1208                         iter->generation++;
1209         }
1210
1211 out_unlock:
1212         rcu_read_unlock();
1213         if (prev && prev != root)
1214                 css_put(&prev->css);
1215
1216         return memcg;
1217 }
1218
1219 /**
1220  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221  * @root: hierarchy root
1222  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223  */
1224 void mem_cgroup_iter_break(struct mem_cgroup *root,
1225                            struct mem_cgroup *prev)
1226 {
1227         if (!root)
1228                 root = root_mem_cgroup;
1229         if (prev && prev != root)
1230                 css_put(&prev->css);
1231 }
1232
1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234                                         struct mem_cgroup *dead_memcg)
1235 {
1236         struct mem_cgroup_reclaim_iter *iter;
1237         struct mem_cgroup_per_node *mz;
1238         int nid;
1239
1240         for_each_node(nid) {
1241                 mz = from->nodeinfo[nid];
1242                 iter = &mz->iter;
1243                 cmpxchg(&iter->position, dead_memcg, NULL);
1244         }
1245 }
1246
1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248 {
1249         struct mem_cgroup *memcg = dead_memcg;
1250         struct mem_cgroup *last;
1251
1252         do {
1253                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254                 last = memcg;
1255         } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257         /*
1258          * When cgroup1 non-hierarchy mode is used,
1259          * parent_mem_cgroup() does not walk all the way up to the
1260          * cgroup root (root_mem_cgroup). So we have to handle
1261          * dead_memcg from cgroup root separately.
1262          */
1263         if (!mem_cgroup_is_root(last))
1264                 __invalidate_reclaim_iterators(root_mem_cgroup,
1265                                                 dead_memcg);
1266 }
1267
1268 /**
1269  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270  * @memcg: hierarchy root
1271  * @fn: function to call for each task
1272  * @arg: argument passed to @fn
1273  *
1274  * This function iterates over tasks attached to @memcg or to any of its
1275  * descendants and calls @fn for each task. If @fn returns a non-zero
1276  * value, the function breaks the iteration loop and returns the value.
1277  * Otherwise, it will iterate over all tasks and return 0.
1278  *
1279  * This function must not be called for the root memory cgroup.
1280  */
1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282                           int (*fn)(struct task_struct *, void *), void *arg)
1283 {
1284         struct mem_cgroup *iter;
1285         int ret = 0;
1286
1287         BUG_ON(mem_cgroup_is_root(memcg));
1288
1289         for_each_mem_cgroup_tree(iter, memcg) {
1290                 struct css_task_iter it;
1291                 struct task_struct *task;
1292
1293                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294                 while (!ret && (task = css_task_iter_next(&it)))
1295                         ret = fn(task, arg);
1296                 css_task_iter_end(&it);
1297                 if (ret) {
1298                         mem_cgroup_iter_break(memcg, iter);
1299                         break;
1300                 }
1301         }
1302         return ret;
1303 }
1304
1305 #ifdef CONFIG_DEBUG_VM
1306 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1307 {
1308         struct mem_cgroup *memcg;
1309
1310         if (mem_cgroup_disabled())
1311                 return;
1312
1313         memcg = folio_memcg(folio);
1314
1315         if (!memcg)
1316                 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1317         else
1318                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1319 }
1320 #endif
1321
1322 /**
1323  * folio_lruvec_lock - Lock the lruvec for a folio.
1324  * @folio: Pointer to the folio.
1325  *
1326  * These functions are safe to use under any of the following conditions:
1327  * - folio locked
1328  * - folio_test_lru false
1329  * - folio_memcg_lock()
1330  * - folio frozen (refcount of 0)
1331  *
1332  * Return: The lruvec this folio is on with its lock held.
1333  */
1334 struct lruvec *folio_lruvec_lock(struct folio *folio)
1335 {
1336         struct lruvec *lruvec = folio_lruvec(folio);
1337
1338         spin_lock(&lruvec->lru_lock);
1339         lruvec_memcg_debug(lruvec, folio);
1340
1341         return lruvec;
1342 }
1343
1344 /**
1345  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1346  * @folio: Pointer to the folio.
1347  *
1348  * These functions are safe to use under any of the following conditions:
1349  * - folio locked
1350  * - folio_test_lru false
1351  * - folio_memcg_lock()
1352  * - folio frozen (refcount of 0)
1353  *
1354  * Return: The lruvec this folio is on with its lock held and interrupts
1355  * disabled.
1356  */
1357 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1358 {
1359         struct lruvec *lruvec = folio_lruvec(folio);
1360
1361         spin_lock_irq(&lruvec->lru_lock);
1362         lruvec_memcg_debug(lruvec, folio);
1363
1364         return lruvec;
1365 }
1366
1367 /**
1368  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1369  * @folio: Pointer to the folio.
1370  * @flags: Pointer to irqsave flags.
1371  *
1372  * These functions are safe to use under any of the following conditions:
1373  * - folio locked
1374  * - folio_test_lru false
1375  * - folio_memcg_lock()
1376  * - folio frozen (refcount of 0)
1377  *
1378  * Return: The lruvec this folio is on with its lock held and interrupts
1379  * disabled.
1380  */
1381 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1382                 unsigned long *flags)
1383 {
1384         struct lruvec *lruvec = folio_lruvec(folio);
1385
1386         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1387         lruvec_memcg_debug(lruvec, folio);
1388
1389         return lruvec;
1390 }
1391
1392 /**
1393  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1394  * @lruvec: mem_cgroup per zone lru vector
1395  * @lru: index of lru list the page is sitting on
1396  * @zid: zone id of the accounted pages
1397  * @nr_pages: positive when adding or negative when removing
1398  *
1399  * This function must be called under lru_lock, just before a page is added
1400  * to or just after a page is removed from an lru list.
1401  */
1402 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403                                 int zid, int nr_pages)
1404 {
1405         struct mem_cgroup_per_node *mz;
1406         unsigned long *lru_size;
1407         long size;
1408
1409         if (mem_cgroup_disabled())
1410                 return;
1411
1412         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1413         lru_size = &mz->lru_zone_size[zid][lru];
1414
1415         if (nr_pages < 0)
1416                 *lru_size += nr_pages;
1417
1418         size = *lru_size;
1419         if (WARN_ONCE(size < 0,
1420                 "%s(%p, %d, %d): lru_size %ld\n",
1421                 __func__, lruvec, lru, nr_pages, size)) {
1422                 VM_BUG_ON(1);
1423                 *lru_size = 0;
1424         }
1425
1426         if (nr_pages > 0)
1427                 *lru_size += nr_pages;
1428 }
1429
1430 /**
1431  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1432  * @memcg: the memory cgroup
1433  *
1434  * Returns the maximum amount of memory @mem can be charged with, in
1435  * pages.
1436  */
1437 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1438 {
1439         unsigned long margin = 0;
1440         unsigned long count;
1441         unsigned long limit;
1442
1443         count = page_counter_read(&memcg->memory);
1444         limit = READ_ONCE(memcg->memory.max);
1445         if (count < limit)
1446                 margin = limit - count;
1447
1448         if (do_memsw_account()) {
1449                 count = page_counter_read(&memcg->memsw);
1450                 limit = READ_ONCE(memcg->memsw.max);
1451                 if (count < limit)
1452                         margin = min(margin, limit - count);
1453                 else
1454                         margin = 0;
1455         }
1456
1457         return margin;
1458 }
1459
1460 /*
1461  * A routine for checking "mem" is under move_account() or not.
1462  *
1463  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1464  * moving cgroups. This is for waiting at high-memory pressure
1465  * caused by "move".
1466  */
1467 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1468 {
1469         struct mem_cgroup *from;
1470         struct mem_cgroup *to;
1471         bool ret = false;
1472         /*
1473          * Unlike task_move routines, we access mc.to, mc.from not under
1474          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1475          */
1476         spin_lock(&mc.lock);
1477         from = mc.from;
1478         to = mc.to;
1479         if (!from)
1480                 goto unlock;
1481
1482         ret = mem_cgroup_is_descendant(from, memcg) ||
1483                 mem_cgroup_is_descendant(to, memcg);
1484 unlock:
1485         spin_unlock(&mc.lock);
1486         return ret;
1487 }
1488
1489 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1490 {
1491         if (mc.moving_task && current != mc.moving_task) {
1492                 if (mem_cgroup_under_move(memcg)) {
1493                         DEFINE_WAIT(wait);
1494                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1495                         /* moving charge context might have finished. */
1496                         if (mc.moving_task)
1497                                 schedule();
1498                         finish_wait(&mc.waitq, &wait);
1499                         return true;
1500                 }
1501         }
1502         return false;
1503 }
1504
1505 struct memory_stat {
1506         const char *name;
1507         unsigned int idx;
1508 };
1509
1510 static const struct memory_stat memory_stats[] = {
1511         { "anon",                       NR_ANON_MAPPED                  },
1512         { "file",                       NR_FILE_PAGES                   },
1513         { "kernel",                     MEMCG_KMEM                      },
1514         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1515         { "pagetables",                 NR_PAGETABLE                    },
1516         { "sec_pagetables",             NR_SECONDARY_PAGETABLE          },
1517         { "percpu",                     MEMCG_PERCPU_B                  },
1518         { "sock",                       MEMCG_SOCK                      },
1519         { "vmalloc",                    MEMCG_VMALLOC                   },
1520         { "shmem",                      NR_SHMEM                        },
1521 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1522         { "zswap",                      MEMCG_ZSWAP_B                   },
1523         { "zswapped",                   MEMCG_ZSWAPPED                  },
1524 #endif
1525         { "file_mapped",                NR_FILE_MAPPED                  },
1526         { "file_dirty",                 NR_FILE_DIRTY                   },
1527         { "file_writeback",             NR_WRITEBACK                    },
1528 #ifdef CONFIG_SWAP
1529         { "swapcached",                 NR_SWAPCACHE                    },
1530 #endif
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532         { "anon_thp",                   NR_ANON_THPS                    },
1533         { "file_thp",                   NR_FILE_THPS                    },
1534         { "shmem_thp",                  NR_SHMEM_THPS                   },
1535 #endif
1536         { "inactive_anon",              NR_INACTIVE_ANON                },
1537         { "active_anon",                NR_ACTIVE_ANON                  },
1538         { "inactive_file",              NR_INACTIVE_FILE                },
1539         { "active_file",                NR_ACTIVE_FILE                  },
1540         { "unevictable",                NR_UNEVICTABLE                  },
1541         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1542         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1543
1544         /* The memory events */
1545         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1546         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1547         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1548         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1549         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1550         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1551         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1552 };
1553
1554 /* Translate stat items to the correct unit for memory.stat output */
1555 static int memcg_page_state_unit(int item)
1556 {
1557         switch (item) {
1558         case MEMCG_PERCPU_B:
1559         case MEMCG_ZSWAP_B:
1560         case NR_SLAB_RECLAIMABLE_B:
1561         case NR_SLAB_UNRECLAIMABLE_B:
1562         case WORKINGSET_REFAULT_ANON:
1563         case WORKINGSET_REFAULT_FILE:
1564         case WORKINGSET_ACTIVATE_ANON:
1565         case WORKINGSET_ACTIVATE_FILE:
1566         case WORKINGSET_RESTORE_ANON:
1567         case WORKINGSET_RESTORE_FILE:
1568         case WORKINGSET_NODERECLAIM:
1569                 return 1;
1570         case NR_KERNEL_STACK_KB:
1571                 return SZ_1K;
1572         default:
1573                 return PAGE_SIZE;
1574         }
1575 }
1576
1577 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1578                                                     int item)
1579 {
1580         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1581 }
1582
1583 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1584 {
1585         struct seq_buf s;
1586         int i;
1587
1588         seq_buf_init(&s, buf, bufsize);
1589
1590         /*
1591          * Provide statistics on the state of the memory subsystem as
1592          * well as cumulative event counters that show past behavior.
1593          *
1594          * This list is ordered following a combination of these gradients:
1595          * 1) generic big picture -> specifics and details
1596          * 2) reflecting userspace activity -> reflecting kernel heuristics
1597          *
1598          * Current memory state:
1599          */
1600         mem_cgroup_flush_stats();
1601
1602         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1603                 u64 size;
1604
1605                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1606                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1607
1608                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1609                         size += memcg_page_state_output(memcg,
1610                                                         NR_SLAB_RECLAIMABLE_B);
1611                         seq_buf_printf(&s, "slab %llu\n", size);
1612                 }
1613         }
1614
1615         /* Accumulated memory events */
1616         seq_buf_printf(&s, "pgscan %lu\n",
1617                        memcg_events(memcg, PGSCAN_KSWAPD) +
1618                        memcg_events(memcg, PGSCAN_DIRECT) +
1619                        memcg_events(memcg, PGSCAN_KHUGEPAGED));
1620         seq_buf_printf(&s, "pgsteal %lu\n",
1621                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1622                        memcg_events(memcg, PGSTEAL_DIRECT) +
1623                        memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1624
1625         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1626                 if (memcg_vm_event_stat[i] == PGPGIN ||
1627                     memcg_vm_event_stat[i] == PGPGOUT)
1628                         continue;
1629
1630                 seq_buf_printf(&s, "%s %lu\n",
1631                                vm_event_name(memcg_vm_event_stat[i]),
1632                                memcg_events(memcg, memcg_vm_event_stat[i]));
1633         }
1634
1635         /* The above should easily fit into one page */
1636         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1637 }
1638
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1640 /**
1641  * mem_cgroup_print_oom_context: Print OOM information relevant to
1642  * memory controller.
1643  * @memcg: The memory cgroup that went over limit
1644  * @p: Task that is going to be killed
1645  *
1646  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1647  * enabled
1648  */
1649 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1650 {
1651         rcu_read_lock();
1652
1653         if (memcg) {
1654                 pr_cont(",oom_memcg=");
1655                 pr_cont_cgroup_path(memcg->css.cgroup);
1656         } else
1657                 pr_cont(",global_oom");
1658         if (p) {
1659                 pr_cont(",task_memcg=");
1660                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1661         }
1662         rcu_read_unlock();
1663 }
1664
1665 /**
1666  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1667  * memory controller.
1668  * @memcg: The memory cgroup that went over limit
1669  */
1670 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1671 {
1672         /* Use static buffer, for the caller is holding oom_lock. */
1673         static char buf[PAGE_SIZE];
1674
1675         lockdep_assert_held(&oom_lock);
1676
1677         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1678                 K((u64)page_counter_read(&memcg->memory)),
1679                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1680         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1681                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1682                         K((u64)page_counter_read(&memcg->swap)),
1683                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1684         else {
1685                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1686                         K((u64)page_counter_read(&memcg->memsw)),
1687                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1688                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1689                         K((u64)page_counter_read(&memcg->kmem)),
1690                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1691         }
1692
1693         pr_info("Memory cgroup stats for ");
1694         pr_cont_cgroup_path(memcg->css.cgroup);
1695         pr_cont(":");
1696         memory_stat_format(memcg, buf, sizeof(buf));
1697         pr_info("%s", buf);
1698 }
1699
1700 /*
1701  * Return the memory (and swap, if configured) limit for a memcg.
1702  */
1703 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1704 {
1705         unsigned long max = READ_ONCE(memcg->memory.max);
1706
1707         if (do_memsw_account()) {
1708                 if (mem_cgroup_swappiness(memcg)) {
1709                         /* Calculate swap excess capacity from memsw limit */
1710                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1711
1712                         max += min(swap, (unsigned long)total_swap_pages);
1713                 }
1714         } else {
1715                 if (mem_cgroup_swappiness(memcg))
1716                         max += min(READ_ONCE(memcg->swap.max),
1717                                    (unsigned long)total_swap_pages);
1718         }
1719         return max;
1720 }
1721
1722 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1723 {
1724         return page_counter_read(&memcg->memory);
1725 }
1726
1727 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1728                                      int order)
1729 {
1730         struct oom_control oc = {
1731                 .zonelist = NULL,
1732                 .nodemask = NULL,
1733                 .memcg = memcg,
1734                 .gfp_mask = gfp_mask,
1735                 .order = order,
1736         };
1737         bool ret = true;
1738
1739         if (mutex_lock_killable(&oom_lock))
1740                 return true;
1741
1742         if (mem_cgroup_margin(memcg) >= (1 << order))
1743                 goto unlock;
1744
1745         /*
1746          * A few threads which were not waiting at mutex_lock_killable() can
1747          * fail to bail out. Therefore, check again after holding oom_lock.
1748          */
1749         ret = task_is_dying() || out_of_memory(&oc);
1750
1751 unlock:
1752         mutex_unlock(&oom_lock);
1753         return ret;
1754 }
1755
1756 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1757                                    pg_data_t *pgdat,
1758                                    gfp_t gfp_mask,
1759                                    unsigned long *total_scanned)
1760 {
1761         struct mem_cgroup *victim = NULL;
1762         int total = 0;
1763         int loop = 0;
1764         unsigned long excess;
1765         unsigned long nr_scanned;
1766         struct mem_cgroup_reclaim_cookie reclaim = {
1767                 .pgdat = pgdat,
1768         };
1769
1770         excess = soft_limit_excess(root_memcg);
1771
1772         while (1) {
1773                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1774                 if (!victim) {
1775                         loop++;
1776                         if (loop >= 2) {
1777                                 /*
1778                                  * If we have not been able to reclaim
1779                                  * anything, it might because there are
1780                                  * no reclaimable pages under this hierarchy
1781                                  */
1782                                 if (!total)
1783                                         break;
1784                                 /*
1785                                  * We want to do more targeted reclaim.
1786                                  * excess >> 2 is not to excessive so as to
1787                                  * reclaim too much, nor too less that we keep
1788                                  * coming back to reclaim from this cgroup
1789                                  */
1790                                 if (total >= (excess >> 2) ||
1791                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1792                                         break;
1793                         }
1794                         continue;
1795                 }
1796                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1797                                         pgdat, &nr_scanned);
1798                 *total_scanned += nr_scanned;
1799                 if (!soft_limit_excess(root_memcg))
1800                         break;
1801         }
1802         mem_cgroup_iter_break(root_memcg, victim);
1803         return total;
1804 }
1805
1806 #ifdef CONFIG_LOCKDEP
1807 static struct lockdep_map memcg_oom_lock_dep_map = {
1808         .name = "memcg_oom_lock",
1809 };
1810 #endif
1811
1812 static DEFINE_SPINLOCK(memcg_oom_lock);
1813
1814 /*
1815  * Check OOM-Killer is already running under our hierarchy.
1816  * If someone is running, return false.
1817  */
1818 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1819 {
1820         struct mem_cgroup *iter, *failed = NULL;
1821
1822         spin_lock(&memcg_oom_lock);
1823
1824         for_each_mem_cgroup_tree(iter, memcg) {
1825                 if (iter->oom_lock) {
1826                         /*
1827                          * this subtree of our hierarchy is already locked
1828                          * so we cannot give a lock.
1829                          */
1830                         failed = iter;
1831                         mem_cgroup_iter_break(memcg, iter);
1832                         break;
1833                 } else
1834                         iter->oom_lock = true;
1835         }
1836
1837         if (failed) {
1838                 /*
1839                  * OK, we failed to lock the whole subtree so we have
1840                  * to clean up what we set up to the failing subtree
1841                  */
1842                 for_each_mem_cgroup_tree(iter, memcg) {
1843                         if (iter == failed) {
1844                                 mem_cgroup_iter_break(memcg, iter);
1845                                 break;
1846                         }
1847                         iter->oom_lock = false;
1848                 }
1849         } else
1850                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1851
1852         spin_unlock(&memcg_oom_lock);
1853
1854         return !failed;
1855 }
1856
1857 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1858 {
1859         struct mem_cgroup *iter;
1860
1861         spin_lock(&memcg_oom_lock);
1862         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1863         for_each_mem_cgroup_tree(iter, memcg)
1864                 iter->oom_lock = false;
1865         spin_unlock(&memcg_oom_lock);
1866 }
1867
1868 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1869 {
1870         struct mem_cgroup *iter;
1871
1872         spin_lock(&memcg_oom_lock);
1873         for_each_mem_cgroup_tree(iter, memcg)
1874                 iter->under_oom++;
1875         spin_unlock(&memcg_oom_lock);
1876 }
1877
1878 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1879 {
1880         struct mem_cgroup *iter;
1881
1882         /*
1883          * Be careful about under_oom underflows because a child memcg
1884          * could have been added after mem_cgroup_mark_under_oom.
1885          */
1886         spin_lock(&memcg_oom_lock);
1887         for_each_mem_cgroup_tree(iter, memcg)
1888                 if (iter->under_oom > 0)
1889                         iter->under_oom--;
1890         spin_unlock(&memcg_oom_lock);
1891 }
1892
1893 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1894
1895 struct oom_wait_info {
1896         struct mem_cgroup *memcg;
1897         wait_queue_entry_t      wait;
1898 };
1899
1900 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1901         unsigned mode, int sync, void *arg)
1902 {
1903         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1904         struct mem_cgroup *oom_wait_memcg;
1905         struct oom_wait_info *oom_wait_info;
1906
1907         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1908         oom_wait_memcg = oom_wait_info->memcg;
1909
1910         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1911             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1912                 return 0;
1913         return autoremove_wake_function(wait, mode, sync, arg);
1914 }
1915
1916 static void memcg_oom_recover(struct mem_cgroup *memcg)
1917 {
1918         /*
1919          * For the following lockless ->under_oom test, the only required
1920          * guarantee is that it must see the state asserted by an OOM when
1921          * this function is called as a result of userland actions
1922          * triggered by the notification of the OOM.  This is trivially
1923          * achieved by invoking mem_cgroup_mark_under_oom() before
1924          * triggering notification.
1925          */
1926         if (memcg && memcg->under_oom)
1927                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1928 }
1929
1930 /*
1931  * Returns true if successfully killed one or more processes. Though in some
1932  * corner cases it can return true even without killing any process.
1933  */
1934 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1935 {
1936         bool locked, ret;
1937
1938         if (order > PAGE_ALLOC_COSTLY_ORDER)
1939                 return false;
1940
1941         memcg_memory_event(memcg, MEMCG_OOM);
1942
1943         /*
1944          * We are in the middle of the charge context here, so we
1945          * don't want to block when potentially sitting on a callstack
1946          * that holds all kinds of filesystem and mm locks.
1947          *
1948          * cgroup1 allows disabling the OOM killer and waiting for outside
1949          * handling until the charge can succeed; remember the context and put
1950          * the task to sleep at the end of the page fault when all locks are
1951          * released.
1952          *
1953          * On the other hand, in-kernel OOM killer allows for an async victim
1954          * memory reclaim (oom_reaper) and that means that we are not solely
1955          * relying on the oom victim to make a forward progress and we can
1956          * invoke the oom killer here.
1957          *
1958          * Please note that mem_cgroup_out_of_memory might fail to find a
1959          * victim and then we have to bail out from the charge path.
1960          */
1961         if (READ_ONCE(memcg->oom_kill_disable)) {
1962                 if (current->in_user_fault) {
1963                         css_get(&memcg->css);
1964                         current->memcg_in_oom = memcg;
1965                         current->memcg_oom_gfp_mask = mask;
1966                         current->memcg_oom_order = order;
1967                 }
1968                 return false;
1969         }
1970
1971         mem_cgroup_mark_under_oom(memcg);
1972
1973         locked = mem_cgroup_oom_trylock(memcg);
1974
1975         if (locked)
1976                 mem_cgroup_oom_notify(memcg);
1977
1978         mem_cgroup_unmark_under_oom(memcg);
1979         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1980
1981         if (locked)
1982                 mem_cgroup_oom_unlock(memcg);
1983
1984         return ret;
1985 }
1986
1987 /**
1988  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1989  * @handle: actually kill/wait or just clean up the OOM state
1990  *
1991  * This has to be called at the end of a page fault if the memcg OOM
1992  * handler was enabled.
1993  *
1994  * Memcg supports userspace OOM handling where failed allocations must
1995  * sleep on a waitqueue until the userspace task resolves the
1996  * situation.  Sleeping directly in the charge context with all kinds
1997  * of locks held is not a good idea, instead we remember an OOM state
1998  * in the task and mem_cgroup_oom_synchronize() has to be called at
1999  * the end of the page fault to complete the OOM handling.
2000  *
2001  * Returns %true if an ongoing memcg OOM situation was detected and
2002  * completed, %false otherwise.
2003  */
2004 bool mem_cgroup_oom_synchronize(bool handle)
2005 {
2006         struct mem_cgroup *memcg = current->memcg_in_oom;
2007         struct oom_wait_info owait;
2008         bool locked;
2009
2010         /* OOM is global, do not handle */
2011         if (!memcg)
2012                 return false;
2013
2014         if (!handle)
2015                 goto cleanup;
2016
2017         owait.memcg = memcg;
2018         owait.wait.flags = 0;
2019         owait.wait.func = memcg_oom_wake_function;
2020         owait.wait.private = current;
2021         INIT_LIST_HEAD(&owait.wait.entry);
2022
2023         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2024         mem_cgroup_mark_under_oom(memcg);
2025
2026         locked = mem_cgroup_oom_trylock(memcg);
2027
2028         if (locked)
2029                 mem_cgroup_oom_notify(memcg);
2030
2031         if (locked && !READ_ONCE(memcg->oom_kill_disable)) {
2032                 mem_cgroup_unmark_under_oom(memcg);
2033                 finish_wait(&memcg_oom_waitq, &owait.wait);
2034                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2035                                          current->memcg_oom_order);
2036         } else {
2037                 schedule();
2038                 mem_cgroup_unmark_under_oom(memcg);
2039                 finish_wait(&memcg_oom_waitq, &owait.wait);
2040         }
2041
2042         if (locked) {
2043                 mem_cgroup_oom_unlock(memcg);
2044                 /*
2045                  * There is no guarantee that an OOM-lock contender
2046                  * sees the wakeups triggered by the OOM kill
2047                  * uncharges.  Wake any sleepers explicitly.
2048                  */
2049                 memcg_oom_recover(memcg);
2050         }
2051 cleanup:
2052         current->memcg_in_oom = NULL;
2053         css_put(&memcg->css);
2054         return true;
2055 }
2056
2057 /**
2058  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2059  * @victim: task to be killed by the OOM killer
2060  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2061  *
2062  * Returns a pointer to a memory cgroup, which has to be cleaned up
2063  * by killing all belonging OOM-killable tasks.
2064  *
2065  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2066  */
2067 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2068                                             struct mem_cgroup *oom_domain)
2069 {
2070         struct mem_cgroup *oom_group = NULL;
2071         struct mem_cgroup *memcg;
2072
2073         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2074                 return NULL;
2075
2076         if (!oom_domain)
2077                 oom_domain = root_mem_cgroup;
2078
2079         rcu_read_lock();
2080
2081         memcg = mem_cgroup_from_task(victim);
2082         if (mem_cgroup_is_root(memcg))
2083                 goto out;
2084
2085         /*
2086          * If the victim task has been asynchronously moved to a different
2087          * memory cgroup, we might end up killing tasks outside oom_domain.
2088          * In this case it's better to ignore memory.group.oom.
2089          */
2090         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2091                 goto out;
2092
2093         /*
2094          * Traverse the memory cgroup hierarchy from the victim task's
2095          * cgroup up to the OOMing cgroup (or root) to find the
2096          * highest-level memory cgroup with oom.group set.
2097          */
2098         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2099                 if (READ_ONCE(memcg->oom_group))
2100                         oom_group = memcg;
2101
2102                 if (memcg == oom_domain)
2103                         break;
2104         }
2105
2106         if (oom_group)
2107                 css_get(&oom_group->css);
2108 out:
2109         rcu_read_unlock();
2110
2111         return oom_group;
2112 }
2113
2114 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2115 {
2116         pr_info("Tasks in ");
2117         pr_cont_cgroup_path(memcg->css.cgroup);
2118         pr_cont(" are going to be killed due to memory.oom.group set\n");
2119 }
2120
2121 /**
2122  * folio_memcg_lock - Bind a folio to its memcg.
2123  * @folio: The folio.
2124  *
2125  * This function prevents unlocked LRU folios from being moved to
2126  * another cgroup.
2127  *
2128  * It ensures lifetime of the bound memcg.  The caller is responsible
2129  * for the lifetime of the folio.
2130  */
2131 void folio_memcg_lock(struct folio *folio)
2132 {
2133         struct mem_cgroup *memcg;
2134         unsigned long flags;
2135
2136         /*
2137          * The RCU lock is held throughout the transaction.  The fast
2138          * path can get away without acquiring the memcg->move_lock
2139          * because page moving starts with an RCU grace period.
2140          */
2141         rcu_read_lock();
2142
2143         if (mem_cgroup_disabled())
2144                 return;
2145 again:
2146         memcg = folio_memcg(folio);
2147         if (unlikely(!memcg))
2148                 return;
2149
2150 #ifdef CONFIG_PROVE_LOCKING
2151         local_irq_save(flags);
2152         might_lock(&memcg->move_lock);
2153         local_irq_restore(flags);
2154 #endif
2155
2156         if (atomic_read(&memcg->moving_account) <= 0)
2157                 return;
2158
2159         spin_lock_irqsave(&memcg->move_lock, flags);
2160         if (memcg != folio_memcg(folio)) {
2161                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2162                 goto again;
2163         }
2164
2165         /*
2166          * When charge migration first begins, we can have multiple
2167          * critical sections holding the fast-path RCU lock and one
2168          * holding the slowpath move_lock. Track the task who has the
2169          * move_lock for unlock_page_memcg().
2170          */
2171         memcg->move_lock_task = current;
2172         memcg->move_lock_flags = flags;
2173 }
2174
2175 void lock_page_memcg(struct page *page)
2176 {
2177         folio_memcg_lock(page_folio(page));
2178 }
2179
2180 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2181 {
2182         if (memcg && memcg->move_lock_task == current) {
2183                 unsigned long flags = memcg->move_lock_flags;
2184
2185                 memcg->move_lock_task = NULL;
2186                 memcg->move_lock_flags = 0;
2187
2188                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2189         }
2190
2191         rcu_read_unlock();
2192 }
2193
2194 /**
2195  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2196  * @folio: The folio.
2197  *
2198  * This releases the binding created by folio_memcg_lock().  This does
2199  * not change the accounting of this folio to its memcg, but it does
2200  * permit others to change it.
2201  */
2202 void folio_memcg_unlock(struct folio *folio)
2203 {
2204         __folio_memcg_unlock(folio_memcg(folio));
2205 }
2206
2207 void unlock_page_memcg(struct page *page)
2208 {
2209         folio_memcg_unlock(page_folio(page));
2210 }
2211
2212 struct memcg_stock_pcp {
2213         local_lock_t stock_lock;
2214         struct mem_cgroup *cached; /* this never be root cgroup */
2215         unsigned int nr_pages;
2216
2217 #ifdef CONFIG_MEMCG_KMEM
2218         struct obj_cgroup *cached_objcg;
2219         struct pglist_data *cached_pgdat;
2220         unsigned int nr_bytes;
2221         int nr_slab_reclaimable_b;
2222         int nr_slab_unreclaimable_b;
2223 #endif
2224
2225         struct work_struct work;
2226         unsigned long flags;
2227 #define FLUSHING_CACHED_CHARGE  0
2228 };
2229 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2230         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2231 };
2232 static DEFINE_MUTEX(percpu_charge_mutex);
2233
2234 #ifdef CONFIG_MEMCG_KMEM
2235 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2236 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2237                                      struct mem_cgroup *root_memcg);
2238 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2239
2240 #else
2241 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2242 {
2243         return NULL;
2244 }
2245 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2246                                      struct mem_cgroup *root_memcg)
2247 {
2248         return false;
2249 }
2250 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2251 {
2252 }
2253 #endif
2254
2255 /**
2256  * consume_stock: Try to consume stocked charge on this cpu.
2257  * @memcg: memcg to consume from.
2258  * @nr_pages: how many pages to charge.
2259  *
2260  * The charges will only happen if @memcg matches the current cpu's memcg
2261  * stock, and at least @nr_pages are available in that stock.  Failure to
2262  * service an allocation will refill the stock.
2263  *
2264  * returns true if successful, false otherwise.
2265  */
2266 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2267 {
2268         struct memcg_stock_pcp *stock;
2269         unsigned long flags;
2270         bool ret = false;
2271
2272         if (nr_pages > MEMCG_CHARGE_BATCH)
2273                 return ret;
2274
2275         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2276
2277         stock = this_cpu_ptr(&memcg_stock);
2278         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2279                 stock->nr_pages -= nr_pages;
2280                 ret = true;
2281         }
2282
2283         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2284
2285         return ret;
2286 }
2287
2288 /*
2289  * Returns stocks cached in percpu and reset cached information.
2290  */
2291 static void drain_stock(struct memcg_stock_pcp *stock)
2292 {
2293         struct mem_cgroup *old = stock->cached;
2294
2295         if (!old)
2296                 return;
2297
2298         if (stock->nr_pages) {
2299                 page_counter_uncharge(&old->memory, stock->nr_pages);
2300                 if (do_memsw_account())
2301                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2302                 stock->nr_pages = 0;
2303         }
2304
2305         css_put(&old->css);
2306         stock->cached = NULL;
2307 }
2308
2309 static void drain_local_stock(struct work_struct *dummy)
2310 {
2311         struct memcg_stock_pcp *stock;
2312         struct obj_cgroup *old = NULL;
2313         unsigned long flags;
2314
2315         /*
2316          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2317          * drain_stock races is that we always operate on local CPU stock
2318          * here with IRQ disabled
2319          */
2320         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2321
2322         stock = this_cpu_ptr(&memcg_stock);
2323         old = drain_obj_stock(stock);
2324         drain_stock(stock);
2325         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2326
2327         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2328         if (old)
2329                 obj_cgroup_put(old);
2330 }
2331
2332 /*
2333  * Cache charges(val) to local per_cpu area.
2334  * This will be consumed by consume_stock() function, later.
2335  */
2336 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2337 {
2338         struct memcg_stock_pcp *stock;
2339
2340         stock = this_cpu_ptr(&memcg_stock);
2341         if (stock->cached != memcg) { /* reset if necessary */
2342                 drain_stock(stock);
2343                 css_get(&memcg->css);
2344                 stock->cached = memcg;
2345         }
2346         stock->nr_pages += nr_pages;
2347
2348         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2349                 drain_stock(stock);
2350 }
2351
2352 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2353 {
2354         unsigned long flags;
2355
2356         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2357         __refill_stock(memcg, nr_pages);
2358         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2359 }
2360
2361 /*
2362  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2363  * of the hierarchy under it.
2364  */
2365 static void drain_all_stock(struct mem_cgroup *root_memcg)
2366 {
2367         int cpu, curcpu;
2368
2369         /* If someone's already draining, avoid adding running more workers. */
2370         if (!mutex_trylock(&percpu_charge_mutex))
2371                 return;
2372         /*
2373          * Notify other cpus that system-wide "drain" is running
2374          * We do not care about races with the cpu hotplug because cpu down
2375          * as well as workers from this path always operate on the local
2376          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2377          */
2378         migrate_disable();
2379         curcpu = smp_processor_id();
2380         for_each_online_cpu(cpu) {
2381                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2382                 struct mem_cgroup *memcg;
2383                 bool flush = false;
2384
2385                 rcu_read_lock();
2386                 memcg = stock->cached;
2387                 if (memcg && stock->nr_pages &&
2388                     mem_cgroup_is_descendant(memcg, root_memcg))
2389                         flush = true;
2390                 else if (obj_stock_flush_required(stock, root_memcg))
2391                         flush = true;
2392                 rcu_read_unlock();
2393
2394                 if (flush &&
2395                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2396                         if (cpu == curcpu)
2397                                 drain_local_stock(&stock->work);
2398                         else if (!cpu_is_isolated(cpu))
2399                                 schedule_work_on(cpu, &stock->work);
2400                 }
2401         }
2402         migrate_enable();
2403         mutex_unlock(&percpu_charge_mutex);
2404 }
2405
2406 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2407 {
2408         struct memcg_stock_pcp *stock;
2409
2410         stock = &per_cpu(memcg_stock, cpu);
2411         drain_stock(stock);
2412
2413         return 0;
2414 }
2415
2416 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2417                                   unsigned int nr_pages,
2418                                   gfp_t gfp_mask)
2419 {
2420         unsigned long nr_reclaimed = 0;
2421
2422         do {
2423                 unsigned long pflags;
2424
2425                 if (page_counter_read(&memcg->memory) <=
2426                     READ_ONCE(memcg->memory.high))
2427                         continue;
2428
2429                 memcg_memory_event(memcg, MEMCG_HIGH);
2430
2431                 psi_memstall_enter(&pflags);
2432                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2433                                                         gfp_mask,
2434                                                         MEMCG_RECLAIM_MAY_SWAP);
2435                 psi_memstall_leave(&pflags);
2436         } while ((memcg = parent_mem_cgroup(memcg)) &&
2437                  !mem_cgroup_is_root(memcg));
2438
2439         return nr_reclaimed;
2440 }
2441
2442 static void high_work_func(struct work_struct *work)
2443 {
2444         struct mem_cgroup *memcg;
2445
2446         memcg = container_of(work, struct mem_cgroup, high_work);
2447         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2448 }
2449
2450 /*
2451  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2452  * enough to still cause a significant slowdown in most cases, while still
2453  * allowing diagnostics and tracing to proceed without becoming stuck.
2454  */
2455 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2456
2457 /*
2458  * When calculating the delay, we use these either side of the exponentiation to
2459  * maintain precision and scale to a reasonable number of jiffies (see the table
2460  * below.
2461  *
2462  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2463  *   overage ratio to a delay.
2464  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2465  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2466  *   to produce a reasonable delay curve.
2467  *
2468  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2469  * reasonable delay curve compared to precision-adjusted overage, not
2470  * penalising heavily at first, but still making sure that growth beyond the
2471  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2472  * example, with a high of 100 megabytes:
2473  *
2474  *  +-------+------------------------+
2475  *  | usage | time to allocate in ms |
2476  *  +-------+------------------------+
2477  *  | 100M  |                      0 |
2478  *  | 101M  |                      6 |
2479  *  | 102M  |                     25 |
2480  *  | 103M  |                     57 |
2481  *  | 104M  |                    102 |
2482  *  | 105M  |                    159 |
2483  *  | 106M  |                    230 |
2484  *  | 107M  |                    313 |
2485  *  | 108M  |                    409 |
2486  *  | 109M  |                    518 |
2487  *  | 110M  |                    639 |
2488  *  | 111M  |                    774 |
2489  *  | 112M  |                    921 |
2490  *  | 113M  |                   1081 |
2491  *  | 114M  |                   1254 |
2492  *  | 115M  |                   1439 |
2493  *  | 116M  |                   1638 |
2494  *  | 117M  |                   1849 |
2495  *  | 118M  |                   2000 |
2496  *  | 119M  |                   2000 |
2497  *  | 120M  |                   2000 |
2498  *  +-------+------------------------+
2499  */
2500  #define MEMCG_DELAY_PRECISION_SHIFT 20
2501  #define MEMCG_DELAY_SCALING_SHIFT 14
2502
2503 static u64 calculate_overage(unsigned long usage, unsigned long high)
2504 {
2505         u64 overage;
2506
2507         if (usage <= high)
2508                 return 0;
2509
2510         /*
2511          * Prevent division by 0 in overage calculation by acting as if
2512          * it was a threshold of 1 page
2513          */
2514         high = max(high, 1UL);
2515
2516         overage = usage - high;
2517         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2518         return div64_u64(overage, high);
2519 }
2520
2521 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2522 {
2523         u64 overage, max_overage = 0;
2524
2525         do {
2526                 overage = calculate_overage(page_counter_read(&memcg->memory),
2527                                             READ_ONCE(memcg->memory.high));
2528                 max_overage = max(overage, max_overage);
2529         } while ((memcg = parent_mem_cgroup(memcg)) &&
2530                  !mem_cgroup_is_root(memcg));
2531
2532         return max_overage;
2533 }
2534
2535 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2536 {
2537         u64 overage, max_overage = 0;
2538
2539         do {
2540                 overage = calculate_overage(page_counter_read(&memcg->swap),
2541                                             READ_ONCE(memcg->swap.high));
2542                 if (overage)
2543                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2544                 max_overage = max(overage, max_overage);
2545         } while ((memcg = parent_mem_cgroup(memcg)) &&
2546                  !mem_cgroup_is_root(memcg));
2547
2548         return max_overage;
2549 }
2550
2551 /*
2552  * Get the number of jiffies that we should penalise a mischievous cgroup which
2553  * is exceeding its memory.high by checking both it and its ancestors.
2554  */
2555 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2556                                           unsigned int nr_pages,
2557                                           u64 max_overage)
2558 {
2559         unsigned long penalty_jiffies;
2560
2561         if (!max_overage)
2562                 return 0;
2563
2564         /*
2565          * We use overage compared to memory.high to calculate the number of
2566          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2567          * fairly lenient on small overages, and increasingly harsh when the
2568          * memcg in question makes it clear that it has no intention of stopping
2569          * its crazy behaviour, so we exponentially increase the delay based on
2570          * overage amount.
2571          */
2572         penalty_jiffies = max_overage * max_overage * HZ;
2573         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2574         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2575
2576         /*
2577          * Factor in the task's own contribution to the overage, such that four
2578          * N-sized allocations are throttled approximately the same as one
2579          * 4N-sized allocation.
2580          *
2581          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2582          * larger the current charge patch is than that.
2583          */
2584         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2585 }
2586
2587 /*
2588  * Scheduled by try_charge() to be executed from the userland return path
2589  * and reclaims memory over the high limit.
2590  */
2591 void mem_cgroup_handle_over_high(void)
2592 {
2593         unsigned long penalty_jiffies;
2594         unsigned long pflags;
2595         unsigned long nr_reclaimed;
2596         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2597         int nr_retries = MAX_RECLAIM_RETRIES;
2598         struct mem_cgroup *memcg;
2599         bool in_retry = false;
2600
2601         if (likely(!nr_pages))
2602                 return;
2603
2604         memcg = get_mem_cgroup_from_mm(current->mm);
2605         current->memcg_nr_pages_over_high = 0;
2606
2607 retry_reclaim:
2608         /*
2609          * The allocating task should reclaim at least the batch size, but for
2610          * subsequent retries we only want to do what's necessary to prevent oom
2611          * or breaching resource isolation.
2612          *
2613          * This is distinct from memory.max or page allocator behaviour because
2614          * memory.high is currently batched, whereas memory.max and the page
2615          * allocator run every time an allocation is made.
2616          */
2617         nr_reclaimed = reclaim_high(memcg,
2618                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2619                                     GFP_KERNEL);
2620
2621         /*
2622          * memory.high is breached and reclaim is unable to keep up. Throttle
2623          * allocators proactively to slow down excessive growth.
2624          */
2625         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2626                                                mem_find_max_overage(memcg));
2627
2628         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2629                                                 swap_find_max_overage(memcg));
2630
2631         /*
2632          * Clamp the max delay per usermode return so as to still keep the
2633          * application moving forwards and also permit diagnostics, albeit
2634          * extremely slowly.
2635          */
2636         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2637
2638         /*
2639          * Don't sleep if the amount of jiffies this memcg owes us is so low
2640          * that it's not even worth doing, in an attempt to be nice to those who
2641          * go only a small amount over their memory.high value and maybe haven't
2642          * been aggressively reclaimed enough yet.
2643          */
2644         if (penalty_jiffies <= HZ / 100)
2645                 goto out;
2646
2647         /*
2648          * If reclaim is making forward progress but we're still over
2649          * memory.high, we want to encourage that rather than doing allocator
2650          * throttling.
2651          */
2652         if (nr_reclaimed || nr_retries--) {
2653                 in_retry = true;
2654                 goto retry_reclaim;
2655         }
2656
2657         /*
2658          * If we exit early, we're guaranteed to die (since
2659          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2660          * need to account for any ill-begotten jiffies to pay them off later.
2661          */
2662         psi_memstall_enter(&pflags);
2663         schedule_timeout_killable(penalty_jiffies);
2664         psi_memstall_leave(&pflags);
2665
2666 out:
2667         css_put(&memcg->css);
2668 }
2669
2670 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2671                         unsigned int nr_pages)
2672 {
2673         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2674         int nr_retries = MAX_RECLAIM_RETRIES;
2675         struct mem_cgroup *mem_over_limit;
2676         struct page_counter *counter;
2677         unsigned long nr_reclaimed;
2678         bool passed_oom = false;
2679         unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2680         bool drained = false;
2681         bool raised_max_event = false;
2682         unsigned long pflags;
2683
2684 retry:
2685         if (consume_stock(memcg, nr_pages))
2686                 return 0;
2687
2688         if (!do_memsw_account() ||
2689             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2690                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2691                         goto done_restock;
2692                 if (do_memsw_account())
2693                         page_counter_uncharge(&memcg->memsw, batch);
2694                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2695         } else {
2696                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2697                 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2698         }
2699
2700         if (batch > nr_pages) {
2701                 batch = nr_pages;
2702                 goto retry;
2703         }
2704
2705         /*
2706          * Prevent unbounded recursion when reclaim operations need to
2707          * allocate memory. This might exceed the limits temporarily,
2708          * but we prefer facilitating memory reclaim and getting back
2709          * under the limit over triggering OOM kills in these cases.
2710          */
2711         if (unlikely(current->flags & PF_MEMALLOC))
2712                 goto force;
2713
2714         if (unlikely(task_in_memcg_oom(current)))
2715                 goto nomem;
2716
2717         if (!gfpflags_allow_blocking(gfp_mask))
2718                 goto nomem;
2719
2720         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2721         raised_max_event = true;
2722
2723         psi_memstall_enter(&pflags);
2724         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2725                                                     gfp_mask, reclaim_options);
2726         psi_memstall_leave(&pflags);
2727
2728         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2729                 goto retry;
2730
2731         if (!drained) {
2732                 drain_all_stock(mem_over_limit);
2733                 drained = true;
2734                 goto retry;
2735         }
2736
2737         if (gfp_mask & __GFP_NORETRY)
2738                 goto nomem;
2739         /*
2740          * Even though the limit is exceeded at this point, reclaim
2741          * may have been able to free some pages.  Retry the charge
2742          * before killing the task.
2743          *
2744          * Only for regular pages, though: huge pages are rather
2745          * unlikely to succeed so close to the limit, and we fall back
2746          * to regular pages anyway in case of failure.
2747          */
2748         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2749                 goto retry;
2750         /*
2751          * At task move, charge accounts can be doubly counted. So, it's
2752          * better to wait until the end of task_move if something is going on.
2753          */
2754         if (mem_cgroup_wait_acct_move(mem_over_limit))
2755                 goto retry;
2756
2757         if (nr_retries--)
2758                 goto retry;
2759
2760         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2761                 goto nomem;
2762
2763         /* Avoid endless loop for tasks bypassed by the oom killer */
2764         if (passed_oom && task_is_dying())
2765                 goto nomem;
2766
2767         /*
2768          * keep retrying as long as the memcg oom killer is able to make
2769          * a forward progress or bypass the charge if the oom killer
2770          * couldn't make any progress.
2771          */
2772         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2773                            get_order(nr_pages * PAGE_SIZE))) {
2774                 passed_oom = true;
2775                 nr_retries = MAX_RECLAIM_RETRIES;
2776                 goto retry;
2777         }
2778 nomem:
2779         /*
2780          * Memcg doesn't have a dedicated reserve for atomic
2781          * allocations. But like the global atomic pool, we need to
2782          * put the burden of reclaim on regular allocation requests
2783          * and let these go through as privileged allocations.
2784          */
2785         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2786                 return -ENOMEM;
2787 force:
2788         /*
2789          * If the allocation has to be enforced, don't forget to raise
2790          * a MEMCG_MAX event.
2791          */
2792         if (!raised_max_event)
2793                 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2794
2795         /*
2796          * The allocation either can't fail or will lead to more memory
2797          * being freed very soon.  Allow memory usage go over the limit
2798          * temporarily by force charging it.
2799          */
2800         page_counter_charge(&memcg->memory, nr_pages);
2801         if (do_memsw_account())
2802                 page_counter_charge(&memcg->memsw, nr_pages);
2803
2804         return 0;
2805
2806 done_restock:
2807         if (batch > nr_pages)
2808                 refill_stock(memcg, batch - nr_pages);
2809
2810         /*
2811          * If the hierarchy is above the normal consumption range, schedule
2812          * reclaim on returning to userland.  We can perform reclaim here
2813          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2814          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2815          * not recorded as it most likely matches current's and won't
2816          * change in the meantime.  As high limit is checked again before
2817          * reclaim, the cost of mismatch is negligible.
2818          */
2819         do {
2820                 bool mem_high, swap_high;
2821
2822                 mem_high = page_counter_read(&memcg->memory) >
2823                         READ_ONCE(memcg->memory.high);
2824                 swap_high = page_counter_read(&memcg->swap) >
2825                         READ_ONCE(memcg->swap.high);
2826
2827                 /* Don't bother a random interrupted task */
2828                 if (!in_task()) {
2829                         if (mem_high) {
2830                                 schedule_work(&memcg->high_work);
2831                                 break;
2832                         }
2833                         continue;
2834                 }
2835
2836                 if (mem_high || swap_high) {
2837                         /*
2838                          * The allocating tasks in this cgroup will need to do
2839                          * reclaim or be throttled to prevent further growth
2840                          * of the memory or swap footprints.
2841                          *
2842                          * Target some best-effort fairness between the tasks,
2843                          * and distribute reclaim work and delay penalties
2844                          * based on how much each task is actually allocating.
2845                          */
2846                         current->memcg_nr_pages_over_high += batch;
2847                         set_notify_resume(current);
2848                         break;
2849                 }
2850         } while ((memcg = parent_mem_cgroup(memcg)));
2851
2852         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2853             !(current->flags & PF_MEMALLOC) &&
2854             gfpflags_allow_blocking(gfp_mask)) {
2855                 mem_cgroup_handle_over_high();
2856         }
2857         return 0;
2858 }
2859
2860 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2861                              unsigned int nr_pages)
2862 {
2863         if (mem_cgroup_is_root(memcg))
2864                 return 0;
2865
2866         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2867 }
2868
2869 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2870 {
2871         if (mem_cgroup_is_root(memcg))
2872                 return;
2873
2874         page_counter_uncharge(&memcg->memory, nr_pages);
2875         if (do_memsw_account())
2876                 page_counter_uncharge(&memcg->memsw, nr_pages);
2877 }
2878
2879 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2880 {
2881         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2882         /*
2883          * Any of the following ensures page's memcg stability:
2884          *
2885          * - the page lock
2886          * - LRU isolation
2887          * - lock_page_memcg()
2888          * - exclusive reference
2889          * - mem_cgroup_trylock_pages()
2890          */
2891         folio->memcg_data = (unsigned long)memcg;
2892 }
2893
2894 #ifdef CONFIG_MEMCG_KMEM
2895 /*
2896  * The allocated objcg pointers array is not accounted directly.
2897  * Moreover, it should not come from DMA buffer and is not readily
2898  * reclaimable. So those GFP bits should be masked off.
2899  */
2900 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2901
2902 /*
2903  * mod_objcg_mlstate() may be called with irq enabled, so
2904  * mod_memcg_lruvec_state() should be used.
2905  */
2906 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2907                                      struct pglist_data *pgdat,
2908                                      enum node_stat_item idx, int nr)
2909 {
2910         struct mem_cgroup *memcg;
2911         struct lruvec *lruvec;
2912
2913         rcu_read_lock();
2914         memcg = obj_cgroup_memcg(objcg);
2915         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2916         mod_memcg_lruvec_state(lruvec, idx, nr);
2917         rcu_read_unlock();
2918 }
2919
2920 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2921                                  gfp_t gfp, bool new_slab)
2922 {
2923         unsigned int objects = objs_per_slab(s, slab);
2924         unsigned long memcg_data;
2925         void *vec;
2926
2927         gfp &= ~OBJCGS_CLEAR_MASK;
2928         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2929                            slab_nid(slab));
2930         if (!vec)
2931                 return -ENOMEM;
2932
2933         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2934         if (new_slab) {
2935                 /*
2936                  * If the slab is brand new and nobody can yet access its
2937                  * memcg_data, no synchronization is required and memcg_data can
2938                  * be simply assigned.
2939                  */
2940                 slab->memcg_data = memcg_data;
2941         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2942                 /*
2943                  * If the slab is already in use, somebody can allocate and
2944                  * assign obj_cgroups in parallel. In this case the existing
2945                  * objcg vector should be reused.
2946                  */
2947                 kfree(vec);
2948                 return 0;
2949         }
2950
2951         kmemleak_not_leak(vec);
2952         return 0;
2953 }
2954
2955 static __always_inline
2956 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2957 {
2958         /*
2959          * Slab objects are accounted individually, not per-page.
2960          * Memcg membership data for each individual object is saved in
2961          * slab->memcg_data.
2962          */
2963         if (folio_test_slab(folio)) {
2964                 struct obj_cgroup **objcgs;
2965                 struct slab *slab;
2966                 unsigned int off;
2967
2968                 slab = folio_slab(folio);
2969                 objcgs = slab_objcgs(slab);
2970                 if (!objcgs)
2971                         return NULL;
2972
2973                 off = obj_to_index(slab->slab_cache, slab, p);
2974                 if (objcgs[off])
2975                         return obj_cgroup_memcg(objcgs[off]);
2976
2977                 return NULL;
2978         }
2979
2980         /*
2981          * folio_memcg_check() is used here, because in theory we can encounter
2982          * a folio where the slab flag has been cleared already, but
2983          * slab->memcg_data has not been freed yet
2984          * folio_memcg_check() will guarantee that a proper memory
2985          * cgroup pointer or NULL will be returned.
2986          */
2987         return folio_memcg_check(folio);
2988 }
2989
2990 /*
2991  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2992  *
2993  * A passed kernel object can be a slab object, vmalloc object or a generic
2994  * kernel page, so different mechanisms for getting the memory cgroup pointer
2995  * should be used.
2996  *
2997  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2998  * can not know for sure how the kernel object is implemented.
2999  * mem_cgroup_from_obj() can be safely used in such cases.
3000  *
3001  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3002  * cgroup_mutex, etc.
3003  */
3004 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3005 {
3006         struct folio *folio;
3007
3008         if (mem_cgroup_disabled())
3009                 return NULL;
3010
3011         if (unlikely(is_vmalloc_addr(p)))
3012                 folio = page_folio(vmalloc_to_page(p));
3013         else
3014                 folio = virt_to_folio(p);
3015
3016         return mem_cgroup_from_obj_folio(folio, p);
3017 }
3018
3019 /*
3020  * Returns a pointer to the memory cgroup to which the kernel object is charged.
3021  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3022  * allocated using vmalloc().
3023  *
3024  * A passed kernel object must be a slab object or a generic kernel page.
3025  *
3026  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3027  * cgroup_mutex, etc.
3028  */
3029 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3030 {
3031         if (mem_cgroup_disabled())
3032                 return NULL;
3033
3034         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3035 }
3036
3037 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3038 {
3039         struct obj_cgroup *objcg = NULL;
3040
3041         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3042                 objcg = rcu_dereference(memcg->objcg);
3043                 if (objcg && obj_cgroup_tryget(objcg))
3044                         break;
3045                 objcg = NULL;
3046         }
3047         return objcg;
3048 }
3049
3050 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3051 {
3052         struct obj_cgroup *objcg = NULL;
3053         struct mem_cgroup *memcg;
3054
3055         if (memcg_kmem_bypass())
3056                 return NULL;
3057
3058         rcu_read_lock();
3059         if (unlikely(active_memcg()))
3060                 memcg = active_memcg();
3061         else
3062                 memcg = mem_cgroup_from_task(current);
3063         objcg = __get_obj_cgroup_from_memcg(memcg);
3064         rcu_read_unlock();
3065         return objcg;
3066 }
3067
3068 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3069 {
3070         struct obj_cgroup *objcg;
3071
3072         if (!memcg_kmem_online())
3073                 return NULL;
3074
3075         if (PageMemcgKmem(page)) {
3076                 objcg = __folio_objcg(page_folio(page));
3077                 obj_cgroup_get(objcg);
3078         } else {
3079                 struct mem_cgroup *memcg;
3080
3081                 rcu_read_lock();
3082                 memcg = __folio_memcg(page_folio(page));
3083                 if (memcg)
3084                         objcg = __get_obj_cgroup_from_memcg(memcg);
3085                 else
3086                         objcg = NULL;
3087                 rcu_read_unlock();
3088         }
3089         return objcg;
3090 }
3091
3092 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3093 {
3094         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3095         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3096                 if (nr_pages > 0)
3097                         page_counter_charge(&memcg->kmem, nr_pages);
3098                 else
3099                         page_counter_uncharge(&memcg->kmem, -nr_pages);
3100         }
3101 }
3102
3103
3104 /*
3105  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3106  * @objcg: object cgroup to uncharge
3107  * @nr_pages: number of pages to uncharge
3108  */
3109 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3110                                       unsigned int nr_pages)
3111 {
3112         struct mem_cgroup *memcg;
3113
3114         memcg = get_mem_cgroup_from_objcg(objcg);
3115
3116         memcg_account_kmem(memcg, -nr_pages);
3117         refill_stock(memcg, nr_pages);
3118
3119         css_put(&memcg->css);
3120 }
3121
3122 /*
3123  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3124  * @objcg: object cgroup to charge
3125  * @gfp: reclaim mode
3126  * @nr_pages: number of pages to charge
3127  *
3128  * Returns 0 on success, an error code on failure.
3129  */
3130 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3131                                    unsigned int nr_pages)
3132 {
3133         struct mem_cgroup *memcg;
3134         int ret;
3135
3136         memcg = get_mem_cgroup_from_objcg(objcg);
3137
3138         ret = try_charge_memcg(memcg, gfp, nr_pages);
3139         if (ret)
3140                 goto out;
3141
3142         memcg_account_kmem(memcg, nr_pages);
3143 out:
3144         css_put(&memcg->css);
3145
3146         return ret;
3147 }
3148
3149 /**
3150  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3151  * @page: page to charge
3152  * @gfp: reclaim mode
3153  * @order: allocation order
3154  *
3155  * Returns 0 on success, an error code on failure.
3156  */
3157 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3158 {
3159         struct obj_cgroup *objcg;
3160         int ret = 0;
3161
3162         objcg = get_obj_cgroup_from_current();
3163         if (objcg) {
3164                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3165                 if (!ret) {
3166                         page->memcg_data = (unsigned long)objcg |
3167                                 MEMCG_DATA_KMEM;
3168                         return 0;
3169                 }
3170                 obj_cgroup_put(objcg);
3171         }
3172         return ret;
3173 }
3174
3175 /**
3176  * __memcg_kmem_uncharge_page: uncharge a kmem page
3177  * @page: page to uncharge
3178  * @order: allocation order
3179  */
3180 void __memcg_kmem_uncharge_page(struct page *page, int order)
3181 {
3182         struct folio *folio = page_folio(page);
3183         struct obj_cgroup *objcg;
3184         unsigned int nr_pages = 1 << order;
3185
3186         if (!folio_memcg_kmem(folio))
3187                 return;
3188
3189         objcg = __folio_objcg(folio);
3190         obj_cgroup_uncharge_pages(objcg, nr_pages);
3191         folio->memcg_data = 0;
3192         obj_cgroup_put(objcg);
3193 }
3194
3195 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3196                      enum node_stat_item idx, int nr)
3197 {
3198         struct memcg_stock_pcp *stock;
3199         struct obj_cgroup *old = NULL;
3200         unsigned long flags;
3201         int *bytes;
3202
3203         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3204         stock = this_cpu_ptr(&memcg_stock);
3205
3206         /*
3207          * Save vmstat data in stock and skip vmstat array update unless
3208          * accumulating over a page of vmstat data or when pgdat or idx
3209          * changes.
3210          */
3211         if (READ_ONCE(stock->cached_objcg) != objcg) {
3212                 old = drain_obj_stock(stock);
3213                 obj_cgroup_get(objcg);
3214                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3215                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3216                 WRITE_ONCE(stock->cached_objcg, objcg);
3217                 stock->cached_pgdat = pgdat;
3218         } else if (stock->cached_pgdat != pgdat) {
3219                 /* Flush the existing cached vmstat data */
3220                 struct pglist_data *oldpg = stock->cached_pgdat;
3221
3222                 if (stock->nr_slab_reclaimable_b) {
3223                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3224                                           stock->nr_slab_reclaimable_b);
3225                         stock->nr_slab_reclaimable_b = 0;
3226                 }
3227                 if (stock->nr_slab_unreclaimable_b) {
3228                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3229                                           stock->nr_slab_unreclaimable_b);
3230                         stock->nr_slab_unreclaimable_b = 0;
3231                 }
3232                 stock->cached_pgdat = pgdat;
3233         }
3234
3235         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3236                                                : &stock->nr_slab_unreclaimable_b;
3237         /*
3238          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3239          * cached locally at least once before pushing it out.
3240          */
3241         if (!*bytes) {
3242                 *bytes = nr;
3243                 nr = 0;
3244         } else {
3245                 *bytes += nr;
3246                 if (abs(*bytes) > PAGE_SIZE) {
3247                         nr = *bytes;
3248                         *bytes = 0;
3249                 } else {
3250                         nr = 0;
3251                 }
3252         }
3253         if (nr)
3254                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3255
3256         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3257         if (old)
3258                 obj_cgroup_put(old);
3259 }
3260
3261 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3262 {
3263         struct memcg_stock_pcp *stock;
3264         unsigned long flags;
3265         bool ret = false;
3266
3267         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3268
3269         stock = this_cpu_ptr(&memcg_stock);
3270         if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3271                 stock->nr_bytes -= nr_bytes;
3272                 ret = true;
3273         }
3274
3275         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3276
3277         return ret;
3278 }
3279
3280 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3281 {
3282         struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3283
3284         if (!old)
3285                 return NULL;
3286
3287         if (stock->nr_bytes) {
3288                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3289                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3290
3291                 if (nr_pages) {
3292                         struct mem_cgroup *memcg;
3293
3294                         memcg = get_mem_cgroup_from_objcg(old);
3295
3296                         memcg_account_kmem(memcg, -nr_pages);
3297                         __refill_stock(memcg, nr_pages);
3298
3299                         css_put(&memcg->css);
3300                 }
3301
3302                 /*
3303                  * The leftover is flushed to the centralized per-memcg value.
3304                  * On the next attempt to refill obj stock it will be moved
3305                  * to a per-cpu stock (probably, on an other CPU), see
3306                  * refill_obj_stock().
3307                  *
3308                  * How often it's flushed is a trade-off between the memory
3309                  * limit enforcement accuracy and potential CPU contention,
3310                  * so it might be changed in the future.
3311                  */
3312                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3313                 stock->nr_bytes = 0;
3314         }
3315
3316         /*
3317          * Flush the vmstat data in current stock
3318          */
3319         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3320                 if (stock->nr_slab_reclaimable_b) {
3321                         mod_objcg_mlstate(old, stock->cached_pgdat,
3322                                           NR_SLAB_RECLAIMABLE_B,
3323                                           stock->nr_slab_reclaimable_b);
3324                         stock->nr_slab_reclaimable_b = 0;
3325                 }
3326                 if (stock->nr_slab_unreclaimable_b) {
3327                         mod_objcg_mlstate(old, stock->cached_pgdat,
3328                                           NR_SLAB_UNRECLAIMABLE_B,
3329                                           stock->nr_slab_unreclaimable_b);
3330                         stock->nr_slab_unreclaimable_b = 0;
3331                 }
3332                 stock->cached_pgdat = NULL;
3333         }
3334
3335         WRITE_ONCE(stock->cached_objcg, NULL);
3336         /*
3337          * The `old' objects needs to be released by the caller via
3338          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3339          */
3340         return old;
3341 }
3342
3343 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3344                                      struct mem_cgroup *root_memcg)
3345 {
3346         struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3347         struct mem_cgroup *memcg;
3348
3349         if (objcg) {
3350                 memcg = obj_cgroup_memcg(objcg);
3351                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3352                         return true;
3353         }
3354
3355         return false;
3356 }
3357
3358 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3359                              bool allow_uncharge)
3360 {
3361         struct memcg_stock_pcp *stock;
3362         struct obj_cgroup *old = NULL;
3363         unsigned long flags;
3364         unsigned int nr_pages = 0;
3365
3366         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3367
3368         stock = this_cpu_ptr(&memcg_stock);
3369         if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3370                 old = drain_obj_stock(stock);
3371                 obj_cgroup_get(objcg);
3372                 WRITE_ONCE(stock->cached_objcg, objcg);
3373                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3374                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3375                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3376         }
3377         stock->nr_bytes += nr_bytes;
3378
3379         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3380                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3381                 stock->nr_bytes &= (PAGE_SIZE - 1);
3382         }
3383
3384         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3385         if (old)
3386                 obj_cgroup_put(old);
3387
3388         if (nr_pages)
3389                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3390 }
3391
3392 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3393 {
3394         unsigned int nr_pages, nr_bytes;
3395         int ret;
3396
3397         if (consume_obj_stock(objcg, size))
3398                 return 0;
3399
3400         /*
3401          * In theory, objcg->nr_charged_bytes can have enough
3402          * pre-charged bytes to satisfy the allocation. However,
3403          * flushing objcg->nr_charged_bytes requires two atomic
3404          * operations, and objcg->nr_charged_bytes can't be big.
3405          * The shared objcg->nr_charged_bytes can also become a
3406          * performance bottleneck if all tasks of the same memcg are
3407          * trying to update it. So it's better to ignore it and try
3408          * grab some new pages. The stock's nr_bytes will be flushed to
3409          * objcg->nr_charged_bytes later on when objcg changes.
3410          *
3411          * The stock's nr_bytes may contain enough pre-charged bytes
3412          * to allow one less page from being charged, but we can't rely
3413          * on the pre-charged bytes not being changed outside of
3414          * consume_obj_stock() or refill_obj_stock(). So ignore those
3415          * pre-charged bytes as well when charging pages. To avoid a
3416          * page uncharge right after a page charge, we set the
3417          * allow_uncharge flag to false when calling refill_obj_stock()
3418          * to temporarily allow the pre-charged bytes to exceed the page
3419          * size limit. The maximum reachable value of the pre-charged
3420          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3421          * race.
3422          */
3423         nr_pages = size >> PAGE_SHIFT;
3424         nr_bytes = size & (PAGE_SIZE - 1);
3425
3426         if (nr_bytes)
3427                 nr_pages += 1;
3428
3429         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3430         if (!ret && nr_bytes)
3431                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3432
3433         return ret;
3434 }
3435
3436 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3437 {
3438         refill_obj_stock(objcg, size, true);
3439 }
3440
3441 #endif /* CONFIG_MEMCG_KMEM */
3442
3443 /*
3444  * Because page_memcg(head) is not set on tails, set it now.
3445  */
3446 void split_page_memcg(struct page *head, unsigned int nr)
3447 {
3448         struct folio *folio = page_folio(head);
3449         struct mem_cgroup *memcg = folio_memcg(folio);
3450         int i;
3451
3452         if (mem_cgroup_disabled() || !memcg)
3453                 return;
3454
3455         for (i = 1; i < nr; i++)
3456                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3457
3458         if (folio_memcg_kmem(folio))
3459                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3460         else
3461                 css_get_many(&memcg->css, nr - 1);
3462 }
3463
3464 #ifdef CONFIG_SWAP
3465 /**
3466  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3467  * @entry: swap entry to be moved
3468  * @from:  mem_cgroup which the entry is moved from
3469  * @to:  mem_cgroup which the entry is moved to
3470  *
3471  * It succeeds only when the swap_cgroup's record for this entry is the same
3472  * as the mem_cgroup's id of @from.
3473  *
3474  * Returns 0 on success, -EINVAL on failure.
3475  *
3476  * The caller must have charged to @to, IOW, called page_counter_charge() about
3477  * both res and memsw, and called css_get().
3478  */
3479 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3480                                 struct mem_cgroup *from, struct mem_cgroup *to)
3481 {
3482         unsigned short old_id, new_id;
3483
3484         old_id = mem_cgroup_id(from);
3485         new_id = mem_cgroup_id(to);
3486
3487         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3488                 mod_memcg_state(from, MEMCG_SWAP, -1);
3489                 mod_memcg_state(to, MEMCG_SWAP, 1);
3490                 return 0;
3491         }
3492         return -EINVAL;
3493 }
3494 #else
3495 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3496                                 struct mem_cgroup *from, struct mem_cgroup *to)
3497 {
3498         return -EINVAL;
3499 }
3500 #endif
3501
3502 static DEFINE_MUTEX(memcg_max_mutex);
3503
3504 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3505                                  unsigned long max, bool memsw)
3506 {
3507         bool enlarge = false;
3508         bool drained = false;
3509         int ret;
3510         bool limits_invariant;
3511         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3512
3513         do {
3514                 if (signal_pending(current)) {
3515                         ret = -EINTR;
3516                         break;
3517                 }
3518
3519                 mutex_lock(&memcg_max_mutex);
3520                 /*
3521                  * Make sure that the new limit (memsw or memory limit) doesn't
3522                  * break our basic invariant rule memory.max <= memsw.max.
3523                  */
3524                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3525                                            max <= memcg->memsw.max;
3526                 if (!limits_invariant) {
3527                         mutex_unlock(&memcg_max_mutex);
3528                         ret = -EINVAL;
3529                         break;
3530                 }
3531                 if (max > counter->max)
3532                         enlarge = true;
3533                 ret = page_counter_set_max(counter, max);
3534                 mutex_unlock(&memcg_max_mutex);
3535
3536                 if (!ret)
3537                         break;
3538
3539                 if (!drained) {
3540                         drain_all_stock(memcg);
3541                         drained = true;
3542                         continue;
3543                 }
3544
3545                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3546                                         memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3547                         ret = -EBUSY;
3548                         break;
3549                 }
3550         } while (true);
3551
3552         if (!ret && enlarge)
3553                 memcg_oom_recover(memcg);
3554
3555         return ret;
3556 }
3557
3558 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3559                                             gfp_t gfp_mask,
3560                                             unsigned long *total_scanned)
3561 {
3562         unsigned long nr_reclaimed = 0;
3563         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3564         unsigned long reclaimed;
3565         int loop = 0;
3566         struct mem_cgroup_tree_per_node *mctz;
3567         unsigned long excess;
3568
3569         if (lru_gen_enabled())
3570                 return 0;
3571
3572         if (order > 0)
3573                 return 0;
3574
3575         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3576
3577         /*
3578          * Do not even bother to check the largest node if the root
3579          * is empty. Do it lockless to prevent lock bouncing. Races
3580          * are acceptable as soft limit is best effort anyway.
3581          */
3582         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3583                 return 0;
3584
3585         /*
3586          * This loop can run a while, specially if mem_cgroup's continuously
3587          * keep exceeding their soft limit and putting the system under
3588          * pressure
3589          */
3590         do {
3591                 if (next_mz)
3592                         mz = next_mz;
3593                 else
3594                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3595                 if (!mz)
3596                         break;
3597
3598                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3599                                                     gfp_mask, total_scanned);
3600                 nr_reclaimed += reclaimed;
3601                 spin_lock_irq(&mctz->lock);
3602
3603                 /*
3604                  * If we failed to reclaim anything from this memory cgroup
3605                  * it is time to move on to the next cgroup
3606                  */
3607                 next_mz = NULL;
3608                 if (!reclaimed)
3609                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3610
3611                 excess = soft_limit_excess(mz->memcg);
3612                 /*
3613                  * One school of thought says that we should not add
3614                  * back the node to the tree if reclaim returns 0.
3615                  * But our reclaim could return 0, simply because due
3616                  * to priority we are exposing a smaller subset of
3617                  * memory to reclaim from. Consider this as a longer
3618                  * term TODO.
3619                  */
3620                 /* If excess == 0, no tree ops */
3621                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3622                 spin_unlock_irq(&mctz->lock);
3623                 css_put(&mz->memcg->css);
3624                 loop++;
3625                 /*
3626                  * Could not reclaim anything and there are no more
3627                  * mem cgroups to try or we seem to be looping without
3628                  * reclaiming anything.
3629                  */
3630                 if (!nr_reclaimed &&
3631                         (next_mz == NULL ||
3632                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3633                         break;
3634         } while (!nr_reclaimed);
3635         if (next_mz)
3636                 css_put(&next_mz->memcg->css);
3637         return nr_reclaimed;
3638 }
3639
3640 /*
3641  * Reclaims as many pages from the given memcg as possible.
3642  *
3643  * Caller is responsible for holding css reference for memcg.
3644  */
3645 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3646 {
3647         int nr_retries = MAX_RECLAIM_RETRIES;
3648
3649         /* we call try-to-free pages for make this cgroup empty */
3650         lru_add_drain_all();
3651
3652         drain_all_stock(memcg);
3653
3654         /* try to free all pages in this cgroup */
3655         while (nr_retries && page_counter_read(&memcg->memory)) {
3656                 if (signal_pending(current))
3657                         return -EINTR;
3658
3659                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3660                                                   MEMCG_RECLAIM_MAY_SWAP))
3661                         nr_retries--;
3662         }
3663
3664         return 0;
3665 }
3666
3667 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3668                                             char *buf, size_t nbytes,
3669                                             loff_t off)
3670 {
3671         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3672
3673         if (mem_cgroup_is_root(memcg))
3674                 return -EINVAL;
3675         return mem_cgroup_force_empty(memcg) ?: nbytes;
3676 }
3677
3678 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3679                                      struct cftype *cft)
3680 {
3681         return 1;
3682 }
3683
3684 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3685                                       struct cftype *cft, u64 val)
3686 {
3687         if (val == 1)
3688                 return 0;
3689
3690         pr_warn_once("Non-hierarchical mode is deprecated. "
3691                      "Please report your usecase to linux-mm@kvack.org if you "
3692                      "depend on this functionality.\n");
3693
3694         return -EINVAL;
3695 }
3696
3697 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3698 {
3699         unsigned long val;
3700
3701         if (mem_cgroup_is_root(memcg)) {
3702                 /*
3703                  * We can reach here from irq context through:
3704                  * uncharge_batch()
3705                  * |--memcg_check_events()
3706                  *    |--mem_cgroup_threshold()
3707                  *       |--__mem_cgroup_threshold()
3708                  *          |--mem_cgroup_usage
3709                  *
3710                  * rstat flushing is an expensive operation that should not be
3711                  * done from irq context; use stale stats in this case.
3712                  * Arguably, usage threshold events are not reliable on the root
3713                  * memcg anyway since its usage is ill-defined.
3714                  *
3715                  * Additionally, other call paths through memcg_check_events()
3716                  * disable irqs, so make sure we are flushing stats atomically.
3717                  */
3718                 if (in_task())
3719                         mem_cgroup_flush_stats_atomic();
3720                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3721                         memcg_page_state(memcg, NR_ANON_MAPPED);
3722                 if (swap)
3723                         val += memcg_page_state(memcg, MEMCG_SWAP);
3724         } else {
3725                 if (!swap)
3726                         val = page_counter_read(&memcg->memory);
3727                 else
3728                         val = page_counter_read(&memcg->memsw);
3729         }
3730         return val;
3731 }
3732
3733 enum {
3734         RES_USAGE,
3735         RES_LIMIT,
3736         RES_MAX_USAGE,
3737         RES_FAILCNT,
3738         RES_SOFT_LIMIT,
3739 };
3740
3741 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3742                                struct cftype *cft)
3743 {
3744         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3745         struct page_counter *counter;
3746
3747         switch (MEMFILE_TYPE(cft->private)) {
3748         case _MEM:
3749                 counter = &memcg->memory;
3750                 break;
3751         case _MEMSWAP:
3752                 counter = &memcg->memsw;
3753                 break;
3754         case _KMEM:
3755                 counter = &memcg->kmem;
3756                 break;
3757         case _TCP:
3758                 counter = &memcg->tcpmem;
3759                 break;
3760         default:
3761                 BUG();
3762         }
3763
3764         switch (MEMFILE_ATTR(cft->private)) {
3765         case RES_USAGE:
3766                 if (counter == &memcg->memory)
3767                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3768                 if (counter == &memcg->memsw)
3769                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3770                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3771         case RES_LIMIT:
3772                 return (u64)counter->max * PAGE_SIZE;
3773         case RES_MAX_USAGE:
3774                 return (u64)counter->watermark * PAGE_SIZE;
3775         case RES_FAILCNT:
3776                 return counter->failcnt;
3777         case RES_SOFT_LIMIT:
3778                 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3779         default:
3780                 BUG();
3781         }
3782 }
3783
3784 /*
3785  * This function doesn't do anything useful. Its only job is to provide a read
3786  * handler for a file so that cgroup_file_mode() will add read permissions.
3787  */
3788 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3789                                      __always_unused void *v)
3790 {
3791         return -EINVAL;
3792 }
3793
3794 #ifdef CONFIG_MEMCG_KMEM
3795 static int memcg_online_kmem(struct mem_cgroup *memcg)
3796 {
3797         struct obj_cgroup *objcg;
3798
3799         if (mem_cgroup_kmem_disabled())
3800                 return 0;
3801
3802         if (unlikely(mem_cgroup_is_root(memcg)))
3803                 return 0;
3804
3805         objcg = obj_cgroup_alloc();
3806         if (!objcg)
3807                 return -ENOMEM;
3808
3809         objcg->memcg = memcg;
3810         rcu_assign_pointer(memcg->objcg, objcg);
3811
3812         static_branch_enable(&memcg_kmem_online_key);
3813
3814         memcg->kmemcg_id = memcg->id.id;
3815
3816         return 0;
3817 }
3818
3819 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3820 {
3821         struct mem_cgroup *parent;
3822
3823         if (mem_cgroup_kmem_disabled())
3824                 return;
3825
3826         if (unlikely(mem_cgroup_is_root(memcg)))
3827                 return;
3828
3829         parent = parent_mem_cgroup(memcg);
3830         if (!parent)
3831                 parent = root_mem_cgroup;
3832
3833         memcg_reparent_objcgs(memcg, parent);
3834
3835         /*
3836          * After we have finished memcg_reparent_objcgs(), all list_lrus
3837          * corresponding to this cgroup are guaranteed to remain empty.
3838          * The ordering is imposed by list_lru_node->lock taken by
3839          * memcg_reparent_list_lrus().
3840          */
3841         memcg_reparent_list_lrus(memcg, parent);
3842 }
3843 #else
3844 static int memcg_online_kmem(struct mem_cgroup *memcg)
3845 {
3846         return 0;
3847 }
3848 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3849 {
3850 }
3851 #endif /* CONFIG_MEMCG_KMEM */
3852
3853 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3854 {
3855         int ret;
3856
3857         mutex_lock(&memcg_max_mutex);
3858
3859         ret = page_counter_set_max(&memcg->tcpmem, max);
3860         if (ret)
3861                 goto out;
3862
3863         if (!memcg->tcpmem_active) {
3864                 /*
3865                  * The active flag needs to be written after the static_key
3866                  * update. This is what guarantees that the socket activation
3867                  * function is the last one to run. See mem_cgroup_sk_alloc()
3868                  * for details, and note that we don't mark any socket as
3869                  * belonging to this memcg until that flag is up.
3870                  *
3871                  * We need to do this, because static_keys will span multiple
3872                  * sites, but we can't control their order. If we mark a socket
3873                  * as accounted, but the accounting functions are not patched in
3874                  * yet, we'll lose accounting.
3875                  *
3876                  * We never race with the readers in mem_cgroup_sk_alloc(),
3877                  * because when this value change, the code to process it is not
3878                  * patched in yet.
3879                  */
3880                 static_branch_inc(&memcg_sockets_enabled_key);
3881                 memcg->tcpmem_active = true;
3882         }
3883 out:
3884         mutex_unlock(&memcg_max_mutex);
3885         return ret;
3886 }
3887
3888 /*
3889  * The user of this function is...
3890  * RES_LIMIT.
3891  */
3892 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3893                                 char *buf, size_t nbytes, loff_t off)
3894 {
3895         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3896         unsigned long nr_pages;
3897         int ret;
3898
3899         buf = strstrip(buf);
3900         ret = page_counter_memparse(buf, "-1", &nr_pages);
3901         if (ret)
3902                 return ret;
3903
3904         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3905         case RES_LIMIT:
3906                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3907                         ret = -EINVAL;
3908                         break;
3909                 }
3910                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3911                 case _MEM:
3912                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3913                         break;
3914                 case _MEMSWAP:
3915                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3916                         break;
3917                 case _KMEM:
3918                         /* kmem.limit_in_bytes is deprecated. */
3919                         ret = -EOPNOTSUPP;
3920                         break;
3921                 case _TCP:
3922                         ret = memcg_update_tcp_max(memcg, nr_pages);
3923                         break;
3924                 }
3925                 break;
3926         case RES_SOFT_LIMIT:
3927                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3928                         ret = -EOPNOTSUPP;
3929                 } else {
3930                         WRITE_ONCE(memcg->soft_limit, nr_pages);
3931                         ret = 0;
3932                 }
3933                 break;
3934         }
3935         return ret ?: nbytes;
3936 }
3937
3938 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3939                                 size_t nbytes, loff_t off)
3940 {
3941         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3942         struct page_counter *counter;
3943
3944         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3945         case _MEM:
3946                 counter = &memcg->memory;
3947                 break;
3948         case _MEMSWAP:
3949                 counter = &memcg->memsw;
3950                 break;
3951         case _KMEM:
3952                 counter = &memcg->kmem;
3953                 break;
3954         case _TCP:
3955                 counter = &memcg->tcpmem;
3956                 break;
3957         default:
3958                 BUG();
3959         }
3960
3961         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3962         case RES_MAX_USAGE:
3963                 page_counter_reset_watermark(counter);
3964                 break;
3965         case RES_FAILCNT:
3966                 counter->failcnt = 0;
3967                 break;
3968         default:
3969                 BUG();
3970         }
3971
3972         return nbytes;
3973 }
3974
3975 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3976                                         struct cftype *cft)
3977 {
3978         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3979 }
3980
3981 #ifdef CONFIG_MMU
3982 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3983                                         struct cftype *cft, u64 val)
3984 {
3985         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3986
3987         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3988                      "Please report your usecase to linux-mm@kvack.org if you "
3989                      "depend on this functionality.\n");
3990
3991         if (val & ~MOVE_MASK)
3992                 return -EINVAL;
3993
3994         /*
3995          * No kind of locking is needed in here, because ->can_attach() will
3996          * check this value once in the beginning of the process, and then carry
3997          * on with stale data. This means that changes to this value will only
3998          * affect task migrations starting after the change.
3999          */
4000         memcg->move_charge_at_immigrate = val;
4001         return 0;
4002 }
4003 #else
4004 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4005                                         struct cftype *cft, u64 val)
4006 {
4007         return -ENOSYS;
4008 }
4009 #endif
4010
4011 #ifdef CONFIG_NUMA
4012
4013 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4014 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4015 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
4016
4017 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4018                                 int nid, unsigned int lru_mask, bool tree)
4019 {
4020         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4021         unsigned long nr = 0;
4022         enum lru_list lru;
4023
4024         VM_BUG_ON((unsigned)nid >= nr_node_ids);
4025
4026         for_each_lru(lru) {
4027                 if (!(BIT(lru) & lru_mask))
4028                         continue;
4029                 if (tree)
4030                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4031                 else
4032                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4033         }
4034         return nr;
4035 }
4036
4037 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4038                                              unsigned int lru_mask,
4039                                              bool tree)
4040 {
4041         unsigned long nr = 0;
4042         enum lru_list lru;
4043
4044         for_each_lru(lru) {
4045                 if (!(BIT(lru) & lru_mask))
4046                         continue;
4047                 if (tree)
4048                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4049                 else
4050                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4051         }
4052         return nr;
4053 }
4054
4055 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4056 {
4057         struct numa_stat {
4058                 const char *name;
4059                 unsigned int lru_mask;
4060         };
4061
4062         static const struct numa_stat stats[] = {
4063                 { "total", LRU_ALL },
4064                 { "file", LRU_ALL_FILE },
4065                 { "anon", LRU_ALL_ANON },
4066                 { "unevictable", BIT(LRU_UNEVICTABLE) },
4067         };
4068         const struct numa_stat *stat;
4069         int nid;
4070         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4071
4072         mem_cgroup_flush_stats();
4073
4074         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4075                 seq_printf(m, "%s=%lu", stat->name,
4076                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4077                                                    false));
4078                 for_each_node_state(nid, N_MEMORY)
4079                         seq_printf(m, " N%d=%lu", nid,
4080                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4081                                                         stat->lru_mask, false));
4082                 seq_putc(m, '\n');
4083         }
4084
4085         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4086
4087                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4088                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4089                                                    true));
4090                 for_each_node_state(nid, N_MEMORY)
4091                         seq_printf(m, " N%d=%lu", nid,
4092                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4093                                                         stat->lru_mask, true));
4094                 seq_putc(m, '\n');
4095         }
4096
4097         return 0;
4098 }
4099 #endif /* CONFIG_NUMA */
4100
4101 static const unsigned int memcg1_stats[] = {
4102         NR_FILE_PAGES,
4103         NR_ANON_MAPPED,
4104 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4105         NR_ANON_THPS,
4106 #endif
4107         NR_SHMEM,
4108         NR_FILE_MAPPED,
4109         NR_FILE_DIRTY,
4110         NR_WRITEBACK,
4111         WORKINGSET_REFAULT_ANON,
4112         WORKINGSET_REFAULT_FILE,
4113         MEMCG_SWAP,
4114 };
4115
4116 static const char *const memcg1_stat_names[] = {
4117         "cache",
4118         "rss",
4119 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4120         "rss_huge",
4121 #endif
4122         "shmem",
4123         "mapped_file",
4124         "dirty",
4125         "writeback",
4126         "workingset_refault_anon",
4127         "workingset_refault_file",
4128         "swap",
4129 };
4130
4131 /* Universal VM events cgroup1 shows, original sort order */
4132 static const unsigned int memcg1_events[] = {
4133         PGPGIN,
4134         PGPGOUT,
4135         PGFAULT,
4136         PGMAJFAULT,
4137 };
4138
4139 static int memcg_stat_show(struct seq_file *m, void *v)
4140 {
4141         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4142         unsigned long memory, memsw;
4143         struct mem_cgroup *mi;
4144         unsigned int i;
4145
4146         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4147
4148         mem_cgroup_flush_stats();
4149
4150         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4151                 unsigned long nr;
4152
4153                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4154                         continue;
4155                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4156                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4157                            nr * memcg_page_state_unit(memcg1_stats[i]));
4158         }
4159
4160         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4161                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4162                            memcg_events_local(memcg, memcg1_events[i]));
4163
4164         for (i = 0; i < NR_LRU_LISTS; i++)
4165                 seq_printf(m, "%s %lu\n", lru_list_name(i),
4166                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4167                            PAGE_SIZE);
4168
4169         /* Hierarchical information */
4170         memory = memsw = PAGE_COUNTER_MAX;
4171         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4172                 memory = min(memory, READ_ONCE(mi->memory.max));
4173                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4174         }
4175         seq_printf(m, "hierarchical_memory_limit %llu\n",
4176                    (u64)memory * PAGE_SIZE);
4177         if (do_memsw_account())
4178                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4179                            (u64)memsw * PAGE_SIZE);
4180
4181         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4182                 unsigned long nr;
4183
4184                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4185                         continue;
4186                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4187                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4188                            (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4189         }
4190
4191         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4192                 seq_printf(m, "total_%s %llu\n",
4193                            vm_event_name(memcg1_events[i]),
4194                            (u64)memcg_events(memcg, memcg1_events[i]));
4195
4196         for (i = 0; i < NR_LRU_LISTS; i++)
4197                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4198                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4199                            PAGE_SIZE);
4200
4201 #ifdef CONFIG_DEBUG_VM
4202         {
4203                 pg_data_t *pgdat;
4204                 struct mem_cgroup_per_node *mz;
4205                 unsigned long anon_cost = 0;
4206                 unsigned long file_cost = 0;
4207
4208                 for_each_online_pgdat(pgdat) {
4209                         mz = memcg->nodeinfo[pgdat->node_id];
4210
4211                         anon_cost += mz->lruvec.anon_cost;
4212                         file_cost += mz->lruvec.file_cost;
4213                 }
4214                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4215                 seq_printf(m, "file_cost %lu\n", file_cost);
4216         }
4217 #endif
4218
4219         return 0;
4220 }
4221
4222 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4223                                       struct cftype *cft)
4224 {
4225         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4226
4227         return mem_cgroup_swappiness(memcg);
4228 }
4229
4230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4231                                        struct cftype *cft, u64 val)
4232 {
4233         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4234
4235         if (val > 200)
4236                 return -EINVAL;
4237
4238         if (!mem_cgroup_is_root(memcg))
4239                 WRITE_ONCE(memcg->swappiness, val);
4240         else
4241                 WRITE_ONCE(vm_swappiness, val);
4242
4243         return 0;
4244 }
4245
4246 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4247 {
4248         struct mem_cgroup_threshold_ary *t;
4249         unsigned long usage;
4250         int i;
4251
4252         rcu_read_lock();
4253         if (!swap)
4254                 t = rcu_dereference(memcg->thresholds.primary);
4255         else
4256                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4257
4258         if (!t)
4259                 goto unlock;
4260
4261         usage = mem_cgroup_usage(memcg, swap);
4262
4263         /*
4264          * current_threshold points to threshold just below or equal to usage.
4265          * If it's not true, a threshold was crossed after last
4266          * call of __mem_cgroup_threshold().
4267          */
4268         i = t->current_threshold;
4269
4270         /*
4271          * Iterate backward over array of thresholds starting from
4272          * current_threshold and check if a threshold is crossed.
4273          * If none of thresholds below usage is crossed, we read
4274          * only one element of the array here.
4275          */
4276         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4277                 eventfd_signal(t->entries[i].eventfd, 1);
4278
4279         /* i = current_threshold + 1 */
4280         i++;
4281
4282         /*
4283          * Iterate forward over array of thresholds starting from
4284          * current_threshold+1 and check if a threshold is crossed.
4285          * If none of thresholds above usage is crossed, we read
4286          * only one element of the array here.
4287          */
4288         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4289                 eventfd_signal(t->entries[i].eventfd, 1);
4290
4291         /* Update current_threshold */
4292         t->current_threshold = i - 1;
4293 unlock:
4294         rcu_read_unlock();
4295 }
4296
4297 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4298 {
4299         while (memcg) {
4300                 __mem_cgroup_threshold(memcg, false);
4301                 if (do_memsw_account())
4302                         __mem_cgroup_threshold(memcg, true);
4303
4304                 memcg = parent_mem_cgroup(memcg);
4305         }
4306 }
4307
4308 static int compare_thresholds(const void *a, const void *b)
4309 {
4310         const struct mem_cgroup_threshold *_a = a;
4311         const struct mem_cgroup_threshold *_b = b;
4312
4313         if (_a->threshold > _b->threshold)
4314                 return 1;
4315
4316         if (_a->threshold < _b->threshold)
4317                 return -1;
4318
4319         return 0;
4320 }
4321
4322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4323 {
4324         struct mem_cgroup_eventfd_list *ev;
4325
4326         spin_lock(&memcg_oom_lock);
4327
4328         list_for_each_entry(ev, &memcg->oom_notify, list)
4329                 eventfd_signal(ev->eventfd, 1);
4330
4331         spin_unlock(&memcg_oom_lock);
4332         return 0;
4333 }
4334
4335 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4336 {
4337         struct mem_cgroup *iter;
4338
4339         for_each_mem_cgroup_tree(iter, memcg)
4340                 mem_cgroup_oom_notify_cb(iter);
4341 }
4342
4343 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4344         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4345 {
4346         struct mem_cgroup_thresholds *thresholds;
4347         struct mem_cgroup_threshold_ary *new;
4348         unsigned long threshold;
4349         unsigned long usage;
4350         int i, size, ret;
4351
4352         ret = page_counter_memparse(args, "-1", &threshold);
4353         if (ret)
4354                 return ret;
4355
4356         mutex_lock(&memcg->thresholds_lock);
4357
4358         if (type == _MEM) {
4359                 thresholds = &memcg->thresholds;
4360                 usage = mem_cgroup_usage(memcg, false);
4361         } else if (type == _MEMSWAP) {
4362                 thresholds = &memcg->memsw_thresholds;
4363                 usage = mem_cgroup_usage(memcg, true);
4364         } else
4365                 BUG();
4366
4367         /* Check if a threshold crossed before adding a new one */
4368         if (thresholds->primary)
4369                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4370
4371         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4372
4373         /* Allocate memory for new array of thresholds */
4374         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4375         if (!new) {
4376                 ret = -ENOMEM;
4377                 goto unlock;
4378         }
4379         new->size = size;
4380
4381         /* Copy thresholds (if any) to new array */
4382         if (thresholds->primary)
4383                 memcpy(new->entries, thresholds->primary->entries,
4384                        flex_array_size(new, entries, size - 1));
4385
4386         /* Add new threshold */
4387         new->entries[size - 1].eventfd = eventfd;
4388         new->entries[size - 1].threshold = threshold;
4389
4390         /* Sort thresholds. Registering of new threshold isn't time-critical */
4391         sort(new->entries, size, sizeof(*new->entries),
4392                         compare_thresholds, NULL);
4393
4394         /* Find current threshold */
4395         new->current_threshold = -1;
4396         for (i = 0; i < size; i++) {
4397                 if (new->entries[i].threshold <= usage) {
4398                         /*
4399                          * new->current_threshold will not be used until
4400                          * rcu_assign_pointer(), so it's safe to increment
4401                          * it here.
4402                          */
4403                         ++new->current_threshold;
4404                 } else
4405                         break;
4406         }
4407
4408         /* Free old spare buffer and save old primary buffer as spare */
4409         kfree(thresholds->spare);
4410         thresholds->spare = thresholds->primary;
4411
4412         rcu_assign_pointer(thresholds->primary, new);
4413
4414         /* To be sure that nobody uses thresholds */
4415         synchronize_rcu();
4416
4417 unlock:
4418         mutex_unlock(&memcg->thresholds_lock);
4419
4420         return ret;
4421 }
4422
4423 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4424         struct eventfd_ctx *eventfd, const char *args)
4425 {
4426         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4427 }
4428
4429 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4430         struct eventfd_ctx *eventfd, const char *args)
4431 {
4432         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4433 }
4434
4435 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4436         struct eventfd_ctx *eventfd, enum res_type type)
4437 {
4438         struct mem_cgroup_thresholds *thresholds;
4439         struct mem_cgroup_threshold_ary *new;
4440         unsigned long usage;
4441         int i, j, size, entries;
4442
4443         mutex_lock(&memcg->thresholds_lock);
4444
4445         if (type == _MEM) {
4446                 thresholds = &memcg->thresholds;
4447                 usage = mem_cgroup_usage(memcg, false);
4448         } else if (type == _MEMSWAP) {
4449                 thresholds = &memcg->memsw_thresholds;
4450                 usage = mem_cgroup_usage(memcg, true);
4451         } else
4452                 BUG();
4453
4454         if (!thresholds->primary)
4455                 goto unlock;
4456
4457         /* Check if a threshold crossed before removing */
4458         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4459
4460         /* Calculate new number of threshold */
4461         size = entries = 0;
4462         for (i = 0; i < thresholds->primary->size; i++) {
4463                 if (thresholds->primary->entries[i].eventfd != eventfd)
4464                         size++;
4465                 else
4466                         entries++;
4467         }
4468
4469         new = thresholds->spare;
4470
4471         /* If no items related to eventfd have been cleared, nothing to do */
4472         if (!entries)
4473                 goto unlock;
4474
4475         /* Set thresholds array to NULL if we don't have thresholds */
4476         if (!size) {
4477                 kfree(new);
4478                 new = NULL;
4479                 goto swap_buffers;
4480         }
4481
4482         new->size = size;
4483
4484         /* Copy thresholds and find current threshold */
4485         new->current_threshold = -1;
4486         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4487                 if (thresholds->primary->entries[i].eventfd == eventfd)
4488                         continue;
4489
4490                 new->entries[j] = thresholds->primary->entries[i];
4491                 if (new->entries[j].threshold <= usage) {
4492                         /*
4493                          * new->current_threshold will not be used
4494                          * until rcu_assign_pointer(), so it's safe to increment
4495                          * it here.
4496                          */
4497                         ++new->current_threshold;
4498                 }
4499                 j++;
4500         }
4501
4502 swap_buffers:
4503         /* Swap primary and spare array */
4504         thresholds->spare = thresholds->primary;
4505
4506         rcu_assign_pointer(thresholds->primary, new);
4507
4508         /* To be sure that nobody uses thresholds */
4509         synchronize_rcu();
4510
4511         /* If all events are unregistered, free the spare array */
4512         if (!new) {
4513                 kfree(thresholds->spare);
4514                 thresholds->spare = NULL;
4515         }
4516 unlock:
4517         mutex_unlock(&memcg->thresholds_lock);
4518 }
4519
4520 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4521         struct eventfd_ctx *eventfd)
4522 {
4523         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4524 }
4525
4526 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4527         struct eventfd_ctx *eventfd)
4528 {
4529         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4530 }
4531
4532 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4533         struct eventfd_ctx *eventfd, const char *args)
4534 {
4535         struct mem_cgroup_eventfd_list *event;
4536
4537         event = kmalloc(sizeof(*event), GFP_KERNEL);
4538         if (!event)
4539                 return -ENOMEM;
4540
4541         spin_lock(&memcg_oom_lock);
4542
4543         event->eventfd = eventfd;
4544         list_add(&event->list, &memcg->oom_notify);
4545
4546         /* already in OOM ? */
4547         if (memcg->under_oom)
4548                 eventfd_signal(eventfd, 1);
4549         spin_unlock(&memcg_oom_lock);
4550
4551         return 0;
4552 }
4553
4554 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4555         struct eventfd_ctx *eventfd)
4556 {
4557         struct mem_cgroup_eventfd_list *ev, *tmp;
4558
4559         spin_lock(&memcg_oom_lock);
4560
4561         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4562                 if (ev->eventfd == eventfd) {
4563                         list_del(&ev->list);
4564                         kfree(ev);
4565                 }
4566         }
4567
4568         spin_unlock(&memcg_oom_lock);
4569 }
4570
4571 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4572 {
4573         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4574
4575         seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4576         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4577         seq_printf(sf, "oom_kill %lu\n",
4578                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4579         return 0;
4580 }
4581
4582 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4583         struct cftype *cft, u64 val)
4584 {
4585         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4586
4587         /* cannot set to root cgroup and only 0 and 1 are allowed */
4588         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4589                 return -EINVAL;
4590
4591         WRITE_ONCE(memcg->oom_kill_disable, val);
4592         if (!val)
4593                 memcg_oom_recover(memcg);
4594
4595         return 0;
4596 }
4597
4598 #ifdef CONFIG_CGROUP_WRITEBACK
4599
4600 #include <trace/events/writeback.h>
4601
4602 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4603 {
4604         return wb_domain_init(&memcg->cgwb_domain, gfp);
4605 }
4606
4607 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4608 {
4609         wb_domain_exit(&memcg->cgwb_domain);
4610 }
4611
4612 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4613 {
4614         wb_domain_size_changed(&memcg->cgwb_domain);
4615 }
4616
4617 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4618 {
4619         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4620
4621         if (!memcg->css.parent)
4622                 return NULL;
4623
4624         return &memcg->cgwb_domain;
4625 }
4626
4627 /**
4628  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4629  * @wb: bdi_writeback in question
4630  * @pfilepages: out parameter for number of file pages
4631  * @pheadroom: out parameter for number of allocatable pages according to memcg
4632  * @pdirty: out parameter for number of dirty pages
4633  * @pwriteback: out parameter for number of pages under writeback
4634  *
4635  * Determine the numbers of file, headroom, dirty, and writeback pages in
4636  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4637  * is a bit more involved.
4638  *
4639  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4640  * headroom is calculated as the lowest headroom of itself and the
4641  * ancestors.  Note that this doesn't consider the actual amount of
4642  * available memory in the system.  The caller should further cap
4643  * *@pheadroom accordingly.
4644  */
4645 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4646                          unsigned long *pheadroom, unsigned long *pdirty,
4647                          unsigned long *pwriteback)
4648 {
4649         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4650         struct mem_cgroup *parent;
4651
4652         /*
4653          * wb_writeback() takes a spinlock and calls
4654          * wb_over_bg_thresh()->mem_cgroup_wb_stats(). Do not sleep.
4655          */
4656         mem_cgroup_flush_stats_atomic();
4657
4658         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4659         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4660         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4661                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4662
4663         *pheadroom = PAGE_COUNTER_MAX;
4664         while ((parent = parent_mem_cgroup(memcg))) {
4665                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4666                                             READ_ONCE(memcg->memory.high));
4667                 unsigned long used = page_counter_read(&memcg->memory);
4668
4669                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4670                 memcg = parent;
4671         }
4672 }
4673
4674 /*
4675  * Foreign dirty flushing
4676  *
4677  * There's an inherent mismatch between memcg and writeback.  The former
4678  * tracks ownership per-page while the latter per-inode.  This was a
4679  * deliberate design decision because honoring per-page ownership in the
4680  * writeback path is complicated, may lead to higher CPU and IO overheads
4681  * and deemed unnecessary given that write-sharing an inode across
4682  * different cgroups isn't a common use-case.
4683  *
4684  * Combined with inode majority-writer ownership switching, this works well
4685  * enough in most cases but there are some pathological cases.  For
4686  * example, let's say there are two cgroups A and B which keep writing to
4687  * different but confined parts of the same inode.  B owns the inode and
4688  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4689  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4690  * triggering background writeback.  A will be slowed down without a way to
4691  * make writeback of the dirty pages happen.
4692  *
4693  * Conditions like the above can lead to a cgroup getting repeatedly and
4694  * severely throttled after making some progress after each
4695  * dirty_expire_interval while the underlying IO device is almost
4696  * completely idle.
4697  *
4698  * Solving this problem completely requires matching the ownership tracking
4699  * granularities between memcg and writeback in either direction.  However,
4700  * the more egregious behaviors can be avoided by simply remembering the
4701  * most recent foreign dirtying events and initiating remote flushes on
4702  * them when local writeback isn't enough to keep the memory clean enough.
4703  *
4704  * The following two functions implement such mechanism.  When a foreign
4705  * page - a page whose memcg and writeback ownerships don't match - is
4706  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4707  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4708  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4709  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4710  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4711  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4712  * limited to MEMCG_CGWB_FRN_CNT.
4713  *
4714  * The mechanism only remembers IDs and doesn't hold any object references.
4715  * As being wrong occasionally doesn't matter, updates and accesses to the
4716  * records are lockless and racy.
4717  */
4718 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4719                                              struct bdi_writeback *wb)
4720 {
4721         struct mem_cgroup *memcg = folio_memcg(folio);
4722         struct memcg_cgwb_frn *frn;
4723         u64 now = get_jiffies_64();
4724         u64 oldest_at = now;
4725         int oldest = -1;
4726         int i;
4727
4728         trace_track_foreign_dirty(folio, wb);
4729
4730         /*
4731          * Pick the slot to use.  If there is already a slot for @wb, keep
4732          * using it.  If not replace the oldest one which isn't being
4733          * written out.
4734          */
4735         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4736                 frn = &memcg->cgwb_frn[i];
4737                 if (frn->bdi_id == wb->bdi->id &&
4738                     frn->memcg_id == wb->memcg_css->id)
4739                         break;
4740                 if (time_before64(frn->at, oldest_at) &&
4741                     atomic_read(&frn->done.cnt) == 1) {
4742                         oldest = i;
4743                         oldest_at = frn->at;
4744                 }
4745         }
4746
4747         if (i < MEMCG_CGWB_FRN_CNT) {
4748                 /*
4749                  * Re-using an existing one.  Update timestamp lazily to
4750                  * avoid making the cacheline hot.  We want them to be
4751                  * reasonably up-to-date and significantly shorter than
4752                  * dirty_expire_interval as that's what expires the record.
4753                  * Use the shorter of 1s and dirty_expire_interval / 8.
4754                  */
4755                 unsigned long update_intv =
4756                         min_t(unsigned long, HZ,
4757                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4758
4759                 if (time_before64(frn->at, now - update_intv))
4760                         frn->at = now;
4761         } else if (oldest >= 0) {
4762                 /* replace the oldest free one */
4763                 frn = &memcg->cgwb_frn[oldest];
4764                 frn->bdi_id = wb->bdi->id;
4765                 frn->memcg_id = wb->memcg_css->id;
4766                 frn->at = now;
4767         }
4768 }
4769
4770 /* issue foreign writeback flushes for recorded foreign dirtying events */
4771 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4772 {
4773         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4774         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4775         u64 now = jiffies_64;
4776         int i;
4777
4778         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4779                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4780
4781                 /*
4782                  * If the record is older than dirty_expire_interval,
4783                  * writeback on it has already started.  No need to kick it
4784                  * off again.  Also, don't start a new one if there's
4785                  * already one in flight.
4786                  */
4787                 if (time_after64(frn->at, now - intv) &&
4788                     atomic_read(&frn->done.cnt) == 1) {
4789                         frn->at = 0;
4790                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4791                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4792                                                WB_REASON_FOREIGN_FLUSH,
4793                                                &frn->done);
4794                 }
4795         }
4796 }
4797
4798 #else   /* CONFIG_CGROUP_WRITEBACK */
4799
4800 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4801 {
4802         return 0;
4803 }
4804
4805 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4806 {
4807 }
4808
4809 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4810 {
4811 }
4812
4813 #endif  /* CONFIG_CGROUP_WRITEBACK */
4814
4815 /*
4816  * DO NOT USE IN NEW FILES.
4817  *
4818  * "cgroup.event_control" implementation.
4819  *
4820  * This is way over-engineered.  It tries to support fully configurable
4821  * events for each user.  Such level of flexibility is completely
4822  * unnecessary especially in the light of the planned unified hierarchy.
4823  *
4824  * Please deprecate this and replace with something simpler if at all
4825  * possible.
4826  */
4827
4828 /*
4829  * Unregister event and free resources.
4830  *
4831  * Gets called from workqueue.
4832  */
4833 static void memcg_event_remove(struct work_struct *work)
4834 {
4835         struct mem_cgroup_event *event =
4836                 container_of(work, struct mem_cgroup_event, remove);
4837         struct mem_cgroup *memcg = event->memcg;
4838
4839         remove_wait_queue(event->wqh, &event->wait);
4840
4841         event->unregister_event(memcg, event->eventfd);
4842
4843         /* Notify userspace the event is going away. */
4844         eventfd_signal(event->eventfd, 1);
4845
4846         eventfd_ctx_put(event->eventfd);
4847         kfree(event);
4848         css_put(&memcg->css);
4849 }
4850
4851 /*
4852  * Gets called on EPOLLHUP on eventfd when user closes it.
4853  *
4854  * Called with wqh->lock held and interrupts disabled.
4855  */
4856 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4857                             int sync, void *key)
4858 {
4859         struct mem_cgroup_event *event =
4860                 container_of(wait, struct mem_cgroup_event, wait);
4861         struct mem_cgroup *memcg = event->memcg;
4862         __poll_t flags = key_to_poll(key);
4863
4864         if (flags & EPOLLHUP) {
4865                 /*
4866                  * If the event has been detached at cgroup removal, we
4867                  * can simply return knowing the other side will cleanup
4868                  * for us.
4869                  *
4870                  * We can't race against event freeing since the other
4871                  * side will require wqh->lock via remove_wait_queue(),
4872                  * which we hold.
4873                  */
4874                 spin_lock(&memcg->event_list_lock);
4875                 if (!list_empty(&event->list)) {
4876                         list_del_init(&event->list);
4877                         /*
4878                          * We are in atomic context, but cgroup_event_remove()
4879                          * may sleep, so we have to call it in workqueue.
4880                          */
4881                         schedule_work(&event->remove);
4882                 }
4883                 spin_unlock(&memcg->event_list_lock);
4884         }
4885
4886         return 0;
4887 }
4888
4889 static void memcg_event_ptable_queue_proc(struct file *file,
4890                 wait_queue_head_t *wqh, poll_table *pt)
4891 {
4892         struct mem_cgroup_event *event =
4893                 container_of(pt, struct mem_cgroup_event, pt);
4894
4895         event->wqh = wqh;
4896         add_wait_queue(wqh, &event->wait);
4897 }
4898
4899 /*
4900  * DO NOT USE IN NEW FILES.
4901  *
4902  * Parse input and register new cgroup event handler.
4903  *
4904  * Input must be in format '<event_fd> <control_fd> <args>'.
4905  * Interpretation of args is defined by control file implementation.
4906  */
4907 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4908                                          char *buf, size_t nbytes, loff_t off)
4909 {
4910         struct cgroup_subsys_state *css = of_css(of);
4911         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4912         struct mem_cgroup_event *event;
4913         struct cgroup_subsys_state *cfile_css;
4914         unsigned int efd, cfd;
4915         struct fd efile;
4916         struct fd cfile;
4917         struct dentry *cdentry;
4918         const char *name;
4919         char *endp;
4920         int ret;
4921
4922         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4923                 return -EOPNOTSUPP;
4924
4925         buf = strstrip(buf);
4926
4927         efd = simple_strtoul(buf, &endp, 10);
4928         if (*endp != ' ')
4929                 return -EINVAL;
4930         buf = endp + 1;
4931
4932         cfd = simple_strtoul(buf, &endp, 10);
4933         if ((*endp != ' ') && (*endp != '\0'))
4934                 return -EINVAL;
4935         buf = endp + 1;
4936
4937         event = kzalloc(sizeof(*event), GFP_KERNEL);
4938         if (!event)
4939                 return -ENOMEM;
4940
4941         event->memcg = memcg;
4942         INIT_LIST_HEAD(&event->list);
4943         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4944         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4945         INIT_WORK(&event->remove, memcg_event_remove);
4946
4947         efile = fdget(efd);
4948         if (!efile.file) {
4949                 ret = -EBADF;
4950                 goto out_kfree;
4951         }
4952
4953         event->eventfd = eventfd_ctx_fileget(efile.file);
4954         if (IS_ERR(event->eventfd)) {
4955                 ret = PTR_ERR(event->eventfd);
4956                 goto out_put_efile;
4957         }
4958
4959         cfile = fdget(cfd);
4960         if (!cfile.file) {
4961                 ret = -EBADF;
4962                 goto out_put_eventfd;
4963         }
4964
4965         /* the process need read permission on control file */
4966         /* AV: shouldn't we check that it's been opened for read instead? */
4967         ret = file_permission(cfile.file, MAY_READ);
4968         if (ret < 0)
4969                 goto out_put_cfile;
4970
4971         /*
4972          * The control file must be a regular cgroup1 file. As a regular cgroup
4973          * file can't be renamed, it's safe to access its name afterwards.
4974          */
4975         cdentry = cfile.file->f_path.dentry;
4976         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4977                 ret = -EINVAL;
4978                 goto out_put_cfile;
4979         }
4980
4981         /*
4982          * Determine the event callbacks and set them in @event.  This used
4983          * to be done via struct cftype but cgroup core no longer knows
4984          * about these events.  The following is crude but the whole thing
4985          * is for compatibility anyway.
4986          *
4987          * DO NOT ADD NEW FILES.
4988          */
4989         name = cdentry->d_name.name;
4990
4991         if (!strcmp(name, "memory.usage_in_bytes")) {
4992                 event->register_event = mem_cgroup_usage_register_event;
4993                 event->unregister_event = mem_cgroup_usage_unregister_event;
4994         } else if (!strcmp(name, "memory.oom_control")) {
4995                 event->register_event = mem_cgroup_oom_register_event;
4996                 event->unregister_event = mem_cgroup_oom_unregister_event;
4997         } else if (!strcmp(name, "memory.pressure_level")) {
4998                 event->register_event = vmpressure_register_event;
4999                 event->unregister_event = vmpressure_unregister_event;
5000         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5001                 event->register_event = memsw_cgroup_usage_register_event;
5002                 event->unregister_event = memsw_cgroup_usage_unregister_event;
5003         } else {
5004                 ret = -EINVAL;
5005                 goto out_put_cfile;
5006         }
5007
5008         /*
5009          * Verify @cfile should belong to @css.  Also, remaining events are
5010          * automatically removed on cgroup destruction but the removal is
5011          * asynchronous, so take an extra ref on @css.
5012          */
5013         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5014                                                &memory_cgrp_subsys);
5015         ret = -EINVAL;
5016         if (IS_ERR(cfile_css))
5017                 goto out_put_cfile;
5018         if (cfile_css != css) {
5019                 css_put(cfile_css);
5020                 goto out_put_cfile;
5021         }
5022
5023         ret = event->register_event(memcg, event->eventfd, buf);
5024         if (ret)
5025                 goto out_put_css;
5026
5027         vfs_poll(efile.file, &event->pt);
5028
5029         spin_lock_irq(&memcg->event_list_lock);
5030         list_add(&event->list, &memcg->event_list);
5031         spin_unlock_irq(&memcg->event_list_lock);
5032
5033         fdput(cfile);
5034         fdput(efile);
5035
5036         return nbytes;
5037
5038 out_put_css:
5039         css_put(css);
5040 out_put_cfile:
5041         fdput(cfile);
5042 out_put_eventfd:
5043         eventfd_ctx_put(event->eventfd);
5044 out_put_efile:
5045         fdput(efile);
5046 out_kfree:
5047         kfree(event);
5048
5049         return ret;
5050 }
5051
5052 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5053 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5054 {
5055         /*
5056          * Deprecated.
5057          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5058          */
5059         return 0;
5060 }
5061 #endif
5062
5063 static struct cftype mem_cgroup_legacy_files[] = {
5064         {
5065                 .name = "usage_in_bytes",
5066                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5067                 .read_u64 = mem_cgroup_read_u64,
5068         },
5069         {
5070                 .name = "max_usage_in_bytes",
5071                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5072                 .write = mem_cgroup_reset,
5073                 .read_u64 = mem_cgroup_read_u64,
5074         },
5075         {
5076                 .name = "limit_in_bytes",
5077                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5078                 .write = mem_cgroup_write,
5079                 .read_u64 = mem_cgroup_read_u64,
5080         },
5081         {
5082                 .name = "soft_limit_in_bytes",
5083                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5084                 .write = mem_cgroup_write,
5085                 .read_u64 = mem_cgroup_read_u64,
5086         },
5087         {
5088                 .name = "failcnt",
5089                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5090                 .write = mem_cgroup_reset,
5091                 .read_u64 = mem_cgroup_read_u64,
5092         },
5093         {
5094                 .name = "stat",
5095                 .seq_show = memcg_stat_show,
5096         },
5097         {
5098                 .name = "force_empty",
5099                 .write = mem_cgroup_force_empty_write,
5100         },
5101         {
5102                 .name = "use_hierarchy",
5103                 .write_u64 = mem_cgroup_hierarchy_write,
5104                 .read_u64 = mem_cgroup_hierarchy_read,
5105         },
5106         {
5107                 .name = "cgroup.event_control",         /* XXX: for compat */
5108                 .write = memcg_write_event_control,
5109                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5110         },
5111         {
5112                 .name = "swappiness",
5113                 .read_u64 = mem_cgroup_swappiness_read,
5114                 .write_u64 = mem_cgroup_swappiness_write,
5115         },
5116         {
5117                 .name = "move_charge_at_immigrate",
5118                 .read_u64 = mem_cgroup_move_charge_read,
5119                 .write_u64 = mem_cgroup_move_charge_write,
5120         },
5121         {
5122                 .name = "oom_control",
5123                 .seq_show = mem_cgroup_oom_control_read,
5124                 .write_u64 = mem_cgroup_oom_control_write,
5125         },
5126         {
5127                 .name = "pressure_level",
5128                 .seq_show = mem_cgroup_dummy_seq_show,
5129         },
5130 #ifdef CONFIG_NUMA
5131         {
5132                 .name = "numa_stat",
5133                 .seq_show = memcg_numa_stat_show,
5134         },
5135 #endif
5136         {
5137                 .name = "kmem.limit_in_bytes",
5138                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5139                 .write = mem_cgroup_write,
5140                 .read_u64 = mem_cgroup_read_u64,
5141         },
5142         {
5143                 .name = "kmem.usage_in_bytes",
5144                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5145                 .read_u64 = mem_cgroup_read_u64,
5146         },
5147         {
5148                 .name = "kmem.failcnt",
5149                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5150                 .write = mem_cgroup_reset,
5151                 .read_u64 = mem_cgroup_read_u64,
5152         },
5153         {
5154                 .name = "kmem.max_usage_in_bytes",
5155                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5156                 .write = mem_cgroup_reset,
5157                 .read_u64 = mem_cgroup_read_u64,
5158         },
5159 #if defined(CONFIG_MEMCG_KMEM) && \
5160         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5161         {
5162                 .name = "kmem.slabinfo",
5163                 .seq_show = mem_cgroup_slab_show,
5164         },
5165 #endif
5166         {
5167                 .name = "kmem.tcp.limit_in_bytes",
5168                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5169                 .write = mem_cgroup_write,
5170                 .read_u64 = mem_cgroup_read_u64,
5171         },
5172         {
5173                 .name = "kmem.tcp.usage_in_bytes",
5174                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5175                 .read_u64 = mem_cgroup_read_u64,
5176         },
5177         {
5178                 .name = "kmem.tcp.failcnt",
5179                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5180                 .write = mem_cgroup_reset,
5181                 .read_u64 = mem_cgroup_read_u64,
5182         },
5183         {
5184                 .name = "kmem.tcp.max_usage_in_bytes",
5185                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5186                 .write = mem_cgroup_reset,
5187                 .read_u64 = mem_cgroup_read_u64,
5188         },
5189         { },    /* terminate */
5190 };
5191
5192 /*
5193  * Private memory cgroup IDR
5194  *
5195  * Swap-out records and page cache shadow entries need to store memcg
5196  * references in constrained space, so we maintain an ID space that is
5197  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5198  * memory-controlled cgroups to 64k.
5199  *
5200  * However, there usually are many references to the offline CSS after
5201  * the cgroup has been destroyed, such as page cache or reclaimable
5202  * slab objects, that don't need to hang on to the ID. We want to keep
5203  * those dead CSS from occupying IDs, or we might quickly exhaust the
5204  * relatively small ID space and prevent the creation of new cgroups
5205  * even when there are much fewer than 64k cgroups - possibly none.
5206  *
5207  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5208  * be freed and recycled when it's no longer needed, which is usually
5209  * when the CSS is offlined.
5210  *
5211  * The only exception to that are records of swapped out tmpfs/shmem
5212  * pages that need to be attributed to live ancestors on swapin. But
5213  * those references are manageable from userspace.
5214  */
5215
5216 static DEFINE_IDR(mem_cgroup_idr);
5217
5218 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5219 {
5220         if (memcg->id.id > 0) {
5221                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5222                 memcg->id.id = 0;
5223         }
5224 }
5225
5226 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5227                                                   unsigned int n)
5228 {
5229         refcount_add(n, &memcg->id.ref);
5230 }
5231
5232 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5233 {
5234         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5235                 mem_cgroup_id_remove(memcg);
5236
5237                 /* Memcg ID pins CSS */
5238                 css_put(&memcg->css);
5239         }
5240 }
5241
5242 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5243 {
5244         mem_cgroup_id_put_many(memcg, 1);
5245 }
5246
5247 /**
5248  * mem_cgroup_from_id - look up a memcg from a memcg id
5249  * @id: the memcg id to look up
5250  *
5251  * Caller must hold rcu_read_lock().
5252  */
5253 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5254 {
5255         WARN_ON_ONCE(!rcu_read_lock_held());
5256         return idr_find(&mem_cgroup_idr, id);
5257 }
5258
5259 #ifdef CONFIG_SHRINKER_DEBUG
5260 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5261 {
5262         struct cgroup *cgrp;
5263         struct cgroup_subsys_state *css;
5264         struct mem_cgroup *memcg;
5265
5266         cgrp = cgroup_get_from_id(ino);
5267         if (IS_ERR(cgrp))
5268                 return ERR_CAST(cgrp);
5269
5270         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5271         if (css)
5272                 memcg = container_of(css, struct mem_cgroup, css);
5273         else
5274                 memcg = ERR_PTR(-ENOENT);
5275
5276         cgroup_put(cgrp);
5277
5278         return memcg;
5279 }
5280 #endif
5281
5282 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5283 {
5284         struct mem_cgroup_per_node *pn;
5285
5286         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5287         if (!pn)
5288                 return 1;
5289
5290         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5291                                                    GFP_KERNEL_ACCOUNT);
5292         if (!pn->lruvec_stats_percpu) {
5293                 kfree(pn);
5294                 return 1;
5295         }
5296
5297         lruvec_init(&pn->lruvec);
5298         pn->memcg = memcg;
5299
5300         memcg->nodeinfo[node] = pn;
5301         return 0;
5302 }
5303
5304 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5305 {
5306         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5307
5308         if (!pn)
5309                 return;
5310
5311         free_percpu(pn->lruvec_stats_percpu);
5312         kfree(pn);
5313 }
5314
5315 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5316 {
5317         int node;
5318
5319         for_each_node(node)
5320                 free_mem_cgroup_per_node_info(memcg, node);
5321         kfree(memcg->vmstats);
5322         free_percpu(memcg->vmstats_percpu);
5323         kfree(memcg);
5324 }
5325
5326 static void mem_cgroup_free(struct mem_cgroup *memcg)
5327 {
5328         lru_gen_exit_memcg(memcg);
5329         memcg_wb_domain_exit(memcg);
5330         __mem_cgroup_free(memcg);
5331 }
5332
5333 static struct mem_cgroup *mem_cgroup_alloc(void)
5334 {
5335         struct mem_cgroup *memcg;
5336         int node;
5337         int __maybe_unused i;
5338         long error = -ENOMEM;
5339
5340         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5341         if (!memcg)
5342                 return ERR_PTR(error);
5343
5344         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5345                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5346         if (memcg->id.id < 0) {
5347                 error = memcg->id.id;
5348                 goto fail;
5349         }
5350
5351         memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5352         if (!memcg->vmstats)
5353                 goto fail;
5354
5355         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5356                                                  GFP_KERNEL_ACCOUNT);
5357         if (!memcg->vmstats_percpu)
5358                 goto fail;
5359
5360         for_each_node(node)
5361                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5362                         goto fail;
5363
5364         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5365                 goto fail;
5366
5367         INIT_WORK(&memcg->high_work, high_work_func);
5368         INIT_LIST_HEAD(&memcg->oom_notify);
5369         mutex_init(&memcg->thresholds_lock);
5370         spin_lock_init(&memcg->move_lock);
5371         vmpressure_init(&memcg->vmpressure);
5372         INIT_LIST_HEAD(&memcg->event_list);
5373         spin_lock_init(&memcg->event_list_lock);
5374         memcg->socket_pressure = jiffies;
5375 #ifdef CONFIG_MEMCG_KMEM
5376         memcg->kmemcg_id = -1;
5377         INIT_LIST_HEAD(&memcg->objcg_list);
5378 #endif
5379 #ifdef CONFIG_CGROUP_WRITEBACK
5380         INIT_LIST_HEAD(&memcg->cgwb_list);
5381         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5382                 memcg->cgwb_frn[i].done =
5383                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5384 #endif
5385 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5386         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5387         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5388         memcg->deferred_split_queue.split_queue_len = 0;
5389 #endif
5390         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5391         lru_gen_init_memcg(memcg);
5392         return memcg;
5393 fail:
5394         mem_cgroup_id_remove(memcg);
5395         __mem_cgroup_free(memcg);
5396         return ERR_PTR(error);
5397 }
5398
5399 static struct cgroup_subsys_state * __ref
5400 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5401 {
5402         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5403         struct mem_cgroup *memcg, *old_memcg;
5404
5405         old_memcg = set_active_memcg(parent);
5406         memcg = mem_cgroup_alloc();
5407         set_active_memcg(old_memcg);
5408         if (IS_ERR(memcg))
5409                 return ERR_CAST(memcg);
5410
5411         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5412         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5413 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5414         memcg->zswap_max = PAGE_COUNTER_MAX;
5415 #endif
5416         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5417         if (parent) {
5418                 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5419                 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5420
5421                 page_counter_init(&memcg->memory, &parent->memory);
5422                 page_counter_init(&memcg->swap, &parent->swap);
5423                 page_counter_init(&memcg->kmem, &parent->kmem);
5424                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5425         } else {
5426                 init_memcg_events();
5427                 page_counter_init(&memcg->memory, NULL);
5428                 page_counter_init(&memcg->swap, NULL);
5429                 page_counter_init(&memcg->kmem, NULL);
5430                 page_counter_init(&memcg->tcpmem, NULL);
5431
5432                 root_mem_cgroup = memcg;
5433                 return &memcg->css;
5434         }
5435
5436         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5437                 static_branch_inc(&memcg_sockets_enabled_key);
5438
5439 #if defined(CONFIG_MEMCG_KMEM)
5440         if (!cgroup_memory_nobpf)
5441                 static_branch_inc(&memcg_bpf_enabled_key);
5442 #endif
5443
5444         return &memcg->css;
5445 }
5446
5447 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5448 {
5449         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5450
5451         if (memcg_online_kmem(memcg))
5452                 goto remove_id;
5453
5454         /*
5455          * A memcg must be visible for expand_shrinker_info()
5456          * by the time the maps are allocated. So, we allocate maps
5457          * here, when for_each_mem_cgroup() can't skip it.
5458          */
5459         if (alloc_shrinker_info(memcg))
5460                 goto offline_kmem;
5461
5462         /* Online state pins memcg ID, memcg ID pins CSS */
5463         refcount_set(&memcg->id.ref, 1);
5464         css_get(css);
5465
5466         if (unlikely(mem_cgroup_is_root(memcg)))
5467                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5468                                    2UL*HZ);
5469         lru_gen_online_memcg(memcg);
5470         return 0;
5471 offline_kmem:
5472         memcg_offline_kmem(memcg);
5473 remove_id:
5474         mem_cgroup_id_remove(memcg);
5475         return -ENOMEM;
5476 }
5477
5478 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5479 {
5480         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5481         struct mem_cgroup_event *event, *tmp;
5482
5483         /*
5484          * Unregister events and notify userspace.
5485          * Notify userspace about cgroup removing only after rmdir of cgroup
5486          * directory to avoid race between userspace and kernelspace.
5487          */
5488         spin_lock_irq(&memcg->event_list_lock);
5489         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5490                 list_del_init(&event->list);
5491                 schedule_work(&event->remove);
5492         }
5493         spin_unlock_irq(&memcg->event_list_lock);
5494
5495         page_counter_set_min(&memcg->memory, 0);
5496         page_counter_set_low(&memcg->memory, 0);
5497
5498         memcg_offline_kmem(memcg);
5499         reparent_shrinker_deferred(memcg);
5500         wb_memcg_offline(memcg);
5501         lru_gen_offline_memcg(memcg);
5502
5503         drain_all_stock(memcg);
5504
5505         mem_cgroup_id_put(memcg);
5506 }
5507
5508 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5509 {
5510         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5511
5512         invalidate_reclaim_iterators(memcg);
5513         lru_gen_release_memcg(memcg);
5514 }
5515
5516 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5517 {
5518         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5519         int __maybe_unused i;
5520
5521 #ifdef CONFIG_CGROUP_WRITEBACK
5522         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5523                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5524 #endif
5525         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5526                 static_branch_dec(&memcg_sockets_enabled_key);
5527
5528         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5529                 static_branch_dec(&memcg_sockets_enabled_key);
5530
5531 #if defined(CONFIG_MEMCG_KMEM)
5532         if (!cgroup_memory_nobpf)
5533                 static_branch_dec(&memcg_bpf_enabled_key);
5534 #endif
5535
5536         vmpressure_cleanup(&memcg->vmpressure);
5537         cancel_work_sync(&memcg->high_work);
5538         mem_cgroup_remove_from_trees(memcg);
5539         free_shrinker_info(memcg);
5540         mem_cgroup_free(memcg);
5541 }
5542
5543 /**
5544  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5545  * @css: the target css
5546  *
5547  * Reset the states of the mem_cgroup associated with @css.  This is
5548  * invoked when the userland requests disabling on the default hierarchy
5549  * but the memcg is pinned through dependency.  The memcg should stop
5550  * applying policies and should revert to the vanilla state as it may be
5551  * made visible again.
5552  *
5553  * The current implementation only resets the essential configurations.
5554  * This needs to be expanded to cover all the visible parts.
5555  */
5556 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5557 {
5558         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5559
5560         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5561         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5562         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5563         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5564         page_counter_set_min(&memcg->memory, 0);
5565         page_counter_set_low(&memcg->memory, 0);
5566         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5567         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5568         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5569         memcg_wb_domain_size_changed(memcg);
5570 }
5571
5572 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5573 {
5574         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5575         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5576         struct memcg_vmstats_percpu *statc;
5577         long delta, v;
5578         int i, nid;
5579
5580         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5581
5582         for (i = 0; i < MEMCG_NR_STAT; i++) {
5583                 /*
5584                  * Collect the aggregated propagation counts of groups
5585                  * below us. We're in a per-cpu loop here and this is
5586                  * a global counter, so the first cycle will get them.
5587                  */
5588                 delta = memcg->vmstats->state_pending[i];
5589                 if (delta)
5590                         memcg->vmstats->state_pending[i] = 0;
5591
5592                 /* Add CPU changes on this level since the last flush */
5593                 v = READ_ONCE(statc->state[i]);
5594                 if (v != statc->state_prev[i]) {
5595                         delta += v - statc->state_prev[i];
5596                         statc->state_prev[i] = v;
5597                 }
5598
5599                 if (!delta)
5600                         continue;
5601
5602                 /* Aggregate counts on this level and propagate upwards */
5603                 memcg->vmstats->state[i] += delta;
5604                 if (parent)
5605                         parent->vmstats->state_pending[i] += delta;
5606         }
5607
5608         for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5609                 delta = memcg->vmstats->events_pending[i];
5610                 if (delta)
5611                         memcg->vmstats->events_pending[i] = 0;
5612
5613                 v = READ_ONCE(statc->events[i]);
5614                 if (v != statc->events_prev[i]) {
5615                         delta += v - statc->events_prev[i];
5616                         statc->events_prev[i] = v;
5617                 }
5618
5619                 if (!delta)
5620                         continue;
5621
5622                 memcg->vmstats->events[i] += delta;
5623                 if (parent)
5624                         parent->vmstats->events_pending[i] += delta;
5625         }
5626
5627         for_each_node_state(nid, N_MEMORY) {
5628                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5629                 struct mem_cgroup_per_node *ppn = NULL;
5630                 struct lruvec_stats_percpu *lstatc;
5631
5632                 if (parent)
5633                         ppn = parent->nodeinfo[nid];
5634
5635                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5636
5637                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5638                         delta = pn->lruvec_stats.state_pending[i];
5639                         if (delta)
5640                                 pn->lruvec_stats.state_pending[i] = 0;
5641
5642                         v = READ_ONCE(lstatc->state[i]);
5643                         if (v != lstatc->state_prev[i]) {
5644                                 delta += v - lstatc->state_prev[i];
5645                                 lstatc->state_prev[i] = v;
5646                         }
5647
5648                         if (!delta)
5649                                 continue;
5650
5651                         pn->lruvec_stats.state[i] += delta;
5652                         if (ppn)
5653                                 ppn->lruvec_stats.state_pending[i] += delta;
5654                 }
5655         }
5656 }
5657
5658 #ifdef CONFIG_MMU
5659 /* Handlers for move charge at task migration. */
5660 static int mem_cgroup_do_precharge(unsigned long count)
5661 {
5662         int ret;
5663
5664         /* Try a single bulk charge without reclaim first, kswapd may wake */
5665         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5666         if (!ret) {
5667                 mc.precharge += count;
5668                 return ret;
5669         }
5670
5671         /* Try charges one by one with reclaim, but do not retry */
5672         while (count--) {
5673                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5674                 if (ret)
5675                         return ret;
5676                 mc.precharge++;
5677                 cond_resched();
5678         }
5679         return 0;
5680 }
5681
5682 union mc_target {
5683         struct page     *page;
5684         swp_entry_t     ent;
5685 };
5686
5687 enum mc_target_type {
5688         MC_TARGET_NONE = 0,
5689         MC_TARGET_PAGE,
5690         MC_TARGET_SWAP,
5691         MC_TARGET_DEVICE,
5692 };
5693
5694 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5695                                                 unsigned long addr, pte_t ptent)
5696 {
5697         struct page *page = vm_normal_page(vma, addr, ptent);
5698
5699         if (!page || !page_mapped(page))
5700                 return NULL;
5701         if (PageAnon(page)) {
5702                 if (!(mc.flags & MOVE_ANON))
5703                         return NULL;
5704         } else {
5705                 if (!(mc.flags & MOVE_FILE))
5706                         return NULL;
5707         }
5708         if (!get_page_unless_zero(page))
5709                 return NULL;
5710
5711         return page;
5712 }
5713
5714 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5715 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5716                         pte_t ptent, swp_entry_t *entry)
5717 {
5718         struct page *page = NULL;
5719         swp_entry_t ent = pte_to_swp_entry(ptent);
5720
5721         if (!(mc.flags & MOVE_ANON))
5722                 return NULL;
5723
5724         /*
5725          * Handle device private pages that are not accessible by the CPU, but
5726          * stored as special swap entries in the page table.
5727          */
5728         if (is_device_private_entry(ent)) {
5729                 page = pfn_swap_entry_to_page(ent);
5730                 if (!get_page_unless_zero(page))
5731                         return NULL;
5732                 return page;
5733         }
5734
5735         if (non_swap_entry(ent))
5736                 return NULL;
5737
5738         /*
5739          * Because swap_cache_get_folio() updates some statistics counter,
5740          * we call find_get_page() with swapper_space directly.
5741          */
5742         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5743         entry->val = ent.val;
5744
5745         return page;
5746 }
5747 #else
5748 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5749                         pte_t ptent, swp_entry_t *entry)
5750 {
5751         return NULL;
5752 }
5753 #endif
5754
5755 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5756                         unsigned long addr, pte_t ptent)
5757 {
5758         unsigned long index;
5759         struct folio *folio;
5760
5761         if (!vma->vm_file) /* anonymous vma */
5762                 return NULL;
5763         if (!(mc.flags & MOVE_FILE))
5764                 return NULL;
5765
5766         /* folio is moved even if it's not RSS of this task(page-faulted). */
5767         /* shmem/tmpfs may report page out on swap: account for that too. */
5768         index = linear_page_index(vma, addr);
5769         folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5770         if (IS_ERR(folio))
5771                 return NULL;
5772         return folio_file_page(folio, index);
5773 }
5774
5775 /**
5776  * mem_cgroup_move_account - move account of the page
5777  * @page: the page
5778  * @compound: charge the page as compound or small page
5779  * @from: mem_cgroup which the page is moved from.
5780  * @to: mem_cgroup which the page is moved to. @from != @to.
5781  *
5782  * The page must be locked and not on the LRU.
5783  *
5784  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5785  * from old cgroup.
5786  */
5787 static int mem_cgroup_move_account(struct page *page,
5788                                    bool compound,
5789                                    struct mem_cgroup *from,
5790                                    struct mem_cgroup *to)
5791 {
5792         struct folio *folio = page_folio(page);
5793         struct lruvec *from_vec, *to_vec;
5794         struct pglist_data *pgdat;
5795         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5796         int nid, ret;
5797
5798         VM_BUG_ON(from == to);
5799         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5800         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5801         VM_BUG_ON(compound && !folio_test_large(folio));
5802
5803         ret = -EINVAL;
5804         if (folio_memcg(folio) != from)
5805                 goto out;
5806
5807         pgdat = folio_pgdat(folio);
5808         from_vec = mem_cgroup_lruvec(from, pgdat);
5809         to_vec = mem_cgroup_lruvec(to, pgdat);
5810
5811         folio_memcg_lock(folio);
5812
5813         if (folio_test_anon(folio)) {
5814                 if (folio_mapped(folio)) {
5815                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5816                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5817                         if (folio_test_transhuge(folio)) {
5818                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5819                                                    -nr_pages);
5820                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5821                                                    nr_pages);
5822                         }
5823                 }
5824         } else {
5825                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5826                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5827
5828                 if (folio_test_swapbacked(folio)) {
5829                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5830                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5831                 }
5832
5833                 if (folio_mapped(folio)) {
5834                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5835                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5836                 }
5837
5838                 if (folio_test_dirty(folio)) {
5839                         struct address_space *mapping = folio_mapping(folio);
5840
5841                         if (mapping_can_writeback(mapping)) {
5842                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5843                                                    -nr_pages);
5844                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5845                                                    nr_pages);
5846                         }
5847                 }
5848         }
5849
5850 #ifdef CONFIG_SWAP
5851         if (folio_test_swapcache(folio)) {
5852                 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5853                 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5854         }
5855 #endif
5856         if (folio_test_writeback(folio)) {
5857                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5858                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5859         }
5860
5861         /*
5862          * All state has been migrated, let's switch to the new memcg.
5863          *
5864          * It is safe to change page's memcg here because the page
5865          * is referenced, charged, isolated, and locked: we can't race
5866          * with (un)charging, migration, LRU putback, or anything else
5867          * that would rely on a stable page's memory cgroup.
5868          *
5869          * Note that lock_page_memcg is a memcg lock, not a page lock,
5870          * to save space. As soon as we switch page's memory cgroup to a
5871          * new memcg that isn't locked, the above state can change
5872          * concurrently again. Make sure we're truly done with it.
5873          */
5874         smp_mb();
5875
5876         css_get(&to->css);
5877         css_put(&from->css);
5878
5879         folio->memcg_data = (unsigned long)to;
5880
5881         __folio_memcg_unlock(from);
5882
5883         ret = 0;
5884         nid = folio_nid(folio);
5885
5886         local_irq_disable();
5887         mem_cgroup_charge_statistics(to, nr_pages);
5888         memcg_check_events(to, nid);
5889         mem_cgroup_charge_statistics(from, -nr_pages);
5890         memcg_check_events(from, nid);
5891         local_irq_enable();
5892 out:
5893         return ret;
5894 }
5895
5896 /**
5897  * get_mctgt_type - get target type of moving charge
5898  * @vma: the vma the pte to be checked belongs
5899  * @addr: the address corresponding to the pte to be checked
5900  * @ptent: the pte to be checked
5901  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5902  *
5903  * Returns
5904  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5905  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5906  *     move charge. if @target is not NULL, the page is stored in target->page
5907  *     with extra refcnt got(Callers should handle it).
5908  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5909  *     target for charge migration. if @target is not NULL, the entry is stored
5910  *     in target->ent.
5911  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5912  *   thus not on the lru.
5913  *     For now we such page is charge like a regular page would be as for all
5914  *     intent and purposes it is just special memory taking the place of a
5915  *     regular page.
5916  *
5917  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5918  *
5919  * Called with pte lock held.
5920  */
5921
5922 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5923                 unsigned long addr, pte_t ptent, union mc_target *target)
5924 {
5925         struct page *page = NULL;
5926         enum mc_target_type ret = MC_TARGET_NONE;
5927         swp_entry_t ent = { .val = 0 };
5928
5929         if (pte_present(ptent))
5930                 page = mc_handle_present_pte(vma, addr, ptent);
5931         else if (pte_none_mostly(ptent))
5932                 /*
5933                  * PTE markers should be treated as a none pte here, separated
5934                  * from other swap handling below.
5935                  */
5936                 page = mc_handle_file_pte(vma, addr, ptent);
5937         else if (is_swap_pte(ptent))
5938                 page = mc_handle_swap_pte(vma, ptent, &ent);
5939
5940         if (target && page) {
5941                 if (!trylock_page(page)) {
5942                         put_page(page);
5943                         return ret;
5944                 }
5945                 /*
5946                  * page_mapped() must be stable during the move. This
5947                  * pte is locked, so if it's present, the page cannot
5948                  * become unmapped. If it isn't, we have only partial
5949                  * control over the mapped state: the page lock will
5950                  * prevent new faults against pagecache and swapcache,
5951                  * so an unmapped page cannot become mapped. However,
5952                  * if the page is already mapped elsewhere, it can
5953                  * unmap, and there is nothing we can do about it.
5954                  * Alas, skip moving the page in this case.
5955                  */
5956                 if (!pte_present(ptent) && page_mapped(page)) {
5957                         unlock_page(page);
5958                         put_page(page);
5959                         return ret;
5960                 }
5961         }
5962
5963         if (!page && !ent.val)
5964                 return ret;
5965         if (page) {
5966                 /*
5967                  * Do only loose check w/o serialization.
5968                  * mem_cgroup_move_account() checks the page is valid or
5969                  * not under LRU exclusion.
5970                  */
5971                 if (page_memcg(page) == mc.from) {
5972                         ret = MC_TARGET_PAGE;
5973                         if (is_device_private_page(page) ||
5974                             is_device_coherent_page(page))
5975                                 ret = MC_TARGET_DEVICE;
5976                         if (target)
5977                                 target->page = page;
5978                 }
5979                 if (!ret || !target) {
5980                         if (target)
5981                                 unlock_page(page);
5982                         put_page(page);
5983                 }
5984         }
5985         /*
5986          * There is a swap entry and a page doesn't exist or isn't charged.
5987          * But we cannot move a tail-page in a THP.
5988          */
5989         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5990             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5991                 ret = MC_TARGET_SWAP;
5992                 if (target)
5993                         target->ent = ent;
5994         }
5995         return ret;
5996 }
5997
5998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5999 /*
6000  * We don't consider PMD mapped swapping or file mapped pages because THP does
6001  * not support them for now.
6002  * Caller should make sure that pmd_trans_huge(pmd) is true.
6003  */
6004 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6005                 unsigned long addr, pmd_t pmd, union mc_target *target)
6006 {
6007         struct page *page = NULL;
6008         enum mc_target_type ret = MC_TARGET_NONE;
6009
6010         if (unlikely(is_swap_pmd(pmd))) {
6011                 VM_BUG_ON(thp_migration_supported() &&
6012                                   !is_pmd_migration_entry(pmd));
6013                 return ret;
6014         }
6015         page = pmd_page(pmd);
6016         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6017         if (!(mc.flags & MOVE_ANON))
6018                 return ret;
6019         if (page_memcg(page) == mc.from) {
6020                 ret = MC_TARGET_PAGE;
6021                 if (target) {
6022                         get_page(page);
6023                         if (!trylock_page(page)) {
6024                                 put_page(page);
6025                                 return MC_TARGET_NONE;
6026                         }
6027                         target->page = page;
6028                 }
6029         }
6030         return ret;
6031 }
6032 #else
6033 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6034                 unsigned long addr, pmd_t pmd, union mc_target *target)
6035 {
6036         return MC_TARGET_NONE;
6037 }
6038 #endif
6039
6040 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6041                                         unsigned long addr, unsigned long end,
6042                                         struct mm_walk *walk)
6043 {
6044         struct vm_area_struct *vma = walk->vma;
6045         pte_t *pte;
6046         spinlock_t *ptl;
6047
6048         ptl = pmd_trans_huge_lock(pmd, vma);
6049         if (ptl) {
6050                 /*
6051                  * Note their can not be MC_TARGET_DEVICE for now as we do not
6052                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6053                  * this might change.
6054                  */
6055                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6056                         mc.precharge += HPAGE_PMD_NR;
6057                 spin_unlock(ptl);
6058                 return 0;
6059         }
6060
6061         if (pmd_trans_unstable(pmd))
6062                 return 0;
6063         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6064         for (; addr != end; pte++, addr += PAGE_SIZE)
6065                 if (get_mctgt_type(vma, addr, *pte, NULL))
6066                         mc.precharge++; /* increment precharge temporarily */
6067         pte_unmap_unlock(pte - 1, ptl);
6068         cond_resched();
6069
6070         return 0;
6071 }
6072
6073 static const struct mm_walk_ops precharge_walk_ops = {
6074         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
6075         .walk_lock      = PGWALK_RDLOCK,
6076 };
6077
6078 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6079 {
6080         unsigned long precharge;
6081
6082         mmap_read_lock(mm);
6083         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6084         mmap_read_unlock(mm);
6085
6086         precharge = mc.precharge;
6087         mc.precharge = 0;
6088
6089         return precharge;
6090 }
6091
6092 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6093 {
6094         unsigned long precharge = mem_cgroup_count_precharge(mm);
6095
6096         VM_BUG_ON(mc.moving_task);
6097         mc.moving_task = current;
6098         return mem_cgroup_do_precharge(precharge);
6099 }
6100
6101 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6102 static void __mem_cgroup_clear_mc(void)
6103 {
6104         struct mem_cgroup *from = mc.from;
6105         struct mem_cgroup *to = mc.to;
6106
6107         /* we must uncharge all the leftover precharges from mc.to */
6108         if (mc.precharge) {
6109                 cancel_charge(mc.to, mc.precharge);
6110                 mc.precharge = 0;
6111         }
6112         /*
6113          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6114          * we must uncharge here.
6115          */
6116         if (mc.moved_charge) {
6117                 cancel_charge(mc.from, mc.moved_charge);
6118                 mc.moved_charge = 0;
6119         }
6120         /* we must fixup refcnts and charges */
6121         if (mc.moved_swap) {
6122                 /* uncharge swap account from the old cgroup */
6123                 if (!mem_cgroup_is_root(mc.from))
6124                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6125
6126                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6127
6128                 /*
6129                  * we charged both to->memory and to->memsw, so we
6130                  * should uncharge to->memory.
6131                  */
6132                 if (!mem_cgroup_is_root(mc.to))
6133                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6134
6135                 mc.moved_swap = 0;
6136         }
6137         memcg_oom_recover(from);
6138         memcg_oom_recover(to);
6139         wake_up_all(&mc.waitq);
6140 }
6141
6142 static void mem_cgroup_clear_mc(void)
6143 {
6144         struct mm_struct *mm = mc.mm;
6145
6146         /*
6147          * we must clear moving_task before waking up waiters at the end of
6148          * task migration.
6149          */
6150         mc.moving_task = NULL;
6151         __mem_cgroup_clear_mc();
6152         spin_lock(&mc.lock);
6153         mc.from = NULL;
6154         mc.to = NULL;
6155         mc.mm = NULL;
6156         spin_unlock(&mc.lock);
6157
6158         mmput(mm);
6159 }
6160
6161 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6162 {
6163         struct cgroup_subsys_state *css;
6164         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6165         struct mem_cgroup *from;
6166         struct task_struct *leader, *p;
6167         struct mm_struct *mm;
6168         unsigned long move_flags;
6169         int ret = 0;
6170
6171         /* charge immigration isn't supported on the default hierarchy */
6172         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6173                 return 0;
6174
6175         /*
6176          * Multi-process migrations only happen on the default hierarchy
6177          * where charge immigration is not used.  Perform charge
6178          * immigration if @tset contains a leader and whine if there are
6179          * multiple.
6180          */
6181         p = NULL;
6182         cgroup_taskset_for_each_leader(leader, css, tset) {
6183                 WARN_ON_ONCE(p);
6184                 p = leader;
6185                 memcg = mem_cgroup_from_css(css);
6186         }
6187         if (!p)
6188                 return 0;
6189
6190         /*
6191          * We are now committed to this value whatever it is. Changes in this
6192          * tunable will only affect upcoming migrations, not the current one.
6193          * So we need to save it, and keep it going.
6194          */
6195         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6196         if (!move_flags)
6197                 return 0;
6198
6199         from = mem_cgroup_from_task(p);
6200
6201         VM_BUG_ON(from == memcg);
6202
6203         mm = get_task_mm(p);
6204         if (!mm)
6205                 return 0;
6206         /* We move charges only when we move a owner of the mm */
6207         if (mm->owner == p) {
6208                 VM_BUG_ON(mc.from);
6209                 VM_BUG_ON(mc.to);
6210                 VM_BUG_ON(mc.precharge);
6211                 VM_BUG_ON(mc.moved_charge);
6212                 VM_BUG_ON(mc.moved_swap);
6213
6214                 spin_lock(&mc.lock);
6215                 mc.mm = mm;
6216                 mc.from = from;
6217                 mc.to = memcg;
6218                 mc.flags = move_flags;
6219                 spin_unlock(&mc.lock);
6220                 /* We set mc.moving_task later */
6221
6222                 ret = mem_cgroup_precharge_mc(mm);
6223                 if (ret)
6224                         mem_cgroup_clear_mc();
6225         } else {
6226                 mmput(mm);
6227         }
6228         return ret;
6229 }
6230
6231 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6232 {
6233         if (mc.to)
6234                 mem_cgroup_clear_mc();
6235 }
6236
6237 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6238                                 unsigned long addr, unsigned long end,
6239                                 struct mm_walk *walk)
6240 {
6241         int ret = 0;
6242         struct vm_area_struct *vma = walk->vma;
6243         pte_t *pte;
6244         spinlock_t *ptl;
6245         enum mc_target_type target_type;
6246         union mc_target target;
6247         struct page *page;
6248
6249         ptl = pmd_trans_huge_lock(pmd, vma);
6250         if (ptl) {
6251                 if (mc.precharge < HPAGE_PMD_NR) {
6252                         spin_unlock(ptl);
6253                         return 0;
6254                 }
6255                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6256                 if (target_type == MC_TARGET_PAGE) {
6257                         page = target.page;
6258                         if (isolate_lru_page(page)) {
6259                                 if (!mem_cgroup_move_account(page, true,
6260                                                              mc.from, mc.to)) {
6261                                         mc.precharge -= HPAGE_PMD_NR;
6262                                         mc.moved_charge += HPAGE_PMD_NR;
6263                                 }
6264                                 putback_lru_page(page);
6265                         }
6266                         unlock_page(page);
6267                         put_page(page);
6268                 } else if (target_type == MC_TARGET_DEVICE) {
6269                         page = target.page;
6270                         if (!mem_cgroup_move_account(page, true,
6271                                                      mc.from, mc.to)) {
6272                                 mc.precharge -= HPAGE_PMD_NR;
6273                                 mc.moved_charge += HPAGE_PMD_NR;
6274                         }
6275                         unlock_page(page);
6276                         put_page(page);
6277                 }
6278                 spin_unlock(ptl);
6279                 return 0;
6280         }
6281
6282         if (pmd_trans_unstable(pmd))
6283                 return 0;
6284 retry:
6285         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6286         for (; addr != end; addr += PAGE_SIZE) {
6287                 pte_t ptent = *(pte++);
6288                 bool device = false;
6289                 swp_entry_t ent;
6290
6291                 if (!mc.precharge)
6292                         break;
6293
6294                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6295                 case MC_TARGET_DEVICE:
6296                         device = true;
6297                         fallthrough;
6298                 case MC_TARGET_PAGE:
6299                         page = target.page;
6300                         /*
6301                          * We can have a part of the split pmd here. Moving it
6302                          * can be done but it would be too convoluted so simply
6303                          * ignore such a partial THP and keep it in original
6304                          * memcg. There should be somebody mapping the head.
6305                          */
6306                         if (PageTransCompound(page))
6307                                 goto put;
6308                         if (!device && !isolate_lru_page(page))
6309                                 goto put;
6310                         if (!mem_cgroup_move_account(page, false,
6311                                                 mc.from, mc.to)) {
6312                                 mc.precharge--;
6313                                 /* we uncharge from mc.from later. */
6314                                 mc.moved_charge++;
6315                         }
6316                         if (!device)
6317                                 putback_lru_page(page);
6318 put:                    /* get_mctgt_type() gets & locks the page */
6319                         unlock_page(page);
6320                         put_page(page);
6321                         break;
6322                 case MC_TARGET_SWAP:
6323                         ent = target.ent;
6324                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6325                                 mc.precharge--;
6326                                 mem_cgroup_id_get_many(mc.to, 1);
6327                                 /* we fixup other refcnts and charges later. */
6328                                 mc.moved_swap++;
6329                         }
6330                         break;
6331                 default:
6332                         break;
6333                 }
6334         }
6335         pte_unmap_unlock(pte - 1, ptl);
6336         cond_resched();
6337
6338         if (addr != end) {
6339                 /*
6340                  * We have consumed all precharges we got in can_attach().
6341                  * We try charge one by one, but don't do any additional
6342                  * charges to mc.to if we have failed in charge once in attach()
6343                  * phase.
6344                  */
6345                 ret = mem_cgroup_do_precharge(1);
6346                 if (!ret)
6347                         goto retry;
6348         }
6349
6350         return ret;
6351 }
6352
6353 static const struct mm_walk_ops charge_walk_ops = {
6354         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6355         .walk_lock      = PGWALK_RDLOCK,
6356 };
6357
6358 static void mem_cgroup_move_charge(void)
6359 {
6360         lru_add_drain_all();
6361         /*
6362          * Signal lock_page_memcg() to take the memcg's move_lock
6363          * while we're moving its pages to another memcg. Then wait
6364          * for already started RCU-only updates to finish.
6365          */
6366         atomic_inc(&mc.from->moving_account);
6367         synchronize_rcu();
6368 retry:
6369         if (unlikely(!mmap_read_trylock(mc.mm))) {
6370                 /*
6371                  * Someone who are holding the mmap_lock might be waiting in
6372                  * waitq. So we cancel all extra charges, wake up all waiters,
6373                  * and retry. Because we cancel precharges, we might not be able
6374                  * to move enough charges, but moving charge is a best-effort
6375                  * feature anyway, so it wouldn't be a big problem.
6376                  */
6377                 __mem_cgroup_clear_mc();
6378                 cond_resched();
6379                 goto retry;
6380         }
6381         /*
6382          * When we have consumed all precharges and failed in doing
6383          * additional charge, the page walk just aborts.
6384          */
6385         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6386         mmap_read_unlock(mc.mm);
6387         atomic_dec(&mc.from->moving_account);
6388 }
6389
6390 static void mem_cgroup_move_task(void)
6391 {
6392         if (mc.to) {
6393                 mem_cgroup_move_charge();
6394                 mem_cgroup_clear_mc();
6395         }
6396 }
6397 #else   /* !CONFIG_MMU */
6398 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6399 {
6400         return 0;
6401 }
6402 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6403 {
6404 }
6405 static void mem_cgroup_move_task(void)
6406 {
6407 }
6408 #endif
6409
6410 #ifdef CONFIG_LRU_GEN
6411 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6412 {
6413         struct task_struct *task;
6414         struct cgroup_subsys_state *css;
6415
6416         /* find the first leader if there is any */
6417         cgroup_taskset_for_each_leader(task, css, tset)
6418                 break;
6419
6420         if (!task)
6421                 return;
6422
6423         task_lock(task);
6424         if (task->mm && READ_ONCE(task->mm->owner) == task)
6425                 lru_gen_migrate_mm(task->mm);
6426         task_unlock(task);
6427 }
6428 #else
6429 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6430 {
6431 }
6432 #endif /* CONFIG_LRU_GEN */
6433
6434 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6435 {
6436         if (value == PAGE_COUNTER_MAX)
6437                 seq_puts(m, "max\n");
6438         else
6439                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6440
6441         return 0;
6442 }
6443
6444 static u64 memory_current_read(struct cgroup_subsys_state *css,
6445                                struct cftype *cft)
6446 {
6447         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6448
6449         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6450 }
6451
6452 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6453                             struct cftype *cft)
6454 {
6455         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6456
6457         return (u64)memcg->memory.watermark * PAGE_SIZE;
6458 }
6459
6460 static int memory_min_show(struct seq_file *m, void *v)
6461 {
6462         return seq_puts_memcg_tunable(m,
6463                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6464 }
6465
6466 static ssize_t memory_min_write(struct kernfs_open_file *of,
6467                                 char *buf, size_t nbytes, loff_t off)
6468 {
6469         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6470         unsigned long min;
6471         int err;
6472
6473         buf = strstrip(buf);
6474         err = page_counter_memparse(buf, "max", &min);
6475         if (err)
6476                 return err;
6477
6478         page_counter_set_min(&memcg->memory, min);
6479
6480         return nbytes;
6481 }
6482
6483 static int memory_low_show(struct seq_file *m, void *v)
6484 {
6485         return seq_puts_memcg_tunable(m,
6486                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6487 }
6488
6489 static ssize_t memory_low_write(struct kernfs_open_file *of,
6490                                 char *buf, size_t nbytes, loff_t off)
6491 {
6492         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6493         unsigned long low;
6494         int err;
6495
6496         buf = strstrip(buf);
6497         err = page_counter_memparse(buf, "max", &low);
6498         if (err)
6499                 return err;
6500
6501         page_counter_set_low(&memcg->memory, low);
6502
6503         return nbytes;
6504 }
6505
6506 static int memory_high_show(struct seq_file *m, void *v)
6507 {
6508         return seq_puts_memcg_tunable(m,
6509                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6510 }
6511
6512 static ssize_t memory_high_write(struct kernfs_open_file *of,
6513                                  char *buf, size_t nbytes, loff_t off)
6514 {
6515         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6516         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6517         bool drained = false;
6518         unsigned long high;
6519         int err;
6520
6521         buf = strstrip(buf);
6522         err = page_counter_memparse(buf, "max", &high);
6523         if (err)
6524                 return err;
6525
6526         page_counter_set_high(&memcg->memory, high);
6527
6528         for (;;) {
6529                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6530                 unsigned long reclaimed;
6531
6532                 if (nr_pages <= high)
6533                         break;
6534
6535                 if (signal_pending(current))
6536                         break;
6537
6538                 if (!drained) {
6539                         drain_all_stock(memcg);
6540                         drained = true;
6541                         continue;
6542                 }
6543
6544                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6545                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6546
6547                 if (!reclaimed && !nr_retries--)
6548                         break;
6549         }
6550
6551         memcg_wb_domain_size_changed(memcg);
6552         return nbytes;
6553 }
6554
6555 static int memory_max_show(struct seq_file *m, void *v)
6556 {
6557         return seq_puts_memcg_tunable(m,
6558                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6559 }
6560
6561 static ssize_t memory_max_write(struct kernfs_open_file *of,
6562                                 char *buf, size_t nbytes, loff_t off)
6563 {
6564         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6565         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6566         bool drained = false;
6567         unsigned long max;
6568         int err;
6569
6570         buf = strstrip(buf);
6571         err = page_counter_memparse(buf, "max", &max);
6572         if (err)
6573                 return err;
6574
6575         xchg(&memcg->memory.max, max);
6576
6577         for (;;) {
6578                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6579
6580                 if (nr_pages <= max)
6581                         break;
6582
6583                 if (signal_pending(current))
6584                         break;
6585
6586                 if (!drained) {
6587                         drain_all_stock(memcg);
6588                         drained = true;
6589                         continue;
6590                 }
6591
6592                 if (nr_reclaims) {
6593                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6594                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6595                                 nr_reclaims--;
6596                         continue;
6597                 }
6598
6599                 memcg_memory_event(memcg, MEMCG_OOM);
6600                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6601                         break;
6602         }
6603
6604         memcg_wb_domain_size_changed(memcg);
6605         return nbytes;
6606 }
6607
6608 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6609 {
6610         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6611         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6612         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6613         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6614         seq_printf(m, "oom_kill %lu\n",
6615                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6616         seq_printf(m, "oom_group_kill %lu\n",
6617                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6618 }
6619
6620 static int memory_events_show(struct seq_file *m, void *v)
6621 {
6622         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6623
6624         __memory_events_show(m, memcg->memory_events);
6625         return 0;
6626 }
6627
6628 static int memory_events_local_show(struct seq_file *m, void *v)
6629 {
6630         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6631
6632         __memory_events_show(m, memcg->memory_events_local);
6633         return 0;
6634 }
6635
6636 static int memory_stat_show(struct seq_file *m, void *v)
6637 {
6638         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6639         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6640
6641         if (!buf)
6642                 return -ENOMEM;
6643         memory_stat_format(memcg, buf, PAGE_SIZE);
6644         seq_puts(m, buf);
6645         kfree(buf);
6646         return 0;
6647 }
6648
6649 #ifdef CONFIG_NUMA
6650 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6651                                                      int item)
6652 {
6653         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6654 }
6655
6656 static int memory_numa_stat_show(struct seq_file *m, void *v)
6657 {
6658         int i;
6659         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6660
6661         mem_cgroup_flush_stats();
6662
6663         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6664                 int nid;
6665
6666                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6667                         continue;
6668
6669                 seq_printf(m, "%s", memory_stats[i].name);
6670                 for_each_node_state(nid, N_MEMORY) {
6671                         u64 size;
6672                         struct lruvec *lruvec;
6673
6674                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6675                         size = lruvec_page_state_output(lruvec,
6676                                                         memory_stats[i].idx);
6677                         seq_printf(m, " N%d=%llu", nid, size);
6678                 }
6679                 seq_putc(m, '\n');
6680         }
6681
6682         return 0;
6683 }
6684 #endif
6685
6686 static int memory_oom_group_show(struct seq_file *m, void *v)
6687 {
6688         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6689
6690         seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6691
6692         return 0;
6693 }
6694
6695 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6696                                       char *buf, size_t nbytes, loff_t off)
6697 {
6698         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6699         int ret, oom_group;
6700
6701         buf = strstrip(buf);
6702         if (!buf)
6703                 return -EINVAL;
6704
6705         ret = kstrtoint(buf, 0, &oom_group);
6706         if (ret)
6707                 return ret;
6708
6709         if (oom_group != 0 && oom_group != 1)
6710                 return -EINVAL;
6711
6712         WRITE_ONCE(memcg->oom_group, oom_group);
6713
6714         return nbytes;
6715 }
6716
6717 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6718                               size_t nbytes, loff_t off)
6719 {
6720         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6721         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6722         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6723         unsigned int reclaim_options;
6724         int err;
6725
6726         buf = strstrip(buf);
6727         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6728         if (err)
6729                 return err;
6730
6731         reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6732         while (nr_reclaimed < nr_to_reclaim) {
6733                 unsigned long reclaimed;
6734
6735                 if (signal_pending(current))
6736                         return -EINTR;
6737
6738                 /*
6739                  * This is the final attempt, drain percpu lru caches in the
6740                  * hope of introducing more evictable pages for
6741                  * try_to_free_mem_cgroup_pages().
6742                  */
6743                 if (!nr_retries)
6744                         lru_add_drain_all();
6745
6746                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6747                                                 nr_to_reclaim - nr_reclaimed,
6748                                                 GFP_KERNEL, reclaim_options);
6749
6750                 if (!reclaimed && !nr_retries--)
6751                         return -EAGAIN;
6752
6753                 nr_reclaimed += reclaimed;
6754         }
6755
6756         return nbytes;
6757 }
6758
6759 static struct cftype memory_files[] = {
6760         {
6761                 .name = "current",
6762                 .flags = CFTYPE_NOT_ON_ROOT,
6763                 .read_u64 = memory_current_read,
6764         },
6765         {
6766                 .name = "peak",
6767                 .flags = CFTYPE_NOT_ON_ROOT,
6768                 .read_u64 = memory_peak_read,
6769         },
6770         {
6771                 .name = "min",
6772                 .flags = CFTYPE_NOT_ON_ROOT,
6773                 .seq_show = memory_min_show,
6774                 .write = memory_min_write,
6775         },
6776         {
6777                 .name = "low",
6778                 .flags = CFTYPE_NOT_ON_ROOT,
6779                 .seq_show = memory_low_show,
6780                 .write = memory_low_write,
6781         },
6782         {
6783                 .name = "high",
6784                 .flags = CFTYPE_NOT_ON_ROOT,
6785                 .seq_show = memory_high_show,
6786                 .write = memory_high_write,
6787         },
6788         {
6789                 .name = "max",
6790                 .flags = CFTYPE_NOT_ON_ROOT,
6791                 .seq_show = memory_max_show,
6792                 .write = memory_max_write,
6793         },
6794         {
6795                 .name = "events",
6796                 .flags = CFTYPE_NOT_ON_ROOT,
6797                 .file_offset = offsetof(struct mem_cgroup, events_file),
6798                 .seq_show = memory_events_show,
6799         },
6800         {
6801                 .name = "events.local",
6802                 .flags = CFTYPE_NOT_ON_ROOT,
6803                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6804                 .seq_show = memory_events_local_show,
6805         },
6806         {
6807                 .name = "stat",
6808                 .seq_show = memory_stat_show,
6809         },
6810 #ifdef CONFIG_NUMA
6811         {
6812                 .name = "numa_stat",
6813                 .seq_show = memory_numa_stat_show,
6814         },
6815 #endif
6816         {
6817                 .name = "oom.group",
6818                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6819                 .seq_show = memory_oom_group_show,
6820                 .write = memory_oom_group_write,
6821         },
6822         {
6823                 .name = "reclaim",
6824                 .flags = CFTYPE_NS_DELEGATABLE,
6825                 .write = memory_reclaim,
6826         },
6827         { }     /* terminate */
6828 };
6829
6830 struct cgroup_subsys memory_cgrp_subsys = {
6831         .css_alloc = mem_cgroup_css_alloc,
6832         .css_online = mem_cgroup_css_online,
6833         .css_offline = mem_cgroup_css_offline,
6834         .css_released = mem_cgroup_css_released,
6835         .css_free = mem_cgroup_css_free,
6836         .css_reset = mem_cgroup_css_reset,
6837         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6838         .can_attach = mem_cgroup_can_attach,
6839         .attach = mem_cgroup_attach,
6840         .cancel_attach = mem_cgroup_cancel_attach,
6841         .post_attach = mem_cgroup_move_task,
6842         .dfl_cftypes = memory_files,
6843         .legacy_cftypes = mem_cgroup_legacy_files,
6844         .early_init = 0,
6845 };
6846
6847 /*
6848  * This function calculates an individual cgroup's effective
6849  * protection which is derived from its own memory.min/low, its
6850  * parent's and siblings' settings, as well as the actual memory
6851  * distribution in the tree.
6852  *
6853  * The following rules apply to the effective protection values:
6854  *
6855  * 1. At the first level of reclaim, effective protection is equal to
6856  *    the declared protection in memory.min and memory.low.
6857  *
6858  * 2. To enable safe delegation of the protection configuration, at
6859  *    subsequent levels the effective protection is capped to the
6860  *    parent's effective protection.
6861  *
6862  * 3. To make complex and dynamic subtrees easier to configure, the
6863  *    user is allowed to overcommit the declared protection at a given
6864  *    level. If that is the case, the parent's effective protection is
6865  *    distributed to the children in proportion to how much protection
6866  *    they have declared and how much of it they are utilizing.
6867  *
6868  *    This makes distribution proportional, but also work-conserving:
6869  *    if one cgroup claims much more protection than it uses memory,
6870  *    the unused remainder is available to its siblings.
6871  *
6872  * 4. Conversely, when the declared protection is undercommitted at a
6873  *    given level, the distribution of the larger parental protection
6874  *    budget is NOT proportional. A cgroup's protection from a sibling
6875  *    is capped to its own memory.min/low setting.
6876  *
6877  * 5. However, to allow protecting recursive subtrees from each other
6878  *    without having to declare each individual cgroup's fixed share
6879  *    of the ancestor's claim to protection, any unutilized -
6880  *    "floating" - protection from up the tree is distributed in
6881  *    proportion to each cgroup's *usage*. This makes the protection
6882  *    neutral wrt sibling cgroups and lets them compete freely over
6883  *    the shared parental protection budget, but it protects the
6884  *    subtree as a whole from neighboring subtrees.
6885  *
6886  * Note that 4. and 5. are not in conflict: 4. is about protecting
6887  * against immediate siblings whereas 5. is about protecting against
6888  * neighboring subtrees.
6889  */
6890 static unsigned long effective_protection(unsigned long usage,
6891                                           unsigned long parent_usage,
6892                                           unsigned long setting,
6893                                           unsigned long parent_effective,
6894                                           unsigned long siblings_protected)
6895 {
6896         unsigned long protected;
6897         unsigned long ep;
6898
6899         protected = min(usage, setting);
6900         /*
6901          * If all cgroups at this level combined claim and use more
6902          * protection then what the parent affords them, distribute
6903          * shares in proportion to utilization.
6904          *
6905          * We are using actual utilization rather than the statically
6906          * claimed protection in order to be work-conserving: claimed
6907          * but unused protection is available to siblings that would
6908          * otherwise get a smaller chunk than what they claimed.
6909          */
6910         if (siblings_protected > parent_effective)
6911                 return protected * parent_effective / siblings_protected;
6912
6913         /*
6914          * Ok, utilized protection of all children is within what the
6915          * parent affords them, so we know whatever this child claims
6916          * and utilizes is effectively protected.
6917          *
6918          * If there is unprotected usage beyond this value, reclaim
6919          * will apply pressure in proportion to that amount.
6920          *
6921          * If there is unutilized protection, the cgroup will be fully
6922          * shielded from reclaim, but we do return a smaller value for
6923          * protection than what the group could enjoy in theory. This
6924          * is okay. With the overcommit distribution above, effective
6925          * protection is always dependent on how memory is actually
6926          * consumed among the siblings anyway.
6927          */
6928         ep = protected;
6929
6930         /*
6931          * If the children aren't claiming (all of) the protection
6932          * afforded to them by the parent, distribute the remainder in
6933          * proportion to the (unprotected) memory of each cgroup. That
6934          * way, cgroups that aren't explicitly prioritized wrt each
6935          * other compete freely over the allowance, but they are
6936          * collectively protected from neighboring trees.
6937          *
6938          * We're using unprotected memory for the weight so that if
6939          * some cgroups DO claim explicit protection, we don't protect
6940          * the same bytes twice.
6941          *
6942          * Check both usage and parent_usage against the respective
6943          * protected values. One should imply the other, but they
6944          * aren't read atomically - make sure the division is sane.
6945          */
6946         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6947                 return ep;
6948         if (parent_effective > siblings_protected &&
6949             parent_usage > siblings_protected &&
6950             usage > protected) {
6951                 unsigned long unclaimed;
6952
6953                 unclaimed = parent_effective - siblings_protected;
6954                 unclaimed *= usage - protected;
6955                 unclaimed /= parent_usage - siblings_protected;
6956
6957                 ep += unclaimed;
6958         }
6959
6960         return ep;
6961 }
6962
6963 /**
6964  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6965  * @root: the top ancestor of the sub-tree being checked
6966  * @memcg: the memory cgroup to check
6967  *
6968  * WARNING: This function is not stateless! It can only be used as part
6969  *          of a top-down tree iteration, not for isolated queries.
6970  */
6971 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6972                                      struct mem_cgroup *memcg)
6973 {
6974         unsigned long usage, parent_usage;
6975         struct mem_cgroup *parent;
6976
6977         if (mem_cgroup_disabled())
6978                 return;
6979
6980         if (!root)
6981                 root = root_mem_cgroup;
6982
6983         /*
6984          * Effective values of the reclaim targets are ignored so they
6985          * can be stale. Have a look at mem_cgroup_protection for more
6986          * details.
6987          * TODO: calculation should be more robust so that we do not need
6988          * that special casing.
6989          */
6990         if (memcg == root)
6991                 return;
6992
6993         usage = page_counter_read(&memcg->memory);
6994         if (!usage)
6995                 return;
6996
6997         parent = parent_mem_cgroup(memcg);
6998
6999         if (parent == root) {
7000                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7001                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7002                 return;
7003         }
7004
7005         parent_usage = page_counter_read(&parent->memory);
7006
7007         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7008                         READ_ONCE(memcg->memory.min),
7009                         READ_ONCE(parent->memory.emin),
7010                         atomic_long_read(&parent->memory.children_min_usage)));
7011
7012         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7013                         READ_ONCE(memcg->memory.low),
7014                         READ_ONCE(parent->memory.elow),
7015                         atomic_long_read(&parent->memory.children_low_usage)));
7016 }
7017
7018 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7019                         gfp_t gfp)
7020 {
7021         long nr_pages = folio_nr_pages(folio);
7022         int ret;
7023
7024         ret = try_charge(memcg, gfp, nr_pages);
7025         if (ret)
7026                 goto out;
7027
7028         css_get(&memcg->css);
7029         commit_charge(folio, memcg);
7030
7031         local_irq_disable();
7032         mem_cgroup_charge_statistics(memcg, nr_pages);
7033         memcg_check_events(memcg, folio_nid(folio));
7034         local_irq_enable();
7035 out:
7036         return ret;
7037 }
7038
7039 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7040 {
7041         struct mem_cgroup *memcg;
7042         int ret;
7043
7044         memcg = get_mem_cgroup_from_mm(mm);
7045         ret = charge_memcg(folio, memcg, gfp);
7046         css_put(&memcg->css);
7047
7048         return ret;
7049 }
7050
7051 /**
7052  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7053  * @folio: folio to charge.
7054  * @mm: mm context of the victim
7055  * @gfp: reclaim mode
7056  * @entry: swap entry for which the folio is allocated
7057  *
7058  * This function charges a folio allocated for swapin. Please call this before
7059  * adding the folio to the swapcache.
7060  *
7061  * Returns 0 on success. Otherwise, an error code is returned.
7062  */
7063 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7064                                   gfp_t gfp, swp_entry_t entry)
7065 {
7066         struct mem_cgroup *memcg;
7067         unsigned short id;
7068         int ret;
7069
7070         if (mem_cgroup_disabled())
7071                 return 0;
7072
7073         id = lookup_swap_cgroup_id(entry);
7074         rcu_read_lock();
7075         memcg = mem_cgroup_from_id(id);
7076         if (!memcg || !css_tryget_online(&memcg->css))
7077                 memcg = get_mem_cgroup_from_mm(mm);
7078         rcu_read_unlock();
7079
7080         ret = charge_memcg(folio, memcg, gfp);
7081
7082         css_put(&memcg->css);
7083         return ret;
7084 }
7085
7086 /*
7087  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7088  * @entry: swap entry for which the page is charged
7089  *
7090  * Call this function after successfully adding the charged page to swapcache.
7091  *
7092  * Note: This function assumes the page for which swap slot is being uncharged
7093  * is order 0 page.
7094  */
7095 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7096 {
7097         /*
7098          * Cgroup1's unified memory+swap counter has been charged with the
7099          * new swapcache page, finish the transfer by uncharging the swap
7100          * slot. The swap slot would also get uncharged when it dies, but
7101          * it can stick around indefinitely and we'd count the page twice
7102          * the entire time.
7103          *
7104          * Cgroup2 has separate resource counters for memory and swap,
7105          * so this is a non-issue here. Memory and swap charge lifetimes
7106          * correspond 1:1 to page and swap slot lifetimes: we charge the
7107          * page to memory here, and uncharge swap when the slot is freed.
7108          */
7109         if (!mem_cgroup_disabled() && do_memsw_account()) {
7110                 /*
7111                  * The swap entry might not get freed for a long time,
7112                  * let's not wait for it.  The page already received a
7113                  * memory+swap charge, drop the swap entry duplicate.
7114                  */
7115                 mem_cgroup_uncharge_swap(entry, 1);
7116         }
7117 }
7118
7119 struct uncharge_gather {
7120         struct mem_cgroup *memcg;
7121         unsigned long nr_memory;
7122         unsigned long pgpgout;
7123         unsigned long nr_kmem;
7124         int nid;
7125 };
7126
7127 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7128 {
7129         memset(ug, 0, sizeof(*ug));
7130 }
7131
7132 static void uncharge_batch(const struct uncharge_gather *ug)
7133 {
7134         unsigned long flags;
7135
7136         if (ug->nr_memory) {
7137                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7138                 if (do_memsw_account())
7139                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7140                 if (ug->nr_kmem)
7141                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7142                 memcg_oom_recover(ug->memcg);
7143         }
7144
7145         local_irq_save(flags);
7146         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7147         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7148         memcg_check_events(ug->memcg, ug->nid);
7149         local_irq_restore(flags);
7150
7151         /* drop reference from uncharge_folio */
7152         css_put(&ug->memcg->css);
7153 }
7154
7155 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7156 {
7157         long nr_pages;
7158         struct mem_cgroup *memcg;
7159         struct obj_cgroup *objcg;
7160
7161         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7162
7163         /*
7164          * Nobody should be changing or seriously looking at
7165          * folio memcg or objcg at this point, we have fully
7166          * exclusive access to the folio.
7167          */
7168         if (folio_memcg_kmem(folio)) {
7169                 objcg = __folio_objcg(folio);
7170                 /*
7171                  * This get matches the put at the end of the function and
7172                  * kmem pages do not hold memcg references anymore.
7173                  */
7174                 memcg = get_mem_cgroup_from_objcg(objcg);
7175         } else {
7176                 memcg = __folio_memcg(folio);
7177         }
7178
7179         if (!memcg)
7180                 return;
7181
7182         if (ug->memcg != memcg) {
7183                 if (ug->memcg) {
7184                         uncharge_batch(ug);
7185                         uncharge_gather_clear(ug);
7186                 }
7187                 ug->memcg = memcg;
7188                 ug->nid = folio_nid(folio);
7189
7190                 /* pairs with css_put in uncharge_batch */
7191                 css_get(&memcg->css);
7192         }
7193
7194         nr_pages = folio_nr_pages(folio);
7195
7196         if (folio_memcg_kmem(folio)) {
7197                 ug->nr_memory += nr_pages;
7198                 ug->nr_kmem += nr_pages;
7199
7200                 folio->memcg_data = 0;
7201                 obj_cgroup_put(objcg);
7202         } else {
7203                 /* LRU pages aren't accounted at the root level */
7204                 if (!mem_cgroup_is_root(memcg))
7205                         ug->nr_memory += nr_pages;
7206                 ug->pgpgout++;
7207
7208                 folio->memcg_data = 0;
7209         }
7210
7211         css_put(&memcg->css);
7212 }
7213
7214 void __mem_cgroup_uncharge(struct folio *folio)
7215 {
7216         struct uncharge_gather ug;
7217
7218         /* Don't touch folio->lru of any random page, pre-check: */
7219         if (!folio_memcg(folio))
7220                 return;
7221
7222         uncharge_gather_clear(&ug);
7223         uncharge_folio(folio, &ug);
7224         uncharge_batch(&ug);
7225 }
7226
7227 /**
7228  * __mem_cgroup_uncharge_list - uncharge a list of page
7229  * @page_list: list of pages to uncharge
7230  *
7231  * Uncharge a list of pages previously charged with
7232  * __mem_cgroup_charge().
7233  */
7234 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7235 {
7236         struct uncharge_gather ug;
7237         struct folio *folio;
7238
7239         uncharge_gather_clear(&ug);
7240         list_for_each_entry(folio, page_list, lru)
7241                 uncharge_folio(folio, &ug);
7242         if (ug.memcg)
7243                 uncharge_batch(&ug);
7244 }
7245
7246 /**
7247  * mem_cgroup_migrate - Charge a folio's replacement.
7248  * @old: Currently circulating folio.
7249  * @new: Replacement folio.
7250  *
7251  * Charge @new as a replacement folio for @old. @old will
7252  * be uncharged upon free.
7253  *
7254  * Both folios must be locked, @new->mapping must be set up.
7255  */
7256 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7257 {
7258         struct mem_cgroup *memcg;
7259         long nr_pages = folio_nr_pages(new);
7260         unsigned long flags;
7261
7262         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7263         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7264         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7265         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7266
7267         if (mem_cgroup_disabled())
7268                 return;
7269
7270         /* Page cache replacement: new folio already charged? */
7271         if (folio_memcg(new))
7272                 return;
7273
7274         memcg = folio_memcg(old);
7275         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7276         if (!memcg)
7277                 return;
7278
7279         /* Force-charge the new page. The old one will be freed soon */
7280         if (!mem_cgroup_is_root(memcg)) {
7281                 page_counter_charge(&memcg->memory, nr_pages);
7282                 if (do_memsw_account())
7283                         page_counter_charge(&memcg->memsw, nr_pages);
7284         }
7285
7286         css_get(&memcg->css);
7287         commit_charge(new, memcg);
7288
7289         local_irq_save(flags);
7290         mem_cgroup_charge_statistics(memcg, nr_pages);
7291         memcg_check_events(memcg, folio_nid(new));
7292         local_irq_restore(flags);
7293 }
7294
7295 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7296 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7297
7298 void mem_cgroup_sk_alloc(struct sock *sk)
7299 {
7300         struct mem_cgroup *memcg;
7301
7302         if (!mem_cgroup_sockets_enabled)
7303                 return;
7304
7305         /* Do not associate the sock with unrelated interrupted task's memcg. */
7306         if (!in_task())
7307                 return;
7308
7309         rcu_read_lock();
7310         memcg = mem_cgroup_from_task(current);
7311         if (mem_cgroup_is_root(memcg))
7312                 goto out;
7313         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7314                 goto out;
7315         if (css_tryget(&memcg->css))
7316                 sk->sk_memcg = memcg;
7317 out:
7318         rcu_read_unlock();
7319 }
7320
7321 void mem_cgroup_sk_free(struct sock *sk)
7322 {
7323         if (sk->sk_memcg)
7324                 css_put(&sk->sk_memcg->css);
7325 }
7326
7327 /**
7328  * mem_cgroup_charge_skmem - charge socket memory
7329  * @memcg: memcg to charge
7330  * @nr_pages: number of pages to charge
7331  * @gfp_mask: reclaim mode
7332  *
7333  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7334  * @memcg's configured limit, %false if it doesn't.
7335  */
7336 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7337                              gfp_t gfp_mask)
7338 {
7339         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7340                 struct page_counter *fail;
7341
7342                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7343                         memcg->tcpmem_pressure = 0;
7344                         return true;
7345                 }
7346                 memcg->tcpmem_pressure = 1;
7347                 if (gfp_mask & __GFP_NOFAIL) {
7348                         page_counter_charge(&memcg->tcpmem, nr_pages);
7349                         return true;
7350                 }
7351                 return false;
7352         }
7353
7354         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7355                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7356                 return true;
7357         }
7358
7359         return false;
7360 }
7361
7362 /**
7363  * mem_cgroup_uncharge_skmem - uncharge socket memory
7364  * @memcg: memcg to uncharge
7365  * @nr_pages: number of pages to uncharge
7366  */
7367 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7368 {
7369         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7370                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7371                 return;
7372         }
7373
7374         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7375
7376         refill_stock(memcg, nr_pages);
7377 }
7378
7379 static int __init cgroup_memory(char *s)
7380 {
7381         char *token;
7382
7383         while ((token = strsep(&s, ",")) != NULL) {
7384                 if (!*token)
7385                         continue;
7386                 if (!strcmp(token, "nosocket"))
7387                         cgroup_memory_nosocket = true;
7388                 if (!strcmp(token, "nokmem"))
7389                         cgroup_memory_nokmem = true;
7390                 if (!strcmp(token, "nobpf"))
7391                         cgroup_memory_nobpf = true;
7392         }
7393         return 1;
7394 }
7395 __setup("cgroup.memory=", cgroup_memory);
7396
7397 /*
7398  * subsys_initcall() for memory controller.
7399  *
7400  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7401  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7402  * basically everything that doesn't depend on a specific mem_cgroup structure
7403  * should be initialized from here.
7404  */
7405 static int __init mem_cgroup_init(void)
7406 {
7407         int cpu, node;
7408
7409         /*
7410          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7411          * used for per-memcg-per-cpu caching of per-node statistics. In order
7412          * to work fine, we should make sure that the overfill threshold can't
7413          * exceed S32_MAX / PAGE_SIZE.
7414          */
7415         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7416
7417         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7418                                   memcg_hotplug_cpu_dead);
7419
7420         for_each_possible_cpu(cpu)
7421                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7422                           drain_local_stock);
7423
7424         for_each_node(node) {
7425                 struct mem_cgroup_tree_per_node *rtpn;
7426
7427                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7428                                     node_online(node) ? node : NUMA_NO_NODE);
7429
7430                 rtpn->rb_root = RB_ROOT;
7431                 rtpn->rb_rightmost = NULL;
7432                 spin_lock_init(&rtpn->lock);
7433                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7434         }
7435
7436         return 0;
7437 }
7438 subsys_initcall(mem_cgroup_init);
7439
7440 #ifdef CONFIG_SWAP
7441 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7442 {
7443         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7444                 /*
7445                  * The root cgroup cannot be destroyed, so it's refcount must
7446                  * always be >= 1.
7447                  */
7448                 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7449                         VM_BUG_ON(1);
7450                         break;
7451                 }
7452                 memcg = parent_mem_cgroup(memcg);
7453                 if (!memcg)
7454                         memcg = root_mem_cgroup;
7455         }
7456         return memcg;
7457 }
7458
7459 /**
7460  * mem_cgroup_swapout - transfer a memsw charge to swap
7461  * @folio: folio whose memsw charge to transfer
7462  * @entry: swap entry to move the charge to
7463  *
7464  * Transfer the memsw charge of @folio to @entry.
7465  */
7466 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7467 {
7468         struct mem_cgroup *memcg, *swap_memcg;
7469         unsigned int nr_entries;
7470         unsigned short oldid;
7471
7472         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7473         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7474
7475         if (mem_cgroup_disabled())
7476                 return;
7477
7478         if (!do_memsw_account())
7479                 return;
7480
7481         memcg = folio_memcg(folio);
7482
7483         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7484         if (!memcg)
7485                 return;
7486
7487         /*
7488          * In case the memcg owning these pages has been offlined and doesn't
7489          * have an ID allocated to it anymore, charge the closest online
7490          * ancestor for the swap instead and transfer the memory+swap charge.
7491          */
7492         swap_memcg = mem_cgroup_id_get_online(memcg);
7493         nr_entries = folio_nr_pages(folio);
7494         /* Get references for the tail pages, too */
7495         if (nr_entries > 1)
7496                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7497         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7498                                    nr_entries);
7499         VM_BUG_ON_FOLIO(oldid, folio);
7500         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7501
7502         folio->memcg_data = 0;
7503
7504         if (!mem_cgroup_is_root(memcg))
7505                 page_counter_uncharge(&memcg->memory, nr_entries);
7506
7507         if (memcg != swap_memcg) {
7508                 if (!mem_cgroup_is_root(swap_memcg))
7509                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7510                 page_counter_uncharge(&memcg->memsw, nr_entries);
7511         }
7512
7513         /*
7514          * Interrupts should be disabled here because the caller holds the
7515          * i_pages lock which is taken with interrupts-off. It is
7516          * important here to have the interrupts disabled because it is the
7517          * only synchronisation we have for updating the per-CPU variables.
7518          */
7519         memcg_stats_lock();
7520         mem_cgroup_charge_statistics(memcg, -nr_entries);
7521         memcg_stats_unlock();
7522         memcg_check_events(memcg, folio_nid(folio));
7523
7524         css_put(&memcg->css);
7525 }
7526
7527 /**
7528  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7529  * @folio: folio being added to swap
7530  * @entry: swap entry to charge
7531  *
7532  * Try to charge @folio's memcg for the swap space at @entry.
7533  *
7534  * Returns 0 on success, -ENOMEM on failure.
7535  */
7536 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7537 {
7538         unsigned int nr_pages = folio_nr_pages(folio);
7539         struct page_counter *counter;
7540         struct mem_cgroup *memcg;
7541         unsigned short oldid;
7542
7543         if (do_memsw_account())
7544                 return 0;
7545
7546         memcg = folio_memcg(folio);
7547
7548         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7549         if (!memcg)
7550                 return 0;
7551
7552         if (!entry.val) {
7553                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7554                 return 0;
7555         }
7556
7557         memcg = mem_cgroup_id_get_online(memcg);
7558
7559         if (!mem_cgroup_is_root(memcg) &&
7560             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7561                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7562                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7563                 mem_cgroup_id_put(memcg);
7564                 return -ENOMEM;
7565         }
7566
7567         /* Get references for the tail pages, too */
7568         if (nr_pages > 1)
7569                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7570         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7571         VM_BUG_ON_FOLIO(oldid, folio);
7572         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7573
7574         return 0;
7575 }
7576
7577 /**
7578  * __mem_cgroup_uncharge_swap - uncharge swap space
7579  * @entry: swap entry to uncharge
7580  * @nr_pages: the amount of swap space to uncharge
7581  */
7582 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7583 {
7584         struct mem_cgroup *memcg;
7585         unsigned short id;
7586
7587         if (mem_cgroup_disabled())
7588                 return;
7589
7590         id = swap_cgroup_record(entry, 0, nr_pages);
7591         rcu_read_lock();
7592         memcg = mem_cgroup_from_id(id);
7593         if (memcg) {
7594                 if (!mem_cgroup_is_root(memcg)) {
7595                         if (do_memsw_account())
7596                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7597                         else
7598                                 page_counter_uncharge(&memcg->swap, nr_pages);
7599                 }
7600                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7601                 mem_cgroup_id_put_many(memcg, nr_pages);
7602         }
7603         rcu_read_unlock();
7604 }
7605
7606 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7607 {
7608         long nr_swap_pages = get_nr_swap_pages();
7609
7610         if (mem_cgroup_disabled() || do_memsw_account())
7611                 return nr_swap_pages;
7612         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7613                 nr_swap_pages = min_t(long, nr_swap_pages,
7614                                       READ_ONCE(memcg->swap.max) -
7615                                       page_counter_read(&memcg->swap));
7616         return nr_swap_pages;
7617 }
7618
7619 bool mem_cgroup_swap_full(struct folio *folio)
7620 {
7621         struct mem_cgroup *memcg;
7622
7623         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7624
7625         if (vm_swap_full())
7626                 return true;
7627         if (do_memsw_account())
7628                 return false;
7629
7630         memcg = folio_memcg(folio);
7631         if (!memcg)
7632                 return false;
7633
7634         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7635                 unsigned long usage = page_counter_read(&memcg->swap);
7636
7637                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7638                     usage * 2 >= READ_ONCE(memcg->swap.max))
7639                         return true;
7640         }
7641
7642         return false;
7643 }
7644
7645 static int __init setup_swap_account(char *s)
7646 {
7647         pr_warn_once("The swapaccount= commandline option is deprecated. "
7648                      "Please report your usecase to linux-mm@kvack.org if you "
7649                      "depend on this functionality.\n");
7650         return 1;
7651 }
7652 __setup("swapaccount=", setup_swap_account);
7653
7654 static u64 swap_current_read(struct cgroup_subsys_state *css,
7655                              struct cftype *cft)
7656 {
7657         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7658
7659         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7660 }
7661
7662 static int swap_high_show(struct seq_file *m, void *v)
7663 {
7664         return seq_puts_memcg_tunable(m,
7665                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7666 }
7667
7668 static ssize_t swap_high_write(struct kernfs_open_file *of,
7669                                char *buf, size_t nbytes, loff_t off)
7670 {
7671         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7672         unsigned long high;
7673         int err;
7674
7675         buf = strstrip(buf);
7676         err = page_counter_memparse(buf, "max", &high);
7677         if (err)
7678                 return err;
7679
7680         page_counter_set_high(&memcg->swap, high);
7681
7682         return nbytes;
7683 }
7684
7685 static int swap_max_show(struct seq_file *m, void *v)
7686 {
7687         return seq_puts_memcg_tunable(m,
7688                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7689 }
7690
7691 static ssize_t swap_max_write(struct kernfs_open_file *of,
7692                               char *buf, size_t nbytes, loff_t off)
7693 {
7694         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7695         unsigned long max;
7696         int err;
7697
7698         buf = strstrip(buf);
7699         err = page_counter_memparse(buf, "max", &max);
7700         if (err)
7701                 return err;
7702
7703         xchg(&memcg->swap.max, max);
7704
7705         return nbytes;
7706 }
7707
7708 static int swap_events_show(struct seq_file *m, void *v)
7709 {
7710         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7711
7712         seq_printf(m, "high %lu\n",
7713                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7714         seq_printf(m, "max %lu\n",
7715                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7716         seq_printf(m, "fail %lu\n",
7717                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7718
7719         return 0;
7720 }
7721
7722 static struct cftype swap_files[] = {
7723         {
7724                 .name = "swap.current",
7725                 .flags = CFTYPE_NOT_ON_ROOT,
7726                 .read_u64 = swap_current_read,
7727         },
7728         {
7729                 .name = "swap.high",
7730                 .flags = CFTYPE_NOT_ON_ROOT,
7731                 .seq_show = swap_high_show,
7732                 .write = swap_high_write,
7733         },
7734         {
7735                 .name = "swap.max",
7736                 .flags = CFTYPE_NOT_ON_ROOT,
7737                 .seq_show = swap_max_show,
7738                 .write = swap_max_write,
7739         },
7740         {
7741                 .name = "swap.events",
7742                 .flags = CFTYPE_NOT_ON_ROOT,
7743                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7744                 .seq_show = swap_events_show,
7745         },
7746         { }     /* terminate */
7747 };
7748
7749 static struct cftype memsw_files[] = {
7750         {
7751                 .name = "memsw.usage_in_bytes",
7752                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7753                 .read_u64 = mem_cgroup_read_u64,
7754         },
7755         {
7756                 .name = "memsw.max_usage_in_bytes",
7757                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7758                 .write = mem_cgroup_reset,
7759                 .read_u64 = mem_cgroup_read_u64,
7760         },
7761         {
7762                 .name = "memsw.limit_in_bytes",
7763                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7764                 .write = mem_cgroup_write,
7765                 .read_u64 = mem_cgroup_read_u64,
7766         },
7767         {
7768                 .name = "memsw.failcnt",
7769                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7770                 .write = mem_cgroup_reset,
7771                 .read_u64 = mem_cgroup_read_u64,
7772         },
7773         { },    /* terminate */
7774 };
7775
7776 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7777 /**
7778  * obj_cgroup_may_zswap - check if this cgroup can zswap
7779  * @objcg: the object cgroup
7780  *
7781  * Check if the hierarchical zswap limit has been reached.
7782  *
7783  * This doesn't check for specific headroom, and it is not atomic
7784  * either. But with zswap, the size of the allocation is only known
7785  * once compression has occured, and this optimistic pre-check avoids
7786  * spending cycles on compression when there is already no room left
7787  * or zswap is disabled altogether somewhere in the hierarchy.
7788  */
7789 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7790 {
7791         struct mem_cgroup *memcg, *original_memcg;
7792         bool ret = true;
7793
7794         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7795                 return true;
7796
7797         original_memcg = get_mem_cgroup_from_objcg(objcg);
7798         for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7799              memcg = parent_mem_cgroup(memcg)) {
7800                 unsigned long max = READ_ONCE(memcg->zswap_max);
7801                 unsigned long pages;
7802
7803                 if (max == PAGE_COUNTER_MAX)
7804                         continue;
7805                 if (max == 0) {
7806                         ret = false;
7807                         break;
7808                 }
7809
7810                 cgroup_rstat_flush(memcg->css.cgroup);
7811                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7812                 if (pages < max)
7813                         continue;
7814                 ret = false;
7815                 break;
7816         }
7817         mem_cgroup_put(original_memcg);
7818         return ret;
7819 }
7820
7821 /**
7822  * obj_cgroup_charge_zswap - charge compression backend memory
7823  * @objcg: the object cgroup
7824  * @size: size of compressed object
7825  *
7826  * This forces the charge after obj_cgroup_may_swap() allowed
7827  * compression and storage in zwap for this cgroup to go ahead.
7828  */
7829 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7830 {
7831         struct mem_cgroup *memcg;
7832
7833         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7834                 return;
7835
7836         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7837
7838         /* PF_MEMALLOC context, charging must succeed */
7839         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7840                 VM_WARN_ON_ONCE(1);
7841
7842         rcu_read_lock();
7843         memcg = obj_cgroup_memcg(objcg);
7844         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7845         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7846         rcu_read_unlock();
7847 }
7848
7849 /**
7850  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7851  * @objcg: the object cgroup
7852  * @size: size of compressed object
7853  *
7854  * Uncharges zswap memory on page in.
7855  */
7856 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7857 {
7858         struct mem_cgroup *memcg;
7859
7860         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7861                 return;
7862
7863         obj_cgroup_uncharge(objcg, size);
7864
7865         rcu_read_lock();
7866         memcg = obj_cgroup_memcg(objcg);
7867         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7868         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7869         rcu_read_unlock();
7870 }
7871
7872 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7873                               struct cftype *cft)
7874 {
7875         cgroup_rstat_flush(css->cgroup);
7876         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7877 }
7878
7879 static int zswap_max_show(struct seq_file *m, void *v)
7880 {
7881         return seq_puts_memcg_tunable(m,
7882                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7883 }
7884
7885 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7886                                char *buf, size_t nbytes, loff_t off)
7887 {
7888         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7889         unsigned long max;
7890         int err;
7891
7892         buf = strstrip(buf);
7893         err = page_counter_memparse(buf, "max", &max);
7894         if (err)
7895                 return err;
7896
7897         xchg(&memcg->zswap_max, max);
7898
7899         return nbytes;
7900 }
7901
7902 static struct cftype zswap_files[] = {
7903         {
7904                 .name = "zswap.current",
7905                 .flags = CFTYPE_NOT_ON_ROOT,
7906                 .read_u64 = zswap_current_read,
7907         },
7908         {
7909                 .name = "zswap.max",
7910                 .flags = CFTYPE_NOT_ON_ROOT,
7911                 .seq_show = zswap_max_show,
7912                 .write = zswap_max_write,
7913         },
7914         { }     /* terminate */
7915 };
7916 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7917
7918 static int __init mem_cgroup_swap_init(void)
7919 {
7920         if (mem_cgroup_disabled())
7921                 return 0;
7922
7923         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7924         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7925 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7926         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7927 #endif
7928         return 0;
7929 }
7930 subsys_initcall(mem_cgroup_swap_init);
7931
7932 #endif /* CONFIG_SWAP */