GNU Linux-libre 4.14.332-gnu1
[releases.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /*
55  * A few notes about the KSM scanning process,
56  * to make it easier to understand the data structures below:
57  *
58  * In order to reduce excessive scanning, KSM sorts the memory pages by their
59  * contents into a data structure that holds pointers to the pages' locations.
60  *
61  * Since the contents of the pages may change at any moment, KSM cannot just
62  * insert the pages into a normal sorted tree and expect it to find anything.
63  * Therefore KSM uses two data structures - the stable and the unstable tree.
64  *
65  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66  * by their contents.  Because each such page is write-protected, searching on
67  * this tree is fully assured to be working (except when pages are unmapped),
68  * and therefore this tree is called the stable tree.
69  *
70  * In addition to the stable tree, KSM uses a second data structure called the
71  * unstable tree: this tree holds pointers to pages which have been found to
72  * be "unchanged for a period of time".  The unstable tree sorts these pages
73  * by their contents, but since they are not write-protected, KSM cannot rely
74  * upon the unstable tree to work correctly - the unstable tree is liable to
75  * be corrupted as its contents are modified, and so it is called unstable.
76  *
77  * KSM solves this problem by several techniques:
78  *
79  * 1) The unstable tree is flushed every time KSM completes scanning all
80  *    memory areas, and then the tree is rebuilt again from the beginning.
81  * 2) KSM will only insert into the unstable tree, pages whose hash value
82  *    has not changed since the previous scan of all memory areas.
83  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84  *    colors of the nodes and not on their contents, assuring that even when
85  *    the tree gets "corrupted" it won't get out of balance, so scanning time
86  *    remains the same (also, searching and inserting nodes in an rbtree uses
87  *    the same algorithm, so we have no overhead when we flush and rebuild).
88  * 4) KSM never flushes the stable tree, which means that even if it were to
89  *    take 10 attempts to find a page in the unstable tree, once it is found,
90  *    it is secured in the stable tree.  (When we scan a new page, we first
91  *    compare it against the stable tree, and then against the unstable tree.)
92  *
93  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94  * stable trees and multiple unstable trees: one of each for each NUMA node.
95  */
96
97 /**
98  * struct mm_slot - ksm information per mm that is being scanned
99  * @link: link to the mm_slots hash list
100  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102  * @mm: the mm that this information is valid for
103  */
104 struct mm_slot {
105         struct hlist_node link;
106         struct list_head mm_list;
107         struct rmap_item *rmap_list;
108         struct mm_struct *mm;
109 };
110
111 /**
112  * struct ksm_scan - cursor for scanning
113  * @mm_slot: the current mm_slot we are scanning
114  * @address: the next address inside that to be scanned
115  * @rmap_list: link to the next rmap to be scanned in the rmap_list
116  * @seqnr: count of completed full scans (needed when removing unstable node)
117  *
118  * There is only the one ksm_scan instance of this cursor structure.
119  */
120 struct ksm_scan {
121         struct mm_slot *mm_slot;
122         unsigned long address;
123         struct rmap_item **rmap_list;
124         unsigned long seqnr;
125 };
126
127 /**
128  * struct stable_node - node of the stable rbtree
129  * @node: rb node of this ksm page in the stable tree
130  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132  * @list: linked into migrate_nodes, pending placement in the proper node tree
133  * @hlist: hlist head of rmap_items using this ksm page
134  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135  * @chain_prune_time: time of the last full garbage collection
136  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138  */
139 struct stable_node {
140         union {
141                 struct rb_node node;    /* when node of stable tree */
142                 struct {                /* when listed for migration */
143                         struct list_head *head;
144                         struct {
145                                 struct hlist_node hlist_dup;
146                                 struct list_head list;
147                         };
148                 };
149         };
150         struct hlist_head hlist;
151         union {
152                 unsigned long kpfn;
153                 unsigned long chain_prune_time;
154         };
155         /*
156          * STABLE_NODE_CHAIN can be any negative number in
157          * rmap_hlist_len negative range, but better not -1 to be able
158          * to reliably detect underflows.
159          */
160 #define STABLE_NODE_CHAIN -1024
161         int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163         int nid;
164 #endif
165 };
166
167 /**
168  * struct rmap_item - reverse mapping item for virtual addresses
169  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171  * @nid: NUMA node id of unstable tree in which linked (may not match page)
172  * @mm: the memory structure this rmap_item is pointing into
173  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174  * @oldchecksum: previous checksum of the page at that virtual address
175  * @node: rb node of this rmap_item in the unstable tree
176  * @head: pointer to stable_node heading this list in the stable tree
177  * @hlist: link into hlist of rmap_items hanging off that stable_node
178  */
179 struct rmap_item {
180         struct rmap_item *rmap_list;
181         union {
182                 struct anon_vma *anon_vma;      /* when stable */
183 #ifdef CONFIG_NUMA
184                 int nid;                /* when node of unstable tree */
185 #endif
186         };
187         struct mm_struct *mm;
188         unsigned long address;          /* + low bits used for flags below */
189         unsigned int oldchecksum;       /* when unstable */
190         union {
191                 struct rb_node node;    /* when node of unstable tree */
192                 struct {                /* when listed from stable tree */
193                         struct stable_node *head;
194                         struct hlist_node hlist;
195                 };
196         };
197 };
198
199 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
201 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
202 #define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
203                                 /* to mask all the flags */
204
205 /* The stable and unstable tree heads */
206 static struct rb_root one_stable_tree[1] = { RB_ROOT };
207 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
208 static struct rb_root *root_stable_tree = one_stable_tree;
209 static struct rb_root *root_unstable_tree = one_unstable_tree;
210
211 /* Recently migrated nodes of stable tree, pending proper placement */
212 static LIST_HEAD(migrate_nodes);
213 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
214
215 #define MM_SLOTS_HASH_BITS 10
216 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
217
218 static struct mm_slot ksm_mm_head = {
219         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
220 };
221 static struct ksm_scan ksm_scan = {
222         .mm_slot = &ksm_mm_head,
223 };
224
225 static struct kmem_cache *rmap_item_cache;
226 static struct kmem_cache *stable_node_cache;
227 static struct kmem_cache *mm_slot_cache;
228
229 /* The number of nodes in the stable tree */
230 static unsigned long ksm_pages_shared;
231
232 /* The number of page slots additionally sharing those nodes */
233 static unsigned long ksm_pages_sharing;
234
235 /* The number of nodes in the unstable tree */
236 static unsigned long ksm_pages_unshared;
237
238 /* The number of rmap_items in use: to calculate pages_volatile */
239 static unsigned long ksm_rmap_items;
240
241 /* The number of stable_node chains */
242 static unsigned long ksm_stable_node_chains;
243
244 /* The number of stable_node dups linked to the stable_node chains */
245 static unsigned long ksm_stable_node_dups;
246
247 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
248 static int ksm_stable_node_chains_prune_millisecs = 2000;
249
250 /* Maximum number of page slots sharing a stable node */
251 static int ksm_max_page_sharing = 256;
252
253 /* Number of pages ksmd should scan in one batch */
254 static unsigned int ksm_thread_pages_to_scan = 100;
255
256 /* Milliseconds ksmd should sleep between batches */
257 static unsigned int ksm_thread_sleep_millisecs = 20;
258
259 /* Checksum of an empty (zeroed) page */
260 static unsigned int zero_checksum __read_mostly;
261
262 /* Whether to merge empty (zeroed) pages with actual zero pages */
263 static bool ksm_use_zero_pages __read_mostly;
264
265 #ifdef CONFIG_NUMA
266 /* Zeroed when merging across nodes is not allowed */
267 static unsigned int ksm_merge_across_nodes = 1;
268 static int ksm_nr_node_ids = 1;
269 #else
270 #define ksm_merge_across_nodes  1U
271 #define ksm_nr_node_ids         1
272 #endif
273
274 #define KSM_RUN_STOP    0
275 #define KSM_RUN_MERGE   1
276 #define KSM_RUN_UNMERGE 2
277 #define KSM_RUN_OFFLINE 4
278 static unsigned long ksm_run = KSM_RUN_STOP;
279 static void wait_while_offlining(void);
280
281 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
282 static DEFINE_MUTEX(ksm_thread_mutex);
283 static DEFINE_SPINLOCK(ksm_mmlist_lock);
284
285 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
286                 sizeof(struct __struct), __alignof__(struct __struct),\
287                 (__flags), NULL)
288
289 static int __init ksm_slab_init(void)
290 {
291         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
292         if (!rmap_item_cache)
293                 goto out;
294
295         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
296         if (!stable_node_cache)
297                 goto out_free1;
298
299         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
300         if (!mm_slot_cache)
301                 goto out_free2;
302
303         return 0;
304
305 out_free2:
306         kmem_cache_destroy(stable_node_cache);
307 out_free1:
308         kmem_cache_destroy(rmap_item_cache);
309 out:
310         return -ENOMEM;
311 }
312
313 static void __init ksm_slab_free(void)
314 {
315         kmem_cache_destroy(mm_slot_cache);
316         kmem_cache_destroy(stable_node_cache);
317         kmem_cache_destroy(rmap_item_cache);
318         mm_slot_cache = NULL;
319 }
320
321 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
322 {
323         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
324 }
325
326 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
327 {
328         return dup->head == STABLE_NODE_DUP_HEAD;
329 }
330
331 static inline void stable_node_chain_add_dup(struct stable_node *dup,
332                                              struct stable_node *chain)
333 {
334         VM_BUG_ON(is_stable_node_dup(dup));
335         dup->head = STABLE_NODE_DUP_HEAD;
336         VM_BUG_ON(!is_stable_node_chain(chain));
337         hlist_add_head(&dup->hlist_dup, &chain->hlist);
338         ksm_stable_node_dups++;
339 }
340
341 static inline void __stable_node_dup_del(struct stable_node *dup)
342 {
343         VM_BUG_ON(!is_stable_node_dup(dup));
344         hlist_del(&dup->hlist_dup);
345         ksm_stable_node_dups--;
346 }
347
348 static inline void stable_node_dup_del(struct stable_node *dup)
349 {
350         VM_BUG_ON(is_stable_node_chain(dup));
351         if (is_stable_node_dup(dup))
352                 __stable_node_dup_del(dup);
353         else
354                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
355 #ifdef CONFIG_DEBUG_VM
356         dup->head = NULL;
357 #endif
358 }
359
360 static inline struct rmap_item *alloc_rmap_item(void)
361 {
362         struct rmap_item *rmap_item;
363
364         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
365                                                 __GFP_NORETRY | __GFP_NOWARN);
366         if (rmap_item)
367                 ksm_rmap_items++;
368         return rmap_item;
369 }
370
371 static inline void free_rmap_item(struct rmap_item *rmap_item)
372 {
373         ksm_rmap_items--;
374         rmap_item->mm = NULL;   /* debug safety */
375         kmem_cache_free(rmap_item_cache, rmap_item);
376 }
377
378 static inline struct stable_node *alloc_stable_node(void)
379 {
380         /*
381          * The allocation can take too long with GFP_KERNEL when memory is under
382          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
383          * grants access to memory reserves, helping to avoid this problem.
384          */
385         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
386 }
387
388 static inline void free_stable_node(struct stable_node *stable_node)
389 {
390         VM_BUG_ON(stable_node->rmap_hlist_len &&
391                   !is_stable_node_chain(stable_node));
392         kmem_cache_free(stable_node_cache, stable_node);
393 }
394
395 static inline struct mm_slot *alloc_mm_slot(void)
396 {
397         if (!mm_slot_cache)     /* initialization failed */
398                 return NULL;
399         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
400 }
401
402 static inline void free_mm_slot(struct mm_slot *mm_slot)
403 {
404         kmem_cache_free(mm_slot_cache, mm_slot);
405 }
406
407 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
408 {
409         struct mm_slot *slot;
410
411         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
412                 if (slot->mm == mm)
413                         return slot;
414
415         return NULL;
416 }
417
418 static void insert_to_mm_slots_hash(struct mm_struct *mm,
419                                     struct mm_slot *mm_slot)
420 {
421         mm_slot->mm = mm;
422         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
423 }
424
425 /*
426  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
427  * page tables after it has passed through ksm_exit() - which, if necessary,
428  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
429  * a special flag: they can just back out as soon as mm_users goes to zero.
430  * ksm_test_exit() is used throughout to make this test for exit: in some
431  * places for correctness, in some places just to avoid unnecessary work.
432  */
433 static inline bool ksm_test_exit(struct mm_struct *mm)
434 {
435         return atomic_read(&mm->mm_users) == 0;
436 }
437
438 /*
439  * We use break_ksm to break COW on a ksm page: it's a stripped down
440  *
441  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
442  *              put_page(page);
443  *
444  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
445  * in case the application has unmapped and remapped mm,addr meanwhile.
446  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
447  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
448  *
449  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
450  * of the process that owns 'vma'.  We also do not want to enforce
451  * protection keys here anyway.
452  */
453 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
454 {
455         struct page *page;
456         int ret = 0;
457
458         do {
459                 cond_resched();
460                 page = follow_page(vma, addr,
461                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
462                 if (IS_ERR_OR_NULL(page))
463                         break;
464                 if (PageKsm(page))
465                         ret = handle_mm_fault(vma, addr,
466                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
467                 else
468                         ret = VM_FAULT_WRITE;
469                 put_page(page);
470         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
471         /*
472          * We must loop because handle_mm_fault() may back out if there's
473          * any difficulty e.g. if pte accessed bit gets updated concurrently.
474          *
475          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
476          * COW has been broken, even if the vma does not permit VM_WRITE;
477          * but note that a concurrent fault might break PageKsm for us.
478          *
479          * VM_FAULT_SIGBUS could occur if we race with truncation of the
480          * backing file, which also invalidates anonymous pages: that's
481          * okay, that truncation will have unmapped the PageKsm for us.
482          *
483          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
484          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
485          * current task has TIF_MEMDIE set, and will be OOM killed on return
486          * to user; and ksmd, having no mm, would never be chosen for that.
487          *
488          * But if the mm is in a limited mem_cgroup, then the fault may fail
489          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
490          * even ksmd can fail in this way - though it's usually breaking ksm
491          * just to undo a merge it made a moment before, so unlikely to oom.
492          *
493          * That's a pity: we might therefore have more kernel pages allocated
494          * than we're counting as nodes in the stable tree; but ksm_do_scan
495          * will retry to break_cow on each pass, so should recover the page
496          * in due course.  The important thing is to not let VM_MERGEABLE
497          * be cleared while any such pages might remain in the area.
498          */
499         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
500 }
501
502 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
503                 unsigned long addr)
504 {
505         struct vm_area_struct *vma;
506         if (ksm_test_exit(mm))
507                 return NULL;
508         vma = find_vma(mm, addr);
509         if (!vma || vma->vm_start > addr)
510                 return NULL;
511         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
512                 return NULL;
513         return vma;
514 }
515
516 static void break_cow(struct rmap_item *rmap_item)
517 {
518         struct mm_struct *mm = rmap_item->mm;
519         unsigned long addr = rmap_item->address;
520         struct vm_area_struct *vma;
521
522         /*
523          * It is not an accident that whenever we want to break COW
524          * to undo, we also need to drop a reference to the anon_vma.
525          */
526         put_anon_vma(rmap_item->anon_vma);
527
528         down_read(&mm->mmap_sem);
529         vma = find_mergeable_vma(mm, addr);
530         if (vma)
531                 break_ksm(vma, addr);
532         up_read(&mm->mmap_sem);
533 }
534
535 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
536 {
537         struct mm_struct *mm = rmap_item->mm;
538         unsigned long addr = rmap_item->address;
539         struct vm_area_struct *vma;
540         struct page *page;
541
542         down_read(&mm->mmap_sem);
543         vma = find_mergeable_vma(mm, addr);
544         if (!vma)
545                 goto out;
546
547         page = follow_page(vma, addr, FOLL_GET);
548         if (IS_ERR_OR_NULL(page))
549                 goto out;
550         if (PageAnon(page)) {
551                 flush_anon_page(vma, page, addr);
552                 flush_dcache_page(page);
553         } else {
554                 put_page(page);
555 out:
556                 page = NULL;
557         }
558         up_read(&mm->mmap_sem);
559         return page;
560 }
561
562 /*
563  * This helper is used for getting right index into array of tree roots.
564  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
565  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
566  * every node has its own stable and unstable tree.
567  */
568 static inline int get_kpfn_nid(unsigned long kpfn)
569 {
570         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
571 }
572
573 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
574                                                    struct rb_root *root)
575 {
576         struct stable_node *chain = alloc_stable_node();
577         VM_BUG_ON(is_stable_node_chain(dup));
578         if (likely(chain)) {
579                 INIT_HLIST_HEAD(&chain->hlist);
580                 chain->chain_prune_time = jiffies;
581                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
582 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
583                 chain->nid = -1; /* debug */
584 #endif
585                 ksm_stable_node_chains++;
586
587                 /*
588                  * Put the stable node chain in the first dimension of
589                  * the stable tree and at the same time remove the old
590                  * stable node.
591                  */
592                 rb_replace_node(&dup->node, &chain->node, root);
593
594                 /*
595                  * Move the old stable node to the second dimension
596                  * queued in the hlist_dup. The invariant is that all
597                  * dup stable_nodes in the chain->hlist point to pages
598                  * that are wrprotected and have the exact same
599                  * content.
600                  */
601                 stable_node_chain_add_dup(dup, chain);
602         }
603         return chain;
604 }
605
606 static inline void free_stable_node_chain(struct stable_node *chain,
607                                           struct rb_root *root)
608 {
609         rb_erase(&chain->node, root);
610         free_stable_node(chain);
611         ksm_stable_node_chains--;
612 }
613
614 static void remove_node_from_stable_tree(struct stable_node *stable_node)
615 {
616         struct rmap_item *rmap_item;
617
618         /* check it's not STABLE_NODE_CHAIN or negative */
619         BUG_ON(stable_node->rmap_hlist_len < 0);
620
621         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
622                 if (rmap_item->hlist.next)
623                         ksm_pages_sharing--;
624                 else
625                         ksm_pages_shared--;
626                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
627                 stable_node->rmap_hlist_len--;
628                 put_anon_vma(rmap_item->anon_vma);
629                 rmap_item->address &= PAGE_MASK;
630                 cond_resched();
631         }
632
633         /*
634          * We need the second aligned pointer of the migrate_nodes
635          * list_head to stay clear from the rb_parent_color union
636          * (aligned and different than any node) and also different
637          * from &migrate_nodes. This will verify that future list.h changes
638          * don't break STABLE_NODE_DUP_HEAD.
639          */
640 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
641         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
642         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
643 #endif
644
645         if (stable_node->head == &migrate_nodes)
646                 list_del(&stable_node->list);
647         else
648                 stable_node_dup_del(stable_node);
649         free_stable_node(stable_node);
650 }
651
652 /*
653  * get_ksm_page: checks if the page indicated by the stable node
654  * is still its ksm page, despite having held no reference to it.
655  * In which case we can trust the content of the page, and it
656  * returns the gotten page; but if the page has now been zapped,
657  * remove the stale node from the stable tree and return NULL.
658  * But beware, the stable node's page might be being migrated.
659  *
660  * You would expect the stable_node to hold a reference to the ksm page.
661  * But if it increments the page's count, swapping out has to wait for
662  * ksmd to come around again before it can free the page, which may take
663  * seconds or even minutes: much too unresponsive.  So instead we use a
664  * "keyhole reference": access to the ksm page from the stable node peeps
665  * out through its keyhole to see if that page still holds the right key,
666  * pointing back to this stable node.  This relies on freeing a PageAnon
667  * page to reset its page->mapping to NULL, and relies on no other use of
668  * a page to put something that might look like our key in page->mapping.
669  * is on its way to being freed; but it is an anomaly to bear in mind.
670  */
671 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
672 {
673         struct page *page;
674         void *expected_mapping;
675         unsigned long kpfn;
676
677         expected_mapping = (void *)((unsigned long)stable_node |
678                                         PAGE_MAPPING_KSM);
679 again:
680         kpfn = READ_ONCE(stable_node->kpfn);
681         page = pfn_to_page(kpfn);
682
683         /*
684          * page is computed from kpfn, so on most architectures reading
685          * page->mapping is naturally ordered after reading node->kpfn,
686          * but on Alpha we need to be more careful.
687          */
688         smp_read_barrier_depends();
689         if (READ_ONCE(page->mapping) != expected_mapping)
690                 goto stale;
691
692         /*
693          * We cannot do anything with the page while its refcount is 0.
694          * Usually 0 means free, or tail of a higher-order page: in which
695          * case this node is no longer referenced, and should be freed;
696          * however, it might mean that the page is under page_freeze_refs().
697          * The __remove_mapping() case is easy, again the node is now stale;
698          * but if page is swapcache in migrate_page_move_mapping(), it might
699          * still be our page, in which case it's essential to keep the node.
700          */
701         while (!get_page_unless_zero(page)) {
702                 /*
703                  * Another check for page->mapping != expected_mapping would
704                  * work here too.  We have chosen the !PageSwapCache test to
705                  * optimize the common case, when the page is or is about to
706                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
707                  * in the freeze_refs section of __remove_mapping(); but Anon
708                  * page->mapping reset to NULL later, in free_pages_prepare().
709                  */
710                 if (!PageSwapCache(page))
711                         goto stale;
712                 cpu_relax();
713         }
714
715         if (READ_ONCE(page->mapping) != expected_mapping) {
716                 put_page(page);
717                 goto stale;
718         }
719
720         if (lock_it) {
721                 lock_page(page);
722                 if (READ_ONCE(page->mapping) != expected_mapping) {
723                         unlock_page(page);
724                         put_page(page);
725                         goto stale;
726                 }
727         }
728         return page;
729
730 stale:
731         /*
732          * We come here from above when page->mapping or !PageSwapCache
733          * suggests that the node is stale; but it might be under migration.
734          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
735          * before checking whether node->kpfn has been changed.
736          */
737         smp_rmb();
738         if (READ_ONCE(stable_node->kpfn) != kpfn)
739                 goto again;
740         remove_node_from_stable_tree(stable_node);
741         return NULL;
742 }
743
744 /*
745  * Removing rmap_item from stable or unstable tree.
746  * This function will clean the information from the stable/unstable tree.
747  */
748 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
749 {
750         if (rmap_item->address & STABLE_FLAG) {
751                 struct stable_node *stable_node;
752                 struct page *page;
753
754                 stable_node = rmap_item->head;
755                 page = get_ksm_page(stable_node, true);
756                 if (!page)
757                         goto out;
758
759                 hlist_del(&rmap_item->hlist);
760                 unlock_page(page);
761                 put_page(page);
762
763                 if (!hlist_empty(&stable_node->hlist))
764                         ksm_pages_sharing--;
765                 else
766                         ksm_pages_shared--;
767                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
768                 stable_node->rmap_hlist_len--;
769
770                 put_anon_vma(rmap_item->anon_vma);
771                 rmap_item->head = NULL;
772                 rmap_item->address &= PAGE_MASK;
773
774         } else if (rmap_item->address & UNSTABLE_FLAG) {
775                 unsigned char age;
776                 /*
777                  * Usually ksmd can and must skip the rb_erase, because
778                  * root_unstable_tree was already reset to RB_ROOT.
779                  * But be careful when an mm is exiting: do the rb_erase
780                  * if this rmap_item was inserted by this scan, rather
781                  * than left over from before.
782                  */
783                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
784                 BUG_ON(age > 1);
785                 if (!age)
786                         rb_erase(&rmap_item->node,
787                                  root_unstable_tree + NUMA(rmap_item->nid));
788                 ksm_pages_unshared--;
789                 rmap_item->address &= PAGE_MASK;
790         }
791 out:
792         cond_resched();         /* we're called from many long loops */
793 }
794
795 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
796                                        struct rmap_item **rmap_list)
797 {
798         while (*rmap_list) {
799                 struct rmap_item *rmap_item = *rmap_list;
800                 *rmap_list = rmap_item->rmap_list;
801                 remove_rmap_item_from_tree(rmap_item);
802                 free_rmap_item(rmap_item);
803         }
804 }
805
806 /*
807  * Though it's very tempting to unmerge rmap_items from stable tree rather
808  * than check every pte of a given vma, the locking doesn't quite work for
809  * that - an rmap_item is assigned to the stable tree after inserting ksm
810  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
811  * rmap_items from parent to child at fork time (so as not to waste time
812  * if exit comes before the next scan reaches it).
813  *
814  * Similarly, although we'd like to remove rmap_items (so updating counts
815  * and freeing memory) when unmerging an area, it's easier to leave that
816  * to the next pass of ksmd - consider, for example, how ksmd might be
817  * in cmp_and_merge_page on one of the rmap_items we would be removing.
818  */
819 static int unmerge_ksm_pages(struct vm_area_struct *vma,
820                              unsigned long start, unsigned long end)
821 {
822         unsigned long addr;
823         int err = 0;
824
825         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
826                 if (ksm_test_exit(vma->vm_mm))
827                         break;
828                 if (signal_pending(current))
829                         err = -ERESTARTSYS;
830                 else
831                         err = break_ksm(vma, addr);
832         }
833         return err;
834 }
835
836 #ifdef CONFIG_SYSFS
837 /*
838  * Only called through the sysfs control interface:
839  */
840 static int remove_stable_node(struct stable_node *stable_node)
841 {
842         struct page *page;
843         int err;
844
845         page = get_ksm_page(stable_node, true);
846         if (!page) {
847                 /*
848                  * get_ksm_page did remove_node_from_stable_tree itself.
849                  */
850                 return 0;
851         }
852
853         /*
854          * Page could be still mapped if this races with __mmput() running in
855          * between ksm_exit() and exit_mmap(). Just refuse to let
856          * merge_across_nodes/max_page_sharing be switched.
857          */
858         err = -EBUSY;
859         if (!page_mapped(page)) {
860                 /*
861                  * The stable node did not yet appear stale to get_ksm_page(),
862                  * since that allows for an unmapped ksm page to be recognized
863                  * right up until it is freed; but the node is safe to remove.
864                  * This page might be in a pagevec waiting to be freed,
865                  * or it might be PageSwapCache (perhaps under writeback),
866                  * or it might have been removed from swapcache a moment ago.
867                  */
868                 set_page_stable_node(page, NULL);
869                 remove_node_from_stable_tree(stable_node);
870                 err = 0;
871         }
872
873         unlock_page(page);
874         put_page(page);
875         return err;
876 }
877
878 static int remove_stable_node_chain(struct stable_node *stable_node,
879                                     struct rb_root *root)
880 {
881         struct stable_node *dup;
882         struct hlist_node *hlist_safe;
883
884         if (!is_stable_node_chain(stable_node)) {
885                 VM_BUG_ON(is_stable_node_dup(stable_node));
886                 if (remove_stable_node(stable_node))
887                         return true;
888                 else
889                         return false;
890         }
891
892         hlist_for_each_entry_safe(dup, hlist_safe,
893                                   &stable_node->hlist, hlist_dup) {
894                 VM_BUG_ON(!is_stable_node_dup(dup));
895                 if (remove_stable_node(dup))
896                         return true;
897         }
898         BUG_ON(!hlist_empty(&stable_node->hlist));
899         free_stable_node_chain(stable_node, root);
900         return false;
901 }
902
903 static int remove_all_stable_nodes(void)
904 {
905         struct stable_node *stable_node, *next;
906         int nid;
907         int err = 0;
908
909         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
910                 while (root_stable_tree[nid].rb_node) {
911                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
912                                                 struct stable_node, node);
913                         if (remove_stable_node_chain(stable_node,
914                                                      root_stable_tree + nid)) {
915                                 err = -EBUSY;
916                                 break;  /* proceed to next nid */
917                         }
918                         cond_resched();
919                 }
920         }
921         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
922                 if (remove_stable_node(stable_node))
923                         err = -EBUSY;
924                 cond_resched();
925         }
926         return err;
927 }
928
929 static int unmerge_and_remove_all_rmap_items(void)
930 {
931         struct mm_slot *mm_slot;
932         struct mm_struct *mm;
933         struct vm_area_struct *vma;
934         int err = 0;
935
936         spin_lock(&ksm_mmlist_lock);
937         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
938                                                 struct mm_slot, mm_list);
939         spin_unlock(&ksm_mmlist_lock);
940
941         for (mm_slot = ksm_scan.mm_slot;
942                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
943                 mm = mm_slot->mm;
944                 down_read(&mm->mmap_sem);
945                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
946                         if (ksm_test_exit(mm))
947                                 break;
948                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
949                                 continue;
950                         err = unmerge_ksm_pages(vma,
951                                                 vma->vm_start, vma->vm_end);
952                         if (err)
953                                 goto error;
954                 }
955
956                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
957                 up_read(&mm->mmap_sem);
958
959                 spin_lock(&ksm_mmlist_lock);
960                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
961                                                 struct mm_slot, mm_list);
962                 if (ksm_test_exit(mm)) {
963                         hash_del(&mm_slot->link);
964                         list_del(&mm_slot->mm_list);
965                         spin_unlock(&ksm_mmlist_lock);
966
967                         free_mm_slot(mm_slot);
968                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
969                         mmdrop(mm);
970                 } else
971                         spin_unlock(&ksm_mmlist_lock);
972         }
973
974         /* Clean up stable nodes, but don't worry if some are still busy */
975         remove_all_stable_nodes();
976         ksm_scan.seqnr = 0;
977         return 0;
978
979 error:
980         up_read(&mm->mmap_sem);
981         spin_lock(&ksm_mmlist_lock);
982         ksm_scan.mm_slot = &ksm_mm_head;
983         spin_unlock(&ksm_mmlist_lock);
984         return err;
985 }
986 #endif /* CONFIG_SYSFS */
987
988 static u32 calc_checksum(struct page *page)
989 {
990         u32 checksum;
991         void *addr = kmap_atomic(page);
992         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
993         kunmap_atomic(addr);
994         return checksum;
995 }
996
997 static int memcmp_pages(struct page *page1, struct page *page2)
998 {
999         char *addr1, *addr2;
1000         int ret;
1001
1002         addr1 = kmap_atomic(page1);
1003         addr2 = kmap_atomic(page2);
1004         ret = memcmp(addr1, addr2, PAGE_SIZE);
1005         kunmap_atomic(addr2);
1006         kunmap_atomic(addr1);
1007         return ret;
1008 }
1009
1010 static inline int pages_identical(struct page *page1, struct page *page2)
1011 {
1012         return !memcmp_pages(page1, page2);
1013 }
1014
1015 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1016                               pte_t *orig_pte)
1017 {
1018         struct mm_struct *mm = vma->vm_mm;
1019         struct page_vma_mapped_walk pvmw = {
1020                 .page = page,
1021                 .vma = vma,
1022         };
1023         int swapped;
1024         int err = -EFAULT;
1025         unsigned long mmun_start;       /* For mmu_notifiers */
1026         unsigned long mmun_end;         /* For mmu_notifiers */
1027
1028         pvmw.address = page_address_in_vma(page, vma);
1029         if (pvmw.address == -EFAULT)
1030                 goto out;
1031
1032         BUG_ON(PageTransCompound(page));
1033
1034         mmun_start = pvmw.address;
1035         mmun_end   = pvmw.address + PAGE_SIZE;
1036         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1037
1038         if (!page_vma_mapped_walk(&pvmw))
1039                 goto out_mn;
1040         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1041                 goto out_unlock;
1042
1043         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1044             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1045                                                 mm_tlb_flush_pending(mm)) {
1046                 pte_t entry;
1047
1048                 swapped = PageSwapCache(page);
1049                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1050                 /*
1051                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1052                  * take any lock, therefore the check that we are going to make
1053                  * with the pagecount against the mapcount is racey and
1054                  * O_DIRECT can happen right after the check.
1055                  * So we clear the pte and flush the tlb before the check
1056                  * this assure us that no O_DIRECT can happen after the check
1057                  * or in the middle of the check.
1058                  */
1059                 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
1060                 /*
1061                  * Check that no O_DIRECT or similar I/O is in progress on the
1062                  * page
1063                  */
1064                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1065                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1066                         goto out_unlock;
1067                 }
1068                 if (pte_dirty(entry))
1069                         set_page_dirty(page);
1070
1071                 if (pte_protnone(entry))
1072                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1073                 else
1074                         entry = pte_mkclean(pte_wrprotect(entry));
1075                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1076         }
1077         *orig_pte = *pvmw.pte;
1078         err = 0;
1079
1080 out_unlock:
1081         page_vma_mapped_walk_done(&pvmw);
1082 out_mn:
1083         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1084 out:
1085         return err;
1086 }
1087
1088 /**
1089  * replace_page - replace page in vma by new ksm page
1090  * @vma:      vma that holds the pte pointing to page
1091  * @page:     the page we are replacing by kpage
1092  * @kpage:    the ksm page we replace page by
1093  * @orig_pte: the original value of the pte
1094  *
1095  * Returns 0 on success, -EFAULT on failure.
1096  */
1097 static int replace_page(struct vm_area_struct *vma, struct page *page,
1098                         struct page *kpage, pte_t orig_pte)
1099 {
1100         struct mm_struct *mm = vma->vm_mm;
1101         pmd_t *pmd;
1102         pte_t *ptep;
1103         pte_t newpte;
1104         spinlock_t *ptl;
1105         unsigned long addr;
1106         int err = -EFAULT;
1107         unsigned long mmun_start;       /* For mmu_notifiers */
1108         unsigned long mmun_end;         /* For mmu_notifiers */
1109
1110         addr = page_address_in_vma(page, vma);
1111         if (addr == -EFAULT)
1112                 goto out;
1113
1114         pmd = mm_find_pmd(mm, addr);
1115         if (!pmd)
1116                 goto out;
1117
1118         mmun_start = addr;
1119         mmun_end   = addr + PAGE_SIZE;
1120         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1121
1122         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1123         if (!pte_same(*ptep, orig_pte)) {
1124                 pte_unmap_unlock(ptep, ptl);
1125                 goto out_mn;
1126         }
1127
1128         /*
1129          * No need to check ksm_use_zero_pages here: we can only have a
1130          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1131          */
1132         if (!is_zero_pfn(page_to_pfn(kpage))) {
1133                 get_page(kpage);
1134                 page_add_anon_rmap(kpage, vma, addr, false);
1135                 newpte = mk_pte(kpage, vma->vm_page_prot);
1136         } else {
1137                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1138                                                vma->vm_page_prot));
1139                 /*
1140                  * We're replacing an anonymous page with a zero page, which is
1141                  * not anonymous. We need to do proper accounting otherwise we
1142                  * will get wrong values in /proc, and a BUG message in dmesg
1143                  * when tearing down the mm.
1144                  */
1145                 dec_mm_counter(mm, MM_ANONPAGES);
1146         }
1147
1148         flush_cache_page(vma, addr, pte_pfn(*ptep));
1149         ptep_clear_flush_notify(vma, addr, ptep);
1150         set_pte_at_notify(mm, addr, ptep, newpte);
1151
1152         page_remove_rmap(page, false);
1153         if (!page_mapped(page))
1154                 try_to_free_swap(page);
1155         put_page(page);
1156
1157         pte_unmap_unlock(ptep, ptl);
1158         err = 0;
1159 out_mn:
1160         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1161 out:
1162         return err;
1163 }
1164
1165 /*
1166  * try_to_merge_one_page - take two pages and merge them into one
1167  * @vma: the vma that holds the pte pointing to page
1168  * @page: the PageAnon page that we want to replace with kpage
1169  * @kpage: the PageKsm page that we want to map instead of page,
1170  *         or NULL the first time when we want to use page as kpage.
1171  *
1172  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1173  */
1174 static int try_to_merge_one_page(struct vm_area_struct *vma,
1175                                  struct page *page, struct page *kpage)
1176 {
1177         pte_t orig_pte = __pte(0);
1178         int err = -EFAULT;
1179
1180         if (page == kpage)                      /* ksm page forked */
1181                 return 0;
1182
1183         if (!PageAnon(page))
1184                 goto out;
1185
1186         /*
1187          * We need the page lock to read a stable PageSwapCache in
1188          * write_protect_page().  We use trylock_page() instead of
1189          * lock_page() because we don't want to wait here - we
1190          * prefer to continue scanning and merging different pages,
1191          * then come back to this page when it is unlocked.
1192          */
1193         if (!trylock_page(page))
1194                 goto out;
1195
1196         if (PageTransCompound(page)) {
1197                 if (split_huge_page(page))
1198                         goto out_unlock;
1199         }
1200
1201         /*
1202          * If this anonymous page is mapped only here, its pte may need
1203          * to be write-protected.  If it's mapped elsewhere, all of its
1204          * ptes are necessarily already write-protected.  But in either
1205          * case, we need to lock and check page_count is not raised.
1206          */
1207         if (write_protect_page(vma, page, &orig_pte) == 0) {
1208                 if (!kpage) {
1209                         /*
1210                          * While we hold page lock, upgrade page from
1211                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1212                          * stable_tree_insert() will update stable_node.
1213                          */
1214                         set_page_stable_node(page, NULL);
1215                         mark_page_accessed(page);
1216                         /*
1217                          * Page reclaim just frees a clean page with no dirty
1218                          * ptes: make sure that the ksm page would be swapped.
1219                          */
1220                         if (!PageDirty(page))
1221                                 SetPageDirty(page);
1222                         err = 0;
1223                 } else if (pages_identical(page, kpage))
1224                         err = replace_page(vma, page, kpage, orig_pte);
1225         }
1226
1227         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1228                 munlock_vma_page(page);
1229                 if (!PageMlocked(kpage)) {
1230                         unlock_page(page);
1231                         lock_page(kpage);
1232                         mlock_vma_page(kpage);
1233                         page = kpage;           /* for final unlock */
1234                 }
1235         }
1236
1237 out_unlock:
1238         unlock_page(page);
1239 out:
1240         return err;
1241 }
1242
1243 /*
1244  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1245  * but no new kernel page is allocated: kpage must already be a ksm page.
1246  *
1247  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1248  */
1249 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1250                                       struct page *page, struct page *kpage)
1251 {
1252         struct mm_struct *mm = rmap_item->mm;
1253         struct vm_area_struct *vma;
1254         int err = -EFAULT;
1255
1256         down_read(&mm->mmap_sem);
1257         vma = find_mergeable_vma(mm, rmap_item->address);
1258         if (!vma)
1259                 goto out;
1260
1261         err = try_to_merge_one_page(vma, page, kpage);
1262         if (err)
1263                 goto out;
1264
1265         /* Unstable nid is in union with stable anon_vma: remove first */
1266         remove_rmap_item_from_tree(rmap_item);
1267
1268         /* Must get reference to anon_vma while still holding mmap_sem */
1269         rmap_item->anon_vma = vma->anon_vma;
1270         get_anon_vma(vma->anon_vma);
1271 out:
1272         up_read(&mm->mmap_sem);
1273         return err;
1274 }
1275
1276 /*
1277  * try_to_merge_two_pages - take two identical pages and prepare them
1278  * to be merged into one page.
1279  *
1280  * This function returns the kpage if we successfully merged two identical
1281  * pages into one ksm page, NULL otherwise.
1282  *
1283  * Note that this function upgrades page to ksm page: if one of the pages
1284  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1285  */
1286 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1287                                            struct page *page,
1288                                            struct rmap_item *tree_rmap_item,
1289                                            struct page *tree_page)
1290 {
1291         int err;
1292
1293         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1294         if (!err) {
1295                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1296                                                         tree_page, page);
1297                 /*
1298                  * If that fails, we have a ksm page with only one pte
1299                  * pointing to it: so break it.
1300                  */
1301                 if (err)
1302                         break_cow(rmap_item);
1303         }
1304         return err ? NULL : page;
1305 }
1306
1307 static __always_inline
1308 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1309 {
1310         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1311         /*
1312          * Check that at least one mapping still exists, otherwise
1313          * there's no much point to merge and share with this
1314          * stable_node, as the underlying tree_page of the other
1315          * sharer is going to be freed soon.
1316          */
1317         return stable_node->rmap_hlist_len &&
1318                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1319 }
1320
1321 static __always_inline
1322 bool is_page_sharing_candidate(struct stable_node *stable_node)
1323 {
1324         return __is_page_sharing_candidate(stable_node, 0);
1325 }
1326
1327 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1328                              struct stable_node **_stable_node,
1329                              struct rb_root *root,
1330                              bool prune_stale_stable_nodes)
1331 {
1332         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1333         struct hlist_node *hlist_safe;
1334         struct page *_tree_page, *tree_page = NULL;
1335         int nr = 0;
1336         int found_rmap_hlist_len;
1337
1338         if (!prune_stale_stable_nodes ||
1339             time_before(jiffies, stable_node->chain_prune_time +
1340                         msecs_to_jiffies(
1341                                 ksm_stable_node_chains_prune_millisecs)))
1342                 prune_stale_stable_nodes = false;
1343         else
1344                 stable_node->chain_prune_time = jiffies;
1345
1346         hlist_for_each_entry_safe(dup, hlist_safe,
1347                                   &stable_node->hlist, hlist_dup) {
1348                 cond_resched();
1349                 /*
1350                  * We must walk all stable_node_dup to prune the stale
1351                  * stable nodes during lookup.
1352                  *
1353                  * get_ksm_page can drop the nodes from the
1354                  * stable_node->hlist if they point to freed pages
1355                  * (that's why we do a _safe walk). The "dup"
1356                  * stable_node parameter itself will be freed from
1357                  * under us if it returns NULL.
1358                  */
1359                 _tree_page = get_ksm_page(dup, false);
1360                 if (!_tree_page)
1361                         continue;
1362                 nr += 1;
1363                 if (is_page_sharing_candidate(dup)) {
1364                         if (!found ||
1365                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1366                                 if (found)
1367                                         put_page(tree_page);
1368                                 found = dup;
1369                                 found_rmap_hlist_len = found->rmap_hlist_len;
1370                                 tree_page = _tree_page;
1371
1372                                 /* skip put_page for found dup */
1373                                 if (!prune_stale_stable_nodes)
1374                                         break;
1375                                 continue;
1376                         }
1377                 }
1378                 put_page(_tree_page);
1379         }
1380
1381         if (found) {
1382                 /*
1383                  * nr is counting all dups in the chain only if
1384                  * prune_stale_stable_nodes is true, otherwise we may
1385                  * break the loop at nr == 1 even if there are
1386                  * multiple entries.
1387                  */
1388                 if (prune_stale_stable_nodes && nr == 1) {
1389                         /*
1390                          * If there's not just one entry it would
1391                          * corrupt memory, better BUG_ON. In KSM
1392                          * context with no lock held it's not even
1393                          * fatal.
1394                          */
1395                         BUG_ON(stable_node->hlist.first->next);
1396
1397                         /*
1398                          * There's just one entry and it is below the
1399                          * deduplication limit so drop the chain.
1400                          */
1401                         rb_replace_node(&stable_node->node, &found->node,
1402                                         root);
1403                         free_stable_node(stable_node);
1404                         ksm_stable_node_chains--;
1405                         ksm_stable_node_dups--;
1406                         /*
1407                          * NOTE: the caller depends on the stable_node
1408                          * to be equal to stable_node_dup if the chain
1409                          * was collapsed.
1410                          */
1411                         *_stable_node = found;
1412                         /*
1413                          * Just for robustneess as stable_node is
1414                          * otherwise left as a stable pointer, the
1415                          * compiler shall optimize it away at build
1416                          * time.
1417                          */
1418                         stable_node = NULL;
1419                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1420                            __is_page_sharing_candidate(found, 1)) {
1421                         /*
1422                          * If the found stable_node dup can accept one
1423                          * more future merge (in addition to the one
1424                          * that is underway) and is not at the head of
1425                          * the chain, put it there so next search will
1426                          * be quicker in the !prune_stale_stable_nodes
1427                          * case.
1428                          *
1429                          * NOTE: it would be inaccurate to use nr > 1
1430                          * instead of checking the hlist.first pointer
1431                          * directly, because in the
1432                          * prune_stale_stable_nodes case "nr" isn't
1433                          * the position of the found dup in the chain,
1434                          * but the total number of dups in the chain.
1435                          */
1436                         hlist_del(&found->hlist_dup);
1437                         hlist_add_head(&found->hlist_dup,
1438                                        &stable_node->hlist);
1439                 }
1440         }
1441
1442         *_stable_node_dup = found;
1443         return tree_page;
1444 }
1445
1446 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1447                                                struct rb_root *root)
1448 {
1449         if (!is_stable_node_chain(stable_node))
1450                 return stable_node;
1451         if (hlist_empty(&stable_node->hlist)) {
1452                 free_stable_node_chain(stable_node, root);
1453                 return NULL;
1454         }
1455         return hlist_entry(stable_node->hlist.first,
1456                            typeof(*stable_node), hlist_dup);
1457 }
1458
1459 /*
1460  * Like for get_ksm_page, this function can free the *_stable_node and
1461  * *_stable_node_dup if the returned tree_page is NULL.
1462  *
1463  * It can also free and overwrite *_stable_node with the found
1464  * stable_node_dup if the chain is collapsed (in which case
1465  * *_stable_node will be equal to *_stable_node_dup like if the chain
1466  * never existed). It's up to the caller to verify tree_page is not
1467  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1468  *
1469  * *_stable_node_dup is really a second output parameter of this
1470  * function and will be overwritten in all cases, the caller doesn't
1471  * need to initialize it.
1472  */
1473 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1474                                         struct stable_node **_stable_node,
1475                                         struct rb_root *root,
1476                                         bool prune_stale_stable_nodes)
1477 {
1478         struct stable_node *stable_node = *_stable_node;
1479         if (!is_stable_node_chain(stable_node)) {
1480                 if (is_page_sharing_candidate(stable_node)) {
1481                         *_stable_node_dup = stable_node;
1482                         return get_ksm_page(stable_node, false);
1483                 }
1484                 /*
1485                  * _stable_node_dup set to NULL means the stable_node
1486                  * reached the ksm_max_page_sharing limit.
1487                  */
1488                 *_stable_node_dup = NULL;
1489                 return NULL;
1490         }
1491         return stable_node_dup(_stable_node_dup, _stable_node, root,
1492                                prune_stale_stable_nodes);
1493 }
1494
1495 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1496                                                 struct stable_node **s_n,
1497                                                 struct rb_root *root)
1498 {
1499         return __stable_node_chain(s_n_d, s_n, root, true);
1500 }
1501
1502 static __always_inline struct page *chain(struct stable_node **s_n_d,
1503                                           struct stable_node *s_n,
1504                                           struct rb_root *root)
1505 {
1506         struct stable_node *old_stable_node = s_n;
1507         struct page *tree_page;
1508
1509         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1510         /* not pruning dups so s_n cannot have changed */
1511         VM_BUG_ON(s_n != old_stable_node);
1512         return tree_page;
1513 }
1514
1515 /*
1516  * stable_tree_search - search for page inside the stable tree
1517  *
1518  * This function checks if there is a page inside the stable tree
1519  * with identical content to the page that we are scanning right now.
1520  *
1521  * This function returns the stable tree node of identical content if found,
1522  * NULL otherwise.
1523  */
1524 static struct page *stable_tree_search(struct page *page)
1525 {
1526         int nid;
1527         struct rb_root *root;
1528         struct rb_node **new;
1529         struct rb_node *parent;
1530         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1531         struct stable_node *page_node;
1532
1533         page_node = page_stable_node(page);
1534         if (page_node && page_node->head != &migrate_nodes) {
1535                 /* ksm page forked */
1536                 get_page(page);
1537                 return page;
1538         }
1539
1540         nid = get_kpfn_nid(page_to_pfn(page));
1541         root = root_stable_tree + nid;
1542 again:
1543         new = &root->rb_node;
1544         parent = NULL;
1545
1546         while (*new) {
1547                 struct page *tree_page;
1548                 int ret;
1549
1550                 cond_resched();
1551                 stable_node = rb_entry(*new, struct stable_node, node);
1552                 stable_node_any = NULL;
1553                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1554                 /*
1555                  * NOTE: stable_node may have been freed by
1556                  * chain_prune() if the returned stable_node_dup is
1557                  * not NULL. stable_node_dup may have been inserted in
1558                  * the rbtree instead as a regular stable_node (in
1559                  * order to collapse the stable_node chain if a single
1560                  * stable_node dup was found in it). In such case the
1561                  * stable_node is overwritten by the calleee to point
1562                  * to the stable_node_dup that was collapsed in the
1563                  * stable rbtree and stable_node will be equal to
1564                  * stable_node_dup like if the chain never existed.
1565                  */
1566                 if (!stable_node_dup) {
1567                         /*
1568                          * Either all stable_node dups were full in
1569                          * this stable_node chain, or this chain was
1570                          * empty and should be rb_erased.
1571                          */
1572                         stable_node_any = stable_node_dup_any(stable_node,
1573                                                               root);
1574                         if (!stable_node_any) {
1575                                 /* rb_erase just run */
1576                                 goto again;
1577                         }
1578                         /*
1579                          * Take any of the stable_node dups page of
1580                          * this stable_node chain to let the tree walk
1581                          * continue. All KSM pages belonging to the
1582                          * stable_node dups in a stable_node chain
1583                          * have the same content and they're
1584                          * wrprotected at all times. Any will work
1585                          * fine to continue the walk.
1586                          */
1587                         tree_page = get_ksm_page(stable_node_any, false);
1588                 }
1589                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1590                 if (!tree_page) {
1591                         /*
1592                          * If we walked over a stale stable_node,
1593                          * get_ksm_page() will call rb_erase() and it
1594                          * may rebalance the tree from under us. So
1595                          * restart the search from scratch. Returning
1596                          * NULL would be safe too, but we'd generate
1597                          * false negative insertions just because some
1598                          * stable_node was stale.
1599                          */
1600                         goto again;
1601                 }
1602
1603                 ret = memcmp_pages(page, tree_page);
1604                 put_page(tree_page);
1605
1606                 parent = *new;
1607                 if (ret < 0)
1608                         new = &parent->rb_left;
1609                 else if (ret > 0)
1610                         new = &parent->rb_right;
1611                 else {
1612                         if (page_node) {
1613                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1614                                 /*
1615                                  * Test if the migrated page should be merged
1616                                  * into a stable node dup. If the mapcount is
1617                                  * 1 we can migrate it with another KSM page
1618                                  * without adding it to the chain.
1619                                  */
1620                                 if (page_mapcount(page) > 1)
1621                                         goto chain_append;
1622                         }
1623
1624                         if (!stable_node_dup) {
1625                                 /*
1626                                  * If the stable_node is a chain and
1627                                  * we got a payload match in memcmp
1628                                  * but we cannot merge the scanned
1629                                  * page in any of the existing
1630                                  * stable_node dups because they're
1631                                  * all full, we need to wait the
1632                                  * scanned page to find itself a match
1633                                  * in the unstable tree to create a
1634                                  * brand new KSM page to add later to
1635                                  * the dups of this stable_node.
1636                                  */
1637                                 return NULL;
1638                         }
1639
1640                         /*
1641                          * Lock and unlock the stable_node's page (which
1642                          * might already have been migrated) so that page
1643                          * migration is sure to notice its raised count.
1644                          * It would be more elegant to return stable_node
1645                          * than kpage, but that involves more changes.
1646                          */
1647                         tree_page = get_ksm_page(stable_node_dup, true);
1648                         if (unlikely(!tree_page))
1649                                 /*
1650                                  * The tree may have been rebalanced,
1651                                  * so re-evaluate parent and new.
1652                                  */
1653                                 goto again;
1654                         unlock_page(tree_page);
1655
1656                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1657                             NUMA(stable_node_dup->nid)) {
1658                                 put_page(tree_page);
1659                                 goto replace;
1660                         }
1661                         return tree_page;
1662                 }
1663         }
1664
1665         if (!page_node)
1666                 return NULL;
1667
1668         list_del(&page_node->list);
1669         DO_NUMA(page_node->nid = nid);
1670         rb_link_node(&page_node->node, parent, new);
1671         rb_insert_color(&page_node->node, root);
1672 out:
1673         if (is_page_sharing_candidate(page_node)) {
1674                 get_page(page);
1675                 return page;
1676         } else
1677                 return NULL;
1678
1679 replace:
1680         /*
1681          * If stable_node was a chain and chain_prune collapsed it,
1682          * stable_node has been updated to be the new regular
1683          * stable_node. A collapse of the chain is indistinguishable
1684          * from the case there was no chain in the stable
1685          * rbtree. Otherwise stable_node is the chain and
1686          * stable_node_dup is the dup to replace.
1687          */
1688         if (stable_node_dup == stable_node) {
1689                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1690                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1691                 /* there is no chain */
1692                 if (page_node) {
1693                         VM_BUG_ON(page_node->head != &migrate_nodes);
1694                         list_del(&page_node->list);
1695                         DO_NUMA(page_node->nid = nid);
1696                         rb_replace_node(&stable_node_dup->node,
1697                                         &page_node->node,
1698                                         root);
1699                         if (is_page_sharing_candidate(page_node))
1700                                 get_page(page);
1701                         else
1702                                 page = NULL;
1703                 } else {
1704                         rb_erase(&stable_node_dup->node, root);
1705                         page = NULL;
1706                 }
1707         } else {
1708                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1709                 __stable_node_dup_del(stable_node_dup);
1710                 if (page_node) {
1711                         VM_BUG_ON(page_node->head != &migrate_nodes);
1712                         list_del(&page_node->list);
1713                         DO_NUMA(page_node->nid = nid);
1714                         stable_node_chain_add_dup(page_node, stable_node);
1715                         if (is_page_sharing_candidate(page_node))
1716                                 get_page(page);
1717                         else
1718                                 page = NULL;
1719                 } else {
1720                         page = NULL;
1721                 }
1722         }
1723         stable_node_dup->head = &migrate_nodes;
1724         list_add(&stable_node_dup->list, stable_node_dup->head);
1725         return page;
1726
1727 chain_append:
1728         /* stable_node_dup could be null if it reached the limit */
1729         if (!stable_node_dup)
1730                 stable_node_dup = stable_node_any;
1731         /*
1732          * If stable_node was a chain and chain_prune collapsed it,
1733          * stable_node has been updated to be the new regular
1734          * stable_node. A collapse of the chain is indistinguishable
1735          * from the case there was no chain in the stable
1736          * rbtree. Otherwise stable_node is the chain and
1737          * stable_node_dup is the dup to replace.
1738          */
1739         if (stable_node_dup == stable_node) {
1740                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1741                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1742                 /* chain is missing so create it */
1743                 stable_node = alloc_stable_node_chain(stable_node_dup,
1744                                                       root);
1745                 if (!stable_node)
1746                         return NULL;
1747         }
1748         /*
1749          * Add this stable_node dup that was
1750          * migrated to the stable_node chain
1751          * of the current nid for this page
1752          * content.
1753          */
1754         VM_BUG_ON(!is_stable_node_chain(stable_node));
1755         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1756         VM_BUG_ON(page_node->head != &migrate_nodes);
1757         list_del(&page_node->list);
1758         DO_NUMA(page_node->nid = nid);
1759         stable_node_chain_add_dup(page_node, stable_node);
1760         goto out;
1761 }
1762
1763 /*
1764  * stable_tree_insert - insert stable tree node pointing to new ksm page
1765  * into the stable tree.
1766  *
1767  * This function returns the stable tree node just allocated on success,
1768  * NULL otherwise.
1769  */
1770 static struct stable_node *stable_tree_insert(struct page *kpage)
1771 {
1772         int nid;
1773         unsigned long kpfn;
1774         struct rb_root *root;
1775         struct rb_node **new;
1776         struct rb_node *parent;
1777         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1778         bool need_chain = false;
1779
1780         kpfn = page_to_pfn(kpage);
1781         nid = get_kpfn_nid(kpfn);
1782         root = root_stable_tree + nid;
1783 again:
1784         parent = NULL;
1785         new = &root->rb_node;
1786
1787         while (*new) {
1788                 struct page *tree_page;
1789                 int ret;
1790
1791                 cond_resched();
1792                 stable_node = rb_entry(*new, struct stable_node, node);
1793                 stable_node_any = NULL;
1794                 tree_page = chain(&stable_node_dup, stable_node, root);
1795                 if (!stable_node_dup) {
1796                         /*
1797                          * Either all stable_node dups were full in
1798                          * this stable_node chain, or this chain was
1799                          * empty and should be rb_erased.
1800                          */
1801                         stable_node_any = stable_node_dup_any(stable_node,
1802                                                               root);
1803                         if (!stable_node_any) {
1804                                 /* rb_erase just run */
1805                                 goto again;
1806                         }
1807                         /*
1808                          * Take any of the stable_node dups page of
1809                          * this stable_node chain to let the tree walk
1810                          * continue. All KSM pages belonging to the
1811                          * stable_node dups in a stable_node chain
1812                          * have the same content and they're
1813                          * wrprotected at all times. Any will work
1814                          * fine to continue the walk.
1815                          */
1816                         tree_page = get_ksm_page(stable_node_any, false);
1817                 }
1818                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1819                 if (!tree_page) {
1820                         /*
1821                          * If we walked over a stale stable_node,
1822                          * get_ksm_page() will call rb_erase() and it
1823                          * may rebalance the tree from under us. So
1824                          * restart the search from scratch. Returning
1825                          * NULL would be safe too, but we'd generate
1826                          * false negative insertions just because some
1827                          * stable_node was stale.
1828                          */
1829                         goto again;
1830                 }
1831
1832                 ret = memcmp_pages(kpage, tree_page);
1833                 put_page(tree_page);
1834
1835                 parent = *new;
1836                 if (ret < 0)
1837                         new = &parent->rb_left;
1838                 else if (ret > 0)
1839                         new = &parent->rb_right;
1840                 else {
1841                         need_chain = true;
1842                         break;
1843                 }
1844         }
1845
1846         stable_node_dup = alloc_stable_node();
1847         if (!stable_node_dup)
1848                 return NULL;
1849
1850         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1851         stable_node_dup->kpfn = kpfn;
1852         set_page_stable_node(kpage, stable_node_dup);
1853         stable_node_dup->rmap_hlist_len = 0;
1854         DO_NUMA(stable_node_dup->nid = nid);
1855         if (!need_chain) {
1856                 rb_link_node(&stable_node_dup->node, parent, new);
1857                 rb_insert_color(&stable_node_dup->node, root);
1858         } else {
1859                 if (!is_stable_node_chain(stable_node)) {
1860                         struct stable_node *orig = stable_node;
1861                         /* chain is missing so create it */
1862                         stable_node = alloc_stable_node_chain(orig, root);
1863                         if (!stable_node) {
1864                                 free_stable_node(stable_node_dup);
1865                                 return NULL;
1866                         }
1867                 }
1868                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1869         }
1870
1871         return stable_node_dup;
1872 }
1873
1874 /*
1875  * unstable_tree_search_insert - search for identical page,
1876  * else insert rmap_item into the unstable tree.
1877  *
1878  * This function searches for a page in the unstable tree identical to the
1879  * page currently being scanned; and if no identical page is found in the
1880  * tree, we insert rmap_item as a new object into the unstable tree.
1881  *
1882  * This function returns pointer to rmap_item found to be identical
1883  * to the currently scanned page, NULL otherwise.
1884  *
1885  * This function does both searching and inserting, because they share
1886  * the same walking algorithm in an rbtree.
1887  */
1888 static
1889 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1890                                               struct page *page,
1891                                               struct page **tree_pagep)
1892 {
1893         struct rb_node **new;
1894         struct rb_root *root;
1895         struct rb_node *parent = NULL;
1896         int nid;
1897
1898         nid = get_kpfn_nid(page_to_pfn(page));
1899         root = root_unstable_tree + nid;
1900         new = &root->rb_node;
1901
1902         while (*new) {
1903                 struct rmap_item *tree_rmap_item;
1904                 struct page *tree_page;
1905                 int ret;
1906
1907                 cond_resched();
1908                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1909                 tree_page = get_mergeable_page(tree_rmap_item);
1910                 if (!tree_page)
1911                         return NULL;
1912
1913                 /*
1914                  * Don't substitute a ksm page for a forked page.
1915                  */
1916                 if (page == tree_page) {
1917                         put_page(tree_page);
1918                         return NULL;
1919                 }
1920
1921                 ret = memcmp_pages(page, tree_page);
1922
1923                 parent = *new;
1924                 if (ret < 0) {
1925                         put_page(tree_page);
1926                         new = &parent->rb_left;
1927                 } else if (ret > 0) {
1928                         put_page(tree_page);
1929                         new = &parent->rb_right;
1930                 } else if (!ksm_merge_across_nodes &&
1931                            page_to_nid(tree_page) != nid) {
1932                         /*
1933                          * If tree_page has been migrated to another NUMA node,
1934                          * it will be flushed out and put in the right unstable
1935                          * tree next time: only merge with it when across_nodes.
1936                          */
1937                         put_page(tree_page);
1938                         return NULL;
1939                 } else {
1940                         *tree_pagep = tree_page;
1941                         return tree_rmap_item;
1942                 }
1943         }
1944
1945         rmap_item->address |= UNSTABLE_FLAG;
1946         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1947         DO_NUMA(rmap_item->nid = nid);
1948         rb_link_node(&rmap_item->node, parent, new);
1949         rb_insert_color(&rmap_item->node, root);
1950
1951         ksm_pages_unshared++;
1952         return NULL;
1953 }
1954
1955 /*
1956  * stable_tree_append - add another rmap_item to the linked list of
1957  * rmap_items hanging off a given node of the stable tree, all sharing
1958  * the same ksm page.
1959  */
1960 static void stable_tree_append(struct rmap_item *rmap_item,
1961                                struct stable_node *stable_node,
1962                                bool max_page_sharing_bypass)
1963 {
1964         /*
1965          * rmap won't find this mapping if we don't insert the
1966          * rmap_item in the right stable_node
1967          * duplicate. page_migration could break later if rmap breaks,
1968          * so we can as well crash here. We really need to check for
1969          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1970          * for other negative values as an undeflow if detected here
1971          * for the first time (and not when decreasing rmap_hlist_len)
1972          * would be sign of memory corruption in the stable_node.
1973          */
1974         BUG_ON(stable_node->rmap_hlist_len < 0);
1975
1976         stable_node->rmap_hlist_len++;
1977         if (!max_page_sharing_bypass)
1978                 /* possibly non fatal but unexpected overflow, only warn */
1979                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1980                              ksm_max_page_sharing);
1981
1982         rmap_item->head = stable_node;
1983         rmap_item->address |= STABLE_FLAG;
1984         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1985
1986         if (rmap_item->hlist.next)
1987                 ksm_pages_sharing++;
1988         else
1989                 ksm_pages_shared++;
1990 }
1991
1992 /*
1993  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1994  * if not, compare checksum to previous and if it's the same, see if page can
1995  * be inserted into the unstable tree, or merged with a page already there and
1996  * both transferred to the stable tree.
1997  *
1998  * @page: the page that we are searching identical page to.
1999  * @rmap_item: the reverse mapping into the virtual address of this page
2000  */
2001 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2002 {
2003         struct mm_struct *mm = rmap_item->mm;
2004         struct rmap_item *tree_rmap_item;
2005         struct page *tree_page = NULL;
2006         struct stable_node *stable_node;
2007         struct page *kpage;
2008         unsigned int checksum;
2009         int err;
2010         bool max_page_sharing_bypass = false;
2011
2012         stable_node = page_stable_node(page);
2013         if (stable_node) {
2014                 if (stable_node->head != &migrate_nodes &&
2015                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2016                     NUMA(stable_node->nid)) {
2017                         stable_node_dup_del(stable_node);
2018                         stable_node->head = &migrate_nodes;
2019                         list_add(&stable_node->list, stable_node->head);
2020                 }
2021                 if (stable_node->head != &migrate_nodes &&
2022                     rmap_item->head == stable_node)
2023                         return;
2024                 /*
2025                  * If it's a KSM fork, allow it to go over the sharing limit
2026                  * without warnings.
2027                  */
2028                 if (!is_page_sharing_candidate(stable_node))
2029                         max_page_sharing_bypass = true;
2030         }
2031
2032         /* We first start with searching the page inside the stable tree */
2033         kpage = stable_tree_search(page);
2034         if (kpage == page && rmap_item->head == stable_node) {
2035                 put_page(kpage);
2036                 return;
2037         }
2038
2039         remove_rmap_item_from_tree(rmap_item);
2040
2041         if (kpage) {
2042                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2043                 if (!err) {
2044                         /*
2045                          * The page was successfully merged:
2046                          * add its rmap_item to the stable tree.
2047                          */
2048                         lock_page(kpage);
2049                         stable_tree_append(rmap_item, page_stable_node(kpage),
2050                                            max_page_sharing_bypass);
2051                         unlock_page(kpage);
2052                 }
2053                 put_page(kpage);
2054                 return;
2055         }
2056
2057         /*
2058          * If the hash value of the page has changed from the last time
2059          * we calculated it, this page is changing frequently: therefore we
2060          * don't want to insert it in the unstable tree, and we don't want
2061          * to waste our time searching for something identical to it there.
2062          */
2063         checksum = calc_checksum(page);
2064         if (rmap_item->oldchecksum != checksum) {
2065                 rmap_item->oldchecksum = checksum;
2066                 return;
2067         }
2068
2069         /*
2070          * Same checksum as an empty page. We attempt to merge it with the
2071          * appropriate zero page if the user enabled this via sysfs.
2072          */
2073         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2074                 struct vm_area_struct *vma;
2075
2076                 down_read(&mm->mmap_sem);
2077                 vma = find_mergeable_vma(mm, rmap_item->address);
2078                 if (vma) {
2079                         err = try_to_merge_one_page(vma, page,
2080                                         ZERO_PAGE(rmap_item->address));
2081                 } else {
2082                         /*
2083                          * If the vma is out of date, we do not need to
2084                          * continue.
2085                          */
2086                         err = 0;
2087                 }
2088                 up_read(&mm->mmap_sem);
2089                 /*
2090                  * In case of failure, the page was not really empty, so we
2091                  * need to continue. Otherwise we're done.
2092                  */
2093                 if (!err)
2094                         return;
2095         }
2096         tree_rmap_item =
2097                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2098         if (tree_rmap_item) {
2099                 bool split;
2100
2101                 kpage = try_to_merge_two_pages(rmap_item, page,
2102                                                 tree_rmap_item, tree_page);
2103                 /*
2104                  * If both pages we tried to merge belong to the same compound
2105                  * page, then we actually ended up increasing the reference
2106                  * count of the same compound page twice, and split_huge_page
2107                  * failed.
2108                  * Here we set a flag if that happened, and we use it later to
2109                  * try split_huge_page again. Since we call put_page right
2110                  * afterwards, the reference count will be correct and
2111                  * split_huge_page should succeed.
2112                  */
2113                 split = PageTransCompound(page)
2114                         && compound_head(page) == compound_head(tree_page);
2115                 put_page(tree_page);
2116                 if (kpage) {
2117                         /*
2118                          * The pages were successfully merged: insert new
2119                          * node in the stable tree and add both rmap_items.
2120                          */
2121                         lock_page(kpage);
2122                         stable_node = stable_tree_insert(kpage);
2123                         if (stable_node) {
2124                                 stable_tree_append(tree_rmap_item, stable_node,
2125                                                    false);
2126                                 stable_tree_append(rmap_item, stable_node,
2127                                                    false);
2128                         }
2129                         unlock_page(kpage);
2130
2131                         /*
2132                          * If we fail to insert the page into the stable tree,
2133                          * we will have 2 virtual addresses that are pointing
2134                          * to a ksm page left outside the stable tree,
2135                          * in which case we need to break_cow on both.
2136                          */
2137                         if (!stable_node) {
2138                                 break_cow(tree_rmap_item);
2139                                 break_cow(rmap_item);
2140                         }
2141                 } else if (split) {
2142                         /*
2143                          * We are here if we tried to merge two pages and
2144                          * failed because they both belonged to the same
2145                          * compound page. We will split the page now, but no
2146                          * merging will take place.
2147                          * We do not want to add the cost of a full lock; if
2148                          * the page is locked, it is better to skip it and
2149                          * perhaps try again later.
2150                          */
2151                         if (!trylock_page(page))
2152                                 return;
2153                         split_huge_page(page);
2154                         unlock_page(page);
2155                 }
2156         }
2157 }
2158
2159 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2160                                             struct rmap_item **rmap_list,
2161                                             unsigned long addr)
2162 {
2163         struct rmap_item *rmap_item;
2164
2165         while (*rmap_list) {
2166                 rmap_item = *rmap_list;
2167                 if ((rmap_item->address & PAGE_MASK) == addr)
2168                         return rmap_item;
2169                 if (rmap_item->address > addr)
2170                         break;
2171                 *rmap_list = rmap_item->rmap_list;
2172                 remove_rmap_item_from_tree(rmap_item);
2173                 free_rmap_item(rmap_item);
2174         }
2175
2176         rmap_item = alloc_rmap_item();
2177         if (rmap_item) {
2178                 /* It has already been zeroed */
2179                 rmap_item->mm = mm_slot->mm;
2180                 rmap_item->address = addr;
2181                 rmap_item->rmap_list = *rmap_list;
2182                 *rmap_list = rmap_item;
2183         }
2184         return rmap_item;
2185 }
2186
2187 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2188 {
2189         struct mm_struct *mm;
2190         struct mm_slot *slot;
2191         struct vm_area_struct *vma;
2192         struct rmap_item *rmap_item;
2193         int nid;
2194
2195         if (list_empty(&ksm_mm_head.mm_list))
2196                 return NULL;
2197
2198         slot = ksm_scan.mm_slot;
2199         if (slot == &ksm_mm_head) {
2200                 /*
2201                  * A number of pages can hang around indefinitely on per-cpu
2202                  * pagevecs, raised page count preventing write_protect_page
2203                  * from merging them.  Though it doesn't really matter much,
2204                  * it is puzzling to see some stuck in pages_volatile until
2205                  * other activity jostles them out, and they also prevented
2206                  * LTP's KSM test from succeeding deterministically; so drain
2207                  * them here (here rather than on entry to ksm_do_scan(),
2208                  * so we don't IPI too often when pages_to_scan is set low).
2209                  */
2210                 lru_add_drain_all();
2211
2212                 /*
2213                  * Whereas stale stable_nodes on the stable_tree itself
2214                  * get pruned in the regular course of stable_tree_search(),
2215                  * those moved out to the migrate_nodes list can accumulate:
2216                  * so prune them once before each full scan.
2217                  */
2218                 if (!ksm_merge_across_nodes) {
2219                         struct stable_node *stable_node, *next;
2220                         struct page *page;
2221
2222                         list_for_each_entry_safe(stable_node, next,
2223                                                  &migrate_nodes, list) {
2224                                 page = get_ksm_page(stable_node, false);
2225                                 if (page)
2226                                         put_page(page);
2227                                 cond_resched();
2228                         }
2229                 }
2230
2231                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2232                         root_unstable_tree[nid] = RB_ROOT;
2233
2234                 spin_lock(&ksm_mmlist_lock);
2235                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2236                 ksm_scan.mm_slot = slot;
2237                 spin_unlock(&ksm_mmlist_lock);
2238                 /*
2239                  * Although we tested list_empty() above, a racing __ksm_exit
2240                  * of the last mm on the list may have removed it since then.
2241                  */
2242                 if (slot == &ksm_mm_head)
2243                         return NULL;
2244 next_mm:
2245                 ksm_scan.address = 0;
2246                 ksm_scan.rmap_list = &slot->rmap_list;
2247         }
2248
2249         mm = slot->mm;
2250         down_read(&mm->mmap_sem);
2251         if (ksm_test_exit(mm))
2252                 vma = NULL;
2253         else
2254                 vma = find_vma(mm, ksm_scan.address);
2255
2256         for (; vma; vma = vma->vm_next) {
2257                 if (!(vma->vm_flags & VM_MERGEABLE))
2258                         continue;
2259                 if (ksm_scan.address < vma->vm_start)
2260                         ksm_scan.address = vma->vm_start;
2261                 if (!vma->anon_vma)
2262                         ksm_scan.address = vma->vm_end;
2263
2264                 while (ksm_scan.address < vma->vm_end) {
2265                         if (ksm_test_exit(mm))
2266                                 break;
2267                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2268                         if (IS_ERR_OR_NULL(*page)) {
2269                                 ksm_scan.address += PAGE_SIZE;
2270                                 cond_resched();
2271                                 continue;
2272                         }
2273                         if (PageAnon(*page)) {
2274                                 flush_anon_page(vma, *page, ksm_scan.address);
2275                                 flush_dcache_page(*page);
2276                                 rmap_item = get_next_rmap_item(slot,
2277                                         ksm_scan.rmap_list, ksm_scan.address);
2278                                 if (rmap_item) {
2279                                         ksm_scan.rmap_list =
2280                                                         &rmap_item->rmap_list;
2281                                         ksm_scan.address += PAGE_SIZE;
2282                                 } else
2283                                         put_page(*page);
2284                                 up_read(&mm->mmap_sem);
2285                                 return rmap_item;
2286                         }
2287                         put_page(*page);
2288                         ksm_scan.address += PAGE_SIZE;
2289                         cond_resched();
2290                 }
2291         }
2292
2293         if (ksm_test_exit(mm)) {
2294                 ksm_scan.address = 0;
2295                 ksm_scan.rmap_list = &slot->rmap_list;
2296         }
2297         /*
2298          * Nuke all the rmap_items that are above this current rmap:
2299          * because there were no VM_MERGEABLE vmas with such addresses.
2300          */
2301         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2302
2303         spin_lock(&ksm_mmlist_lock);
2304         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2305                                                 struct mm_slot, mm_list);
2306         if (ksm_scan.address == 0) {
2307                 /*
2308                  * We've completed a full scan of all vmas, holding mmap_sem
2309                  * throughout, and found no VM_MERGEABLE: so do the same as
2310                  * __ksm_exit does to remove this mm from all our lists now.
2311                  * This applies either when cleaning up after __ksm_exit
2312                  * (but beware: we can reach here even before __ksm_exit),
2313                  * or when all VM_MERGEABLE areas have been unmapped (and
2314                  * mmap_sem then protects against race with MADV_MERGEABLE).
2315                  */
2316                 hash_del(&slot->link);
2317                 list_del(&slot->mm_list);
2318                 spin_unlock(&ksm_mmlist_lock);
2319
2320                 free_mm_slot(slot);
2321                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2322                 up_read(&mm->mmap_sem);
2323                 mmdrop(mm);
2324         } else {
2325                 up_read(&mm->mmap_sem);
2326                 /*
2327                  * up_read(&mm->mmap_sem) first because after
2328                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2329                  * already have been freed under us by __ksm_exit()
2330                  * because the "mm_slot" is still hashed and
2331                  * ksm_scan.mm_slot doesn't point to it anymore.
2332                  */
2333                 spin_unlock(&ksm_mmlist_lock);
2334         }
2335
2336         /* Repeat until we've completed scanning the whole list */
2337         slot = ksm_scan.mm_slot;
2338         if (slot != &ksm_mm_head)
2339                 goto next_mm;
2340
2341         ksm_scan.seqnr++;
2342         return NULL;
2343 }
2344
2345 /**
2346  * ksm_do_scan  - the ksm scanner main worker function.
2347  * @scan_npages - number of pages we want to scan before we return.
2348  */
2349 static void ksm_do_scan(unsigned int scan_npages)
2350 {
2351         struct rmap_item *rmap_item;
2352         struct page *page;
2353
2354         while (scan_npages-- && likely(!freezing(current))) {
2355                 cond_resched();
2356                 rmap_item = scan_get_next_rmap_item(&page);
2357                 if (!rmap_item)
2358                         return;
2359                 cmp_and_merge_page(page, rmap_item);
2360                 put_page(page);
2361         }
2362 }
2363
2364 static int ksmd_should_run(void)
2365 {
2366         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2367 }
2368
2369 static int ksm_scan_thread(void *nothing)
2370 {
2371         set_freezable();
2372         set_user_nice(current, 5);
2373
2374         while (!kthread_should_stop()) {
2375                 mutex_lock(&ksm_thread_mutex);
2376                 wait_while_offlining();
2377                 if (ksmd_should_run())
2378                         ksm_do_scan(ksm_thread_pages_to_scan);
2379                 mutex_unlock(&ksm_thread_mutex);
2380
2381                 try_to_freeze();
2382
2383                 if (ksmd_should_run()) {
2384                         schedule_timeout_interruptible(
2385                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2386                 } else {
2387                         wait_event_freezable(ksm_thread_wait,
2388                                 ksmd_should_run() || kthread_should_stop());
2389                 }
2390         }
2391         return 0;
2392 }
2393
2394 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2395                 unsigned long end, int advice, unsigned long *vm_flags)
2396 {
2397         struct mm_struct *mm = vma->vm_mm;
2398         int err;
2399
2400         switch (advice) {
2401         case MADV_MERGEABLE:
2402                 /*
2403                  * Be somewhat over-protective for now!
2404                  */
2405                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2406                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2407                                  VM_HUGETLB | VM_MIXEDMAP))
2408                         return 0;               /* just ignore the advice */
2409
2410 #ifdef VM_SAO
2411                 if (*vm_flags & VM_SAO)
2412                         return 0;
2413 #endif
2414
2415                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2416                         err = __ksm_enter(mm);
2417                         if (err)
2418                                 return err;
2419                 }
2420
2421                 *vm_flags |= VM_MERGEABLE;
2422                 break;
2423
2424         case MADV_UNMERGEABLE:
2425                 if (!(*vm_flags & VM_MERGEABLE))
2426                         return 0;               /* just ignore the advice */
2427
2428                 if (vma->anon_vma) {
2429                         err = unmerge_ksm_pages(vma, start, end);
2430                         if (err)
2431                                 return err;
2432                 }
2433
2434                 *vm_flags &= ~VM_MERGEABLE;
2435                 break;
2436         }
2437
2438         return 0;
2439 }
2440
2441 int __ksm_enter(struct mm_struct *mm)
2442 {
2443         struct mm_slot *mm_slot;
2444         int needs_wakeup;
2445
2446         mm_slot = alloc_mm_slot();
2447         if (!mm_slot)
2448                 return -ENOMEM;
2449
2450         /* Check ksm_run too?  Would need tighter locking */
2451         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2452
2453         spin_lock(&ksm_mmlist_lock);
2454         insert_to_mm_slots_hash(mm, mm_slot);
2455         /*
2456          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2457          * insert just behind the scanning cursor, to let the area settle
2458          * down a little; when fork is followed by immediate exec, we don't
2459          * want ksmd to waste time setting up and tearing down an rmap_list.
2460          *
2461          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2462          * scanning cursor, otherwise KSM pages in newly forked mms will be
2463          * missed: then we might as well insert at the end of the list.
2464          */
2465         if (ksm_run & KSM_RUN_UNMERGE)
2466                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2467         else
2468                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2469         spin_unlock(&ksm_mmlist_lock);
2470
2471         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2472         mmgrab(mm);
2473
2474         if (needs_wakeup)
2475                 wake_up_interruptible(&ksm_thread_wait);
2476
2477         return 0;
2478 }
2479
2480 void __ksm_exit(struct mm_struct *mm)
2481 {
2482         struct mm_slot *mm_slot;
2483         int easy_to_free = 0;
2484
2485         /*
2486          * This process is exiting: if it's straightforward (as is the
2487          * case when ksmd was never running), free mm_slot immediately.
2488          * But if it's at the cursor or has rmap_items linked to it, use
2489          * mmap_sem to synchronize with any break_cows before pagetables
2490          * are freed, and leave the mm_slot on the list for ksmd to free.
2491          * Beware: ksm may already have noticed it exiting and freed the slot.
2492          */
2493
2494         spin_lock(&ksm_mmlist_lock);
2495         mm_slot = get_mm_slot(mm);
2496         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2497                 if (!mm_slot->rmap_list) {
2498                         hash_del(&mm_slot->link);
2499                         list_del(&mm_slot->mm_list);
2500                         easy_to_free = 1;
2501                 } else {
2502                         list_move(&mm_slot->mm_list,
2503                                   &ksm_scan.mm_slot->mm_list);
2504                 }
2505         }
2506         spin_unlock(&ksm_mmlist_lock);
2507
2508         if (easy_to_free) {
2509                 free_mm_slot(mm_slot);
2510                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2511                 mmdrop(mm);
2512         } else if (mm_slot) {
2513                 down_write(&mm->mmap_sem);
2514                 up_write(&mm->mmap_sem);
2515         }
2516 }
2517
2518 struct page *ksm_might_need_to_copy(struct page *page,
2519                         struct vm_area_struct *vma, unsigned long address)
2520 {
2521         struct anon_vma *anon_vma = page_anon_vma(page);
2522         struct page *new_page;
2523
2524         if (PageKsm(page)) {
2525                 if (page_stable_node(page) &&
2526                     !(ksm_run & KSM_RUN_UNMERGE))
2527                         return page;    /* no need to copy it */
2528         } else if (!anon_vma) {
2529                 return page;            /* no need to copy it */
2530         } else if (anon_vma->root == vma->anon_vma->root &&
2531                  page->index == linear_page_index(vma, address)) {
2532                 return page;            /* still no need to copy it */
2533         }
2534         if (!PageUptodate(page))
2535                 return page;            /* let do_swap_page report the error */
2536
2537         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2538         if (new_page) {
2539                 copy_user_highpage(new_page, page, address, vma);
2540
2541                 SetPageDirty(new_page);
2542                 __SetPageUptodate(new_page);
2543                 __SetPageLocked(new_page);
2544         }
2545
2546         return new_page;
2547 }
2548
2549 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2550 {
2551         struct stable_node *stable_node;
2552         struct rmap_item *rmap_item;
2553         int search_new_forks = 0;
2554
2555         VM_BUG_ON_PAGE(!PageKsm(page), page);
2556
2557         /*
2558          * Rely on the page lock to protect against concurrent modifications
2559          * to that page's node of the stable tree.
2560          */
2561         VM_BUG_ON_PAGE(!PageLocked(page), page);
2562
2563         stable_node = page_stable_node(page);
2564         if (!stable_node)
2565                 return;
2566 again:
2567         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2568                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2569                 struct anon_vma_chain *vmac;
2570                 struct vm_area_struct *vma;
2571
2572                 cond_resched();
2573                 anon_vma_lock_read(anon_vma);
2574                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2575                                                0, ULONG_MAX) {
2576                         unsigned long addr;
2577
2578                         cond_resched();
2579                         vma = vmac->vma;
2580
2581                         /* Ignore the stable/unstable/sqnr flags */
2582                         addr = rmap_item->address & ~KSM_FLAG_MASK;
2583
2584                         if (addr < vma->vm_start || addr >= vma->vm_end)
2585                                 continue;
2586                         /*
2587                          * Initially we examine only the vma which covers this
2588                          * rmap_item; but later, if there is still work to do,
2589                          * we examine covering vmas in other mms: in case they
2590                          * were forked from the original since ksmd passed.
2591                          */
2592                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2593                                 continue;
2594
2595                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2596                                 continue;
2597
2598                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2599                                 anon_vma_unlock_read(anon_vma);
2600                                 return;
2601                         }
2602                         if (rwc->done && rwc->done(page)) {
2603                                 anon_vma_unlock_read(anon_vma);
2604                                 return;
2605                         }
2606                 }
2607                 anon_vma_unlock_read(anon_vma);
2608         }
2609         if (!search_new_forks++)
2610                 goto again;
2611 }
2612
2613 #ifdef CONFIG_MIGRATION
2614 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2615 {
2616         struct stable_node *stable_node;
2617
2618         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2619         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2620         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2621
2622         stable_node = page_stable_node(newpage);
2623         if (stable_node) {
2624                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2625                 stable_node->kpfn = page_to_pfn(newpage);
2626                 /*
2627                  * newpage->mapping was set in advance; now we need smp_wmb()
2628                  * to make sure that the new stable_node->kpfn is visible
2629                  * to get_ksm_page() before it can see that oldpage->mapping
2630                  * has gone stale (or that PageSwapCache has been cleared).
2631                  */
2632                 smp_wmb();
2633                 set_page_stable_node(oldpage, NULL);
2634         }
2635 }
2636 #endif /* CONFIG_MIGRATION */
2637
2638 #ifdef CONFIG_MEMORY_HOTREMOVE
2639 static void wait_while_offlining(void)
2640 {
2641         while (ksm_run & KSM_RUN_OFFLINE) {
2642                 mutex_unlock(&ksm_thread_mutex);
2643                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2644                             TASK_UNINTERRUPTIBLE);
2645                 mutex_lock(&ksm_thread_mutex);
2646         }
2647 }
2648
2649 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2650                                          unsigned long start_pfn,
2651                                          unsigned long end_pfn)
2652 {
2653         if (stable_node->kpfn >= start_pfn &&
2654             stable_node->kpfn < end_pfn) {
2655                 /*
2656                  * Don't get_ksm_page, page has already gone:
2657                  * which is why we keep kpfn instead of page*
2658                  */
2659                 remove_node_from_stable_tree(stable_node);
2660                 return true;
2661         }
2662         return false;
2663 }
2664
2665 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2666                                            unsigned long start_pfn,
2667                                            unsigned long end_pfn,
2668                                            struct rb_root *root)
2669 {
2670         struct stable_node *dup;
2671         struct hlist_node *hlist_safe;
2672
2673         if (!is_stable_node_chain(stable_node)) {
2674                 VM_BUG_ON(is_stable_node_dup(stable_node));
2675                 return stable_node_dup_remove_range(stable_node, start_pfn,
2676                                                     end_pfn);
2677         }
2678
2679         hlist_for_each_entry_safe(dup, hlist_safe,
2680                                   &stable_node->hlist, hlist_dup) {
2681                 VM_BUG_ON(!is_stable_node_dup(dup));
2682                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2683         }
2684         if (hlist_empty(&stable_node->hlist)) {
2685                 free_stable_node_chain(stable_node, root);
2686                 return true; /* notify caller that tree was rebalanced */
2687         } else
2688                 return false;
2689 }
2690
2691 static void ksm_check_stable_tree(unsigned long start_pfn,
2692                                   unsigned long end_pfn)
2693 {
2694         struct stable_node *stable_node, *next;
2695         struct rb_node *node;
2696         int nid;
2697
2698         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2699                 node = rb_first(root_stable_tree + nid);
2700                 while (node) {
2701                         stable_node = rb_entry(node, struct stable_node, node);
2702                         if (stable_node_chain_remove_range(stable_node,
2703                                                            start_pfn, end_pfn,
2704                                                            root_stable_tree +
2705                                                            nid))
2706                                 node = rb_first(root_stable_tree + nid);
2707                         else
2708                                 node = rb_next(node);
2709                         cond_resched();
2710                 }
2711         }
2712         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2713                 if (stable_node->kpfn >= start_pfn &&
2714                     stable_node->kpfn < end_pfn)
2715                         remove_node_from_stable_tree(stable_node);
2716                 cond_resched();
2717         }
2718 }
2719
2720 static int ksm_memory_callback(struct notifier_block *self,
2721                                unsigned long action, void *arg)
2722 {
2723         struct memory_notify *mn = arg;
2724
2725         switch (action) {
2726         case MEM_GOING_OFFLINE:
2727                 /*
2728                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2729                  * and remove_all_stable_nodes() while memory is going offline:
2730                  * it is unsafe for them to touch the stable tree at this time.
2731                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2732                  * which do not need the ksm_thread_mutex are all safe.
2733                  */
2734                 mutex_lock(&ksm_thread_mutex);
2735                 ksm_run |= KSM_RUN_OFFLINE;
2736                 mutex_unlock(&ksm_thread_mutex);
2737                 break;
2738
2739         case MEM_OFFLINE:
2740                 /*
2741                  * Most of the work is done by page migration; but there might
2742                  * be a few stable_nodes left over, still pointing to struct
2743                  * pages which have been offlined: prune those from the tree,
2744                  * otherwise get_ksm_page() might later try to access a
2745                  * non-existent struct page.
2746                  */
2747                 ksm_check_stable_tree(mn->start_pfn,
2748                                       mn->start_pfn + mn->nr_pages);
2749                 /* fallthrough */
2750
2751         case MEM_CANCEL_OFFLINE:
2752                 mutex_lock(&ksm_thread_mutex);
2753                 ksm_run &= ~KSM_RUN_OFFLINE;
2754                 mutex_unlock(&ksm_thread_mutex);
2755
2756                 smp_mb();       /* wake_up_bit advises this */
2757                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2758                 break;
2759         }
2760         return NOTIFY_OK;
2761 }
2762 #else
2763 static void wait_while_offlining(void)
2764 {
2765 }
2766 #endif /* CONFIG_MEMORY_HOTREMOVE */
2767
2768 #ifdef CONFIG_SYSFS
2769 /*
2770  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2771  */
2772
2773 #define KSM_ATTR_RO(_name) \
2774         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2775 #define KSM_ATTR(_name) \
2776         static struct kobj_attribute _name##_attr = \
2777                 __ATTR(_name, 0644, _name##_show, _name##_store)
2778
2779 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2780                                     struct kobj_attribute *attr, char *buf)
2781 {
2782         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2783 }
2784
2785 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2786                                      struct kobj_attribute *attr,
2787                                      const char *buf, size_t count)
2788 {
2789         unsigned long msecs;
2790         int err;
2791
2792         err = kstrtoul(buf, 10, &msecs);
2793         if (err || msecs > UINT_MAX)
2794                 return -EINVAL;
2795
2796         ksm_thread_sleep_millisecs = msecs;
2797
2798         return count;
2799 }
2800 KSM_ATTR(sleep_millisecs);
2801
2802 static ssize_t pages_to_scan_show(struct kobject *kobj,
2803                                   struct kobj_attribute *attr, char *buf)
2804 {
2805         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2806 }
2807
2808 static ssize_t pages_to_scan_store(struct kobject *kobj,
2809                                    struct kobj_attribute *attr,
2810                                    const char *buf, size_t count)
2811 {
2812         int err;
2813         unsigned long nr_pages;
2814
2815         err = kstrtoul(buf, 10, &nr_pages);
2816         if (err || nr_pages > UINT_MAX)
2817                 return -EINVAL;
2818
2819         ksm_thread_pages_to_scan = nr_pages;
2820
2821         return count;
2822 }
2823 KSM_ATTR(pages_to_scan);
2824
2825 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2826                         char *buf)
2827 {
2828         return sprintf(buf, "%lu\n", ksm_run);
2829 }
2830
2831 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2832                          const char *buf, size_t count)
2833 {
2834         int err;
2835         unsigned long flags;
2836
2837         err = kstrtoul(buf, 10, &flags);
2838         if (err || flags > UINT_MAX)
2839                 return -EINVAL;
2840         if (flags > KSM_RUN_UNMERGE)
2841                 return -EINVAL;
2842
2843         /*
2844          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2845          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2846          * breaking COW to free the pages_shared (but leaves mm_slots
2847          * on the list for when ksmd may be set running again).
2848          */
2849
2850         mutex_lock(&ksm_thread_mutex);
2851         wait_while_offlining();
2852         if (ksm_run != flags) {
2853                 ksm_run = flags;
2854                 if (flags & KSM_RUN_UNMERGE) {
2855                         set_current_oom_origin();
2856                         err = unmerge_and_remove_all_rmap_items();
2857                         clear_current_oom_origin();
2858                         if (err) {
2859                                 ksm_run = KSM_RUN_STOP;
2860                                 count = err;
2861                         }
2862                 }
2863         }
2864         mutex_unlock(&ksm_thread_mutex);
2865
2866         if (flags & KSM_RUN_MERGE)
2867                 wake_up_interruptible(&ksm_thread_wait);
2868
2869         return count;
2870 }
2871 KSM_ATTR(run);
2872
2873 #ifdef CONFIG_NUMA
2874 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2875                                 struct kobj_attribute *attr, char *buf)
2876 {
2877         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2878 }
2879
2880 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2881                                    struct kobj_attribute *attr,
2882                                    const char *buf, size_t count)
2883 {
2884         int err;
2885         unsigned long knob;
2886
2887         err = kstrtoul(buf, 10, &knob);
2888         if (err)
2889                 return err;
2890         if (knob > 1)
2891                 return -EINVAL;
2892
2893         mutex_lock(&ksm_thread_mutex);
2894         wait_while_offlining();
2895         if (ksm_merge_across_nodes != knob) {
2896                 if (ksm_pages_shared || remove_all_stable_nodes())
2897                         err = -EBUSY;
2898                 else if (root_stable_tree == one_stable_tree) {
2899                         struct rb_root *buf;
2900                         /*
2901                          * This is the first time that we switch away from the
2902                          * default of merging across nodes: must now allocate
2903                          * a buffer to hold as many roots as may be needed.
2904                          * Allocate stable and unstable together:
2905                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2906                          */
2907                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2908                                       GFP_KERNEL);
2909                         /* Let us assume that RB_ROOT is NULL is zero */
2910                         if (!buf)
2911                                 err = -ENOMEM;
2912                         else {
2913                                 root_stable_tree = buf;
2914                                 root_unstable_tree = buf + nr_node_ids;
2915                                 /* Stable tree is empty but not the unstable */
2916                                 root_unstable_tree[0] = one_unstable_tree[0];
2917                         }
2918                 }
2919                 if (!err) {
2920                         ksm_merge_across_nodes = knob;
2921                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2922                 }
2923         }
2924         mutex_unlock(&ksm_thread_mutex);
2925
2926         return err ? err : count;
2927 }
2928 KSM_ATTR(merge_across_nodes);
2929 #endif
2930
2931 static ssize_t use_zero_pages_show(struct kobject *kobj,
2932                                 struct kobj_attribute *attr, char *buf)
2933 {
2934         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2935 }
2936 static ssize_t use_zero_pages_store(struct kobject *kobj,
2937                                    struct kobj_attribute *attr,
2938                                    const char *buf, size_t count)
2939 {
2940         int err;
2941         bool value;
2942
2943         err = kstrtobool(buf, &value);
2944         if (err)
2945                 return -EINVAL;
2946
2947         ksm_use_zero_pages = value;
2948
2949         return count;
2950 }
2951 KSM_ATTR(use_zero_pages);
2952
2953 static ssize_t max_page_sharing_show(struct kobject *kobj,
2954                                      struct kobj_attribute *attr, char *buf)
2955 {
2956         return sprintf(buf, "%u\n", ksm_max_page_sharing);
2957 }
2958
2959 static ssize_t max_page_sharing_store(struct kobject *kobj,
2960                                       struct kobj_attribute *attr,
2961                                       const char *buf, size_t count)
2962 {
2963         int err;
2964         int knob;
2965
2966         err = kstrtoint(buf, 10, &knob);
2967         if (err)
2968                 return err;
2969         /*
2970          * When a KSM page is created it is shared by 2 mappings. This
2971          * being a signed comparison, it implicitly verifies it's not
2972          * negative.
2973          */
2974         if (knob < 2)
2975                 return -EINVAL;
2976
2977         if (READ_ONCE(ksm_max_page_sharing) == knob)
2978                 return count;
2979
2980         mutex_lock(&ksm_thread_mutex);
2981         wait_while_offlining();
2982         if (ksm_max_page_sharing != knob) {
2983                 if (ksm_pages_shared || remove_all_stable_nodes())
2984                         err = -EBUSY;
2985                 else
2986                         ksm_max_page_sharing = knob;
2987         }
2988         mutex_unlock(&ksm_thread_mutex);
2989
2990         return err ? err : count;
2991 }
2992 KSM_ATTR(max_page_sharing);
2993
2994 static ssize_t pages_shared_show(struct kobject *kobj,
2995                                  struct kobj_attribute *attr, char *buf)
2996 {
2997         return sprintf(buf, "%lu\n", ksm_pages_shared);
2998 }
2999 KSM_ATTR_RO(pages_shared);
3000
3001 static ssize_t pages_sharing_show(struct kobject *kobj,
3002                                   struct kobj_attribute *attr, char *buf)
3003 {
3004         return sprintf(buf, "%lu\n", ksm_pages_sharing);
3005 }
3006 KSM_ATTR_RO(pages_sharing);
3007
3008 static ssize_t pages_unshared_show(struct kobject *kobj,
3009                                    struct kobj_attribute *attr, char *buf)
3010 {
3011         return sprintf(buf, "%lu\n", ksm_pages_unshared);
3012 }
3013 KSM_ATTR_RO(pages_unshared);
3014
3015 static ssize_t pages_volatile_show(struct kobject *kobj,
3016                                    struct kobj_attribute *attr, char *buf)
3017 {
3018         long ksm_pages_volatile;
3019
3020         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3021                                 - ksm_pages_sharing - ksm_pages_unshared;
3022         /*
3023          * It was not worth any locking to calculate that statistic,
3024          * but it might therefore sometimes be negative: conceal that.
3025          */
3026         if (ksm_pages_volatile < 0)
3027                 ksm_pages_volatile = 0;
3028         return sprintf(buf, "%ld\n", ksm_pages_volatile);
3029 }
3030 KSM_ATTR_RO(pages_volatile);
3031
3032 static ssize_t stable_node_dups_show(struct kobject *kobj,
3033                                      struct kobj_attribute *attr, char *buf)
3034 {
3035         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3036 }
3037 KSM_ATTR_RO(stable_node_dups);
3038
3039 static ssize_t stable_node_chains_show(struct kobject *kobj,
3040                                        struct kobj_attribute *attr, char *buf)
3041 {
3042         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3043 }
3044 KSM_ATTR_RO(stable_node_chains);
3045
3046 static ssize_t
3047 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3048                                         struct kobj_attribute *attr,
3049                                         char *buf)
3050 {
3051         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3052 }
3053
3054 static ssize_t
3055 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3056                                          struct kobj_attribute *attr,
3057                                          const char *buf, size_t count)
3058 {
3059         unsigned long msecs;
3060         int err;
3061
3062         err = kstrtoul(buf, 10, &msecs);
3063         if (err || msecs > UINT_MAX)
3064                 return -EINVAL;
3065
3066         ksm_stable_node_chains_prune_millisecs = msecs;
3067
3068         return count;
3069 }
3070 KSM_ATTR(stable_node_chains_prune_millisecs);
3071
3072 static ssize_t full_scans_show(struct kobject *kobj,
3073                                struct kobj_attribute *attr, char *buf)
3074 {
3075         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3076 }
3077 KSM_ATTR_RO(full_scans);
3078
3079 static struct attribute *ksm_attrs[] = {
3080         &sleep_millisecs_attr.attr,
3081         &pages_to_scan_attr.attr,
3082         &run_attr.attr,
3083         &pages_shared_attr.attr,
3084         &pages_sharing_attr.attr,
3085         &pages_unshared_attr.attr,
3086         &pages_volatile_attr.attr,
3087         &full_scans_attr.attr,
3088 #ifdef CONFIG_NUMA
3089         &merge_across_nodes_attr.attr,
3090 #endif
3091         &max_page_sharing_attr.attr,
3092         &stable_node_chains_attr.attr,
3093         &stable_node_dups_attr.attr,
3094         &stable_node_chains_prune_millisecs_attr.attr,
3095         &use_zero_pages_attr.attr,
3096         NULL,
3097 };
3098
3099 static const struct attribute_group ksm_attr_group = {
3100         .attrs = ksm_attrs,
3101         .name = "ksm",
3102 };
3103 #endif /* CONFIG_SYSFS */
3104
3105 static int __init ksm_init(void)
3106 {
3107         struct task_struct *ksm_thread;
3108         int err;
3109
3110         /* The correct value depends on page size and endianness */
3111         zero_checksum = calc_checksum(ZERO_PAGE(0));
3112         /* Default to false for backwards compatibility */
3113         ksm_use_zero_pages = false;
3114
3115         err = ksm_slab_init();
3116         if (err)
3117                 goto out;
3118
3119         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3120         if (IS_ERR(ksm_thread)) {
3121                 pr_err("ksm: creating kthread failed\n");
3122                 err = PTR_ERR(ksm_thread);
3123                 goto out_free;
3124         }
3125
3126 #ifdef CONFIG_SYSFS
3127         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3128         if (err) {
3129                 pr_err("ksm: register sysfs failed\n");
3130                 kthread_stop(ksm_thread);
3131                 goto out_free;
3132         }
3133 #else
3134         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3135
3136 #endif /* CONFIG_SYSFS */
3137
3138 #ifdef CONFIG_MEMORY_HOTREMOVE
3139         /* There is no significance to this priority 100 */
3140         hotplug_memory_notifier(ksm_memory_callback, 100);
3141 #endif
3142         return 0;
3143
3144 out_free:
3145         ksm_slab_free();
3146 out:
3147         return err;
3148 }
3149 subsys_initcall(ksm_init);