arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)         (x)
53 #define DO_NUMA(x)      do { (x); } while (0)
54 #else
55 #define NUMA(x)         (0)
56 #define DO_NUMA(x)      do { } while (0)
57 #endif
58
59 typedef u8 rmap_age_t;
60
61 /**
62  * DOC: Overview
63  *
64  * A few notes about the KSM scanning process,
65  * to make it easier to understand the data structures below:
66  *
67  * In order to reduce excessive scanning, KSM sorts the memory pages by their
68  * contents into a data structure that holds pointers to the pages' locations.
69  *
70  * Since the contents of the pages may change at any moment, KSM cannot just
71  * insert the pages into a normal sorted tree and expect it to find anything.
72  * Therefore KSM uses two data structures - the stable and the unstable tree.
73  *
74  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
75  * by their contents.  Because each such page is write-protected, searching on
76  * this tree is fully assured to be working (except when pages are unmapped),
77  * and therefore this tree is called the stable tree.
78  *
79  * The stable tree node includes information required for reverse
80  * mapping from a KSM page to virtual addresses that map this page.
81  *
82  * In order to avoid large latencies of the rmap walks on KSM pages,
83  * KSM maintains two types of nodes in the stable tree:
84  *
85  * * the regular nodes that keep the reverse mapping structures in a
86  *   linked list
87  * * the "chains" that link nodes ("dups") that represent the same
88  *   write protected memory content, but each "dup" corresponds to a
89  *   different KSM page copy of that content
90  *
91  * Internally, the regular nodes, "dups" and "chains" are represented
92  * using the same struct ksm_stable_node structure.
93  *
94  * In addition to the stable tree, KSM uses a second data structure called the
95  * unstable tree: this tree holds pointers to pages which have been found to
96  * be "unchanged for a period of time".  The unstable tree sorts these pages
97  * by their contents, but since they are not write-protected, KSM cannot rely
98  * upon the unstable tree to work correctly - the unstable tree is liable to
99  * be corrupted as its contents are modified, and so it is called unstable.
100  *
101  * KSM solves this problem by several techniques:
102  *
103  * 1) The unstable tree is flushed every time KSM completes scanning all
104  *    memory areas, and then the tree is rebuilt again from the beginning.
105  * 2) KSM will only insert into the unstable tree, pages whose hash value
106  *    has not changed since the previous scan of all memory areas.
107  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108  *    colors of the nodes and not on their contents, assuring that even when
109  *    the tree gets "corrupted" it won't get out of balance, so scanning time
110  *    remains the same (also, searching and inserting nodes in an rbtree uses
111  *    the same algorithm, so we have no overhead when we flush and rebuild).
112  * 4) KSM never flushes the stable tree, which means that even if it were to
113  *    take 10 attempts to find a page in the unstable tree, once it is found,
114  *    it is secured in the stable tree.  (When we scan a new page, we first
115  *    compare it against the stable tree, and then against the unstable tree.)
116  *
117  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
118  * stable trees and multiple unstable trees: one of each for each NUMA node.
119  */
120
121 /**
122  * struct ksm_mm_slot - ksm information per mm that is being scanned
123  * @slot: hash lookup from mm to mm_slot
124  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125  */
126 struct ksm_mm_slot {
127         struct mm_slot slot;
128         struct ksm_rmap_item *rmap_list;
129 };
130
131 /**
132  * struct ksm_scan - cursor for scanning
133  * @mm_slot: the current mm_slot we are scanning
134  * @address: the next address inside that to be scanned
135  * @rmap_list: link to the next rmap to be scanned in the rmap_list
136  * @seqnr: count of completed full scans (needed when removing unstable node)
137  *
138  * There is only the one ksm_scan instance of this cursor structure.
139  */
140 struct ksm_scan {
141         struct ksm_mm_slot *mm_slot;
142         unsigned long address;
143         struct ksm_rmap_item **rmap_list;
144         unsigned long seqnr;
145 };
146
147 /**
148  * struct ksm_stable_node - node of the stable rbtree
149  * @node: rb node of this ksm page in the stable tree
150  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152  * @list: linked into migrate_nodes, pending placement in the proper node tree
153  * @hlist: hlist head of rmap_items using this ksm page
154  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155  * @chain_prune_time: time of the last full garbage collection
156  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158  */
159 struct ksm_stable_node {
160         union {
161                 struct rb_node node;    /* when node of stable tree */
162                 struct {                /* when listed for migration */
163                         struct list_head *head;
164                         struct {
165                                 struct hlist_node hlist_dup;
166                                 struct list_head list;
167                         };
168                 };
169         };
170         struct hlist_head hlist;
171         union {
172                 unsigned long kpfn;
173                 unsigned long chain_prune_time;
174         };
175         /*
176          * STABLE_NODE_CHAIN can be any negative number in
177          * rmap_hlist_len negative range, but better not -1 to be able
178          * to reliably detect underflows.
179          */
180 #define STABLE_NODE_CHAIN -1024
181         int rmap_hlist_len;
182 #ifdef CONFIG_NUMA
183         int nid;
184 #endif
185 };
186
187 /**
188  * struct ksm_rmap_item - reverse mapping item for virtual addresses
189  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191  * @nid: NUMA node id of unstable tree in which linked (may not match page)
192  * @mm: the memory structure this rmap_item is pointing into
193  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
194  * @oldchecksum: previous checksum of the page at that virtual address
195  * @node: rb node of this rmap_item in the unstable tree
196  * @head: pointer to stable_node heading this list in the stable tree
197  * @hlist: link into hlist of rmap_items hanging off that stable_node
198  * @age: number of scan iterations since creation
199  * @remaining_skips: how many scans to skip
200  */
201 struct ksm_rmap_item {
202         struct ksm_rmap_item *rmap_list;
203         union {
204                 struct anon_vma *anon_vma;      /* when stable */
205 #ifdef CONFIG_NUMA
206                 int nid;                /* when node of unstable tree */
207 #endif
208         };
209         struct mm_struct *mm;
210         unsigned long address;          /* + low bits used for flags below */
211         unsigned int oldchecksum;       /* when unstable */
212         rmap_age_t age;
213         rmap_age_t remaining_skips;
214         union {
215                 struct rb_node node;    /* when node of unstable tree */
216                 struct {                /* when listed from stable tree */
217                         struct ksm_stable_node *head;
218                         struct hlist_node hlist;
219                 };
220         };
221 };
222
223 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
224 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
225 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
226
227 /* The stable and unstable tree heads */
228 static struct rb_root one_stable_tree[1] = { RB_ROOT };
229 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230 static struct rb_root *root_stable_tree = one_stable_tree;
231 static struct rb_root *root_unstable_tree = one_unstable_tree;
232
233 /* Recently migrated nodes of stable tree, pending proper placement */
234 static LIST_HEAD(migrate_nodes);
235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236
237 #define MM_SLOTS_HASH_BITS 10
238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239
240 static struct ksm_mm_slot ksm_mm_head = {
241         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242 };
243 static struct ksm_scan ksm_scan = {
244         .mm_slot = &ksm_mm_head,
245 };
246
247 static struct kmem_cache *rmap_item_cache;
248 static struct kmem_cache *stable_node_cache;
249 static struct kmem_cache *mm_slot_cache;
250
251 /* The number of pages scanned */
252 static unsigned long ksm_pages_scanned;
253
254 /* The number of nodes in the stable tree */
255 static unsigned long ksm_pages_shared;
256
257 /* The number of page slots additionally sharing those nodes */
258 static unsigned long ksm_pages_sharing;
259
260 /* The number of nodes in the unstable tree */
261 static unsigned long ksm_pages_unshared;
262
263 /* The number of rmap_items in use: to calculate pages_volatile */
264 static unsigned long ksm_rmap_items;
265
266 /* The number of stable_node chains */
267 static unsigned long ksm_stable_node_chains;
268
269 /* The number of stable_node dups linked to the stable_node chains */
270 static unsigned long ksm_stable_node_dups;
271
272 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
273 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
274
275 /* Maximum number of page slots sharing a stable node */
276 static int ksm_max_page_sharing = 256;
277
278 /* Number of pages ksmd should scan in one batch */
279 static unsigned int ksm_thread_pages_to_scan = 100;
280
281 /* Milliseconds ksmd should sleep between batches */
282 static unsigned int ksm_thread_sleep_millisecs = 20;
283
284 /* Checksum of an empty (zeroed) page */
285 static unsigned int zero_checksum __read_mostly;
286
287 /* Whether to merge empty (zeroed) pages with actual zero pages */
288 static bool ksm_use_zero_pages __read_mostly;
289
290 /* Skip pages that couldn't be de-duplicated previously */
291 /* Default to true at least temporarily, for testing */
292 static bool ksm_smart_scan = true;
293
294 /* The number of zero pages which is placed by KSM */
295 unsigned long ksm_zero_pages;
296
297 /* The number of pages that have been skipped due to "smart scanning" */
298 static unsigned long ksm_pages_skipped;
299
300 #ifdef CONFIG_NUMA
301 /* Zeroed when merging across nodes is not allowed */
302 static unsigned int ksm_merge_across_nodes = 1;
303 static int ksm_nr_node_ids = 1;
304 #else
305 #define ksm_merge_across_nodes  1U
306 #define ksm_nr_node_ids         1
307 #endif
308
309 #define KSM_RUN_STOP    0
310 #define KSM_RUN_MERGE   1
311 #define KSM_RUN_UNMERGE 2
312 #define KSM_RUN_OFFLINE 4
313 static unsigned long ksm_run = KSM_RUN_STOP;
314 static void wait_while_offlining(void);
315
316 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
317 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
318 static DEFINE_MUTEX(ksm_thread_mutex);
319 static DEFINE_SPINLOCK(ksm_mmlist_lock);
320
321 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
322                 sizeof(struct __struct), __alignof__(struct __struct),\
323                 (__flags), NULL)
324
325 static int __init ksm_slab_init(void)
326 {
327         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
328         if (!rmap_item_cache)
329                 goto out;
330
331         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
332         if (!stable_node_cache)
333                 goto out_free1;
334
335         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
336         if (!mm_slot_cache)
337                 goto out_free2;
338
339         return 0;
340
341 out_free2:
342         kmem_cache_destroy(stable_node_cache);
343 out_free1:
344         kmem_cache_destroy(rmap_item_cache);
345 out:
346         return -ENOMEM;
347 }
348
349 static void __init ksm_slab_free(void)
350 {
351         kmem_cache_destroy(mm_slot_cache);
352         kmem_cache_destroy(stable_node_cache);
353         kmem_cache_destroy(rmap_item_cache);
354         mm_slot_cache = NULL;
355 }
356
357 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
358 {
359         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
360 }
361
362 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
363 {
364         return dup->head == STABLE_NODE_DUP_HEAD;
365 }
366
367 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
368                                              struct ksm_stable_node *chain)
369 {
370         VM_BUG_ON(is_stable_node_dup(dup));
371         dup->head = STABLE_NODE_DUP_HEAD;
372         VM_BUG_ON(!is_stable_node_chain(chain));
373         hlist_add_head(&dup->hlist_dup, &chain->hlist);
374         ksm_stable_node_dups++;
375 }
376
377 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
378 {
379         VM_BUG_ON(!is_stable_node_dup(dup));
380         hlist_del(&dup->hlist_dup);
381         ksm_stable_node_dups--;
382 }
383
384 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
385 {
386         VM_BUG_ON(is_stable_node_chain(dup));
387         if (is_stable_node_dup(dup))
388                 __stable_node_dup_del(dup);
389         else
390                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
391 #ifdef CONFIG_DEBUG_VM
392         dup->head = NULL;
393 #endif
394 }
395
396 static inline struct ksm_rmap_item *alloc_rmap_item(void)
397 {
398         struct ksm_rmap_item *rmap_item;
399
400         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
401                                                 __GFP_NORETRY | __GFP_NOWARN);
402         if (rmap_item)
403                 ksm_rmap_items++;
404         return rmap_item;
405 }
406
407 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
408 {
409         ksm_rmap_items--;
410         rmap_item->mm->ksm_rmap_items--;
411         rmap_item->mm = NULL;   /* debug safety */
412         kmem_cache_free(rmap_item_cache, rmap_item);
413 }
414
415 static inline struct ksm_stable_node *alloc_stable_node(void)
416 {
417         /*
418          * The allocation can take too long with GFP_KERNEL when memory is under
419          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
420          * grants access to memory reserves, helping to avoid this problem.
421          */
422         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
423 }
424
425 static inline void free_stable_node(struct ksm_stable_node *stable_node)
426 {
427         VM_BUG_ON(stable_node->rmap_hlist_len &&
428                   !is_stable_node_chain(stable_node));
429         kmem_cache_free(stable_node_cache, stable_node);
430 }
431
432 /*
433  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
434  * page tables after it has passed through ksm_exit() - which, if necessary,
435  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
436  * a special flag: they can just back out as soon as mm_users goes to zero.
437  * ksm_test_exit() is used throughout to make this test for exit: in some
438  * places for correctness, in some places just to avoid unnecessary work.
439  */
440 static inline bool ksm_test_exit(struct mm_struct *mm)
441 {
442         return atomic_read(&mm->mm_users) == 0;
443 }
444
445 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
446                         struct mm_walk *walk)
447 {
448         struct page *page = NULL;
449         spinlock_t *ptl;
450         pte_t *pte;
451         pte_t ptent;
452         int ret;
453
454         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
455         if (!pte)
456                 return 0;
457         ptent = ptep_get(pte);
458         if (pte_present(ptent)) {
459                 page = vm_normal_page(walk->vma, addr, ptent);
460         } else if (!pte_none(ptent)) {
461                 swp_entry_t entry = pte_to_swp_entry(ptent);
462
463                 /*
464                  * As KSM pages remain KSM pages until freed, no need to wait
465                  * here for migration to end.
466                  */
467                 if (is_migration_entry(entry))
468                         page = pfn_swap_entry_to_page(entry);
469         }
470         /* return 1 if the page is an normal ksm page or KSM-placed zero page */
471         ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
472         pte_unmap_unlock(pte, ptl);
473         return ret;
474 }
475
476 static const struct mm_walk_ops break_ksm_ops = {
477         .pmd_entry = break_ksm_pmd_entry,
478         .walk_lock = PGWALK_RDLOCK,
479 };
480
481 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
482         .pmd_entry = break_ksm_pmd_entry,
483         .walk_lock = PGWALK_WRLOCK,
484 };
485
486 /*
487  * We use break_ksm to break COW on a ksm page by triggering unsharing,
488  * such that the ksm page will get replaced by an exclusive anonymous page.
489  *
490  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
491  * in case the application has unmapped and remapped mm,addr meanwhile.
492  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
493  * mmap of /dev/mem, where we would not want to touch it.
494  *
495  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
496  * of the process that owns 'vma'.  We also do not want to enforce
497  * protection keys here anyway.
498  */
499 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
500 {
501         vm_fault_t ret = 0;
502         const struct mm_walk_ops *ops = lock_vma ?
503                                 &break_ksm_lock_vma_ops : &break_ksm_ops;
504
505         do {
506                 int ksm_page;
507
508                 cond_resched();
509                 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
510                 if (WARN_ON_ONCE(ksm_page < 0))
511                         return ksm_page;
512                 if (!ksm_page)
513                         return 0;
514                 ret = handle_mm_fault(vma, addr,
515                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
516                                       NULL);
517         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
518         /*
519          * We must loop until we no longer find a KSM page because
520          * handle_mm_fault() may back out if there's any difficulty e.g. if
521          * pte accessed bit gets updated concurrently.
522          *
523          * VM_FAULT_SIGBUS could occur if we race with truncation of the
524          * backing file, which also invalidates anonymous pages: that's
525          * okay, that truncation will have unmapped the PageKsm for us.
526          *
527          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
528          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
529          * current task has TIF_MEMDIE set, and will be OOM killed on return
530          * to user; and ksmd, having no mm, would never be chosen for that.
531          *
532          * But if the mm is in a limited mem_cgroup, then the fault may fail
533          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
534          * even ksmd can fail in this way - though it's usually breaking ksm
535          * just to undo a merge it made a moment before, so unlikely to oom.
536          *
537          * That's a pity: we might therefore have more kernel pages allocated
538          * than we're counting as nodes in the stable tree; but ksm_do_scan
539          * will retry to break_cow on each pass, so should recover the page
540          * in due course.  The important thing is to not let VM_MERGEABLE
541          * be cleared while any such pages might remain in the area.
542          */
543         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
544 }
545
546 static bool vma_ksm_compatible(struct vm_area_struct *vma)
547 {
548         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
549                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
550                              VM_MIXEDMAP))
551                 return false;           /* just ignore the advice */
552
553         if (vma_is_dax(vma))
554                 return false;
555
556 #ifdef VM_SAO
557         if (vma->vm_flags & VM_SAO)
558                 return false;
559 #endif
560 #ifdef VM_SPARC_ADI
561         if (vma->vm_flags & VM_SPARC_ADI)
562                 return false;
563 #endif
564
565         return true;
566 }
567
568 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
569                 unsigned long addr)
570 {
571         struct vm_area_struct *vma;
572         if (ksm_test_exit(mm))
573                 return NULL;
574         vma = vma_lookup(mm, addr);
575         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
576                 return NULL;
577         return vma;
578 }
579
580 static void break_cow(struct ksm_rmap_item *rmap_item)
581 {
582         struct mm_struct *mm = rmap_item->mm;
583         unsigned long addr = rmap_item->address;
584         struct vm_area_struct *vma;
585
586         /*
587          * It is not an accident that whenever we want to break COW
588          * to undo, we also need to drop a reference to the anon_vma.
589          */
590         put_anon_vma(rmap_item->anon_vma);
591
592         mmap_read_lock(mm);
593         vma = find_mergeable_vma(mm, addr);
594         if (vma)
595                 break_ksm(vma, addr, false);
596         mmap_read_unlock(mm);
597 }
598
599 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
600 {
601         struct mm_struct *mm = rmap_item->mm;
602         unsigned long addr = rmap_item->address;
603         struct vm_area_struct *vma;
604         struct page *page;
605
606         mmap_read_lock(mm);
607         vma = find_mergeable_vma(mm, addr);
608         if (!vma)
609                 goto out;
610
611         page = follow_page(vma, addr, FOLL_GET);
612         if (IS_ERR_OR_NULL(page))
613                 goto out;
614         if (is_zone_device_page(page))
615                 goto out_putpage;
616         if (PageAnon(page)) {
617                 flush_anon_page(vma, page, addr);
618                 flush_dcache_page(page);
619         } else {
620 out_putpage:
621                 put_page(page);
622 out:
623                 page = NULL;
624         }
625         mmap_read_unlock(mm);
626         return page;
627 }
628
629 /*
630  * This helper is used for getting right index into array of tree roots.
631  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
632  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
633  * every node has its own stable and unstable tree.
634  */
635 static inline int get_kpfn_nid(unsigned long kpfn)
636 {
637         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
638 }
639
640 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
641                                                    struct rb_root *root)
642 {
643         struct ksm_stable_node *chain = alloc_stable_node();
644         VM_BUG_ON(is_stable_node_chain(dup));
645         if (likely(chain)) {
646                 INIT_HLIST_HEAD(&chain->hlist);
647                 chain->chain_prune_time = jiffies;
648                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
649 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
650                 chain->nid = NUMA_NO_NODE; /* debug */
651 #endif
652                 ksm_stable_node_chains++;
653
654                 /*
655                  * Put the stable node chain in the first dimension of
656                  * the stable tree and at the same time remove the old
657                  * stable node.
658                  */
659                 rb_replace_node(&dup->node, &chain->node, root);
660
661                 /*
662                  * Move the old stable node to the second dimension
663                  * queued in the hlist_dup. The invariant is that all
664                  * dup stable_nodes in the chain->hlist point to pages
665                  * that are write protected and have the exact same
666                  * content.
667                  */
668                 stable_node_chain_add_dup(dup, chain);
669         }
670         return chain;
671 }
672
673 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
674                                           struct rb_root *root)
675 {
676         rb_erase(&chain->node, root);
677         free_stable_node(chain);
678         ksm_stable_node_chains--;
679 }
680
681 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
682 {
683         struct ksm_rmap_item *rmap_item;
684
685         /* check it's not STABLE_NODE_CHAIN or negative */
686         BUG_ON(stable_node->rmap_hlist_len < 0);
687
688         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
689                 if (rmap_item->hlist.next) {
690                         ksm_pages_sharing--;
691                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
692                 } else {
693                         ksm_pages_shared--;
694                 }
695
696                 rmap_item->mm->ksm_merging_pages--;
697
698                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
699                 stable_node->rmap_hlist_len--;
700                 put_anon_vma(rmap_item->anon_vma);
701                 rmap_item->address &= PAGE_MASK;
702                 cond_resched();
703         }
704
705         /*
706          * We need the second aligned pointer of the migrate_nodes
707          * list_head to stay clear from the rb_parent_color union
708          * (aligned and different than any node) and also different
709          * from &migrate_nodes. This will verify that future list.h changes
710          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
711          */
712         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
713         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
714
715         trace_ksm_remove_ksm_page(stable_node->kpfn);
716         if (stable_node->head == &migrate_nodes)
717                 list_del(&stable_node->list);
718         else
719                 stable_node_dup_del(stable_node);
720         free_stable_node(stable_node);
721 }
722
723 enum get_ksm_page_flags {
724         GET_KSM_PAGE_NOLOCK,
725         GET_KSM_PAGE_LOCK,
726         GET_KSM_PAGE_TRYLOCK
727 };
728
729 /*
730  * get_ksm_page: checks if the page indicated by the stable node
731  * is still its ksm page, despite having held no reference to it.
732  * In which case we can trust the content of the page, and it
733  * returns the gotten page; but if the page has now been zapped,
734  * remove the stale node from the stable tree and return NULL.
735  * But beware, the stable node's page might be being migrated.
736  *
737  * You would expect the stable_node to hold a reference to the ksm page.
738  * But if it increments the page's count, swapping out has to wait for
739  * ksmd to come around again before it can free the page, which may take
740  * seconds or even minutes: much too unresponsive.  So instead we use a
741  * "keyhole reference": access to the ksm page from the stable node peeps
742  * out through its keyhole to see if that page still holds the right key,
743  * pointing back to this stable node.  This relies on freeing a PageAnon
744  * page to reset its page->mapping to NULL, and relies on no other use of
745  * a page to put something that might look like our key in page->mapping.
746  * is on its way to being freed; but it is an anomaly to bear in mind.
747  */
748 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
749                                  enum get_ksm_page_flags flags)
750 {
751         struct page *page;
752         void *expected_mapping;
753         unsigned long kpfn;
754
755         expected_mapping = (void *)((unsigned long)stable_node |
756                                         PAGE_MAPPING_KSM);
757 again:
758         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
759         page = pfn_to_page(kpfn);
760         if (READ_ONCE(page->mapping) != expected_mapping)
761                 goto stale;
762
763         /*
764          * We cannot do anything with the page while its refcount is 0.
765          * Usually 0 means free, or tail of a higher-order page: in which
766          * case this node is no longer referenced, and should be freed;
767          * however, it might mean that the page is under page_ref_freeze().
768          * The __remove_mapping() case is easy, again the node is now stale;
769          * the same is in reuse_ksm_page() case; but if page is swapcache
770          * in folio_migrate_mapping(), it might still be our page,
771          * in which case it's essential to keep the node.
772          */
773         while (!get_page_unless_zero(page)) {
774                 /*
775                  * Another check for page->mapping != expected_mapping would
776                  * work here too.  We have chosen the !PageSwapCache test to
777                  * optimize the common case, when the page is or is about to
778                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
779                  * in the ref_freeze section of __remove_mapping(); but Anon
780                  * page->mapping reset to NULL later, in free_pages_prepare().
781                  */
782                 if (!PageSwapCache(page))
783                         goto stale;
784                 cpu_relax();
785         }
786
787         if (READ_ONCE(page->mapping) != expected_mapping) {
788                 put_page(page);
789                 goto stale;
790         }
791
792         if (flags == GET_KSM_PAGE_TRYLOCK) {
793                 if (!trylock_page(page)) {
794                         put_page(page);
795                         return ERR_PTR(-EBUSY);
796                 }
797         } else if (flags == GET_KSM_PAGE_LOCK)
798                 lock_page(page);
799
800         if (flags != GET_KSM_PAGE_NOLOCK) {
801                 if (READ_ONCE(page->mapping) != expected_mapping) {
802                         unlock_page(page);
803                         put_page(page);
804                         goto stale;
805                 }
806         }
807         return page;
808
809 stale:
810         /*
811          * We come here from above when page->mapping or !PageSwapCache
812          * suggests that the node is stale; but it might be under migration.
813          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
814          * before checking whether node->kpfn has been changed.
815          */
816         smp_rmb();
817         if (READ_ONCE(stable_node->kpfn) != kpfn)
818                 goto again;
819         remove_node_from_stable_tree(stable_node);
820         return NULL;
821 }
822
823 /*
824  * Removing rmap_item from stable or unstable tree.
825  * This function will clean the information from the stable/unstable tree.
826  */
827 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
828 {
829         if (rmap_item->address & STABLE_FLAG) {
830                 struct ksm_stable_node *stable_node;
831                 struct page *page;
832
833                 stable_node = rmap_item->head;
834                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
835                 if (!page)
836                         goto out;
837
838                 hlist_del(&rmap_item->hlist);
839                 unlock_page(page);
840                 put_page(page);
841
842                 if (!hlist_empty(&stable_node->hlist))
843                         ksm_pages_sharing--;
844                 else
845                         ksm_pages_shared--;
846
847                 rmap_item->mm->ksm_merging_pages--;
848
849                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
850                 stable_node->rmap_hlist_len--;
851
852                 put_anon_vma(rmap_item->anon_vma);
853                 rmap_item->head = NULL;
854                 rmap_item->address &= PAGE_MASK;
855
856         } else if (rmap_item->address & UNSTABLE_FLAG) {
857                 unsigned char age;
858                 /*
859                  * Usually ksmd can and must skip the rb_erase, because
860                  * root_unstable_tree was already reset to RB_ROOT.
861                  * But be careful when an mm is exiting: do the rb_erase
862                  * if this rmap_item was inserted by this scan, rather
863                  * than left over from before.
864                  */
865                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
866                 BUG_ON(age > 1);
867                 if (!age)
868                         rb_erase(&rmap_item->node,
869                                  root_unstable_tree + NUMA(rmap_item->nid));
870                 ksm_pages_unshared--;
871                 rmap_item->address &= PAGE_MASK;
872         }
873 out:
874         cond_resched();         /* we're called from many long loops */
875 }
876
877 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
878 {
879         while (*rmap_list) {
880                 struct ksm_rmap_item *rmap_item = *rmap_list;
881                 *rmap_list = rmap_item->rmap_list;
882                 remove_rmap_item_from_tree(rmap_item);
883                 free_rmap_item(rmap_item);
884         }
885 }
886
887 /*
888  * Though it's very tempting to unmerge rmap_items from stable tree rather
889  * than check every pte of a given vma, the locking doesn't quite work for
890  * that - an rmap_item is assigned to the stable tree after inserting ksm
891  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
892  * rmap_items from parent to child at fork time (so as not to waste time
893  * if exit comes before the next scan reaches it).
894  *
895  * Similarly, although we'd like to remove rmap_items (so updating counts
896  * and freeing memory) when unmerging an area, it's easier to leave that
897  * to the next pass of ksmd - consider, for example, how ksmd might be
898  * in cmp_and_merge_page on one of the rmap_items we would be removing.
899  */
900 static int unmerge_ksm_pages(struct vm_area_struct *vma,
901                              unsigned long start, unsigned long end, bool lock_vma)
902 {
903         unsigned long addr;
904         int err = 0;
905
906         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
907                 if (ksm_test_exit(vma->vm_mm))
908                         break;
909                 if (signal_pending(current))
910                         err = -ERESTARTSYS;
911                 else
912                         err = break_ksm(vma, addr, lock_vma);
913         }
914         return err;
915 }
916
917 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
918 {
919         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
920 }
921
922 static inline struct ksm_stable_node *page_stable_node(struct page *page)
923 {
924         return folio_stable_node(page_folio(page));
925 }
926
927 static inline void set_page_stable_node(struct page *page,
928                                         struct ksm_stable_node *stable_node)
929 {
930         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
931         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
932 }
933
934 #ifdef CONFIG_SYSFS
935 /*
936  * Only called through the sysfs control interface:
937  */
938 static int remove_stable_node(struct ksm_stable_node *stable_node)
939 {
940         struct page *page;
941         int err;
942
943         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
944         if (!page) {
945                 /*
946                  * get_ksm_page did remove_node_from_stable_tree itself.
947                  */
948                 return 0;
949         }
950
951         /*
952          * Page could be still mapped if this races with __mmput() running in
953          * between ksm_exit() and exit_mmap(). Just refuse to let
954          * merge_across_nodes/max_page_sharing be switched.
955          */
956         err = -EBUSY;
957         if (!page_mapped(page)) {
958                 /*
959                  * The stable node did not yet appear stale to get_ksm_page(),
960                  * since that allows for an unmapped ksm page to be recognized
961                  * right up until it is freed; but the node is safe to remove.
962                  * This page might be in an LRU cache waiting to be freed,
963                  * or it might be PageSwapCache (perhaps under writeback),
964                  * or it might have been removed from swapcache a moment ago.
965                  */
966                 set_page_stable_node(page, NULL);
967                 remove_node_from_stable_tree(stable_node);
968                 err = 0;
969         }
970
971         unlock_page(page);
972         put_page(page);
973         return err;
974 }
975
976 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
977                                     struct rb_root *root)
978 {
979         struct ksm_stable_node *dup;
980         struct hlist_node *hlist_safe;
981
982         if (!is_stable_node_chain(stable_node)) {
983                 VM_BUG_ON(is_stable_node_dup(stable_node));
984                 if (remove_stable_node(stable_node))
985                         return true;
986                 else
987                         return false;
988         }
989
990         hlist_for_each_entry_safe(dup, hlist_safe,
991                                   &stable_node->hlist, hlist_dup) {
992                 VM_BUG_ON(!is_stable_node_dup(dup));
993                 if (remove_stable_node(dup))
994                         return true;
995         }
996         BUG_ON(!hlist_empty(&stable_node->hlist));
997         free_stable_node_chain(stable_node, root);
998         return false;
999 }
1000
1001 static int remove_all_stable_nodes(void)
1002 {
1003         struct ksm_stable_node *stable_node, *next;
1004         int nid;
1005         int err = 0;
1006
1007         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1008                 while (root_stable_tree[nid].rb_node) {
1009                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
1010                                                 struct ksm_stable_node, node);
1011                         if (remove_stable_node_chain(stable_node,
1012                                                      root_stable_tree + nid)) {
1013                                 err = -EBUSY;
1014                                 break;  /* proceed to next nid */
1015                         }
1016                         cond_resched();
1017                 }
1018         }
1019         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1020                 if (remove_stable_node(stable_node))
1021                         err = -EBUSY;
1022                 cond_resched();
1023         }
1024         return err;
1025 }
1026
1027 static int unmerge_and_remove_all_rmap_items(void)
1028 {
1029         struct ksm_mm_slot *mm_slot;
1030         struct mm_slot *slot;
1031         struct mm_struct *mm;
1032         struct vm_area_struct *vma;
1033         int err = 0;
1034
1035         spin_lock(&ksm_mmlist_lock);
1036         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1037                           struct mm_slot, mm_node);
1038         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1039         spin_unlock(&ksm_mmlist_lock);
1040
1041         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1042              mm_slot = ksm_scan.mm_slot) {
1043                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1044
1045                 mm = mm_slot->slot.mm;
1046                 mmap_read_lock(mm);
1047
1048                 /*
1049                  * Exit right away if mm is exiting to avoid lockdep issue in
1050                  * the maple tree
1051                  */
1052                 if (ksm_test_exit(mm))
1053                         goto mm_exiting;
1054
1055                 for_each_vma(vmi, vma) {
1056                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1057                                 continue;
1058                         err = unmerge_ksm_pages(vma,
1059                                                 vma->vm_start, vma->vm_end, false);
1060                         if (err)
1061                                 goto error;
1062                 }
1063
1064 mm_exiting:
1065                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1066                 mmap_read_unlock(mm);
1067
1068                 spin_lock(&ksm_mmlist_lock);
1069                 slot = list_entry(mm_slot->slot.mm_node.next,
1070                                   struct mm_slot, mm_node);
1071                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1072                 if (ksm_test_exit(mm)) {
1073                         hash_del(&mm_slot->slot.hash);
1074                         list_del(&mm_slot->slot.mm_node);
1075                         spin_unlock(&ksm_mmlist_lock);
1076
1077                         mm_slot_free(mm_slot_cache, mm_slot);
1078                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1079                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1080                         mmdrop(mm);
1081                 } else
1082                         spin_unlock(&ksm_mmlist_lock);
1083         }
1084
1085         /* Clean up stable nodes, but don't worry if some are still busy */
1086         remove_all_stable_nodes();
1087         ksm_scan.seqnr = 0;
1088         return 0;
1089
1090 error:
1091         mmap_read_unlock(mm);
1092         spin_lock(&ksm_mmlist_lock);
1093         ksm_scan.mm_slot = &ksm_mm_head;
1094         spin_unlock(&ksm_mmlist_lock);
1095         return err;
1096 }
1097 #endif /* CONFIG_SYSFS */
1098
1099 static u32 calc_checksum(struct page *page)
1100 {
1101         u32 checksum;
1102         void *addr = kmap_atomic(page);
1103         checksum = xxhash(addr, PAGE_SIZE, 0);
1104         kunmap_atomic(addr);
1105         return checksum;
1106 }
1107
1108 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1109                               pte_t *orig_pte)
1110 {
1111         struct mm_struct *mm = vma->vm_mm;
1112         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1113         int swapped;
1114         int err = -EFAULT;
1115         struct mmu_notifier_range range;
1116         bool anon_exclusive;
1117         pte_t entry;
1118
1119         pvmw.address = page_address_in_vma(page, vma);
1120         if (pvmw.address == -EFAULT)
1121                 goto out;
1122
1123         BUG_ON(PageTransCompound(page));
1124
1125         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1126                                 pvmw.address + PAGE_SIZE);
1127         mmu_notifier_invalidate_range_start(&range);
1128
1129         if (!page_vma_mapped_walk(&pvmw))
1130                 goto out_mn;
1131         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1132                 goto out_unlock;
1133
1134         anon_exclusive = PageAnonExclusive(page);
1135         entry = ptep_get(pvmw.pte);
1136         if (pte_write(entry) || pte_dirty(entry) ||
1137             anon_exclusive || mm_tlb_flush_pending(mm)) {
1138                 swapped = PageSwapCache(page);
1139                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1140                 /*
1141                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1142                  * take any lock, therefore the check that we are going to make
1143                  * with the pagecount against the mapcount is racy and
1144                  * O_DIRECT can happen right after the check.
1145                  * So we clear the pte and flush the tlb before the check
1146                  * this assure us that no O_DIRECT can happen after the check
1147                  * or in the middle of the check.
1148                  *
1149                  * No need to notify as we are downgrading page table to read
1150                  * only not changing it to point to a new page.
1151                  *
1152                  * See Documentation/mm/mmu_notifier.rst
1153                  */
1154                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1155                 /*
1156                  * Check that no O_DIRECT or similar I/O is in progress on the
1157                  * page
1158                  */
1159                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1160                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1161                         goto out_unlock;
1162                 }
1163
1164                 /* See page_try_share_anon_rmap(): clear PTE first. */
1165                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1166                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1167                         goto out_unlock;
1168                 }
1169
1170                 if (pte_dirty(entry))
1171                         set_page_dirty(page);
1172                 entry = pte_mkclean(entry);
1173
1174                 if (pte_write(entry))
1175                         entry = pte_wrprotect(entry);
1176
1177                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1178         }
1179         *orig_pte = entry;
1180         err = 0;
1181
1182 out_unlock:
1183         page_vma_mapped_walk_done(&pvmw);
1184 out_mn:
1185         mmu_notifier_invalidate_range_end(&range);
1186 out:
1187         return err;
1188 }
1189
1190 /**
1191  * replace_page - replace page in vma by new ksm page
1192  * @vma:      vma that holds the pte pointing to page
1193  * @page:     the page we are replacing by kpage
1194  * @kpage:    the ksm page we replace page by
1195  * @orig_pte: the original value of the pte
1196  *
1197  * Returns 0 on success, -EFAULT on failure.
1198  */
1199 static int replace_page(struct vm_area_struct *vma, struct page *page,
1200                         struct page *kpage, pte_t orig_pte)
1201 {
1202         struct mm_struct *mm = vma->vm_mm;
1203         struct folio *folio;
1204         pmd_t *pmd;
1205         pmd_t pmde;
1206         pte_t *ptep;
1207         pte_t newpte;
1208         spinlock_t *ptl;
1209         unsigned long addr;
1210         int err = -EFAULT;
1211         struct mmu_notifier_range range;
1212
1213         addr = page_address_in_vma(page, vma);
1214         if (addr == -EFAULT)
1215                 goto out;
1216
1217         pmd = mm_find_pmd(mm, addr);
1218         if (!pmd)
1219                 goto out;
1220         /*
1221          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1222          * without holding anon_vma lock for write.  So when looking for a
1223          * genuine pmde (in which to find pte), test present and !THP together.
1224          */
1225         pmde = pmdp_get_lockless(pmd);
1226         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1227                 goto out;
1228
1229         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1230                                 addr + PAGE_SIZE);
1231         mmu_notifier_invalidate_range_start(&range);
1232
1233         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1234         if (!ptep)
1235                 goto out_mn;
1236         if (!pte_same(ptep_get(ptep), orig_pte)) {
1237                 pte_unmap_unlock(ptep, ptl);
1238                 goto out_mn;
1239         }
1240         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1241         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1242
1243         /*
1244          * No need to check ksm_use_zero_pages here: we can only have a
1245          * zero_page here if ksm_use_zero_pages was enabled already.
1246          */
1247         if (!is_zero_pfn(page_to_pfn(kpage))) {
1248                 get_page(kpage);
1249                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1250                 newpte = mk_pte(kpage, vma->vm_page_prot);
1251         } else {
1252                 /*
1253                  * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1254                  * we can easily track all KSM-placed zero pages by checking if
1255                  * the dirty bit in zero page's PTE is set.
1256                  */
1257                 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1258                 ksm_zero_pages++;
1259                 mm->ksm_zero_pages++;
1260                 /*
1261                  * We're replacing an anonymous page with a zero page, which is
1262                  * not anonymous. We need to do proper accounting otherwise we
1263                  * will get wrong values in /proc, and a BUG message in dmesg
1264                  * when tearing down the mm.
1265                  */
1266                 dec_mm_counter(mm, MM_ANONPAGES);
1267         }
1268
1269         flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1270         /*
1271          * No need to notify as we are replacing a read only page with another
1272          * read only page with the same content.
1273          *
1274          * See Documentation/mm/mmu_notifier.rst
1275          */
1276         ptep_clear_flush(vma, addr, ptep);
1277         set_pte_at_notify(mm, addr, ptep, newpte);
1278
1279         folio = page_folio(page);
1280         page_remove_rmap(page, vma, false);
1281         if (!folio_mapped(folio))
1282                 folio_free_swap(folio);
1283         folio_put(folio);
1284
1285         pte_unmap_unlock(ptep, ptl);
1286         err = 0;
1287 out_mn:
1288         mmu_notifier_invalidate_range_end(&range);
1289 out:
1290         return err;
1291 }
1292
1293 /*
1294  * try_to_merge_one_page - take two pages and merge them into one
1295  * @vma: the vma that holds the pte pointing to page
1296  * @page: the PageAnon page that we want to replace with kpage
1297  * @kpage: the PageKsm page that we want to map instead of page,
1298  *         or NULL the first time when we want to use page as kpage.
1299  *
1300  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1301  */
1302 static int try_to_merge_one_page(struct vm_area_struct *vma,
1303                                  struct page *page, struct page *kpage)
1304 {
1305         pte_t orig_pte = __pte(0);
1306         int err = -EFAULT;
1307
1308         if (page == kpage)                      /* ksm page forked */
1309                 return 0;
1310
1311         if (!PageAnon(page))
1312                 goto out;
1313
1314         /*
1315          * We need the page lock to read a stable PageSwapCache in
1316          * write_protect_page().  We use trylock_page() instead of
1317          * lock_page() because we don't want to wait here - we
1318          * prefer to continue scanning and merging different pages,
1319          * then come back to this page when it is unlocked.
1320          */
1321         if (!trylock_page(page))
1322                 goto out;
1323
1324         if (PageTransCompound(page)) {
1325                 if (split_huge_page(page))
1326                         goto out_unlock;
1327         }
1328
1329         /*
1330          * If this anonymous page is mapped only here, its pte may need
1331          * to be write-protected.  If it's mapped elsewhere, all of its
1332          * ptes are necessarily already write-protected.  But in either
1333          * case, we need to lock and check page_count is not raised.
1334          */
1335         if (write_protect_page(vma, page, &orig_pte) == 0) {
1336                 if (!kpage) {
1337                         /*
1338                          * While we hold page lock, upgrade page from
1339                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1340                          * stable_tree_insert() will update stable_node.
1341                          */
1342                         set_page_stable_node(page, NULL);
1343                         mark_page_accessed(page);
1344                         /*
1345                          * Page reclaim just frees a clean page with no dirty
1346                          * ptes: make sure that the ksm page would be swapped.
1347                          */
1348                         if (!PageDirty(page))
1349                                 SetPageDirty(page);
1350                         err = 0;
1351                 } else if (pages_identical(page, kpage))
1352                         err = replace_page(vma, page, kpage, orig_pte);
1353         }
1354
1355 out_unlock:
1356         unlock_page(page);
1357 out:
1358         return err;
1359 }
1360
1361 /*
1362  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1363  * but no new kernel page is allocated: kpage must already be a ksm page.
1364  *
1365  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1366  */
1367 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1368                                       struct page *page, struct page *kpage)
1369 {
1370         struct mm_struct *mm = rmap_item->mm;
1371         struct vm_area_struct *vma;
1372         int err = -EFAULT;
1373
1374         mmap_read_lock(mm);
1375         vma = find_mergeable_vma(mm, rmap_item->address);
1376         if (!vma)
1377                 goto out;
1378
1379         err = try_to_merge_one_page(vma, page, kpage);
1380         if (err)
1381                 goto out;
1382
1383         /* Unstable nid is in union with stable anon_vma: remove first */
1384         remove_rmap_item_from_tree(rmap_item);
1385
1386         /* Must get reference to anon_vma while still holding mmap_lock */
1387         rmap_item->anon_vma = vma->anon_vma;
1388         get_anon_vma(vma->anon_vma);
1389 out:
1390         mmap_read_unlock(mm);
1391         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1392                                 rmap_item, mm, err);
1393         return err;
1394 }
1395
1396 /*
1397  * try_to_merge_two_pages - take two identical pages and prepare them
1398  * to be merged into one page.
1399  *
1400  * This function returns the kpage if we successfully merged two identical
1401  * pages into one ksm page, NULL otherwise.
1402  *
1403  * Note that this function upgrades page to ksm page: if one of the pages
1404  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1405  */
1406 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1407                                            struct page *page,
1408                                            struct ksm_rmap_item *tree_rmap_item,
1409                                            struct page *tree_page)
1410 {
1411         int err;
1412
1413         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1414         if (!err) {
1415                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1416                                                         tree_page, page);
1417                 /*
1418                  * If that fails, we have a ksm page with only one pte
1419                  * pointing to it: so break it.
1420                  */
1421                 if (err)
1422                         break_cow(rmap_item);
1423         }
1424         return err ? NULL : page;
1425 }
1426
1427 static __always_inline
1428 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1429 {
1430         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1431         /*
1432          * Check that at least one mapping still exists, otherwise
1433          * there's no much point to merge and share with this
1434          * stable_node, as the underlying tree_page of the other
1435          * sharer is going to be freed soon.
1436          */
1437         return stable_node->rmap_hlist_len &&
1438                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1439 }
1440
1441 static __always_inline
1442 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1443 {
1444         return __is_page_sharing_candidate(stable_node, 0);
1445 }
1446
1447 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1448                                     struct ksm_stable_node **_stable_node,
1449                                     struct rb_root *root,
1450                                     bool prune_stale_stable_nodes)
1451 {
1452         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1453         struct hlist_node *hlist_safe;
1454         struct page *_tree_page, *tree_page = NULL;
1455         int nr = 0;
1456         int found_rmap_hlist_len;
1457
1458         if (!prune_stale_stable_nodes ||
1459             time_before(jiffies, stable_node->chain_prune_time +
1460                         msecs_to_jiffies(
1461                                 ksm_stable_node_chains_prune_millisecs)))
1462                 prune_stale_stable_nodes = false;
1463         else
1464                 stable_node->chain_prune_time = jiffies;
1465
1466         hlist_for_each_entry_safe(dup, hlist_safe,
1467                                   &stable_node->hlist, hlist_dup) {
1468                 cond_resched();
1469                 /*
1470                  * We must walk all stable_node_dup to prune the stale
1471                  * stable nodes during lookup.
1472                  *
1473                  * get_ksm_page can drop the nodes from the
1474                  * stable_node->hlist if they point to freed pages
1475                  * (that's why we do a _safe walk). The "dup"
1476                  * stable_node parameter itself will be freed from
1477                  * under us if it returns NULL.
1478                  */
1479                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1480                 if (!_tree_page)
1481                         continue;
1482                 nr += 1;
1483                 if (is_page_sharing_candidate(dup)) {
1484                         if (!found ||
1485                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1486                                 if (found)
1487                                         put_page(tree_page);
1488                                 found = dup;
1489                                 found_rmap_hlist_len = found->rmap_hlist_len;
1490                                 tree_page = _tree_page;
1491
1492                                 /* skip put_page for found dup */
1493                                 if (!prune_stale_stable_nodes)
1494                                         break;
1495                                 continue;
1496                         }
1497                 }
1498                 put_page(_tree_page);
1499         }
1500
1501         if (found) {
1502                 /*
1503                  * nr is counting all dups in the chain only if
1504                  * prune_stale_stable_nodes is true, otherwise we may
1505                  * break the loop at nr == 1 even if there are
1506                  * multiple entries.
1507                  */
1508                 if (prune_stale_stable_nodes && nr == 1) {
1509                         /*
1510                          * If there's not just one entry it would
1511                          * corrupt memory, better BUG_ON. In KSM
1512                          * context with no lock held it's not even
1513                          * fatal.
1514                          */
1515                         BUG_ON(stable_node->hlist.first->next);
1516
1517                         /*
1518                          * There's just one entry and it is below the
1519                          * deduplication limit so drop the chain.
1520                          */
1521                         rb_replace_node(&stable_node->node, &found->node,
1522                                         root);
1523                         free_stable_node(stable_node);
1524                         ksm_stable_node_chains--;
1525                         ksm_stable_node_dups--;
1526                         /*
1527                          * NOTE: the caller depends on the stable_node
1528                          * to be equal to stable_node_dup if the chain
1529                          * was collapsed.
1530                          */
1531                         *_stable_node = found;
1532                         /*
1533                          * Just for robustness, as stable_node is
1534                          * otherwise left as a stable pointer, the
1535                          * compiler shall optimize it away at build
1536                          * time.
1537                          */
1538                         stable_node = NULL;
1539                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1540                            __is_page_sharing_candidate(found, 1)) {
1541                         /*
1542                          * If the found stable_node dup can accept one
1543                          * more future merge (in addition to the one
1544                          * that is underway) and is not at the head of
1545                          * the chain, put it there so next search will
1546                          * be quicker in the !prune_stale_stable_nodes
1547                          * case.
1548                          *
1549                          * NOTE: it would be inaccurate to use nr > 1
1550                          * instead of checking the hlist.first pointer
1551                          * directly, because in the
1552                          * prune_stale_stable_nodes case "nr" isn't
1553                          * the position of the found dup in the chain,
1554                          * but the total number of dups in the chain.
1555                          */
1556                         hlist_del(&found->hlist_dup);
1557                         hlist_add_head(&found->hlist_dup,
1558                                        &stable_node->hlist);
1559                 }
1560         }
1561
1562         *_stable_node_dup = found;
1563         return tree_page;
1564 }
1565
1566 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1567                                                struct rb_root *root)
1568 {
1569         if (!is_stable_node_chain(stable_node))
1570                 return stable_node;
1571         if (hlist_empty(&stable_node->hlist)) {
1572                 free_stable_node_chain(stable_node, root);
1573                 return NULL;
1574         }
1575         return hlist_entry(stable_node->hlist.first,
1576                            typeof(*stable_node), hlist_dup);
1577 }
1578
1579 /*
1580  * Like for get_ksm_page, this function can free the *_stable_node and
1581  * *_stable_node_dup if the returned tree_page is NULL.
1582  *
1583  * It can also free and overwrite *_stable_node with the found
1584  * stable_node_dup if the chain is collapsed (in which case
1585  * *_stable_node will be equal to *_stable_node_dup like if the chain
1586  * never existed). It's up to the caller to verify tree_page is not
1587  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1588  *
1589  * *_stable_node_dup is really a second output parameter of this
1590  * function and will be overwritten in all cases, the caller doesn't
1591  * need to initialize it.
1592  */
1593 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1594                                         struct ksm_stable_node **_stable_node,
1595                                         struct rb_root *root,
1596                                         bool prune_stale_stable_nodes)
1597 {
1598         struct ksm_stable_node *stable_node = *_stable_node;
1599         if (!is_stable_node_chain(stable_node)) {
1600                 if (is_page_sharing_candidate(stable_node)) {
1601                         *_stable_node_dup = stable_node;
1602                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1603                 }
1604                 /*
1605                  * _stable_node_dup set to NULL means the stable_node
1606                  * reached the ksm_max_page_sharing limit.
1607                  */
1608                 *_stable_node_dup = NULL;
1609                 return NULL;
1610         }
1611         return stable_node_dup(_stable_node_dup, _stable_node, root,
1612                                prune_stale_stable_nodes);
1613 }
1614
1615 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1616                                                 struct ksm_stable_node **s_n,
1617                                                 struct rb_root *root)
1618 {
1619         return __stable_node_chain(s_n_d, s_n, root, true);
1620 }
1621
1622 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1623                                           struct ksm_stable_node *s_n,
1624                                           struct rb_root *root)
1625 {
1626         struct ksm_stable_node *old_stable_node = s_n;
1627         struct page *tree_page;
1628
1629         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1630         /* not pruning dups so s_n cannot have changed */
1631         VM_BUG_ON(s_n != old_stable_node);
1632         return tree_page;
1633 }
1634
1635 /*
1636  * stable_tree_search - search for page inside the stable tree
1637  *
1638  * This function checks if there is a page inside the stable tree
1639  * with identical content to the page that we are scanning right now.
1640  *
1641  * This function returns the stable tree node of identical content if found,
1642  * NULL otherwise.
1643  */
1644 static struct page *stable_tree_search(struct page *page)
1645 {
1646         int nid;
1647         struct rb_root *root;
1648         struct rb_node **new;
1649         struct rb_node *parent;
1650         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1651         struct ksm_stable_node *page_node;
1652
1653         page_node = page_stable_node(page);
1654         if (page_node && page_node->head != &migrate_nodes) {
1655                 /* ksm page forked */
1656                 get_page(page);
1657                 return page;
1658         }
1659
1660         nid = get_kpfn_nid(page_to_pfn(page));
1661         root = root_stable_tree + nid;
1662 again:
1663         new = &root->rb_node;
1664         parent = NULL;
1665
1666         while (*new) {
1667                 struct page *tree_page;
1668                 int ret;
1669
1670                 cond_resched();
1671                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1672                 stable_node_any = NULL;
1673                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1674                 /*
1675                  * NOTE: stable_node may have been freed by
1676                  * chain_prune() if the returned stable_node_dup is
1677                  * not NULL. stable_node_dup may have been inserted in
1678                  * the rbtree instead as a regular stable_node (in
1679                  * order to collapse the stable_node chain if a single
1680                  * stable_node dup was found in it). In such case the
1681                  * stable_node is overwritten by the callee to point
1682                  * to the stable_node_dup that was collapsed in the
1683                  * stable rbtree and stable_node will be equal to
1684                  * stable_node_dup like if the chain never existed.
1685                  */
1686                 if (!stable_node_dup) {
1687                         /*
1688                          * Either all stable_node dups were full in
1689                          * this stable_node chain, or this chain was
1690                          * empty and should be rb_erased.
1691                          */
1692                         stable_node_any = stable_node_dup_any(stable_node,
1693                                                               root);
1694                         if (!stable_node_any) {
1695                                 /* rb_erase just run */
1696                                 goto again;
1697                         }
1698                         /*
1699                          * Take any of the stable_node dups page of
1700                          * this stable_node chain to let the tree walk
1701                          * continue. All KSM pages belonging to the
1702                          * stable_node dups in a stable_node chain
1703                          * have the same content and they're
1704                          * write protected at all times. Any will work
1705                          * fine to continue the walk.
1706                          */
1707                         tree_page = get_ksm_page(stable_node_any,
1708                                                  GET_KSM_PAGE_NOLOCK);
1709                 }
1710                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1711                 if (!tree_page) {
1712                         /*
1713                          * If we walked over a stale stable_node,
1714                          * get_ksm_page() will call rb_erase() and it
1715                          * may rebalance the tree from under us. So
1716                          * restart the search from scratch. Returning
1717                          * NULL would be safe too, but we'd generate
1718                          * false negative insertions just because some
1719                          * stable_node was stale.
1720                          */
1721                         goto again;
1722                 }
1723
1724                 ret = memcmp_pages(page, tree_page);
1725                 put_page(tree_page);
1726
1727                 parent = *new;
1728                 if (ret < 0)
1729                         new = &parent->rb_left;
1730                 else if (ret > 0)
1731                         new = &parent->rb_right;
1732                 else {
1733                         if (page_node) {
1734                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1735                                 /*
1736                                  * Test if the migrated page should be merged
1737                                  * into a stable node dup. If the mapcount is
1738                                  * 1 we can migrate it with another KSM page
1739                                  * without adding it to the chain.
1740                                  */
1741                                 if (page_mapcount(page) > 1)
1742                                         goto chain_append;
1743                         }
1744
1745                         if (!stable_node_dup) {
1746                                 /*
1747                                  * If the stable_node is a chain and
1748                                  * we got a payload match in memcmp
1749                                  * but we cannot merge the scanned
1750                                  * page in any of the existing
1751                                  * stable_node dups because they're
1752                                  * all full, we need to wait the
1753                                  * scanned page to find itself a match
1754                                  * in the unstable tree to create a
1755                                  * brand new KSM page to add later to
1756                                  * the dups of this stable_node.
1757                                  */
1758                                 return NULL;
1759                         }
1760
1761                         /*
1762                          * Lock and unlock the stable_node's page (which
1763                          * might already have been migrated) so that page
1764                          * migration is sure to notice its raised count.
1765                          * It would be more elegant to return stable_node
1766                          * than kpage, but that involves more changes.
1767                          */
1768                         tree_page = get_ksm_page(stable_node_dup,
1769                                                  GET_KSM_PAGE_TRYLOCK);
1770
1771                         if (PTR_ERR(tree_page) == -EBUSY)
1772                                 return ERR_PTR(-EBUSY);
1773
1774                         if (unlikely(!tree_page))
1775                                 /*
1776                                  * The tree may have been rebalanced,
1777                                  * so re-evaluate parent and new.
1778                                  */
1779                                 goto again;
1780                         unlock_page(tree_page);
1781
1782                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1783                             NUMA(stable_node_dup->nid)) {
1784                                 put_page(tree_page);
1785                                 goto replace;
1786                         }
1787                         return tree_page;
1788                 }
1789         }
1790
1791         if (!page_node)
1792                 return NULL;
1793
1794         list_del(&page_node->list);
1795         DO_NUMA(page_node->nid = nid);
1796         rb_link_node(&page_node->node, parent, new);
1797         rb_insert_color(&page_node->node, root);
1798 out:
1799         if (is_page_sharing_candidate(page_node)) {
1800                 get_page(page);
1801                 return page;
1802         } else
1803                 return NULL;
1804
1805 replace:
1806         /*
1807          * If stable_node was a chain and chain_prune collapsed it,
1808          * stable_node has been updated to be the new regular
1809          * stable_node. A collapse of the chain is indistinguishable
1810          * from the case there was no chain in the stable
1811          * rbtree. Otherwise stable_node is the chain and
1812          * stable_node_dup is the dup to replace.
1813          */
1814         if (stable_node_dup == stable_node) {
1815                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1816                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1817                 /* there is no chain */
1818                 if (page_node) {
1819                         VM_BUG_ON(page_node->head != &migrate_nodes);
1820                         list_del(&page_node->list);
1821                         DO_NUMA(page_node->nid = nid);
1822                         rb_replace_node(&stable_node_dup->node,
1823                                         &page_node->node,
1824                                         root);
1825                         if (is_page_sharing_candidate(page_node))
1826                                 get_page(page);
1827                         else
1828                                 page = NULL;
1829                 } else {
1830                         rb_erase(&stable_node_dup->node, root);
1831                         page = NULL;
1832                 }
1833         } else {
1834                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1835                 __stable_node_dup_del(stable_node_dup);
1836                 if (page_node) {
1837                         VM_BUG_ON(page_node->head != &migrate_nodes);
1838                         list_del(&page_node->list);
1839                         DO_NUMA(page_node->nid = nid);
1840                         stable_node_chain_add_dup(page_node, stable_node);
1841                         if (is_page_sharing_candidate(page_node))
1842                                 get_page(page);
1843                         else
1844                                 page = NULL;
1845                 } else {
1846                         page = NULL;
1847                 }
1848         }
1849         stable_node_dup->head = &migrate_nodes;
1850         list_add(&stable_node_dup->list, stable_node_dup->head);
1851         return page;
1852
1853 chain_append:
1854         /* stable_node_dup could be null if it reached the limit */
1855         if (!stable_node_dup)
1856                 stable_node_dup = stable_node_any;
1857         /*
1858          * If stable_node was a chain and chain_prune collapsed it,
1859          * stable_node has been updated to be the new regular
1860          * stable_node. A collapse of the chain is indistinguishable
1861          * from the case there was no chain in the stable
1862          * rbtree. Otherwise stable_node is the chain and
1863          * stable_node_dup is the dup to replace.
1864          */
1865         if (stable_node_dup == stable_node) {
1866                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1867                 /* chain is missing so create it */
1868                 stable_node = alloc_stable_node_chain(stable_node_dup,
1869                                                       root);
1870                 if (!stable_node)
1871                         return NULL;
1872         }
1873         /*
1874          * Add this stable_node dup that was
1875          * migrated to the stable_node chain
1876          * of the current nid for this page
1877          * content.
1878          */
1879         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1880         VM_BUG_ON(page_node->head != &migrate_nodes);
1881         list_del(&page_node->list);
1882         DO_NUMA(page_node->nid = nid);
1883         stable_node_chain_add_dup(page_node, stable_node);
1884         goto out;
1885 }
1886
1887 /*
1888  * stable_tree_insert - insert stable tree node pointing to new ksm page
1889  * into the stable tree.
1890  *
1891  * This function returns the stable tree node just allocated on success,
1892  * NULL otherwise.
1893  */
1894 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1895 {
1896         int nid;
1897         unsigned long kpfn;
1898         struct rb_root *root;
1899         struct rb_node **new;
1900         struct rb_node *parent;
1901         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1902         bool need_chain = false;
1903
1904         kpfn = page_to_pfn(kpage);
1905         nid = get_kpfn_nid(kpfn);
1906         root = root_stable_tree + nid;
1907 again:
1908         parent = NULL;
1909         new = &root->rb_node;
1910
1911         while (*new) {
1912                 struct page *tree_page;
1913                 int ret;
1914
1915                 cond_resched();
1916                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1917                 stable_node_any = NULL;
1918                 tree_page = chain(&stable_node_dup, stable_node, root);
1919                 if (!stable_node_dup) {
1920                         /*
1921                          * Either all stable_node dups were full in
1922                          * this stable_node chain, or this chain was
1923                          * empty and should be rb_erased.
1924                          */
1925                         stable_node_any = stable_node_dup_any(stable_node,
1926                                                               root);
1927                         if (!stable_node_any) {
1928                                 /* rb_erase just run */
1929                                 goto again;
1930                         }
1931                         /*
1932                          * Take any of the stable_node dups page of
1933                          * this stable_node chain to let the tree walk
1934                          * continue. All KSM pages belonging to the
1935                          * stable_node dups in a stable_node chain
1936                          * have the same content and they're
1937                          * write protected at all times. Any will work
1938                          * fine to continue the walk.
1939                          */
1940                         tree_page = get_ksm_page(stable_node_any,
1941                                                  GET_KSM_PAGE_NOLOCK);
1942                 }
1943                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1944                 if (!tree_page) {
1945                         /*
1946                          * If we walked over a stale stable_node,
1947                          * get_ksm_page() will call rb_erase() and it
1948                          * may rebalance the tree from under us. So
1949                          * restart the search from scratch. Returning
1950                          * NULL would be safe too, but we'd generate
1951                          * false negative insertions just because some
1952                          * stable_node was stale.
1953                          */
1954                         goto again;
1955                 }
1956
1957                 ret = memcmp_pages(kpage, tree_page);
1958                 put_page(tree_page);
1959
1960                 parent = *new;
1961                 if (ret < 0)
1962                         new = &parent->rb_left;
1963                 else if (ret > 0)
1964                         new = &parent->rb_right;
1965                 else {
1966                         need_chain = true;
1967                         break;
1968                 }
1969         }
1970
1971         stable_node_dup = alloc_stable_node();
1972         if (!stable_node_dup)
1973                 return NULL;
1974
1975         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1976         stable_node_dup->kpfn = kpfn;
1977         set_page_stable_node(kpage, stable_node_dup);
1978         stable_node_dup->rmap_hlist_len = 0;
1979         DO_NUMA(stable_node_dup->nid = nid);
1980         if (!need_chain) {
1981                 rb_link_node(&stable_node_dup->node, parent, new);
1982                 rb_insert_color(&stable_node_dup->node, root);
1983         } else {
1984                 if (!is_stable_node_chain(stable_node)) {
1985                         struct ksm_stable_node *orig = stable_node;
1986                         /* chain is missing so create it */
1987                         stable_node = alloc_stable_node_chain(orig, root);
1988                         if (!stable_node) {
1989                                 free_stable_node(stable_node_dup);
1990                                 return NULL;
1991                         }
1992                 }
1993                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1994         }
1995
1996         return stable_node_dup;
1997 }
1998
1999 /*
2000  * unstable_tree_search_insert - search for identical page,
2001  * else insert rmap_item into the unstable tree.
2002  *
2003  * This function searches for a page in the unstable tree identical to the
2004  * page currently being scanned; and if no identical page is found in the
2005  * tree, we insert rmap_item as a new object into the unstable tree.
2006  *
2007  * This function returns pointer to rmap_item found to be identical
2008  * to the currently scanned page, NULL otherwise.
2009  *
2010  * This function does both searching and inserting, because they share
2011  * the same walking algorithm in an rbtree.
2012  */
2013 static
2014 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2015                                               struct page *page,
2016                                               struct page **tree_pagep)
2017 {
2018         struct rb_node **new;
2019         struct rb_root *root;
2020         struct rb_node *parent = NULL;
2021         int nid;
2022
2023         nid = get_kpfn_nid(page_to_pfn(page));
2024         root = root_unstable_tree + nid;
2025         new = &root->rb_node;
2026
2027         while (*new) {
2028                 struct ksm_rmap_item *tree_rmap_item;
2029                 struct page *tree_page;
2030                 int ret;
2031
2032                 cond_resched();
2033                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2034                 tree_page = get_mergeable_page(tree_rmap_item);
2035                 if (!tree_page)
2036                         return NULL;
2037
2038                 /*
2039                  * Don't substitute a ksm page for a forked page.
2040                  */
2041                 if (page == tree_page) {
2042                         put_page(tree_page);
2043                         return NULL;
2044                 }
2045
2046                 ret = memcmp_pages(page, tree_page);
2047
2048                 parent = *new;
2049                 if (ret < 0) {
2050                         put_page(tree_page);
2051                         new = &parent->rb_left;
2052                 } else if (ret > 0) {
2053                         put_page(tree_page);
2054                         new = &parent->rb_right;
2055                 } else if (!ksm_merge_across_nodes &&
2056                            page_to_nid(tree_page) != nid) {
2057                         /*
2058                          * If tree_page has been migrated to another NUMA node,
2059                          * it will be flushed out and put in the right unstable
2060                          * tree next time: only merge with it when across_nodes.
2061                          */
2062                         put_page(tree_page);
2063                         return NULL;
2064                 } else {
2065                         *tree_pagep = tree_page;
2066                         return tree_rmap_item;
2067                 }
2068         }
2069
2070         rmap_item->address |= UNSTABLE_FLAG;
2071         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2072         DO_NUMA(rmap_item->nid = nid);
2073         rb_link_node(&rmap_item->node, parent, new);
2074         rb_insert_color(&rmap_item->node, root);
2075
2076         ksm_pages_unshared++;
2077         return NULL;
2078 }
2079
2080 /*
2081  * stable_tree_append - add another rmap_item to the linked list of
2082  * rmap_items hanging off a given node of the stable tree, all sharing
2083  * the same ksm page.
2084  */
2085 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2086                                struct ksm_stable_node *stable_node,
2087                                bool max_page_sharing_bypass)
2088 {
2089         /*
2090          * rmap won't find this mapping if we don't insert the
2091          * rmap_item in the right stable_node
2092          * duplicate. page_migration could break later if rmap breaks,
2093          * so we can as well crash here. We really need to check for
2094          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2095          * for other negative values as an underflow if detected here
2096          * for the first time (and not when decreasing rmap_hlist_len)
2097          * would be sign of memory corruption in the stable_node.
2098          */
2099         BUG_ON(stable_node->rmap_hlist_len < 0);
2100
2101         stable_node->rmap_hlist_len++;
2102         if (!max_page_sharing_bypass)
2103                 /* possibly non fatal but unexpected overflow, only warn */
2104                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2105                              ksm_max_page_sharing);
2106
2107         rmap_item->head = stable_node;
2108         rmap_item->address |= STABLE_FLAG;
2109         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2110
2111         if (rmap_item->hlist.next)
2112                 ksm_pages_sharing++;
2113         else
2114                 ksm_pages_shared++;
2115
2116         rmap_item->mm->ksm_merging_pages++;
2117 }
2118
2119 /*
2120  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2121  * if not, compare checksum to previous and if it's the same, see if page can
2122  * be inserted into the unstable tree, or merged with a page already there and
2123  * both transferred to the stable tree.
2124  *
2125  * @page: the page that we are searching identical page to.
2126  * @rmap_item: the reverse mapping into the virtual address of this page
2127  */
2128 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2129 {
2130         struct mm_struct *mm = rmap_item->mm;
2131         struct ksm_rmap_item *tree_rmap_item;
2132         struct page *tree_page = NULL;
2133         struct ksm_stable_node *stable_node;
2134         struct page *kpage;
2135         unsigned int checksum;
2136         int err;
2137         bool max_page_sharing_bypass = false;
2138
2139         stable_node = page_stable_node(page);
2140         if (stable_node) {
2141                 if (stable_node->head != &migrate_nodes &&
2142                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2143                     NUMA(stable_node->nid)) {
2144                         stable_node_dup_del(stable_node);
2145                         stable_node->head = &migrate_nodes;
2146                         list_add(&stable_node->list, stable_node->head);
2147                 }
2148                 if (stable_node->head != &migrate_nodes &&
2149                     rmap_item->head == stable_node)
2150                         return;
2151                 /*
2152                  * If it's a KSM fork, allow it to go over the sharing limit
2153                  * without warnings.
2154                  */
2155                 if (!is_page_sharing_candidate(stable_node))
2156                         max_page_sharing_bypass = true;
2157         }
2158
2159         /* We first start with searching the page inside the stable tree */
2160         kpage = stable_tree_search(page);
2161         if (kpage == page && rmap_item->head == stable_node) {
2162                 put_page(kpage);
2163                 return;
2164         }
2165
2166         remove_rmap_item_from_tree(rmap_item);
2167
2168         if (kpage) {
2169                 if (PTR_ERR(kpage) == -EBUSY)
2170                         return;
2171
2172                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2173                 if (!err) {
2174                         /*
2175                          * The page was successfully merged:
2176                          * add its rmap_item to the stable tree.
2177                          */
2178                         lock_page(kpage);
2179                         stable_tree_append(rmap_item, page_stable_node(kpage),
2180                                            max_page_sharing_bypass);
2181                         unlock_page(kpage);
2182                 }
2183                 put_page(kpage);
2184                 return;
2185         }
2186
2187         /*
2188          * If the hash value of the page has changed from the last time
2189          * we calculated it, this page is changing frequently: therefore we
2190          * don't want to insert it in the unstable tree, and we don't want
2191          * to waste our time searching for something identical to it there.
2192          */
2193         checksum = calc_checksum(page);
2194         if (rmap_item->oldchecksum != checksum) {
2195                 rmap_item->oldchecksum = checksum;
2196                 return;
2197         }
2198
2199         /*
2200          * Same checksum as an empty page. We attempt to merge it with the
2201          * appropriate zero page if the user enabled this via sysfs.
2202          */
2203         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2204                 struct vm_area_struct *vma;
2205
2206                 mmap_read_lock(mm);
2207                 vma = find_mergeable_vma(mm, rmap_item->address);
2208                 if (vma) {
2209                         err = try_to_merge_one_page(vma, page,
2210                                         ZERO_PAGE(rmap_item->address));
2211                         trace_ksm_merge_one_page(
2212                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2213                                 rmap_item, mm, err);
2214                 } else {
2215                         /*
2216                          * If the vma is out of date, we do not need to
2217                          * continue.
2218                          */
2219                         err = 0;
2220                 }
2221                 mmap_read_unlock(mm);
2222                 /*
2223                  * In case of failure, the page was not really empty, so we
2224                  * need to continue. Otherwise we're done.
2225                  */
2226                 if (!err)
2227                         return;
2228         }
2229         tree_rmap_item =
2230                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2231         if (tree_rmap_item) {
2232                 bool split;
2233
2234                 kpage = try_to_merge_two_pages(rmap_item, page,
2235                                                 tree_rmap_item, tree_page);
2236                 /*
2237                  * If both pages we tried to merge belong to the same compound
2238                  * page, then we actually ended up increasing the reference
2239                  * count of the same compound page twice, and split_huge_page
2240                  * failed.
2241                  * Here we set a flag if that happened, and we use it later to
2242                  * try split_huge_page again. Since we call put_page right
2243                  * afterwards, the reference count will be correct and
2244                  * split_huge_page should succeed.
2245                  */
2246                 split = PageTransCompound(page)
2247                         && compound_head(page) == compound_head(tree_page);
2248                 put_page(tree_page);
2249                 if (kpage) {
2250                         /*
2251                          * The pages were successfully merged: insert new
2252                          * node in the stable tree and add both rmap_items.
2253                          */
2254                         lock_page(kpage);
2255                         stable_node = stable_tree_insert(kpage);
2256                         if (stable_node) {
2257                                 stable_tree_append(tree_rmap_item, stable_node,
2258                                                    false);
2259                                 stable_tree_append(rmap_item, stable_node,
2260                                                    false);
2261                         }
2262                         unlock_page(kpage);
2263
2264                         /*
2265                          * If we fail to insert the page into the stable tree,
2266                          * we will have 2 virtual addresses that are pointing
2267                          * to a ksm page left outside the stable tree,
2268                          * in which case we need to break_cow on both.
2269                          */
2270                         if (!stable_node) {
2271                                 break_cow(tree_rmap_item);
2272                                 break_cow(rmap_item);
2273                         }
2274                 } else if (split) {
2275                         /*
2276                          * We are here if we tried to merge two pages and
2277                          * failed because they both belonged to the same
2278                          * compound page. We will split the page now, but no
2279                          * merging will take place.
2280                          * We do not want to add the cost of a full lock; if
2281                          * the page is locked, it is better to skip it and
2282                          * perhaps try again later.
2283                          */
2284                         if (!trylock_page(page))
2285                                 return;
2286                         split_huge_page(page);
2287                         unlock_page(page);
2288                 }
2289         }
2290 }
2291
2292 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2293                                             struct ksm_rmap_item **rmap_list,
2294                                             unsigned long addr)
2295 {
2296         struct ksm_rmap_item *rmap_item;
2297
2298         while (*rmap_list) {
2299                 rmap_item = *rmap_list;
2300                 if ((rmap_item->address & PAGE_MASK) == addr)
2301                         return rmap_item;
2302                 if (rmap_item->address > addr)
2303                         break;
2304                 *rmap_list = rmap_item->rmap_list;
2305                 remove_rmap_item_from_tree(rmap_item);
2306                 free_rmap_item(rmap_item);
2307         }
2308
2309         rmap_item = alloc_rmap_item();
2310         if (rmap_item) {
2311                 /* It has already been zeroed */
2312                 rmap_item->mm = mm_slot->slot.mm;
2313                 rmap_item->mm->ksm_rmap_items++;
2314                 rmap_item->address = addr;
2315                 rmap_item->rmap_list = *rmap_list;
2316                 *rmap_list = rmap_item;
2317         }
2318         return rmap_item;
2319 }
2320
2321 /*
2322  * Calculate skip age for the ksm page age. The age determines how often
2323  * de-duplicating has already been tried unsuccessfully. If the age is
2324  * smaller, the scanning of this page is skipped for less scans.
2325  *
2326  * @age: rmap_item age of page
2327  */
2328 static unsigned int skip_age(rmap_age_t age)
2329 {
2330         if (age <= 3)
2331                 return 1;
2332         if (age <= 5)
2333                 return 2;
2334         if (age <= 8)
2335                 return 4;
2336
2337         return 8;
2338 }
2339
2340 /*
2341  * Determines if a page should be skipped for the current scan.
2342  *
2343  * @page: page to check
2344  * @rmap_item: associated rmap_item of page
2345  */
2346 static bool should_skip_rmap_item(struct page *page,
2347                                   struct ksm_rmap_item *rmap_item)
2348 {
2349         rmap_age_t age;
2350
2351         if (!ksm_smart_scan)
2352                 return false;
2353
2354         /*
2355          * Never skip pages that are already KSM; pages cmp_and_merge_page()
2356          * will essentially ignore them, but we still have to process them
2357          * properly.
2358          */
2359         if (PageKsm(page))
2360                 return false;
2361
2362         age = rmap_item->age;
2363         if (age != U8_MAX)
2364                 rmap_item->age++;
2365
2366         /*
2367          * Smaller ages are not skipped, they need to get a chance to go
2368          * through the different phases of the KSM merging.
2369          */
2370         if (age < 3)
2371                 return false;
2372
2373         /*
2374          * Are we still allowed to skip? If not, then don't skip it
2375          * and determine how much more often we are allowed to skip next.
2376          */
2377         if (!rmap_item->remaining_skips) {
2378                 rmap_item->remaining_skips = skip_age(age);
2379                 return false;
2380         }
2381
2382         /* Skip this page */
2383         ksm_pages_skipped++;
2384         rmap_item->remaining_skips--;
2385         remove_rmap_item_from_tree(rmap_item);
2386         return true;
2387 }
2388
2389 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2390 {
2391         struct mm_struct *mm;
2392         struct ksm_mm_slot *mm_slot;
2393         struct mm_slot *slot;
2394         struct vm_area_struct *vma;
2395         struct ksm_rmap_item *rmap_item;
2396         struct vma_iterator vmi;
2397         int nid;
2398
2399         if (list_empty(&ksm_mm_head.slot.mm_node))
2400                 return NULL;
2401
2402         mm_slot = ksm_scan.mm_slot;
2403         if (mm_slot == &ksm_mm_head) {
2404                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2405
2406                 /*
2407                  * A number of pages can hang around indefinitely in per-cpu
2408                  * LRU cache, raised page count preventing write_protect_page
2409                  * from merging them.  Though it doesn't really matter much,
2410                  * it is puzzling to see some stuck in pages_volatile until
2411                  * other activity jostles them out, and they also prevented
2412                  * LTP's KSM test from succeeding deterministically; so drain
2413                  * them here (here rather than on entry to ksm_do_scan(),
2414                  * so we don't IPI too often when pages_to_scan is set low).
2415                  */
2416                 lru_add_drain_all();
2417
2418                 /*
2419                  * Whereas stale stable_nodes on the stable_tree itself
2420                  * get pruned in the regular course of stable_tree_search(),
2421                  * those moved out to the migrate_nodes list can accumulate:
2422                  * so prune them once before each full scan.
2423                  */
2424                 if (!ksm_merge_across_nodes) {
2425                         struct ksm_stable_node *stable_node, *next;
2426                         struct page *page;
2427
2428                         list_for_each_entry_safe(stable_node, next,
2429                                                  &migrate_nodes, list) {
2430                                 page = get_ksm_page(stable_node,
2431                                                     GET_KSM_PAGE_NOLOCK);
2432                                 if (page)
2433                                         put_page(page);
2434                                 cond_resched();
2435                         }
2436                 }
2437
2438                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2439                         root_unstable_tree[nid] = RB_ROOT;
2440
2441                 spin_lock(&ksm_mmlist_lock);
2442                 slot = list_entry(mm_slot->slot.mm_node.next,
2443                                   struct mm_slot, mm_node);
2444                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2445                 ksm_scan.mm_slot = mm_slot;
2446                 spin_unlock(&ksm_mmlist_lock);
2447                 /*
2448                  * Although we tested list_empty() above, a racing __ksm_exit
2449                  * of the last mm on the list may have removed it since then.
2450                  */
2451                 if (mm_slot == &ksm_mm_head)
2452                         return NULL;
2453 next_mm:
2454                 ksm_scan.address = 0;
2455                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2456         }
2457
2458         slot = &mm_slot->slot;
2459         mm = slot->mm;
2460         vma_iter_init(&vmi, mm, ksm_scan.address);
2461
2462         mmap_read_lock(mm);
2463         if (ksm_test_exit(mm))
2464                 goto no_vmas;
2465
2466         for_each_vma(vmi, vma) {
2467                 if (!(vma->vm_flags & VM_MERGEABLE))
2468                         continue;
2469                 if (ksm_scan.address < vma->vm_start)
2470                         ksm_scan.address = vma->vm_start;
2471                 if (!vma->anon_vma)
2472                         ksm_scan.address = vma->vm_end;
2473
2474                 while (ksm_scan.address < vma->vm_end) {
2475                         if (ksm_test_exit(mm))
2476                                 break;
2477                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2478                         if (IS_ERR_OR_NULL(*page)) {
2479                                 ksm_scan.address += PAGE_SIZE;
2480                                 cond_resched();
2481                                 continue;
2482                         }
2483                         if (is_zone_device_page(*page))
2484                                 goto next_page;
2485                         if (PageAnon(*page)) {
2486                                 flush_anon_page(vma, *page, ksm_scan.address);
2487                                 flush_dcache_page(*page);
2488                                 rmap_item = get_next_rmap_item(mm_slot,
2489                                         ksm_scan.rmap_list, ksm_scan.address);
2490                                 if (rmap_item) {
2491                                         ksm_scan.rmap_list =
2492                                                         &rmap_item->rmap_list;
2493
2494                                         if (should_skip_rmap_item(*page, rmap_item))
2495                                                 goto next_page;
2496
2497                                         ksm_scan.address += PAGE_SIZE;
2498                                 } else
2499                                         put_page(*page);
2500                                 mmap_read_unlock(mm);
2501                                 return rmap_item;
2502                         }
2503 next_page:
2504                         put_page(*page);
2505                         ksm_scan.address += PAGE_SIZE;
2506                         cond_resched();
2507                 }
2508         }
2509
2510         if (ksm_test_exit(mm)) {
2511 no_vmas:
2512                 ksm_scan.address = 0;
2513                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2514         }
2515         /*
2516          * Nuke all the rmap_items that are above this current rmap:
2517          * because there were no VM_MERGEABLE vmas with such addresses.
2518          */
2519         remove_trailing_rmap_items(ksm_scan.rmap_list);
2520
2521         spin_lock(&ksm_mmlist_lock);
2522         slot = list_entry(mm_slot->slot.mm_node.next,
2523                           struct mm_slot, mm_node);
2524         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2525         if (ksm_scan.address == 0) {
2526                 /*
2527                  * We've completed a full scan of all vmas, holding mmap_lock
2528                  * throughout, and found no VM_MERGEABLE: so do the same as
2529                  * __ksm_exit does to remove this mm from all our lists now.
2530                  * This applies either when cleaning up after __ksm_exit
2531                  * (but beware: we can reach here even before __ksm_exit),
2532                  * or when all VM_MERGEABLE areas have been unmapped (and
2533                  * mmap_lock then protects against race with MADV_MERGEABLE).
2534                  */
2535                 hash_del(&mm_slot->slot.hash);
2536                 list_del(&mm_slot->slot.mm_node);
2537                 spin_unlock(&ksm_mmlist_lock);
2538
2539                 mm_slot_free(mm_slot_cache, mm_slot);
2540                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2541                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2542                 mmap_read_unlock(mm);
2543                 mmdrop(mm);
2544         } else {
2545                 mmap_read_unlock(mm);
2546                 /*
2547                  * mmap_read_unlock(mm) first because after
2548                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2549                  * already have been freed under us by __ksm_exit()
2550                  * because the "mm_slot" is still hashed and
2551                  * ksm_scan.mm_slot doesn't point to it anymore.
2552                  */
2553                 spin_unlock(&ksm_mmlist_lock);
2554         }
2555
2556         /* Repeat until we've completed scanning the whole list */
2557         mm_slot = ksm_scan.mm_slot;
2558         if (mm_slot != &ksm_mm_head)
2559                 goto next_mm;
2560
2561         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2562         ksm_scan.seqnr++;
2563         return NULL;
2564 }
2565
2566 /**
2567  * ksm_do_scan  - the ksm scanner main worker function.
2568  * @scan_npages:  number of pages we want to scan before we return.
2569  */
2570 static void ksm_do_scan(unsigned int scan_npages)
2571 {
2572         struct ksm_rmap_item *rmap_item;
2573         struct page *page;
2574         unsigned int npages = scan_npages;
2575
2576         while (npages-- && likely(!freezing(current))) {
2577                 cond_resched();
2578                 rmap_item = scan_get_next_rmap_item(&page);
2579                 if (!rmap_item)
2580                         return;
2581                 cmp_and_merge_page(page, rmap_item);
2582                 put_page(page);
2583         }
2584
2585         ksm_pages_scanned += scan_npages - npages;
2586 }
2587
2588 static int ksmd_should_run(void)
2589 {
2590         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2591 }
2592
2593 static int ksm_scan_thread(void *nothing)
2594 {
2595         unsigned int sleep_ms;
2596
2597         set_freezable();
2598         set_user_nice(current, 5);
2599
2600         while (!kthread_should_stop()) {
2601                 mutex_lock(&ksm_thread_mutex);
2602                 wait_while_offlining();
2603                 if (ksmd_should_run())
2604                         ksm_do_scan(ksm_thread_pages_to_scan);
2605                 mutex_unlock(&ksm_thread_mutex);
2606
2607                 try_to_freeze();
2608
2609                 if (ksmd_should_run()) {
2610                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2611                         wait_event_interruptible_timeout(ksm_iter_wait,
2612                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2613                                 msecs_to_jiffies(sleep_ms));
2614                 } else {
2615                         wait_event_freezable(ksm_thread_wait,
2616                                 ksmd_should_run() || kthread_should_stop());
2617                 }
2618         }
2619         return 0;
2620 }
2621
2622 static void __ksm_add_vma(struct vm_area_struct *vma)
2623 {
2624         unsigned long vm_flags = vma->vm_flags;
2625
2626         if (vm_flags & VM_MERGEABLE)
2627                 return;
2628
2629         if (vma_ksm_compatible(vma))
2630                 vm_flags_set(vma, VM_MERGEABLE);
2631 }
2632
2633 static int __ksm_del_vma(struct vm_area_struct *vma)
2634 {
2635         int err;
2636
2637         if (!(vma->vm_flags & VM_MERGEABLE))
2638                 return 0;
2639
2640         if (vma->anon_vma) {
2641                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2642                 if (err)
2643                         return err;
2644         }
2645
2646         vm_flags_clear(vma, VM_MERGEABLE);
2647         return 0;
2648 }
2649 /**
2650  * ksm_add_vma - Mark vma as mergeable if compatible
2651  *
2652  * @vma:  Pointer to vma
2653  */
2654 void ksm_add_vma(struct vm_area_struct *vma)
2655 {
2656         struct mm_struct *mm = vma->vm_mm;
2657
2658         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2659                 __ksm_add_vma(vma);
2660 }
2661
2662 static void ksm_add_vmas(struct mm_struct *mm)
2663 {
2664         struct vm_area_struct *vma;
2665
2666         VMA_ITERATOR(vmi, mm, 0);
2667         for_each_vma(vmi, vma)
2668                 __ksm_add_vma(vma);
2669 }
2670
2671 static int ksm_del_vmas(struct mm_struct *mm)
2672 {
2673         struct vm_area_struct *vma;
2674         int err;
2675
2676         VMA_ITERATOR(vmi, mm, 0);
2677         for_each_vma(vmi, vma) {
2678                 err = __ksm_del_vma(vma);
2679                 if (err)
2680                         return err;
2681         }
2682         return 0;
2683 }
2684
2685 /**
2686  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2687  *                        compatible VMA's
2688  *
2689  * @mm:  Pointer to mm
2690  *
2691  * Returns 0 on success, otherwise error code
2692  */
2693 int ksm_enable_merge_any(struct mm_struct *mm)
2694 {
2695         int err;
2696
2697         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2698                 return 0;
2699
2700         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2701                 err = __ksm_enter(mm);
2702                 if (err)
2703                         return err;
2704         }
2705
2706         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2707         ksm_add_vmas(mm);
2708
2709         return 0;
2710 }
2711
2712 /**
2713  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2714  *                         previously enabled via ksm_enable_merge_any().
2715  *
2716  * Disabling merging implies unmerging any merged pages, like setting
2717  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2718  * merging on all compatible VMA's remains enabled.
2719  *
2720  * @mm: Pointer to mm
2721  *
2722  * Returns 0 on success, otherwise error code
2723  */
2724 int ksm_disable_merge_any(struct mm_struct *mm)
2725 {
2726         int err;
2727
2728         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2729                 return 0;
2730
2731         err = ksm_del_vmas(mm);
2732         if (err) {
2733                 ksm_add_vmas(mm);
2734                 return err;
2735         }
2736
2737         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2738         return 0;
2739 }
2740
2741 int ksm_disable(struct mm_struct *mm)
2742 {
2743         mmap_assert_write_locked(mm);
2744
2745         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2746                 return 0;
2747         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2748                 return ksm_disable_merge_any(mm);
2749         return ksm_del_vmas(mm);
2750 }
2751
2752 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2753                 unsigned long end, int advice, unsigned long *vm_flags)
2754 {
2755         struct mm_struct *mm = vma->vm_mm;
2756         int err;
2757
2758         switch (advice) {
2759         case MADV_MERGEABLE:
2760                 if (vma->vm_flags & VM_MERGEABLE)
2761                         return 0;
2762                 if (!vma_ksm_compatible(vma))
2763                         return 0;
2764
2765                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2766                         err = __ksm_enter(mm);
2767                         if (err)
2768                                 return err;
2769                 }
2770
2771                 *vm_flags |= VM_MERGEABLE;
2772                 break;
2773
2774         case MADV_UNMERGEABLE:
2775                 if (!(*vm_flags & VM_MERGEABLE))
2776                         return 0;               /* just ignore the advice */
2777
2778                 if (vma->anon_vma) {
2779                         err = unmerge_ksm_pages(vma, start, end, true);
2780                         if (err)
2781                                 return err;
2782                 }
2783
2784                 *vm_flags &= ~VM_MERGEABLE;
2785                 break;
2786         }
2787
2788         return 0;
2789 }
2790 EXPORT_SYMBOL_GPL(ksm_madvise);
2791
2792 int __ksm_enter(struct mm_struct *mm)
2793 {
2794         struct ksm_mm_slot *mm_slot;
2795         struct mm_slot *slot;
2796         int needs_wakeup;
2797
2798         mm_slot = mm_slot_alloc(mm_slot_cache);
2799         if (!mm_slot)
2800                 return -ENOMEM;
2801
2802         slot = &mm_slot->slot;
2803
2804         /* Check ksm_run too?  Would need tighter locking */
2805         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2806
2807         spin_lock(&ksm_mmlist_lock);
2808         mm_slot_insert(mm_slots_hash, mm, slot);
2809         /*
2810          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2811          * insert just behind the scanning cursor, to let the area settle
2812          * down a little; when fork is followed by immediate exec, we don't
2813          * want ksmd to waste time setting up and tearing down an rmap_list.
2814          *
2815          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2816          * scanning cursor, otherwise KSM pages in newly forked mms will be
2817          * missed: then we might as well insert at the end of the list.
2818          */
2819         if (ksm_run & KSM_RUN_UNMERGE)
2820                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2821         else
2822                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2823         spin_unlock(&ksm_mmlist_lock);
2824
2825         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2826         mmgrab(mm);
2827
2828         if (needs_wakeup)
2829                 wake_up_interruptible(&ksm_thread_wait);
2830
2831         trace_ksm_enter(mm);
2832         return 0;
2833 }
2834
2835 void __ksm_exit(struct mm_struct *mm)
2836 {
2837         struct ksm_mm_slot *mm_slot;
2838         struct mm_slot *slot;
2839         int easy_to_free = 0;
2840
2841         /*
2842          * This process is exiting: if it's straightforward (as is the
2843          * case when ksmd was never running), free mm_slot immediately.
2844          * But if it's at the cursor or has rmap_items linked to it, use
2845          * mmap_lock to synchronize with any break_cows before pagetables
2846          * are freed, and leave the mm_slot on the list for ksmd to free.
2847          * Beware: ksm may already have noticed it exiting and freed the slot.
2848          */
2849
2850         spin_lock(&ksm_mmlist_lock);
2851         slot = mm_slot_lookup(mm_slots_hash, mm);
2852         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2853         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2854                 if (!mm_slot->rmap_list) {
2855                         hash_del(&slot->hash);
2856                         list_del(&slot->mm_node);
2857                         easy_to_free = 1;
2858                 } else {
2859                         list_move(&slot->mm_node,
2860                                   &ksm_scan.mm_slot->slot.mm_node);
2861                 }
2862         }
2863         spin_unlock(&ksm_mmlist_lock);
2864
2865         if (easy_to_free) {
2866                 mm_slot_free(mm_slot_cache, mm_slot);
2867                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2868                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2869                 mmdrop(mm);
2870         } else if (mm_slot) {
2871                 mmap_write_lock(mm);
2872                 mmap_write_unlock(mm);
2873         }
2874
2875         trace_ksm_exit(mm);
2876 }
2877
2878 struct page *ksm_might_need_to_copy(struct page *page,
2879                         struct vm_area_struct *vma, unsigned long address)
2880 {
2881         struct folio *folio = page_folio(page);
2882         struct anon_vma *anon_vma = folio_anon_vma(folio);
2883         struct page *new_page;
2884
2885         if (PageKsm(page)) {
2886                 if (page_stable_node(page) &&
2887                     !(ksm_run & KSM_RUN_UNMERGE))
2888                         return page;    /* no need to copy it */
2889         } else if (!anon_vma) {
2890                 return page;            /* no need to copy it */
2891         } else if (page->index == linear_page_index(vma, address) &&
2892                         anon_vma->root == vma->anon_vma->root) {
2893                 return page;            /* still no need to copy it */
2894         }
2895         if (PageHWPoison(page))
2896                 return ERR_PTR(-EHWPOISON);
2897         if (!PageUptodate(page))
2898                 return page;            /* let do_swap_page report the error */
2899
2900         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2901         if (new_page &&
2902             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2903                 put_page(new_page);
2904                 new_page = NULL;
2905         }
2906         if (new_page) {
2907                 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2908                         put_page(new_page);
2909                         memory_failure_queue(page_to_pfn(page), 0);
2910                         return ERR_PTR(-EHWPOISON);
2911                 }
2912                 SetPageDirty(new_page);
2913                 __SetPageUptodate(new_page);
2914                 __SetPageLocked(new_page);
2915 #ifdef CONFIG_SWAP
2916                 count_vm_event(KSM_SWPIN_COPY);
2917 #endif
2918         }
2919
2920         return new_page;
2921 }
2922
2923 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2924 {
2925         struct ksm_stable_node *stable_node;
2926         struct ksm_rmap_item *rmap_item;
2927         int search_new_forks = 0;
2928
2929         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2930
2931         /*
2932          * Rely on the page lock to protect against concurrent modifications
2933          * to that page's node of the stable tree.
2934          */
2935         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2936
2937         stable_node = folio_stable_node(folio);
2938         if (!stable_node)
2939                 return;
2940 again:
2941         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2942                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2943                 struct anon_vma_chain *vmac;
2944                 struct vm_area_struct *vma;
2945
2946                 cond_resched();
2947                 if (!anon_vma_trylock_read(anon_vma)) {
2948                         if (rwc->try_lock) {
2949                                 rwc->contended = true;
2950                                 return;
2951                         }
2952                         anon_vma_lock_read(anon_vma);
2953                 }
2954                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2955                                                0, ULONG_MAX) {
2956                         unsigned long addr;
2957
2958                         cond_resched();
2959                         vma = vmac->vma;
2960
2961                         /* Ignore the stable/unstable/sqnr flags */
2962                         addr = rmap_item->address & PAGE_MASK;
2963
2964                         if (addr < vma->vm_start || addr >= vma->vm_end)
2965                                 continue;
2966                         /*
2967                          * Initially we examine only the vma which covers this
2968                          * rmap_item; but later, if there is still work to do,
2969                          * we examine covering vmas in other mms: in case they
2970                          * were forked from the original since ksmd passed.
2971                          */
2972                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2973                                 continue;
2974
2975                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2976                                 continue;
2977
2978                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2979                                 anon_vma_unlock_read(anon_vma);
2980                                 return;
2981                         }
2982                         if (rwc->done && rwc->done(folio)) {
2983                                 anon_vma_unlock_read(anon_vma);
2984                                 return;
2985                         }
2986                 }
2987                 anon_vma_unlock_read(anon_vma);
2988         }
2989         if (!search_new_forks++)
2990                 goto again;
2991 }
2992
2993 #ifdef CONFIG_MEMORY_FAILURE
2994 /*
2995  * Collect processes when the error hit an ksm page.
2996  */
2997 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2998                        int force_early)
2999 {
3000         struct ksm_stable_node *stable_node;
3001         struct ksm_rmap_item *rmap_item;
3002         struct folio *folio = page_folio(page);
3003         struct vm_area_struct *vma;
3004         struct task_struct *tsk;
3005
3006         stable_node = folio_stable_node(folio);
3007         if (!stable_node)
3008                 return;
3009         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3010                 struct anon_vma *av = rmap_item->anon_vma;
3011
3012                 anon_vma_lock_read(av);
3013                 rcu_read_lock();
3014                 for_each_process(tsk) {
3015                         struct anon_vma_chain *vmac;
3016                         unsigned long addr;
3017                         struct task_struct *t =
3018                                 task_early_kill(tsk, force_early);
3019                         if (!t)
3020                                 continue;
3021                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3022                                                        ULONG_MAX)
3023                         {
3024                                 vma = vmac->vma;
3025                                 if (vma->vm_mm == t->mm) {
3026                                         addr = rmap_item->address & PAGE_MASK;
3027                                         add_to_kill_ksm(t, page, vma, to_kill,
3028                                                         addr);
3029                                 }
3030                         }
3031                 }
3032                 rcu_read_unlock();
3033                 anon_vma_unlock_read(av);
3034         }
3035 }
3036 #endif
3037
3038 #ifdef CONFIG_MIGRATION
3039 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3040 {
3041         struct ksm_stable_node *stable_node;
3042
3043         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3044         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3045         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3046
3047         stable_node = folio_stable_node(folio);
3048         if (stable_node) {
3049                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3050                 stable_node->kpfn = folio_pfn(newfolio);
3051                 /*
3052                  * newfolio->mapping was set in advance; now we need smp_wmb()
3053                  * to make sure that the new stable_node->kpfn is visible
3054                  * to get_ksm_page() before it can see that folio->mapping
3055                  * has gone stale (or that folio_test_swapcache has been cleared).
3056                  */
3057                 smp_wmb();
3058                 set_page_stable_node(&folio->page, NULL);
3059         }
3060 }
3061 #endif /* CONFIG_MIGRATION */
3062
3063 #ifdef CONFIG_MEMORY_HOTREMOVE
3064 static void wait_while_offlining(void)
3065 {
3066         while (ksm_run & KSM_RUN_OFFLINE) {
3067                 mutex_unlock(&ksm_thread_mutex);
3068                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3069                             TASK_UNINTERRUPTIBLE);
3070                 mutex_lock(&ksm_thread_mutex);
3071         }
3072 }
3073
3074 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3075                                          unsigned long start_pfn,
3076                                          unsigned long end_pfn)
3077 {
3078         if (stable_node->kpfn >= start_pfn &&
3079             stable_node->kpfn < end_pfn) {
3080                 /*
3081                  * Don't get_ksm_page, page has already gone:
3082                  * which is why we keep kpfn instead of page*
3083                  */
3084                 remove_node_from_stable_tree(stable_node);
3085                 return true;
3086         }
3087         return false;
3088 }
3089
3090 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3091                                            unsigned long start_pfn,
3092                                            unsigned long end_pfn,
3093                                            struct rb_root *root)
3094 {
3095         struct ksm_stable_node *dup;
3096         struct hlist_node *hlist_safe;
3097
3098         if (!is_stable_node_chain(stable_node)) {
3099                 VM_BUG_ON(is_stable_node_dup(stable_node));
3100                 return stable_node_dup_remove_range(stable_node, start_pfn,
3101                                                     end_pfn);
3102         }
3103
3104         hlist_for_each_entry_safe(dup, hlist_safe,
3105                                   &stable_node->hlist, hlist_dup) {
3106                 VM_BUG_ON(!is_stable_node_dup(dup));
3107                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3108         }
3109         if (hlist_empty(&stable_node->hlist)) {
3110                 free_stable_node_chain(stable_node, root);
3111                 return true; /* notify caller that tree was rebalanced */
3112         } else
3113                 return false;
3114 }
3115
3116 static void ksm_check_stable_tree(unsigned long start_pfn,
3117                                   unsigned long end_pfn)
3118 {
3119         struct ksm_stable_node *stable_node, *next;
3120         struct rb_node *node;
3121         int nid;
3122
3123         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3124                 node = rb_first(root_stable_tree + nid);
3125                 while (node) {
3126                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3127                         if (stable_node_chain_remove_range(stable_node,
3128                                                            start_pfn, end_pfn,
3129                                                            root_stable_tree +
3130                                                            nid))
3131                                 node = rb_first(root_stable_tree + nid);
3132                         else
3133                                 node = rb_next(node);
3134                         cond_resched();
3135                 }
3136         }
3137         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3138                 if (stable_node->kpfn >= start_pfn &&
3139                     stable_node->kpfn < end_pfn)
3140                         remove_node_from_stable_tree(stable_node);
3141                 cond_resched();
3142         }
3143 }
3144
3145 static int ksm_memory_callback(struct notifier_block *self,
3146                                unsigned long action, void *arg)
3147 {
3148         struct memory_notify *mn = arg;
3149
3150         switch (action) {
3151         case MEM_GOING_OFFLINE:
3152                 /*
3153                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3154                  * and remove_all_stable_nodes() while memory is going offline:
3155                  * it is unsafe for them to touch the stable tree at this time.
3156                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3157                  * which do not need the ksm_thread_mutex are all safe.
3158                  */
3159                 mutex_lock(&ksm_thread_mutex);
3160                 ksm_run |= KSM_RUN_OFFLINE;
3161                 mutex_unlock(&ksm_thread_mutex);
3162                 break;
3163
3164         case MEM_OFFLINE:
3165                 /*
3166                  * Most of the work is done by page migration; but there might
3167                  * be a few stable_nodes left over, still pointing to struct
3168                  * pages which have been offlined: prune those from the tree,
3169                  * otherwise get_ksm_page() might later try to access a
3170                  * non-existent struct page.
3171                  */
3172                 ksm_check_stable_tree(mn->start_pfn,
3173                                       mn->start_pfn + mn->nr_pages);
3174                 fallthrough;
3175         case MEM_CANCEL_OFFLINE:
3176                 mutex_lock(&ksm_thread_mutex);
3177                 ksm_run &= ~KSM_RUN_OFFLINE;
3178                 mutex_unlock(&ksm_thread_mutex);
3179
3180                 smp_mb();       /* wake_up_bit advises this */
3181                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3182                 break;
3183         }
3184         return NOTIFY_OK;
3185 }
3186 #else
3187 static void wait_while_offlining(void)
3188 {
3189 }
3190 #endif /* CONFIG_MEMORY_HOTREMOVE */
3191
3192 #ifdef CONFIG_PROC_FS
3193 long ksm_process_profit(struct mm_struct *mm)
3194 {
3195         return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3196                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3197 }
3198 #endif /* CONFIG_PROC_FS */
3199
3200 #ifdef CONFIG_SYSFS
3201 /*
3202  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3203  */
3204
3205 #define KSM_ATTR_RO(_name) \
3206         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3207 #define KSM_ATTR(_name) \
3208         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3209
3210 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3211                                     struct kobj_attribute *attr, char *buf)
3212 {
3213         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3214 }
3215
3216 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3217                                      struct kobj_attribute *attr,
3218                                      const char *buf, size_t count)
3219 {
3220         unsigned int msecs;
3221         int err;
3222
3223         err = kstrtouint(buf, 10, &msecs);
3224         if (err)
3225                 return -EINVAL;
3226
3227         ksm_thread_sleep_millisecs = msecs;
3228         wake_up_interruptible(&ksm_iter_wait);
3229
3230         return count;
3231 }
3232 KSM_ATTR(sleep_millisecs);
3233
3234 static ssize_t pages_to_scan_show(struct kobject *kobj,
3235                                   struct kobj_attribute *attr, char *buf)
3236 {
3237         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3238 }
3239
3240 static ssize_t pages_to_scan_store(struct kobject *kobj,
3241                                    struct kobj_attribute *attr,
3242                                    const char *buf, size_t count)
3243 {
3244         unsigned int nr_pages;
3245         int err;
3246
3247         err = kstrtouint(buf, 10, &nr_pages);
3248         if (err)
3249                 return -EINVAL;
3250
3251         ksm_thread_pages_to_scan = nr_pages;
3252
3253         return count;
3254 }
3255 KSM_ATTR(pages_to_scan);
3256
3257 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3258                         char *buf)
3259 {
3260         return sysfs_emit(buf, "%lu\n", ksm_run);
3261 }
3262
3263 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3264                          const char *buf, size_t count)
3265 {
3266         unsigned int flags;
3267         int err;
3268
3269         err = kstrtouint(buf, 10, &flags);
3270         if (err)
3271                 return -EINVAL;
3272         if (flags > KSM_RUN_UNMERGE)
3273                 return -EINVAL;
3274
3275         /*
3276          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3277          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3278          * breaking COW to free the pages_shared (but leaves mm_slots
3279          * on the list for when ksmd may be set running again).
3280          */
3281
3282         mutex_lock(&ksm_thread_mutex);
3283         wait_while_offlining();
3284         if (ksm_run != flags) {
3285                 ksm_run = flags;
3286                 if (flags & KSM_RUN_UNMERGE) {
3287                         set_current_oom_origin();
3288                         err = unmerge_and_remove_all_rmap_items();
3289                         clear_current_oom_origin();
3290                         if (err) {
3291                                 ksm_run = KSM_RUN_STOP;
3292                                 count = err;
3293                         }
3294                 }
3295         }
3296         mutex_unlock(&ksm_thread_mutex);
3297
3298         if (flags & KSM_RUN_MERGE)
3299                 wake_up_interruptible(&ksm_thread_wait);
3300
3301         return count;
3302 }
3303 KSM_ATTR(run);
3304
3305 #ifdef CONFIG_NUMA
3306 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3307                                        struct kobj_attribute *attr, char *buf)
3308 {
3309         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3310 }
3311
3312 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3313                                    struct kobj_attribute *attr,
3314                                    const char *buf, size_t count)
3315 {
3316         int err;
3317         unsigned long knob;
3318
3319         err = kstrtoul(buf, 10, &knob);
3320         if (err)
3321                 return err;
3322         if (knob > 1)
3323                 return -EINVAL;
3324
3325         mutex_lock(&ksm_thread_mutex);
3326         wait_while_offlining();
3327         if (ksm_merge_across_nodes != knob) {
3328                 if (ksm_pages_shared || remove_all_stable_nodes())
3329                         err = -EBUSY;
3330                 else if (root_stable_tree == one_stable_tree) {
3331                         struct rb_root *buf;
3332                         /*
3333                          * This is the first time that we switch away from the
3334                          * default of merging across nodes: must now allocate
3335                          * a buffer to hold as many roots as may be needed.
3336                          * Allocate stable and unstable together:
3337                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3338                          */
3339                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3340                                       GFP_KERNEL);
3341                         /* Let us assume that RB_ROOT is NULL is zero */
3342                         if (!buf)
3343                                 err = -ENOMEM;
3344                         else {
3345                                 root_stable_tree = buf;
3346                                 root_unstable_tree = buf + nr_node_ids;
3347                                 /* Stable tree is empty but not the unstable */
3348                                 root_unstable_tree[0] = one_unstable_tree[0];
3349                         }
3350                 }
3351                 if (!err) {
3352                         ksm_merge_across_nodes = knob;
3353                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3354                 }
3355         }
3356         mutex_unlock(&ksm_thread_mutex);
3357
3358         return err ? err : count;
3359 }
3360 KSM_ATTR(merge_across_nodes);
3361 #endif
3362
3363 static ssize_t use_zero_pages_show(struct kobject *kobj,
3364                                    struct kobj_attribute *attr, char *buf)
3365 {
3366         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3367 }
3368 static ssize_t use_zero_pages_store(struct kobject *kobj,
3369                                    struct kobj_attribute *attr,
3370                                    const char *buf, size_t count)
3371 {
3372         int err;
3373         bool value;
3374
3375         err = kstrtobool(buf, &value);
3376         if (err)
3377                 return -EINVAL;
3378
3379         ksm_use_zero_pages = value;
3380
3381         return count;
3382 }
3383 KSM_ATTR(use_zero_pages);
3384
3385 static ssize_t max_page_sharing_show(struct kobject *kobj,
3386                                      struct kobj_attribute *attr, char *buf)
3387 {
3388         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3389 }
3390
3391 static ssize_t max_page_sharing_store(struct kobject *kobj,
3392                                       struct kobj_attribute *attr,
3393                                       const char *buf, size_t count)
3394 {
3395         int err;
3396         int knob;
3397
3398         err = kstrtoint(buf, 10, &knob);
3399         if (err)
3400                 return err;
3401         /*
3402          * When a KSM page is created it is shared by 2 mappings. This
3403          * being a signed comparison, it implicitly verifies it's not
3404          * negative.
3405          */
3406         if (knob < 2)
3407                 return -EINVAL;
3408
3409         if (READ_ONCE(ksm_max_page_sharing) == knob)
3410                 return count;
3411
3412         mutex_lock(&ksm_thread_mutex);
3413         wait_while_offlining();
3414         if (ksm_max_page_sharing != knob) {
3415                 if (ksm_pages_shared || remove_all_stable_nodes())
3416                         err = -EBUSY;
3417                 else
3418                         ksm_max_page_sharing = knob;
3419         }
3420         mutex_unlock(&ksm_thread_mutex);
3421
3422         return err ? err : count;
3423 }
3424 KSM_ATTR(max_page_sharing);
3425
3426 static ssize_t pages_scanned_show(struct kobject *kobj,
3427                                   struct kobj_attribute *attr, char *buf)
3428 {
3429         return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3430 }
3431 KSM_ATTR_RO(pages_scanned);
3432
3433 static ssize_t pages_shared_show(struct kobject *kobj,
3434                                  struct kobj_attribute *attr, char *buf)
3435 {
3436         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3437 }
3438 KSM_ATTR_RO(pages_shared);
3439
3440 static ssize_t pages_sharing_show(struct kobject *kobj,
3441                                   struct kobj_attribute *attr, char *buf)
3442 {
3443         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3444 }
3445 KSM_ATTR_RO(pages_sharing);
3446
3447 static ssize_t pages_unshared_show(struct kobject *kobj,
3448                                    struct kobj_attribute *attr, char *buf)
3449 {
3450         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3451 }
3452 KSM_ATTR_RO(pages_unshared);
3453
3454 static ssize_t pages_volatile_show(struct kobject *kobj,
3455                                    struct kobj_attribute *attr, char *buf)
3456 {
3457         long ksm_pages_volatile;
3458
3459         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3460                                 - ksm_pages_sharing - ksm_pages_unshared;
3461         /*
3462          * It was not worth any locking to calculate that statistic,
3463          * but it might therefore sometimes be negative: conceal that.
3464          */
3465         if (ksm_pages_volatile < 0)
3466                 ksm_pages_volatile = 0;
3467         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3468 }
3469 KSM_ATTR_RO(pages_volatile);
3470
3471 static ssize_t pages_skipped_show(struct kobject *kobj,
3472                                   struct kobj_attribute *attr, char *buf)
3473 {
3474         return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3475 }
3476 KSM_ATTR_RO(pages_skipped);
3477
3478 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3479                                 struct kobj_attribute *attr, char *buf)
3480 {
3481         return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3482 }
3483 KSM_ATTR_RO(ksm_zero_pages);
3484
3485 static ssize_t general_profit_show(struct kobject *kobj,
3486                                    struct kobj_attribute *attr, char *buf)
3487 {
3488         long general_profit;
3489
3490         general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3491                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3492
3493         return sysfs_emit(buf, "%ld\n", general_profit);
3494 }
3495 KSM_ATTR_RO(general_profit);
3496
3497 static ssize_t stable_node_dups_show(struct kobject *kobj,
3498                                      struct kobj_attribute *attr, char *buf)
3499 {
3500         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3501 }
3502 KSM_ATTR_RO(stable_node_dups);
3503
3504 static ssize_t stable_node_chains_show(struct kobject *kobj,
3505                                        struct kobj_attribute *attr, char *buf)
3506 {
3507         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3508 }
3509 KSM_ATTR_RO(stable_node_chains);
3510
3511 static ssize_t
3512 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3513                                         struct kobj_attribute *attr,
3514                                         char *buf)
3515 {
3516         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3517 }
3518
3519 static ssize_t
3520 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3521                                          struct kobj_attribute *attr,
3522                                          const char *buf, size_t count)
3523 {
3524         unsigned int msecs;
3525         int err;
3526
3527         err = kstrtouint(buf, 10, &msecs);
3528         if (err)
3529                 return -EINVAL;
3530
3531         ksm_stable_node_chains_prune_millisecs = msecs;
3532
3533         return count;
3534 }
3535 KSM_ATTR(stable_node_chains_prune_millisecs);
3536
3537 static ssize_t full_scans_show(struct kobject *kobj,
3538                                struct kobj_attribute *attr, char *buf)
3539 {
3540         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3541 }
3542 KSM_ATTR_RO(full_scans);
3543
3544 static ssize_t smart_scan_show(struct kobject *kobj,
3545                                struct kobj_attribute *attr, char *buf)
3546 {
3547         return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3548 }
3549
3550 static ssize_t smart_scan_store(struct kobject *kobj,
3551                                 struct kobj_attribute *attr,
3552                                 const char *buf, size_t count)
3553 {
3554         int err;
3555         bool value;
3556
3557         err = kstrtobool(buf, &value);
3558         if (err)
3559                 return -EINVAL;
3560
3561         ksm_smart_scan = value;
3562         return count;
3563 }
3564 KSM_ATTR(smart_scan);
3565
3566 static struct attribute *ksm_attrs[] = {
3567         &sleep_millisecs_attr.attr,
3568         &pages_to_scan_attr.attr,
3569         &run_attr.attr,
3570         &pages_scanned_attr.attr,
3571         &pages_shared_attr.attr,
3572         &pages_sharing_attr.attr,
3573         &pages_unshared_attr.attr,
3574         &pages_volatile_attr.attr,
3575         &pages_skipped_attr.attr,
3576         &ksm_zero_pages_attr.attr,
3577         &full_scans_attr.attr,
3578 #ifdef CONFIG_NUMA
3579         &merge_across_nodes_attr.attr,
3580 #endif
3581         &max_page_sharing_attr.attr,
3582         &stable_node_chains_attr.attr,
3583         &stable_node_dups_attr.attr,
3584         &stable_node_chains_prune_millisecs_attr.attr,
3585         &use_zero_pages_attr.attr,
3586         &general_profit_attr.attr,
3587         &smart_scan_attr.attr,
3588         NULL,
3589 };
3590
3591 static const struct attribute_group ksm_attr_group = {
3592         .attrs = ksm_attrs,
3593         .name = "ksm",
3594 };
3595 #endif /* CONFIG_SYSFS */
3596
3597 static int __init ksm_init(void)
3598 {
3599         struct task_struct *ksm_thread;
3600         int err;
3601
3602         /* The correct value depends on page size and endianness */
3603         zero_checksum = calc_checksum(ZERO_PAGE(0));
3604         /* Default to false for backwards compatibility */
3605         ksm_use_zero_pages = false;
3606
3607         err = ksm_slab_init();
3608         if (err)
3609                 goto out;
3610
3611         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3612         if (IS_ERR(ksm_thread)) {
3613                 pr_err("ksm: creating kthread failed\n");
3614                 err = PTR_ERR(ksm_thread);
3615                 goto out_free;
3616         }
3617
3618 #ifdef CONFIG_SYSFS
3619         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3620         if (err) {
3621                 pr_err("ksm: register sysfs failed\n");
3622                 kthread_stop(ksm_thread);
3623                 goto out_free;
3624         }
3625 #else
3626         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3627
3628 #endif /* CONFIG_SYSFS */
3629
3630 #ifdef CONFIG_MEMORY_HOTREMOVE
3631         /* There is no significance to this priority 100 */
3632         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3633 #endif
3634         return 0;
3635
3636 out_free:
3637         ksm_slab_free();
3638 out:
3639         return err;
3640 }
3641 subsys_initcall(ksm_init);