1 // SPDX-License-Identifier: GPL-2.0
3 * KMSAN hooks for kernel subsystems.
5 * These functions handle creation of KMSAN metadata for memory allocations.
7 * Copyright (C) 2018-2022 Google LLC
8 * Author: Alexander Potapenko <glider@google.com>
12 #include <linux/cacheflush.h>
13 #include <linux/dma-direction.h>
14 #include <linux/gfp.h>
15 #include <linux/kmsan.h>
17 #include <linux/mm_types.h>
18 #include <linux/scatterlist.h>
19 #include <linux/slab.h>
20 #include <linux/uaccess.h>
21 #include <linux/usb.h>
23 #include "../internal.h"
28 * Instrumented functions shouldn't be called under
29 * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
30 * skipping effects of functions like memset() inside instrumented code.
33 void kmsan_task_create(struct task_struct *task)
35 kmsan_enter_runtime();
36 kmsan_internal_task_create(task);
37 kmsan_leave_runtime();
40 void kmsan_task_exit(struct task_struct *task)
42 struct kmsan_ctx *ctx = &task->kmsan_ctx;
44 if (!kmsan_enabled || kmsan_in_runtime())
47 ctx->allow_reporting = false;
50 void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
52 if (unlikely(object == NULL))
54 if (!kmsan_enabled || kmsan_in_runtime())
57 * There's a ctor or this is an RCU cache - do nothing. The memory
58 * status hasn't changed since last use.
60 if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
63 kmsan_enter_runtime();
64 if (flags & __GFP_ZERO)
65 kmsan_internal_unpoison_memory(object, s->object_size,
68 kmsan_internal_poison_memory(object, s->object_size, flags,
70 kmsan_leave_runtime();
73 void kmsan_slab_free(struct kmem_cache *s, void *object)
75 if (!kmsan_enabled || kmsan_in_runtime())
78 /* RCU slabs could be legally used after free within the RCU period */
79 if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)))
82 * If there's a constructor, freed memory must remain in the same state
83 * until the next allocation. We cannot save its state to detect
84 * use-after-free bugs, instead we just keep it unpoisoned.
88 kmsan_enter_runtime();
89 kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL,
90 KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
91 kmsan_leave_runtime();
94 void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
96 if (unlikely(ptr == NULL))
98 if (!kmsan_enabled || kmsan_in_runtime())
100 kmsan_enter_runtime();
101 if (flags & __GFP_ZERO)
102 kmsan_internal_unpoison_memory((void *)ptr, size,
105 kmsan_internal_poison_memory((void *)ptr, size, flags,
107 kmsan_leave_runtime();
110 void kmsan_kfree_large(const void *ptr)
114 if (!kmsan_enabled || kmsan_in_runtime())
116 kmsan_enter_runtime();
117 page = virt_to_head_page((void *)ptr);
118 KMSAN_WARN_ON(ptr != page_address(page));
119 kmsan_internal_poison_memory((void *)ptr,
122 KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
123 kmsan_leave_runtime();
126 static unsigned long vmalloc_shadow(unsigned long addr)
128 return (unsigned long)kmsan_get_metadata((void *)addr,
132 static unsigned long vmalloc_origin(unsigned long addr)
134 return (unsigned long)kmsan_get_metadata((void *)addr,
138 void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
140 __vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
141 __vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
142 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
143 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
147 * This function creates new shadow/origin pages for the physical pages mapped
148 * into the virtual memory. If those physical pages already had shadow/origin,
151 int kmsan_ioremap_page_range(unsigned long start, unsigned long end,
152 phys_addr_t phys_addr, pgprot_t prot,
153 unsigned int page_shift)
155 gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
156 struct page *shadow, *origin;
157 unsigned long off = 0;
158 int nr, err = 0, clean = 0, mapped;
160 if (!kmsan_enabled || kmsan_in_runtime())
163 nr = (end - start) / PAGE_SIZE;
164 kmsan_enter_runtime();
165 for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) {
166 shadow = alloc_pages(gfp_mask, 1);
167 origin = alloc_pages(gfp_mask, 1);
168 if (!shadow || !origin) {
172 mapped = __vmap_pages_range_noflush(
173 vmalloc_shadow(start + off),
174 vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
181 mapped = __vmap_pages_range_noflush(
182 vmalloc_origin(start + off),
183 vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
186 __vunmap_range_noflush(
187 vmalloc_shadow(start + off),
188 vmalloc_shadow(start + off + PAGE_SIZE));
194 /* Page mapping loop finished normally, nothing to clean up. */
200 * Something went wrong. Clean up shadow/origin pages allocated
201 * on the last loop iteration, then delete mappings created
202 * during the previous iterations.
205 __free_pages(shadow, 1);
207 __free_pages(origin, 1);
208 __vunmap_range_noflush(
209 vmalloc_shadow(start),
210 vmalloc_shadow(start + clean * PAGE_SIZE));
211 __vunmap_range_noflush(
212 vmalloc_origin(start),
213 vmalloc_origin(start + clean * PAGE_SIZE));
215 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
216 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
217 kmsan_leave_runtime();
221 void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
223 unsigned long v_shadow, v_origin;
224 struct page *shadow, *origin;
227 if (!kmsan_enabled || kmsan_in_runtime())
230 nr = (end - start) / PAGE_SIZE;
231 kmsan_enter_runtime();
232 v_shadow = (unsigned long)vmalloc_shadow(start);
233 v_origin = (unsigned long)vmalloc_origin(start);
234 for (int i = 0; i < nr;
235 i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
236 shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
237 origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
238 __vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
239 __vunmap_range_noflush(v_origin, vmalloc_origin(end));
241 __free_pages(shadow, 1);
243 __free_pages(origin, 1);
245 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
246 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
247 kmsan_leave_runtime();
250 void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
253 unsigned long ua_flags;
255 if (!kmsan_enabled || kmsan_in_runtime())
258 * At this point we've copied the memory already. It's hard to check it
259 * before copying, as the size of actually copied buffer is unknown.
262 /* copy_to_user() may copy zero bytes. No need to check. */
265 /* Or maybe copy_to_user() failed to copy anything. */
269 ua_flags = user_access_save();
270 if ((u64)to < TASK_SIZE) {
271 /* This is a user memory access, check it. */
272 kmsan_internal_check_memory((void *)from, to_copy - left, to,
273 REASON_COPY_TO_USER);
275 /* Otherwise this is a kernel memory access. This happens when a
276 * compat syscall passes an argument allocated on the kernel
277 * stack to a real syscall.
278 * Don't check anything, just copy the shadow of the copied
281 kmsan_internal_memmove_metadata((void *)to, (void *)from,
284 user_access_restore(ua_flags);
286 EXPORT_SYMBOL(kmsan_copy_to_user);
288 /* Helper function to check an URB. */
289 void kmsan_handle_urb(const struct urb *urb, bool is_out)
294 kmsan_internal_check_memory(urb->transfer_buffer,
295 urb->transfer_buffer_length,
296 /*user_addr*/ 0, REASON_SUBMIT_URB);
298 kmsan_internal_unpoison_memory(urb->transfer_buffer,
299 urb->transfer_buffer_length,
302 EXPORT_SYMBOL_GPL(kmsan_handle_urb);
304 static void kmsan_handle_dma_page(const void *addr, size_t size,
305 enum dma_data_direction dir)
308 case DMA_BIDIRECTIONAL:
309 kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
311 kmsan_internal_unpoison_memory((void *)addr, size,
315 kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
318 case DMA_FROM_DEVICE:
319 kmsan_internal_unpoison_memory((void *)addr, size,
327 /* Helper function to handle DMA data transfers. */
328 void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
329 enum dma_data_direction dir)
331 u64 page_offset, to_go, addr;
333 if (PageHighMem(page))
335 addr = (u64)page_address(page) + offset;
337 * The kernel may occasionally give us adjacent DMA pages not belonging
338 * to the same allocation. Process them separately to avoid triggering
339 * internal KMSAN checks.
342 page_offset = offset_in_page(addr);
343 to_go = min(PAGE_SIZE - page_offset, (u64)size);
344 kmsan_handle_dma_page((void *)addr, to_go, dir);
350 void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
351 enum dma_data_direction dir)
353 struct scatterlist *item;
356 for_each_sg(sg, item, nents, i)
357 kmsan_handle_dma(sg_page(item), item->offset, item->length,
361 /* Functions from kmsan-checks.h follow. */
364 * To create an origin, kmsan_poison_memory() unwinds the stacks and stores it
365 * into the stack depot. This may cause deadlocks if done from within KMSAN
366 * runtime, therefore we bail out if kmsan_in_runtime().
368 void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
370 if (!kmsan_enabled || kmsan_in_runtime())
372 kmsan_enter_runtime();
373 /* The users may want to poison/unpoison random memory. */
374 kmsan_internal_poison_memory((void *)address, size, flags,
375 KMSAN_POISON_NOCHECK);
376 kmsan_leave_runtime();
378 EXPORT_SYMBOL(kmsan_poison_memory);
381 * Unlike kmsan_poison_memory(), this function can be used from within KMSAN
382 * runtime, because it does not trigger allocations or call instrumented code.
384 void kmsan_unpoison_memory(const void *address, size_t size)
386 unsigned long ua_flags;
391 ua_flags = user_access_save();
392 /* The users may want to poison/unpoison random memory. */
393 kmsan_internal_unpoison_memory((void *)address, size,
394 KMSAN_POISON_NOCHECK);
395 user_access_restore(ua_flags);
397 EXPORT_SYMBOL(kmsan_unpoison_memory);
400 * Version of kmsan_unpoison_memory() called from IRQ entry functions.
402 void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
404 kmsan_unpoison_memory((void *)regs, sizeof(*regs));
407 void kmsan_check_memory(const void *addr, size_t size)
411 return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
414 EXPORT_SYMBOL(kmsan_check_memory);