arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object_tree_root (or
18  *   object_phys_tree_root). The object_list is the main list holding the
19  *   metadata (struct kmemleak_object) for the allocated memory blocks.
20  *   The object_tree_root and object_phys_tree_root are red
21  *   black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The object_phys_tree_root is for objects
23  *   allocated with physical address. The kmemleak_object structures are
24  *   added to the object_list and object_tree_root (or object_phys_tree_root)
25  *   in the create_object() function called from the kmemleak_alloc() (or
26  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
27  *   the kmemleak_free() callback
28  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
30  *   that some members of this structure may be protected by other means
31  *   (atomic or kmemleak_lock). This lock is also held when scanning the
32  *   corresponding memory block to avoid the kernel freeing it via the
33  *   kmemleak_free() callback. This is less heavyweight than holding a global
34  *   lock like kmemleak_lock during scanning.
35  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36  *   unreferenced objects at a time. The gray_list contains the objects which
37  *   are already referenced or marked as false positives and need to be
38  *   scanned. This list is only modified during a scanning episode when the
39  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
40  *   Note that the kmemleak_object.use_count is incremented when an object is
41  *   added to the gray_list and therefore cannot be freed. This mutex also
42  *   prevents multiple users of the "kmemleak" debugfs file together with
43  *   modifications to the memory scanning parameters including the scan_thread
44  *   pointer
45  *
46  * Locks and mutexes are acquired/nested in the following order:
47  *
48  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49  *
50  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51  * regions.
52  *
53  * The kmemleak_object structures have a use_count incremented or decremented
54  * using the get_object()/put_object() functions. When the use_count becomes
55  * 0, this count can no longer be incremented and put_object() schedules the
56  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57  * function must be protected by rcu_read_lock() to avoid accessing a freed
58  * structure.
59  */
60
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
63 #include <linux/init.h>
64 #include <linux/kernel.h>
65 #include <linux/list.h>
66 #include <linux/sched/signal.h>
67 #include <linux/sched/task.h>
68 #include <linux/sched/task_stack.h>
69 #include <linux/jiffies.h>
70 #include <linux/delay.h>
71 #include <linux/export.h>
72 #include <linux/kthread.h>
73 #include <linux/rbtree.h>
74 #include <linux/fs.h>
75 #include <linux/debugfs.h>
76 #include <linux/seq_file.h>
77 #include <linux/cpumask.h>
78 #include <linux/spinlock.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/stackdepot.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/memblock.h>
87 #include <linux/pfn.h>
88 #include <linux/mmzone.h>
89 #include <linux/slab.h>
90 #include <linux/thread_info.h>
91 #include <linux/err.h>
92 #include <linux/uaccess.h>
93 #include <linux/string.h>
94 #include <linux/nodemask.h>
95 #include <linux/mm.h>
96 #include <linux/workqueue.h>
97 #include <linux/crc32.h>
98
99 #include <asm/sections.h>
100 #include <asm/processor.h>
101 #include <linux/atomic.h>
102
103 #include <linux/kasan.h>
104 #include <linux/kfence.h>
105 #include <linux/kmemleak.h>
106 #include <linux/memory_hotplug.h>
107
108 /*
109  * Kmemleak configuration and common defines.
110  */
111 #define MAX_TRACE               16      /* stack trace length */
112 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
113 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
114 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
115 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
116
117 #define BYTES_PER_POINTER       sizeof(void *)
118
119 /* GFP bitmask for kmemleak internal allocations */
120 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121                                            __GFP_NOLOCKDEP)) | \
122                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
123                                  __GFP_NOWARN)
124
125 /* scanning area inside a memory block */
126 struct kmemleak_scan_area {
127         struct hlist_node node;
128         unsigned long start;
129         size_t size;
130 };
131
132 #define KMEMLEAK_GREY   0
133 #define KMEMLEAK_BLACK  -1
134
135 /*
136  * Structure holding the metadata for each allocated memory block.
137  * Modifications to such objects should be made while holding the
138  * object->lock. Insertions or deletions from object_list, gray_list or
139  * rb_node are already protected by the corresponding locks or mutex (see
140  * the notes on locking above). These objects are reference-counted
141  * (use_count) and freed using the RCU mechanism.
142  */
143 struct kmemleak_object {
144         raw_spinlock_t lock;
145         unsigned int flags;             /* object status flags */
146         struct list_head object_list;
147         struct list_head gray_list;
148         struct rb_node rb_node;
149         struct rcu_head rcu;            /* object_list lockless traversal */
150         /* object usage count; object freed when use_count == 0 */
151         atomic_t use_count;
152         unsigned int del_state;         /* deletion state */
153         unsigned long pointer;
154         size_t size;
155         /* pass surplus references to this pointer */
156         unsigned long excess_ref;
157         /* minimum number of a pointers found before it is considered leak */
158         int min_count;
159         /* the total number of pointers found pointing to this object */
160         int count;
161         /* checksum for detecting modified objects */
162         u32 checksum;
163         /* memory ranges to be scanned inside an object (empty for all) */
164         struct hlist_head area_list;
165         depot_stack_handle_t trace_handle;
166         unsigned long jiffies;          /* creation timestamp */
167         pid_t pid;                      /* pid of the current task */
168         char comm[TASK_COMM_LEN];       /* executable name */
169 };
170
171 /* flag representing the memory block allocation status */
172 #define OBJECT_ALLOCATED        (1 << 0)
173 /* flag set after the first reporting of an unreference object */
174 #define OBJECT_REPORTED         (1 << 1)
175 /* flag set to not scan the object */
176 #define OBJECT_NO_SCAN          (1 << 2)
177 /* flag set to fully scan the object when scan_area allocation failed */
178 #define OBJECT_FULL_SCAN        (1 << 3)
179 /* flag set for object allocated with physical address */
180 #define OBJECT_PHYS             (1 << 4)
181
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED        (1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE      (1 << 1)
186
187 #define HEX_PREFIX              "    "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE            16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE          1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII               1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES           2
196
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
210 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
211
212 /* allocation caches for kmemleak internal data */
213 static struct kmem_cache *object_cache;
214 static struct kmem_cache *scan_area_cache;
215
216 /* set if tracing memory operations is enabled */
217 static int kmemleak_enabled = 1;
218 /* same as above but only for the kmemleak_free() callback */
219 static int kmemleak_free_enabled = 1;
220 /* set in the late_initcall if there were no errors */
221 static int kmemleak_late_initialized;
222 /* set if a kmemleak warning was issued */
223 static int kmemleak_warning;
224 /* set if a fatal kmemleak error has occurred */
225 static int kmemleak_error;
226
227 /* minimum and maximum address that may be valid pointers */
228 static unsigned long min_addr = ULONG_MAX;
229 static unsigned long max_addr;
230
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
249 static void kmemleak_disable(void);
250
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)     do {            \
255         pr_warn(x);                             \
256         dump_stack();                           \
257         kmemleak_warning = 1;                   \
258 } while (0)
259
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)     do {    \
266         kmemleak_warn(x);               \
267         kmemleak_disable();             \
268 } while (0)
269
270 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
271         if (seq)                                        \
272                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
273         else                                            \
274                 pr_warn(fmt, ##__VA_ARGS__);            \
275 } while (0)
276
277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278                                  int rowsize, int groupsize, const void *buf,
279                                  size_t len, bool ascii)
280 {
281         if (seq)
282                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283                              buf, len, ascii);
284         else
285                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286                                rowsize, groupsize, buf, len, ascii);
287 }
288
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
295 static void hex_dump_object(struct seq_file *seq,
296                             struct kmemleak_object *object)
297 {
298         const u8 *ptr = (const u8 *)object->pointer;
299         size_t len;
300
301         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302                 return;
303
304         /* limit the number of lines to HEX_MAX_LINES */
305         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306
307         warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
308         kasan_disable_current();
309         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
310                              HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
311         kasan_enable_current();
312 }
313
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *              sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *              (min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326         return object->count != KMEMLEAK_BLACK &&
327                 object->count < object->min_count;
328 }
329
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332         return object->min_count != KMEMLEAK_BLACK &&
333                 object->count >= object->min_count;
334 }
335
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344                 time_before_eq(object->jiffies + jiffies_min_age,
345                                jiffies_last_scan);
346 }
347
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353                                struct kmemleak_object *object)
354 {
355         int i;
356         unsigned long *entries;
357         unsigned int nr_entries;
358         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
359
360         nr_entries = stack_depot_fetch(object->trace_handle, &entries);
361         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362                           object->pointer, object->size);
363         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364                            object->comm, object->pid, object->jiffies,
365                            msecs_age / 1000, msecs_age % 1000);
366         hex_dump_object(seq, object);
367         warn_or_seq_printf(seq, "  backtrace:\n");
368
369         for (i = 0; i < nr_entries; i++) {
370                 void *ptr = (void *)entries[i];
371                 warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372         }
373 }
374
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382         pr_notice("Object 0x%08lx (size %zu):\n",
383                         object->pointer, object->size);
384         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385                         object->comm, object->pid, object->jiffies);
386         pr_notice("  min_count = %d\n", object->min_count);
387         pr_notice("  count = %d\n", object->count);
388         pr_notice("  flags = 0x%x\n", object->flags);
389         pr_notice("  checksum = %u\n", object->checksum);
390         pr_notice("  backtrace:\n");
391         if (object->trace_handle)
392                 stack_depot_print(object->trace_handle);
393 }
394
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402                                                bool is_phys)
403 {
404         struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405                              object_tree_root.rb_node;
406         unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
407
408         while (rb) {
409                 struct kmemleak_object *object;
410                 unsigned long untagged_objp;
411
412                 object = rb_entry(rb, struct kmemleak_object, rb_node);
413                 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414
415                 if (untagged_ptr < untagged_objp)
416                         rb = object->rb_node.rb_left;
417                 else if (untagged_objp + object->size <= untagged_ptr)
418                         rb = object->rb_node.rb_right;
419                 else if (untagged_objp == untagged_ptr || alias)
420                         return object;
421                 else {
422                         kmemleak_warn("Found object by alias at 0x%08lx\n",
423                                       ptr);
424                         dump_object_info(object);
425                         break;
426                 }
427         }
428         return NULL;
429 }
430
431 /* Look-up a kmemleak object which allocated with virtual address. */
432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433 {
434         return __lookup_object(ptr, alias, false);
435 }
436
437 /*
438  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439  * that once an object's use_count reached 0, the RCU freeing was already
440  * registered and the object should no longer be used. This function must be
441  * called under the protection of rcu_read_lock().
442  */
443 static int get_object(struct kmemleak_object *object)
444 {
445         return atomic_inc_not_zero(&object->use_count);
446 }
447
448 /*
449  * Memory pool allocation and freeing. kmemleak_lock must not be held.
450  */
451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452 {
453         unsigned long flags;
454         struct kmemleak_object *object;
455
456         /* try the slab allocator first */
457         if (object_cache) {
458                 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459                 if (object)
460                         return object;
461         }
462
463         /* slab allocation failed, try the memory pool */
464         raw_spin_lock_irqsave(&kmemleak_lock, flags);
465         object = list_first_entry_or_null(&mem_pool_free_list,
466                                           typeof(*object), object_list);
467         if (object)
468                 list_del(&object->object_list);
469         else if (mem_pool_free_count)
470                 object = &mem_pool[--mem_pool_free_count];
471         else
472                 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
473         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
474
475         return object;
476 }
477
478 /*
479  * Return the object to either the slab allocator or the memory pool.
480  */
481 static void mem_pool_free(struct kmemleak_object *object)
482 {
483         unsigned long flags;
484
485         if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486                 kmem_cache_free(object_cache, object);
487                 return;
488         }
489
490         /* add the object to the memory pool free list */
491         raw_spin_lock_irqsave(&kmemleak_lock, flags);
492         list_add(&object->object_list, &mem_pool_free_list);
493         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 }
495
496 /*
497  * RCU callback to free a kmemleak_object.
498  */
499 static void free_object_rcu(struct rcu_head *rcu)
500 {
501         struct hlist_node *tmp;
502         struct kmemleak_scan_area *area;
503         struct kmemleak_object *object =
504                 container_of(rcu, struct kmemleak_object, rcu);
505
506         /*
507          * Once use_count is 0 (guaranteed by put_object), there is no other
508          * code accessing this object, hence no need for locking.
509          */
510         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511                 hlist_del(&area->node);
512                 kmem_cache_free(scan_area_cache, area);
513         }
514         mem_pool_free(object);
515 }
516
517 /*
518  * Decrement the object use_count. Once the count is 0, free the object using
519  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520  * delete_object() path, the delayed RCU freeing ensures that there is no
521  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522  * is also possible.
523  */
524 static void put_object(struct kmemleak_object *object)
525 {
526         if (!atomic_dec_and_test(&object->use_count))
527                 return;
528
529         /* should only get here after delete_object was called */
530         WARN_ON(object->flags & OBJECT_ALLOCATED);
531
532         /*
533          * It may be too early for the RCU callbacks, however, there is no
534          * concurrent object_list traversal when !object_cache and all objects
535          * came from the memory pool. Free the object directly.
536          */
537         if (object_cache)
538                 call_rcu(&object->rcu, free_object_rcu);
539         else
540                 free_object_rcu(&object->rcu);
541 }
542
543 /*
544  * Look up an object in the object search tree and increase its use_count.
545  */
546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547                                                      bool is_phys)
548 {
549         unsigned long flags;
550         struct kmemleak_object *object;
551
552         rcu_read_lock();
553         raw_spin_lock_irqsave(&kmemleak_lock, flags);
554         object = __lookup_object(ptr, alias, is_phys);
555         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556
557         /* check whether the object is still available */
558         if (object && !get_object(object))
559                 object = NULL;
560         rcu_read_unlock();
561
562         return object;
563 }
564
565 /* Look up and get an object which allocated with virtual address. */
566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567 {
568         return __find_and_get_object(ptr, alias, false);
569 }
570
571 /*
572  * Remove an object from the object_tree_root (or object_phys_tree_root)
573  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574  * is still enabled.
575  */
576 static void __remove_object(struct kmemleak_object *object)
577 {
578         rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579                                    &object_phys_tree_root :
580                                    &object_tree_root);
581         if (!(object->del_state & DELSTATE_NO_DELETE))
582                 list_del_rcu(&object->object_list);
583         object->del_state |= DELSTATE_REMOVED;
584 }
585
586 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
587                                                         int alias,
588                                                         bool is_phys)
589 {
590         struct kmemleak_object *object;
591
592         object = __lookup_object(ptr, alias, is_phys);
593         if (object)
594                 __remove_object(object);
595
596         return object;
597 }
598
599 /*
600  * Look up an object in the object search tree and remove it from both
601  * object_tree_root (or object_phys_tree_root) and object_list. The
602  * returned object's use_count should be at least 1, as initially set
603  * by create_object().
604  */
605 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
606                                                       bool is_phys)
607 {
608         unsigned long flags;
609         struct kmemleak_object *object;
610
611         raw_spin_lock_irqsave(&kmemleak_lock, flags);
612         object = __find_and_remove_object(ptr, alias, is_phys);
613         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
614
615         return object;
616 }
617
618 static noinline depot_stack_handle_t set_track_prepare(void)
619 {
620         depot_stack_handle_t trace_handle;
621         unsigned long entries[MAX_TRACE];
622         unsigned int nr_entries;
623
624         /*
625          * Use object_cache to determine whether kmemleak_init() has
626          * been invoked. stack_depot_early_init() is called before
627          * kmemleak_init() in mm_core_init().
628          */
629         if (!object_cache)
630                 return 0;
631         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
632         trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
633
634         return trace_handle;
635 }
636
637 static struct kmemleak_object *__alloc_object(gfp_t gfp)
638 {
639         struct kmemleak_object *object;
640
641         object = mem_pool_alloc(gfp);
642         if (!object) {
643                 pr_warn("Cannot allocate a kmemleak_object structure\n");
644                 kmemleak_disable();
645                 return NULL;
646         }
647
648         INIT_LIST_HEAD(&object->object_list);
649         INIT_LIST_HEAD(&object->gray_list);
650         INIT_HLIST_HEAD(&object->area_list);
651         raw_spin_lock_init(&object->lock);
652         atomic_set(&object->use_count, 1);
653         object->excess_ref = 0;
654         object->count = 0;                      /* white color initially */
655         object->checksum = 0;
656         object->del_state = 0;
657
658         /* task information */
659         if (in_hardirq()) {
660                 object->pid = 0;
661                 strncpy(object->comm, "hardirq", sizeof(object->comm));
662         } else if (in_serving_softirq()) {
663                 object->pid = 0;
664                 strncpy(object->comm, "softirq", sizeof(object->comm));
665         } else {
666                 object->pid = current->pid;
667                 /*
668                  * There is a small chance of a race with set_task_comm(),
669                  * however using get_task_comm() here may cause locking
670                  * dependency issues with current->alloc_lock. In the worst
671                  * case, the command line is not correct.
672                  */
673                 strncpy(object->comm, current->comm, sizeof(object->comm));
674         }
675
676         /* kernel backtrace */
677         object->trace_handle = set_track_prepare();
678
679         return object;
680 }
681
682 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
683                          size_t size, int min_count, bool is_phys)
684 {
685
686         struct kmemleak_object *parent;
687         struct rb_node **link, *rb_parent;
688         unsigned long untagged_ptr;
689         unsigned long untagged_objp;
690
691         object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
692         object->pointer = ptr;
693         object->size = kfence_ksize((void *)ptr) ?: size;
694         object->min_count = min_count;
695         object->jiffies = jiffies;
696
697         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
698         /*
699          * Only update min_addr and max_addr with object
700          * storing virtual address.
701          */
702         if (!is_phys) {
703                 min_addr = min(min_addr, untagged_ptr);
704                 max_addr = max(max_addr, untagged_ptr + size);
705         }
706         link = is_phys ? &object_phys_tree_root.rb_node :
707                 &object_tree_root.rb_node;
708         rb_parent = NULL;
709         while (*link) {
710                 rb_parent = *link;
711                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
712                 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
713                 if (untagged_ptr + size <= untagged_objp)
714                         link = &parent->rb_node.rb_left;
715                 else if (untagged_objp + parent->size <= untagged_ptr)
716                         link = &parent->rb_node.rb_right;
717                 else {
718                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
719                                       ptr);
720                         /*
721                          * No need for parent->lock here since "parent" cannot
722                          * be freed while the kmemleak_lock is held.
723                          */
724                         dump_object_info(parent);
725                         return -EEXIST;
726                 }
727         }
728         rb_link_node(&object->rb_node, rb_parent, link);
729         rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
730                                           &object_tree_root);
731         list_add_tail_rcu(&object->object_list, &object_list);
732
733         return 0;
734 }
735
736 /*
737  * Create the metadata (struct kmemleak_object) corresponding to an allocated
738  * memory block and add it to the object_list and object_tree_root (or
739  * object_phys_tree_root).
740  */
741 static void __create_object(unsigned long ptr, size_t size,
742                                 int min_count, gfp_t gfp, bool is_phys)
743 {
744         struct kmemleak_object *object;
745         unsigned long flags;
746         int ret;
747
748         object = __alloc_object(gfp);
749         if (!object)
750                 return;
751
752         raw_spin_lock_irqsave(&kmemleak_lock, flags);
753         ret = __link_object(object, ptr, size, min_count, is_phys);
754         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
755         if (ret)
756                 mem_pool_free(object);
757 }
758
759 /* Create kmemleak object which allocated with virtual address. */
760 static void create_object(unsigned long ptr, size_t size,
761                           int min_count, gfp_t gfp)
762 {
763         __create_object(ptr, size, min_count, gfp, false);
764 }
765
766 /* Create kmemleak object which allocated with physical address. */
767 static void create_object_phys(unsigned long ptr, size_t size,
768                                int min_count, gfp_t gfp)
769 {
770         __create_object(ptr, size, min_count, gfp, true);
771 }
772
773 /*
774  * Mark the object as not allocated and schedule RCU freeing via put_object().
775  */
776 static void __delete_object(struct kmemleak_object *object)
777 {
778         unsigned long flags;
779
780         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
781         WARN_ON(atomic_read(&object->use_count) < 1);
782
783         /*
784          * Locking here also ensures that the corresponding memory block
785          * cannot be freed when it is being scanned.
786          */
787         raw_spin_lock_irqsave(&object->lock, flags);
788         object->flags &= ~OBJECT_ALLOCATED;
789         raw_spin_unlock_irqrestore(&object->lock, flags);
790         put_object(object);
791 }
792
793 /*
794  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
795  * delete it.
796  */
797 static void delete_object_full(unsigned long ptr)
798 {
799         struct kmemleak_object *object;
800
801         object = find_and_remove_object(ptr, 0, false);
802         if (!object) {
803 #ifdef DEBUG
804                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
805                               ptr);
806 #endif
807                 return;
808         }
809         __delete_object(object);
810 }
811
812 /*
813  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
814  * delete it. If the memory block is partially freed, the function may create
815  * additional metadata for the remaining parts of the block.
816  */
817 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
818 {
819         struct kmemleak_object *object, *object_l, *object_r;
820         unsigned long start, end, flags;
821
822         object_l = __alloc_object(GFP_KERNEL);
823         if (!object_l)
824                 return;
825
826         object_r = __alloc_object(GFP_KERNEL);
827         if (!object_r)
828                 goto out;
829
830         raw_spin_lock_irqsave(&kmemleak_lock, flags);
831         object = __find_and_remove_object(ptr, 1, is_phys);
832         if (!object) {
833 #ifdef DEBUG
834                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
835                               ptr, size);
836 #endif
837                 goto unlock;
838         }
839
840         /*
841          * Create one or two objects that may result from the memory block
842          * split. Note that partial freeing is only done by free_bootmem() and
843          * this happens before kmemleak_init() is called.
844          */
845         start = object->pointer;
846         end = object->pointer + object->size;
847         if ((ptr > start) &&
848             !__link_object(object_l, start, ptr - start,
849                            object->min_count, is_phys))
850                 object_l = NULL;
851         if ((ptr + size < end) &&
852             !__link_object(object_r, ptr + size, end - ptr - size,
853                            object->min_count, is_phys))
854                 object_r = NULL;
855
856 unlock:
857         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
858         if (object)
859                 __delete_object(object);
860
861 out:
862         if (object_l)
863                 mem_pool_free(object_l);
864         if (object_r)
865                 mem_pool_free(object_r);
866 }
867
868 static void __paint_it(struct kmemleak_object *object, int color)
869 {
870         object->min_count = color;
871         if (color == KMEMLEAK_BLACK)
872                 object->flags |= OBJECT_NO_SCAN;
873 }
874
875 static void paint_it(struct kmemleak_object *object, int color)
876 {
877         unsigned long flags;
878
879         raw_spin_lock_irqsave(&object->lock, flags);
880         __paint_it(object, color);
881         raw_spin_unlock_irqrestore(&object->lock, flags);
882 }
883
884 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
885 {
886         struct kmemleak_object *object;
887
888         object = __find_and_get_object(ptr, 0, is_phys);
889         if (!object) {
890                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
891                               ptr,
892                               (color == KMEMLEAK_GREY) ? "Grey" :
893                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
894                 return;
895         }
896         paint_it(object, color);
897         put_object(object);
898 }
899
900 /*
901  * Mark an object permanently as gray-colored so that it can no longer be
902  * reported as a leak. This is used in general to mark a false positive.
903  */
904 static void make_gray_object(unsigned long ptr)
905 {
906         paint_ptr(ptr, KMEMLEAK_GREY, false);
907 }
908
909 /*
910  * Mark the object as black-colored so that it is ignored from scans and
911  * reporting.
912  */
913 static void make_black_object(unsigned long ptr, bool is_phys)
914 {
915         paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
916 }
917
918 /*
919  * Add a scanning area to the object. If at least one such area is added,
920  * kmemleak will only scan these ranges rather than the whole memory block.
921  */
922 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
923 {
924         unsigned long flags;
925         struct kmemleak_object *object;
926         struct kmemleak_scan_area *area = NULL;
927         unsigned long untagged_ptr;
928         unsigned long untagged_objp;
929
930         object = find_and_get_object(ptr, 1);
931         if (!object) {
932                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
933                               ptr);
934                 return;
935         }
936
937         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
938         untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
939
940         if (scan_area_cache)
941                 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
942
943         raw_spin_lock_irqsave(&object->lock, flags);
944         if (!area) {
945                 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
946                 /* mark the object for full scan to avoid false positives */
947                 object->flags |= OBJECT_FULL_SCAN;
948                 goto out_unlock;
949         }
950         if (size == SIZE_MAX) {
951                 size = untagged_objp + object->size - untagged_ptr;
952         } else if (untagged_ptr + size > untagged_objp + object->size) {
953                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
954                 dump_object_info(object);
955                 kmem_cache_free(scan_area_cache, area);
956                 goto out_unlock;
957         }
958
959         INIT_HLIST_NODE(&area->node);
960         area->start = ptr;
961         area->size = size;
962
963         hlist_add_head(&area->node, &object->area_list);
964 out_unlock:
965         raw_spin_unlock_irqrestore(&object->lock, flags);
966         put_object(object);
967 }
968
969 /*
970  * Any surplus references (object already gray) to 'ptr' are passed to
971  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
972  * vm_struct may be used as an alternative reference to the vmalloc'ed object
973  * (see free_thread_stack()).
974  */
975 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
976 {
977         unsigned long flags;
978         struct kmemleak_object *object;
979
980         object = find_and_get_object(ptr, 0);
981         if (!object) {
982                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
983                               ptr);
984                 return;
985         }
986
987         raw_spin_lock_irqsave(&object->lock, flags);
988         object->excess_ref = excess_ref;
989         raw_spin_unlock_irqrestore(&object->lock, flags);
990         put_object(object);
991 }
992
993 /*
994  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
995  * pointer. Such object will not be scanned by kmemleak but references to it
996  * are searched.
997  */
998 static void object_no_scan(unsigned long ptr)
999 {
1000         unsigned long flags;
1001         struct kmemleak_object *object;
1002
1003         object = find_and_get_object(ptr, 0);
1004         if (!object) {
1005                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1006                 return;
1007         }
1008
1009         raw_spin_lock_irqsave(&object->lock, flags);
1010         object->flags |= OBJECT_NO_SCAN;
1011         raw_spin_unlock_irqrestore(&object->lock, flags);
1012         put_object(object);
1013 }
1014
1015 /**
1016  * kmemleak_alloc - register a newly allocated object
1017  * @ptr:        pointer to beginning of the object
1018  * @size:       size of the object
1019  * @min_count:  minimum number of references to this object. If during memory
1020  *              scanning a number of references less than @min_count is found,
1021  *              the object is reported as a memory leak. If @min_count is 0,
1022  *              the object is never reported as a leak. If @min_count is -1,
1023  *              the object is ignored (not scanned and not reported as a leak)
1024  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1025  *
1026  * This function is called from the kernel allocators when a new object
1027  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1028  */
1029 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1030                           gfp_t gfp)
1031 {
1032         pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1033
1034         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1035                 create_object((unsigned long)ptr, size, min_count, gfp);
1036 }
1037 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1038
1039 /**
1040  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1041  * @ptr:        __percpu pointer to beginning of the object
1042  * @size:       size of the object
1043  * @gfp:        flags used for kmemleak internal memory allocations
1044  *
1045  * This function is called from the kernel percpu allocator when a new object
1046  * (memory block) is allocated (alloc_percpu).
1047  */
1048 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1049                                  gfp_t gfp)
1050 {
1051         unsigned int cpu;
1052
1053         pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1054
1055         /*
1056          * Percpu allocations are only scanned and not reported as leaks
1057          * (min_count is set to 0).
1058          */
1059         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1060                 for_each_possible_cpu(cpu)
1061                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1062                                       size, 0, gfp);
1063 }
1064 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1065
1066 /**
1067  * kmemleak_vmalloc - register a newly vmalloc'ed object
1068  * @area:       pointer to vm_struct
1069  * @size:       size of the object
1070  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
1071  *
1072  * This function is called from the vmalloc() kernel allocator when a new
1073  * object (memory block) is allocated.
1074  */
1075 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1076 {
1077         pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1078
1079         /*
1080          * A min_count = 2 is needed because vm_struct contains a reference to
1081          * the virtual address of the vmalloc'ed block.
1082          */
1083         if (kmemleak_enabled) {
1084                 create_object((unsigned long)area->addr, size, 2, gfp);
1085                 object_set_excess_ref((unsigned long)area,
1086                                       (unsigned long)area->addr);
1087         }
1088 }
1089 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1090
1091 /**
1092  * kmemleak_free - unregister a previously registered object
1093  * @ptr:        pointer to beginning of the object
1094  *
1095  * This function is called from the kernel allocators when an object (memory
1096  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1097  */
1098 void __ref kmemleak_free(const void *ptr)
1099 {
1100         pr_debug("%s(0x%px)\n", __func__, ptr);
1101
1102         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1103                 delete_object_full((unsigned long)ptr);
1104 }
1105 EXPORT_SYMBOL_GPL(kmemleak_free);
1106
1107 /**
1108  * kmemleak_free_part - partially unregister a previously registered object
1109  * @ptr:        pointer to the beginning or inside the object. This also
1110  *              represents the start of the range to be freed
1111  * @size:       size to be unregistered
1112  *
1113  * This function is called when only a part of a memory block is freed
1114  * (usually from the bootmem allocator).
1115  */
1116 void __ref kmemleak_free_part(const void *ptr, size_t size)
1117 {
1118         pr_debug("%s(0x%px)\n", __func__, ptr);
1119
1120         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1121                 delete_object_part((unsigned long)ptr, size, false);
1122 }
1123 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1124
1125 /**
1126  * kmemleak_free_percpu - unregister a previously registered __percpu object
1127  * @ptr:        __percpu pointer to beginning of the object
1128  *
1129  * This function is called from the kernel percpu allocator when an object
1130  * (memory block) is freed (free_percpu).
1131  */
1132 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1133 {
1134         unsigned int cpu;
1135
1136         pr_debug("%s(0x%px)\n", __func__, ptr);
1137
1138         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1139                 for_each_possible_cpu(cpu)
1140                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1141                                                                       cpu));
1142 }
1143 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1144
1145 /**
1146  * kmemleak_update_trace - update object allocation stack trace
1147  * @ptr:        pointer to beginning of the object
1148  *
1149  * Override the object allocation stack trace for cases where the actual
1150  * allocation place is not always useful.
1151  */
1152 void __ref kmemleak_update_trace(const void *ptr)
1153 {
1154         struct kmemleak_object *object;
1155         depot_stack_handle_t trace_handle;
1156         unsigned long flags;
1157
1158         pr_debug("%s(0x%px)\n", __func__, ptr);
1159
1160         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1161                 return;
1162
1163         object = find_and_get_object((unsigned long)ptr, 1);
1164         if (!object) {
1165 #ifdef DEBUG
1166                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1167                               ptr);
1168 #endif
1169                 return;
1170         }
1171
1172         trace_handle = set_track_prepare();
1173         raw_spin_lock_irqsave(&object->lock, flags);
1174         object->trace_handle = trace_handle;
1175         raw_spin_unlock_irqrestore(&object->lock, flags);
1176
1177         put_object(object);
1178 }
1179 EXPORT_SYMBOL(kmemleak_update_trace);
1180
1181 /**
1182  * kmemleak_not_leak - mark an allocated object as false positive
1183  * @ptr:        pointer to beginning of the object
1184  *
1185  * Calling this function on an object will cause the memory block to no longer
1186  * be reported as leak and always be scanned.
1187  */
1188 void __ref kmemleak_not_leak(const void *ptr)
1189 {
1190         pr_debug("%s(0x%px)\n", __func__, ptr);
1191
1192         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1193                 make_gray_object((unsigned long)ptr);
1194 }
1195 EXPORT_SYMBOL(kmemleak_not_leak);
1196
1197 /**
1198  * kmemleak_ignore - ignore an allocated object
1199  * @ptr:        pointer to beginning of the object
1200  *
1201  * Calling this function on an object will cause the memory block to be
1202  * ignored (not scanned and not reported as a leak). This is usually done when
1203  * it is known that the corresponding block is not a leak and does not contain
1204  * any references to other allocated memory blocks.
1205  */
1206 void __ref kmemleak_ignore(const void *ptr)
1207 {
1208         pr_debug("%s(0x%px)\n", __func__, ptr);
1209
1210         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1211                 make_black_object((unsigned long)ptr, false);
1212 }
1213 EXPORT_SYMBOL(kmemleak_ignore);
1214
1215 /**
1216  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1217  * @ptr:        pointer to beginning or inside the object. This also
1218  *              represents the start of the scan area
1219  * @size:       size of the scan area
1220  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1221  *
1222  * This function is used when it is known that only certain parts of an object
1223  * contain references to other objects. Kmemleak will only scan these areas
1224  * reducing the number false negatives.
1225  */
1226 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1227 {
1228         pr_debug("%s(0x%px)\n", __func__, ptr);
1229
1230         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1231                 add_scan_area((unsigned long)ptr, size, gfp);
1232 }
1233 EXPORT_SYMBOL(kmemleak_scan_area);
1234
1235 /**
1236  * kmemleak_no_scan - do not scan an allocated object
1237  * @ptr:        pointer to beginning of the object
1238  *
1239  * This function notifies kmemleak not to scan the given memory block. Useful
1240  * in situations where it is known that the given object does not contain any
1241  * references to other objects. Kmemleak will not scan such objects reducing
1242  * the number of false negatives.
1243  */
1244 void __ref kmemleak_no_scan(const void *ptr)
1245 {
1246         pr_debug("%s(0x%px)\n", __func__, ptr);
1247
1248         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1249                 object_no_scan((unsigned long)ptr);
1250 }
1251 EXPORT_SYMBOL(kmemleak_no_scan);
1252
1253 /**
1254  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1255  *                       address argument
1256  * @phys:       physical address of the object
1257  * @size:       size of the object
1258  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1259  */
1260 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1261 {
1262         pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1263
1264         if (kmemleak_enabled)
1265                 /*
1266                  * Create object with OBJECT_PHYS flag and
1267                  * assume min_count 0.
1268                  */
1269                 create_object_phys((unsigned long)phys, size, 0, gfp);
1270 }
1271 EXPORT_SYMBOL(kmemleak_alloc_phys);
1272
1273 /**
1274  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1275  *                           physical address argument
1276  * @phys:       physical address if the beginning or inside an object. This
1277  *              also represents the start of the range to be freed
1278  * @size:       size to be unregistered
1279  */
1280 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1281 {
1282         pr_debug("%s(0x%px)\n", __func__, &phys);
1283
1284         if (kmemleak_enabled)
1285                 delete_object_part((unsigned long)phys, size, true);
1286 }
1287 EXPORT_SYMBOL(kmemleak_free_part_phys);
1288
1289 /**
1290  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1291  *                        address argument
1292  * @phys:       physical address of the object
1293  */
1294 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1295 {
1296         pr_debug("%s(0x%px)\n", __func__, &phys);
1297
1298         if (kmemleak_enabled)
1299                 make_black_object((unsigned long)phys, true);
1300 }
1301 EXPORT_SYMBOL(kmemleak_ignore_phys);
1302
1303 /*
1304  * Update an object's checksum and return true if it was modified.
1305  */
1306 static bool update_checksum(struct kmemleak_object *object)
1307 {
1308         u32 old_csum = object->checksum;
1309
1310         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1311                 return false;
1312
1313         kasan_disable_current();
1314         kcsan_disable_current();
1315         object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1316         kasan_enable_current();
1317         kcsan_enable_current();
1318
1319         return object->checksum != old_csum;
1320 }
1321
1322 /*
1323  * Update an object's references. object->lock must be held by the caller.
1324  */
1325 static void update_refs(struct kmemleak_object *object)
1326 {
1327         if (!color_white(object)) {
1328                 /* non-orphan, ignored or new */
1329                 return;
1330         }
1331
1332         /*
1333          * Increase the object's reference count (number of pointers to the
1334          * memory block). If this count reaches the required minimum, the
1335          * object's color will become gray and it will be added to the
1336          * gray_list.
1337          */
1338         object->count++;
1339         if (color_gray(object)) {
1340                 /* put_object() called when removing from gray_list */
1341                 WARN_ON(!get_object(object));
1342                 list_add_tail(&object->gray_list, &gray_list);
1343         }
1344 }
1345
1346 /*
1347  * Memory scanning is a long process and it needs to be interruptible. This
1348  * function checks whether such interrupt condition occurred.
1349  */
1350 static int scan_should_stop(void)
1351 {
1352         if (!kmemleak_enabled)
1353                 return 1;
1354
1355         /*
1356          * This function may be called from either process or kthread context,
1357          * hence the need to check for both stop conditions.
1358          */
1359         if (current->mm)
1360                 return signal_pending(current);
1361         else
1362                 return kthread_should_stop();
1363
1364         return 0;
1365 }
1366
1367 /*
1368  * Scan a memory block (exclusive range) for valid pointers and add those
1369  * found to the gray list.
1370  */
1371 static void scan_block(void *_start, void *_end,
1372                        struct kmemleak_object *scanned)
1373 {
1374         unsigned long *ptr;
1375         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1376         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1377         unsigned long flags;
1378         unsigned long untagged_ptr;
1379
1380         raw_spin_lock_irqsave(&kmemleak_lock, flags);
1381         for (ptr = start; ptr < end; ptr++) {
1382                 struct kmemleak_object *object;
1383                 unsigned long pointer;
1384                 unsigned long excess_ref;
1385
1386                 if (scan_should_stop())
1387                         break;
1388
1389                 kasan_disable_current();
1390                 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1391                 kasan_enable_current();
1392
1393                 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1394                 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1395                         continue;
1396
1397                 /*
1398                  * No need for get_object() here since we hold kmemleak_lock.
1399                  * object->use_count cannot be dropped to 0 while the object
1400                  * is still present in object_tree_root and object_list
1401                  * (with updates protected by kmemleak_lock).
1402                  */
1403                 object = lookup_object(pointer, 1);
1404                 if (!object)
1405                         continue;
1406                 if (object == scanned)
1407                         /* self referenced, ignore */
1408                         continue;
1409
1410                 /*
1411                  * Avoid the lockdep recursive warning on object->lock being
1412                  * previously acquired in scan_object(). These locks are
1413                  * enclosed by scan_mutex.
1414                  */
1415                 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1416                 /* only pass surplus references (object already gray) */
1417                 if (color_gray(object)) {
1418                         excess_ref = object->excess_ref;
1419                         /* no need for update_refs() if object already gray */
1420                 } else {
1421                         excess_ref = 0;
1422                         update_refs(object);
1423                 }
1424                 raw_spin_unlock(&object->lock);
1425
1426                 if (excess_ref) {
1427                         object = lookup_object(excess_ref, 0);
1428                         if (!object)
1429                                 continue;
1430                         if (object == scanned)
1431                                 /* circular reference, ignore */
1432                                 continue;
1433                         raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1434                         update_refs(object);
1435                         raw_spin_unlock(&object->lock);
1436                 }
1437         }
1438         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1439 }
1440
1441 /*
1442  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1443  */
1444 #ifdef CONFIG_SMP
1445 static void scan_large_block(void *start, void *end)
1446 {
1447         void *next;
1448
1449         while (start < end) {
1450                 next = min(start + MAX_SCAN_SIZE, end);
1451                 scan_block(start, next, NULL);
1452                 start = next;
1453                 cond_resched();
1454         }
1455 }
1456 #endif
1457
1458 /*
1459  * Scan a memory block corresponding to a kmemleak_object. A condition is
1460  * that object->use_count >= 1.
1461  */
1462 static void scan_object(struct kmemleak_object *object)
1463 {
1464         struct kmemleak_scan_area *area;
1465         unsigned long flags;
1466         void *obj_ptr;
1467
1468         /*
1469          * Once the object->lock is acquired, the corresponding memory block
1470          * cannot be freed (the same lock is acquired in delete_object).
1471          */
1472         raw_spin_lock_irqsave(&object->lock, flags);
1473         if (object->flags & OBJECT_NO_SCAN)
1474                 goto out;
1475         if (!(object->flags & OBJECT_ALLOCATED))
1476                 /* already freed object */
1477                 goto out;
1478
1479         obj_ptr = object->flags & OBJECT_PHYS ?
1480                   __va((phys_addr_t)object->pointer) :
1481                   (void *)object->pointer;
1482
1483         if (hlist_empty(&object->area_list) ||
1484             object->flags & OBJECT_FULL_SCAN) {
1485                 void *start = obj_ptr;
1486                 void *end = obj_ptr + object->size;
1487                 void *next;
1488
1489                 do {
1490                         next = min(start + MAX_SCAN_SIZE, end);
1491                         scan_block(start, next, object);
1492
1493                         start = next;
1494                         if (start >= end)
1495                                 break;
1496
1497                         raw_spin_unlock_irqrestore(&object->lock, flags);
1498                         cond_resched();
1499                         raw_spin_lock_irqsave(&object->lock, flags);
1500                 } while (object->flags & OBJECT_ALLOCATED);
1501         } else
1502                 hlist_for_each_entry(area, &object->area_list, node)
1503                         scan_block((void *)area->start,
1504                                    (void *)(area->start + area->size),
1505                                    object);
1506 out:
1507         raw_spin_unlock_irqrestore(&object->lock, flags);
1508 }
1509
1510 /*
1511  * Scan the objects already referenced (gray objects). More objects will be
1512  * referenced and, if there are no memory leaks, all the objects are scanned.
1513  */
1514 static void scan_gray_list(void)
1515 {
1516         struct kmemleak_object *object, *tmp;
1517
1518         /*
1519          * The list traversal is safe for both tail additions and removals
1520          * from inside the loop. The kmemleak objects cannot be freed from
1521          * outside the loop because their use_count was incremented.
1522          */
1523         object = list_entry(gray_list.next, typeof(*object), gray_list);
1524         while (&object->gray_list != &gray_list) {
1525                 cond_resched();
1526
1527                 /* may add new objects to the list */
1528                 if (!scan_should_stop())
1529                         scan_object(object);
1530
1531                 tmp = list_entry(object->gray_list.next, typeof(*object),
1532                                  gray_list);
1533
1534                 /* remove the object from the list and release it */
1535                 list_del(&object->gray_list);
1536                 put_object(object);
1537
1538                 object = tmp;
1539         }
1540         WARN_ON(!list_empty(&gray_list));
1541 }
1542
1543 /*
1544  * Conditionally call resched() in an object iteration loop while making sure
1545  * that the given object won't go away without RCU read lock by performing a
1546  * get_object() if necessaary.
1547  */
1548 static void kmemleak_cond_resched(struct kmemleak_object *object)
1549 {
1550         if (!get_object(object))
1551                 return; /* Try next object */
1552
1553         raw_spin_lock_irq(&kmemleak_lock);
1554         if (object->del_state & DELSTATE_REMOVED)
1555                 goto unlock_put;        /* Object removed */
1556         object->del_state |= DELSTATE_NO_DELETE;
1557         raw_spin_unlock_irq(&kmemleak_lock);
1558
1559         rcu_read_unlock();
1560         cond_resched();
1561         rcu_read_lock();
1562
1563         raw_spin_lock_irq(&kmemleak_lock);
1564         if (object->del_state & DELSTATE_REMOVED)
1565                 list_del_rcu(&object->object_list);
1566         object->del_state &= ~DELSTATE_NO_DELETE;
1567 unlock_put:
1568         raw_spin_unlock_irq(&kmemleak_lock);
1569         put_object(object);
1570 }
1571
1572 /*
1573  * Scan data sections and all the referenced memory blocks allocated via the
1574  * kernel's standard allocators. This function must be called with the
1575  * scan_mutex held.
1576  */
1577 static void kmemleak_scan(void)
1578 {
1579         struct kmemleak_object *object;
1580         struct zone *zone;
1581         int __maybe_unused i;
1582         int new_leaks = 0;
1583
1584         jiffies_last_scan = jiffies;
1585
1586         /* prepare the kmemleak_object's */
1587         rcu_read_lock();
1588         list_for_each_entry_rcu(object, &object_list, object_list) {
1589                 raw_spin_lock_irq(&object->lock);
1590 #ifdef DEBUG
1591                 /*
1592                  * With a few exceptions there should be a maximum of
1593                  * 1 reference to any object at this point.
1594                  */
1595                 if (atomic_read(&object->use_count) > 1) {
1596                         pr_debug("object->use_count = %d\n",
1597                                  atomic_read(&object->use_count));
1598                         dump_object_info(object);
1599                 }
1600 #endif
1601
1602                 /* ignore objects outside lowmem (paint them black) */
1603                 if ((object->flags & OBJECT_PHYS) &&
1604                    !(object->flags & OBJECT_NO_SCAN)) {
1605                         unsigned long phys = object->pointer;
1606
1607                         if (PHYS_PFN(phys) < min_low_pfn ||
1608                             PHYS_PFN(phys + object->size) >= max_low_pfn)
1609                                 __paint_it(object, KMEMLEAK_BLACK);
1610                 }
1611
1612                 /* reset the reference count (whiten the object) */
1613                 object->count = 0;
1614                 if (color_gray(object) && get_object(object))
1615                         list_add_tail(&object->gray_list, &gray_list);
1616
1617                 raw_spin_unlock_irq(&object->lock);
1618
1619                 if (need_resched())
1620                         kmemleak_cond_resched(object);
1621         }
1622         rcu_read_unlock();
1623
1624 #ifdef CONFIG_SMP
1625         /* per-cpu sections scanning */
1626         for_each_possible_cpu(i)
1627                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1628                                  __per_cpu_end + per_cpu_offset(i));
1629 #endif
1630
1631         /*
1632          * Struct page scanning for each node.
1633          */
1634         get_online_mems();
1635         for_each_populated_zone(zone) {
1636                 unsigned long start_pfn = zone->zone_start_pfn;
1637                 unsigned long end_pfn = zone_end_pfn(zone);
1638                 unsigned long pfn;
1639
1640                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1641                         struct page *page = pfn_to_online_page(pfn);
1642
1643                         if (!(pfn & 63))
1644                                 cond_resched();
1645
1646                         if (!page)
1647                                 continue;
1648
1649                         /* only scan pages belonging to this zone */
1650                         if (page_zone(page) != zone)
1651                                 continue;
1652                         /* only scan if page is in use */
1653                         if (page_count(page) == 0)
1654                                 continue;
1655                         scan_block(page, page + 1, NULL);
1656                 }
1657         }
1658         put_online_mems();
1659
1660         /*
1661          * Scanning the task stacks (may introduce false negatives).
1662          */
1663         if (kmemleak_stack_scan) {
1664                 struct task_struct *p, *g;
1665
1666                 rcu_read_lock();
1667                 for_each_process_thread(g, p) {
1668                         void *stack = try_get_task_stack(p);
1669                         if (stack) {
1670                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1671                                 put_task_stack(p);
1672                         }
1673                 }
1674                 rcu_read_unlock();
1675         }
1676
1677         /*
1678          * Scan the objects already referenced from the sections scanned
1679          * above.
1680          */
1681         scan_gray_list();
1682
1683         /*
1684          * Check for new or unreferenced objects modified since the previous
1685          * scan and color them gray until the next scan.
1686          */
1687         rcu_read_lock();
1688         list_for_each_entry_rcu(object, &object_list, object_list) {
1689                 if (need_resched())
1690                         kmemleak_cond_resched(object);
1691
1692                 /*
1693                  * This is racy but we can save the overhead of lock/unlock
1694                  * calls. The missed objects, if any, should be caught in
1695                  * the next scan.
1696                  */
1697                 if (!color_white(object))
1698                         continue;
1699                 raw_spin_lock_irq(&object->lock);
1700                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1701                     && update_checksum(object) && get_object(object)) {
1702                         /* color it gray temporarily */
1703                         object->count = object->min_count;
1704                         list_add_tail(&object->gray_list, &gray_list);
1705                 }
1706                 raw_spin_unlock_irq(&object->lock);
1707         }
1708         rcu_read_unlock();
1709
1710         /*
1711          * Re-scan the gray list for modified unreferenced objects.
1712          */
1713         scan_gray_list();
1714
1715         /*
1716          * If scanning was stopped do not report any new unreferenced objects.
1717          */
1718         if (scan_should_stop())
1719                 return;
1720
1721         /*
1722          * Scanning result reporting.
1723          */
1724         rcu_read_lock();
1725         list_for_each_entry_rcu(object, &object_list, object_list) {
1726                 if (need_resched())
1727                         kmemleak_cond_resched(object);
1728
1729                 /*
1730                  * This is racy but we can save the overhead of lock/unlock
1731                  * calls. The missed objects, if any, should be caught in
1732                  * the next scan.
1733                  */
1734                 if (!color_white(object))
1735                         continue;
1736                 raw_spin_lock_irq(&object->lock);
1737                 if (unreferenced_object(object) &&
1738                     !(object->flags & OBJECT_REPORTED)) {
1739                         object->flags |= OBJECT_REPORTED;
1740
1741                         if (kmemleak_verbose)
1742                                 print_unreferenced(NULL, object);
1743
1744                         new_leaks++;
1745                 }
1746                 raw_spin_unlock_irq(&object->lock);
1747         }
1748         rcu_read_unlock();
1749
1750         if (new_leaks) {
1751                 kmemleak_found_leaks = true;
1752
1753                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1754                         new_leaks);
1755         }
1756
1757 }
1758
1759 /*
1760  * Thread function performing automatic memory scanning. Unreferenced objects
1761  * at the end of a memory scan are reported but only the first time.
1762  */
1763 static int kmemleak_scan_thread(void *arg)
1764 {
1765         static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1766
1767         pr_info("Automatic memory scanning thread started\n");
1768         set_user_nice(current, 10);
1769
1770         /*
1771          * Wait before the first scan to allow the system to fully initialize.
1772          */
1773         if (first_run) {
1774                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1775                 first_run = 0;
1776                 while (timeout && !kthread_should_stop())
1777                         timeout = schedule_timeout_interruptible(timeout);
1778         }
1779
1780         while (!kthread_should_stop()) {
1781                 signed long timeout = READ_ONCE(jiffies_scan_wait);
1782
1783                 mutex_lock(&scan_mutex);
1784                 kmemleak_scan();
1785                 mutex_unlock(&scan_mutex);
1786
1787                 /* wait before the next scan */
1788                 while (timeout && !kthread_should_stop())
1789                         timeout = schedule_timeout_interruptible(timeout);
1790         }
1791
1792         pr_info("Automatic memory scanning thread ended\n");
1793
1794         return 0;
1795 }
1796
1797 /*
1798  * Start the automatic memory scanning thread. This function must be called
1799  * with the scan_mutex held.
1800  */
1801 static void start_scan_thread(void)
1802 {
1803         if (scan_thread)
1804                 return;
1805         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1806         if (IS_ERR(scan_thread)) {
1807                 pr_warn("Failed to create the scan thread\n");
1808                 scan_thread = NULL;
1809         }
1810 }
1811
1812 /*
1813  * Stop the automatic memory scanning thread.
1814  */
1815 static void stop_scan_thread(void)
1816 {
1817         if (scan_thread) {
1818                 kthread_stop(scan_thread);
1819                 scan_thread = NULL;
1820         }
1821 }
1822
1823 /*
1824  * Iterate over the object_list and return the first valid object at or after
1825  * the required position with its use_count incremented. The function triggers
1826  * a memory scanning when the pos argument points to the first position.
1827  */
1828 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1829 {
1830         struct kmemleak_object *object;
1831         loff_t n = *pos;
1832         int err;
1833
1834         err = mutex_lock_interruptible(&scan_mutex);
1835         if (err < 0)
1836                 return ERR_PTR(err);
1837
1838         rcu_read_lock();
1839         list_for_each_entry_rcu(object, &object_list, object_list) {
1840                 if (n-- > 0)
1841                         continue;
1842                 if (get_object(object))
1843                         goto out;
1844         }
1845         object = NULL;
1846 out:
1847         return object;
1848 }
1849
1850 /*
1851  * Return the next object in the object_list. The function decrements the
1852  * use_count of the previous object and increases that of the next one.
1853  */
1854 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1855 {
1856         struct kmemleak_object *prev_obj = v;
1857         struct kmemleak_object *next_obj = NULL;
1858         struct kmemleak_object *obj = prev_obj;
1859
1860         ++(*pos);
1861
1862         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1863                 if (get_object(obj)) {
1864                         next_obj = obj;
1865                         break;
1866                 }
1867         }
1868
1869         put_object(prev_obj);
1870         return next_obj;
1871 }
1872
1873 /*
1874  * Decrement the use_count of the last object required, if any.
1875  */
1876 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1877 {
1878         if (!IS_ERR(v)) {
1879                 /*
1880                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1881                  * waiting was interrupted, so only release it if !IS_ERR.
1882                  */
1883                 rcu_read_unlock();
1884                 mutex_unlock(&scan_mutex);
1885                 if (v)
1886                         put_object(v);
1887         }
1888 }
1889
1890 /*
1891  * Print the information for an unreferenced object to the seq file.
1892  */
1893 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1894 {
1895         struct kmemleak_object *object = v;
1896         unsigned long flags;
1897
1898         raw_spin_lock_irqsave(&object->lock, flags);
1899         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1900                 print_unreferenced(seq, object);
1901         raw_spin_unlock_irqrestore(&object->lock, flags);
1902         return 0;
1903 }
1904
1905 static const struct seq_operations kmemleak_seq_ops = {
1906         .start = kmemleak_seq_start,
1907         .next  = kmemleak_seq_next,
1908         .stop  = kmemleak_seq_stop,
1909         .show  = kmemleak_seq_show,
1910 };
1911
1912 static int kmemleak_open(struct inode *inode, struct file *file)
1913 {
1914         return seq_open(file, &kmemleak_seq_ops);
1915 }
1916
1917 static int dump_str_object_info(const char *str)
1918 {
1919         unsigned long flags;
1920         struct kmemleak_object *object;
1921         unsigned long addr;
1922
1923         if (kstrtoul(str, 0, &addr))
1924                 return -EINVAL;
1925         object = find_and_get_object(addr, 0);
1926         if (!object) {
1927                 pr_info("Unknown object at 0x%08lx\n", addr);
1928                 return -EINVAL;
1929         }
1930
1931         raw_spin_lock_irqsave(&object->lock, flags);
1932         dump_object_info(object);
1933         raw_spin_unlock_irqrestore(&object->lock, flags);
1934
1935         put_object(object);
1936         return 0;
1937 }
1938
1939 /*
1940  * We use grey instead of black to ensure we can do future scans on the same
1941  * objects. If we did not do future scans these black objects could
1942  * potentially contain references to newly allocated objects in the future and
1943  * we'd end up with false positives.
1944  */
1945 static void kmemleak_clear(void)
1946 {
1947         struct kmemleak_object *object;
1948
1949         rcu_read_lock();
1950         list_for_each_entry_rcu(object, &object_list, object_list) {
1951                 raw_spin_lock_irq(&object->lock);
1952                 if ((object->flags & OBJECT_REPORTED) &&
1953                     unreferenced_object(object))
1954                         __paint_it(object, KMEMLEAK_GREY);
1955                 raw_spin_unlock_irq(&object->lock);
1956         }
1957         rcu_read_unlock();
1958
1959         kmemleak_found_leaks = false;
1960 }
1961
1962 static void __kmemleak_do_cleanup(void);
1963
1964 /*
1965  * File write operation to configure kmemleak at run-time. The following
1966  * commands can be written to the /sys/kernel/debug/kmemleak file:
1967  *   off        - disable kmemleak (irreversible)
1968  *   stack=on   - enable the task stacks scanning
1969  *   stack=off  - disable the tasks stacks scanning
1970  *   scan=on    - start the automatic memory scanning thread
1971  *   scan=off   - stop the automatic memory scanning thread
1972  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1973  *                disable it)
1974  *   scan       - trigger a memory scan
1975  *   clear      - mark all current reported unreferenced kmemleak objects as
1976  *                grey to ignore printing them, or free all kmemleak objects
1977  *                if kmemleak has been disabled.
1978  *   dump=...   - dump information about the object found at the given address
1979  */
1980 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1981                               size_t size, loff_t *ppos)
1982 {
1983         char buf[64];
1984         int buf_size;
1985         int ret;
1986
1987         buf_size = min(size, (sizeof(buf) - 1));
1988         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1989                 return -EFAULT;
1990         buf[buf_size] = 0;
1991
1992         ret = mutex_lock_interruptible(&scan_mutex);
1993         if (ret < 0)
1994                 return ret;
1995
1996         if (strncmp(buf, "clear", 5) == 0) {
1997                 if (kmemleak_enabled)
1998                         kmemleak_clear();
1999                 else
2000                         __kmemleak_do_cleanup();
2001                 goto out;
2002         }
2003
2004         if (!kmemleak_enabled) {
2005                 ret = -EPERM;
2006                 goto out;
2007         }
2008
2009         if (strncmp(buf, "off", 3) == 0)
2010                 kmemleak_disable();
2011         else if (strncmp(buf, "stack=on", 8) == 0)
2012                 kmemleak_stack_scan = 1;
2013         else if (strncmp(buf, "stack=off", 9) == 0)
2014                 kmemleak_stack_scan = 0;
2015         else if (strncmp(buf, "scan=on", 7) == 0)
2016                 start_scan_thread();
2017         else if (strncmp(buf, "scan=off", 8) == 0)
2018                 stop_scan_thread();
2019         else if (strncmp(buf, "scan=", 5) == 0) {
2020                 unsigned secs;
2021                 unsigned long msecs;
2022
2023                 ret = kstrtouint(buf + 5, 0, &secs);
2024                 if (ret < 0)
2025                         goto out;
2026
2027                 msecs = secs * MSEC_PER_SEC;
2028                 if (msecs > UINT_MAX)
2029                         msecs = UINT_MAX;
2030
2031                 stop_scan_thread();
2032                 if (msecs) {
2033                         WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2034                         start_scan_thread();
2035                 }
2036         } else if (strncmp(buf, "scan", 4) == 0)
2037                 kmemleak_scan();
2038         else if (strncmp(buf, "dump=", 5) == 0)
2039                 ret = dump_str_object_info(buf + 5);
2040         else
2041                 ret = -EINVAL;
2042
2043 out:
2044         mutex_unlock(&scan_mutex);
2045         if (ret < 0)
2046                 return ret;
2047
2048         /* ignore the rest of the buffer, only one command at a time */
2049         *ppos += size;
2050         return size;
2051 }
2052
2053 static const struct file_operations kmemleak_fops = {
2054         .owner          = THIS_MODULE,
2055         .open           = kmemleak_open,
2056         .read           = seq_read,
2057         .write          = kmemleak_write,
2058         .llseek         = seq_lseek,
2059         .release        = seq_release,
2060 };
2061
2062 static void __kmemleak_do_cleanup(void)
2063 {
2064         struct kmemleak_object *object, *tmp;
2065
2066         /*
2067          * Kmemleak has already been disabled, no need for RCU list traversal
2068          * or kmemleak_lock held.
2069          */
2070         list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2071                 __remove_object(object);
2072                 __delete_object(object);
2073         }
2074 }
2075
2076 /*
2077  * Stop the memory scanning thread and free the kmemleak internal objects if
2078  * no previous scan thread (otherwise, kmemleak may still have some useful
2079  * information on memory leaks).
2080  */
2081 static void kmemleak_do_cleanup(struct work_struct *work)
2082 {
2083         stop_scan_thread();
2084
2085         mutex_lock(&scan_mutex);
2086         /*
2087          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2088          * longer track object freeing. Ordering of the scan thread stopping and
2089          * the memory accesses below is guaranteed by the kthread_stop()
2090          * function.
2091          */
2092         kmemleak_free_enabled = 0;
2093         mutex_unlock(&scan_mutex);
2094
2095         if (!kmemleak_found_leaks)
2096                 __kmemleak_do_cleanup();
2097         else
2098                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2099 }
2100
2101 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2102
2103 /*
2104  * Disable kmemleak. No memory allocation/freeing will be traced once this
2105  * function is called. Disabling kmemleak is an irreversible operation.
2106  */
2107 static void kmemleak_disable(void)
2108 {
2109         /* atomically check whether it was already invoked */
2110         if (cmpxchg(&kmemleak_error, 0, 1))
2111                 return;
2112
2113         /* stop any memory operation tracing */
2114         kmemleak_enabled = 0;
2115
2116         /* check whether it is too early for a kernel thread */
2117         if (kmemleak_late_initialized)
2118                 schedule_work(&cleanup_work);
2119         else
2120                 kmemleak_free_enabled = 0;
2121
2122         pr_info("Kernel memory leak detector disabled\n");
2123 }
2124
2125 /*
2126  * Allow boot-time kmemleak disabling (enabled by default).
2127  */
2128 static int __init kmemleak_boot_config(char *str)
2129 {
2130         if (!str)
2131                 return -EINVAL;
2132         if (strcmp(str, "off") == 0)
2133                 kmemleak_disable();
2134         else if (strcmp(str, "on") == 0) {
2135                 kmemleak_skip_disable = 1;
2136                 stack_depot_request_early_init();
2137         }
2138         else
2139                 return -EINVAL;
2140         return 0;
2141 }
2142 early_param("kmemleak", kmemleak_boot_config);
2143
2144 /*
2145  * Kmemleak initialization.
2146  */
2147 void __init kmemleak_init(void)
2148 {
2149 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2150         if (!kmemleak_skip_disable) {
2151                 kmemleak_disable();
2152                 return;
2153         }
2154 #endif
2155
2156         if (kmemleak_error)
2157                 return;
2158
2159         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2160         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2161
2162         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2163         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2164
2165         /* register the data/bss sections */
2166         create_object((unsigned long)_sdata, _edata - _sdata,
2167                       KMEMLEAK_GREY, GFP_ATOMIC);
2168         create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2169                       KMEMLEAK_GREY, GFP_ATOMIC);
2170         /* only register .data..ro_after_init if not within .data */
2171         if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2172                 create_object((unsigned long)__start_ro_after_init,
2173                               __end_ro_after_init - __start_ro_after_init,
2174                               KMEMLEAK_GREY, GFP_ATOMIC);
2175 }
2176
2177 /*
2178  * Late initialization function.
2179  */
2180 static int __init kmemleak_late_init(void)
2181 {
2182         kmemleak_late_initialized = 1;
2183
2184         debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2185
2186         if (kmemleak_error) {
2187                 /*
2188                  * Some error occurred and kmemleak was disabled. There is a
2189                  * small chance that kmemleak_disable() was called immediately
2190                  * after setting kmemleak_late_initialized and we may end up with
2191                  * two clean-up threads but serialized by scan_mutex.
2192                  */
2193                 schedule_work(&cleanup_work);
2194                 return -ENOMEM;
2195         }
2196
2197         if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2198                 mutex_lock(&scan_mutex);
2199                 start_scan_thread();
2200                 mutex_unlock(&scan_mutex);
2201         }
2202
2203         pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2204                 mem_pool_free_count);
2205
2206         return 0;
2207 }
2208 late_initcall(kmemleak_late_init);