GNU Linux-libre 4.14.251-gnu1
[releases.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_PTE_NON_PRESENT,
32         SCAN_PAGE_RO,
33         SCAN_LACK_REFERENCED_PAGE,
34         SCAN_PAGE_NULL,
35         SCAN_SCAN_ABORT,
36         SCAN_PAGE_COUNT,
37         SCAN_PAGE_LRU,
38         SCAN_PAGE_LOCK,
39         SCAN_PAGE_ANON,
40         SCAN_PAGE_COMPOUND,
41         SCAN_ANY_PROCESS,
42         SCAN_VMA_NULL,
43         SCAN_VMA_CHECK,
44         SCAN_ADDRESS_RANGE,
45         SCAN_SWAP_CACHE_PAGE,
46         SCAN_DEL_PAGE_LRU,
47         SCAN_ALLOC_HUGE_PAGE_FAIL,
48         SCAN_CGROUP_CHARGE_FAIL,
49         SCAN_EXCEED_SWAP_PTE,
50         SCAN_TRUNCATED,
51 };
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/huge_memory.h>
55
56 static struct task_struct *khugepaged_thread __read_mostly;
57 static DEFINE_MUTEX(khugepaged_mutex);
58
59 /* default scan 8*512 pte (or vmas) every 30 second */
60 static unsigned int khugepaged_pages_to_scan __read_mostly;
61 static unsigned int khugepaged_pages_collapsed;
62 static unsigned int khugepaged_full_scans;
63 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
64 /* during fragmentation poll the hugepage allocator once every minute */
65 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
66 static unsigned long khugepaged_sleep_expire;
67 static DEFINE_SPINLOCK(khugepaged_mm_lock);
68 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
69 /*
70  * default collapse hugepages if there is at least one pte mapped like
71  * it would have happened if the vma was large enough during page
72  * fault.
73  */
74 static unsigned int khugepaged_max_ptes_none __read_mostly;
75 static unsigned int khugepaged_max_ptes_swap __read_mostly;
76
77 #define MM_SLOTS_HASH_BITS 10
78 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
79
80 static struct kmem_cache *mm_slot_cache __read_mostly;
81
82 /**
83  * struct mm_slot - hash lookup from mm to mm_slot
84  * @hash: hash collision list
85  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
86  * @mm: the mm that this information is valid for
87  */
88 struct mm_slot {
89         struct hlist_node hash;
90         struct list_head mm_node;
91         struct mm_struct *mm;
92 };
93
94 /**
95  * struct khugepaged_scan - cursor for scanning
96  * @mm_head: the head of the mm list to scan
97  * @mm_slot: the current mm_slot we are scanning
98  * @address: the next address inside that to be scanned
99  *
100  * There is only the one khugepaged_scan instance of this cursor structure.
101  */
102 struct khugepaged_scan {
103         struct list_head mm_head;
104         struct mm_slot *mm_slot;
105         unsigned long address;
106 };
107
108 static struct khugepaged_scan khugepaged_scan = {
109         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
110 };
111
112 #ifdef CONFIG_SYSFS
113 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
114                                          struct kobj_attribute *attr,
115                                          char *buf)
116 {
117         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
118 }
119
120 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
121                                           struct kobj_attribute *attr,
122                                           const char *buf, size_t count)
123 {
124         unsigned long msecs;
125         int err;
126
127         err = kstrtoul(buf, 10, &msecs);
128         if (err || msecs > UINT_MAX)
129                 return -EINVAL;
130
131         khugepaged_scan_sleep_millisecs = msecs;
132         khugepaged_sleep_expire = 0;
133         wake_up_interruptible(&khugepaged_wait);
134
135         return count;
136 }
137 static struct kobj_attribute scan_sleep_millisecs_attr =
138         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
139                scan_sleep_millisecs_store);
140
141 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
142                                           struct kobj_attribute *attr,
143                                           char *buf)
144 {
145         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
146 }
147
148 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
149                                            struct kobj_attribute *attr,
150                                            const char *buf, size_t count)
151 {
152         unsigned long msecs;
153         int err;
154
155         err = kstrtoul(buf, 10, &msecs);
156         if (err || msecs > UINT_MAX)
157                 return -EINVAL;
158
159         khugepaged_alloc_sleep_millisecs = msecs;
160         khugepaged_sleep_expire = 0;
161         wake_up_interruptible(&khugepaged_wait);
162
163         return count;
164 }
165 static struct kobj_attribute alloc_sleep_millisecs_attr =
166         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
167                alloc_sleep_millisecs_store);
168
169 static ssize_t pages_to_scan_show(struct kobject *kobj,
170                                   struct kobj_attribute *attr,
171                                   char *buf)
172 {
173         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
174 }
175 static ssize_t pages_to_scan_store(struct kobject *kobj,
176                                    struct kobj_attribute *attr,
177                                    const char *buf, size_t count)
178 {
179         int err;
180         unsigned long pages;
181
182         err = kstrtoul(buf, 10, &pages);
183         if (err || !pages || pages > UINT_MAX)
184                 return -EINVAL;
185
186         khugepaged_pages_to_scan = pages;
187
188         return count;
189 }
190 static struct kobj_attribute pages_to_scan_attr =
191         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
192                pages_to_scan_store);
193
194 static ssize_t pages_collapsed_show(struct kobject *kobj,
195                                     struct kobj_attribute *attr,
196                                     char *buf)
197 {
198         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
199 }
200 static struct kobj_attribute pages_collapsed_attr =
201         __ATTR_RO(pages_collapsed);
202
203 static ssize_t full_scans_show(struct kobject *kobj,
204                                struct kobj_attribute *attr,
205                                char *buf)
206 {
207         return sprintf(buf, "%u\n", khugepaged_full_scans);
208 }
209 static struct kobj_attribute full_scans_attr =
210         __ATTR_RO(full_scans);
211
212 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
213                                       struct kobj_attribute *attr, char *buf)
214 {
215         return single_hugepage_flag_show(kobj, attr, buf,
216                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
217 }
218 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
219                                        struct kobj_attribute *attr,
220                                        const char *buf, size_t count)
221 {
222         return single_hugepage_flag_store(kobj, attr, buf, count,
223                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
224 }
225 static struct kobj_attribute khugepaged_defrag_attr =
226         __ATTR(defrag, 0644, khugepaged_defrag_show,
227                khugepaged_defrag_store);
228
229 /*
230  * max_ptes_none controls if khugepaged should collapse hugepages over
231  * any unmapped ptes in turn potentially increasing the memory
232  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
233  * reduce the available free memory in the system as it
234  * runs. Increasing max_ptes_none will instead potentially reduce the
235  * free memory in the system during the khugepaged scan.
236  */
237 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
238                                              struct kobj_attribute *attr,
239                                              char *buf)
240 {
241         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
242 }
243 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
244                                               struct kobj_attribute *attr,
245                                               const char *buf, size_t count)
246 {
247         int err;
248         unsigned long max_ptes_none;
249
250         err = kstrtoul(buf, 10, &max_ptes_none);
251         if (err || max_ptes_none > HPAGE_PMD_NR-1)
252                 return -EINVAL;
253
254         khugepaged_max_ptes_none = max_ptes_none;
255
256         return count;
257 }
258 static struct kobj_attribute khugepaged_max_ptes_none_attr =
259         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
260                khugepaged_max_ptes_none_store);
261
262 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
263                                              struct kobj_attribute *attr,
264                                              char *buf)
265 {
266         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
267 }
268
269 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
270                                               struct kobj_attribute *attr,
271                                               const char *buf, size_t count)
272 {
273         int err;
274         unsigned long max_ptes_swap;
275
276         err  = kstrtoul(buf, 10, &max_ptes_swap);
277         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
278                 return -EINVAL;
279
280         khugepaged_max_ptes_swap = max_ptes_swap;
281
282         return count;
283 }
284
285 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
286         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
287                khugepaged_max_ptes_swap_store);
288
289 static struct attribute *khugepaged_attr[] = {
290         &khugepaged_defrag_attr.attr,
291         &khugepaged_max_ptes_none_attr.attr,
292         &pages_to_scan_attr.attr,
293         &pages_collapsed_attr.attr,
294         &full_scans_attr.attr,
295         &scan_sleep_millisecs_attr.attr,
296         &alloc_sleep_millisecs_attr.attr,
297         &khugepaged_max_ptes_swap_attr.attr,
298         NULL,
299 };
300
301 struct attribute_group khugepaged_attr_group = {
302         .attrs = khugepaged_attr,
303         .name = "khugepaged",
304 };
305 #endif /* CONFIG_SYSFS */
306
307 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
308
309 int hugepage_madvise(struct vm_area_struct *vma,
310                      unsigned long *vm_flags, int advice)
311 {
312         switch (advice) {
313         case MADV_HUGEPAGE:
314 #ifdef CONFIG_S390
315                 /*
316                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
317                  * can't handle this properly after s390_enable_sie, so we simply
318                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
319                  */
320                 if (mm_has_pgste(vma->vm_mm))
321                         return 0;
322 #endif
323                 *vm_flags &= ~VM_NOHUGEPAGE;
324                 *vm_flags |= VM_HUGEPAGE;
325                 /*
326                  * If the vma become good for khugepaged to scan,
327                  * register it here without waiting a page fault that
328                  * may not happen any time soon.
329                  */
330                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
331                                 khugepaged_enter_vma_merge(vma, *vm_flags))
332                         return -ENOMEM;
333                 break;
334         case MADV_NOHUGEPAGE:
335                 *vm_flags &= ~VM_HUGEPAGE;
336                 *vm_flags |= VM_NOHUGEPAGE;
337                 /*
338                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
339                  * this vma even if we leave the mm registered in khugepaged if
340                  * it got registered before VM_NOHUGEPAGE was set.
341                  */
342                 break;
343         }
344
345         return 0;
346 }
347
348 int __init khugepaged_init(void)
349 {
350         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
351                                           sizeof(struct mm_slot),
352                                           __alignof__(struct mm_slot), 0, NULL);
353         if (!mm_slot_cache)
354                 return -ENOMEM;
355
356         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
357         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
358         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
359
360         return 0;
361 }
362
363 void __init khugepaged_destroy(void)
364 {
365         kmem_cache_destroy(mm_slot_cache);
366 }
367
368 static inline struct mm_slot *alloc_mm_slot(void)
369 {
370         if (!mm_slot_cache)     /* initialization failed */
371                 return NULL;
372         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
373 }
374
375 static inline void free_mm_slot(struct mm_slot *mm_slot)
376 {
377         kmem_cache_free(mm_slot_cache, mm_slot);
378 }
379
380 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
381 {
382         struct mm_slot *mm_slot;
383
384         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
385                 if (mm == mm_slot->mm)
386                         return mm_slot;
387
388         return NULL;
389 }
390
391 static void insert_to_mm_slots_hash(struct mm_struct *mm,
392                                     struct mm_slot *mm_slot)
393 {
394         mm_slot->mm = mm;
395         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
396 }
397
398 static inline int khugepaged_test_exit(struct mm_struct *mm)
399 {
400         return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm);
401 }
402
403 int __khugepaged_enter(struct mm_struct *mm)
404 {
405         struct mm_slot *mm_slot;
406         int wakeup;
407
408         mm_slot = alloc_mm_slot();
409         if (!mm_slot)
410                 return -ENOMEM;
411
412         /* __khugepaged_exit() must not run from under us */
413         VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
414         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
415                 free_mm_slot(mm_slot);
416                 return 0;
417         }
418
419         spin_lock(&khugepaged_mm_lock);
420         insert_to_mm_slots_hash(mm, mm_slot);
421         /*
422          * Insert just behind the scanning cursor, to let the area settle
423          * down a little.
424          */
425         wakeup = list_empty(&khugepaged_scan.mm_head);
426         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
427         spin_unlock(&khugepaged_mm_lock);
428
429         mmgrab(mm);
430         if (wakeup)
431                 wake_up_interruptible(&khugepaged_wait);
432
433         return 0;
434 }
435
436 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
437                                unsigned long vm_flags)
438 {
439         unsigned long hstart, hend;
440         if (!vma->anon_vma)
441                 /*
442                  * Not yet faulted in so we will register later in the
443                  * page fault if needed.
444                  */
445                 return 0;
446         if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
447                 /* khugepaged not yet working on file or special mappings */
448                 return 0;
449         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
450         hend = vma->vm_end & HPAGE_PMD_MASK;
451         if (hstart < hend)
452                 return khugepaged_enter(vma, vm_flags);
453         return 0;
454 }
455
456 void __khugepaged_exit(struct mm_struct *mm)
457 {
458         struct mm_slot *mm_slot;
459         int free = 0;
460
461         spin_lock(&khugepaged_mm_lock);
462         mm_slot = get_mm_slot(mm);
463         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
464                 hash_del(&mm_slot->hash);
465                 list_del(&mm_slot->mm_node);
466                 free = 1;
467         }
468         spin_unlock(&khugepaged_mm_lock);
469
470         if (free) {
471                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
472                 free_mm_slot(mm_slot);
473                 mmdrop(mm);
474         } else if (mm_slot) {
475                 /*
476                  * This is required to serialize against
477                  * khugepaged_test_exit() (which is guaranteed to run
478                  * under mmap sem read mode). Stop here (after we
479                  * return all pagetables will be destroyed) until
480                  * khugepaged has finished working on the pagetables
481                  * under the mmap_sem.
482                  */
483                 down_write(&mm->mmap_sem);
484                 up_write(&mm->mmap_sem);
485         }
486 }
487
488 static void release_pte_page(struct page *page)
489 {
490         dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
491         unlock_page(page);
492         putback_lru_page(page);
493 }
494
495 static void release_pte_pages(pte_t *pte, pte_t *_pte)
496 {
497         while (--_pte >= pte) {
498                 pte_t pteval = *_pte;
499                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
500                         release_pte_page(pte_page(pteval));
501         }
502 }
503
504 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
505                                         unsigned long address,
506                                         pte_t *pte)
507 {
508         struct page *page = NULL;
509         pte_t *_pte;
510         int none_or_zero = 0, result = 0, referenced = 0;
511         bool writable = false;
512
513         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
514              _pte++, address += PAGE_SIZE) {
515                 pte_t pteval = *_pte;
516                 if (pte_none(pteval) || (pte_present(pteval) &&
517                                 is_zero_pfn(pte_pfn(pteval)))) {
518                         if (!userfaultfd_armed(vma) &&
519                             ++none_or_zero <= khugepaged_max_ptes_none) {
520                                 continue;
521                         } else {
522                                 result = SCAN_EXCEED_NONE_PTE;
523                                 goto out;
524                         }
525                 }
526                 if (!pte_present(pteval)) {
527                         result = SCAN_PTE_NON_PRESENT;
528                         goto out;
529                 }
530                 page = vm_normal_page(vma, address, pteval);
531                 if (unlikely(!page)) {
532                         result = SCAN_PAGE_NULL;
533                         goto out;
534                 }
535
536                 /* TODO: teach khugepaged to collapse THP mapped with pte */
537                 if (PageCompound(page)) {
538                         result = SCAN_PAGE_COMPOUND;
539                         goto out;
540                 }
541
542                 VM_BUG_ON_PAGE(!PageAnon(page), page);
543
544                 /*
545                  * We can do it before isolate_lru_page because the
546                  * page can't be freed from under us. NOTE: PG_lock
547                  * is needed to serialize against split_huge_page
548                  * when invoked from the VM.
549                  */
550                 if (!trylock_page(page)) {
551                         result = SCAN_PAGE_LOCK;
552                         goto out;
553                 }
554
555                 /*
556                  * cannot use mapcount: can't collapse if there's a gup pin.
557                  * The page must only be referenced by the scanned process
558                  * and page swap cache.
559                  */
560                 if (page_count(page) != 1 + PageSwapCache(page)) {
561                         unlock_page(page);
562                         result = SCAN_PAGE_COUNT;
563                         goto out;
564                 }
565                 if (pte_write(pteval)) {
566                         writable = true;
567                 } else {
568                         if (PageSwapCache(page) &&
569                             !reuse_swap_page(page, NULL)) {
570                                 unlock_page(page);
571                                 result = SCAN_SWAP_CACHE_PAGE;
572                                 goto out;
573                         }
574                         /*
575                          * Page is not in the swap cache. It can be collapsed
576                          * into a THP.
577                          */
578                 }
579
580                 /*
581                  * Isolate the page to avoid collapsing an hugepage
582                  * currently in use by the VM.
583                  */
584                 if (isolate_lru_page(page)) {
585                         unlock_page(page);
586                         result = SCAN_DEL_PAGE_LRU;
587                         goto out;
588                 }
589                 inc_node_page_state(page,
590                                 NR_ISOLATED_ANON + page_is_file_cache(page));
591                 VM_BUG_ON_PAGE(!PageLocked(page), page);
592                 VM_BUG_ON_PAGE(PageLRU(page), page);
593
594                 /* There should be enough young pte to collapse the page */
595                 if (pte_young(pteval) ||
596                     page_is_young(page) || PageReferenced(page) ||
597                     mmu_notifier_test_young(vma->vm_mm, address))
598                         referenced++;
599         }
600
601         if (unlikely(!writable)) {
602                 result = SCAN_PAGE_RO;
603         } else if (unlikely(!referenced)) {
604                 result = SCAN_LACK_REFERENCED_PAGE;
605         } else {
606                 result = SCAN_SUCCEED;
607                 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
608                                                     referenced, writable, result);
609                 return 1;
610         }
611 out:
612         release_pte_pages(pte, _pte);
613         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
614                                             referenced, writable, result);
615         return 0;
616 }
617
618 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
619                                       struct vm_area_struct *vma,
620                                       unsigned long address,
621                                       spinlock_t *ptl)
622 {
623         pte_t *_pte;
624         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
625                                 _pte++, page++, address += PAGE_SIZE) {
626                 pte_t pteval = *_pte;
627                 struct page *src_page;
628
629                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
630                         clear_user_highpage(page, address);
631                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
632                         if (is_zero_pfn(pte_pfn(pteval))) {
633                                 /*
634                                  * ptl mostly unnecessary.
635                                  */
636                                 spin_lock(ptl);
637                                 /*
638                                  * paravirt calls inside pte_clear here are
639                                  * superfluous.
640                                  */
641                                 pte_clear(vma->vm_mm, address, _pte);
642                                 spin_unlock(ptl);
643                         }
644                 } else {
645                         src_page = pte_page(pteval);
646                         copy_user_highpage(page, src_page, address, vma);
647                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
648                         release_pte_page(src_page);
649                         /*
650                          * ptl mostly unnecessary, but preempt has to
651                          * be disabled to update the per-cpu stats
652                          * inside page_remove_rmap().
653                          */
654                         spin_lock(ptl);
655                         /*
656                          * paravirt calls inside pte_clear here are
657                          * superfluous.
658                          */
659                         pte_clear(vma->vm_mm, address, _pte);
660                         page_remove_rmap(src_page, false);
661                         spin_unlock(ptl);
662                         free_page_and_swap_cache(src_page);
663                 }
664         }
665 }
666
667 static void khugepaged_alloc_sleep(void)
668 {
669         DEFINE_WAIT(wait);
670
671         add_wait_queue(&khugepaged_wait, &wait);
672         freezable_schedule_timeout_interruptible(
673                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
674         remove_wait_queue(&khugepaged_wait, &wait);
675 }
676
677 static int khugepaged_node_load[MAX_NUMNODES];
678
679 static bool khugepaged_scan_abort(int nid)
680 {
681         int i;
682
683         /*
684          * If node_reclaim_mode is disabled, then no extra effort is made to
685          * allocate memory locally.
686          */
687         if (!node_reclaim_mode)
688                 return false;
689
690         /* If there is a count for this node already, it must be acceptable */
691         if (khugepaged_node_load[nid])
692                 return false;
693
694         for (i = 0; i < MAX_NUMNODES; i++) {
695                 if (!khugepaged_node_load[i])
696                         continue;
697                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
698                         return true;
699         }
700         return false;
701 }
702
703 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
704 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
705 {
706         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
707 }
708
709 #ifdef CONFIG_NUMA
710 static int khugepaged_find_target_node(void)
711 {
712         static int last_khugepaged_target_node = NUMA_NO_NODE;
713         int nid, target_node = 0, max_value = 0;
714
715         /* find first node with max normal pages hit */
716         for (nid = 0; nid < MAX_NUMNODES; nid++)
717                 if (khugepaged_node_load[nid] > max_value) {
718                         max_value = khugepaged_node_load[nid];
719                         target_node = nid;
720                 }
721
722         /* do some balance if several nodes have the same hit record */
723         if (target_node <= last_khugepaged_target_node)
724                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
725                                 nid++)
726                         if (max_value == khugepaged_node_load[nid]) {
727                                 target_node = nid;
728                                 break;
729                         }
730
731         last_khugepaged_target_node = target_node;
732         return target_node;
733 }
734
735 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
736 {
737         if (IS_ERR(*hpage)) {
738                 if (!*wait)
739                         return false;
740
741                 *wait = false;
742                 *hpage = NULL;
743                 khugepaged_alloc_sleep();
744         } else if (*hpage) {
745                 put_page(*hpage);
746                 *hpage = NULL;
747         }
748
749         return true;
750 }
751
752 static struct page *
753 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
754 {
755         VM_BUG_ON_PAGE(*hpage, *hpage);
756
757         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
758         if (unlikely(!*hpage)) {
759                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
760                 *hpage = ERR_PTR(-ENOMEM);
761                 return NULL;
762         }
763
764         prep_transhuge_page(*hpage);
765         count_vm_event(THP_COLLAPSE_ALLOC);
766         return *hpage;
767 }
768 #else
769 static int khugepaged_find_target_node(void)
770 {
771         return 0;
772 }
773
774 static inline struct page *alloc_khugepaged_hugepage(void)
775 {
776         struct page *page;
777
778         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
779                            HPAGE_PMD_ORDER);
780         if (page)
781                 prep_transhuge_page(page);
782         return page;
783 }
784
785 static struct page *khugepaged_alloc_hugepage(bool *wait)
786 {
787         struct page *hpage;
788
789         do {
790                 hpage = alloc_khugepaged_hugepage();
791                 if (!hpage) {
792                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
793                         if (!*wait)
794                                 return NULL;
795
796                         *wait = false;
797                         khugepaged_alloc_sleep();
798                 } else
799                         count_vm_event(THP_COLLAPSE_ALLOC);
800         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
801
802         return hpage;
803 }
804
805 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
806 {
807         /*
808          * If the hpage allocated earlier was briefly exposed in page cache
809          * before collapse_file() failed, it is possible that racing lookups
810          * have not yet completed, and would then be unpleasantly surprised by
811          * finding the hpage reused for the same mapping at a different offset.
812          * Just release the previous allocation if there is any danger of that.
813          */
814         if (*hpage && page_count(*hpage) > 1) {
815                 put_page(*hpage);
816                 *hpage = NULL;
817         }
818
819         if (!*hpage)
820                 *hpage = khugepaged_alloc_hugepage(wait);
821
822         if (unlikely(!*hpage))
823                 return false;
824
825         return true;
826 }
827
828 static struct page *
829 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
830 {
831         VM_BUG_ON(!*hpage);
832
833         return  *hpage;
834 }
835 #endif
836
837 static bool hugepage_vma_check(struct vm_area_struct *vma)
838 {
839         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
840             (vma->vm_flags & VM_NOHUGEPAGE) ||
841             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
842                 return false;
843         if (shmem_file(vma->vm_file)) {
844                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
845                         return false;
846                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
847                                 HPAGE_PMD_NR);
848         }
849         if (!vma->anon_vma || vma->vm_ops)
850                 return false;
851         if (is_vma_temporary_stack(vma))
852                 return false;
853         return !(vma->vm_flags & VM_NO_KHUGEPAGED);
854 }
855
856 /*
857  * If mmap_sem temporarily dropped, revalidate vma
858  * before taking mmap_sem.
859  * Return 0 if succeeds, otherwise return none-zero
860  * value (scan code).
861  */
862
863 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
864                 struct vm_area_struct **vmap)
865 {
866         struct vm_area_struct *vma;
867         unsigned long hstart, hend;
868
869         if (unlikely(khugepaged_test_exit(mm)))
870                 return SCAN_ANY_PROCESS;
871
872         *vmap = vma = find_vma(mm, address);
873         if (!vma)
874                 return SCAN_VMA_NULL;
875
876         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
877         hend = vma->vm_end & HPAGE_PMD_MASK;
878         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
879                 return SCAN_ADDRESS_RANGE;
880         if (!hugepage_vma_check(vma))
881                 return SCAN_VMA_CHECK;
882         return 0;
883 }
884
885 /*
886  * Bring missing pages in from swap, to complete THP collapse.
887  * Only done if khugepaged_scan_pmd believes it is worthwhile.
888  *
889  * Called and returns without pte mapped or spinlocks held,
890  * but with mmap_sem held to protect against vma changes.
891  */
892
893 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
894                                         struct vm_area_struct *vma,
895                                         unsigned long address, pmd_t *pmd,
896                                         int referenced)
897 {
898         int swapped_in = 0, ret = 0;
899         struct vm_fault vmf = {
900                 .vma = vma,
901                 .address = address,
902                 .flags = FAULT_FLAG_ALLOW_RETRY,
903                 .pmd = pmd,
904                 .pgoff = linear_page_index(vma, address),
905         };
906
907         /* we only decide to swapin, if there is enough young ptes */
908         if (referenced < HPAGE_PMD_NR/2) {
909                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
910                 return false;
911         }
912         vmf.pte = pte_offset_map(pmd, address);
913         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
914                         vmf.pte++, vmf.address += PAGE_SIZE) {
915                 vmf.orig_pte = *vmf.pte;
916                 if (!is_swap_pte(vmf.orig_pte))
917                         continue;
918                 swapped_in++;
919                 ret = do_swap_page(&vmf);
920
921                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
922                 if (ret & VM_FAULT_RETRY) {
923                         down_read(&mm->mmap_sem);
924                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
925                                 /* vma is no longer available, don't continue to swapin */
926                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
927                                 return false;
928                         }
929                         /* check if the pmd is still valid */
930                         if (mm_find_pmd(mm, address) != pmd) {
931                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
932                                 return false;
933                         }
934                 }
935                 if (ret & VM_FAULT_ERROR) {
936                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
937                         return false;
938                 }
939                 /* pte is unmapped now, we need to map it */
940                 vmf.pte = pte_offset_map(pmd, vmf.address);
941         }
942         vmf.pte--;
943         pte_unmap(vmf.pte);
944         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
945         return true;
946 }
947
948 static void collapse_huge_page(struct mm_struct *mm,
949                                    unsigned long address,
950                                    struct page **hpage,
951                                    int node, int referenced)
952 {
953         pmd_t *pmd, _pmd;
954         pte_t *pte;
955         pgtable_t pgtable;
956         struct page *new_page;
957         spinlock_t *pmd_ptl, *pte_ptl;
958         int isolated = 0, result = 0;
959         struct mem_cgroup *memcg;
960         struct vm_area_struct *vma;
961         unsigned long mmun_start;       /* For mmu_notifiers */
962         unsigned long mmun_end;         /* For mmu_notifiers */
963         gfp_t gfp;
964
965         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
966
967         /* Only allocate from the target node */
968         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
969
970         /*
971          * Before allocating the hugepage, release the mmap_sem read lock.
972          * The allocation can take potentially a long time if it involves
973          * sync compaction, and we do not need to hold the mmap_sem during
974          * that. We will recheck the vma after taking it again in write mode.
975          */
976         up_read(&mm->mmap_sem);
977         new_page = khugepaged_alloc_page(hpage, gfp, node);
978         if (!new_page) {
979                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
980                 goto out_nolock;
981         }
982
983         /* Do not oom kill for khugepaged charges */
984         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY,
985                                            &memcg, true))) {
986                 result = SCAN_CGROUP_CHARGE_FAIL;
987                 goto out_nolock;
988         }
989
990         down_read(&mm->mmap_sem);
991         result = hugepage_vma_revalidate(mm, address, &vma);
992         if (result) {
993                 mem_cgroup_cancel_charge(new_page, memcg, true);
994                 up_read(&mm->mmap_sem);
995                 goto out_nolock;
996         }
997
998         pmd = mm_find_pmd(mm, address);
999         if (!pmd) {
1000                 result = SCAN_PMD_NULL;
1001                 mem_cgroup_cancel_charge(new_page, memcg, true);
1002                 up_read(&mm->mmap_sem);
1003                 goto out_nolock;
1004         }
1005
1006         /*
1007          * __collapse_huge_page_swapin always returns with mmap_sem locked.
1008          * If it fails, we release mmap_sem and jump out_nolock.
1009          * Continuing to collapse causes inconsistency.
1010          */
1011         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1012                 mem_cgroup_cancel_charge(new_page, memcg, true);
1013                 up_read(&mm->mmap_sem);
1014                 goto out_nolock;
1015         }
1016
1017         up_read(&mm->mmap_sem);
1018         /*
1019          * Prevent all access to pagetables with the exception of
1020          * gup_fast later handled by the ptep_clear_flush and the VM
1021          * handled by the anon_vma lock + PG_lock.
1022          */
1023         down_write(&mm->mmap_sem);
1024         result = hugepage_vma_revalidate(mm, address, &vma);
1025         if (result)
1026                 goto out;
1027         /* check if the pmd is still valid */
1028         if (mm_find_pmd(mm, address) != pmd)
1029                 goto out;
1030
1031         anon_vma_lock_write(vma->anon_vma);
1032
1033         pte = pte_offset_map(pmd, address);
1034         pte_ptl = pte_lockptr(mm, pmd);
1035
1036         mmun_start = address;
1037         mmun_end   = address + HPAGE_PMD_SIZE;
1038         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1039         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1040         /*
1041          * After this gup_fast can't run anymore. This also removes
1042          * any huge TLB entry from the CPU so we won't allow
1043          * huge and small TLB entries for the same virtual address
1044          * to avoid the risk of CPU bugs in that area.
1045          */
1046         _pmd = pmdp_collapse_flush(vma, address, pmd);
1047         spin_unlock(pmd_ptl);
1048         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1049
1050         spin_lock(pte_ptl);
1051         isolated = __collapse_huge_page_isolate(vma, address, pte);
1052         spin_unlock(pte_ptl);
1053
1054         if (unlikely(!isolated)) {
1055                 pte_unmap(pte);
1056                 spin_lock(pmd_ptl);
1057                 BUG_ON(!pmd_none(*pmd));
1058                 /*
1059                  * We can only use set_pmd_at when establishing
1060                  * hugepmds and never for establishing regular pmds that
1061                  * points to regular pagetables. Use pmd_populate for that
1062                  */
1063                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1064                 spin_unlock(pmd_ptl);
1065                 anon_vma_unlock_write(vma->anon_vma);
1066                 result = SCAN_FAIL;
1067                 goto out;
1068         }
1069
1070         /*
1071          * All pages are isolated and locked so anon_vma rmap
1072          * can't run anymore.
1073          */
1074         anon_vma_unlock_write(vma->anon_vma);
1075
1076         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1077         pte_unmap(pte);
1078         __SetPageUptodate(new_page);
1079         pgtable = pmd_pgtable(_pmd);
1080
1081         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1082         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1083
1084         /*
1085          * spin_lock() below is not the equivalent of smp_wmb(), so
1086          * this is needed to avoid the copy_huge_page writes to become
1087          * visible after the set_pmd_at() write.
1088          */
1089         smp_wmb();
1090
1091         spin_lock(pmd_ptl);
1092         BUG_ON(!pmd_none(*pmd));
1093         page_add_new_anon_rmap(new_page, vma, address, true);
1094         mem_cgroup_commit_charge(new_page, memcg, false, true);
1095         lru_cache_add_active_or_unevictable(new_page, vma);
1096         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1097         set_pmd_at(mm, address, pmd, _pmd);
1098         update_mmu_cache_pmd(vma, address, pmd);
1099         spin_unlock(pmd_ptl);
1100
1101         *hpage = NULL;
1102
1103         khugepaged_pages_collapsed++;
1104         result = SCAN_SUCCEED;
1105 out_up_write:
1106         up_write(&mm->mmap_sem);
1107 out_nolock:
1108         trace_mm_collapse_huge_page(mm, isolated, result);
1109         return;
1110 out:
1111         mem_cgroup_cancel_charge(new_page, memcg, true);
1112         goto out_up_write;
1113 }
1114
1115 static int khugepaged_scan_pmd(struct mm_struct *mm,
1116                                struct vm_area_struct *vma,
1117                                unsigned long address,
1118                                struct page **hpage)
1119 {
1120         pmd_t *pmd;
1121         pte_t *pte, *_pte;
1122         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1123         struct page *page = NULL;
1124         unsigned long _address;
1125         spinlock_t *ptl;
1126         int node = NUMA_NO_NODE, unmapped = 0;
1127         bool writable = false;
1128
1129         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1130
1131         pmd = mm_find_pmd(mm, address);
1132         if (!pmd) {
1133                 result = SCAN_PMD_NULL;
1134                 goto out;
1135         }
1136
1137         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1138         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1139         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1140              _pte++, _address += PAGE_SIZE) {
1141                 pte_t pteval = *_pte;
1142                 if (is_swap_pte(pteval)) {
1143                         if (++unmapped <= khugepaged_max_ptes_swap) {
1144                                 continue;
1145                         } else {
1146                                 result = SCAN_EXCEED_SWAP_PTE;
1147                                 goto out_unmap;
1148                         }
1149                 }
1150                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1151                         if (!userfaultfd_armed(vma) &&
1152                             ++none_or_zero <= khugepaged_max_ptes_none) {
1153                                 continue;
1154                         } else {
1155                                 result = SCAN_EXCEED_NONE_PTE;
1156                                 goto out_unmap;
1157                         }
1158                 }
1159                 if (!pte_present(pteval)) {
1160                         result = SCAN_PTE_NON_PRESENT;
1161                         goto out_unmap;
1162                 }
1163                 if (pte_write(pteval))
1164                         writable = true;
1165
1166                 page = vm_normal_page(vma, _address, pteval);
1167                 if (unlikely(!page)) {
1168                         result = SCAN_PAGE_NULL;
1169                         goto out_unmap;
1170                 }
1171
1172                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1173                 if (PageCompound(page)) {
1174                         result = SCAN_PAGE_COMPOUND;
1175                         goto out_unmap;
1176                 }
1177
1178                 /*
1179                  * Record which node the original page is from and save this
1180                  * information to khugepaged_node_load[].
1181                  * Khupaged will allocate hugepage from the node has the max
1182                  * hit record.
1183                  */
1184                 node = page_to_nid(page);
1185                 if (khugepaged_scan_abort(node)) {
1186                         result = SCAN_SCAN_ABORT;
1187                         goto out_unmap;
1188                 }
1189                 khugepaged_node_load[node]++;
1190                 if (!PageLRU(page)) {
1191                         result = SCAN_PAGE_LRU;
1192                         goto out_unmap;
1193                 }
1194                 if (PageLocked(page)) {
1195                         result = SCAN_PAGE_LOCK;
1196                         goto out_unmap;
1197                 }
1198                 if (!PageAnon(page)) {
1199                         result = SCAN_PAGE_ANON;
1200                         goto out_unmap;
1201                 }
1202
1203                 /*
1204                  * cannot use mapcount: can't collapse if there's a gup pin.
1205                  * The page must only be referenced by the scanned process
1206                  * and page swap cache.
1207                  */
1208                 if (page_count(page) != 1 + PageSwapCache(page)) {
1209                         result = SCAN_PAGE_COUNT;
1210                         goto out_unmap;
1211                 }
1212                 if (pte_young(pteval) ||
1213                     page_is_young(page) || PageReferenced(page) ||
1214                     mmu_notifier_test_young(vma->vm_mm, address))
1215                         referenced++;
1216         }
1217         if (writable) {
1218                 if (referenced) {
1219                         result = SCAN_SUCCEED;
1220                         ret = 1;
1221                 } else {
1222                         result = SCAN_LACK_REFERENCED_PAGE;
1223                 }
1224         } else {
1225                 result = SCAN_PAGE_RO;
1226         }
1227 out_unmap:
1228         pte_unmap_unlock(pte, ptl);
1229         if (ret) {
1230                 node = khugepaged_find_target_node();
1231                 /* collapse_huge_page will return with the mmap_sem released */
1232                 collapse_huge_page(mm, address, hpage, node, referenced);
1233         }
1234 out:
1235         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1236                                      none_or_zero, result, unmapped);
1237         return ret;
1238 }
1239
1240 static void collect_mm_slot(struct mm_slot *mm_slot)
1241 {
1242         struct mm_struct *mm = mm_slot->mm;
1243
1244         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1245
1246         if (khugepaged_test_exit(mm)) {
1247                 /* free mm_slot */
1248                 hash_del(&mm_slot->hash);
1249                 list_del(&mm_slot->mm_node);
1250
1251                 /*
1252                  * Not strictly needed because the mm exited already.
1253                  *
1254                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1255                  */
1256
1257                 /* khugepaged_mm_lock actually not necessary for the below */
1258                 free_mm_slot(mm_slot);
1259                 mmdrop(mm);
1260         }
1261 }
1262
1263 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1264 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1265 {
1266         struct vm_area_struct *vma;
1267         struct mm_struct *mm;
1268         unsigned long addr;
1269         pmd_t *pmd, _pmd;
1270
1271         i_mmap_lock_write(mapping);
1272         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1273                 /* probably overkill */
1274                 if (vma->anon_vma)
1275                         continue;
1276                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1277                 if (addr & ~HPAGE_PMD_MASK)
1278                         continue;
1279                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1280                         continue;
1281                 mm = vma->vm_mm;
1282                 pmd = mm_find_pmd(mm, addr);
1283                 if (!pmd)
1284                         continue;
1285                 /*
1286                  * We need exclusive mmap_sem to retract page table.
1287                  * If trylock fails we would end up with pte-mapped THP after
1288                  * re-fault. Not ideal, but it's more important to not disturb
1289                  * the system too much.
1290                  */
1291                 if (down_write_trylock(&mm->mmap_sem)) {
1292                         if (!khugepaged_test_exit(mm)) {
1293                                 spinlock_t *ptl = pmd_lock(mm, pmd);
1294                                 /* assume page table is clear */
1295                                 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1296                                 spin_unlock(ptl);
1297                                 atomic_long_dec(&mm->nr_ptes);
1298                                 pte_free(mm, pmd_pgtable(_pmd));
1299                         }
1300                         up_write(&mm->mmap_sem);
1301                 }
1302         }
1303         i_mmap_unlock_write(mapping);
1304 }
1305
1306 /**
1307  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1308  *
1309  * Basic scheme is simple, details are more complex:
1310  *  - allocate and lock a new huge page;
1311  *  - scan over radix tree replacing old pages the new one
1312  *    + swap in pages if necessary;
1313  *    + fill in gaps;
1314  *    + keep old pages around in case if rollback is required;
1315  *  - if replacing succeed:
1316  *    + copy data over;
1317  *    + free old pages;
1318  *    + unlock huge page;
1319  *  - if replacing failed;
1320  *    + put all pages back and unfreeze them;
1321  *    + restore gaps in the radix-tree;
1322  *    + unlock and free huge page;
1323  */
1324 static void collapse_shmem(struct mm_struct *mm,
1325                 struct address_space *mapping, pgoff_t start,
1326                 struct page **hpage, int node)
1327 {
1328         gfp_t gfp;
1329         struct page *page, *new_page, *tmp;
1330         struct mem_cgroup *memcg;
1331         pgoff_t index, end = start + HPAGE_PMD_NR;
1332         LIST_HEAD(pagelist);
1333         struct radix_tree_iter iter;
1334         void **slot;
1335         int nr_none = 0, result = SCAN_SUCCEED;
1336
1337         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1338
1339         /* Only allocate from the target node */
1340         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1341
1342         new_page = khugepaged_alloc_page(hpage, gfp, node);
1343         if (!new_page) {
1344                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1345                 goto out;
1346         }
1347
1348         /* Do not oom kill for khugepaged charges */
1349         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY,
1350                                            &memcg, true))) {
1351                 result = SCAN_CGROUP_CHARGE_FAIL;
1352                 goto out;
1353         }
1354
1355         __SetPageLocked(new_page);
1356         __SetPageSwapBacked(new_page);
1357         new_page->index = start;
1358         new_page->mapping = mapping;
1359
1360         /*
1361          * At this point the new_page is locked and not up-to-date.
1362          * It's safe to insert it into the page cache, because nobody would
1363          * be able to map it or use it in another way until we unlock it.
1364          */
1365
1366         index = start;
1367         spin_lock_irq(&mapping->tree_lock);
1368         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1369                 int n = min(iter.index, end) - index;
1370
1371                 /*
1372                  * Stop if extent has been hole-punched, and is now completely
1373                  * empty (the more obvious i_size_read() check would take an
1374                  * irq-unsafe seqlock on 32-bit).
1375                  */
1376                 if (n >= HPAGE_PMD_NR) {
1377                         result = SCAN_TRUNCATED;
1378                         goto tree_locked;
1379                 }
1380
1381                 /*
1382                  * Handle holes in the radix tree: charge it from shmem and
1383                  * insert relevant subpage of new_page into the radix-tree.
1384                  */
1385                 if (n && !shmem_charge(mapping->host, n)) {
1386                         result = SCAN_FAIL;
1387                         goto tree_locked;
1388                 }
1389                 for (; index < min(iter.index, end); index++) {
1390                         radix_tree_insert(&mapping->page_tree, index,
1391                                         new_page + (index % HPAGE_PMD_NR));
1392                 }
1393                 nr_none += n;
1394
1395                 /* We are done. */
1396                 if (index >= end)
1397                         break;
1398
1399                 page = radix_tree_deref_slot_protected(slot,
1400                                 &mapping->tree_lock);
1401                 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1402                         spin_unlock_irq(&mapping->tree_lock);
1403                         /* swap in or instantiate fallocated page */
1404                         if (shmem_getpage(mapping->host, index, &page,
1405                                                 SGP_NOHUGE)) {
1406                                 result = SCAN_FAIL;
1407                                 goto tree_unlocked;
1408                         }
1409                 } else if (trylock_page(page)) {
1410                         get_page(page);
1411                         spin_unlock_irq(&mapping->tree_lock);
1412                 } else {
1413                         result = SCAN_PAGE_LOCK;
1414                         goto tree_locked;
1415                 }
1416
1417                 /*
1418                  * The page must be locked, so we can drop the tree_lock
1419                  * without racing with truncate.
1420                  */
1421                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1422                 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1423
1424                 /*
1425                  * If file was truncated then extended, or hole-punched, before
1426                  * we locked the first page, then a THP might be there already.
1427                  */
1428                 if (PageTransCompound(page)) {
1429                         result = SCAN_PAGE_COMPOUND;
1430                         goto out_unlock;
1431                 }
1432
1433                 if (page_mapping(page) != mapping) {
1434                         result = SCAN_TRUNCATED;
1435                         goto out_unlock;
1436                 }
1437
1438                 if (isolate_lru_page(page)) {
1439                         result = SCAN_DEL_PAGE_LRU;
1440                         goto out_unlock;
1441                 }
1442
1443                 if (page_mapped(page))
1444                         unmap_mapping_range(mapping, index << PAGE_SHIFT,
1445                                         PAGE_SIZE, 0);
1446
1447                 spin_lock_irq(&mapping->tree_lock);
1448
1449                 slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1450                 VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1451                                         &mapping->tree_lock), page);
1452                 VM_BUG_ON_PAGE(page_mapped(page), page);
1453
1454                 /*
1455                  * The page is expected to have page_count() == 3:
1456                  *  - we hold a pin on it;
1457                  *  - one reference from radix tree;
1458                  *  - one from isolate_lru_page;
1459                  */
1460                 if (!page_ref_freeze(page, 3)) {
1461                         result = SCAN_PAGE_COUNT;
1462                         spin_unlock_irq(&mapping->tree_lock);
1463                         putback_lru_page(page);
1464                         goto out_unlock;
1465                 }
1466
1467                 /*
1468                  * Add the page to the list to be able to undo the collapse if
1469                  * something go wrong.
1470                  */
1471                 list_add_tail(&page->lru, &pagelist);
1472
1473                 /* Finally, replace with the new page. */
1474                 radix_tree_replace_slot(&mapping->page_tree, slot,
1475                                 new_page + (index % HPAGE_PMD_NR));
1476
1477                 slot = radix_tree_iter_resume(slot, &iter);
1478                 index++;
1479                 continue;
1480 out_unlock:
1481                 unlock_page(page);
1482                 put_page(page);
1483                 goto tree_unlocked;
1484         }
1485
1486         /*
1487          * Handle hole in radix tree at the end of the range.
1488          * This code only triggers if there's nothing in radix tree
1489          * beyond 'end'.
1490          */
1491         if (index < end) {
1492                 int n = end - index;
1493
1494                 /* Stop if extent has been truncated, and is now empty */
1495                 if (n >= HPAGE_PMD_NR) {
1496                         result = SCAN_TRUNCATED;
1497                         goto tree_locked;
1498                 }
1499                 if (!shmem_charge(mapping->host, n)) {
1500                         result = SCAN_FAIL;
1501                         goto tree_locked;
1502                 }
1503                 for (; index < end; index++) {
1504                         radix_tree_insert(&mapping->page_tree, index,
1505                                         new_page + (index % HPAGE_PMD_NR));
1506                 }
1507                 nr_none += n;
1508         }
1509
1510         __inc_node_page_state(new_page, NR_SHMEM_THPS);
1511         if (nr_none) {
1512                 struct zone *zone = page_zone(new_page);
1513
1514                 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1515                 __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1516         }
1517
1518 tree_locked:
1519         spin_unlock_irq(&mapping->tree_lock);
1520 tree_unlocked:
1521
1522         if (result == SCAN_SUCCEED) {
1523                 /*
1524                  * Replacing old pages with new one has succeed, now we need to
1525                  * copy the content and free old pages.
1526                  */
1527                 index = start;
1528                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1529                         while (index < page->index) {
1530                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1531                                 index++;
1532                         }
1533                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1534                                         page);
1535                         list_del(&page->lru);
1536                         page->mapping = NULL;
1537                         page_ref_unfreeze(page, 1);
1538                         ClearPageActive(page);
1539                         ClearPageUnevictable(page);
1540                         unlock_page(page);
1541                         put_page(page);
1542                         index++;
1543                 }
1544                 while (index < end) {
1545                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1546                         index++;
1547                 }
1548
1549                 SetPageUptodate(new_page);
1550                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1551                 set_page_dirty(new_page);
1552                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1553                 lru_cache_add_anon(new_page);
1554
1555                 /*
1556                  * Remove pte page tables, so we can re-fault the page as huge.
1557                  */
1558                 retract_page_tables(mapping, start);
1559                 *hpage = NULL;
1560         } else {
1561                 /* Something went wrong: rollback changes to the radix-tree */
1562                 spin_lock_irq(&mapping->tree_lock);
1563                 mapping->nrpages -= nr_none;
1564                 shmem_uncharge(mapping->host, nr_none);
1565
1566                 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1567                                 start) {
1568                         if (iter.index >= end)
1569                                 break;
1570                         page = list_first_entry_or_null(&pagelist,
1571                                         struct page, lru);
1572                         if (!page || iter.index < page->index) {
1573                                 if (!nr_none)
1574                                         break;
1575                                 nr_none--;
1576                                 /* Put holes back where they were */
1577                                 radix_tree_delete(&mapping->page_tree,
1578                                                   iter.index);
1579                                 continue;
1580                         }
1581
1582                         VM_BUG_ON_PAGE(page->index != iter.index, page);
1583
1584                         /* Unfreeze the page. */
1585                         list_del(&page->lru);
1586                         page_ref_unfreeze(page, 2);
1587                         radix_tree_replace_slot(&mapping->page_tree,
1588                                                 slot, page);
1589                         slot = radix_tree_iter_resume(slot, &iter);
1590                         spin_unlock_irq(&mapping->tree_lock);
1591                         unlock_page(page);
1592                         putback_lru_page(page);
1593                         spin_lock_irq(&mapping->tree_lock);
1594                 }
1595                 VM_BUG_ON(nr_none);
1596                 spin_unlock_irq(&mapping->tree_lock);
1597
1598                 mem_cgroup_cancel_charge(new_page, memcg, true);
1599                 new_page->mapping = NULL;
1600         }
1601
1602         unlock_page(new_page);
1603 out:
1604         VM_BUG_ON(!list_empty(&pagelist));
1605         /* TODO: tracepoints */
1606 }
1607
1608 static void khugepaged_scan_shmem(struct mm_struct *mm,
1609                 struct address_space *mapping,
1610                 pgoff_t start, struct page **hpage)
1611 {
1612         struct page *page = NULL;
1613         struct radix_tree_iter iter;
1614         void **slot;
1615         int present, swap;
1616         int node = NUMA_NO_NODE;
1617         int result = SCAN_SUCCEED;
1618
1619         present = 0;
1620         swap = 0;
1621         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1622         rcu_read_lock();
1623         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1624                 if (iter.index >= start + HPAGE_PMD_NR)
1625                         break;
1626
1627                 page = radix_tree_deref_slot(slot);
1628                 if (radix_tree_deref_retry(page)) {
1629                         slot = radix_tree_iter_retry(&iter);
1630                         continue;
1631                 }
1632
1633                 if (radix_tree_exception(page)) {
1634                         if (++swap > khugepaged_max_ptes_swap) {
1635                                 result = SCAN_EXCEED_SWAP_PTE;
1636                                 break;
1637                         }
1638                         continue;
1639                 }
1640
1641                 if (PageTransCompound(page)) {
1642                         result = SCAN_PAGE_COMPOUND;
1643                         break;
1644                 }
1645
1646                 node = page_to_nid(page);
1647                 if (khugepaged_scan_abort(node)) {
1648                         result = SCAN_SCAN_ABORT;
1649                         break;
1650                 }
1651                 khugepaged_node_load[node]++;
1652
1653                 if (!PageLRU(page)) {
1654                         result = SCAN_PAGE_LRU;
1655                         break;
1656                 }
1657
1658                 if (page_count(page) != 1 + page_mapcount(page)) {
1659                         result = SCAN_PAGE_COUNT;
1660                         break;
1661                 }
1662
1663                 /*
1664                  * We probably should check if the page is referenced here, but
1665                  * nobody would transfer pte_young() to PageReferenced() for us.
1666                  * And rmap walk here is just too costly...
1667                  */
1668
1669                 present++;
1670
1671                 if (need_resched()) {
1672                         slot = radix_tree_iter_resume(slot, &iter);
1673                         cond_resched_rcu();
1674                 }
1675         }
1676         rcu_read_unlock();
1677
1678         if (result == SCAN_SUCCEED) {
1679                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1680                         result = SCAN_EXCEED_NONE_PTE;
1681                 } else {
1682                         node = khugepaged_find_target_node();
1683                         collapse_shmem(mm, mapping, start, hpage, node);
1684                 }
1685         }
1686
1687         /* TODO: tracepoints */
1688 }
1689 #else
1690 static void khugepaged_scan_shmem(struct mm_struct *mm,
1691                 struct address_space *mapping,
1692                 pgoff_t start, struct page **hpage)
1693 {
1694         BUILD_BUG();
1695 }
1696 #endif
1697
1698 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1699                                             struct page **hpage)
1700         __releases(&khugepaged_mm_lock)
1701         __acquires(&khugepaged_mm_lock)
1702 {
1703         struct mm_slot *mm_slot;
1704         struct mm_struct *mm;
1705         struct vm_area_struct *vma;
1706         int progress = 0;
1707
1708         VM_BUG_ON(!pages);
1709         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1710
1711         if (khugepaged_scan.mm_slot)
1712                 mm_slot = khugepaged_scan.mm_slot;
1713         else {
1714                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1715                                      struct mm_slot, mm_node);
1716                 khugepaged_scan.address = 0;
1717                 khugepaged_scan.mm_slot = mm_slot;
1718         }
1719         spin_unlock(&khugepaged_mm_lock);
1720
1721         mm = mm_slot->mm;
1722         /*
1723          * Don't wait for semaphore (to avoid long wait times).  Just move to
1724          * the next mm on the list.
1725          */
1726         vma = NULL;
1727         if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1728                 goto breakouterloop_mmap_sem;
1729         if (likely(!khugepaged_test_exit(mm)))
1730                 vma = find_vma(mm, khugepaged_scan.address);
1731
1732         progress++;
1733         for (; vma; vma = vma->vm_next) {
1734                 unsigned long hstart, hend;
1735
1736                 cond_resched();
1737                 if (unlikely(khugepaged_test_exit(mm))) {
1738                         progress++;
1739                         break;
1740                 }
1741                 if (!hugepage_vma_check(vma)) {
1742 skip:
1743                         progress++;
1744                         continue;
1745                 }
1746                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1747                 hend = vma->vm_end & HPAGE_PMD_MASK;
1748                 if (hstart >= hend)
1749                         goto skip;
1750                 if (khugepaged_scan.address > hend)
1751                         goto skip;
1752                 if (khugepaged_scan.address < hstart)
1753                         khugepaged_scan.address = hstart;
1754                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1755
1756                 while (khugepaged_scan.address < hend) {
1757                         int ret;
1758                         cond_resched();
1759                         if (unlikely(khugepaged_test_exit(mm)))
1760                                 goto breakouterloop;
1761
1762                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1763                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1764                                   hend);
1765                         if (shmem_file(vma->vm_file)) {
1766                                 struct file *file;
1767                                 pgoff_t pgoff = linear_page_index(vma,
1768                                                 khugepaged_scan.address);
1769                                 if (!shmem_huge_enabled(vma))
1770                                         goto skip;
1771                                 file = get_file(vma->vm_file);
1772                                 up_read(&mm->mmap_sem);
1773                                 ret = 1;
1774                                 khugepaged_scan_shmem(mm, file->f_mapping,
1775                                                 pgoff, hpage);
1776                                 fput(file);
1777                         } else {
1778                                 ret = khugepaged_scan_pmd(mm, vma,
1779                                                 khugepaged_scan.address,
1780                                                 hpage);
1781                         }
1782                         /* move to next address */
1783                         khugepaged_scan.address += HPAGE_PMD_SIZE;
1784                         progress += HPAGE_PMD_NR;
1785                         if (ret)
1786                                 /* we released mmap_sem so break loop */
1787                                 goto breakouterloop_mmap_sem;
1788                         if (progress >= pages)
1789                                 goto breakouterloop;
1790                 }
1791         }
1792 breakouterloop:
1793         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1794 breakouterloop_mmap_sem:
1795
1796         spin_lock(&khugepaged_mm_lock);
1797         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1798         /*
1799          * Release the current mm_slot if this mm is about to die, or
1800          * if we scanned all vmas of this mm.
1801          */
1802         if (khugepaged_test_exit(mm) || !vma) {
1803                 /*
1804                  * Make sure that if mm_users is reaching zero while
1805                  * khugepaged runs here, khugepaged_exit will find
1806                  * mm_slot not pointing to the exiting mm.
1807                  */
1808                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1809                         khugepaged_scan.mm_slot = list_entry(
1810                                 mm_slot->mm_node.next,
1811                                 struct mm_slot, mm_node);
1812                         khugepaged_scan.address = 0;
1813                 } else {
1814                         khugepaged_scan.mm_slot = NULL;
1815                         khugepaged_full_scans++;
1816                 }
1817
1818                 collect_mm_slot(mm_slot);
1819         }
1820
1821         return progress;
1822 }
1823
1824 static int khugepaged_has_work(void)
1825 {
1826         return !list_empty(&khugepaged_scan.mm_head) &&
1827                 khugepaged_enabled();
1828 }
1829
1830 static int khugepaged_wait_event(void)
1831 {
1832         return !list_empty(&khugepaged_scan.mm_head) ||
1833                 kthread_should_stop();
1834 }
1835
1836 static void khugepaged_do_scan(void)
1837 {
1838         struct page *hpage = NULL;
1839         unsigned int progress = 0, pass_through_head = 0;
1840         unsigned int pages = khugepaged_pages_to_scan;
1841         bool wait = true;
1842
1843         barrier(); /* write khugepaged_pages_to_scan to local stack */
1844
1845         while (progress < pages) {
1846                 if (!khugepaged_prealloc_page(&hpage, &wait))
1847                         break;
1848
1849                 cond_resched();
1850
1851                 if (unlikely(kthread_should_stop() || try_to_freeze()))
1852                         break;
1853
1854                 spin_lock(&khugepaged_mm_lock);
1855                 if (!khugepaged_scan.mm_slot)
1856                         pass_through_head++;
1857                 if (khugepaged_has_work() &&
1858                     pass_through_head < 2)
1859                         progress += khugepaged_scan_mm_slot(pages - progress,
1860                                                             &hpage);
1861                 else
1862                         progress = pages;
1863                 spin_unlock(&khugepaged_mm_lock);
1864         }
1865
1866         if (!IS_ERR_OR_NULL(hpage))
1867                 put_page(hpage);
1868 }
1869
1870 static bool khugepaged_should_wakeup(void)
1871 {
1872         return kthread_should_stop() ||
1873                time_after_eq(jiffies, khugepaged_sleep_expire);
1874 }
1875
1876 static void khugepaged_wait_work(void)
1877 {
1878         if (khugepaged_has_work()) {
1879                 const unsigned long scan_sleep_jiffies =
1880                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1881
1882                 if (!scan_sleep_jiffies)
1883                         return;
1884
1885                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1886                 wait_event_freezable_timeout(khugepaged_wait,
1887                                              khugepaged_should_wakeup(),
1888                                              scan_sleep_jiffies);
1889                 return;
1890         }
1891
1892         if (khugepaged_enabled())
1893                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1894 }
1895
1896 static int khugepaged(void *none)
1897 {
1898         struct mm_slot *mm_slot;
1899
1900         set_freezable();
1901         set_user_nice(current, MAX_NICE);
1902
1903         while (!kthread_should_stop()) {
1904                 khugepaged_do_scan();
1905                 khugepaged_wait_work();
1906         }
1907
1908         spin_lock(&khugepaged_mm_lock);
1909         mm_slot = khugepaged_scan.mm_slot;
1910         khugepaged_scan.mm_slot = NULL;
1911         if (mm_slot)
1912                 collect_mm_slot(mm_slot);
1913         spin_unlock(&khugepaged_mm_lock);
1914         return 0;
1915 }
1916
1917 static void set_recommended_min_free_kbytes(void)
1918 {
1919         struct zone *zone;
1920         int nr_zones = 0;
1921         unsigned long recommended_min;
1922
1923         for_each_populated_zone(zone)
1924                 nr_zones++;
1925
1926         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1927         recommended_min = pageblock_nr_pages * nr_zones * 2;
1928
1929         /*
1930          * Make sure that on average at least two pageblocks are almost free
1931          * of another type, one for a migratetype to fall back to and a
1932          * second to avoid subsequent fallbacks of other types There are 3
1933          * MIGRATE_TYPES we care about.
1934          */
1935         recommended_min += pageblock_nr_pages * nr_zones *
1936                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1937
1938         /* don't ever allow to reserve more than 5% of the lowmem */
1939         recommended_min = min(recommended_min,
1940                               (unsigned long) nr_free_buffer_pages() / 20);
1941         recommended_min <<= (PAGE_SHIFT-10);
1942
1943         if (recommended_min > min_free_kbytes) {
1944                 if (user_min_free_kbytes >= 0)
1945                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1946                                 min_free_kbytes, recommended_min);
1947
1948                 min_free_kbytes = recommended_min;
1949         }
1950         setup_per_zone_wmarks();
1951 }
1952
1953 int start_stop_khugepaged(void)
1954 {
1955         int err = 0;
1956
1957         mutex_lock(&khugepaged_mutex);
1958         if (khugepaged_enabled()) {
1959                 if (!khugepaged_thread)
1960                         khugepaged_thread = kthread_run(khugepaged, NULL,
1961                                                         "khugepaged");
1962                 if (IS_ERR(khugepaged_thread)) {
1963                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1964                         err = PTR_ERR(khugepaged_thread);
1965                         khugepaged_thread = NULL;
1966                         goto fail;
1967                 }
1968
1969                 if (!list_empty(&khugepaged_scan.mm_head))
1970                         wake_up_interruptible(&khugepaged_wait);
1971
1972                 set_recommended_min_free_kbytes();
1973         } else if (khugepaged_thread) {
1974                 kthread_stop(khugepaged_thread);
1975                 khugepaged_thread = NULL;
1976         }
1977 fail:
1978         mutex_unlock(&khugepaged_mutex);
1979         return err;
1980 }
1981
1982 void khugepaged_min_free_kbytes_update(void)
1983 {
1984         mutex_lock(&khugepaged_mutex);
1985         if (khugepaged_enabled() && khugepaged_thread)
1986                 set_recommended_min_free_kbytes();
1987         mutex_unlock(&khugepaged_mutex);
1988 }