GNU Linux-libre 5.4.257-gnu1
[releases.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_PTE_NON_PRESENT,
32         SCAN_PAGE_RO,
33         SCAN_LACK_REFERENCED_PAGE,
34         SCAN_PAGE_NULL,
35         SCAN_SCAN_ABORT,
36         SCAN_PAGE_COUNT,
37         SCAN_PAGE_LRU,
38         SCAN_PAGE_LOCK,
39         SCAN_PAGE_ANON,
40         SCAN_PAGE_COMPOUND,
41         SCAN_ANY_PROCESS,
42         SCAN_VMA_NULL,
43         SCAN_VMA_CHECK,
44         SCAN_ADDRESS_RANGE,
45         SCAN_SWAP_CACHE_PAGE,
46         SCAN_DEL_PAGE_LRU,
47         SCAN_ALLOC_HUGE_PAGE_FAIL,
48         SCAN_CGROUP_CHARGE_FAIL,
49         SCAN_EXCEED_SWAP_PTE,
50         SCAN_TRUNCATED,
51         SCAN_PAGE_HAS_PRIVATE,
52 };
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/huge_memory.h>
56
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59
60 /* default scan 8*512 pte (or vmas) every 30 second */
61 static unsigned int khugepaged_pages_to_scan __read_mostly;
62 static unsigned int khugepaged_pages_collapsed;
63 static unsigned int khugepaged_full_scans;
64 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
65 /* during fragmentation poll the hugepage allocator once every minute */
66 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
67 static unsigned long khugepaged_sleep_expire;
68 static DEFINE_SPINLOCK(khugepaged_mm_lock);
69 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
70 /*
71  * default collapse hugepages if there is at least one pte mapped like
72  * it would have happened if the vma was large enough during page
73  * fault.
74  */
75 static unsigned int khugepaged_max_ptes_none __read_mostly;
76 static unsigned int khugepaged_max_ptes_swap __read_mostly;
77
78 #define MM_SLOTS_HASH_BITS 10
79 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
80
81 static struct kmem_cache *mm_slot_cache __read_mostly;
82
83 #define MAX_PTE_MAPPED_THP 8
84
85 /**
86  * struct mm_slot - hash lookup from mm to mm_slot
87  * @hash: hash collision list
88  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
89  * @mm: the mm that this information is valid for
90  */
91 struct mm_slot {
92         struct hlist_node hash;
93         struct list_head mm_node;
94         struct mm_struct *mm;
95
96         /* pte-mapped THP in this mm */
97         int nr_pte_mapped_thp;
98         unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
99 };
100
101 /**
102  * struct khugepaged_scan - cursor for scanning
103  * @mm_head: the head of the mm list to scan
104  * @mm_slot: the current mm_slot we are scanning
105  * @address: the next address inside that to be scanned
106  *
107  * There is only the one khugepaged_scan instance of this cursor structure.
108  */
109 struct khugepaged_scan {
110         struct list_head mm_head;
111         struct mm_slot *mm_slot;
112         unsigned long address;
113 };
114
115 static struct khugepaged_scan khugepaged_scan = {
116         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
117 };
118
119 #ifdef CONFIG_SYSFS
120 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
121                                          struct kobj_attribute *attr,
122                                          char *buf)
123 {
124         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
125 }
126
127 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
128                                           struct kobj_attribute *attr,
129                                           const char *buf, size_t count)
130 {
131         unsigned long msecs;
132         int err;
133
134         err = kstrtoul(buf, 10, &msecs);
135         if (err || msecs > UINT_MAX)
136                 return -EINVAL;
137
138         khugepaged_scan_sleep_millisecs = msecs;
139         khugepaged_sleep_expire = 0;
140         wake_up_interruptible(&khugepaged_wait);
141
142         return count;
143 }
144 static struct kobj_attribute scan_sleep_millisecs_attr =
145         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
146                scan_sleep_millisecs_store);
147
148 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
149                                           struct kobj_attribute *attr,
150                                           char *buf)
151 {
152         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
153 }
154
155 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
156                                            struct kobj_attribute *attr,
157                                            const char *buf, size_t count)
158 {
159         unsigned long msecs;
160         int err;
161
162         err = kstrtoul(buf, 10, &msecs);
163         if (err || msecs > UINT_MAX)
164                 return -EINVAL;
165
166         khugepaged_alloc_sleep_millisecs = msecs;
167         khugepaged_sleep_expire = 0;
168         wake_up_interruptible(&khugepaged_wait);
169
170         return count;
171 }
172 static struct kobj_attribute alloc_sleep_millisecs_attr =
173         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
174                alloc_sleep_millisecs_store);
175
176 static ssize_t pages_to_scan_show(struct kobject *kobj,
177                                   struct kobj_attribute *attr,
178                                   char *buf)
179 {
180         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
181 }
182 static ssize_t pages_to_scan_store(struct kobject *kobj,
183                                    struct kobj_attribute *attr,
184                                    const char *buf, size_t count)
185 {
186         int err;
187         unsigned long pages;
188
189         err = kstrtoul(buf, 10, &pages);
190         if (err || !pages || pages > UINT_MAX)
191                 return -EINVAL;
192
193         khugepaged_pages_to_scan = pages;
194
195         return count;
196 }
197 static struct kobj_attribute pages_to_scan_attr =
198         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
199                pages_to_scan_store);
200
201 static ssize_t pages_collapsed_show(struct kobject *kobj,
202                                     struct kobj_attribute *attr,
203                                     char *buf)
204 {
205         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
206 }
207 static struct kobj_attribute pages_collapsed_attr =
208         __ATTR_RO(pages_collapsed);
209
210 static ssize_t full_scans_show(struct kobject *kobj,
211                                struct kobj_attribute *attr,
212                                char *buf)
213 {
214         return sprintf(buf, "%u\n", khugepaged_full_scans);
215 }
216 static struct kobj_attribute full_scans_attr =
217         __ATTR_RO(full_scans);
218
219 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
220                                       struct kobj_attribute *attr, char *buf)
221 {
222         return single_hugepage_flag_show(kobj, attr, buf,
223                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
224 }
225 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
226                                        struct kobj_attribute *attr,
227                                        const char *buf, size_t count)
228 {
229         return single_hugepage_flag_store(kobj, attr, buf, count,
230                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
231 }
232 static struct kobj_attribute khugepaged_defrag_attr =
233         __ATTR(defrag, 0644, khugepaged_defrag_show,
234                khugepaged_defrag_store);
235
236 /*
237  * max_ptes_none controls if khugepaged should collapse hugepages over
238  * any unmapped ptes in turn potentially increasing the memory
239  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
240  * reduce the available free memory in the system as it
241  * runs. Increasing max_ptes_none will instead potentially reduce the
242  * free memory in the system during the khugepaged scan.
243  */
244 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
245                                              struct kobj_attribute *attr,
246                                              char *buf)
247 {
248         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
249 }
250 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
251                                               struct kobj_attribute *attr,
252                                               const char *buf, size_t count)
253 {
254         int err;
255         unsigned long max_ptes_none;
256
257         err = kstrtoul(buf, 10, &max_ptes_none);
258         if (err || max_ptes_none > HPAGE_PMD_NR-1)
259                 return -EINVAL;
260
261         khugepaged_max_ptes_none = max_ptes_none;
262
263         return count;
264 }
265 static struct kobj_attribute khugepaged_max_ptes_none_attr =
266         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
267                khugepaged_max_ptes_none_store);
268
269 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
270                                              struct kobj_attribute *attr,
271                                              char *buf)
272 {
273         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
274 }
275
276 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
277                                               struct kobj_attribute *attr,
278                                               const char *buf, size_t count)
279 {
280         int err;
281         unsigned long max_ptes_swap;
282
283         err  = kstrtoul(buf, 10, &max_ptes_swap);
284         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
285                 return -EINVAL;
286
287         khugepaged_max_ptes_swap = max_ptes_swap;
288
289         return count;
290 }
291
292 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
293         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
294                khugepaged_max_ptes_swap_store);
295
296 static struct attribute *khugepaged_attr[] = {
297         &khugepaged_defrag_attr.attr,
298         &khugepaged_max_ptes_none_attr.attr,
299         &pages_to_scan_attr.attr,
300         &pages_collapsed_attr.attr,
301         &full_scans_attr.attr,
302         &scan_sleep_millisecs_attr.attr,
303         &alloc_sleep_millisecs_attr.attr,
304         &khugepaged_max_ptes_swap_attr.attr,
305         NULL,
306 };
307
308 struct attribute_group khugepaged_attr_group = {
309         .attrs = khugepaged_attr,
310         .name = "khugepaged",
311 };
312 #endif /* CONFIG_SYSFS */
313
314 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
315
316 int hugepage_madvise(struct vm_area_struct *vma,
317                      unsigned long *vm_flags, int advice)
318 {
319         switch (advice) {
320         case MADV_HUGEPAGE:
321 #ifdef CONFIG_S390
322                 /*
323                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
324                  * can't handle this properly after s390_enable_sie, so we simply
325                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
326                  */
327                 if (mm_has_pgste(vma->vm_mm))
328                         return 0;
329 #endif
330                 *vm_flags &= ~VM_NOHUGEPAGE;
331                 *vm_flags |= VM_HUGEPAGE;
332                 /*
333                  * If the vma become good for khugepaged to scan,
334                  * register it here without waiting a page fault that
335                  * may not happen any time soon.
336                  */
337                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
338                                 khugepaged_enter_vma_merge(vma, *vm_flags))
339                         return -ENOMEM;
340                 break;
341         case MADV_NOHUGEPAGE:
342                 *vm_flags &= ~VM_HUGEPAGE;
343                 *vm_flags |= VM_NOHUGEPAGE;
344                 /*
345                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
346                  * this vma even if we leave the mm registered in khugepaged if
347                  * it got registered before VM_NOHUGEPAGE was set.
348                  */
349                 break;
350         }
351
352         return 0;
353 }
354
355 int __init khugepaged_init(void)
356 {
357         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
358                                           sizeof(struct mm_slot),
359                                           __alignof__(struct mm_slot), 0, NULL);
360         if (!mm_slot_cache)
361                 return -ENOMEM;
362
363         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
364         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
365         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
366
367         return 0;
368 }
369
370 void __init khugepaged_destroy(void)
371 {
372         kmem_cache_destroy(mm_slot_cache);
373 }
374
375 static inline struct mm_slot *alloc_mm_slot(void)
376 {
377         if (!mm_slot_cache)     /* initialization failed */
378                 return NULL;
379         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
380 }
381
382 static inline void free_mm_slot(struct mm_slot *mm_slot)
383 {
384         kmem_cache_free(mm_slot_cache, mm_slot);
385 }
386
387 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
388 {
389         struct mm_slot *mm_slot;
390
391         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
392                 if (mm == mm_slot->mm)
393                         return mm_slot;
394
395         return NULL;
396 }
397
398 static void insert_to_mm_slots_hash(struct mm_struct *mm,
399                                     struct mm_slot *mm_slot)
400 {
401         mm_slot->mm = mm;
402         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
403 }
404
405 static inline int khugepaged_test_exit(struct mm_struct *mm)
406 {
407         return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm);
408 }
409
410 static bool hugepage_vma_check(struct vm_area_struct *vma,
411                                unsigned long vm_flags)
412 {
413         if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
414             (vm_flags & VM_NOHUGEPAGE) ||
415             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
416                 return false;
417
418         if (shmem_file(vma->vm_file) ||
419             (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
420              vma->vm_file &&
421              (vm_flags & VM_DENYWRITE))) {
422                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
423                         return false;
424                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
425                                 HPAGE_PMD_NR);
426         }
427         if (!vma->anon_vma || vma->vm_ops)
428                 return false;
429         if (is_vma_temporary_stack(vma))
430                 return false;
431         return !(vm_flags & VM_NO_KHUGEPAGED);
432 }
433
434 int __khugepaged_enter(struct mm_struct *mm)
435 {
436         struct mm_slot *mm_slot;
437         int wakeup;
438
439         mm_slot = alloc_mm_slot();
440         if (!mm_slot)
441                 return -ENOMEM;
442
443         /* __khugepaged_exit() must not run from under us */
444         VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
445         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
446                 free_mm_slot(mm_slot);
447                 return 0;
448         }
449
450         spin_lock(&khugepaged_mm_lock);
451         insert_to_mm_slots_hash(mm, mm_slot);
452         /*
453          * Insert just behind the scanning cursor, to let the area settle
454          * down a little.
455          */
456         wakeup = list_empty(&khugepaged_scan.mm_head);
457         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
458         spin_unlock(&khugepaged_mm_lock);
459
460         mmgrab(mm);
461         if (wakeup)
462                 wake_up_interruptible(&khugepaged_wait);
463
464         return 0;
465 }
466
467 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
468                                unsigned long vm_flags)
469 {
470         unsigned long hstart, hend;
471
472         /*
473          * khugepaged only supports read-only files for non-shmem files.
474          * khugepaged does not yet work on special mappings. And
475          * file-private shmem THP is not supported.
476          */
477         if (!hugepage_vma_check(vma, vm_flags))
478                 return 0;
479
480         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
481         hend = vma->vm_end & HPAGE_PMD_MASK;
482         if (hstart < hend)
483                 return khugepaged_enter(vma, vm_flags);
484         return 0;
485 }
486
487 void __khugepaged_exit(struct mm_struct *mm)
488 {
489         struct mm_slot *mm_slot;
490         int free = 0;
491
492         spin_lock(&khugepaged_mm_lock);
493         mm_slot = get_mm_slot(mm);
494         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
495                 hash_del(&mm_slot->hash);
496                 list_del(&mm_slot->mm_node);
497                 free = 1;
498         }
499         spin_unlock(&khugepaged_mm_lock);
500
501         if (free) {
502                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
503                 free_mm_slot(mm_slot);
504                 mmdrop(mm);
505         } else if (mm_slot) {
506                 /*
507                  * This is required to serialize against
508                  * khugepaged_test_exit() (which is guaranteed to run
509                  * under mmap sem read mode). Stop here (after we
510                  * return all pagetables will be destroyed) until
511                  * khugepaged has finished working on the pagetables
512                  * under the mmap_sem.
513                  */
514                 down_write(&mm->mmap_sem);
515                 up_write(&mm->mmap_sem);
516         }
517 }
518
519 static void release_pte_page(struct page *page)
520 {
521         dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
522         unlock_page(page);
523         putback_lru_page(page);
524 }
525
526 static void release_pte_pages(pte_t *pte, pte_t *_pte)
527 {
528         while (--_pte >= pte) {
529                 pte_t pteval = *_pte;
530                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
531                         release_pte_page(pte_page(pteval));
532         }
533 }
534
535 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
536                                         unsigned long address,
537                                         pte_t *pte)
538 {
539         struct page *page = NULL;
540         pte_t *_pte;
541         int none_or_zero = 0, result = 0, referenced = 0;
542         bool writable = false;
543
544         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
545              _pte++, address += PAGE_SIZE) {
546                 pte_t pteval = *_pte;
547                 if (pte_none(pteval) || (pte_present(pteval) &&
548                                 is_zero_pfn(pte_pfn(pteval)))) {
549                         if (!userfaultfd_armed(vma) &&
550                             ++none_or_zero <= khugepaged_max_ptes_none) {
551                                 continue;
552                         } else {
553                                 result = SCAN_EXCEED_NONE_PTE;
554                                 goto out;
555                         }
556                 }
557                 if (!pte_present(pteval)) {
558                         result = SCAN_PTE_NON_PRESENT;
559                         goto out;
560                 }
561                 page = vm_normal_page(vma, address, pteval);
562                 if (unlikely(!page)) {
563                         result = SCAN_PAGE_NULL;
564                         goto out;
565                 }
566
567                 /* TODO: teach khugepaged to collapse THP mapped with pte */
568                 if (PageCompound(page)) {
569                         result = SCAN_PAGE_COMPOUND;
570                         goto out;
571                 }
572
573                 VM_BUG_ON_PAGE(!PageAnon(page), page);
574
575                 /*
576                  * We can do it before isolate_lru_page because the
577                  * page can't be freed from under us. NOTE: PG_lock
578                  * is needed to serialize against split_huge_page
579                  * when invoked from the VM.
580                  */
581                 if (!trylock_page(page)) {
582                         result = SCAN_PAGE_LOCK;
583                         goto out;
584                 }
585
586                 /*
587                  * cannot use mapcount: can't collapse if there's a gup pin.
588                  * The page must only be referenced by the scanned process
589                  * and page swap cache.
590                  */
591                 if (page_count(page) != 1 + PageSwapCache(page)) {
592                         unlock_page(page);
593                         result = SCAN_PAGE_COUNT;
594                         goto out;
595                 }
596                 if (pte_write(pteval)) {
597                         writable = true;
598                 } else {
599                         if (PageSwapCache(page) &&
600                             !reuse_swap_page(page, NULL)) {
601                                 unlock_page(page);
602                                 result = SCAN_SWAP_CACHE_PAGE;
603                                 goto out;
604                         }
605                         /*
606                          * Page is not in the swap cache. It can be collapsed
607                          * into a THP.
608                          */
609                 }
610
611                 /*
612                  * Isolate the page to avoid collapsing an hugepage
613                  * currently in use by the VM.
614                  */
615                 if (isolate_lru_page(page)) {
616                         unlock_page(page);
617                         result = SCAN_DEL_PAGE_LRU;
618                         goto out;
619                 }
620                 inc_node_page_state(page,
621                                 NR_ISOLATED_ANON + page_is_file_cache(page));
622                 VM_BUG_ON_PAGE(!PageLocked(page), page);
623                 VM_BUG_ON_PAGE(PageLRU(page), page);
624
625                 /* There should be enough young pte to collapse the page */
626                 if (pte_young(pteval) ||
627                     page_is_young(page) || PageReferenced(page) ||
628                     mmu_notifier_test_young(vma->vm_mm, address))
629                         referenced++;
630         }
631
632         if (unlikely(!writable)) {
633                 result = SCAN_PAGE_RO;
634         } else if (unlikely(!referenced)) {
635                 result = SCAN_LACK_REFERENCED_PAGE;
636         } else {
637                 result = SCAN_SUCCEED;
638                 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
639                                                     referenced, writable, result);
640                 return 1;
641         }
642 out:
643         release_pte_pages(pte, _pte);
644         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
645                                             referenced, writable, result);
646         return 0;
647 }
648
649 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
650                                       struct vm_area_struct *vma,
651                                       unsigned long address,
652                                       spinlock_t *ptl)
653 {
654         pte_t *_pte;
655         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
656                                 _pte++, page++, address += PAGE_SIZE) {
657                 pte_t pteval = *_pte;
658                 struct page *src_page;
659
660                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
661                         clear_user_highpage(page, address);
662                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
663                         if (is_zero_pfn(pte_pfn(pteval))) {
664                                 /*
665                                  * ptl mostly unnecessary.
666                                  */
667                                 spin_lock(ptl);
668                                 /*
669                                  * paravirt calls inside pte_clear here are
670                                  * superfluous.
671                                  */
672                                 pte_clear(vma->vm_mm, address, _pte);
673                                 spin_unlock(ptl);
674                         }
675                 } else {
676                         src_page = pte_page(pteval);
677                         copy_user_highpage(page, src_page, address, vma);
678                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
679                         release_pte_page(src_page);
680                         /*
681                          * ptl mostly unnecessary, but preempt has to
682                          * be disabled to update the per-cpu stats
683                          * inside page_remove_rmap().
684                          */
685                         spin_lock(ptl);
686                         /*
687                          * paravirt calls inside pte_clear here are
688                          * superfluous.
689                          */
690                         pte_clear(vma->vm_mm, address, _pte);
691                         page_remove_rmap(src_page, false);
692                         spin_unlock(ptl);
693                         free_page_and_swap_cache(src_page);
694                 }
695         }
696 }
697
698 static void khugepaged_alloc_sleep(void)
699 {
700         DEFINE_WAIT(wait);
701
702         add_wait_queue(&khugepaged_wait, &wait);
703         freezable_schedule_timeout_interruptible(
704                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
705         remove_wait_queue(&khugepaged_wait, &wait);
706 }
707
708 static int khugepaged_node_load[MAX_NUMNODES];
709
710 static bool khugepaged_scan_abort(int nid)
711 {
712         int i;
713
714         /*
715          * If node_reclaim_mode is disabled, then no extra effort is made to
716          * allocate memory locally.
717          */
718         if (!node_reclaim_mode)
719                 return false;
720
721         /* If there is a count for this node already, it must be acceptable */
722         if (khugepaged_node_load[nid])
723                 return false;
724
725         for (i = 0; i < MAX_NUMNODES; i++) {
726                 if (!khugepaged_node_load[i])
727                         continue;
728                 if (node_distance(nid, i) > node_reclaim_distance)
729                         return true;
730         }
731         return false;
732 }
733
734 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
735 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
736 {
737         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
738 }
739
740 #ifdef CONFIG_NUMA
741 static int khugepaged_find_target_node(void)
742 {
743         static int last_khugepaged_target_node = NUMA_NO_NODE;
744         int nid, target_node = 0, max_value = 0;
745
746         /* find first node with max normal pages hit */
747         for (nid = 0; nid < MAX_NUMNODES; nid++)
748                 if (khugepaged_node_load[nid] > max_value) {
749                         max_value = khugepaged_node_load[nid];
750                         target_node = nid;
751                 }
752
753         /* do some balance if several nodes have the same hit record */
754         if (target_node <= last_khugepaged_target_node)
755                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
756                                 nid++)
757                         if (max_value == khugepaged_node_load[nid]) {
758                                 target_node = nid;
759                                 break;
760                         }
761
762         last_khugepaged_target_node = target_node;
763         return target_node;
764 }
765
766 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
767 {
768         if (IS_ERR(*hpage)) {
769                 if (!*wait)
770                         return false;
771
772                 *wait = false;
773                 *hpage = NULL;
774                 khugepaged_alloc_sleep();
775         } else if (*hpage) {
776                 put_page(*hpage);
777                 *hpage = NULL;
778         }
779
780         return true;
781 }
782
783 static struct page *
784 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
785 {
786         VM_BUG_ON_PAGE(*hpage, *hpage);
787
788         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
789         if (unlikely(!*hpage)) {
790                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
791                 *hpage = ERR_PTR(-ENOMEM);
792                 return NULL;
793         }
794
795         prep_transhuge_page(*hpage);
796         count_vm_event(THP_COLLAPSE_ALLOC);
797         return *hpage;
798 }
799 #else
800 static int khugepaged_find_target_node(void)
801 {
802         return 0;
803 }
804
805 static inline struct page *alloc_khugepaged_hugepage(void)
806 {
807         struct page *page;
808
809         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
810                            HPAGE_PMD_ORDER);
811         if (page)
812                 prep_transhuge_page(page);
813         return page;
814 }
815
816 static struct page *khugepaged_alloc_hugepage(bool *wait)
817 {
818         struct page *hpage;
819
820         do {
821                 hpage = alloc_khugepaged_hugepage();
822                 if (!hpage) {
823                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
824                         if (!*wait)
825                                 return NULL;
826
827                         *wait = false;
828                         khugepaged_alloc_sleep();
829                 } else
830                         count_vm_event(THP_COLLAPSE_ALLOC);
831         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
832
833         return hpage;
834 }
835
836 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
837 {
838         /*
839          * If the hpage allocated earlier was briefly exposed in page cache
840          * before collapse_file() failed, it is possible that racing lookups
841          * have not yet completed, and would then be unpleasantly surprised by
842          * finding the hpage reused for the same mapping at a different offset.
843          * Just release the previous allocation if there is any danger of that.
844          */
845         if (*hpage && page_count(*hpage) > 1) {
846                 put_page(*hpage);
847                 *hpage = NULL;
848         }
849
850         if (!*hpage)
851                 *hpage = khugepaged_alloc_hugepage(wait);
852
853         if (unlikely(!*hpage))
854                 return false;
855
856         return true;
857 }
858
859 static struct page *
860 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
861 {
862         VM_BUG_ON(!*hpage);
863
864         return  *hpage;
865 }
866 #endif
867
868 /*
869  * If mmap_sem temporarily dropped, revalidate vma
870  * before taking mmap_sem.
871  * Return 0 if succeeds, otherwise return none-zero
872  * value (scan code).
873  */
874
875 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
876                 struct vm_area_struct **vmap)
877 {
878         struct vm_area_struct *vma;
879         unsigned long hstart, hend;
880
881         if (unlikely(khugepaged_test_exit(mm)))
882                 return SCAN_ANY_PROCESS;
883
884         *vmap = vma = find_vma(mm, address);
885         if (!vma)
886                 return SCAN_VMA_NULL;
887
888         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
889         hend = vma->vm_end & HPAGE_PMD_MASK;
890         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
891                 return SCAN_ADDRESS_RANGE;
892         if (!hugepage_vma_check(vma, vma->vm_flags))
893                 return SCAN_VMA_CHECK;
894         /* Anon VMA expected */
895         if (!vma->anon_vma || vma->vm_ops)
896                 return SCAN_VMA_CHECK;
897         return 0;
898 }
899
900 /*
901  * Bring missing pages in from swap, to complete THP collapse.
902  * Only done if khugepaged_scan_pmd believes it is worthwhile.
903  *
904  * Called and returns without pte mapped or spinlocks held,
905  * but with mmap_sem held to protect against vma changes.
906  */
907
908 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
909                                         struct vm_area_struct *vma,
910                                         unsigned long address, pmd_t *pmd,
911                                         int referenced)
912 {
913         int swapped_in = 0;
914         vm_fault_t ret = 0;
915         struct vm_fault vmf = {
916                 .vma = vma,
917                 .address = address,
918                 .flags = FAULT_FLAG_ALLOW_RETRY,
919                 .pmd = pmd,
920                 .pgoff = linear_page_index(vma, address),
921         };
922
923         /* we only decide to swapin, if there is enough young ptes */
924         if (referenced < HPAGE_PMD_NR/2) {
925                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
926                 return false;
927         }
928         vmf.pte = pte_offset_map(pmd, address);
929         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
930                         vmf.pte++, vmf.address += PAGE_SIZE) {
931                 vmf.orig_pte = *vmf.pte;
932                 if (!is_swap_pte(vmf.orig_pte))
933                         continue;
934                 swapped_in++;
935                 ret = do_swap_page(&vmf);
936
937                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
938                 if (ret & VM_FAULT_RETRY) {
939                         down_read(&mm->mmap_sem);
940                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
941                                 /* vma is no longer available, don't continue to swapin */
942                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
943                                 return false;
944                         }
945                         /* check if the pmd is still valid */
946                         if (mm_find_pmd(mm, address) != pmd) {
947                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
948                                 return false;
949                         }
950                 }
951                 if (ret & VM_FAULT_ERROR) {
952                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
953                         return false;
954                 }
955                 /* pte is unmapped now, we need to map it */
956                 vmf.pte = pte_offset_map(pmd, vmf.address);
957         }
958         vmf.pte--;
959         pte_unmap(vmf.pte);
960         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
961         return true;
962 }
963
964 static void collapse_huge_page(struct mm_struct *mm,
965                                    unsigned long address,
966                                    struct page **hpage,
967                                    int node, int referenced)
968 {
969         pmd_t *pmd, _pmd;
970         pte_t *pte;
971         pgtable_t pgtable;
972         struct page *new_page;
973         spinlock_t *pmd_ptl, *pte_ptl;
974         int isolated = 0, result = 0;
975         struct mem_cgroup *memcg;
976         struct vm_area_struct *vma;
977         struct mmu_notifier_range range;
978         gfp_t gfp;
979
980         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
981
982         /* Only allocate from the target node */
983         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
984
985         /*
986          * Before allocating the hugepage, release the mmap_sem read lock.
987          * The allocation can take potentially a long time if it involves
988          * sync compaction, and we do not need to hold the mmap_sem during
989          * that. We will recheck the vma after taking it again in write mode.
990          */
991         up_read(&mm->mmap_sem);
992         new_page = khugepaged_alloc_page(hpage, gfp, node);
993         if (!new_page) {
994                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
995                 goto out_nolock;
996         }
997
998         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
999                 result = SCAN_CGROUP_CHARGE_FAIL;
1000                 goto out_nolock;
1001         }
1002
1003         down_read(&mm->mmap_sem);
1004         result = hugepage_vma_revalidate(mm, address, &vma);
1005         if (result) {
1006                 mem_cgroup_cancel_charge(new_page, memcg, true);
1007                 up_read(&mm->mmap_sem);
1008                 goto out_nolock;
1009         }
1010
1011         pmd = mm_find_pmd(mm, address);
1012         if (!pmd) {
1013                 result = SCAN_PMD_NULL;
1014                 mem_cgroup_cancel_charge(new_page, memcg, true);
1015                 up_read(&mm->mmap_sem);
1016                 goto out_nolock;
1017         }
1018
1019         /*
1020          * __collapse_huge_page_swapin always returns with mmap_sem locked.
1021          * If it fails, we release mmap_sem and jump out_nolock.
1022          * Continuing to collapse causes inconsistency.
1023          */
1024         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1025                 mem_cgroup_cancel_charge(new_page, memcg, true);
1026                 up_read(&mm->mmap_sem);
1027                 goto out_nolock;
1028         }
1029
1030         up_read(&mm->mmap_sem);
1031         /*
1032          * Prevent all access to pagetables with the exception of
1033          * gup_fast later handled by the ptep_clear_flush and the VM
1034          * handled by the anon_vma lock + PG_lock.
1035          */
1036         down_write(&mm->mmap_sem);
1037         result = hugepage_vma_revalidate(mm, address, &vma);
1038         if (result)
1039                 goto out;
1040         /* check if the pmd is still valid */
1041         if (mm_find_pmd(mm, address) != pmd)
1042                 goto out;
1043
1044         anon_vma_lock_write(vma->anon_vma);
1045
1046         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1047                                 address, address + HPAGE_PMD_SIZE);
1048         mmu_notifier_invalidate_range_start(&range);
1049
1050         pte = pte_offset_map(pmd, address);
1051         pte_ptl = pte_lockptr(mm, pmd);
1052
1053         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1054         /*
1055          * After this gup_fast can't run anymore. This also removes
1056          * any huge TLB entry from the CPU so we won't allow
1057          * huge and small TLB entries for the same virtual address
1058          * to avoid the risk of CPU bugs in that area.
1059          */
1060         _pmd = pmdp_collapse_flush(vma, address, pmd);
1061         spin_unlock(pmd_ptl);
1062         mmu_notifier_invalidate_range_end(&range);
1063         tlb_remove_table_sync_one();
1064
1065         spin_lock(pte_ptl);
1066         isolated = __collapse_huge_page_isolate(vma, address, pte);
1067         spin_unlock(pte_ptl);
1068
1069         if (unlikely(!isolated)) {
1070                 pte_unmap(pte);
1071                 spin_lock(pmd_ptl);
1072                 BUG_ON(!pmd_none(*pmd));
1073                 /*
1074                  * We can only use set_pmd_at when establishing
1075                  * hugepmds and never for establishing regular pmds that
1076                  * points to regular pagetables. Use pmd_populate for that
1077                  */
1078                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1079                 spin_unlock(pmd_ptl);
1080                 anon_vma_unlock_write(vma->anon_vma);
1081                 result = SCAN_FAIL;
1082                 goto out;
1083         }
1084
1085         /*
1086          * All pages are isolated and locked so anon_vma rmap
1087          * can't run anymore.
1088          */
1089         anon_vma_unlock_write(vma->anon_vma);
1090
1091         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1092         pte_unmap(pte);
1093         __SetPageUptodate(new_page);
1094         pgtable = pmd_pgtable(_pmd);
1095
1096         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1097         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1098
1099         /*
1100          * spin_lock() below is not the equivalent of smp_wmb(), so
1101          * this is needed to avoid the copy_huge_page writes to become
1102          * visible after the set_pmd_at() write.
1103          */
1104         smp_wmb();
1105
1106         spin_lock(pmd_ptl);
1107         BUG_ON(!pmd_none(*pmd));
1108         page_add_new_anon_rmap(new_page, vma, address, true);
1109         mem_cgroup_commit_charge(new_page, memcg, false, true);
1110         count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1111         lru_cache_add_active_or_unevictable(new_page, vma);
1112         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1113         set_pmd_at(mm, address, pmd, _pmd);
1114         update_mmu_cache_pmd(vma, address, pmd);
1115         spin_unlock(pmd_ptl);
1116
1117         *hpage = NULL;
1118
1119         khugepaged_pages_collapsed++;
1120         result = SCAN_SUCCEED;
1121 out_up_write:
1122         up_write(&mm->mmap_sem);
1123 out_nolock:
1124         trace_mm_collapse_huge_page(mm, isolated, result);
1125         return;
1126 out:
1127         mem_cgroup_cancel_charge(new_page, memcg, true);
1128         goto out_up_write;
1129 }
1130
1131 static int khugepaged_scan_pmd(struct mm_struct *mm,
1132                                struct vm_area_struct *vma,
1133                                unsigned long address,
1134                                struct page **hpage)
1135 {
1136         pmd_t *pmd;
1137         pte_t *pte, *_pte;
1138         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1139         struct page *page = NULL;
1140         unsigned long _address;
1141         spinlock_t *ptl;
1142         int node = NUMA_NO_NODE, unmapped = 0;
1143         bool writable = false;
1144
1145         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1146
1147         pmd = mm_find_pmd(mm, address);
1148         if (!pmd) {
1149                 result = SCAN_PMD_NULL;
1150                 goto out;
1151         }
1152
1153         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1154         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1155         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1156              _pte++, _address += PAGE_SIZE) {
1157                 pte_t pteval = *_pte;
1158                 if (is_swap_pte(pteval)) {
1159                         if (++unmapped <= khugepaged_max_ptes_swap) {
1160                                 continue;
1161                         } else {
1162                                 result = SCAN_EXCEED_SWAP_PTE;
1163                                 goto out_unmap;
1164                         }
1165                 }
1166                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1167                         if (!userfaultfd_armed(vma) &&
1168                             ++none_or_zero <= khugepaged_max_ptes_none) {
1169                                 continue;
1170                         } else {
1171                                 result = SCAN_EXCEED_NONE_PTE;
1172                                 goto out_unmap;
1173                         }
1174                 }
1175                 if (!pte_present(pteval)) {
1176                         result = SCAN_PTE_NON_PRESENT;
1177                         goto out_unmap;
1178                 }
1179                 if (pte_write(pteval))
1180                         writable = true;
1181
1182                 page = vm_normal_page(vma, _address, pteval);
1183                 if (unlikely(!page)) {
1184                         result = SCAN_PAGE_NULL;
1185                         goto out_unmap;
1186                 }
1187
1188                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1189                 if (PageCompound(page)) {
1190                         result = SCAN_PAGE_COMPOUND;
1191                         goto out_unmap;
1192                 }
1193
1194                 /*
1195                  * Record which node the original page is from and save this
1196                  * information to khugepaged_node_load[].
1197                  * Khupaged will allocate hugepage from the node has the max
1198                  * hit record.
1199                  */
1200                 node = page_to_nid(page);
1201                 if (khugepaged_scan_abort(node)) {
1202                         result = SCAN_SCAN_ABORT;
1203                         goto out_unmap;
1204                 }
1205                 khugepaged_node_load[node]++;
1206                 if (!PageLRU(page)) {
1207                         result = SCAN_PAGE_LRU;
1208                         goto out_unmap;
1209                 }
1210                 if (PageLocked(page)) {
1211                         result = SCAN_PAGE_LOCK;
1212                         goto out_unmap;
1213                 }
1214                 if (!PageAnon(page)) {
1215                         result = SCAN_PAGE_ANON;
1216                         goto out_unmap;
1217                 }
1218
1219                 /*
1220                  * cannot use mapcount: can't collapse if there's a gup pin.
1221                  * The page must only be referenced by the scanned process
1222                  * and page swap cache.
1223                  */
1224                 if (page_count(page) != 1 + PageSwapCache(page)) {
1225                         result = SCAN_PAGE_COUNT;
1226                         goto out_unmap;
1227                 }
1228                 if (pte_young(pteval) ||
1229                     page_is_young(page) || PageReferenced(page) ||
1230                     mmu_notifier_test_young(vma->vm_mm, address))
1231                         referenced++;
1232         }
1233         if (writable) {
1234                 if (referenced) {
1235                         result = SCAN_SUCCEED;
1236                         ret = 1;
1237                 } else {
1238                         result = SCAN_LACK_REFERENCED_PAGE;
1239                 }
1240         } else {
1241                 result = SCAN_PAGE_RO;
1242         }
1243 out_unmap:
1244         pte_unmap_unlock(pte, ptl);
1245         if (ret) {
1246                 node = khugepaged_find_target_node();
1247                 /* collapse_huge_page will return with the mmap_sem released */
1248                 collapse_huge_page(mm, address, hpage, node, referenced);
1249         }
1250 out:
1251         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1252                                      none_or_zero, result, unmapped);
1253         return ret;
1254 }
1255
1256 static void collect_mm_slot(struct mm_slot *mm_slot)
1257 {
1258         struct mm_struct *mm = mm_slot->mm;
1259
1260         lockdep_assert_held(&khugepaged_mm_lock);
1261
1262         if (khugepaged_test_exit(mm)) {
1263                 /* free mm_slot */
1264                 hash_del(&mm_slot->hash);
1265                 list_del(&mm_slot->mm_node);
1266
1267                 /*
1268                  * Not strictly needed because the mm exited already.
1269                  *
1270                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1271                  */
1272
1273                 /* khugepaged_mm_lock actually not necessary for the below */
1274                 free_mm_slot(mm_slot);
1275                 mmdrop(mm);
1276         }
1277 }
1278
1279 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1280 /*
1281  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1282  * khugepaged should try to collapse the page table.
1283  */
1284 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1285                                          unsigned long addr)
1286 {
1287         struct mm_slot *mm_slot;
1288
1289         VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1290
1291         spin_lock(&khugepaged_mm_lock);
1292         mm_slot = get_mm_slot(mm);
1293         if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1294                 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1295         spin_unlock(&khugepaged_mm_lock);
1296         return 0;
1297 }
1298
1299 /**
1300  * Try to collapse a pte-mapped THP for mm at address haddr.
1301  *
1302  * This function checks whether all the PTEs in the PMD are pointing to the
1303  * right THP. If so, retract the page table so the THP can refault in with
1304  * as pmd-mapped.
1305  */
1306 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1307 {
1308         unsigned long haddr = addr & HPAGE_PMD_MASK;
1309         struct vm_area_struct *vma = find_vma(mm, haddr);
1310         struct page *hpage;
1311         pte_t *start_pte, *pte;
1312         pmd_t *pmd, _pmd;
1313         spinlock_t *ptl;
1314         int count = 0;
1315         int i;
1316         struct mmu_notifier_range range;
1317
1318         if (!vma || !vma->vm_file ||
1319             vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1320                 return;
1321
1322         /*
1323          * This vm_flags may not have VM_HUGEPAGE if the page was not
1324          * collapsed by this mm. But we can still collapse if the page is
1325          * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1326          * will not fail the vma for missing VM_HUGEPAGE
1327          */
1328         if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1329                 return;
1330
1331         hpage = find_lock_page(vma->vm_file->f_mapping,
1332                                linear_page_index(vma, haddr));
1333         if (!hpage)
1334                 return;
1335
1336         if (!PageHead(hpage))
1337                 goto drop_hpage;
1338
1339         pmd = mm_find_pmd(mm, haddr);
1340         if (!pmd)
1341                 goto drop_hpage;
1342
1343         /*
1344          * We need to lock the mapping so that from here on, only GUP-fast and
1345          * hardware page walks can access the parts of the page tables that
1346          * we're operating on.
1347          */
1348         i_mmap_lock_write(vma->vm_file->f_mapping);
1349
1350         /*
1351          * This spinlock should be unnecessary: Nobody else should be accessing
1352          * the page tables under spinlock protection here, only
1353          * lockless_pages_from_mm() and the hardware page walker can access page
1354          * tables while all the high-level locks are held in write mode.
1355          */
1356         start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1357
1358         /* step 1: check all mapped PTEs are to the right huge page */
1359         for (i = 0, addr = haddr, pte = start_pte;
1360              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1361                 struct page *page;
1362
1363                 /* empty pte, skip */
1364                 if (pte_none(*pte))
1365                         continue;
1366
1367                 /* page swapped out, abort */
1368                 if (!pte_present(*pte))
1369                         goto abort;
1370
1371                 page = vm_normal_page(vma, addr, *pte);
1372
1373                 /*
1374                  * Note that uprobe, debugger, or MAP_PRIVATE may change the
1375                  * page table, but the new page will not be a subpage of hpage.
1376                  */
1377                 if (hpage + i != page)
1378                         goto abort;
1379                 count++;
1380         }
1381
1382         /* step 2: adjust rmap */
1383         for (i = 0, addr = haddr, pte = start_pte;
1384              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1385                 struct page *page;
1386
1387                 if (pte_none(*pte))
1388                         continue;
1389                 page = vm_normal_page(vma, addr, *pte);
1390                 page_remove_rmap(page, false);
1391         }
1392
1393         pte_unmap_unlock(start_pte, ptl);
1394
1395         /* step 3: set proper refcount and mm_counters. */
1396         if (count) {
1397                 page_ref_sub(hpage, count);
1398                 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1399         }
1400
1401         /* step 4: collapse pmd */
1402         /* we make no change to anon, but protect concurrent anon page lookup */
1403         if (vma->anon_vma)
1404                 anon_vma_lock_write(vma->anon_vma);
1405
1406         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, haddr,
1407                                 haddr + HPAGE_PMD_SIZE);
1408         mmu_notifier_invalidate_range_start(&range);
1409         _pmd = pmdp_collapse_flush(vma, haddr, pmd);
1410         mm_dec_nr_ptes(mm);
1411         tlb_remove_table_sync_one();
1412         mmu_notifier_invalidate_range_end(&range);
1413         pte_free(mm, pmd_pgtable(_pmd));
1414
1415         if (vma->anon_vma)
1416                 anon_vma_unlock_write(vma->anon_vma);
1417         i_mmap_unlock_write(vma->vm_file->f_mapping);
1418
1419 drop_hpage:
1420         unlock_page(hpage);
1421         put_page(hpage);
1422         return;
1423
1424 abort:
1425         pte_unmap_unlock(start_pte, ptl);
1426         i_mmap_unlock_write(vma->vm_file->f_mapping);
1427         goto drop_hpage;
1428 }
1429
1430 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1431 {
1432         struct mm_struct *mm = mm_slot->mm;
1433         int i;
1434
1435         if (likely(mm_slot->nr_pte_mapped_thp == 0))
1436                 return 0;
1437
1438         if (!down_write_trylock(&mm->mmap_sem))
1439                 return -EBUSY;
1440
1441         if (unlikely(khugepaged_test_exit(mm)))
1442                 goto out;
1443
1444         for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1445                 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1446
1447 out:
1448         mm_slot->nr_pte_mapped_thp = 0;
1449         up_write(&mm->mmap_sem);
1450         return 0;
1451 }
1452
1453 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1454 {
1455         struct vm_area_struct *vma;
1456         struct mm_struct *mm;
1457         unsigned long addr;
1458         pmd_t *pmd, _pmd;
1459
1460         i_mmap_lock_write(mapping);
1461         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1462                 /*
1463                  * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1464                  * got written to. These VMAs are likely not worth investing
1465                  * down_write(mmap_sem) as PMD-mapping is likely to be split
1466                  * later.
1467                  *
1468                  * Not that vma->anon_vma check is racy: it can be set up after
1469                  * the check but before we took mmap_sem by the fault path.
1470                  * But page lock would prevent establishing any new ptes of the
1471                  * page, so we are safe.
1472                  *
1473                  * An alternative would be drop the check, but check that page
1474                  * table is clear before calling pmdp_collapse_flush() under
1475                  * ptl. It has higher chance to recover THP for the VMA, but
1476                  * has higher cost too. It would also probably require locking
1477                  * the anon_vma.
1478                  */
1479                 if (vma->anon_vma)
1480                         continue;
1481                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1482                 if (addr & ~HPAGE_PMD_MASK)
1483                         continue;
1484                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1485                         continue;
1486                 mm = vma->vm_mm;
1487                 pmd = mm_find_pmd(mm, addr);
1488                 if (!pmd)
1489                         continue;
1490                 /*
1491                  * We need exclusive mmap_sem to retract page table.
1492                  *
1493                  * We use trylock due to lock inversion: we need to acquire
1494                  * mmap_sem while holding page lock. Fault path does it in
1495                  * reverse order. Trylock is a way to avoid deadlock.
1496                  */
1497                 if (down_write_trylock(&mm->mmap_sem)) {
1498                         if (!khugepaged_test_exit(mm)) {
1499                                 struct mmu_notifier_range range;
1500
1501                                 mmu_notifier_range_init(&range,
1502                                                         MMU_NOTIFY_CLEAR, 0,
1503                                                         NULL, mm, addr,
1504                                                         addr + HPAGE_PMD_SIZE);
1505                                 mmu_notifier_invalidate_range_start(&range);
1506                                 /* assume page table is clear */
1507                                 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1508                                 mm_dec_nr_ptes(mm);
1509                                 tlb_remove_table_sync_one();
1510                                 pte_free(mm, pmd_pgtable(_pmd));
1511                                 mmu_notifier_invalidate_range_end(&range);
1512                         }
1513                         up_write(&mm->mmap_sem);
1514                 } else {
1515                         /* Try again later */
1516                         khugepaged_add_pte_mapped_thp(mm, addr);
1517                 }
1518         }
1519         i_mmap_unlock_write(mapping);
1520 }
1521
1522 /**
1523  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1524  *
1525  * Basic scheme is simple, details are more complex:
1526  *  - allocate and lock a new huge page;
1527  *  - scan page cache replacing old pages with the new one
1528  *    + swap/gup in pages if necessary;
1529  *    + fill in gaps;
1530  *    + keep old pages around in case rollback is required;
1531  *  - if replacing succeeds:
1532  *    + copy data over;
1533  *    + free old pages;
1534  *    + unlock huge page;
1535  *  - if replacing failed;
1536  *    + put all pages back and unfreeze them;
1537  *    + restore gaps in the page cache;
1538  *    + unlock and free huge page;
1539  */
1540 static void collapse_file(struct mm_struct *mm,
1541                 struct file *file, pgoff_t start,
1542                 struct page **hpage, int node)
1543 {
1544         struct address_space *mapping = file->f_mapping;
1545         gfp_t gfp;
1546         struct page *new_page;
1547         struct mem_cgroup *memcg;
1548         pgoff_t index, end = start + HPAGE_PMD_NR;
1549         LIST_HEAD(pagelist);
1550         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1551         int nr_none = 0, result = SCAN_SUCCEED;
1552         bool is_shmem = shmem_file(file);
1553
1554         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1555         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1556
1557         /* Only allocate from the target node */
1558         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1559
1560         new_page = khugepaged_alloc_page(hpage, gfp, node);
1561         if (!new_page) {
1562                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1563                 goto out;
1564         }
1565
1566         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1567                 result = SCAN_CGROUP_CHARGE_FAIL;
1568                 goto out;
1569         }
1570
1571         /* This will be less messy when we use multi-index entries */
1572         do {
1573                 xas_lock_irq(&xas);
1574                 xas_create_range(&xas);
1575                 if (!xas_error(&xas))
1576                         break;
1577                 xas_unlock_irq(&xas);
1578                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1579                         mem_cgroup_cancel_charge(new_page, memcg, true);
1580                         result = SCAN_FAIL;
1581                         goto out;
1582                 }
1583         } while (1);
1584
1585         __SetPageLocked(new_page);
1586         if (is_shmem)
1587                 __SetPageSwapBacked(new_page);
1588         new_page->index = start;
1589         new_page->mapping = mapping;
1590
1591         /*
1592          * At this point the new_page is locked and not up-to-date.
1593          * It's safe to insert it into the page cache, because nobody would
1594          * be able to map it or use it in another way until we unlock it.
1595          */
1596
1597         xas_set(&xas, start);
1598         for (index = start; index < end; index++) {
1599                 struct page *page = xas_next(&xas);
1600
1601                 VM_BUG_ON(index != xas.xa_index);
1602                 if (is_shmem) {
1603                         if (!page) {
1604                                 /*
1605                                  * Stop if extent has been truncated or
1606                                  * hole-punched, and is now completely
1607                                  * empty.
1608                                  */
1609                                 if (index == start) {
1610                                         if (!xas_next_entry(&xas, end - 1)) {
1611                                                 result = SCAN_TRUNCATED;
1612                                                 goto xa_locked;
1613                                         }
1614                                         xas_set(&xas, index);
1615                                 }
1616                                 if (!shmem_charge(mapping->host, 1)) {
1617                                         result = SCAN_FAIL;
1618                                         goto xa_locked;
1619                                 }
1620                                 xas_store(&xas, new_page);
1621                                 nr_none++;
1622                                 continue;
1623                         }
1624
1625                         if (xa_is_value(page) || !PageUptodate(page)) {
1626                                 xas_unlock_irq(&xas);
1627                                 /* swap in or instantiate fallocated page */
1628                                 if (shmem_getpage(mapping->host, index, &page,
1629                                                   SGP_NOHUGE)) {
1630                                         result = SCAN_FAIL;
1631                                         goto xa_unlocked;
1632                                 }
1633                         } else if (trylock_page(page)) {
1634                                 get_page(page);
1635                                 xas_unlock_irq(&xas);
1636                         } else {
1637                                 result = SCAN_PAGE_LOCK;
1638                                 goto xa_locked;
1639                         }
1640                 } else {        /* !is_shmem */
1641                         if (!page || xa_is_value(page)) {
1642                                 xas_unlock_irq(&xas);
1643                                 page_cache_sync_readahead(mapping, &file->f_ra,
1644                                                           file, index,
1645                                                           end - index);
1646                                 /* drain pagevecs to help isolate_lru_page() */
1647                                 lru_add_drain();
1648                                 page = find_lock_page(mapping, index);
1649                                 if (unlikely(page == NULL)) {
1650                                         result = SCAN_FAIL;
1651                                         goto xa_unlocked;
1652                                 }
1653                         } else if (trylock_page(page)) {
1654                                 get_page(page);
1655                                 xas_unlock_irq(&xas);
1656                         } else {
1657                                 result = SCAN_PAGE_LOCK;
1658                                 goto xa_locked;
1659                         }
1660                 }
1661
1662                 /*
1663                  * The page must be locked, so we can drop the i_pages lock
1664                  * without racing with truncate.
1665                  */
1666                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1667
1668                 /* make sure the page is up to date */
1669                 if (unlikely(!PageUptodate(page))) {
1670                         result = SCAN_FAIL;
1671                         goto out_unlock;
1672                 }
1673
1674                 /*
1675                  * If file was truncated then extended, or hole-punched, before
1676                  * we locked the first page, then a THP might be there already.
1677                  */
1678                 if (PageTransCompound(page)) {
1679                         result = SCAN_PAGE_COMPOUND;
1680                         goto out_unlock;
1681                 }
1682
1683                 if (page_mapping(page) != mapping) {
1684                         result = SCAN_TRUNCATED;
1685                         goto out_unlock;
1686                 }
1687
1688                 if (!is_shmem && PageDirty(page)) {
1689                         /*
1690                          * khugepaged only works on read-only fd, so this
1691                          * page is dirty because it hasn't been flushed
1692                          * since first write.
1693                          */
1694                         result = SCAN_FAIL;
1695                         goto out_unlock;
1696                 }
1697
1698                 if (isolate_lru_page(page)) {
1699                         result = SCAN_DEL_PAGE_LRU;
1700                         goto out_unlock;
1701                 }
1702
1703                 if (page_has_private(page) &&
1704                     !try_to_release_page(page, GFP_KERNEL)) {
1705                         result = SCAN_PAGE_HAS_PRIVATE;
1706                         putback_lru_page(page);
1707                         goto out_unlock;
1708                 }
1709
1710                 if (page_mapped(page))
1711                         unmap_mapping_pages(mapping, index, 1, false);
1712
1713                 xas_lock_irq(&xas);
1714                 xas_set(&xas, index);
1715
1716                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1717                 VM_BUG_ON_PAGE(page_mapped(page), page);
1718
1719                 /*
1720                  * The page is expected to have page_count() == 3:
1721                  *  - we hold a pin on it;
1722                  *  - one reference from page cache;
1723                  *  - one from isolate_lru_page;
1724                  */
1725                 if (!page_ref_freeze(page, 3)) {
1726                         result = SCAN_PAGE_COUNT;
1727                         xas_unlock_irq(&xas);
1728                         putback_lru_page(page);
1729                         goto out_unlock;
1730                 }
1731
1732                 /*
1733                  * Add the page to the list to be able to undo the collapse if
1734                  * something go wrong.
1735                  */
1736                 list_add_tail(&page->lru, &pagelist);
1737
1738                 /* Finally, replace with the new page. */
1739                 xas_store(&xas, new_page);
1740                 continue;
1741 out_unlock:
1742                 unlock_page(page);
1743                 put_page(page);
1744                 goto xa_unlocked;
1745         }
1746
1747         if (is_shmem)
1748                 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1749         else {
1750                 __inc_node_page_state(new_page, NR_FILE_THPS);
1751                 filemap_nr_thps_inc(mapping);
1752         }
1753
1754         if (nr_none) {
1755                 struct zone *zone = page_zone(new_page);
1756
1757                 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1758                 if (is_shmem)
1759                         __mod_node_page_state(zone->zone_pgdat,
1760                                               NR_SHMEM, nr_none);
1761         }
1762
1763 xa_locked:
1764         xas_unlock_irq(&xas);
1765 xa_unlocked:
1766
1767         if (result == SCAN_SUCCEED) {
1768                 struct page *page, *tmp;
1769
1770                 /*
1771                  * Replacing old pages with new one has succeeded, now we
1772                  * need to copy the content and free the old pages.
1773                  */
1774                 index = start;
1775                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1776                         while (index < page->index) {
1777                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1778                                 index++;
1779                         }
1780                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1781                                         page);
1782                         list_del(&page->lru);
1783                         page->mapping = NULL;
1784                         page_ref_unfreeze(page, 1);
1785                         ClearPageActive(page);
1786                         ClearPageUnevictable(page);
1787                         unlock_page(page);
1788                         put_page(page);
1789                         index++;
1790                 }
1791                 while (index < end) {
1792                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1793                         index++;
1794                 }
1795
1796                 SetPageUptodate(new_page);
1797                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1798                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1799
1800                 if (is_shmem) {
1801                         set_page_dirty(new_page);
1802                         lru_cache_add_anon(new_page);
1803                 } else {
1804                         lru_cache_add_file(new_page);
1805                 }
1806                 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1807
1808                 /*
1809                  * Remove pte page tables, so we can re-fault the page as huge.
1810                  */
1811                 retract_page_tables(mapping, start);
1812                 *hpage = NULL;
1813
1814                 khugepaged_pages_collapsed++;
1815         } else {
1816                 struct page *page;
1817
1818                 /* Something went wrong: roll back page cache changes */
1819                 xas_lock_irq(&xas);
1820                 mapping->nrpages -= nr_none;
1821
1822                 if (is_shmem)
1823                         shmem_uncharge(mapping->host, nr_none);
1824
1825                 xas_set(&xas, start);
1826                 xas_for_each(&xas, page, end - 1) {
1827                         page = list_first_entry_or_null(&pagelist,
1828                                         struct page, lru);
1829                         if (!page || xas.xa_index < page->index) {
1830                                 if (!nr_none)
1831                                         break;
1832                                 nr_none--;
1833                                 /* Put holes back where they were */
1834                                 xas_store(&xas, NULL);
1835                                 continue;
1836                         }
1837
1838                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1839
1840                         /* Unfreeze the page. */
1841                         list_del(&page->lru);
1842                         page_ref_unfreeze(page, 2);
1843                         xas_store(&xas, page);
1844                         xas_pause(&xas);
1845                         xas_unlock_irq(&xas);
1846                         unlock_page(page);
1847                         putback_lru_page(page);
1848                         xas_lock_irq(&xas);
1849                 }
1850                 VM_BUG_ON(nr_none);
1851                 xas_unlock_irq(&xas);
1852
1853                 mem_cgroup_cancel_charge(new_page, memcg, true);
1854                 new_page->mapping = NULL;
1855         }
1856
1857         unlock_page(new_page);
1858 out:
1859         VM_BUG_ON(!list_empty(&pagelist));
1860         /* TODO: tracepoints */
1861 }
1862
1863 static void khugepaged_scan_file(struct mm_struct *mm,
1864                 struct file *file, pgoff_t start, struct page **hpage)
1865 {
1866         struct page *page = NULL;
1867         struct address_space *mapping = file->f_mapping;
1868         XA_STATE(xas, &mapping->i_pages, start);
1869         int present, swap;
1870         int node = NUMA_NO_NODE;
1871         int result = SCAN_SUCCEED;
1872
1873         present = 0;
1874         swap = 0;
1875         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1876         rcu_read_lock();
1877         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1878                 if (xas_retry(&xas, page))
1879                         continue;
1880
1881                 if (xa_is_value(page)) {
1882                         if (++swap > khugepaged_max_ptes_swap) {
1883                                 result = SCAN_EXCEED_SWAP_PTE;
1884                                 break;
1885                         }
1886                         continue;
1887                 }
1888
1889                 if (PageTransCompound(page)) {
1890                         result = SCAN_PAGE_COMPOUND;
1891                         break;
1892                 }
1893
1894                 node = page_to_nid(page);
1895                 if (khugepaged_scan_abort(node)) {
1896                         result = SCAN_SCAN_ABORT;
1897                         break;
1898                 }
1899                 khugepaged_node_load[node]++;
1900
1901                 if (!PageLRU(page)) {
1902                         result = SCAN_PAGE_LRU;
1903                         break;
1904                 }
1905
1906                 if (page_count(page) !=
1907                     1 + page_mapcount(page) + page_has_private(page)) {
1908                         result = SCAN_PAGE_COUNT;
1909                         break;
1910                 }
1911
1912                 /*
1913                  * We probably should check if the page is referenced here, but
1914                  * nobody would transfer pte_young() to PageReferenced() for us.
1915                  * And rmap walk here is just too costly...
1916                  */
1917
1918                 present++;
1919
1920                 if (need_resched()) {
1921                         xas_pause(&xas);
1922                         cond_resched_rcu();
1923                 }
1924         }
1925         rcu_read_unlock();
1926
1927         if (result == SCAN_SUCCEED) {
1928                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1929                         result = SCAN_EXCEED_NONE_PTE;
1930                 } else {
1931                         node = khugepaged_find_target_node();
1932                         collapse_file(mm, file, start, hpage, node);
1933                 }
1934         }
1935
1936         /* TODO: tracepoints */
1937 }
1938 #else
1939 static void khugepaged_scan_file(struct mm_struct *mm,
1940                 struct file *file, pgoff_t start, struct page **hpage)
1941 {
1942         BUILD_BUG();
1943 }
1944
1945 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1946 {
1947         return 0;
1948 }
1949 #endif
1950
1951 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1952                                             struct page **hpage)
1953         __releases(&khugepaged_mm_lock)
1954         __acquires(&khugepaged_mm_lock)
1955 {
1956         struct mm_slot *mm_slot;
1957         struct mm_struct *mm;
1958         struct vm_area_struct *vma;
1959         int progress = 0;
1960
1961         VM_BUG_ON(!pages);
1962         lockdep_assert_held(&khugepaged_mm_lock);
1963
1964         if (khugepaged_scan.mm_slot)
1965                 mm_slot = khugepaged_scan.mm_slot;
1966         else {
1967                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1968                                      struct mm_slot, mm_node);
1969                 khugepaged_scan.address = 0;
1970                 khugepaged_scan.mm_slot = mm_slot;
1971         }
1972         spin_unlock(&khugepaged_mm_lock);
1973         khugepaged_collapse_pte_mapped_thps(mm_slot);
1974
1975         mm = mm_slot->mm;
1976         /*
1977          * Don't wait for semaphore (to avoid long wait times).  Just move to
1978          * the next mm on the list.
1979          */
1980         vma = NULL;
1981         if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1982                 goto breakouterloop_mmap_sem;
1983         if (likely(!khugepaged_test_exit(mm)))
1984                 vma = find_vma(mm, khugepaged_scan.address);
1985
1986         progress++;
1987         for (; vma; vma = vma->vm_next) {
1988                 unsigned long hstart, hend;
1989
1990                 cond_resched();
1991                 if (unlikely(khugepaged_test_exit(mm))) {
1992                         progress++;
1993                         break;
1994                 }
1995                 if (!hugepage_vma_check(vma, vma->vm_flags)) {
1996 skip:
1997                         progress++;
1998                         continue;
1999                 }
2000                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2001                 hend = vma->vm_end & HPAGE_PMD_MASK;
2002                 if (hstart >= hend)
2003                         goto skip;
2004                 if (khugepaged_scan.address > hend)
2005                         goto skip;
2006                 if (khugepaged_scan.address < hstart)
2007                         khugepaged_scan.address = hstart;
2008                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2009
2010                 while (khugepaged_scan.address < hend) {
2011                         int ret;
2012                         cond_resched();
2013                         if (unlikely(khugepaged_test_exit(mm)))
2014                                 goto breakouterloop;
2015
2016                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2017                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2018                                   hend);
2019                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2020                                 struct file *file;
2021                                 pgoff_t pgoff = linear_page_index(vma,
2022                                                 khugepaged_scan.address);
2023
2024                                 if (shmem_file(vma->vm_file)
2025                                     && !shmem_huge_enabled(vma))
2026                                         goto skip;
2027                                 file = get_file(vma->vm_file);
2028                                 up_read(&mm->mmap_sem);
2029                                 ret = 1;
2030                                 khugepaged_scan_file(mm, file, pgoff, hpage);
2031                                 fput(file);
2032                         } else {
2033                                 ret = khugepaged_scan_pmd(mm, vma,
2034                                                 khugepaged_scan.address,
2035                                                 hpage);
2036                         }
2037                         /* move to next address */
2038                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2039                         progress += HPAGE_PMD_NR;
2040                         if (ret)
2041                                 /* we released mmap_sem so break loop */
2042                                 goto breakouterloop_mmap_sem;
2043                         if (progress >= pages)
2044                                 goto breakouterloop;
2045                 }
2046         }
2047 breakouterloop:
2048         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2049 breakouterloop_mmap_sem:
2050
2051         spin_lock(&khugepaged_mm_lock);
2052         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2053         /*
2054          * Release the current mm_slot if this mm is about to die, or
2055          * if we scanned all vmas of this mm.
2056          */
2057         if (khugepaged_test_exit(mm) || !vma) {
2058                 /*
2059                  * Make sure that if mm_users is reaching zero while
2060                  * khugepaged runs here, khugepaged_exit will find
2061                  * mm_slot not pointing to the exiting mm.
2062                  */
2063                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2064                         khugepaged_scan.mm_slot = list_entry(
2065                                 mm_slot->mm_node.next,
2066                                 struct mm_slot, mm_node);
2067                         khugepaged_scan.address = 0;
2068                 } else {
2069                         khugepaged_scan.mm_slot = NULL;
2070                         khugepaged_full_scans++;
2071                 }
2072
2073                 collect_mm_slot(mm_slot);
2074         }
2075
2076         return progress;
2077 }
2078
2079 static int khugepaged_has_work(void)
2080 {
2081         return !list_empty(&khugepaged_scan.mm_head) &&
2082                 khugepaged_enabled();
2083 }
2084
2085 static int khugepaged_wait_event(void)
2086 {
2087         return !list_empty(&khugepaged_scan.mm_head) ||
2088                 kthread_should_stop();
2089 }
2090
2091 static void khugepaged_do_scan(void)
2092 {
2093         struct page *hpage = NULL;
2094         unsigned int progress = 0, pass_through_head = 0;
2095         unsigned int pages = khugepaged_pages_to_scan;
2096         bool wait = true;
2097
2098         barrier(); /* write khugepaged_pages_to_scan to local stack */
2099
2100         while (progress < pages) {
2101                 if (!khugepaged_prealloc_page(&hpage, &wait))
2102                         break;
2103
2104                 cond_resched();
2105
2106                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2107                         break;
2108
2109                 spin_lock(&khugepaged_mm_lock);
2110                 if (!khugepaged_scan.mm_slot)
2111                         pass_through_head++;
2112                 if (khugepaged_has_work() &&
2113                     pass_through_head < 2)
2114                         progress += khugepaged_scan_mm_slot(pages - progress,
2115                                                             &hpage);
2116                 else
2117                         progress = pages;
2118                 spin_unlock(&khugepaged_mm_lock);
2119         }
2120
2121         if (!IS_ERR_OR_NULL(hpage))
2122                 put_page(hpage);
2123 }
2124
2125 static bool khugepaged_should_wakeup(void)
2126 {
2127         return kthread_should_stop() ||
2128                time_after_eq(jiffies, khugepaged_sleep_expire);
2129 }
2130
2131 static void khugepaged_wait_work(void)
2132 {
2133         if (khugepaged_has_work()) {
2134                 const unsigned long scan_sleep_jiffies =
2135                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2136
2137                 if (!scan_sleep_jiffies)
2138                         return;
2139
2140                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2141                 wait_event_freezable_timeout(khugepaged_wait,
2142                                              khugepaged_should_wakeup(),
2143                                              scan_sleep_jiffies);
2144                 return;
2145         }
2146
2147         if (khugepaged_enabled())
2148                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2149 }
2150
2151 static int khugepaged(void *none)
2152 {
2153         struct mm_slot *mm_slot;
2154
2155         set_freezable();
2156         set_user_nice(current, MAX_NICE);
2157
2158         while (!kthread_should_stop()) {
2159                 khugepaged_do_scan();
2160                 khugepaged_wait_work();
2161         }
2162
2163         spin_lock(&khugepaged_mm_lock);
2164         mm_slot = khugepaged_scan.mm_slot;
2165         khugepaged_scan.mm_slot = NULL;
2166         if (mm_slot)
2167                 collect_mm_slot(mm_slot);
2168         spin_unlock(&khugepaged_mm_lock);
2169         return 0;
2170 }
2171
2172 static void set_recommended_min_free_kbytes(void)
2173 {
2174         struct zone *zone;
2175         int nr_zones = 0;
2176         unsigned long recommended_min;
2177
2178         for_each_populated_zone(zone) {
2179                 /*
2180                  * We don't need to worry about fragmentation of
2181                  * ZONE_MOVABLE since it only has movable pages.
2182                  */
2183                 if (zone_idx(zone) > gfp_zone(GFP_USER))
2184                         continue;
2185
2186                 nr_zones++;
2187         }
2188
2189         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2190         recommended_min = pageblock_nr_pages * nr_zones * 2;
2191
2192         /*
2193          * Make sure that on average at least two pageblocks are almost free
2194          * of another type, one for a migratetype to fall back to and a
2195          * second to avoid subsequent fallbacks of other types There are 3
2196          * MIGRATE_TYPES we care about.
2197          */
2198         recommended_min += pageblock_nr_pages * nr_zones *
2199                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2200
2201         /* don't ever allow to reserve more than 5% of the lowmem */
2202         recommended_min = min(recommended_min,
2203                               (unsigned long) nr_free_buffer_pages() / 20);
2204         recommended_min <<= (PAGE_SHIFT-10);
2205
2206         if (recommended_min > min_free_kbytes) {
2207                 if (user_min_free_kbytes >= 0)
2208                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2209                                 min_free_kbytes, recommended_min);
2210
2211                 min_free_kbytes = recommended_min;
2212         }
2213         setup_per_zone_wmarks();
2214 }
2215
2216 int start_stop_khugepaged(void)
2217 {
2218         int err = 0;
2219
2220         mutex_lock(&khugepaged_mutex);
2221         if (khugepaged_enabled()) {
2222                 if (!khugepaged_thread)
2223                         khugepaged_thread = kthread_run(khugepaged, NULL,
2224                                                         "khugepaged");
2225                 if (IS_ERR(khugepaged_thread)) {
2226                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2227                         err = PTR_ERR(khugepaged_thread);
2228                         khugepaged_thread = NULL;
2229                         goto fail;
2230                 }
2231
2232                 if (!list_empty(&khugepaged_scan.mm_head))
2233                         wake_up_interruptible(&khugepaged_wait);
2234
2235                 set_recommended_min_free_kbytes();
2236         } else if (khugepaged_thread) {
2237                 kthread_stop(khugepaged_thread);
2238                 khugepaged_thread = NULL;
2239         }
2240 fail:
2241         mutex_unlock(&khugepaged_mutex);
2242         return err;
2243 }
2244
2245 void khugepaged_min_free_kbytes_update(void)
2246 {
2247         mutex_lock(&khugepaged_mutex);
2248         if (khugepaged_enabled() && khugepaged_thread)
2249                 set_recommended_min_free_kbytes();
2250         mutex_unlock(&khugepaged_mutex);
2251 }