GNU Linux-libre 4.14.303-gnu1
[releases.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 /* gross hack for <=4.19 stable */
27 #if defined(CONFIG_S390) || defined(CONFIG_ARM)
28 static void tlb_remove_table_smp_sync(void *arg)
29 {
30         /* Simply deliver the interrupt */
31 }
32
33 static void tlb_remove_table_sync_one(void)
34 {
35         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
36 }
37 #endif
38
39 enum scan_result {
40         SCAN_FAIL,
41         SCAN_SUCCEED,
42         SCAN_PMD_NULL,
43         SCAN_EXCEED_NONE_PTE,
44         SCAN_PTE_NON_PRESENT,
45         SCAN_PAGE_RO,
46         SCAN_LACK_REFERENCED_PAGE,
47         SCAN_PAGE_NULL,
48         SCAN_SCAN_ABORT,
49         SCAN_PAGE_COUNT,
50         SCAN_PAGE_LRU,
51         SCAN_PAGE_LOCK,
52         SCAN_PAGE_ANON,
53         SCAN_PAGE_COMPOUND,
54         SCAN_ANY_PROCESS,
55         SCAN_VMA_NULL,
56         SCAN_VMA_CHECK,
57         SCAN_ADDRESS_RANGE,
58         SCAN_SWAP_CACHE_PAGE,
59         SCAN_DEL_PAGE_LRU,
60         SCAN_ALLOC_HUGE_PAGE_FAIL,
61         SCAN_CGROUP_CHARGE_FAIL,
62         SCAN_EXCEED_SWAP_PTE,
63         SCAN_TRUNCATED,
64 };
65
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/huge_memory.h>
68
69 static struct task_struct *khugepaged_thread __read_mostly;
70 static DEFINE_MUTEX(khugepaged_mutex);
71
72 /* default scan 8*512 pte (or vmas) every 30 second */
73 static unsigned int khugepaged_pages_to_scan __read_mostly;
74 static unsigned int khugepaged_pages_collapsed;
75 static unsigned int khugepaged_full_scans;
76 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
77 /* during fragmentation poll the hugepage allocator once every minute */
78 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
79 static unsigned long khugepaged_sleep_expire;
80 static DEFINE_SPINLOCK(khugepaged_mm_lock);
81 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
82 /*
83  * default collapse hugepages if there is at least one pte mapped like
84  * it would have happened if the vma was large enough during page
85  * fault.
86  */
87 static unsigned int khugepaged_max_ptes_none __read_mostly;
88 static unsigned int khugepaged_max_ptes_swap __read_mostly;
89
90 #define MM_SLOTS_HASH_BITS 10
91 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
92
93 static struct kmem_cache *mm_slot_cache __read_mostly;
94
95 /**
96  * struct mm_slot - hash lookup from mm to mm_slot
97  * @hash: hash collision list
98  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
99  * @mm: the mm that this information is valid for
100  */
101 struct mm_slot {
102         struct hlist_node hash;
103         struct list_head mm_node;
104         struct mm_struct *mm;
105 };
106
107 /**
108  * struct khugepaged_scan - cursor for scanning
109  * @mm_head: the head of the mm list to scan
110  * @mm_slot: the current mm_slot we are scanning
111  * @address: the next address inside that to be scanned
112  *
113  * There is only the one khugepaged_scan instance of this cursor structure.
114  */
115 struct khugepaged_scan {
116         struct list_head mm_head;
117         struct mm_slot *mm_slot;
118         unsigned long address;
119 };
120
121 static struct khugepaged_scan khugepaged_scan = {
122         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
123 };
124
125 #ifdef CONFIG_SYSFS
126 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
127                                          struct kobj_attribute *attr,
128                                          char *buf)
129 {
130         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
131 }
132
133 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
134                                           struct kobj_attribute *attr,
135                                           const char *buf, size_t count)
136 {
137         unsigned long msecs;
138         int err;
139
140         err = kstrtoul(buf, 10, &msecs);
141         if (err || msecs > UINT_MAX)
142                 return -EINVAL;
143
144         khugepaged_scan_sleep_millisecs = msecs;
145         khugepaged_sleep_expire = 0;
146         wake_up_interruptible(&khugepaged_wait);
147
148         return count;
149 }
150 static struct kobj_attribute scan_sleep_millisecs_attr =
151         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
152                scan_sleep_millisecs_store);
153
154 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
155                                           struct kobj_attribute *attr,
156                                           char *buf)
157 {
158         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
159 }
160
161 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
162                                            struct kobj_attribute *attr,
163                                            const char *buf, size_t count)
164 {
165         unsigned long msecs;
166         int err;
167
168         err = kstrtoul(buf, 10, &msecs);
169         if (err || msecs > UINT_MAX)
170                 return -EINVAL;
171
172         khugepaged_alloc_sleep_millisecs = msecs;
173         khugepaged_sleep_expire = 0;
174         wake_up_interruptible(&khugepaged_wait);
175
176         return count;
177 }
178 static struct kobj_attribute alloc_sleep_millisecs_attr =
179         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
180                alloc_sleep_millisecs_store);
181
182 static ssize_t pages_to_scan_show(struct kobject *kobj,
183                                   struct kobj_attribute *attr,
184                                   char *buf)
185 {
186         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
187 }
188 static ssize_t pages_to_scan_store(struct kobject *kobj,
189                                    struct kobj_attribute *attr,
190                                    const char *buf, size_t count)
191 {
192         int err;
193         unsigned long pages;
194
195         err = kstrtoul(buf, 10, &pages);
196         if (err || !pages || pages > UINT_MAX)
197                 return -EINVAL;
198
199         khugepaged_pages_to_scan = pages;
200
201         return count;
202 }
203 static struct kobj_attribute pages_to_scan_attr =
204         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
205                pages_to_scan_store);
206
207 static ssize_t pages_collapsed_show(struct kobject *kobj,
208                                     struct kobj_attribute *attr,
209                                     char *buf)
210 {
211         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
212 }
213 static struct kobj_attribute pages_collapsed_attr =
214         __ATTR_RO(pages_collapsed);
215
216 static ssize_t full_scans_show(struct kobject *kobj,
217                                struct kobj_attribute *attr,
218                                char *buf)
219 {
220         return sprintf(buf, "%u\n", khugepaged_full_scans);
221 }
222 static struct kobj_attribute full_scans_attr =
223         __ATTR_RO(full_scans);
224
225 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
226                                       struct kobj_attribute *attr, char *buf)
227 {
228         return single_hugepage_flag_show(kobj, attr, buf,
229                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
230 }
231 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
232                                        struct kobj_attribute *attr,
233                                        const char *buf, size_t count)
234 {
235         return single_hugepage_flag_store(kobj, attr, buf, count,
236                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
237 }
238 static struct kobj_attribute khugepaged_defrag_attr =
239         __ATTR(defrag, 0644, khugepaged_defrag_show,
240                khugepaged_defrag_store);
241
242 /*
243  * max_ptes_none controls if khugepaged should collapse hugepages over
244  * any unmapped ptes in turn potentially increasing the memory
245  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
246  * reduce the available free memory in the system as it
247  * runs. Increasing max_ptes_none will instead potentially reduce the
248  * free memory in the system during the khugepaged scan.
249  */
250 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
251                                              struct kobj_attribute *attr,
252                                              char *buf)
253 {
254         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
255 }
256 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
257                                               struct kobj_attribute *attr,
258                                               const char *buf, size_t count)
259 {
260         int err;
261         unsigned long max_ptes_none;
262
263         err = kstrtoul(buf, 10, &max_ptes_none);
264         if (err || max_ptes_none > HPAGE_PMD_NR-1)
265                 return -EINVAL;
266
267         khugepaged_max_ptes_none = max_ptes_none;
268
269         return count;
270 }
271 static struct kobj_attribute khugepaged_max_ptes_none_attr =
272         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
273                khugepaged_max_ptes_none_store);
274
275 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
276                                              struct kobj_attribute *attr,
277                                              char *buf)
278 {
279         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
280 }
281
282 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
283                                               struct kobj_attribute *attr,
284                                               const char *buf, size_t count)
285 {
286         int err;
287         unsigned long max_ptes_swap;
288
289         err  = kstrtoul(buf, 10, &max_ptes_swap);
290         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
291                 return -EINVAL;
292
293         khugepaged_max_ptes_swap = max_ptes_swap;
294
295         return count;
296 }
297
298 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
299         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
300                khugepaged_max_ptes_swap_store);
301
302 static struct attribute *khugepaged_attr[] = {
303         &khugepaged_defrag_attr.attr,
304         &khugepaged_max_ptes_none_attr.attr,
305         &pages_to_scan_attr.attr,
306         &pages_collapsed_attr.attr,
307         &full_scans_attr.attr,
308         &scan_sleep_millisecs_attr.attr,
309         &alloc_sleep_millisecs_attr.attr,
310         &khugepaged_max_ptes_swap_attr.attr,
311         NULL,
312 };
313
314 struct attribute_group khugepaged_attr_group = {
315         .attrs = khugepaged_attr,
316         .name = "khugepaged",
317 };
318 #endif /* CONFIG_SYSFS */
319
320 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
321
322 int hugepage_madvise(struct vm_area_struct *vma,
323                      unsigned long *vm_flags, int advice)
324 {
325         switch (advice) {
326         case MADV_HUGEPAGE:
327 #ifdef CONFIG_S390
328                 /*
329                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
330                  * can't handle this properly after s390_enable_sie, so we simply
331                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
332                  */
333                 if (mm_has_pgste(vma->vm_mm))
334                         return 0;
335 #endif
336                 *vm_flags &= ~VM_NOHUGEPAGE;
337                 *vm_flags |= VM_HUGEPAGE;
338                 /*
339                  * If the vma become good for khugepaged to scan,
340                  * register it here without waiting a page fault that
341                  * may not happen any time soon.
342                  */
343                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
344                                 khugepaged_enter_vma_merge(vma, *vm_flags))
345                         return -ENOMEM;
346                 break;
347         case MADV_NOHUGEPAGE:
348                 *vm_flags &= ~VM_HUGEPAGE;
349                 *vm_flags |= VM_NOHUGEPAGE;
350                 /*
351                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
352                  * this vma even if we leave the mm registered in khugepaged if
353                  * it got registered before VM_NOHUGEPAGE was set.
354                  */
355                 break;
356         }
357
358         return 0;
359 }
360
361 int __init khugepaged_init(void)
362 {
363         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
364                                           sizeof(struct mm_slot),
365                                           __alignof__(struct mm_slot), 0, NULL);
366         if (!mm_slot_cache)
367                 return -ENOMEM;
368
369         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
370         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
371         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
372
373         return 0;
374 }
375
376 void __init khugepaged_destroy(void)
377 {
378         kmem_cache_destroy(mm_slot_cache);
379 }
380
381 static inline struct mm_slot *alloc_mm_slot(void)
382 {
383         if (!mm_slot_cache)     /* initialization failed */
384                 return NULL;
385         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
386 }
387
388 static inline void free_mm_slot(struct mm_slot *mm_slot)
389 {
390         kmem_cache_free(mm_slot_cache, mm_slot);
391 }
392
393 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
394 {
395         struct mm_slot *mm_slot;
396
397         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
398                 if (mm == mm_slot->mm)
399                         return mm_slot;
400
401         return NULL;
402 }
403
404 static void insert_to_mm_slots_hash(struct mm_struct *mm,
405                                     struct mm_slot *mm_slot)
406 {
407         mm_slot->mm = mm;
408         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
409 }
410
411 static inline int khugepaged_test_exit(struct mm_struct *mm)
412 {
413         return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm);
414 }
415
416 int __khugepaged_enter(struct mm_struct *mm)
417 {
418         struct mm_slot *mm_slot;
419         int wakeup;
420
421         mm_slot = alloc_mm_slot();
422         if (!mm_slot)
423                 return -ENOMEM;
424
425         /* __khugepaged_exit() must not run from under us */
426         VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
427         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
428                 free_mm_slot(mm_slot);
429                 return 0;
430         }
431
432         spin_lock(&khugepaged_mm_lock);
433         insert_to_mm_slots_hash(mm, mm_slot);
434         /*
435          * Insert just behind the scanning cursor, to let the area settle
436          * down a little.
437          */
438         wakeup = list_empty(&khugepaged_scan.mm_head);
439         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
440         spin_unlock(&khugepaged_mm_lock);
441
442         mmgrab(mm);
443         if (wakeup)
444                 wake_up_interruptible(&khugepaged_wait);
445
446         return 0;
447 }
448
449 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
450                                unsigned long vm_flags)
451 {
452         unsigned long hstart, hend;
453         if (!vma->anon_vma)
454                 /*
455                  * Not yet faulted in so we will register later in the
456                  * page fault if needed.
457                  */
458                 return 0;
459         if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
460                 /* khugepaged not yet working on file or special mappings */
461                 return 0;
462         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
463         hend = vma->vm_end & HPAGE_PMD_MASK;
464         if (hstart < hend)
465                 return khugepaged_enter(vma, vm_flags);
466         return 0;
467 }
468
469 void __khugepaged_exit(struct mm_struct *mm)
470 {
471         struct mm_slot *mm_slot;
472         int free = 0;
473
474         spin_lock(&khugepaged_mm_lock);
475         mm_slot = get_mm_slot(mm);
476         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
477                 hash_del(&mm_slot->hash);
478                 list_del(&mm_slot->mm_node);
479                 free = 1;
480         }
481         spin_unlock(&khugepaged_mm_lock);
482
483         if (free) {
484                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
485                 free_mm_slot(mm_slot);
486                 mmdrop(mm);
487         } else if (mm_slot) {
488                 /*
489                  * This is required to serialize against
490                  * khugepaged_test_exit() (which is guaranteed to run
491                  * under mmap sem read mode). Stop here (after we
492                  * return all pagetables will be destroyed) until
493                  * khugepaged has finished working on the pagetables
494                  * under the mmap_sem.
495                  */
496                 down_write(&mm->mmap_sem);
497                 up_write(&mm->mmap_sem);
498         }
499 }
500
501 static void release_pte_page(struct page *page)
502 {
503         dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
504         unlock_page(page);
505         putback_lru_page(page);
506 }
507
508 static void release_pte_pages(pte_t *pte, pte_t *_pte)
509 {
510         while (--_pte >= pte) {
511                 pte_t pteval = *_pte;
512                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
513                         release_pte_page(pte_page(pteval));
514         }
515 }
516
517 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
518                                         unsigned long address,
519                                         pte_t *pte)
520 {
521         struct page *page = NULL;
522         pte_t *_pte;
523         int none_or_zero = 0, result = 0, referenced = 0;
524         bool writable = false;
525
526         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
527              _pte++, address += PAGE_SIZE) {
528                 pte_t pteval = *_pte;
529                 if (pte_none(pteval) || (pte_present(pteval) &&
530                                 is_zero_pfn(pte_pfn(pteval)))) {
531                         if (!userfaultfd_armed(vma) &&
532                             ++none_or_zero <= khugepaged_max_ptes_none) {
533                                 continue;
534                         } else {
535                                 result = SCAN_EXCEED_NONE_PTE;
536                                 goto out;
537                         }
538                 }
539                 if (!pte_present(pteval)) {
540                         result = SCAN_PTE_NON_PRESENT;
541                         goto out;
542                 }
543                 page = vm_normal_page(vma, address, pteval);
544                 if (unlikely(!page)) {
545                         result = SCAN_PAGE_NULL;
546                         goto out;
547                 }
548
549                 /* TODO: teach khugepaged to collapse THP mapped with pte */
550                 if (PageCompound(page)) {
551                         result = SCAN_PAGE_COMPOUND;
552                         goto out;
553                 }
554
555                 VM_BUG_ON_PAGE(!PageAnon(page), page);
556
557                 /*
558                  * We can do it before isolate_lru_page because the
559                  * page can't be freed from under us. NOTE: PG_lock
560                  * is needed to serialize against split_huge_page
561                  * when invoked from the VM.
562                  */
563                 if (!trylock_page(page)) {
564                         result = SCAN_PAGE_LOCK;
565                         goto out;
566                 }
567
568                 /*
569                  * cannot use mapcount: can't collapse if there's a gup pin.
570                  * The page must only be referenced by the scanned process
571                  * and page swap cache.
572                  */
573                 if (page_count(page) != 1 + PageSwapCache(page)) {
574                         unlock_page(page);
575                         result = SCAN_PAGE_COUNT;
576                         goto out;
577                 }
578                 if (pte_write(pteval)) {
579                         writable = true;
580                 } else {
581                         if (PageSwapCache(page) &&
582                             !reuse_swap_page(page, NULL)) {
583                                 unlock_page(page);
584                                 result = SCAN_SWAP_CACHE_PAGE;
585                                 goto out;
586                         }
587                         /*
588                          * Page is not in the swap cache. It can be collapsed
589                          * into a THP.
590                          */
591                 }
592
593                 /*
594                  * Isolate the page to avoid collapsing an hugepage
595                  * currently in use by the VM.
596                  */
597                 if (isolate_lru_page(page)) {
598                         unlock_page(page);
599                         result = SCAN_DEL_PAGE_LRU;
600                         goto out;
601                 }
602                 inc_node_page_state(page,
603                                 NR_ISOLATED_ANON + page_is_file_cache(page));
604                 VM_BUG_ON_PAGE(!PageLocked(page), page);
605                 VM_BUG_ON_PAGE(PageLRU(page), page);
606
607                 /* There should be enough young pte to collapse the page */
608                 if (pte_young(pteval) ||
609                     page_is_young(page) || PageReferenced(page) ||
610                     mmu_notifier_test_young(vma->vm_mm, address))
611                         referenced++;
612         }
613
614         if (unlikely(!writable)) {
615                 result = SCAN_PAGE_RO;
616         } else if (unlikely(!referenced)) {
617                 result = SCAN_LACK_REFERENCED_PAGE;
618         } else {
619                 result = SCAN_SUCCEED;
620                 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
621                                                     referenced, writable, result);
622                 return 1;
623         }
624 out:
625         release_pte_pages(pte, _pte);
626         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
627                                             referenced, writable, result);
628         return 0;
629 }
630
631 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
632                                       struct vm_area_struct *vma,
633                                       unsigned long address,
634                                       spinlock_t *ptl)
635 {
636         pte_t *_pte;
637         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
638                                 _pte++, page++, address += PAGE_SIZE) {
639                 pte_t pteval = *_pte;
640                 struct page *src_page;
641
642                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
643                         clear_user_highpage(page, address);
644                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
645                         if (is_zero_pfn(pte_pfn(pteval))) {
646                                 /*
647                                  * ptl mostly unnecessary.
648                                  */
649                                 spin_lock(ptl);
650                                 /*
651                                  * paravirt calls inside pte_clear here are
652                                  * superfluous.
653                                  */
654                                 pte_clear(vma->vm_mm, address, _pte);
655                                 spin_unlock(ptl);
656                         }
657                 } else {
658                         src_page = pte_page(pteval);
659                         copy_user_highpage(page, src_page, address, vma);
660                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
661                         release_pte_page(src_page);
662                         /*
663                          * ptl mostly unnecessary, but preempt has to
664                          * be disabled to update the per-cpu stats
665                          * inside page_remove_rmap().
666                          */
667                         spin_lock(ptl);
668                         /*
669                          * paravirt calls inside pte_clear here are
670                          * superfluous.
671                          */
672                         pte_clear(vma->vm_mm, address, _pte);
673                         page_remove_rmap(src_page, false);
674                         spin_unlock(ptl);
675                         free_page_and_swap_cache(src_page);
676                 }
677         }
678 }
679
680 static void khugepaged_alloc_sleep(void)
681 {
682         DEFINE_WAIT(wait);
683
684         add_wait_queue(&khugepaged_wait, &wait);
685         freezable_schedule_timeout_interruptible(
686                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
687         remove_wait_queue(&khugepaged_wait, &wait);
688 }
689
690 static int khugepaged_node_load[MAX_NUMNODES];
691
692 static bool khugepaged_scan_abort(int nid)
693 {
694         int i;
695
696         /*
697          * If node_reclaim_mode is disabled, then no extra effort is made to
698          * allocate memory locally.
699          */
700         if (!node_reclaim_mode)
701                 return false;
702
703         /* If there is a count for this node already, it must be acceptable */
704         if (khugepaged_node_load[nid])
705                 return false;
706
707         for (i = 0; i < MAX_NUMNODES; i++) {
708                 if (!khugepaged_node_load[i])
709                         continue;
710                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
711                         return true;
712         }
713         return false;
714 }
715
716 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
717 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
718 {
719         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
720 }
721
722 #ifdef CONFIG_NUMA
723 static int khugepaged_find_target_node(void)
724 {
725         static int last_khugepaged_target_node = NUMA_NO_NODE;
726         int nid, target_node = 0, max_value = 0;
727
728         /* find first node with max normal pages hit */
729         for (nid = 0; nid < MAX_NUMNODES; nid++)
730                 if (khugepaged_node_load[nid] > max_value) {
731                         max_value = khugepaged_node_load[nid];
732                         target_node = nid;
733                 }
734
735         /* do some balance if several nodes have the same hit record */
736         if (target_node <= last_khugepaged_target_node)
737                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
738                                 nid++)
739                         if (max_value == khugepaged_node_load[nid]) {
740                                 target_node = nid;
741                                 break;
742                         }
743
744         last_khugepaged_target_node = target_node;
745         return target_node;
746 }
747
748 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
749 {
750         if (IS_ERR(*hpage)) {
751                 if (!*wait)
752                         return false;
753
754                 *wait = false;
755                 *hpage = NULL;
756                 khugepaged_alloc_sleep();
757         } else if (*hpage) {
758                 put_page(*hpage);
759                 *hpage = NULL;
760         }
761
762         return true;
763 }
764
765 static struct page *
766 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
767 {
768         VM_BUG_ON_PAGE(*hpage, *hpage);
769
770         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
771         if (unlikely(!*hpage)) {
772                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
773                 *hpage = ERR_PTR(-ENOMEM);
774                 return NULL;
775         }
776
777         prep_transhuge_page(*hpage);
778         count_vm_event(THP_COLLAPSE_ALLOC);
779         return *hpage;
780 }
781 #else
782 static int khugepaged_find_target_node(void)
783 {
784         return 0;
785 }
786
787 static inline struct page *alloc_khugepaged_hugepage(void)
788 {
789         struct page *page;
790
791         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
792                            HPAGE_PMD_ORDER);
793         if (page)
794                 prep_transhuge_page(page);
795         return page;
796 }
797
798 static struct page *khugepaged_alloc_hugepage(bool *wait)
799 {
800         struct page *hpage;
801
802         do {
803                 hpage = alloc_khugepaged_hugepage();
804                 if (!hpage) {
805                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
806                         if (!*wait)
807                                 return NULL;
808
809                         *wait = false;
810                         khugepaged_alloc_sleep();
811                 } else
812                         count_vm_event(THP_COLLAPSE_ALLOC);
813         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
814
815         return hpage;
816 }
817
818 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
819 {
820         /*
821          * If the hpage allocated earlier was briefly exposed in page cache
822          * before collapse_file() failed, it is possible that racing lookups
823          * have not yet completed, and would then be unpleasantly surprised by
824          * finding the hpage reused for the same mapping at a different offset.
825          * Just release the previous allocation if there is any danger of that.
826          */
827         if (*hpage && page_count(*hpage) > 1) {
828                 put_page(*hpage);
829                 *hpage = NULL;
830         }
831
832         if (!*hpage)
833                 *hpage = khugepaged_alloc_hugepage(wait);
834
835         if (unlikely(!*hpage))
836                 return false;
837
838         return true;
839 }
840
841 static struct page *
842 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
843 {
844         VM_BUG_ON(!*hpage);
845
846         return  *hpage;
847 }
848 #endif
849
850 static bool hugepage_vma_check(struct vm_area_struct *vma)
851 {
852         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
853             (vma->vm_flags & VM_NOHUGEPAGE) ||
854             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
855                 return false;
856         if (shmem_file(vma->vm_file)) {
857                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
858                         return false;
859                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
860                                 HPAGE_PMD_NR);
861         }
862         if (!vma->anon_vma || vma->vm_ops)
863                 return false;
864         if (is_vma_temporary_stack(vma))
865                 return false;
866         return !(vma->vm_flags & VM_NO_KHUGEPAGED);
867 }
868
869 /*
870  * If mmap_sem temporarily dropped, revalidate vma
871  * before taking mmap_sem.
872  * Return 0 if succeeds, otherwise return none-zero
873  * value (scan code).
874  */
875
876 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
877                 struct vm_area_struct **vmap)
878 {
879         struct vm_area_struct *vma;
880         unsigned long hstart, hend;
881
882         if (unlikely(khugepaged_test_exit(mm)))
883                 return SCAN_ANY_PROCESS;
884
885         *vmap = vma = find_vma(mm, address);
886         if (!vma)
887                 return SCAN_VMA_NULL;
888
889         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
890         hend = vma->vm_end & HPAGE_PMD_MASK;
891         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
892                 return SCAN_ADDRESS_RANGE;
893         if (!hugepage_vma_check(vma))
894                 return SCAN_VMA_CHECK;
895         return 0;
896 }
897
898 /*
899  * Bring missing pages in from swap, to complete THP collapse.
900  * Only done if khugepaged_scan_pmd believes it is worthwhile.
901  *
902  * Called and returns without pte mapped or spinlocks held,
903  * but with mmap_sem held to protect against vma changes.
904  */
905
906 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
907                                         struct vm_area_struct *vma,
908                                         unsigned long address, pmd_t *pmd,
909                                         int referenced)
910 {
911         int swapped_in = 0, ret = 0;
912         struct vm_fault vmf = {
913                 .vma = vma,
914                 .address = address,
915                 .flags = FAULT_FLAG_ALLOW_RETRY,
916                 .pmd = pmd,
917                 .pgoff = linear_page_index(vma, address),
918         };
919
920         /* we only decide to swapin, if there is enough young ptes */
921         if (referenced < HPAGE_PMD_NR/2) {
922                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
923                 return false;
924         }
925         vmf.pte = pte_offset_map(pmd, address);
926         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
927                         vmf.pte++, vmf.address += PAGE_SIZE) {
928                 vmf.orig_pte = *vmf.pte;
929                 if (!is_swap_pte(vmf.orig_pte))
930                         continue;
931                 swapped_in++;
932                 ret = do_swap_page(&vmf);
933
934                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
935                 if (ret & VM_FAULT_RETRY) {
936                         down_read(&mm->mmap_sem);
937                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
938                                 /* vma is no longer available, don't continue to swapin */
939                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
940                                 return false;
941                         }
942                         /* check if the pmd is still valid */
943                         if (mm_find_pmd(mm, address) != pmd) {
944                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
945                                 return false;
946                         }
947                 }
948                 if (ret & VM_FAULT_ERROR) {
949                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
950                         return false;
951                 }
952                 /* pte is unmapped now, we need to map it */
953                 vmf.pte = pte_offset_map(pmd, vmf.address);
954         }
955         vmf.pte--;
956         pte_unmap(vmf.pte);
957         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
958         return true;
959 }
960
961 static void collapse_huge_page(struct mm_struct *mm,
962                                    unsigned long address,
963                                    struct page **hpage,
964                                    int node, int referenced)
965 {
966         pmd_t *pmd, _pmd;
967         pte_t *pte;
968         pgtable_t pgtable;
969         struct page *new_page;
970         spinlock_t *pmd_ptl, *pte_ptl;
971         int isolated = 0, result = 0;
972         struct mem_cgroup *memcg;
973         struct vm_area_struct *vma;
974         unsigned long mmun_start;       /* For mmu_notifiers */
975         unsigned long mmun_end;         /* For mmu_notifiers */
976         gfp_t gfp;
977
978         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
979
980         /* Only allocate from the target node */
981         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
982
983         /*
984          * Before allocating the hugepage, release the mmap_sem read lock.
985          * The allocation can take potentially a long time if it involves
986          * sync compaction, and we do not need to hold the mmap_sem during
987          * that. We will recheck the vma after taking it again in write mode.
988          */
989         up_read(&mm->mmap_sem);
990         new_page = khugepaged_alloc_page(hpage, gfp, node);
991         if (!new_page) {
992                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
993                 goto out_nolock;
994         }
995
996         /* Do not oom kill for khugepaged charges */
997         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY,
998                                            &memcg, true))) {
999                 result = SCAN_CGROUP_CHARGE_FAIL;
1000                 goto out_nolock;
1001         }
1002
1003         down_read(&mm->mmap_sem);
1004         result = hugepage_vma_revalidate(mm, address, &vma);
1005         if (result) {
1006                 mem_cgroup_cancel_charge(new_page, memcg, true);
1007                 up_read(&mm->mmap_sem);
1008                 goto out_nolock;
1009         }
1010
1011         pmd = mm_find_pmd(mm, address);
1012         if (!pmd) {
1013                 result = SCAN_PMD_NULL;
1014                 mem_cgroup_cancel_charge(new_page, memcg, true);
1015                 up_read(&mm->mmap_sem);
1016                 goto out_nolock;
1017         }
1018
1019         /*
1020          * __collapse_huge_page_swapin always returns with mmap_sem locked.
1021          * If it fails, we release mmap_sem and jump out_nolock.
1022          * Continuing to collapse causes inconsistency.
1023          */
1024         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1025                 mem_cgroup_cancel_charge(new_page, memcg, true);
1026                 up_read(&mm->mmap_sem);
1027                 goto out_nolock;
1028         }
1029
1030         up_read(&mm->mmap_sem);
1031         /*
1032          * Prevent all access to pagetables with the exception of
1033          * gup_fast later handled by the ptep_clear_flush and the VM
1034          * handled by the anon_vma lock + PG_lock.
1035          */
1036         down_write(&mm->mmap_sem);
1037         result = hugepage_vma_revalidate(mm, address, &vma);
1038         if (result)
1039                 goto out;
1040         /* check if the pmd is still valid */
1041         if (mm_find_pmd(mm, address) != pmd)
1042                 goto out;
1043
1044         anon_vma_lock_write(vma->anon_vma);
1045
1046         pte = pte_offset_map(pmd, address);
1047         pte_ptl = pte_lockptr(mm, pmd);
1048
1049         mmun_start = address;
1050         mmun_end   = address + HPAGE_PMD_SIZE;
1051         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1052         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1053         /*
1054          * After this gup_fast can't run anymore. This also removes
1055          * any huge TLB entry from the CPU so we won't allow
1056          * huge and small TLB entries for the same virtual address
1057          * to avoid the risk of CPU bugs in that area.
1058          */
1059         _pmd = pmdp_collapse_flush(vma, address, pmd);
1060         spin_unlock(pmd_ptl);
1061         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1062         tlb_remove_table_sync_one();
1063
1064         spin_lock(pte_ptl);
1065         isolated = __collapse_huge_page_isolate(vma, address, pte);
1066         spin_unlock(pte_ptl);
1067
1068         if (unlikely(!isolated)) {
1069                 pte_unmap(pte);
1070                 spin_lock(pmd_ptl);
1071                 BUG_ON(!pmd_none(*pmd));
1072                 /*
1073                  * We can only use set_pmd_at when establishing
1074                  * hugepmds and never for establishing regular pmds that
1075                  * points to regular pagetables. Use pmd_populate for that
1076                  */
1077                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1078                 spin_unlock(pmd_ptl);
1079                 anon_vma_unlock_write(vma->anon_vma);
1080                 result = SCAN_FAIL;
1081                 goto out;
1082         }
1083
1084         /*
1085          * All pages are isolated and locked so anon_vma rmap
1086          * can't run anymore.
1087          */
1088         anon_vma_unlock_write(vma->anon_vma);
1089
1090         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1091         pte_unmap(pte);
1092         __SetPageUptodate(new_page);
1093         pgtable = pmd_pgtable(_pmd);
1094
1095         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1096         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1097
1098         /*
1099          * spin_lock() below is not the equivalent of smp_wmb(), so
1100          * this is needed to avoid the copy_huge_page writes to become
1101          * visible after the set_pmd_at() write.
1102          */
1103         smp_wmb();
1104
1105         spin_lock(pmd_ptl);
1106         BUG_ON(!pmd_none(*pmd));
1107         page_add_new_anon_rmap(new_page, vma, address, true);
1108         mem_cgroup_commit_charge(new_page, memcg, false, true);
1109         lru_cache_add_active_or_unevictable(new_page, vma);
1110         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1111         set_pmd_at(mm, address, pmd, _pmd);
1112         update_mmu_cache_pmd(vma, address, pmd);
1113         spin_unlock(pmd_ptl);
1114
1115         *hpage = NULL;
1116
1117         khugepaged_pages_collapsed++;
1118         result = SCAN_SUCCEED;
1119 out_up_write:
1120         up_write(&mm->mmap_sem);
1121 out_nolock:
1122         trace_mm_collapse_huge_page(mm, isolated, result);
1123         return;
1124 out:
1125         mem_cgroup_cancel_charge(new_page, memcg, true);
1126         goto out_up_write;
1127 }
1128
1129 static int khugepaged_scan_pmd(struct mm_struct *mm,
1130                                struct vm_area_struct *vma,
1131                                unsigned long address,
1132                                struct page **hpage)
1133 {
1134         pmd_t *pmd;
1135         pte_t *pte, *_pte;
1136         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1137         struct page *page = NULL;
1138         unsigned long _address;
1139         spinlock_t *ptl;
1140         int node = NUMA_NO_NODE, unmapped = 0;
1141         bool writable = false;
1142
1143         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1144
1145         pmd = mm_find_pmd(mm, address);
1146         if (!pmd) {
1147                 result = SCAN_PMD_NULL;
1148                 goto out;
1149         }
1150
1151         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1152         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1153         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1154              _pte++, _address += PAGE_SIZE) {
1155                 pte_t pteval = *_pte;
1156                 if (is_swap_pte(pteval)) {
1157                         if (++unmapped <= khugepaged_max_ptes_swap) {
1158                                 continue;
1159                         } else {
1160                                 result = SCAN_EXCEED_SWAP_PTE;
1161                                 goto out_unmap;
1162                         }
1163                 }
1164                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1165                         if (!userfaultfd_armed(vma) &&
1166                             ++none_or_zero <= khugepaged_max_ptes_none) {
1167                                 continue;
1168                         } else {
1169                                 result = SCAN_EXCEED_NONE_PTE;
1170                                 goto out_unmap;
1171                         }
1172                 }
1173                 if (!pte_present(pteval)) {
1174                         result = SCAN_PTE_NON_PRESENT;
1175                         goto out_unmap;
1176                 }
1177                 if (pte_write(pteval))
1178                         writable = true;
1179
1180                 page = vm_normal_page(vma, _address, pteval);
1181                 if (unlikely(!page)) {
1182                         result = SCAN_PAGE_NULL;
1183                         goto out_unmap;
1184                 }
1185
1186                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1187                 if (PageCompound(page)) {
1188                         result = SCAN_PAGE_COMPOUND;
1189                         goto out_unmap;
1190                 }
1191
1192                 /*
1193                  * Record which node the original page is from and save this
1194                  * information to khugepaged_node_load[].
1195                  * Khupaged will allocate hugepage from the node has the max
1196                  * hit record.
1197                  */
1198                 node = page_to_nid(page);
1199                 if (khugepaged_scan_abort(node)) {
1200                         result = SCAN_SCAN_ABORT;
1201                         goto out_unmap;
1202                 }
1203                 khugepaged_node_load[node]++;
1204                 if (!PageLRU(page)) {
1205                         result = SCAN_PAGE_LRU;
1206                         goto out_unmap;
1207                 }
1208                 if (PageLocked(page)) {
1209                         result = SCAN_PAGE_LOCK;
1210                         goto out_unmap;
1211                 }
1212                 if (!PageAnon(page)) {
1213                         result = SCAN_PAGE_ANON;
1214                         goto out_unmap;
1215                 }
1216
1217                 /*
1218                  * cannot use mapcount: can't collapse if there's a gup pin.
1219                  * The page must only be referenced by the scanned process
1220                  * and page swap cache.
1221                  */
1222                 if (page_count(page) != 1 + PageSwapCache(page)) {
1223                         result = SCAN_PAGE_COUNT;
1224                         goto out_unmap;
1225                 }
1226                 if (pte_young(pteval) ||
1227                     page_is_young(page) || PageReferenced(page) ||
1228                     mmu_notifier_test_young(vma->vm_mm, address))
1229                         referenced++;
1230         }
1231         if (writable) {
1232                 if (referenced) {
1233                         result = SCAN_SUCCEED;
1234                         ret = 1;
1235                 } else {
1236                         result = SCAN_LACK_REFERENCED_PAGE;
1237                 }
1238         } else {
1239                 result = SCAN_PAGE_RO;
1240         }
1241 out_unmap:
1242         pte_unmap_unlock(pte, ptl);
1243         if (ret) {
1244                 node = khugepaged_find_target_node();
1245                 /* collapse_huge_page will return with the mmap_sem released */
1246                 collapse_huge_page(mm, address, hpage, node, referenced);
1247         }
1248 out:
1249         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1250                                      none_or_zero, result, unmapped);
1251         return ret;
1252 }
1253
1254 static void collect_mm_slot(struct mm_slot *mm_slot)
1255 {
1256         struct mm_struct *mm = mm_slot->mm;
1257
1258         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1259
1260         if (khugepaged_test_exit(mm)) {
1261                 /* free mm_slot */
1262                 hash_del(&mm_slot->hash);
1263                 list_del(&mm_slot->mm_node);
1264
1265                 /*
1266                  * Not strictly needed because the mm exited already.
1267                  *
1268                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1269                  */
1270
1271                 /* khugepaged_mm_lock actually not necessary for the below */
1272                 free_mm_slot(mm_slot);
1273                 mmdrop(mm);
1274         }
1275 }
1276
1277 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1278 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1279 {
1280         struct vm_area_struct *vma;
1281         struct mm_struct *mm;
1282         unsigned long addr;
1283         pmd_t *pmd, _pmd;
1284
1285         i_mmap_lock_write(mapping);
1286         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1287                 /* probably overkill */
1288                 if (vma->anon_vma)
1289                         continue;
1290                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1291                 if (addr & ~HPAGE_PMD_MASK)
1292                         continue;
1293                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1294                         continue;
1295                 mm = vma->vm_mm;
1296                 pmd = mm_find_pmd(mm, addr);
1297                 if (!pmd)
1298                         continue;
1299                 /*
1300                  * We need exclusive mmap_sem to retract page table.
1301                  * If trylock fails we would end up with pte-mapped THP after
1302                  * re-fault. Not ideal, but it's more important to not disturb
1303                  * the system too much.
1304                  */
1305                 if (down_write_trylock(&mm->mmap_sem)) {
1306                         if (!khugepaged_test_exit(mm)) {
1307                                 spinlock_t *ptl;
1308                                 unsigned long end = addr + HPAGE_PMD_SIZE;
1309
1310                                 mmu_notifier_invalidate_range_start(mm, addr,
1311                                                                     end);
1312                                 ptl = pmd_lock(mm, pmd);
1313                                 /* assume page table is clear */
1314                                 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1315                                 spin_unlock(ptl);
1316                                 atomic_long_dec(&mm->nr_ptes);
1317                                 tlb_remove_table_sync_one();
1318                                 pte_free(mm, pmd_pgtable(_pmd));
1319                                 mmu_notifier_invalidate_range_end(mm, addr,
1320                                                                   end);
1321                         }
1322                         up_write(&mm->mmap_sem);
1323                 }
1324         }
1325         i_mmap_unlock_write(mapping);
1326 }
1327
1328 /**
1329  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1330  *
1331  * Basic scheme is simple, details are more complex:
1332  *  - allocate and lock a new huge page;
1333  *  - scan over radix tree replacing old pages the new one
1334  *    + swap in pages if necessary;
1335  *    + fill in gaps;
1336  *    + keep old pages around in case if rollback is required;
1337  *  - if replacing succeed:
1338  *    + copy data over;
1339  *    + free old pages;
1340  *    + unlock huge page;
1341  *  - if replacing failed;
1342  *    + put all pages back and unfreeze them;
1343  *    + restore gaps in the radix-tree;
1344  *    + unlock and free huge page;
1345  */
1346 static void collapse_shmem(struct mm_struct *mm,
1347                 struct address_space *mapping, pgoff_t start,
1348                 struct page **hpage, int node)
1349 {
1350         gfp_t gfp;
1351         struct page *page, *new_page, *tmp;
1352         struct mem_cgroup *memcg;
1353         pgoff_t index, end = start + HPAGE_PMD_NR;
1354         LIST_HEAD(pagelist);
1355         struct radix_tree_iter iter;
1356         void **slot;
1357         int nr_none = 0, result = SCAN_SUCCEED;
1358
1359         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1360
1361         /* Only allocate from the target node */
1362         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1363
1364         new_page = khugepaged_alloc_page(hpage, gfp, node);
1365         if (!new_page) {
1366                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1367                 goto out;
1368         }
1369
1370         /* Do not oom kill for khugepaged charges */
1371         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY,
1372                                            &memcg, true))) {
1373                 result = SCAN_CGROUP_CHARGE_FAIL;
1374                 goto out;
1375         }
1376
1377         __SetPageLocked(new_page);
1378         __SetPageSwapBacked(new_page);
1379         new_page->index = start;
1380         new_page->mapping = mapping;
1381
1382         /*
1383          * At this point the new_page is locked and not up-to-date.
1384          * It's safe to insert it into the page cache, because nobody would
1385          * be able to map it or use it in another way until we unlock it.
1386          */
1387
1388         index = start;
1389         spin_lock_irq(&mapping->tree_lock);
1390         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1391                 int n = min(iter.index, end) - index;
1392
1393                 /*
1394                  * Stop if extent has been hole-punched, and is now completely
1395                  * empty (the more obvious i_size_read() check would take an
1396                  * irq-unsafe seqlock on 32-bit).
1397                  */
1398                 if (n >= HPAGE_PMD_NR) {
1399                         result = SCAN_TRUNCATED;
1400                         goto tree_locked;
1401                 }
1402
1403                 /*
1404                  * Handle holes in the radix tree: charge it from shmem and
1405                  * insert relevant subpage of new_page into the radix-tree.
1406                  */
1407                 if (n && !shmem_charge(mapping->host, n)) {
1408                         result = SCAN_FAIL;
1409                         goto tree_locked;
1410                 }
1411                 for (; index < min(iter.index, end); index++) {
1412                         radix_tree_insert(&mapping->page_tree, index,
1413                                         new_page + (index % HPAGE_PMD_NR));
1414                 }
1415                 nr_none += n;
1416
1417                 /* We are done. */
1418                 if (index >= end)
1419                         break;
1420
1421                 page = radix_tree_deref_slot_protected(slot,
1422                                 &mapping->tree_lock);
1423                 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1424                         spin_unlock_irq(&mapping->tree_lock);
1425                         /* swap in or instantiate fallocated page */
1426                         if (shmem_getpage(mapping->host, index, &page,
1427                                                 SGP_NOHUGE)) {
1428                                 result = SCAN_FAIL;
1429                                 goto tree_unlocked;
1430                         }
1431                 } else if (trylock_page(page)) {
1432                         get_page(page);
1433                         spin_unlock_irq(&mapping->tree_lock);
1434                 } else {
1435                         result = SCAN_PAGE_LOCK;
1436                         goto tree_locked;
1437                 }
1438
1439                 /*
1440                  * The page must be locked, so we can drop the tree_lock
1441                  * without racing with truncate.
1442                  */
1443                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1444                 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1445
1446                 /*
1447                  * If file was truncated then extended, or hole-punched, before
1448                  * we locked the first page, then a THP might be there already.
1449                  */
1450                 if (PageTransCompound(page)) {
1451                         result = SCAN_PAGE_COMPOUND;
1452                         goto out_unlock;
1453                 }
1454
1455                 if (page_mapping(page) != mapping) {
1456                         result = SCAN_TRUNCATED;
1457                         goto out_unlock;
1458                 }
1459
1460                 if (isolate_lru_page(page)) {
1461                         result = SCAN_DEL_PAGE_LRU;
1462                         goto out_unlock;
1463                 }
1464
1465                 if (page_mapped(page))
1466                         unmap_mapping_range(mapping, index << PAGE_SHIFT,
1467                                         PAGE_SIZE, 0);
1468
1469                 spin_lock_irq(&mapping->tree_lock);
1470
1471                 slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1472                 VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1473                                         &mapping->tree_lock), page);
1474                 VM_BUG_ON_PAGE(page_mapped(page), page);
1475
1476                 /*
1477                  * The page is expected to have page_count() == 3:
1478                  *  - we hold a pin on it;
1479                  *  - one reference from radix tree;
1480                  *  - one from isolate_lru_page;
1481                  */
1482                 if (!page_ref_freeze(page, 3)) {
1483                         result = SCAN_PAGE_COUNT;
1484                         spin_unlock_irq(&mapping->tree_lock);
1485                         putback_lru_page(page);
1486                         goto out_unlock;
1487                 }
1488
1489                 /*
1490                  * Add the page to the list to be able to undo the collapse if
1491                  * something go wrong.
1492                  */
1493                 list_add_tail(&page->lru, &pagelist);
1494
1495                 /* Finally, replace with the new page. */
1496                 radix_tree_replace_slot(&mapping->page_tree, slot,
1497                                 new_page + (index % HPAGE_PMD_NR));
1498
1499                 slot = radix_tree_iter_resume(slot, &iter);
1500                 index++;
1501                 continue;
1502 out_unlock:
1503                 unlock_page(page);
1504                 put_page(page);
1505                 goto tree_unlocked;
1506         }
1507
1508         /*
1509          * Handle hole in radix tree at the end of the range.
1510          * This code only triggers if there's nothing in radix tree
1511          * beyond 'end'.
1512          */
1513         if (index < end) {
1514                 int n = end - index;
1515
1516                 /* Stop if extent has been truncated, and is now empty */
1517                 if (n >= HPAGE_PMD_NR) {
1518                         result = SCAN_TRUNCATED;
1519                         goto tree_locked;
1520                 }
1521                 if (!shmem_charge(mapping->host, n)) {
1522                         result = SCAN_FAIL;
1523                         goto tree_locked;
1524                 }
1525                 for (; index < end; index++) {
1526                         radix_tree_insert(&mapping->page_tree, index,
1527                                         new_page + (index % HPAGE_PMD_NR));
1528                 }
1529                 nr_none += n;
1530         }
1531
1532         __inc_node_page_state(new_page, NR_SHMEM_THPS);
1533         if (nr_none) {
1534                 struct zone *zone = page_zone(new_page);
1535
1536                 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1537                 __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1538         }
1539
1540 tree_locked:
1541         spin_unlock_irq(&mapping->tree_lock);
1542 tree_unlocked:
1543
1544         if (result == SCAN_SUCCEED) {
1545                 /*
1546                  * Replacing old pages with new one has succeed, now we need to
1547                  * copy the content and free old pages.
1548                  */
1549                 index = start;
1550                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1551                         while (index < page->index) {
1552                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1553                                 index++;
1554                         }
1555                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1556                                         page);
1557                         list_del(&page->lru);
1558                         page->mapping = NULL;
1559                         page_ref_unfreeze(page, 1);
1560                         ClearPageActive(page);
1561                         ClearPageUnevictable(page);
1562                         unlock_page(page);
1563                         put_page(page);
1564                         index++;
1565                 }
1566                 while (index < end) {
1567                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1568                         index++;
1569                 }
1570
1571                 SetPageUptodate(new_page);
1572                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1573                 set_page_dirty(new_page);
1574                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1575                 lru_cache_add_anon(new_page);
1576
1577                 /*
1578                  * Remove pte page tables, so we can re-fault the page as huge.
1579                  */
1580                 retract_page_tables(mapping, start);
1581                 *hpage = NULL;
1582         } else {
1583                 /* Something went wrong: rollback changes to the radix-tree */
1584                 spin_lock_irq(&mapping->tree_lock);
1585                 mapping->nrpages -= nr_none;
1586                 shmem_uncharge(mapping->host, nr_none);
1587
1588                 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1589                                 start) {
1590                         if (iter.index >= end)
1591                                 break;
1592                         page = list_first_entry_or_null(&pagelist,
1593                                         struct page, lru);
1594                         if (!page || iter.index < page->index) {
1595                                 if (!nr_none)
1596                                         break;
1597                                 nr_none--;
1598                                 /* Put holes back where they were */
1599                                 radix_tree_delete(&mapping->page_tree,
1600                                                   iter.index);
1601                                 continue;
1602                         }
1603
1604                         VM_BUG_ON_PAGE(page->index != iter.index, page);
1605
1606                         /* Unfreeze the page. */
1607                         list_del(&page->lru);
1608                         page_ref_unfreeze(page, 2);
1609                         radix_tree_replace_slot(&mapping->page_tree,
1610                                                 slot, page);
1611                         slot = radix_tree_iter_resume(slot, &iter);
1612                         spin_unlock_irq(&mapping->tree_lock);
1613                         unlock_page(page);
1614                         putback_lru_page(page);
1615                         spin_lock_irq(&mapping->tree_lock);
1616                 }
1617                 VM_BUG_ON(nr_none);
1618                 spin_unlock_irq(&mapping->tree_lock);
1619
1620                 mem_cgroup_cancel_charge(new_page, memcg, true);
1621                 new_page->mapping = NULL;
1622         }
1623
1624         unlock_page(new_page);
1625 out:
1626         VM_BUG_ON(!list_empty(&pagelist));
1627         /* TODO: tracepoints */
1628 }
1629
1630 static void khugepaged_scan_shmem(struct mm_struct *mm,
1631                 struct address_space *mapping,
1632                 pgoff_t start, struct page **hpage)
1633 {
1634         struct page *page = NULL;
1635         struct radix_tree_iter iter;
1636         void **slot;
1637         int present, swap;
1638         int node = NUMA_NO_NODE;
1639         int result = SCAN_SUCCEED;
1640
1641         present = 0;
1642         swap = 0;
1643         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1644         rcu_read_lock();
1645         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1646                 if (iter.index >= start + HPAGE_PMD_NR)
1647                         break;
1648
1649                 page = radix_tree_deref_slot(slot);
1650                 if (radix_tree_deref_retry(page)) {
1651                         slot = radix_tree_iter_retry(&iter);
1652                         continue;
1653                 }
1654
1655                 if (radix_tree_exception(page)) {
1656                         if (++swap > khugepaged_max_ptes_swap) {
1657                                 result = SCAN_EXCEED_SWAP_PTE;
1658                                 break;
1659                         }
1660                         continue;
1661                 }
1662
1663                 if (PageTransCompound(page)) {
1664                         result = SCAN_PAGE_COMPOUND;
1665                         break;
1666                 }
1667
1668                 node = page_to_nid(page);
1669                 if (khugepaged_scan_abort(node)) {
1670                         result = SCAN_SCAN_ABORT;
1671                         break;
1672                 }
1673                 khugepaged_node_load[node]++;
1674
1675                 if (!PageLRU(page)) {
1676                         result = SCAN_PAGE_LRU;
1677                         break;
1678                 }
1679
1680                 if (page_count(page) != 1 + page_mapcount(page)) {
1681                         result = SCAN_PAGE_COUNT;
1682                         break;
1683                 }
1684
1685                 /*
1686                  * We probably should check if the page is referenced here, but
1687                  * nobody would transfer pte_young() to PageReferenced() for us.
1688                  * And rmap walk here is just too costly...
1689                  */
1690
1691                 present++;
1692
1693                 if (need_resched()) {
1694                         slot = radix_tree_iter_resume(slot, &iter);
1695                         cond_resched_rcu();
1696                 }
1697         }
1698         rcu_read_unlock();
1699
1700         if (result == SCAN_SUCCEED) {
1701                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1702                         result = SCAN_EXCEED_NONE_PTE;
1703                 } else {
1704                         node = khugepaged_find_target_node();
1705                         collapse_shmem(mm, mapping, start, hpage, node);
1706                 }
1707         }
1708
1709         /* TODO: tracepoints */
1710 }
1711 #else
1712 static void khugepaged_scan_shmem(struct mm_struct *mm,
1713                 struct address_space *mapping,
1714                 pgoff_t start, struct page **hpage)
1715 {
1716         BUILD_BUG();
1717 }
1718 #endif
1719
1720 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1721                                             struct page **hpage)
1722         __releases(&khugepaged_mm_lock)
1723         __acquires(&khugepaged_mm_lock)
1724 {
1725         struct mm_slot *mm_slot;
1726         struct mm_struct *mm;
1727         struct vm_area_struct *vma;
1728         int progress = 0;
1729
1730         VM_BUG_ON(!pages);
1731         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1732
1733         if (khugepaged_scan.mm_slot)
1734                 mm_slot = khugepaged_scan.mm_slot;
1735         else {
1736                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1737                                      struct mm_slot, mm_node);
1738                 khugepaged_scan.address = 0;
1739                 khugepaged_scan.mm_slot = mm_slot;
1740         }
1741         spin_unlock(&khugepaged_mm_lock);
1742
1743         mm = mm_slot->mm;
1744         /*
1745          * Don't wait for semaphore (to avoid long wait times).  Just move to
1746          * the next mm on the list.
1747          */
1748         vma = NULL;
1749         if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1750                 goto breakouterloop_mmap_sem;
1751         if (likely(!khugepaged_test_exit(mm)))
1752                 vma = find_vma(mm, khugepaged_scan.address);
1753
1754         progress++;
1755         for (; vma; vma = vma->vm_next) {
1756                 unsigned long hstart, hend;
1757
1758                 cond_resched();
1759                 if (unlikely(khugepaged_test_exit(mm))) {
1760                         progress++;
1761                         break;
1762                 }
1763                 if (!hugepage_vma_check(vma)) {
1764 skip:
1765                         progress++;
1766                         continue;
1767                 }
1768                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1769                 hend = vma->vm_end & HPAGE_PMD_MASK;
1770                 if (hstart >= hend)
1771                         goto skip;
1772                 if (khugepaged_scan.address > hend)
1773                         goto skip;
1774                 if (khugepaged_scan.address < hstart)
1775                         khugepaged_scan.address = hstart;
1776                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1777
1778                 while (khugepaged_scan.address < hend) {
1779                         int ret;
1780                         cond_resched();
1781                         if (unlikely(khugepaged_test_exit(mm)))
1782                                 goto breakouterloop;
1783
1784                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1785                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1786                                   hend);
1787                         if (shmem_file(vma->vm_file)) {
1788                                 struct file *file;
1789                                 pgoff_t pgoff = linear_page_index(vma,
1790                                                 khugepaged_scan.address);
1791                                 if (!shmem_huge_enabled(vma))
1792                                         goto skip;
1793                                 file = get_file(vma->vm_file);
1794                                 up_read(&mm->mmap_sem);
1795                                 ret = 1;
1796                                 khugepaged_scan_shmem(mm, file->f_mapping,
1797                                                 pgoff, hpage);
1798                                 fput(file);
1799                         } else {
1800                                 ret = khugepaged_scan_pmd(mm, vma,
1801                                                 khugepaged_scan.address,
1802                                                 hpage);
1803                         }
1804                         /* move to next address */
1805                         khugepaged_scan.address += HPAGE_PMD_SIZE;
1806                         progress += HPAGE_PMD_NR;
1807                         if (ret)
1808                                 /* we released mmap_sem so break loop */
1809                                 goto breakouterloop_mmap_sem;
1810                         if (progress >= pages)
1811                                 goto breakouterloop;
1812                 }
1813         }
1814 breakouterloop:
1815         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1816 breakouterloop_mmap_sem:
1817
1818         spin_lock(&khugepaged_mm_lock);
1819         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1820         /*
1821          * Release the current mm_slot if this mm is about to die, or
1822          * if we scanned all vmas of this mm.
1823          */
1824         if (khugepaged_test_exit(mm) || !vma) {
1825                 /*
1826                  * Make sure that if mm_users is reaching zero while
1827                  * khugepaged runs here, khugepaged_exit will find
1828                  * mm_slot not pointing to the exiting mm.
1829                  */
1830                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1831                         khugepaged_scan.mm_slot = list_entry(
1832                                 mm_slot->mm_node.next,
1833                                 struct mm_slot, mm_node);
1834                         khugepaged_scan.address = 0;
1835                 } else {
1836                         khugepaged_scan.mm_slot = NULL;
1837                         khugepaged_full_scans++;
1838                 }
1839
1840                 collect_mm_slot(mm_slot);
1841         }
1842
1843         return progress;
1844 }
1845
1846 static int khugepaged_has_work(void)
1847 {
1848         return !list_empty(&khugepaged_scan.mm_head) &&
1849                 khugepaged_enabled();
1850 }
1851
1852 static int khugepaged_wait_event(void)
1853 {
1854         return !list_empty(&khugepaged_scan.mm_head) ||
1855                 kthread_should_stop();
1856 }
1857
1858 static void khugepaged_do_scan(void)
1859 {
1860         struct page *hpage = NULL;
1861         unsigned int progress = 0, pass_through_head = 0;
1862         unsigned int pages = khugepaged_pages_to_scan;
1863         bool wait = true;
1864
1865         barrier(); /* write khugepaged_pages_to_scan to local stack */
1866
1867         while (progress < pages) {
1868                 if (!khugepaged_prealloc_page(&hpage, &wait))
1869                         break;
1870
1871                 cond_resched();
1872
1873                 if (unlikely(kthread_should_stop() || try_to_freeze()))
1874                         break;
1875
1876                 spin_lock(&khugepaged_mm_lock);
1877                 if (!khugepaged_scan.mm_slot)
1878                         pass_through_head++;
1879                 if (khugepaged_has_work() &&
1880                     pass_through_head < 2)
1881                         progress += khugepaged_scan_mm_slot(pages - progress,
1882                                                             &hpage);
1883                 else
1884                         progress = pages;
1885                 spin_unlock(&khugepaged_mm_lock);
1886         }
1887
1888         if (!IS_ERR_OR_NULL(hpage))
1889                 put_page(hpage);
1890 }
1891
1892 static bool khugepaged_should_wakeup(void)
1893 {
1894         return kthread_should_stop() ||
1895                time_after_eq(jiffies, khugepaged_sleep_expire);
1896 }
1897
1898 static void khugepaged_wait_work(void)
1899 {
1900         if (khugepaged_has_work()) {
1901                 const unsigned long scan_sleep_jiffies =
1902                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1903
1904                 if (!scan_sleep_jiffies)
1905                         return;
1906
1907                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1908                 wait_event_freezable_timeout(khugepaged_wait,
1909                                              khugepaged_should_wakeup(),
1910                                              scan_sleep_jiffies);
1911                 return;
1912         }
1913
1914         if (khugepaged_enabled())
1915                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1916 }
1917
1918 static int khugepaged(void *none)
1919 {
1920         struct mm_slot *mm_slot;
1921
1922         set_freezable();
1923         set_user_nice(current, MAX_NICE);
1924
1925         while (!kthread_should_stop()) {
1926                 khugepaged_do_scan();
1927                 khugepaged_wait_work();
1928         }
1929
1930         spin_lock(&khugepaged_mm_lock);
1931         mm_slot = khugepaged_scan.mm_slot;
1932         khugepaged_scan.mm_slot = NULL;
1933         if (mm_slot)
1934                 collect_mm_slot(mm_slot);
1935         spin_unlock(&khugepaged_mm_lock);
1936         return 0;
1937 }
1938
1939 static void set_recommended_min_free_kbytes(void)
1940 {
1941         struct zone *zone;
1942         int nr_zones = 0;
1943         unsigned long recommended_min;
1944
1945         for_each_populated_zone(zone)
1946                 nr_zones++;
1947
1948         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1949         recommended_min = pageblock_nr_pages * nr_zones * 2;
1950
1951         /*
1952          * Make sure that on average at least two pageblocks are almost free
1953          * of another type, one for a migratetype to fall back to and a
1954          * second to avoid subsequent fallbacks of other types There are 3
1955          * MIGRATE_TYPES we care about.
1956          */
1957         recommended_min += pageblock_nr_pages * nr_zones *
1958                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1959
1960         /* don't ever allow to reserve more than 5% of the lowmem */
1961         recommended_min = min(recommended_min,
1962                               (unsigned long) nr_free_buffer_pages() / 20);
1963         recommended_min <<= (PAGE_SHIFT-10);
1964
1965         if (recommended_min > min_free_kbytes) {
1966                 if (user_min_free_kbytes >= 0)
1967                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1968                                 min_free_kbytes, recommended_min);
1969
1970                 min_free_kbytes = recommended_min;
1971         }
1972         setup_per_zone_wmarks();
1973 }
1974
1975 int start_stop_khugepaged(void)
1976 {
1977         int err = 0;
1978
1979         mutex_lock(&khugepaged_mutex);
1980         if (khugepaged_enabled()) {
1981                 if (!khugepaged_thread)
1982                         khugepaged_thread = kthread_run(khugepaged, NULL,
1983                                                         "khugepaged");
1984                 if (IS_ERR(khugepaged_thread)) {
1985                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1986                         err = PTR_ERR(khugepaged_thread);
1987                         khugepaged_thread = NULL;
1988                         goto fail;
1989                 }
1990
1991                 if (!list_empty(&khugepaged_scan.mm_head))
1992                         wake_up_interruptible(&khugepaged_wait);
1993
1994                 set_recommended_min_free_kbytes();
1995         } else if (khugepaged_thread) {
1996                 kthread_stop(khugepaged_thread);
1997                 khugepaged_thread = NULL;
1998         }
1999 fail:
2000         mutex_unlock(&khugepaged_mutex);
2001         return err;
2002 }
2003
2004 void khugepaged_min_free_kbytes_update(void)
2005 {
2006         mutex_lock(&khugepaged_mutex);
2007         if (khugepaged_enabled() && khugepaged_thread)
2008                 set_recommended_min_free_kbytes();
2009         mutex_unlock(&khugepaged_mutex);
2010 }